Publ. RIMS Kyoto Univ. ${\bf 46}$ (2010), 201–208 DOI 10.2977/PRIMS/6

Dominated Bilinear Forms and 2-homogeneous Polynomials

by

Geraldo BOTELHO, Daniel PELLEGRINO and Pilar RUEDA

Abstract

The main goal of this note is to establish a connection between the cotype of the Banach space X and the parameters r for which every 2-homogeneous polynomial on X is r-dominated. Let $\cot X$ be the infimum of the cotypes assumed by X and $(\cot X)^*$ be its conjugate. The main result of this note asserts that if $\cot X > 2$, then for every $1 \le r < (\cot X)^*$ there exists a non-r-dominated 2-homogeneous polynomial on X.

2010 Mathematics Subject Classification: 46G25, 46B20, 46B28. Keywords: r-dominated multilinear form, r-dominated homogeneous polynomial, absolutely (p;q)-summing mapping, cotype.

§1. Introduction

The notion of p-dominated multilinear mappings and homogeneous polynomials between Banach spaces plays an important role in the nonlinear theory of absolutely summing operators. It was introduced by Pietsch [17] and has been investigated by several authors since then (see, e.g., [5, 6] and references therein).

Let X be a Banach space and m be a positive integer. A continuous mlinear form A on X^m is r-dominated if $(A(x_j^1, \ldots, x_j^m))_{j=1}^{\infty} \in \ell_{r/m}$ whenever $(x_j^1)_{j=1}^{\infty}, \ldots, (x_j^m)_{j=1}^{\infty}$ are weakly r-summable in X. In a similar way, a scalarvalued m-homogeneous polynomial P on X is r-dominated if $(P(x_j))_{j=1}^{\infty} \in \ell_{r/m}$ whenever $(x_j)_{j=1}^{\infty}$ is weakly r-summable in X.

© 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Communicated by H. Okamoto. Received May 9, 2009. Revised July 29, 2009.

G. Botelho: Faculdade de Matemática, Universidade Federal de Uberlândia,

^{38.400-902} Uberlândia, Brazil;

e-mail: botelho@ufu.br

D. Pellegrino: Departamento de Matemática, Universidade Federal da Paraíba,

^{58.051-900} João Pessoa, Brazil;

e-mail: dmpellegrino@gmail.com

P. Rueda: Departamento de Análisis Matemático, Universidad de Valencia,

⁴⁶¹⁰⁰ Burjasot - Valencia, Spain;

e-mail: pilar.rueda@uv.es

In [11, Lemma 5.4] it is proved that for every infinite-dimensional Banach space X, every $p \ge 1$ and every $m \ge 3$, there exists a continuous non-p-dominated m-linear form on X^m . For polynomials the question has recently been settled in [6], where it is proved that for every infinite-dimensional Banach space X, every $p \ge 1$ and every $m \ge 3$, there exists a continuous non-p-dominated scalarvalued m-homogeneous polynomial on X. So, coincidence situations can occur only for m = 2. Sometimes it happens that every continuous bilinear form on X^2 is 2-dominated, for example if X is either an \mathcal{L}_{∞} -space, the disc algebra \mathcal{A} or the Hardy space H^{∞} (see [4, Proposition 2.1]). In this case every continuous bilinear form on X^2 and every continuous scalar-valued 2-homogeneous polynomial on X are r-dominated for every $r \ge 2$. But what about r-dominated bilinear forms and 2-homogeneous polynomials for $1 \le r < 2$?

Those spaces X that enjoy the property that all bilinear forms on X^2 are 1-dominated are all of cotype 2 (Example 1). In Proposition 3.2 we see that having cotype $2 + \varepsilon$ for every $\varepsilon > 0$ is a necessary condition. So, for a space X such that $\cot X > 2$ it is natural to investigate how close r can be to 1 with the property that every bilinear form on X^2 (or 2-homogeneous polynomial on X) is r-dominated. For bilinear forms it is not difficult to see (Proposition 3.3) that $(\cot X)^*$, the conjugate of the number $\cot X$, is the closest r can be to 1. As usual, for polynomials the situation is more delicate. In the main result of this paper, Theorem 3.2, we prove that the estimate $(\cot X)^*$ holds for 2-homogeneous polynomials as well. We also point out that this result is in a sense sharp.

