Publ. RIMS Kyoto Univ. 46 (2010), 201[–208](#page-7-0) DOI 10.2977/PRIMS/6

Dominated Bilinear Forms and 2-homogeneous Polynomials

by

Geraldo BOTELHO, Daniel PELLEGRINO and Pilar RUEDA

Abstract

The main goal of this note is to establish a connection between the cotype of the Banach space X and the parameters r for which every 2-homogeneous polynomial on X is r dominated. Let $\cot X$ be the infimum of the cotypes assumed by X and $(\cot X)^*$ be its conjugate. The main result of this note asserts that if $\cot X > 2$, then for every $1 \leq r < (\cot X)^*$ there exists a non-r-dominated 2-homogeneous polynomial on X.

2010 Mathematics Subject Classification: 46G25, 46B20, 46B28. Keywords: r-dominated multilinear form, r-dominated homogeneous polynomial, absolutely $(p; q)$ -summing mapping, cotype.

§1. Introduction

The notion of p-dominated multilinear mappings and homogeneous polynomials between Banach spaces plays an important role in the nonlinear theory of absolutely summing operators. It was introduced by Pietsch [\[17\]](#page-7-1) and has been investigated by several authors since then (see, e.g., [\[5,](#page-6-0) [6\]](#page-6-1) and references therein).

Let X be a Banach space and m be a positive integer. A continuous m linear form A on X^m is r-dominated if $(A(x_j^1, \ldots, x_j^m))_{j=1}^{\infty} \in \ell_{r/m}$ whenever $(x_j^1)_{j=1}^{\infty}, \ldots, (x_j^m)_{j=1}^{\infty}$ are weakly r-summable in X. In a similar way, a scalarvalued m-homogeneous polynomial P on X is r-dominated if $(P(x_j))_{j=1}^{\infty} \in \ell_{r/m}$ whenever $(x_j)_{j=1}^{\infty}$ is weakly r-summable in X.

c 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Communicated by H. Okamoto. Received May 9, 2009. Revised July 29, 2009.

G. Botelho: Faculdade de Matemática, Universidade Federal de Uberlândia,

^{38.400-902} Uberlândia, Brazil;

e-mail: botelho@ufu.br

D. Pellegrino: Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 Jo˜ao Pessoa, Brazil;

e-mail: dmpellegrino@gmail.com

P. Rueda: Departamento de Análisis Matemático, Universidad de Valencia,

⁴⁶¹⁰⁰ Burjasot - Valencia, Spain;

e-mail: pilar.rueda@uv.es

In [\[11,](#page-7-2) Lemma 5.4] it is proved that for every infinite-dimensional Banach space X, every $p \ge 1$ and every $m \ge 3$, there exists a continuous non-p-dominated m-linear form on X^m . For polynomials the question has recently been settled in $[6]$, where it is proved that for every infinite-dimensional Banach space X, every $p \ge 1$ and every $m \ge 3$, there exists a continuous non-p-dominated scalarvalued m-homogeneous polynomial on X . So, coincidence situations can occur only for $m = 2$. Sometimes it happens that every continuous bilinear form on X^2 is 2-dominated, for example if X is either an \mathcal{L}_{∞} -space, the disc algebra A or the Hardy space H^{∞} (see [\[4,](#page-6-2) Proposition 2.1]). In this case every continuous bilinear form on X^2 and every continuous scalar-valued 2-homogeneous polynomial on X are r-dominated for every $r > 2$. But what about r-dominated bilinear forms and 2-homogeneous polynomials for $1 \leq r < 2$?

Those spaces X that enjoy the property that all bilinear forms on X^2 are 1-dominated are all of cotype 2 (Example [1\)](#page-3-0). In Proposition [3.2](#page-3-1) we see that having cotype $2 + \varepsilon$ for every $\varepsilon > 0$ is a necessary condition. So, for a space X such that $\cot X > 2$ it is natural to investigate how close r can be to 1 with the property that every bilinear form on X^2 (or 2-homogeneous polynomial on X) is r-dominated. For bilinear forms it is not difficult to see (Proposition [3.3\)](#page-4-0) that $(\cot X)^*$, the conjugate of the number $\cot X$, is the closest r can be to 1. As usual, for polynomials the situation is more delicate. In the main result of this paper, Theorem [3.2,](#page-5-0) we prove that the estimate $(\cot X)^*$ holds for 2-homogeneous polynomials as well. We also point out that this result is in a sense sharp.

