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A Characterization of Stein Completion of
0-normal Coronae

by

Viorel Vâjâitu

Abstract

We show that a 0-normal complex space X that is a corona admits a Stein completion if
and only if H1(X,O) is separated.
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§1. Introduction

Let X be a complex space with countable topology. Let F be a coherent analytic
sheaf on X. For each non-negative integer k the cohomology group Hk(X,F) has
a canonical structure of topological (complex) vector space, via the Čech cohomol-
ogy, which, in general, is not separated.

There are some important particular cases when the separation of certain co-
homology groups holds as shown in [1]. Here we mention that Bănică [3] states
that this is true if: (i) X = X̂ \K, where X̂ is a Stein space and K is a holomor-
phically convex compact set in X̂ and (ii) F extends to a coherent analytic sheaf
on X̂.

On the other hand, because a compact set L in a Stein space Y is holo-
morphically convex if, and only if, there exists a continuous plurisubharmonic
(exhaustion) function ϕ : Y → [0,∞) such that L = {ϕ = 0} and ϕ is strictly
plurisubharmonic on the set {ϕ > 0}, the space X from above carries a continu-
ous, strictly plurisubharmonic, proper function ψ : X → (0,∞); we refer to this
property by saying that X is a corona.

In this paper we shall prove the following results (for definitions, see §2):
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Theorem 1. Let X be a 0-normal complex space that is a corona. Then X admits
a Stein completion if, and only if, the canonical topology of H1(X,O) is separated.

Note. A complex space X is said to be p-normal (see [1]) if, for any point x ∈ X
and any open neighborhood U of x, the following holds: for any analytic subset
A of U of dimension ≤ p and any holomorphic function f on U \ A, there is an
open neighborhood W of x in U and a holomorphic function f̂ on W that extends
f |W\A.

From [2] we recall the following facts:

(i) A complex space X is 0-normal if, and only if, prof OX ≥ 2. Consequently, if
X is 0-normal, then dimxX ≥ 2 for every x ∈ X.

(ii) Let X be normal of pure dimension n ≥ 2. Then X is p-normal for each
non-negative integer p ≤ n− 2.

Proposition 1. Let X be a normal Stein space of pure dimension n ≥ 2 and A

a finite set of points in X. Then the following statements hold true:

(a) Let F be a torsion free coherent sheaf on X\A. Then H1(X\A,F) is separated
if and only if F extends to a coherent analytic sheaf on X.

(b) Let n = 2. Assume also that H2(X,Z) = 0 and A contains no singular point
of X. Then, for a holomorphic line bundle L on X \A, the cohomology group
H1(X \A,L) is separated if and only L is trivial.

Remark 1. Statement (a) of our proposition can be regarded as an improvement
of a particular case of the main result in [11], where it is required that, for any
point a ∈ A and for any Stein open neighborhood W of a, the canonical topology
on the cohomology group H1(W \A,F) is separated.

Corollary 1. Let B2 be the open unit ball in C2. Then any non-trivial cohomology
class ξ in H1(B2\{0},O) defines via the exponential sequence a topologically trivial
holomorphic line bundle Lξ such that H1(B2 \ {0}, Lξ) is not separated.

Remark 2. This corollary points out that there are some gaps in [8] where it is
claimed that for any smooth 1-corona M of dimension two and any locally free
coherent analytic sheaf F on M the canonical topology on H1(M,F) is separated
[8, Théorème 2, p. 934].

§2. Preliminaries

For a topological vector space E we let E0 be the closure of {0} in E and Es :=
E/E0 be the separated space associated to E. Note that E0 equals the intersection
of all open neighborhoods of 0 in E.
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Now it is easily seen that:

(iii) E is separated if and only if E0 = {0}.
(iv) E has the trivial topology precisely when Es = {0}.

The canonical map SE : E → Es, which is continuous and open, has certain
functorial properties. For instance, taking the separated part commutes with
projective limits. We also note that if ϕ : E → F is a continuous map of topological
vector spaces, then ϕ(E0) ⊂ F0 so that ϕ induces continuous linear mappings
ϕ0 : E0 → F0 and ϕs : Es → Fs that make the following diagram commutative:

0 // E0

ϕ0

��

ι // E

ϕ

��

SE // Es

ϕs

��

// 0

0 // F0
ι // F

SF // Fs
// 0

Here by ι we denote the canonical inclusions. (We refer the interested reader to [4]
for more properties.)