§2. Notation

Throughout this paper, n and m are positive integers, and X and Y will stand for Banach spaces over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . The Banach spaces of all continuous m-linear mappings $A: X^m \to Y$ and continuous m-homogeneous polynomials $P: X \to Y$, endowed with the usual sup norms, are denoted by $\mathcal{L}(^mX;Y)$ and $\mathcal{P}(^mX;Y)$, respectively ($\mathcal{L}(X;Y)$ if m = 1). When m = 1 and $Y = \mathbb{K}$ we write X^* to denote the topological dual of X. The closed unit ball of X is represented by B_X . The notation cot X denotes the infimum of the cotypes assumed by X. The identity operator on X is denoted by id_X . For details on the theory of multilinear mappings and homogeneous polynomials between Banach spaces we refer to [10, 14].

Given $r \in [0,\infty)$, let $\ell_r(X)$ be the Banach (r-Banach if 0 < r < 1) space of all absolutely r-summable sequences $(x_j)_{j=1}^{\infty}$ in X with the norm $||(x_j)_{j=1}^{\infty}||_r =$ $(\sum_{j=1}^{\infty} ||x_j||^r)^{1/r}$. We denote by $\ell_r^w(X)$ the Banach (r-Banach if 0 < r < 1) space of all weakly r-summable sequences $(x_j)_{j=1}^{\infty}$ in X with the norm $||(x_j)_{j=1}^{\infty}||_{w,r} =$ $\sup_{\varphi \in B_{X^*}} ||(\varphi(x_j))_{j=1}^{\infty}||_r$.

Let p, q > 0. An *m*-linear mapping $A \in \mathcal{L}(^mX; Y)$ is absolutely (p; q)-summing if $(A(x_j^1, \ldots, x_j^m))_{j=1}^{\infty} \in \ell_p(Y)$ whenever $(x_j^1)_{j=1}^{\infty}, \ldots, (x_j^m)_{j=1}^{\infty} \in \ell_q^w(X)$. It is wellknown that A is absolutely (p; q)-summing if and only if there is a constant $C \ge 0$ such that

$$\left(\sum_{j=1}^{n} \|A(x_{j}^{1},\ldots,x_{j}^{m})\|^{p}\right)^{1/p} \leq C \prod_{k=1}^{m} \|(x_{j}^{k})_{j=1}^{n}\|_{w,q}$$

for every positive integer n and every $x_1^k, \ldots, x_n^k \in X$, $k = 1, \ldots, m$. The infimum of such C is denoted by $||A||_{\operatorname{as}(p;q)}$. The space of all absolutely (p;q)-summing mlinear mappings from X^m to Y is denoted by $\mathcal{L}_{\operatorname{as}(p;q)}(^mX;Y)$, and $||\cdot||_{\operatorname{as}(p;q)}$ is a complete norm (p-norm if p < 1) on $\mathcal{L}_{\operatorname{as}(p;q)}(^mX;Y)$.

An *m*-homogeneous polynomial $P \in \mathcal{P}(^mX; Y)$ is absolutely (p; q)-summing if the symmetric *m*-linear mapping associated to *P* is absolutely (p; q)-summing, or, equivalently, if $(P(x_j))_{j=1}^{\infty} \in \ell_p(Y)$ whenever $(x_j)_{j=1}^{\infty} \in \ell_q^w(X)$. It is well-known that *P* is absolutely (p; q)-summing if and only if there is a constant $C \ge 0$ such that

$$\left(\sum_{j=1}^{n} \|P(x_j)\|^p\right)^{1/p} \le C(\|(x_j)_{j=1}^n\|_{w,q})^m$$

for every positive integer n and every $x_1, \ldots, x_n \in X$. The infimum of such C is denoted by $||P||_{\operatorname{as}(p;q)}$. The space of all absolutely (p;q)-summing m-homogeneous polynomials from X to Y is denoted by $\mathcal{P}_{\operatorname{as}(p;q)}(^mX;Y)$, and $||\cdot||_{\operatorname{as}(p;q)}$ is a complete norm (p-norm if p < 1) on $\mathcal{P}_{\operatorname{as}(p;q)}(^mX;Y)$.

