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On the Kernel and the Image of the Rigid
Analytic Regulator in Positive Characteristic

by

Ambrus Pál

Abstract

We will formulate and prove a certain reciprocity law relating certain residues of the
differential symbol dlog2 from the K2 of a Mumford curve to the rigid analytic regulator
constructed by the author in a previous paper. We will use this result to deduce some
consequences on the kernel and image of the rigid analytic regulator analogous to some
old conjectures of Beilinson and Bloch on the complex analytic regulator. We also relate
our construction to the symbol defined by Contou-Carrère and to Kato’s residue homo-
morphism, and we show that Weil’s reciprocity law directly implies the reciprocity law
of Anderson and Romo.
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1. Introduction and announcement of results

Motivation 1.1. In the paper [17] the author introduced the concept of the rigid
analytic regulator. This is a homomorphism from the motivic cohomology group
H2
M(X,Z(2)) of a Mumford curve X over a local field F into the F ∗-valued har-

monic cochains of the graph of components of the special fiber. It is defined through
non-archimedean integration, hence it is elementary in nature and it is amenable
to computation. In particular the author was able to compute its value on some
explicit elements of the K2 of Drinfeld modular curves constructed using modular
units and relate it to special values of L-functions in the paper [18]. It is quite rea-
sonable to consider this result as a function field analogue of Beilinson’s classical
theorem on the K2 of elliptic modular curves as well as the rigid analytic regulator
is a non-archimedean analogue of the complex analytic Beilinson–Bloch–Deligne
regulator.
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An old conjecture of Bloch and Beilinson predicts that the complex analytic
regulator is injective on the motivic cohomology group H2

M(X,Q(2)) of a regular
integral model X of a smooth, projective curve X defined over a number field and
the image of H2

M(X,Z(2)) is a Z-lattice of a conjecturally described rank. Hence it
is desirable to understand the basic properties of the rigid analytic regulator such
as its image and kernel, partially because any analogous result would be evidence
towards the conjecture mentioned above. We offer the following result: let X be
a Mumford curve which is the general fiber of a regular quasi-projective surface
X fibred over a smooth affine curve defined over a finite field. We show that the
kernel of the rigid analytic regulator in H0(X,K2,X) is a p-divisible group and
the image of H0(X,K2,X) is a finitely generated Z-module whose closure in the
p-completion of the target group is a Zp-module of the same rank which is at most
as large as conjectured by Beilinson. In particular the kernel of this map is torsion
if Parshin’s conjecture holds. As a key ingredient of the proof we compute certain
residues of the logarithmic differentials of elements of H2

M(X,Z(2)) in terms of
the rigid analytic regulator, generalising a formula of Osipov, proved for fields
of zero characteristic in [16], to any characteristic. (A closely related result has
been obtained by M. Asakura in a recent preprint [2] for certain two-dimensional
local fields of zero characteristic using similar methods.) Of course the case of
positive characteristic is the most intricate, due to the lack of logarithm. This
formula can be considered as a relative of the explicit reciprocity law of Kato
and Besser’s theorem expressing the Coleman–de Shalit regulator in terms of the
syntomic regulator (see [19] and [4]), although it is simpler to prove. Then our main
theorems follow from the Bloch–Gabber–Kato theorem, Deligne’s purity theorem
and the degeneration of the slope spectral sequence. As an important intermediate
step we also relate the rigid analytic regulator to Kato’s residue homomorphism
for higher local fields and the Contou-Carrère symbol. The symbols mentioned
above are essentially just different formalizations of the same phenomenon which
was discovered independently at least three times. As an easy application of our
results we show that the latter is bilinear and satisfies the Steinberg relation. At
the same stroke we show that Weil’s reciprocity law directly implies the reciprocity
law of Anderson and Romo.

Notation 1.2. By slightly extending the usual terminology we will call a
scheme C defined over a field a curve if it is reduced, locally of finite type and of
dimension one. A curve C is said to have normal crossings if every singular point
of C is an ordinary double point in the usual sense. We say that a curve C over a
field f is totally degenerate if it has normal crossings, every ordinary double point
is defined over f and its irreducible components are projective lines over f . For any
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curve C with normal crossings let C̃ denote its normalization, and let S̃(C) denote
the pre-image of the set S(C) of singular points of C. We denote by Γ(C) the
oriented graph whose set of vertices is the set of irreducible components of C̃, and
its set of edges is the set S̃(C) such that the initial vertex of any edge x ∈ S̃(C) is
the irreducible component of C̃ which contains x and the terminal vertex of x is
the irreducible component which contains the other element of S̃(C) which maps
to the same singular point with respect to the normalization map as x. The nor-
malization map identifies the irreducible components of C and C̃ which we will
use without further notice.

Definition 1.3. For any (oriented) graph G let V(G) and E(G) denote its set of
vertices and edges, respectively. Let G be a locally finite oriented graph which is
equipped with an involution · : E(G) → E(G) such that for each edge e ∈ E(G)
the initial and terminal vertices of the edge e ∈ E(G) are the terminal and initial
vertices of e, respectively. The edge e is called the edge e with reversed orientation.
Let R be a commutative group. A function φ : E(G) → R is called a harmonic
R-valued cochain if it satisfies the following conditions:

(i) We have:
φ(e) + φ(e) = 0 (∀e ∈ E(G)).

(ii) If for an edge e we introduce the notation o(e) and t(e) for its initial and
terminal vertex respectively,∑

e∈E(G)
o(e)=v

φ(e) = 0 (∀v ∈ V(G)).

We denote by H(G,R) the group of R-valued harmonic cochains on G.

Notation 1.4. Let k be a perfect field and let B be a smooth irreducible projec-
tive curve over k. Let∞ be a closed point of B and let F denote the completion of
the function field ofB at∞. LetO denote the valuation ring of F and let π : X→ B

be a regular irreducible projective surface fibred over B such that the fiber X∞ of X

over∞ is totally degenerate. Then the base change X of X to F is a Mumford curve
over F which has a regular, semistable model over the spectrum of O whose special
fiber is X∞. The rigid analytic regulator introduced in [17] is a homomorphism:

{·} : H2
M(X,Z(2))→ H(Γ(X∞), F ∗).

Let U ⊂ X be an open subvariety such that its complement is a normal crossings
divisor D which is the preimage of a finite set of closed points of B contain-
ing ∞. Let the symbol {·} also denote the composition of the functorial map
H0(U,K2,U)→ H2

M(X,Z(2)) and the rigid analytic regulator.
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The main result of this paper is the following:

Theorem 1.5. Assume that k has characteristic p. Then the map:

{·} : H0(U,K2,U)/pnH0(U,K2,U)→ H(Γ(X∞), F ∗/(F ∗)p
n

)

induced by the regulator {·} is injective for every natural number n.

Notation 1.6. We call a Z-submodule Λ of a Hausdorff topological groupG which
is the direct sum of a discrete group and a pro-p group p-saturated if it is finitely
generated and the map Λ ⊗ Zp → Ĝ is an injection, where Ĝ is the p-completion
of G. Note that every discrete, finitely generated Z-submodule is p-saturated.
Assume now that k is a finite field of characteristic p. The result above, Deligne’s
purity theorem and the degeneration of the slope spectral sequence imply the
following:

Corollary 1.7. The image of the regulator {·} : H0(U,K2,U)→ H(Γ(X∞), F ∗) is
p-saturated and its rank is at most as large as the rank of the group H(Γ(D),Z).
This lattice is discrete if D = X∞. The kernel of this regulator is a p-divisible
group. In particular it is torsion if Parshin’s conjecture holds for X, and it is finite
if the Bass conjecture holds for X.