§2. Notation

Throughout this paper, n and m are positive integers, and X and Y will stand for Banach spaces over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . The Banach spaces of all continuous m-linear mappings $A: X^m \to Y$ and continuous m-homogeneous polynomials $P: X \to Y$, endowed with the usual sup norms, are denoted by $\mathcal{L}(^m X; Y)$ and $\mathcal{P}(^m X; Y)$, respectively $(\mathcal{L}(X;Y)$ if $m=1$). When $m=1$ and $Y=\mathbb{K}$ we write X^* to denote the topological dual of X. The closed unit ball of X is represented by B_X . The notation cot X denotes the infimum of the cotypes assumed by X . The identity operator on X is denoted by id_X . For details on the theory of multilinear mappings and homogeneous polynomials between Banach spaces we refer to [\[10,](#page-6-3) [14\]](#page-7-3).

Given $r \in [0, \infty)$, let $\ell_r(X)$ be the Banach (r-Banach if $0 < r < 1$) space of all absolutely r-summable sequences $(x_j)_{j=1}^{\infty}$ in X with the norm $\|(x_j)_{j=1}^{\infty}\|_r =$ $(\sum_{j=1}^{\infty}||x_j||^r)^{1/r}$. We denote by $\ell_r^w(X)$ the Banach $(r$ -Banach if $0 < r < 1$) space of all weakly r-summable sequences $(x_j)_{j=1}^{\infty}$ in X with the norm $\|(x_j)_{j=1}^{\infty}\|_{w,r} =$ $\sup_{\varphi \in B_{X^*}} \|(\varphi(x_j))_{j=1}^{\infty}\|_{r}.$

Let $p, q > 0$. An m-linear mapping $A \in \mathcal{L}(mX; Y)$ is absolutely $(p; q)$ -summing if $(A(x_j^1, \ldots, x_j^m))_{j=1}^{\infty} \in \ell_p(Y)$ whenever $(x_j^1)_{j=1}^{\infty}, \ldots, (x_j^m)_{j=1}^{\infty} \in \ell_q^w(X)$. It is wellknown that A is absolutely $(p; q)$ -summing if and only if there is a constant $C \geq 0$ such that

$$
\left(\sum_{j=1}^n \|A(x_j^1,\ldots,x_j^m)\|^p\right)^{1/p} \le C \prod_{k=1}^m \|(x_j^k)_{j=1}^n\|_{w,q}
$$

for every positive integer n and every $x_1^k, \ldots, x_n^k \in X$, $k = 1, \ldots, m$. The infimum of such C is denoted by $||A||_{\text{as}(p;q)}$. The space of all absolutely $(p;q)$ -summing mlinear mappings from X^m to Y is denoted by $\mathcal{L}_{\mathrm{as}(p;q)}(mX;Y)$, and $\|\cdot\|_{\mathrm{as}(p;q)}$ is a complete norm (p-norm if $p < 1$) on $\mathcal{L}_{\text{as}(p;q)}(^m X; Y)$.

An *m*-homogeneous polynomial $P \in \mathcal{P}(^m X; Y)$ is absolutely $(p; q)$ -summing if the symmetric m-linear mapping associated to P is absolutely $(p; q)$ -summing, or, equivalently, if $(P(x_j))_{j=1}^{\infty} \in \ell_p(Y)$ whenever $(x_j)_{j=1}^{\infty} \in \ell_q^w(X)$. It is well-known that P is absolutely $(p; q)$ -summing if and only if there is a constant $C \geq 0$ such that

$$
\left(\sum_{j=1}^n \|P(x_j)\|^p\right)^{1/p} \le C(\|(x_j)_{j=1}^n\|_{w,q})^m
$$

for every positive integer n and every $x_1, \ldots, x_n \in X$. The infimum of such C is denoted by $||P||_{\text{as}(p;q)}$. The space of all absolutely $(p;q)$ -summing m-homogeneous polynomials from X to Y is denoted by $\mathcal{P}_{\mathrm{as}(p;q)}(mX;Y)$, and $\|\cdot\|_{\mathrm{as}(p;q)}$ is a complete norm (p-norm if $p < 1$) on $\mathcal{P}_{\mathrm{as}(p;q)}({}^m X; Y)$.