An *m*-homogeneous polynomial $P \in \mathcal{P}(^mX;Y)$ is said to be *r*-dominated if it is absolutely (r/m;r)-summing. In this case we write $\mathcal{P}_{d,r}(^mX;Y)$ and $\|\cdot\|_{d,r}$ instead of $\mathcal{P}_{\mathrm{as}(r/m;r)}(^mX;Y)$ and $\|\cdot\|_{\mathrm{as}(r/m;r)}$. As usual we write $\mathcal{P}_{d,r}(^mX)$ and $\mathcal{P}(^mX)$ when $Y = \mathbb{K}$. The definition (and notation) for *r*-dominated multilinear mappings is analogous (for the notation just replace \mathcal{P} by \mathcal{L}). For details we refer to [2, 4, 11].

§3. Results

First we establish the existence of Banach spaces on which every bilinear form (hence every scalar-valued 2-homogeneous polynomial) is 1-dominated. By $X \tilde{\otimes}_{\pi} X$ and $X \tilde{\otimes}_{\varepsilon} X$ we mean the completions of the tensor product $X \otimes X$ with respect to the projective norm π and the injective norm ε , respectively. For the basics on tensor norms we refer to [8, 19].

By Π_r we denote the ideal of absolutely *r*-summing linear operators. The following well-known factorization theorem (see, e.g., [17, Theorem 14] or [2, Proposition 46(a)]) will be useful a couple of times. **Lemma 3.1.** $\mathcal{L}_{d,r}(^{m}X;Y) = \mathcal{L} \circ (\Pi_{r}, \stackrel{(m)}{\ldots}, \Pi_{r})(^{m}X;Y)$ and $\mathcal{P}_{d,r}(^{m}X;Y) = \mathcal{P} \circ \Pi_{r}(^{m}X;Y)$ for all positive integers m and Banach spaces X and Y.

Proposition 3.1. Let X be a cotype 2 space. Then $X \otimes_{\pi} X = X \otimes_{\varepsilon} X$ if and only if $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$.

Proof. This result is contained, in essence, in [11]. We give the details for the sake of completeness.

Assume that $X \ \tilde{\otimes}_{\pi} X = X \ \tilde{\otimes}_{\varepsilon} X$ and let $A \in \mathcal{L}({}^{2}X)$. Denoting the linearization of A by A_{L} we have $A_{L} \in (X \ \tilde{\otimes}_{\pi} X)' = (X \ \tilde{\otimes}_{\varepsilon} X)'$. Regarding X as a subspace of $C(B_{X'})$ and using that ε respects the formation of subspaces, A_{L} admits a continuous extension to $C(B_{X'}) \ \tilde{\otimes}_{\varepsilon} C(B_{X'})$, hence to $C(B_{X'}) \ \tilde{\otimes}_{\pi} C(B_{X'})$ because $\varepsilon \leq \pi$. As bilinear forms on C(K)-spaces are 2-dominated, the bilinear form associated to this extension is 2-dominated. But restrictions of 2-dominated bilinear forms are 2-dominated as well, so A is 2-dominated. Since 2-summing operators on cotype 2 spaces are 1-summing [9, Corollary 11.16(a)], it follows that $\Pi_{1}(X;Y) = \Pi_{2}(X;Y)$ for every Y, so by Lemma 3.1 we have

$$\mathcal{L}_{d,2}(^{2}X) = \mathcal{L} \circ (\Pi_{2}, \Pi_{2})(^{2}X) = \mathcal{L} \circ (\Pi_{1}, \Pi_{1})(^{2}X) = \mathcal{L}_{d,1}(^{2}X).$$

It follows that A is 1-dominated.

Conversely, assume that $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$ and let $A \in \mathcal{L}(^2X)$. Since 1dominated bilinear forms are 2-dominated, it follows that A is 2-dominated, hence extendible by [13, Theorem 23]. Adapting the proof of [7, Proposition 1.1] to bilinear forms we conclude that A is integral. Now apply [8, Ex. 4.12] to get $X \otimes_{\pi} X = X \otimes_{\varepsilon} X$.

Example 1. Pisier [18] proved that every cotype 2 space E embeds isometrically in a cotype 2 space X such that $X \tilde{\otimes}_{\pi} X = X \tilde{\otimes}_{\varepsilon} X$. So for every such space Xwe have $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$.