Further results 1.8. Let A be a local Artinian ring with residue field k which is
again allowed to be an arbitrary perfect field. In [7] a map:

〈·, ·〉 : A((t))∗ ×A((t))∗ → A∗

was defined, called the Contou-Carrère symbol in [1], where t is a variable. The
Contou-Carrère symbol is equal to the tame symbol if A is a field. In [1] G. Ander-
son and F. P. Romo proved that the Contou-Carrère symbol is bilinear and proved
a reciprocity law for it. Their proof is the generalization of the proof of the residue
theorem by Tate and the Weil reciprocity law by Arabello, De Concini and Kac.
They work directly over Artinian rings, so they have to develop an elaborate theory
generalizing all concepts appearing in the proofs quoted above for Artinian rings.
In this article we will present a different proof of the bilinearity of this symbol and
of the reciprocity law. It is based on the observation that if A is the quotient of a
discrete valuation ring, then the Contou-Carrère symbol 〈f, g〉 of any f and g in
A((t))∗ is just the reduction of Kato’s residue (see [12] and [13]) of some lifts of
f and g. The existence and the basic properties of the latter follow at once from
the properties of the rigid analytic regulator. Hence the aforementioned results
follow immediately from some well-known facts such as the deformation theory of
smooth projective curves is unobstructed and Weil’s reciprocity law. One may even



Kernel and Image of the Rigid Regulator 259

give a new proof of the Weil reciprocity law using the observed continuity of the
tame symbol by degenerating the curve to a stable curve with rational components
in its special fiber. Since the Anderson–Romo reciprocity law implies them, the
reciprocity laws of Tate and Witt also follow from Weil’s law.

Contents 1.9. The goal of the next chapter is to review the construction of the
rigid analytic regulator and to list its basic properties for rational subdomains of
the projective line without proofs, mainly for the sake of the reader. The relation-
ship with Kato’s residue homomorphism is established in the third chapter. The
fourth chapter is concerned with the Contou-Carrère symbol and the Anderson–
Romo reciprocity law. We review the general construction of the residue homomor-
phism for Kähler differentials in the fifth chapter; we relate that homomorphism
to the Contou-Carrère symbol in the case of local Artinian rings, and to Kato’s
residue homomorphism in the case of local fields of dimension two. This reciprocity
law is used to deduce Theorem 1.5 and Corollary 1.7 in chapter six.

2. Review of the rigid analytic regulator

Notation 2.1. In this chapter all claims are stated without proof. The interested
reader is kindly asked to consult [17]. Let F be a local field and let C denote the
completion of the algebraic closure of F with respect to the unique extension of
the absolute value on F . Recall that C is an algebraically closed field complete
with respect to an ultrametric absolute value which will be denoted by | · |. Let
|C| denote the set of values of the latter. Let P1 denote the projective line over C.
For any x ∈ P1 and any two rational non-zero functions f, g ∈ C((t)) on the
projective line let {f, g}x denote the tame symbol of the pair (f, g) at x. Recall
that a subset U of P1 is a connected rational subdomain if it is non-empty and
it is the complement of the union of finitely many pairwise disjoint open discs.
Let ∂U denote the set of those complementary open discs. The elements of ∂U
are called the boundary components of U , by slight abuse of language. Let O(U),
R(U) denote the algebra of holomorphic functions on U and the subalgebra of
restrictions of rational functions, respectively. LetO∗(U),R∗(U) denote the groups
of invertible elements of these algebras. The group R∗(U) consists of rational
functions which do not have poles or zeros lying in U . For each f ∈ O(U) let ‖f‖
denote supz∈U |f(z)|. This is a finite number, and makes O(U) a Banach algebra
over C. We say that the sequence fn ∈ O(U) converges to f ∈ O(U), denoted by
fn → f , if fn converges to f with respect to the topology of this Banach algebra,
i.e. limn→∞ ‖f − fn‖ = 0. For every real number 0 < ε < 1 we define the sets
Oε(U) = {f ∈ O(U) | ‖1− f‖ ≤ ε} and Uε = {z ∈ C | |1− z| ≤ ε}.
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Theorem 2.2. There is a unique map {·, ·}D : O∗(U) × O∗(U) → C∗ for every
D ∈ ∂U , called the rigid analytic regulator, with the following properties:

(i) For any two f, g ∈ R∗(U) their regulator is:

{f, g}D =
∏
x∈D
{f, g}x,

(ii) the regulator {·, ·}D is bilinear in both variables,

(iii) the regulator {·, ·}D is alternating: {f, g}D · {g, f}D = 1,

(iv) if f , 1− f ∈ O(U)∗, then {f, 1− f}D is 1,

(v) for each f ∈ Oε(U) and g ∈ O∗(U) we have {f, g}D ∈ Uε. �

Remark 2.3. It is an immediate consequence of property (v) that the rigid an-
alytic regulator is continuous with respect to the supremum norm topology. Ex-
plicitly, if f and g are elements of O∗(U), D ∈ ∂U is a boundary component, and
fn ∈ O∗(U), gn ∈ O∗(U) are sequences such that fn → f and gn → g, then the
limit

lim
n→∞

{fn, gn}D

exists, and it is equal to {f, g}D.

Let M(U) denote the field of meromorphic functions of U and let M∗(U)
denote the multiplicative group of non-zero elements of M(U).

Theorem 2.4. There is a unique set of homomorphisms degD : M∗(U) → Z
where U is any connected rational subdomain and D ∈ ∂U is a boundary component
with the following properties:

(i) the homomorphism degD is zero on O1(U),

(ii) for every f ∈ R∗(U) the integer degD(f) is the number of zeros z of f with
z ∈ D counted with multiplicities minus the number of poles z of f with z ∈ D
counted with multiplicities,

(iii) for every f ∈ M∗(U) we have degD(f |Y ) = degD(f) where Y ⊆ U is any
connected rational subdomain satisfying the property D ∈ ∂Y . �

Definition 2.5. If U is still a connected rational subdomain of P1, and f, g are
two meromorphic functions on U , then for all x ∈ U the functions f and g have a
power series expansion around x, so in particular their tame symbol {f, g}x at x is
defined. The tame symbol extends to a homomorphism {·, ·}x : K2(M(U))→ C∗.
We define the group K2(U) as the kernel of the direct sum of the tame symbols:⊕

x∈U
{·, ·}x : K2(M(U))→

⊕
x∈U

C∗.
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Let k =
∑
i fi⊗gi ∈ K2(U), where fi, gi ∈M(U), and let D ∈ ∂U . Let moreover Y

be a connected rational subdomain of U such that fi, gi ∈ O∗(Y ) for all i and
∂U ⊆ ∂Y . Define the rigid analytical regulator {k}D by the formula:

{k}D =
∏
i

{fi|Y , gi|Y }D.

Theorem 2.6. (i) For each k ∈ K2(U) the rigid analytical regulator {k}D is
well-defined, and it is a homomorphism {·}D : K2(U)→ C∗,

(ii) for any two functions f, g ∈ O∗(U) we have {f ⊗ g}D = {f, g}D,

(iii) for every k ∈ K2(U) the product of all regulators on the boundary components
of U is equal to 1: ∏

D∈∂U

{k}D = 1.

Definition 2.7. For every connected rational subdomain U ⊂ P1 let Z∂U denote
the free abelian group with the elements of ∂U as free generators. LetH1(U) denote
the quotient of Z∂U by the Z-module generated by

∑
D∈∂U D. For every D ∈ ∂U

we let D denote the class of D in H1(U) as well. Let Ab denote the category of
abelian groups. Let Crs denote the category whose objects are connected rational
subdomains of P1 and whose morphisms are holomorphic maps between them. Let
D(w, r) denote the open disc of radius r and center w, that is,

D(w, r) = {z ∈ C | |z − w| < r}

where 0 < r ∈ |C|. Finally for every pair a ≤ b of numbers in |C| let A(a, b) denote
the closed annulus P1 −D(0, a)−D(∞, 1/b). Of course it is a connected rational
subdomain.

Theorem 2.8. There is a unique functor H1 : Crs→ Ab with the following prop-
erties:

(i) for every connected rational subdomain U ⊂ P1, H1(U) is the group defined
in 2.7,

(ii) for every map U → Y which is the restriction of a projective linear transfor-
mation f and every boundary component D ∈ ∂U we have:

H1(f)(D) = f(D) ∈ H1(Y ),

(iii) for every holomorphic map f : U → A(a, b) and boundary component D ∈ ∂U
we have:

H1(f)(D) = degD(f)D(0, a) ∈ H1(A(a, b)).
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Definition 2.9. Let U ⊂ P1 be a connected rational subdomain. For every class
c ∈ H1(U) and element k ∈ K2(U) we define the regulator {k}c as

{k}c =
∏
D∈∂U

{k}c(D)
D ,

where
∑
D∈∂U c(D)D is a lift of c in Z∂U . By claim (iii) of Theorem 2.6 this

regulator is well-defined. For every holomorphic map h : U → Y between two
connected rational subdomains let h∗ : K2(M(Y )) → K2(M(U)) be the pull-
back homomorphism induced by h. By restriction it induces a homomorphism
K2(Y )→ K2(U).