An *m*-homogeneous polynomial $P \in \mathcal{P}(^m X; Y)$ is said to be *r*-dominated if it is absolutely $(r/m; r)$ -summing. In this case we write $\mathcal{P}_{d,r}(^m X; Y)$ and $\|\cdot\|_{d,r}$ instead of $\mathcal{P}_{\mathrm{as}(r/m;r)}(mX;Y)$ and $\|\cdot\|_{\mathrm{as}(r/m;r)}$. As usual we write $\mathcal{P}_{\mathrm{d},r}(mX)$ and $\mathcal{P}(^m X)$ when $Y = \mathbb{K}$. The definition (and notation) for r-dominated multilinear mappings is analogous (for the notation just replace P by \mathcal{L}). For details we refer to [\[2,](#page-6-4) [4,](#page-6-2) [11\]](#page-7-2).

§3. Results

First we establish the existence of Banach spaces on which every bilinear form (hence every scalar-valued 2-homogeneous polynomial) is 1-dominated. By $X\tilde{\otimes}_\pi X$ and $X \tilde{\otimes}_{\varepsilon} X$ we mean the completions of the tensor product $X \otimes X$ with respect to the projective norm π and the injective norm ε , respectively. For the basics on tensor norms we refer to [\[8,](#page-6-5) [19\]](#page-7-4).

By Π_r we denote the ideal of absolutely r-summing linear operators. The following well-known factorization theorem (see, e.g., [\[17,](#page-7-1) Theorem 14] or [\[2,](#page-6-4) Proposition $46(a)$) will be useful a couple of times.

Lemma 3.1. $\mathcal{L}_{d,r}(^m X; Y) = \mathcal{L} \circ (\Pi_r, \stackrel{(m)}{\ldots}, \Pi_r)(^m X; Y)$ and $\mathcal{P}_{d,r}(^m X; Y) = \mathcal{P} \circ$ $\Pi_r({}^mX;Y)$ for all positive integers m and Banach spaces X and Y.

Proposition 3.1. Let X be a cotype 2 space. Then $X \tilde{\otimes}_{\pi} X = X \tilde{\otimes}_{\varepsilon} X$ if and only if $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$.

Proof. This result is contained, in essence, in [\[11\]](#page-7-2). We give the details for the sake of completeness.

Assume that $X \tilde{\otimes}_{\pi} X = X \tilde{\otimes}_{\varepsilon} X$ and let $A \in \mathcal{L}(X^2)$. Denoting the linearization of A by A_L we have $A_L \in (X \tilde{\otimes}_{\pi} X)' = (X \tilde{\otimes}_{\varepsilon} X)'$. Regarding X as a subspace of $C(B_{X})$ and using that ε respects the formation of subspaces, A_L admits a continuous extension to $C(B_{X'})\tilde{\otimes}_\varepsilon C(B_{X'})$, hence to $C(B_{X'})\tilde{\otimes}_\pi C(B_{X'})$ because $\varepsilon \leq \pi$. As bilinear forms on $C(K)$ -spaces are 2-dominated, the bilinear form associated to this extension is 2-dominated. But restrictions of 2-dominated bilinear forms are 2-dominated as well, so A is 2-dominated. Since 2-summing operators on cotype 2 spaces are 1-summing $[9, Corollary 11.16(a)]$ $[9, Corollary 11.16(a)]$, it follows that $\Pi_1(X;Y) = \Pi_2(X;Y)$ for every Y, so by Lemma [3.1](#page-2-0) we have

$$
\mathcal{L}_{d,2}(^{2}X) = \mathcal{L} \circ (\Pi_{2}, \Pi_{2})(^{2}X) = \mathcal{L} \circ (\Pi_{1}, \Pi_{1})(^{2}X) = \mathcal{L}_{d,1}(^{2}X).
$$

It follows that A is 1-dominated.