Remark 3. As a consequence of the five lemma, one has the following straight-
forward fact: If ϕ is surjective and ϕs is injective, then ϕ0 is surjective.

Let X be a topological space. An exhaustion of X is a covering X of X made
up of an increasing sequence of non-empty open subsets of X.

If F is a sheaf of abelian groups on X and k an integer, then we define the
pre-sheaf Hk(F) which associates to an open set V of X the cohomology group
Hk(V,F). Except for k = 0, Hk(F) is, in general, not a sheaf!

Henceforth X denotes a complex space, reduced and satisfying the second
axiom of countability (i.e. its topology has a countable base). Assume that X is
an exhaustion of X by an increasing sequence {Xn}n of open sets. Let F be a
coherent analytic sheaf on X. Then, for every non-negative integer q, the natural
map

Hq(X,F)→ lim←−H
q(Xn,F)

is surjective. The relation between the separated parts and the trivial parts of the
cohomology groups in question is established by Cassa [5] whose main result we
now quote.

Theorem 2. Let X be a complex space that is exhausted by an increasing sequence
{Xn}n of open sets. Then, for any coherent analytic sheaf F on X and for any
integer q ≥ 1 we have:

(a) Hq(X,F)s = lim←−H
q(Xn,F)s.

(b) Hq(X,F)0 = lim←−H
q(Xn,F)0 ⊕H1(X , Hq−1(F)).
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(c) If every Hq(Xn,F) is separated, then Hq(X,F) is separated if, and only if, the
projective system {Hq−1(Xn,F), ρm,n} satisfies the topological Mittag-Leffler
condition.

Note. For the definition of “topological Mittag-Leffler condition” see [5]; for in-
stance, this condition is satisfied if the restrictions

Hq−1(Xn+1,F)s → Hq−1(Xn,F)s

have dense images.

Corollary 2. Let X be a complex space that is exhausted by an increasing se-
quence {Xn}n of open sets and F be a coherent sheaf on X. Suppose the following
conditions hold:

(1) Hq(X,F) is separated.

(2) Each restriction Hq(Xn+1,F)→ Hq(Xn,F) is surjective and induces a bijec-
tion between the associated separated spaces.

Then all Hq(Xn,F) are separated.

Proof. On the one hand, we note that from hypothesis (1) and statement (b) of
Theorem 2 we get

lim←−H
q(Xn,F)0 = 0;

on the other hand, (2) gives, thanks to Remark 3, surjections

Hq(Xn+1,F)0 → Hq(Xn,F)0.

Therefore, for all n, Hq(Xn,F)0 = 0, whence the corollary.

Definition 1. We say that a complex space X is a corona if there is a continuous,
proper, strictly plurisubharmonic function ϕ : X → (a, b) with a ∈ {−∞}∪R and
b ∈ R∪ {+∞}, a < b. If we may choose a = −∞, then X is called a hyperconcave
corona.

Remark 4. The terminology of (1, 1)-convex-concave complex spaces is also used
in [2] instead of coronae. Also hyperconcave coronae are called hyperconcave ends
in [6].

Notation. Let X be a corona defined by a function ϕ : X → (a, b). For any c, d

with a ≤ c < d ≤ b we consider the subsets of X defined by

Xd
c = {c < ϕ < d}, Kd = {ϕ ≤ d}, Xd = {ϕ < d}.

Notice that Xd
c and Xd are coronae and, if a < c < d < b, Xd

c is relatively compact
in X.



A Characterization of Stein Completion 213

Definition 2. A complex space Y is called a Stein completion of X if

(1) X is an open subset of Y ,

(2) Y is a Stein space,

(3) for any d ∈ (a, b) the set Xd ∪ (Y \X) is open and relatively compact.

Remark 5. We point out that the original definition in [2] requires “for any
d ∈ (a, b) the set Kd ∪ (Y \ X) is compact” instead of (3) above. However, it is
not clear how this implies that the set Xd ∪ (Y \X) is open, an assertion that is
used throughout that paper (see [2, p. 241, l. 10]).