It is easy to see that $\cot X = 2$ is a necessary condition for every bilinear form on X to be 1-dominated:

Proposition 3.2. If $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$, then $\cot X = 2$.

Proof. By [1, Lemma 3.4] every bounded linear operator from X to X' is 1-summing. So, from [12, Proposition 8.1(2)] we conclude that the identity operator on X is (2;1)-summing. It follows that $\cot X = 2$ by [9, Theorem 14.5].

Let X be such that $\cot X > 2$. Since we cannot have $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$, for which r > 1 is it possible to have $\mathcal{L}_{d,r}(^2X) = \mathcal{L}(^2X)$? Or, at least, $\mathcal{P}_{d,r}(^2X) =$

 $\mathcal{P}(^{2}X)$? In other words, we seek estimates for the numbers

$$\mathcal{L}_X := \inf\{r : \mathcal{L}_{\mathrm{d},r}(^2X) = \mathcal{L}(^2X)\} \quad \text{and} \quad \mathcal{P}_X := \inf\{r : \mathcal{P}_{\mathrm{d},r}(^2X) = \mathcal{P}(^2X)\}.$$

It is not difficult to give a lower bound for \mathcal{L}_X . By q^* we denote the conjugate exponent of q > 1.

Proposition 3.3. If $\cot X > 2$, then $\mathcal{L}_X \ge (\cot X)^*$.

Proof. By Proposition 3.2 we know that $\mathcal{L}_{d,1}(^2X) \neq \mathcal{L}(^2X)$. Using the equality $\Pi_1(X;Y) = \Pi_r(X;Y)$ whenever $1 \leq r < (\cot X)^*$ [9, Corollary 11.16(b)] and Lemma 3.1, we find that

$$\mathcal{L}_{\mathrm{d},r}(^{2}X) = \mathcal{L} \circ (\Pi_{r},\Pi_{r})(^{2}X) = \mathcal{L} \circ (\Pi_{1},\Pi_{1})(^{2}X) = \mathcal{L}_{\mathrm{d},1}(^{2}X) \neq \mathcal{L}(^{2}X)$$

for every $1 \le r < (\cot X)^*$, so the result follows.

It is not clear at once that the same holds for polynomials. Here the situation is usually more delicate: for instance, in [6] one can find a non-*r*-dominated bilinear form whose associated 2-homogeneous polynomial happens to be *r*-dominated. However, we shall prove in Theorem 3.2 that again $\mathcal{P}_X \geq (\cot X)^*$.

The following proof extends an argument which was first used in this context in [15].

Theorem 3.1. Let *m* be an even positive integer and *X* be an infinite-dimensional real Banach space. If q < 1 and $\mathcal{P}_{\operatorname{as}(q;r)}(^{m}X) = \mathcal{P}(^{m}X)$, then id_{X} is absolutely $(\frac{mq}{1-q}, r)$ -summing.

Proof. The open mapping theorem gives us a constant K > 0 such that $||Q||_{\operatorname{as}(q;r)} \leq K ||Q||$ for all continuous *m*-homogeneous polynomials $Q: X \to Y$.

Let $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$ be given. Consider $x_1^*, \ldots, x_n^* \in B_{X^*}$ such that $x_j^*(x_j) = ||x_j||$ for every $j = 1, \ldots, n$. Let μ_1, \ldots, μ_n be real numbers with $\sum_{i=1}^n |\mu_j|^s = 1$, where s = 1/q. Define $P: X \to \mathbb{R}$ by

$$P(x) = \sum_{j=1}^{n} |\mu_j|^{1/q} x_j^*(x)^m$$
 for every $x \in X$.

Since *m* is even and $\mathbb{K} = \mathbb{R}$, it follows that $P(x) \ge 0$ for every $x \in X$. Also, $|P(x)| = P(x) \ge |\mu_k|^{1/q} x_k^*(x)^m$ for every $x \in X$ and every $k = 1, \ldots, n$. From

$$|P(x)| = \left|\sum_{j=1}^{n} |\mu_j|^{1/q} x_j^*(x)^m\right| \le ||x||^m \sum_{j=1}^{n} |\mu_j|^{1/q} = ||x||^m$$

we conclude that $||P||_{\operatorname{as}(q;r)} \leq K ||P|| \leq K$. So

$$\left(\sum_{j=1}^{n} \|x_{j}\|^{mq} |\mu_{j}|\right)^{1/q} = \left(\sum_{j=1}^{n} (\|x_{j}\|^{m} |\mu_{j}|^{1/q})^{q}\right)^{1/q} \le \left(\sum_{j=1}^{n} |P(x_{j})|^{q}\right)^{1/q}$$
$$\le \|P\|_{\mathrm{as}(q;r)} (\|(x_{j})_{j=1}^{n}\|_{w,r})^{m}.$$