Conversely, assume that $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$ and let $A \in \mathcal{L}(^2X)$. Since 1dominated bilinear forms are 2-dominated, it follows that A is 2-dominated, hence extendible by [\[13,](#page-7-5) Theorem 23]. Adapting the proof of [\[7,](#page-6-7) Proposition 1.1] to bilinear forms we conclude that A is integral. Now apply [\[8,](#page-6-5) Ex. 4.12] to get $X\mathbin{\tilde\otimes}_\pi X=X\mathbin{\tilde\otimes}_\varepsilon X.$ \Box

Example 1. Pisier [\[18\]](#page-7-6) proved that every cotype 2 space E embeds isometrically in a cotype 2 space X such that $X \tilde{\otimes}_{\pi} X = X \tilde{\otimes}_{\varepsilon} X$. So for every such space X we have $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$.

It is easy to see that $\cot X = 2$ is a necessary condition for every bilinear form on X to be 1-dominated:

Proposition 3.2. If $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$, then $\cot X = 2$.

Proof. By [\[1,](#page-6-8) Lemma 3.4] every bounded linear operator from X to X' is 1summing. So, from $[12,$ Proposition $8.1(2)$] we conclude that the identity operator on X is $(2,1)$ -summing. It follows that cot $X = 2$ by [\[9,](#page-6-6) Theorem 14.5]. \Box

Let X be such that $\cot X > 2$. Since we cannot have $\mathcal{L}_{d,1}(X^2) = \mathcal{L}(X^2)$, for which $r > 1$ is it possible to have $\mathcal{L}_{d,r}(^2X) = \mathcal{L}(^2X)$? Or, at least, $\mathcal{P}_{d,r}(^2X) =$

 $\mathcal{P}(X)$? In other words, we seek estimates for the numbers

$$
\mathcal{L}_X := \inf \{ r : \mathcal{L}_{d,r}(^2 X) = \mathcal{L}(^2 X) \} \quad \text{and} \quad \mathcal{P}_X := \inf \{ r : \mathcal{P}_{d,r}(^2 X) = \mathcal{P}(^2 X) \}.
$$

It is not difficult to give a lower bound for \mathcal{L}_X . By q^* we denote the conjugate exponent of $q > 1$.

Proposition 3.3. If $\cot X > 2$, then $\mathcal{L}_X \geq (\cot X)^*$.

Proof. By Proposition [3.2](#page-3-1) we know that $\mathcal{L}_{d,1}(^{2}X) \neq \mathcal{L}(^{2}X)$. Using the equality $\Pi_1(X;Y) = \Pi_r(X;Y)$ whenever $1 \leq r < (\cot X)^*$ [\[9,](#page-6-6) Corollary 11.16(b)] and Lemma [3.1,](#page-2-0) we find that

$$
\mathcal{L}_{d,r}(^{2}X)=\mathcal{L}\circ(\Pi_{r},\Pi_{r})(^{2}X)=\mathcal{L}\circ(\Pi_{1},\Pi_{1})(^{2}X)=\mathcal{L}_{d,1}(^{2}X)\neq\mathcal{L}(^{2}X)
$$

for every $1 \leq r < (\cot X)^*$, so the result follows.

It is not clear at once that the same holds for polynomials. Here the situation is usually more delicate: for instance, in [\[6\]](#page-6-1) one can find a non-r-dominated bilinear form whose associated 2-homogeneous polynomial happens to be r-dominated. However, we shall prove in Theorem 3.2 that again $\mathcal{P}_X \geq (\cot X)^*$.

The following proof extends an argument which was first used in this context in [\[15\]](#page-7-8).

Theorem 3.1. Let m be an even positive integer and X be an infinite-dimensional real Banach space. If $q < 1$ and $\mathcal{P}_{\text{as}(q;r)}(m_X) = \mathcal{P}(m_X)$, then id_X is absolutely $\left(\frac{mq}{1-q}, r\right)$ -summing.