Theorem 2.10. For any k ∈ K2(Y ) and c ∈ H1(U) we have:

{h∗(k)}c =
∏
E∈∂Y

{k}H1(h)(c).

Definition 2.11. Let U be now a connected rational subdomain of P1 defined
over F . This means that

U = {z ∈ P1 | |fi(z)| ≤ 1 (∀i = 1, . . . , n)}

as a set for some natural number n and rational functions f1, . . . , fn ∈ F (t). Let
OF (U), RF (U), O∗F (U), R∗F (U) and MF (U) denote the algebra of holomorphic
functions, the subalgebra of restrictions of F -rational functions, the groups of in-
vertible elements of these algebras and the field of meromorphic functions on the
rigid analytic space U , respectively. Let U ′ denote the underlying rational subdo-
main over C. Let K2(U) denote the largest subgroup of K2(MF (U)) which maps
into K2(U ′) under the restriction homomorphism K2(MF (U)) → K2(M(U ′)).
An F -rational boundary component of U is a set D ∈ ∂U such that D is the im-
age of the open disc of radius 1 and center 0 under an F -linear projective linear
transformation of P1.

Proposition 2.12. Let D be an F -rational boundary component of U , and let
k ∈ K2(U). Then {k}D ∈ F ∗.

3. Kato’s residue homomorphism

Definition 3.1. In this chapter we will continue to use the notation of the second
chapter. In this chapter we will also assume that the absolute value on F is induced
by a discrete valuation. Let D denote the open disc D(0, 1). Let M be the field
of fractions of O[[z]] and let M̂ denote the completion of M with respect to the
discrete valuation of M defined by the prime ideal mO[[z]] of height one, where
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m is the unique maximal ideal of O. The field M̂ is just the field of bidirectional
formal Laurent series of the form

∑
n∈Z anz

n over F such that |an| is bounded
above and limn→−∞ |an| = 0. It is a local field equipped with the absolute value∥∥∥∑

n∈Z
anz

n
∥∥∥
s

= max
n∈Z
|an|.

Every element of the formal Laurent series ring O[[z]] defines a holomorphic func-
tion on the rigid analytic space D, hence every element M gives a meromorphic
function on D. By Weierstrass’ preparation theorem each element of O[[z]] is the
product of a polynomial and a unit of this ring, hence it has only a finite number
of zeros in D. Therefore the limit

{f, g}D = lim
ε→0

0<ε<1
ε∈|C|

{f, g}D(0,1−ε) =
∏
x∈D
{f, g}x

becomes stationary for any pair of elements f, g ∈ M∗ and defines an F ∗-valued
bilinear map satisfying the Steinberg relation by Theorem 2.2 and Proposition
2.12. Therefore it induces a homomorphism {·}D : K2(M) → F ∗. Note that the
rigid analytic regulator denoted by the same symbol has the same value as this
pairing for those pairs of functions for which both of them are defined by Theorem
2.6. Hence our notation will not cause confusion.

Proposition 3.2. There is a unique homomorphism {·}D : K2(M̂)→ F ∗, called
Kato’s residue homomorphism, such that

(i) the composition of the natural homomorphism K2(M) → K2(M̂) and Kato’s
residue homomorphism is the homomorphism {·}D defined above,

(ii) for each f ∈ M̂∗ and g ∈ O[[z]] with ‖1− g‖s < ε < 1 we have {f, g}D ∈ Uε.

Proof. Clearly Kato’s residue homomorphism is unique if it exists. We claim that
for each f, g ∈ M∗ with ‖1 − g‖s < ε < 1 we have {f, g}D ∈ Uε. We first show
that this claim implies the proposition. In this case we may define {f, g}D for any
two elements f and g of M̂∗ as the limit

lim
n→∞

{fn, gn}D,

where fn ∈ M∗, gn ∈ M∗ are sequences such that fn → f and gn → g. This
limit exists because the sequence above is Cauchy by the claim above. Its value is
non-zero as

1 = lim
n→∞

{fn, gn}D · {gn, fn}D = lim
n→∞

{fn, gn}D · lim
n→∞

{gn, fn}D.
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It is also independent of the sequences chosen as any two sequences may be combed
together to show that they give the same limit. The map {·, ·}D defined this way
is automatically a bilinear map satisfying claim (ii) and the Steinberg relation,
hence the existence follows. For every 1 > δ ∈ |C| sufficiently close to 1 the
holomorphic functions f and g are elements of O∗(Aδ), where Aδ is the annulus
{z ∈ C | |z| = δ}. Write 1− g =

∑
n∈Z anz

n as an element of M̂ . This power series
will converge for all z ∈ Aδ when δ sufficiently close to 1, hence there is a number
0 < ρ < 1 and a negative integer N such that |an| ≤ ερ−n for all n < N . For
all δ ∈ |C| such that ρ < δ < 1 we have the following estimate for the supremum
norm ‖1− g‖ on the annulus Aδ:

‖1− g‖ ≤ max
(∥∥∥∑

n<N

anz
n
∥∥∥,∥∥∥∑

n≥N

anz
n
∥∥∥) ≤ max(ε, εδN ) = εδN .

Therefore the limit inferior of the supremum norms ‖1− g‖ on the annuli Aδ is at
most ‖1− g‖s, so the claim is now clear by (v) of Theorem 2.2.

Let t ∈ O[[z]] be a uniformizer, which here means that t is of the form cz+z2h,
where c ∈ O∗ and h ∈ O[[z]]. Then there is a unique O-algebra automorphism
φ : O[[z]] → O[[z]] such that φ(z) = t and ‖φ(h)‖s = ‖h‖s for every h ∈ O[[z]].
The automorphism φ extends uniquely to a norm-preserving automorphism φ :
M̂ → M̂ . Let φ∗ : K2(M̂)→ K2(M̂) denote the induced automorphism.

Proposition 3.3. The automorphism φ∗ leaves Kato’s residue homomorphism
invariant.

Proof. By continuity we only have to show that the equation {φ∗(k)}D = {k}D
holds for any k ∈ K2(M). Note that the power series t as a holomorphic function
t : D → D leaves the annulus Aδ invariant for any positive rational δ < 1 where
we continue to use the notation of the proof above. In fact for any z ∈ Aδ we have

|t(z)− cz| ≤ |z2| = δ2 < δ = |cz|.

The inequality above also implies that degD(0,δ)(t) = 1 by claim (iii) of Theorem
2.8, hence the claim follows at once from Theorem 2.10.

Lemma 3.4. For every pair of positive integers n and m the following identities
hold:

(i) {1− at−n, 1− bt−m}D = 1, if |a| < 1 and |b| < 1,

(ii) {1− atn, 1− btm}D = 1, if |a| ≤ 1 and |b| ≤ 1,

(iii) {1− atn, 1− bt−m}D = (1− am/(n,m)bn/(n,m))(n,m), if |a| ≤ 1 and |b| < 1,

(iv) {1− at−n, 1− btm}D = (1− am/(n,m)bn/(n,m))−(n,m), if |a| < 1 and |b| ≤ 1.
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Proof. Note that the equations (iii) and (iv) are equivalent, because we can get
the latter from the former by reversing the roles of the symbols a and b, and using
the antisymmetry of the rigid regulator. Hence we only have to show (i), (ii) and
(iii). First assume that both m and n are equal to 1. We may assume that both
a and b are non-zero. In case (i) the two linear expressions in t−1 each have one
zero, which are a and b, respectively. They also have a pole, which is the point
zero. These points all lie in D, so Weil’s reciprocity law implies:

{1− at−1, 1− bt−1}D =
∏
x 6∈D

{1− at−1, 1− bt−1}−1
x = 1.

In case (ii) the zeros of the two linear polynomials are 1/a and 1/b, respectively,
which do not lie in D. Hence the equation holds in this case. In case (iii) the
expression 1− at does not have a zero or a pole in D, but 1− bt−1 does, hence:

{1− at, 1− bt−1}D = {1− at, 1− bt−1}0 · {1− at, 1− bt−1}b = 1− ab.

Now assume that n and m are relatively prime and none of them is divisible by
the characteristic of C. Let ε1, ε2 be a primitive n-th and a primitive m-th root
of unity, respectively. Let α and β be an n-th root of a and an m-th root of b,
respectively. Since |εi1α|n = |a| and |εj2β|m = |b|, the conditions of claim (iii) hold
for these values, so we get:

{1−atn, 1−bt−m}D =
n∏
i=1

m∏
j=1

{1−εi1αt, 1−ε
j
2βt
−1}D =

n∏
i=1

m∏
j=1

(1−εi1αε
j
2β) = 1−ab.