Now let X be a corona. If X admits a 0-normal Stein completion, then the
0-normal Stein completion is unique up to an isomorphism which is the identity
on X (see [2]).

In general, if X admits a Stein completion, say Y , then X = Y \K, where K
is a holomorphically convex compact set in Y . This can be seen as follows. Let
ϕ : X → (a, b) be the function displaying X as a corona. Clearly we may assume
that a ∈ R, otherwise we take expϕ instead of ϕ. We show that the trivial
extension ϕ̃ of ϕ to Y by setting ϕ̃(y) = a for y ∈ Y \X becomes continuous and
plurisubharmonic. Indeed, to check continuity, we notice that the restriction of ϕ̃
to each Y d := Xd ∪ (Y \X) is continuous and then use the obvious fact that the
family {Y d}d∈(a,b) of open subsets of Y exhausts Y . Now, for plurisubharmonicity,
observe that the sequence {ψn}n of functions on Y , where ψn := max(ϕ̃, a+ 1/n),
decreases pointwise to ϕ̃ and each ψn is plurisubharmonic (because ψn = a+ 1/n
on an open neighborhood of the compact set Y \ X, and ψn = max(ϕ, a + 1/n)
on X). Consequently, the open sets {ϕ̃ < a+ ε} for ε > 0 are Runge in X thanks
to [7]. Therefore Y \X is compact and holomorphically convex in Y , as desired.

Examples. 1. Let Y be a Stein space and K a holomorphically convex compact
set. Then Y \K is a corona whose Stein completion is Y .

In order to see this we let ψ : Y → (0,∞) be a continuous strictly plurisubhar-
monic exhaustion function. Let r > maxK ψ. Since K is holomorphically convex,
there is a sequence {fn}n of holomorphic functions on Y such that |fn| ≤ 1 on K
for all n and for any y0 ∈ Y \ K there is an index n0 with |fn0(y0)| ≥

√
1 + r.

Select ρ : [0,∞) → [0,∞) continuous and convex such that {ρ = 0} = [0, 1 + r]
and ρ is strictly increasing on [1+r,∞). Then we define ϕ : Y → [0,∞) by setting

ϕ(y) :=
∑

εnρ(|fn(y)|2 + ψ(y)), y ∈ Y,

where {εν}ν is a sequence of positive numbers that decreases fast enough to zero.
This ϕ has the required properties.
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2. Let Γ be the unit circle in C. Then C \ Γ is a corona which is not hyper-
concave. (Note that Γ is not a pluripolar set!)

3. Let X be a compact complex space with only isolated singularities. Then
Xreg, the set of regular points of X, is a hyperconcave corona.

4. Let X be a hyperconcave corona. Then, for any discrete set A in X, X \A
is a hyperconcave corona.

Indeed, if ϕ : X → (−∞,∞) displays X as a hyperconcave corona and A =
{xi : i ∈ I}, where I is an at most countable set of indices, then it is easy to find a
continuous, plurisubharmonic, proper function ϕ̃ : X \A→ (−∞,∞) of the form
ϕ̃ := ϕ +

∑
εiψi, where εi > 0 are small enough and on suitable neighborhoods

of xi, ψi are psh with {ψi = −∞} = {xi}.

Remark 6. By [9], [2] any corona X with prof OX ≥ 3 admits a Stein comple-
tion. Moreover, this property may fail for two-dimensional (even non-singular)
coronae. However, two-dimensional non-singular hyperconcave coronae do have
Stein completions; see [6].

In this circle of ideas, the following question seems to be open.

Let X be a 0-normal complex space of pure dimension ≥ 3. If X is a corona,
does it follow that X admits a Stein completion?

§3. The proofs

First let us collect some useful lemmata.

Lemma 1. Let X be a complex space and α : F → G be a sheaf morphism between
coherent analytic sheaves on X. Let q be a positive integer and αq : Hq(X,F)→
Hq(X,G) the canonical induced morphism. If Hq(X,G) is separated and Kerαq

has finite dimension, then Hq(X,F) is separated.

Proof. This results immediately from [12, Lemma 2, p. 359].