Observing that this last inequality holds whenever $\sum_{j=1}^{n} |\mu_j|^s = 1$ and that $\frac{1}{s} + \frac{1}{s/(s-1)} = 1$ we have

$$\begin{split} \left(\sum_{j=1}^{n} \|x_{j}\|^{\frac{s}{s-1}mq}\right)^{1/\frac{s}{s-1}} &= \sup\left\{\left|\sum_{j=1}^{n} \mu_{j}\|x_{j}\|^{mq}\right| : \sum_{j=1}^{n} |\mu_{j}|^{s} = 1\right\} \\ &\leq \sup\left\{\sum_{j=1}^{n} |\mu_{j}| \|x_{j}\|^{mq} : \sum_{j=1}^{n} |\mu_{j}|^{s} = 1\right\} \\ &\leq \|P\|_{\mathrm{as}(q;r)}^{q} (\|(x_{j})_{j=1}^{n}\|_{w,r})^{mq} \leq K^{q} (\|(x_{j})_{j=1}^{n}\|_{w,r})^{mq}. \end{split}$$

It follows that

$$\left(\sum_{j=1}^{n} \|x_j\|^{\frac{s}{s-1}mq}\right)^{1/\frac{s}{s-1}mq} \le K^{1/m} \|(x_j)_{j=1}^n\|_{w,r}$$

Since $\frac{s}{s-1}mq = \frac{mq}{1-q}$, *n* and $x_1, \ldots, x_n \in X$ are arbitrary, we conclude that id_X is $(\frac{mq}{1-q}; r)$ -summing.

The following theorem holds for spaces over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} :

Theorem 3.2. If $\cot X = q > 2$, then $\mathcal{P}_{d,r}(^2X) \neq \mathcal{P}(^2X)$ for $1 \leq r < q^*$, where q^* is the conjugate of q. In other words, $\mathcal{P}_X \geq q^*$.

Proof. Real case: Let $1 \leq r < q^*$. Combining Lemma 3.1 and [9, Corollary 11.16(b)] it is immediate that $\mathcal{P}_{d,r}(^2X) = \mathcal{P}_{d,1}(^2X)$. If $\mathcal{P}_{d,r}(^2X) = \mathcal{P}_{d,1}(^2X) = \mathcal{P}(^2X)$, from Theorem 3.1 we could conclude that id_X is (2; 1)-summing, but this is impossible because $\mathrm{cot} X > 2$.

Complex case: If X is a complex Banach space, $\cot X = q > 2$ and $1 \le r < q^*$, then by [3, Lemma 3.1] we know that $\cot X_{\mathbb{R}} = q > 2$, so there is a non-r-dominated polynomial $P \in \mathcal{P}(^2X_{\mathbb{R}})$. Denoting by \tilde{P} the complexification of P we see that $\tilde{P} \in \mathcal{P}(^2X)$ and following the lines of [16, Proposition 4.30] it is not difficult to prove that \tilde{P} fails to be r-dominated either.

Remark. Let X be any of the spaces constructed by Pisier [18]. By Example 1 we know that $\mathcal{P}_{d,1}(^2X) = \mathcal{P}(^2X)$, which makes it clear that Theorem 3.2 is sharp in the sense that it is not valid for cotype 2 spaces.

Conjecture. We conjecture that if X is infinite-dimensional and $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$, then $X \otimes_{\pi} X = X \otimes_{\varepsilon} X$. Observe that for an infinite-dimensional space X with $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$ and $X \otimes_{\pi} X \neq X \otimes_{\varepsilon} X$, if any, we should have:

- X has no unconditional basis [4, Theorem 3.2];
- X has cotype $2 + \varepsilon$ for every $\varepsilon > 0$ (Proposition 3.2);
- X does not have cotype 2 (Proposition 3.1);
- X' is a GT space [11, Theorem 3.4];
- every linear operator from X to X' is absolutely 1-summing (by [1, Lemma 3.4] this is a consequence of $\mathcal{L}_{d,1}(^2X) = \mathcal{L}(^2X)$), in particular X is Arens-regular;
- not every linear operator from X to X' is integral (this is a consequence of $X \ \tilde{\otimes}_{\pi} X \neq X \ \tilde{\otimes}_{\varepsilon} X$).