The other two claims follow similarly. Now assume that n and m are still relatively
prime, but one of them, for example n, is divisible by p, the characteristic of C.
In this case 1 − at±n = (1 − αt±n/p)p, where αp = a, so the claims follow from
what we have proved already, by induction on the exponent of p in the primary
factorization of n. In the general case we have:

{1− at±n, 1− bt±m}D = {1− at±n/(n,m), 1− bt±m/(n,m)}(n,m)
D ,

which follows from applying Theorem 2.10 to the map t 7→ t(n,m).

Lemma 3.5. For every pair of integers n and m the following identities hold:

(i) {atn, btm}D = (−1)nmamb−n, if both a and b are non-zero,

(ii) {atn, 1− btm}D = 1, if a 6= 0, |b| ≤ 1 and m is positive, or a 6= 0, |b| < 1 and
m is negative.
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Proof. In case (i) both expressions have at most one singularity on the disc D
which is the point zero. Therefore

{atn, btm}D = {atn, btm}0 = (−1)nmamb−n.

In case (ii) we may immediately reduce to the case b 6= 0 and |m| = 1 using the
same arguments as the proof above. If m = 1 then the linear expression 1− bt has
no singularity on the disc D, hence

{atn, 1− bt}D = {atn, 1− bt}0 = 1.

In the other case the expression 1 − bt−1 has two singularities on the disc D: a
pole at 0 and a zero at b. Therefore

{atn, 1− bt−1}D = {atn, 1− bt−1}0{atn, 1− bt−1}b = 1.

Definition 3.6. Fix a uniformizer π ∈ F and let R denote the valuation ring
of M̂ . For every u ∈ R let u ∈ R/πR denote the reduction of u modulo the
proper maximal ideal of R. Note that R/πR is a local field since it is canonically
isomorphic to f((z)) where f is the residue field of F . Let ν denote the valuation
of R/πR normalised such that ν(z) = 1. Every element u ∈ M̂∗ can be written
uniquely in the form πnv for some n ∈ Z and v ∈ R∗. We define deg(u) as ν(v).

Lemma 3.7. We have {c, u}D = cdeg(u) for every c ∈ F ∗ and u ∈ M̂∗.

Proof. By the continuity and the bilinearity of Kato’s residue homomorphism we
only have to show that the equation in the claim above is true when u = dv where
d ∈ F ∗ and v ∈ O[[z]]. Because {c, d} = 1 by definition we may assume that u = v.
In this case the number of zeros of the convergent power series u on D counted
with multiplicities is exactly deg(u) so the claim holds.

4. The Contou-Carrère symbol and the
Anderson–Romo reciprocity law

Notation 4.1. Let k be a perfect field and let C denote the category of local
Artinian rings with residue field k. By slight abuse of notation we will let C denote
the class of objects of this category as well.

Lemma 4.2. Assume that k has characteristic zero. Then for every object A in C
there is a homomorphism i : k → A such that the composition of the reduction
map A→ k modulo the maximal ideal of A and i is the identity map.

Proof. This is a special case of Proposition 6 of [21] on pages 33–34.
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Lemma 4.3. Assume that k has positive characteristic p. Then for every object A
in C there is a homomorphism i : W(k) → A of local rings, where W(k) is the
ring of Witt vectors of k of infinite length, such that the map induced by i on the
residue fields is the identity.

Proof. By Theorem 8 of [21] on page 43 the ring W(k) is strict hence the claim
follows from Proposition 10 of [21] on pages 38–39.

Proposition 4.4. Assume that k is algebraically closed and let D be a subclass
of the class of objects of C such that the following conditions hold:

(i) if A ∈ C is the quotient of a discrete valuation ring with residue field k, then
A ∈ D,

(ii) if A ∈ C is the quotient of an element of D, then A ∈ D,

(iii) if A ∈ C and for every x ∈ A∗ different from 1 there is a B ∈ D and a
homomorphism φ : A→ B such that φ(x) 6= 1, then A ∈ D.

In this case D is the whole class of objects of C.

Proof. For every pair of natural numbers n and m let An,m denote the local
Artinian algebra:

An,m = k[[x1, . . . , xn]]/
({ n∏

j=1

x
J(j)
j

∣∣∣ J : {1, 2, . . . , n} → N,
n∑
j=1

J(j) = m+ 1
})
.

First assume that k has characteristic zero. In this case for every A ∈ C there
is a surjective local homomorphism An,m → A for some n and m. On the other
hand A1,m ∈ D by condition (i). Therefore it will be enough to show that for
every x ∈ A∗n,m with x 6= 1 there is a homomorphism φ : An,m → A1,m such
that φ(x) 6= 1 by condition (iii). There is a positive integer k ≤ m such that
x ≡ 1 mod mk−1, but x 6≡ 1 mod mk. Every local homomorphism φ : An,m → A1,m

induces a k-linear homomorphism T lφ : ml/ml+1 → nl/nl+1 for every positive
l ≤ m, where n is the maximal proper ideal of A1,m. For every vector space V over
k let Syml(V ) denote the l-th symmetric power of V and for every k-linear map
h : V →W between vector spaces over k let Syml(h) : Syml(V )→ Syml(W ) de-
note the l-th symmetric power of this homomorphism. The multiplication induces
a natural isomorphism between Symk(m/m2), Symk(n/n2) and mk/mk+1 and
nk/nk+1, respectively, and under these identifications we have T kφ = Symk(T 1

φ).
Since any k-linear map h : m/m2 → n/n2 ∼= k is induced by a local homomorphism
φ : An,m → A1,m, it will be sufficient to prove the following lemma.

Lemma 4.5. For every 0 6= v ∈ Symk(kn) there is a k-linear map φ : kn → k
such that Symk(φ)(v) 6= 0.
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Proof. We are going to prove the claim by induction on n. The case n = 1 is
obvious. Let x1, x2, . . . , xn be a basis of kn. Write v as

v =
k∑
j=0

pj(x1, x2, . . . , xn−1)xjn,

where pj ∈ Symk−j(kn−1). For a 0 ≤ j ≤ k the polynomial pj is not zero, therefore
there is a k-linear map φ1 : kn−1 → k by induction, where kn−1 is spanned by
x1, x2, . . . , xn−1, such that Symk−j(φ1)(pj) 6= 0. The polynomial:

p(t) =
k∑
j=0

Symk−j(φ1)(pj)tj

is not identically zero, hence it has finitely many roots. The field k is assumed to
be algebraically closed, in particular it is not finite. Hence there is a β ∈ k which
is not a root of the polynomial above. Let φ : kn → k be the unique k-linear
extension of φ1 with φ(xn) = β. In this case Symk(v) = p(β) 6= 0, so the claim is
proved.

Now assume that k has characteristic p > 0 and let W(k) denote the ring of
Witt vectors of k of infinite length. For every pair of natural numbers n and m let
Bn,m denote the local Artinian algebra:

Bn,m

= W(k)[[x1, . . . , xn]]/
({
pJ(0) ·

n∏
j=1

x
J(j)
j

∣∣∣ J : {0, 1, . . . , n} → N,
n∑
j=0

J(j) > m
})
.

For every A ∈ C there is a surjective local homomorphism Bn,m → A for some n
and m. By repeating the argument above we may reduce the proof of the proposi-
tion to showing that there is a homomorphism φ : Bn,m → B0,m such that φ(x) 6= 1
for every x ∈ B∗n,m with x ≡ 1 mod mk−1, but x 6≡ 1 mod mk for some positive
integer k ≤ m, where m is the maximal ideal of Bn,m. Every local homomorphism
φ : Bn,m → B0,m induces a k-linear homomorphism T lφ : ml/ml+1 → nl/nl+1 for
any positive l ≤ m, where n is the maximal proper ideal of B0,m. Let Tp, T⊥ de-
note the k-linear subspace of m/m2 generated by p and the elements x1, x2, . . . , xn,
respectively. The multiplication induces a natural isomorphism:

mk/mk+1 =
k⊕
j=0

Symj(Tp)⊗ Symk−j(T⊥)

and another between Symk(n/n2) and nk/nk+1. Moreover there is a canonical
isomorphism ι : Tp → n/n2 between these one-dimensional vector spaces. Under
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these identifications we have

T kφ =
k⊕
j=0

Symj(ι)⊗ Symk−j(T 1
φ |T⊥).