Corollary 3. Let X be a complex space and F a coherent analytic sheaf on X

such that Hq(X,F) is separated for some integer q ≥ 1. Let I be a coherent
ideal subsheaf of OX such that Supp(OX/I) is a finite set. Then Hq(X, IF) is
separated.

Proof. This results immediately from the above lemma and the long cohomology
sequence associated to the short exact sequence

0→ IF → F → F/IF → 0.
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Lemma 2. Let X be a complex space which is the union of two open sets Y

and U such that U and Y ∩ U are Stein and Y ∩ U is Runge in U . Let F be
a coherent analytic sheaf on X. Then the restriction morphism H1(X,F) →
H1(Y,F) induces a bijection between the associated separated parts. Moreover, if
H1(X,F) is separated, then the restriction morphism H0(X,F) → H0(Y,F) has
dense image.

Proof. Consider the exact portion of the Mayer–Vietoris sequence with coefficients
in F (which we omit for practical purposes) associated to X = U ∪ Y :

H0(X)→ H0(Y )⊕H0(U)→ H0(Y ∩ U)→ H1(X)→ H1(Y )→ 0,

where we used Theorem B for vanishing of cohomology of coherent sheaves on Stein
spaces. It is known that in the above sequence the canonical maps are continuous
for the natural topologies.

Let W = {Wm}m=0,1,... be a Stein open covering of X with W0 = U and
Wm ⊂ Y for m > 0. Let V = {Vm}m, where Vm := Um ∩ Y for m ≥ 0. Clearly V
is a Stein covering of Y .

Since Wk ∩ Wm = Vk ∩ Vm for k 6= m and F(U) → F(U ∩ Y ) has dense
image, it follows that Ci(W,F) = Ci(V,F) for i > 0 and the canonical map
C0(W,F) → C0(V,F) has dense image. The lemma follows readily using the
Čech definition of cohomology with alternate cycles.

Now, the “moreover” statement results in the following way. Because the
restriction map H0(U,F) → H0(Y ∩ U,F) has dense image it follows that the
natural map u : H0(Y,F)⊕H0(U,F)→ H0(Y ∩U,F) has dense image, too. But
Imu is the kernel of the continuous map H0(Y ∩U,F)→ H1(X,F) which is closed
since {0} is closed in H1(X,F). Therefore, the map u is surjective and the proof
finishes in a standard way by diagram chasing.

Putting these together we obtain:

Proposition 2. Let X be a complex space and F a coherent analytic sheaf on X.
Assume that X admits an exhaustion by an increasing sequence {Xn}n of open
sets with Xn+1 = Xn ∪Un+1, where Un+1 and Un+1 ∩Xn are Stein open sets and
Un+1 ∩Xn is Runge in Un+1. Then the following statements hold true:

(a) Each restriction H1(X,F) → H1(Xn,F) induces a bijection between their
separated spaces.

(b) If H1(X,F) is separated, then H1(Xn,F) is separated for all n and each
restriction morphism H1(X,F) → H1(Xn,F) is bijective. Moreover, each
restriction H0(X,F)→ H0(Xn,F) has dense image.
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Proof. This follows readily by standard arguments from Theorem 2, Corollary 2
and Lemma 2.

Corollary 4. Let X be a corona defined by a function ϕ from X into (a, b). Let F
be a coherent analytic sheaf on X such that H1(X,F) is separated. Then, for every
d ∈ (a, b), H1(Xd,F) is separated.

Proof. First notice that the bumping lemma of Andreotti and Grauert [1] allows
us to produce an exhaustion of X by an increasing sequence starting with Xd that
satisfies the hypothesis of Proposition 2. Then the assertion follows readily from
Proposition 2.

Proof of Theorem 1. Let ϕ : X → (a, b) be the function displaying X as a corona.
Assume first that X admits a Stein completion, say Y . Then from Remark 5

it follows that Y \X is a holomorphically convex compact set in Y so that, by [3],
the cohomology group H1(X,O) has separated canonical topology.

For the “if” part, we follow the recipe of [2] (see the proof of Prop. 3.2, pp.
243–245 there). Therefore it suffices to prove the following three assertions:

(1) O(X) separates the points of X.

(2) O(X) gives local coordinates.