Proof. The open mapping theorem gives us a constant $K > 0$ such that $||Q||_{as(a;r)}$ $\leq K\|Q\|$ for all continuous m-homogeneous polynomials $Q: X \to Y$.

Let $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$ be given. Consider $x_1^*, \ldots, x_n^* \in B_{X^*}$ such that $x_j^*(x_j) = ||x_j||$ for every $j = 1, ..., n$. Let $\mu_1, ..., \mu_n$ be real numbers with $\sum_{j=1}^{n} |\mu_j|^s = 1$, where $s = 1/q$. Define $P: X \to \mathbb{R}$ by

$$
P(x) = \sum_{j=1}^{n} |\mu_j|^{1/q} x_j^*(x)^m \quad \text{ for every } x \in X.
$$

Since m is even and $\mathbb{K} = \mathbb{R}$, it follows that $P(x) \geq 0$ for every $x \in X$. Also, $|P(x)| = P(x) \geq |\mu_k|^{1/q} x_k^*(x)^m$ for every $x \in X$ and every $k = 1, ..., n$. From

$$
|P(x)| = \left|\sum_{j=1}^{n} |\mu_j|^{1/q} x_j^*(x)^m\right| \le ||x||^m \sum_{j=1}^{n} |\mu_j|^{1/q} = ||x||^m
$$

 \Box

we conclude that $||P||_{\text{as}(q;r)} \leq K||P|| \leq K$. So

$$
\left(\sum_{j=1}^n \|x_j\|^{mq} |\mu_j|\right)^{1/q} = \left(\sum_{j=1}^n (\|x_j\|^{m} |\mu_j|^{1/q})^q\right)^{1/q} \le \left(\sum_{j=1}^n |P(x_j)|^q\right)^{1/q}
$$

$$
\le ||P||_{\text{as}(q;r)} (\|(x_j)_{j=1}^n\|_{w,r})^m.
$$

Observing that this last inequality holds whenever $\sum_{j=1}^{n} |\mu_j|^s = 1$ and that $\frac{1}{s}$ + $\frac{1}{s/(s-1)}=1$ we have

$$
\left(\sum_{j=1}^{n} ||x_j||^{\frac{s}{s-1}mq}\right)^{1/\frac{s}{s-1}} = \sup\left\{ \left|\sum_{j=1}^{n} \mu_j ||x_j||^{mq} \right| : \sum_{j=1}^{n} |\mu_j|^s = 1 \right\}
$$

$$
\leq \sup\left\{ \sum_{j=1}^{n} |\mu_j| ||x_j||^{mq} : \sum_{j=1}^{n} |\mu_j|^s = 1 \right\}
$$

$$
\leq ||P||_{\text{as}(q;r)}^q (\|(x_j)_{j=1}^n||_{w,r})^{mq} \leq K^q (\|(x_j)_{j=1}^n||_{w,r})^{mq}.
$$

It follows that

$$
\left(\sum_{j=1}^n \|x_j\|^{\frac{s}{s-1}mq}\right)^{1/\frac{s}{s-1}mq} \leq K^{1/m} \|(x_j)_{j=1}^n\|_{w,r}.
$$

Since $\frac{s}{s-1}mq = \frac{mq}{1-q}$, n and $x_1, \ldots, x_n \in X$ are arbitrary, we conclude that id_X is $\left(\frac{mq}{1-q};r\right)$ -summing. \Box

The following theorem holds for spaces over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} :

Theorem 3.2. If $\cot X = q > 2$, then $\mathcal{P}_{d,r}(^2 X) \neq \mathcal{P}(^2 X)$ for $1 \leq r < q^*$, where q^* is the conjugate of q. In other words, $\mathcal{P}_X \geq q^*$.

Proof. Real case: Let $1 \leq r < q^*$. Combining Lemma [3.1](#page-2-0) and [\[9,](#page-6-6) Corollary 11.16(b)] it is immediate that $\mathcal{P}_{d,r}(^2X) = \mathcal{P}_{d,1}(^2X)$. If $\mathcal{P}_{d,r}(^2X) = \mathcal{P}_{d,1}(^2X) =$ $\mathcal{P}(X^2)$, from Theorem [3.1](#page-4-1) we could conclude that id_X is (2, 1)-summing, but this is impossible because $\cot X > 2$.