Since every k-linear map h : T⊥ → n/n2 ∼= k is induced by a local homomorphism
φ : Bn,m → B0,m, the proposition follows from the lemma above.

Definition 4.6. Let A ∈ C be a local Artinian ring with maximal ideal m and
let f be any element of A((t))∗. Then there is an integer w(f) ∈ Z, and a sequence
of elements ai ∈ A indexed by the integers such that a0 ∈ A∗, a−i ∈ m for i > 0,
a−i = 0 for i sufficiently large, and

f = a0 · tw(f) ·
∞∏
i=1

(1− aiti) ·
∞∏
i=1

(1− a−it−i),

and w(f) and ai are uniquely determined by f . The integer w(f) is called the
winding number of f and the elements ai are called the Witt coordinates of f . Let
f, g ∈ A((t))∗ be arbitrary with winding numbers w(f), w(g) and Witt coordinates
ai, bj , respectively. By definition the Contou-Carrère symbol 〈f, g〉 is:

〈f, g〉 = (−1)w(f)w(g)
a
w(g)
0

∏∞
i=1

∏∞
j=1(1− aj/(i,j)i b

i/(i,j)
−j )(i,j)

b
w(f)
0

∏∞
i=1

∏∞
j=1(1− aj/(i,j)−i b

i/(i,j)
i )(i,j)

∈ A∗.

Obviously all but finitely many terms are equal to one in the infinite products
above, hence the Contou-Carrère is a well-defined alternating map:

〈·, ·〉 : A((t))∗ ×A((t))∗ → A∗.

It is also clear from the formula that the Contou-Carrère symbol is equal to the
tame symbol if A is a field.

Proposition 4.7. The Contou-Carrère symbol is a bilinear map satisfying the
Steinberg relation.

Proof. Because k is perfect for every object A of C there is a local Artinian ring B
with residue field k, where the latter is the algebraic closure of k, and an injective
local homomorphism i : A → B. Indeed the algebra B = A ⊗k k and B =
A ⊗W(k) W(k) will do, when k has characteristic zero or positive characteristic,
respectively, using the fact has A can be equipped with the structure of a k-algebra
or W(k)-algebra, respectively, by Lemmas 4.2 and 4.3. Hence we may assume that
k is algebraically closed. Let D denote the subclass of those local Artinian rings
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with residue field k which satisfy the claim of the proposition above. Clearly we
only have to show that this subclass satisfies the conditions of Proposition 4.4. If
A ∈ C is the quotient of a discrete valuation ring R with residue field k, we may
assume that R is complete with respect to its valuation. Let K be the quotient
field of R and let C be the completion of the algebraic closure of K. The latter
is an algebraically closed field complete with respect to an ultrametric absolute
value. For every f ∈ A((t))∗ there is a lift f̃ ∈ R((t))∗ whose image is f under
the functorial map R((t)) → A((t)). By Lemmas 3.4 and 3.5 the Contou-Carrère
symbol of f and 1−f is the reduction of the rigid analytic regulator {f̃ , 1−f̃}D ∈ R
modulo the maximal ideal of R, hence the Contou-Carrère symbol satisfies the
Steinberg relation. A similar argument shows that it is also bilinear, therefore (i)
of Proposition 4.4 holds for D. Property (ii) also follows from same reasoning,
because every f ∈ A((t))∗ has a lift f̃ ∈ B((t))∗ if the map B → A is surjective.
Finally let A ∈ C be an algebra which satisfies the condition in (iii) of Proposition
4.4. Assume that there is an 1 6= f ∈ A((t))∗ such that 〈f, 1 − f〉 6= 1. Then
there is a B ∈ D and a homomorphism φ : A → B such that 1 6= φ(〈f, 1 − f〉) =
〈φ∗(f), 1 − φ∗(f)〉 = 1, where φ∗ : A((t)) → B((t)) is the functorial map induced
by φ, which is a contradiction. A similar argument shows that the Contou-Carrère
symbol is bilinear over A, therefore property (iii) also holds for D.

Let x ∈ A[[t]] be a uniformizer, which means that x is of the form ct + t2h,
where c ∈ A∗ and h ∈ A[[t]]. In this case there is a unique A-algebra automor-
phism φ : A[[t]] → A[[t]] such that φ(t) = x. On the other hand every A-algebra
automorphism of A[[t]] is of this form. The automorphism φ extends uniquely to
an automorphism φ : A((t))→ A((t)) by localizing at the maximal ideal.

Proposition 4.8. The automorphism φ leaves the Contou-Carrère symbol invari-
ant.

Proof. As in the proof above we may assume that k is algebraically closed. Let D
again denote the subclass of those local Artinian rings with residue field k which
satisfy the claim of the proposition above. We need to show only that this subclass
satisfies the conditions of Proposition 4.4. Let ψ : B → A be a surjective homo-
morphism of local algebras with residue field k and let ψ∗ : B((t)) → A((t)) be
the functorial map induced by ψ. If B is Artinian or a discrete valuation ring then
there is a B-algebra automorphism φB : B((t))→ B((t)) such that ψ∗◦φB = φ◦ψ∗
which is of type described before Proposition 3.3 if B is a discrete valuation ring.
Hence (i) and (ii) of Proposition 4.4 hold for D by Proposition 3.3. A similar
argument as above shows that condition (iii) also holds for D.
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Notation 4.9. Let A ∈ C be a local Artinian ring and let π : X → Spec(A) be a
projective flat morphism whose fiber X0 over the unique closed point of Spec(A)
is a reduced, connected, regular curve over k. Let S be a finite set of closed
points of X (or, equivalently, of X0) and let f and g be two rational functions
on X which are invertible on the complement of S. For every s ∈ S choose an
A-algebra isomorphism φs between the completion Ôs,X of the stalk Os,X of the
structure sheaf of X at s and A[[t]]. The latter induces an isomorphism between
the localization of Ôs,X by the semigroup of those elements whose image under
the canonical map Ôs,X → Ôs,X0 is non-zero, where Ôs,X0 is the the completion
of the stalk Os,X0 , and A((t)), which will be denoted by φs, by the usual abuse of
notation. Let 〈f, g〉s denote the Contou-Carrère symbol of the image of f and g

under φs for every s in S. By Proposition 4.8 the value of 〈f, g〉s is independent
of the choice of the isomorphism φs, so the symbol 〈f, g〉s is well-defined. The
following result is the reciprocity law of Anderson and Romo (see [1]).

Proposition 4.10. The product of all the Contou-Carrère symbols of f and g is
equal to 1: ∏

s∈S
〈f, g〉s = 1.

Proof. We are going to use the same strategy for proof as we used before: in par-
ticular we assume that k is algebraically closed. Let D denote the subclass of those
local Artinian rings with residue field k which satisfy the claim of the proposition
above. We will show that this subclass satisfies the conditions of Proposition 4.4.
If A ∈ C is the quotient of a discrete valuation ring R with residue field k, we
may again assume that R is complete with respect to the valuation. Let K denote
the quotient field of R and let C denote the completion of the algebraic closure
of K as above. Because the deformation theory of regular projective curves is
unobstructed, there is a formal scheme X over the formal spectrum of R whose
fiber over Spec(A) is X. By the algebraicity theorem of Grothendieck X is actu-
ally the formal completion of a smooth curve over Spec(R) which will be denoted
by X by abuse of notation. By flatness there are rational functions f̃ and g̃ on X

whose restrictions to the fiber over Spec(A) are f and g, respectively. The rigid
analytic domain Ds of C-valued points of X which reduces to s is isomorphic to
the open disc D by the formal inverse function theorem. By Lemmas 3.4 and 3.5
the Contou-Carrère symbol of f and g is the reduction of the product of the tame
symbols {f̃ , g̃}x modulo the maximal ideal of R where x is running through the
C-valued points of the set Ds. The rational functions f̃ and g̃ have only poles or
zeros in the union of the sets Ds hence the reciprocity law of Anderson and Romo
holds by Weil’s reciprocity law.
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Property (ii) also follows from the same reasoning. If the map B → A is
surjective and X, f and g are as above, then there is a similar triple X̃, f̃ and g̃

over Spec(B) such that the fiber of X̃ over Spec(A) is X and the restrictions of
f̃ and g̃ to X are f and g, respectively, because the deformation theory of X is
unobstructed. If B ∈ D then the claim holds for the triple X̃, f̃ , g̃, so it must hold
for the triple X, f, g as well. Finally let A ∈ C be an algebra which satisfies the
condition in (iii) of Proposition 4.4. Assume that there are rational functions f and
g as above such that

∏
s∈S〈f, g〉s 6= 1. Then there is a B ∈ D and a homomorphism

φ : A→ B such that 1 6= φ(
∏
s∈S〈f, g〉s) =

∏
s∈φ∗(S)〈φ∗(f), φ∗(g)〉s, where φ∗(f),

φ∗(g) and φ∗(S) are the base changes of the corresponding objects on the curve
φ∗(X) which is the base change of X with respect to the map φ∗ : Spec(B) →
Spec(A). This is a contradiction, therefore property (iii) also holds for D.