(3) For every sequence {xk}k in X such that {ϕ(xk)}k tends to b, there is a
holomorphic function f on X such that {|f(xk)|}k tends to infinity.

In order to prove this, we make the following

Claim. Let I be an ideal subsheaf of O such that the support of O/I, say S, is a
discrete set and c0 := infS ϕ > a. (For instance one may take I to be defined by
the sequence {xk}.) Then the natural map H0(X,O)→ H0(X,O/I) is surjective.

In order to check this, let {Dn} be an exhaustion of X by increasing open
subsets obtained by the bumping method in [1] such that D0 = {ϕ < c} with
c ∈ (a, c0). These {Dn} are as in the hypothesis of Proposition 2. Moreover, it is
easily seen that, for all n, S ∩Dn is a finite set of points (possibly empty).

Now, from Proposition 2 it follows that, for any n, H1(Dn,O) is separated,
the restrictions H1(Dn+1,O) → H1(Dn,O) are bijective and H0(Dn+1,O) →
H0(Dn,O) have dense images. Therefore H1(X,O)→ H1(D0,O) is bijective.

From Corollary 3, all cohomological vector spaces H1(Dn, I) are separated.
Thanks to Lemma 2, the restrictions H1(Dn+1, I)→ H1(Dn, I) are bijective and
H0(Dn+1, I) → H0(Dn, I) have dense images. Thus H1(X, I) → H1(D0, I) is
also bijective.
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Consider now the following canonical commutative diagram:

H0(X,O) // H0(X,O/I) // H1(X, I) t //

u

��

H1(X,O)

v

��
H1(D0, I) w // H1(D0,O)

where the mappings u and v are bijective by the above discussion. Now w is
obviously bijective. Therefore t is bijective too. Hence the restriction H0(X,O)→
H0(X,O/I) is surjective, whence the claim.

Notice that the claim may be applied, thanks to Corollary 4, to any Xd,
which is a corona. Finally, we may choose appropriate ideal subsheaves I of OX
to conclude the proof of the three assertions, whence the proof of Theorem 1.

Proof of Proposition 1. First notice that by the example in §2 the space X \A is
a corona. (As a matter of fact, it is a hyperconcave corona, but we shall not need
this here.)

Now we deal with statement (a). Since the “if” part is obvious, let us assume
thatH1(X\A,F) is separated. SinceX\A is a corona, as in the proof of Theorem 1
and using Nakayama’s lemma, we deduce that, given any point a ∈ X, a 6∈ A, the
stalk Fa is generated by H0(X \A,F), which completes the proof by [10].

Now consider (b). Again the “if” implication is obvious, so let us suppose
that H1(X \ A,L) is separated. From (a) it follows that the sheaf of germs of
sections of L extends to a coherent analytic sheaf L̂ on X and this extension is
reflexive; see [10, p. 372]. Hence L̂ is locally free of rank one as A consists only
of regular points and the ambient dimension is two. Finally, as X is Stein and
H2(X,Z) = 0, the exponential sequence implies that H1(X,O?) = 0, completing
the proof.

Proof of Corollary 1. We consider the setting as in statement (b) of Proposition 1
with A = {x0}. Clearly this may be applied for X = B2.

In order to construct a holomorphic line bundle L on X \ {x0} such that
H1(X \ {x0}, L) is non-separated, observe that if B is a ball around x0 (in some
local complex coordinates), then, using the Mayer–Vietoris sequence for X = (X \
{x0}) ∪B, it follows that, for any coherent analytic sheaf F on X, the restriction
map ρ : H1(X \ {x0},F) → H1(B \ {x0},F) is bijective. Since topologically
B \ {x0} is a real three-sphere, the exponential sequence shows that the natural
map ε : H1(B \ {x0},O)→ H1(B \ {x0},O?) is also bijective. Pictorially we have
the following commutative diagram:
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H1(X \ {x0},O) u //

ρ

��

H1(X \ {x0},O?)

α

��
H1(B \ {x0},O) ε // H1(B \ {x0},O?)

from which we easily obtain topologically trivial holomorphic line bundles L on
X \ {x0} with H1(X \ {x0}, L) non-separated; e.g. L given by u(ρ−1(ξ)), for any
non-trivial cohomology class ξ in H1(B \ {x0},O).
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