Complex case: If X is a complex Banach space, $\cot X = q > 2$ and $1 \leq r < q^*$, then by [\[3,](#page-6-9) Lemma 3.1] we know that $\cot X_{\mathbb{R}} = q > 2$, so there is a non-r-dominated polynomial $P \in \mathcal{P}(^2 X_{\mathbb{R}})$. Denoting by \tilde{P} the complexification of P we see that $\widetilde{P} \in \mathcal{P}(2X)$ and following the lines of [\[16,](#page-7-9) Proposition 4.30] it is not difficult to prove that \widetilde{P} fails to be *r*-dominated either. \Box

Remark. Let X be any of the spaces constructed by Pisier [\[18\]](#page-7-6). By Example [1](#page-3-0) we know that $\mathcal{P}_{d,1}(^2X) = \mathcal{P}(^2X)$, which makes it clear that Theorem [3.2](#page-5-0) is sharp in the sense that it is not valid for cotype 2 spaces.

Conjecture. We conjecture that if X is infinite-dimensional and $\mathcal{L}_{d,1}(X) =$ $\mathcal{L}(X^2 X)$, then $X \tilde{\otimes}_{\pi} X = X \tilde{\otimes}_{\varepsilon} X$. Observe that for an infinite-dimensional space X with $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$ and $X \tilde{\otimes}_{\pi} X \neq X \tilde{\otimes}_{\varepsilon} X$, if any, we should have:

- X has no unconditional basis [\[4,](#page-6-2) Theorem 3.2];
- X has cotype $2 + \varepsilon$ for every $\varepsilon > 0$ (Proposition [3.2\)](#page-3-1);
- X does not have cotype 2 (Proposition [3.1\)](#page-3-2);
- X' is a GT space [\[11,](#page-7-2) Theorem 3.4];
- every linear operator from X to X' is absolutely 1-summing (by $[1, \text{Lemma } 3.4]$ $[1, \text{Lemma } 3.4]$) this is a consequence of $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$, in particular X is Arens-regular;
- not every linear operator from X to X' is integral (this is a consequence of $X \tilde{\otimes}_{\pi} X \neq X \tilde{\otimes}_{\varepsilon} X$).

Acknowledgments

Research of G. Botelho was supported by CNPq Grant 306981/2008-4.

Research of D. Pellegrino was supported by INCT-Matemática, CNPq Grants 620108/2008-8 (Ed. Casadinho) and 301237/2009-3.

Research of P. Rueda was supported by Ministerio de Ciencia e Innovación MTM2008-03211/MTM.