Remark 4.11. It is possible to push the methods of this paper a bit further to
actually give a proof of Weil’s reciprocity law itself by reducing it to the case of
Mumford curves, when it follows from (iii) of Theorem 2.6 at once. We will only
sketch this argument because it uses a considerable amount of machinery compared
to the relatively elementary nature of Weil’s reciprocity law. For any scheme S and
any stable curve π : C → S of genus g let ωC/S denote the relative dualizing sheaf.
By Theorem 1.2 of [8], page 77 the functor which assigns to each scheme S the set
of stable curves π : C → S, and an isomorphism P(π∗(ω⊗3

C/S)) ∼= P5g−6
S (modulo

isomorphism) is represented by a fine moduli scheme Hg. By Corollary 1.7 of [8],
page 83 and the main result of [8], pages 92–96, the scheme Hg is smooth over the
spectrum of Z and the base change (Hg)Spec(k) is irreducible for any algebraically
closed field k. Let X be a smooth, projective curve over k and let f and g be two
non-zero rational functions on X. We may assume that the genus g of X is at
least two by taking a cover of X and proving the reciprocity law for the pull-back
of f and g instead. Let x be a k-valued point of Hg such that the underlying
curve is X and let y be another k-valued point such that the underlying curve
is totally degenerate. Since (Hg)Spec(k) is an irreducible, smooth quasi-projective
variety, repeated application of Bertini’s theorem shows that there is a smooth,
irreducible curve S mapping to (Hg)Spec(k) whose image contains both x and y. Let
π : C → S be the pull-back of the universal family. There are rational functions
f̃ and g̃ on C whose restrictions to the fiber over x, which is X, are f and g,
respectively. Since the base change of C to the spectrum of the local field of S at y
is a Mumford curve, Weil’s reciprocity law holds for f̃ and g̃, hence holds for f and
g, too. One may say that this proof is close in spirit to the classical proof of the
reciprocity law over the complex numbers using triangulation, since it decomposes
the curve to small pieces in a suitable topology.
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5. The differential reciprocity law

Definition 5.1. We will continue to use the notation of the previous chapter. For
every k-algebra A let Ω·A denote the graded differential algebra of k-linear Kähler
differential forms of A and for every k-algebra homomorphism h : A → B let
Ωk(h) : Ω·A → Ω·B induced by h by functoriality. Every ω ∈ ΩkA((t)) can be written
uniquely in the form:

ω =
m∑
i=1

βi
dt

ti
+ ω0

wherem is a natural number, βi ∈ Ωk−1
A and ω0 ∈ ΩkA[[t]]+A((t))ΩkA. Let Resk(ω) ∈

Ωk−1
A denote the element β1. We get a map Resk : ΩkA((t)) → Ωk−1

A which is called
the residue.

Proposition 5.2. The following holds:

(i) we have Resk+i(αω) = αResk(ω) for every α ∈ ΩiA and ω ∈ ΩkA((t)),

(ii) we have Ωk−1(h) ◦ Resk = Resk ◦ Ωk(h′) where h : A → B is a k-algebra
homomorphism and h′ : A((t)) → B((t)) is the corresponding k-algebra ho-
momorphism induced by functoriality,

(iii) we have Resk(ω) = 0 for every ω ∈ ΩkA[[t]] and for every ω ∈ Ωk
A[ 1t ]

,

(iv) the map Resk does not depend on the choice of the uniformizer t.

Proof. Our method of proving the first two claims is the same. Using the notation
of Definition 5.1 we have:

αω =
m∑
i=1

αβi
dt

ti
+ αω0.

Because αβi ∈ Ωk+i−1
A and αω0 ∈ Ωk+i

A[[t]] +A((t))Ωk+i
A we have Resk+i(αω) = αβ1

by definition so claim (i) is true. On the other hand:

Ωk(h′)(ω) =
m∑
i=1

Ωk−1(h)(βi)
dt

ti
+ Ωk(h′)(ω0)

where Ωk−1(h)(βi) ∈ Ωk−1
B and Ωk(h′)(ω0) ∈ ΩkB[[t]] + B((t))ΩkB . Therefore we

have Resk(Ωk(h′)(ω)) = Ωk−1(h)(β1) as claim (ii) says. The first half of claim
(iii) is immediate from the definition of the residue. In order to prove the second
half we only need to show the identity Res1(dt−n) = 0 for all n ≥ 1 by the Ω·A-
linearity of the residue spelled out in claim (i). But the latter is obvious. Claim
(iv) means the following: let x ∈ A[[t]] be a uniformizer, which means that x
is of the form tu, where u ∈ A[[t]]∗. In this case there is a unique A-algebra
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automorphism φ : A[[t]] → A[[t]] such that φ(t) = x as we already saw when we
prepared to formulate Proposition 4.8. The automorphism φ extends uniquely to an
automorphism φ : A((t)) → A((t)) by localizing at the maximal ideal. Claim (iv)
means that the equation Resk ◦ Ωk(φ) = Resk holds. Because the homomorphism
Hk(φ) maps ΩkA[[t]] and A((t))ΩkA into itself we only need to show that

Res1

(
dx

x

)
= 1 and Res1

(
dx

xn

)
= 0 for all n ≥ 2

by Ω·A-linearity. These identities follow at once from the same type of identity in
Proposition 5′ in [20] on pages 20–21 by the principle of prolongation of algebraic
identities quoted in the proof of the proposition just mentioned above. (Or one
may use the functorial argument explained in the remark following the proof of
Proposition 5′ in [20] instead.)

Notation 5.3. For every k-algebra B let dlog : B∗ → Ω1
B denote the logarithmic

differential given by the rule dlog(u) = u−1du for every u ∈ B∗. Let moreover
dlog2 denote the Z-bilinear pairing:

dlog2 : B∗ ⊗B∗ → Ω2
B

given by the rule:

dlog2(a, b) = dlog(a)dlog(b) (∀a ∈ B∗,∀b ∈ B∗).

Recall that for every object A of C the symbol 〈·, ·〉 denotes the Contou-Carrère
symbol.

Proposition 5.4. The following diagram commutes:

A((t))∗ ⊗A((t))∗
dlog2 //

〈·,·〉

��

Ω2
A((t))

Res2

��
A∗

dlog // Ω1
A

for every object A of C.

Proof. By bilinearity and antisymmetry of the Contou-Carrère symbol and the
map dlog2 it will be sufficient to prove for every pair of integers n, m and elements
a, b ∈ A the following identities:

(i) Res2(dlog2(1− atn, 1− btm)) = 0, if n,m > 0,

(ii) Res2(dlog2(1− at−n, 1− bt−m)) = 0, if a, b ∈ m and n,m > 0,
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(iii) Res2(dlog2(atn, 1− btm)) = 0, if a ∈ A∗ and m > 0,

(iv) Res2(dlog2(atn, 1− btm)) = 0, if a ∈ A∗, b ∈ m and m < 0,

(v) Res2(dlog2(atn, btm)) = m(da/a)− n(db/b), if a, b ∈ A∗,
(vi) Res2(dlog2(1 − atn, 1 − bt−m)) = dlog((1 − am/(n,m)bn/(n,m))(n,m)), if b ∈ m

and n,m > 0,

(vii) Res2(dlog2(1− ftMn+1, 1− bt−n)) = 0, if f ∈ A[[t]], b ∈ m and n > 0,

where m is the maximal proper ideal of A and M is a positive integer such that
mM = 0. Note that

dlog(1− atn) = −(datn + natn−1dt)(1 + atn + a2t2n + · · · )

lies in Ω1
A[[t]], if a ∈ A and n > 0, and lies in Ω1

A[ 1t ]
, if a ∈ m and n < 0. Hence the

first two identities follow from claim (iii) of Proposition 5.2. For every a ∈ A∗ and
b ∈ A we have:

dlog2(atn, 1− btm) = −(1 + btm + b2t2m + · · · )
(
da

a
+ n

dt

t

)
(dbtm +mbtm−1dt)