Acknowledgments

Research of G. Botelho was supported by CNPq Grant 306981/2008-4.

Research of D. Pellegrino was supported by INCT-Matemática, CNPq Grants 620108/2008-8 (Ed. Casadinho) and 301237/2009-3.

Research of P. Rueda was supported by Ministerio de Ciencia e Innovación MTM2008-03211/MTM.

References

- G. Botelho, Cotype and absolutely summing multilinear mappings and homogeneous polynomials, Proc. Roy. Irish Acad. Sect. A 97 (1997), 145–153. Zbl 0903.46018 MR 1645283
- [2] _____, Ideals of polynomials generated by weakly compact operators, Note Mat. 25 (2005/2006), 69–102. Zbl pre05058682 MR 2220454
- [3] G. Botelho, H.-A. Braunss, H. Junek and D. Pellegrino, Inclusions and coincidences for multiple summing multilinear mappings, Proc. Amer. Math. Soc. 137 (2009), 991–1000. Zbl 1175.46037 MR 2457439
- [4] G. Botelho and D. Pellegrino, Scalar-valued dominated polynomials on Banach spaces, Proc. Amer. Math. Soc. 134 (2006), 1743–1751. Zbl 1099.46033 MR 2204287
- [5] G. Botelho, D. Pellegrino and P. Rueda, Pietsch's factorization theorem for dominated polynomials, J. Funct. Anal. 243 (2007), 257–269. Zbl 1118.46041 MR 2291438
- [6] _____, Dominated polynomials on infinite dimensional spaces, Proc. Amer. Math. Soc. 138 (2010), 209–216. Zbl pre05665568 MR 2550185
- [7] D. Carando, Extendibility of polynomials and analytic functions on ℓ_p, Studia Math. 145 (2001), 63–73. Zbl 0980.46034 MR 1828993
- [8] A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland Math. Stud. 176, North-Holland, 1993. Zbl 0774.46018 MR 1209438
- J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Univ. Press, 1995. Zbl 0855.47016 MR 1342297
- S. Dineen, Complex analysis on infinite dimensional spaces, Springer, London, 1999. Zbl 1034.46504 MR 1705327

- [11] H. Jarchow, C. Palazuelos, D. Pérez-García and I. Villanueva, Hahn-Banach extension of multilinear forms and summability, J. Math. Anal. Appl. 336 (2007), 1161–1177. Zbl 1161.46025 MR 2353008
- [12] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_p spaces and their applications, Studia Math. **29** (1968), 275–326. Zbl 0183.40501 MR 0231188
- Y. Meléndez and A. Tonge, Polynomials and the Pietsch Domination Theorem, Proc. Roy. Irish Acad Sect. A 99 (1999), 195–212. Zbl 0973.46037 MR 1881812
- [14] J. Mujica, Complex analysis in Banach spaces, North-Holland Math. Stud. 120, North-Holland, 1986. Zbl 0586.46040 MR 0842435
- [15] D. Pellegrino, Cotype and absolutely summing homogeneous polynomials in \mathcal{L}_p spaces, Studia Math. **157** (2003), 121–131. Zbl 1031.46052 MR 1980709
- [16] D. Pérez-García, Operadores multilineales absolutamente sumantes, Thesis, Univ. Complutense de Madrid, 2003.
- [17] A. Pietsch, Ideals of multilinear functionals (designs of theory), in: Proceedings of the second international conference on operator algebras, ideals and their applications in theoretical physics (Leipzig, 1989), Teubner-Texte Math. 67, Leipzig, 1984, 185–199. Zbl 0561.47037 MR 0763541
- [18] G. Pisier, Counterexamples to a conjecture of Grothendieck, Acta Math. 151 (1983), 181– 208. Zbl 0542.46038 MR 0723009
- [19] R. Ryan, Introduction to tensor products of Banach spaces, Springer, 2002. Zbl 1090.46001 MR 1888309