References

- [1] G. Botelho, Cotype and absolutely summing multilinear mappings and homogeneous polynomials, Proc. Roy. Irish Acad. Sect. A 97 (1997), 145–153. [Zbl 0903.46018](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0903.46018&format=complete) [MR 1645283](http://www.ams.org/mathscinet-getitem?mr=1645283)
- [2] $\qquad \qquad$, Ideals of polynomials generated by weakly compact operators, Note Mat. 25 (2005/2006), 69–102. [Zbl pre05058682](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre05058682&format=complete) [MR 2220454](http://www.ams.org/mathscinet-getitem?mr=2220454)
- [3] G. Botelho, H.-A. Braunss, H. Junek and D. Pellegrino, Inclusions and coincidences for multiple summing multilinear mappings, Proc. Amer. Math. Soc. 137 (2009), 991–1000. [Zbl 1175.46037](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1175.46037&format=complete) [MR 2457439](http://www.ams.org/mathscinet-getitem?mr=2457439)
- [4] G. Botelho and D. Pellegrino, Scalar-valued dominated polynomials on Banach spaces, Proc. Amer. Math. Soc. 134 (2006), 1743–1751. [Zbl 1099.46033](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1099.46033&format=complete) [MR 2204287](http://www.ams.org/mathscinet-getitem?mr=2204287)
- [5] G. Botelho, D. Pellegrino and P. Rueda, Pietsch's factorization theorem for dominated polynomials, J. Funct. Anal. 243 (2007), 257–269. [Zbl 1118.46041](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1118.46041&format=complete) [MR 2291438](http://www.ams.org/mathscinet-getitem?mr=2291438)
- [6] \Box , Dominated polynomials on infinite dimensional spaces, Proc. Amer. Math. Soc. 138 (2010), 209–216. [Zbl pre05665568](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05665568&format=complete) [MR 2550185](http://www.ams.org/mathscinet-getitem?mr=2550185)
- [7] D. Carando, Extendibility of polynomials and analytic functions on ℓ_p , Studia Math. 145 (2001), 63–73. [Zbl 0980.46034](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0980.46034&format=complete) [MR 1828993](http://www.ams.org/mathscinet-getitem?mr=1828993)
- [8] A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland Math. Stud. 176, North-Holland, 1993. [Zbl 0774.46018](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0774.46018&format=complete) [MR 1209438](http://www.ams.org/mathscinet-getitem?mr=1209438)
- [9] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Univ. Press, 1995. [Zbl 0855.47016](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0855.47016&format=complete) [MR 1342297](http://www.ams.org/mathscinet-getitem?mr=1342297)
- [10] S. Dineen, Complex analysis on infinite dimensional spaces, Springer, London, 1999. [Zbl 1034.46504](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1034.46504&format=complete) [MR 1705327](http://www.ams.org/mathscinet-getitem?mr=1705327)
- [11] H. Jarchow, C. Palazuelos, D. Pérez-García and I. Villanueva, Hahn–Banach extension of multilinear forms and summability, J. Math. Anal. Appl. 336 (2007), 1161–1177. [Zbl 1161.46025](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1161.46025&format=complete) [MR 2353008](http://www.ams.org/mathscinet-getitem?mr=2353008)
- [12] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_p spaces and their applications, Studia Math. 29 (1968), 275–326. [Zbl 0183.40501](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0183.40501&format=complete) [MR 0231188](http://www.ams.org/mathscinet-getitem?mr=0231188)
- [13] Y. Meléndez and A. Tonge, Polynomials and the Pietsch Domination Theorem, Proc. Roy. Irish Acad Sect. A 99 (1999), 195–212. [Zbl 0973.46037](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0973.46037&format=complete) [MR 1881812](http://www.ams.org/mathscinet-getitem?mr=1881812)
- [14] J. Mujica, Complex analysis in Banach spaces, North-Holland Math. Stud. 120, North-Zbl 0586.46040 [MR 0842435](http://www.ams.org/mathscinet-getitem?mr=0842435)
- [15] D. Pellegrino, Cotype and absolutely summing homogeneous polynomials in \mathcal{L}_p spaces, Studia Math. 157 (2003), 121–131. [Zbl 1031.46052](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1031.46052&format=complete) [MR 1980709](http://www.ams.org/mathscinet-getitem?mr=1980709)
- [16] D. Pérez-García, Operadores multilineales absolutamente sumantes, Thesis, Univ. Complutense de Madrid, 2003.
- [17] A. Pietsch, Ideals of multilinear functionals (designs of theory), in: Proceedings of the second international conference on operator algebras, ideals and their applications in theoretical physics (Leipzig, 1989), Teubner-Texte Math. 67, Leipzig, 1984, 185–199. [Zbl 0561.47037](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0561.47037&format=complete) [MR 0763541](http://www.ams.org/mathscinet-getitem?mr=0763541)
- [18] G. Pisier, Counterexamples to a conjecture of Grothendieck, Acta Math. 151 (1983), 181– 208. [Zbl 0542.46038](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0542.46038&format=complete) [MR 0723009](http://www.ams.org/mathscinet-getitem?mr=0723009)
- [19] R. Ryan, Introduction to tensor products of Banach spaces, Springer, 2002. [Zbl 1090.46001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1090.46001&format=complete) [MR 1888309](http://www.ams.org/mathscinet-getitem?mr=1888309)