=
(
ndb− mb

a
da

)
(tm−1dt+ bt2m−1dt+ b2t3m−1dt+ · · · ) + ω0

where ω0 ∈ A((t))Ω2
A when either m > 0 or when b ∈ m and m < 0. The first

summand in the second line lies in Ω2
A[[t]], if m > 0, and lies in Ω2

A[ 1t ]
, if b ∈ m

and m < 0. Hence its residue is zero so identities (iii) and (iv) are true. For every
a, b ∈ A∗ we have:

dlog2(atn, btm) =
(
da

a
+ n

dt

t

)(
db

b
+m

dt

t

)
=
(
m
da

a
− ndb

b

)
dt

t
+ ω0

where ω0 ∈ Ω2
A so identity (v) is clear. By definition:

dlog((1− am/(n,m)bn/(n,m))(n,m))

= −
mam/(n,m)bn/(n,m) da

a + nam/(n,m)bn/(n,m) db
b

1− am/(n,m)bn/(n,m)

for every a ∈ A, b ∈ m and n,m > 0. We also have:

(1− atn)−1(1− b−m)−1 =
∑
k∈Z

∑
i,j∈N

in−jm=k

aibjtk

for such a and b. Because in − jm = m − n for any i, j ∈ N if and only if
i+ 1 = lm/(n,m) and j + 1 = ln(n,m) for some l ∈ N we have:

(1− atn)−1(1− b−m)−1 = (ab)−1
( ∞∑
l=1

alm/(n,m)bln/(n,m)
)
tm−n + (r + s)tm−n
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for some r ∈ 1
tA[ 1

t ] and s ∈ tA[[t]]. Hence we have:

dlog2(1− atn, 1− bt−m) =
(datn + natn−1dt)(dbt−m −mbt−m−1dt)

(1− atn)(1− bt−m)

=
−(mbda+ nadb)tn−m−1dt

(1− atn)(1− bt−m)
+ ω0

= − am/(n,m)−1bn/(n,m)−1(mbda+ nadb)t−1dt

1− am/(n,m)bn/(n,m)

+ ω0 + ω1

where ω0 ∈ A((t))Ω2
A and ω1 ∈ Ω2

A[ 1t ]
+Ω2

A[[t]]. Identity (vi) is now obvious. Finally
consider the last identity. Note that

dlog(1− bt−n) = −(dbt−n − nbt−n−1dt)(1 + bt−n + b2t−2n + · · ·+ bM−1t(1−M)n)

because bM = 0 by assumption, and

dlog(1−ftMn+1) = −(dftMn+1 +(Mn+1)ftMndt)(1+ftMn+1 +f2t2Mn+2 + · · · )

hence

dlog2(1− ftMn+1, 1− bt−n) = (dft+ (Mn+ 1)fdt)(db− nbt−1dt)g

= (tdfdb− nbdfdt+ (Mn+ 1)fdtdb)g

where g ∈ A[[t]]. The claim is now clear.

Definition 5.5. Let L be a field complete with respect to a discrete valuation and
letR, m denote its discrete valuation ring and the maximal ideal ofR, respectively.
Assume that the residue field of L is k and the quotient map R → k has a
section which is a ring homomorphism. The latter equips L and R with a k-algebra
structure. Let Ω̂·L denote the graded differential algebra which is the quotient of
the complex Ω·L by the homogeneous ideal generated by

⋂
n≥1 mnΩ·R and let Ω̂kR

denote the image of ΩkR in Ω̂dL under the quotient map. For every natural number
n let Rn denote the truncated ring R/mn+1 and for every pair m ≤ n of natural
numbers let πn : R → Rn and πn,m : Rn → Rm denote the canonical projections.
The system of modules {ΩkRn

}n∈N forms a compatible system with respect to
the morphisms Ωk(πn,m) (m ≤ n) hence it has a projective limit lim←− n→∞(ΩkRn

).
The maps Ωk(πn) : ΩkR → ΩkRn

factor through Ω̂kR and their limit induces an
identification: Ω̂kR ∼= lim←− n→∞(ΩkRn

) which we will use without further notice. Let
dlog : L∗ → Ω̂1

L and dlog2 : K2(L) → Ω̂2
L also denote the composition of dlog,

dlog2 and the quotient map Ω1
L → Ω̂1

L, Ω2
L → Ω̂1

L, respectively.
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Definition 5.6. Let π be a uniformizer of L and let Ω̂kL(log) denote the subgroup
π−1Ω̂kR of Ω̂kL. Clearly the group Ω̂kL(log) is independent of the choice of the uni-
formizer π. Let O denote the discrete valuation ring k[[x]] and let F denote its
quotient field. Let M̂ denote the field attached to F which was introduced in Defi-
nition 3.1 and let R denote the valuation ring of M̂ . The uniformizer x of F is also
a uniformizer in M̂ . There is a natural isomorphismRn ∼= On((z)) for every n ∈ N,
where z denotes also the reduction of z in Rn for every n by slightly extending
the notation introduced in Definition 3.6, therefore for every ω ∈ ΩkRn

the residue
Resk(ω) ∈ Ωk−1

On
is well-defined. For every ω ∈ Ω̂kcM (log) let Resk(ω) ∈ Ω̂k−1

F be
given by the rule:

Resk(ω) =
1
x

lim←−
n→∞

(Resk(Ω̂k(πn)(xω)))

where the map Ω̂k(πn) : Ω̂kR → ΩkRn
is induced by Ωk(πn). The system:

{Resk(Ω̂k(πn)(xω))}n∈N

satisfies the compatibility described above by claim (ii) of Proposition 5.2 hence
Resk(ω) is well-defined. Because of the On-linearity of the residue it is obvious
that Resk(ω) is independent of the choice of x as the notation indicates.

Remark 5.7. Let φ : M̂ → M̂ be a valuation-preserving F -algebra automor-
phism. Then there is a unique map Ω̂k(φ) : Ω̂kcM → Ω̂kcM such that Ω̂k(φ) ◦ qk =

qk ◦Ωk(φ) where qk : ΩkcM → Ω̂kcM is the quotient map. The automorphism Ω̂k(φ) of

Ω̂kcM preserves the subgroup Ω̂kcM (log) and it commutes with the residue map Resk

by claim (iv) of Proposition 5.2.

Theorem 5.8. We have dlog2(k) ∈ Ω̂2cM for every k ∈ K2(M̂) and the diagram:

K2(M̂)

{·,·}D

��

dlog2 // Ω̂2cM (log)

Res2

��
F ∗

dlog // Ω̂1
F

is commutative where {·, ·}D denotes Kato’s residue homomorphism.

Proof. By the linearity of the dlog2 map we only have to verify the first claim of
the theorem as well as the identity expressed by the commutative diagram above
for the elements of any set of generators of K2(M̂). Hence we may assume that
k = u⊗ v where either u, v ∈ R∗ or u = x and v is arbitrary. In the first case we
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have dlog2(k) ∈ Ω̂kR obviously and the identity holds by Proposition 5.4. In the
second case we may write v in the form v = xnw for some n ∈ Z and w ∈ R∗.
Because {x, x}D = 1 and dlog2(x ⊗ x) = 0 by definition we may assume that
v = w. The first claim is now obvious. Moreover in this case we may write v in
the form v = zdeg(v)t for some t ∈ R∗ such that the reduction tk of t modulo xkR
lies in Ok[[z]]∗ ⊂ Rk for every k ∈ N. Therefore dlog(tk) ∈ Ω1

Ok[[z]] and we have:

Res2

(
Ω2(πk)

(
dx
dv

v

))
= Res2

(
deg(v)Ω2(πk)

(
dx
dz

z

))
+ Res2

(
Ω2(πk)(dx)

dtn
tn

)
= deg(v)Ω1(πk)(dx)

for every k ∈ N. The claim now follows from Lemma 3.7.

6. The image and kernel of the rigid analytic regulator in positive
characteristic

Notation 6.1. For every scheme X let K2,X denote the sheaf on X associated
to the presheaf U 7→ K2(H0(U,OX)) for the Zariski topology where K2(A) de-
notes Milnor’s K-group of any ring A. Let WnΩ∗X denote the de Rham–Witt
pro-complex of any ringed topos X of Fp-algebras. Moreover we let F denote
the Frobenius morphism of the de Rham–Witt pro-complex. Recall that the log-
arithmic differential dlog1 : O∗X → WnΩ1

X is defined as the composition of the
Teichmüller lift O∗X →WnΩ0

X and the differential d : WnΩ0
X →WnΩ1

X , where X
is the same as above. The bilinear map of sheaves:

dlog2 : O∗X ×O∗X →WnΩ2
X

given by the formula:

dlog2(f ⊗ g) = dlog1(f)dlog1(g)

also satisfies the Steinberg relation dlog2(f ⊗ (1 − f)) = 0 for all f ∈ O∗X with
1 − f ∈ O∗X , hence it induces a map dlog2 : K2,X → WnΩ2

X . Moreover let νn(k)
denote the kernel of 1−F on the degree k term WnΩkX of the de Rham–Witt pro-
complex on the topos X. Let WnΩiX,log denote the abelian sub-sheaf generated by
the image of dlogi, where i = 1, 2. It is easy to see using the defining relations of
the de Rham–Witt pro-complex that WnΩiX,log lies in νn(i).

We will need the following result which is a special case of the celebrated
theorem in [6] due to Bloch, Gabber and Kato.

Theorem 6.2. Let F be a field of characteristic p. Then the map

K2(F )/pnK2(F )
dlog2−−−→ H0(Fet,WnΩ2

Fet,log)
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is an isomorphism, where H0(Fet,WnΩ2
Fet,log

) denotes the group of global sections
of the sheaf WnΩ2

Fet,log
on the étale site of the spectrum of F .

Proof. The map is well-defined as WnΩ∗ is annihilated by pn. The map is an
isomorphism by Corollary 2.8 of [6], pages 117–118.

Notation 6.3. Let k be a perfect field as in the previous two chapters. For every
k-scheme X let Ω·X denote the complex of graded differential OX -algebras of k-
linear Kähler differential forms on X. Note that the complex Ω·X is canonically
isomorphic to the complex W1Ω·X . In particular there is a map dlog2 : K2,X → Ω·X .
For every k ∈ N and for every Cartier divisor D on X let ΩkX(D) denote the sheaf
ΩkX⊗OX

OX(D). Let i : X−D → X denote the open immersion of the complement
of the support of D into X. Then the pull-back i∗ΩkX(D) is canonically isomorphic
to ΩkX−D. Let

i∗ : H0(X,ΩkX(D))→ H0(X −D,ΩkX−D)

denote the composition of the pull-back and this identification, too.

Lemma 6.4. Assume that X is a smooth surface over k and D is a normal cross-
ings divisor. Then the image of the map:

dlog2 : H0(X −D,K2,X)→ H0(X −D,Ω2
X−D)

lies in the image of the map i∗ : H0(X,ΩkX(D))→ H0(X −D,ΩkX−D) introduced
above.

Proof. The claim is clearly local on X with respect to the Zariski topology hence
we may assume that X is the spectrum of an integral regular k-algebra A. We may
also assume that D has at most one singular point and its branches are the zeros
of some elements of A. The localization sequence for K-theory induces a complex:

H0(X,K2,X)→ H0(X −D,K2,X) T−→
⊕

C∈V(Γ(D))

H0(X − S(D),O∗C)→
⊕

e∈S(D)

Ze

which is exact at the term H0(X −D,K2,S), where the second map is the direct
sum of tame symbols along the irreducible components and the third map is the
sum of the maps which assign to every element of H0(C − S(D),O∗C) its divisor
considered as a zero cycle supported on S(D) for every C ∈ V(Γ(D)). Let k be
an arbitrary element of H0(X −D,K2,X). Assume first that D is irreducible and
let t ∈ A be an element whose zero scheme is D. Pick an element u ∈ A whose
pull-back to D is equal to the tame symbol T (k). By shrinking X further we may
assume that u ∈ A∗. Then T (k) = T (t ⊗ u) hence dlog2(k − t ⊗ u) is the pull-
back of a differential form on X by the localization sequence. On the other hand
dlog2(t ⊗ u) clearly lies in the image of the map i∗. Assume now that D has one
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ordinary double point s and let t1, t2 ∈ A be two elements whose zeros are the two
branches of D. According to the complex above there is an n ∈ Z such that the
valuations of the restrictions of T (k) onto the zero scheme of t1 and t2 at s are n
and −n, respectively. Hence by shrinking X further we may assume that there are
u1, u2 ∈ A∗ such that the restrictions of T (k) onto the zero scheme of t1 and t2
are the restrictions of u1t

n
2 and u2t

−n
1 , respectively. Then we have:

T (k) = T (t1 ⊗ t2)n · T (t1 ⊗ u1) · T (t2 ⊗ u2)

and we may argue as above to conclude the proof.

The lemma above has the following important corollary: because X − D is
Zariski-dense in X the map i∗ : H0(X,ΩkX(D))→ H0(X −D,ΩkX−D) is injective.
Hence the map dlog2 has a unique lift:

dlog2 : H0(X −D,K2,X)→ H0(X,Ω2
X(D))

which will be denoted by the same symbol by the usual abuse of notation.

Proposition 6.5. Assume that X is a smooth irreducible projective surface over
k and the field k is finite of characteristic p. Then the group H0(X,K2,X) is the
extension of a torsion group by its maximal p-divisible subgroup.

Proof. Using the notation of [15] on pages 307 and 309 let H2(X,Z(2)) denote the
projective limit lim←−(H0(X, νn(2))). The logarithmic differentials

dlog2 : K2(X)→ H0(X, νn(2))

satisfy the obvious compatibility hence they induce a map

dlog2 : K2(X)→ H2(X,Z(2)).

Let F(U) denote the function field of X. Let P denote the set of prime divisors of
X and for every P ∈ P let fP denote the function field of the irreducible curve P .
The localization sequence for K-theory furnishes an exact sequence:

0→ H0(X,K2,X)→ K2(F(X)) T−→
⊕
P∈P

f∗P

where the second map is the direct sum of the tame symbols along the irre-
ducible components. Every element k ∈ H0(X,K2,X) of the kernel of dlog2 lies
in M(F(X)) =

⋂
n∈N p

nK2(F(X)) by the Bloch–Gabber–Kato theorem. Since
K2(F(X)) has no p-torsion by Theorem 1.10 of [23] on page 10, the group
M(F(X)) is the maximal p-divisible subgroup of K2(F(X)). If the element l is in
M(F(X))∩H0(X,K2,X) and k ∈M(F(X)) is its unique pn-th root then T (k) is pn-
torsion by the localization sequence. But the group f∗P has no non-zero p-torsion so
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k lies in the image of H0(X,K2,X). Therefore we get that M(F(X))∩H0(X,K2,X),
the kernel of the map dlog2 in H0(X,K2,X), is p-divisible. Hence it will be sufficient
to show that the group H2(X,Z(2)) is torsion. This is proved in [15] (the claim
itself can be found on page 335) although the proof is somewhat dispersed over
the article. It is an immediate consequence of Proposition 5.4 of the paper cited
above on pages 330–331, the validity of Weil’s conjectures for crystalline cohomol-
ogy (Remark 5.5 of [15] on page 331), and the exact sequence on page 335 of the
same paper.

Notation 6.6. Let A ∈ C be a local Artinian k-algebra and let π : P1
A → Spec(A)

be the projective line over A. Let S be a finite set of sections s : Spec(A) → P1
A

and for every s ∈ S let s0 denote the k-valued point s0 : Spec(k) → P1
k we

get from s via base change. Assume that s0 is different from t0 for every pair
s, t ∈ S of different sections. For every s ∈ S choose an A-algebra isomorphism
φs between the completion Ôs0,P1

A
of the stalk Os0,P1

A
of the structure sheaf of P1

A

at s0 and A[[t]]. The latter induces an isomorphism between the localization Ls
of Ôs0,P1

A
by the semigroup of those elements whose image under the canonical

map Ôs0,P1
A
→ Ôs0,P1

k
is non-zero, where Ôs0,P1

k
is the completion of the stalk

Os0,P1
k
, and A((t)), which will be denoted by φs as well. The image of s is a locally

principal closed subscheme of codimension one in P1
A for every element s of S. Let

S also denote the Cartier divisor which is the sum of these divisors by slight abuse
of notation. For every s ∈ S let Resks denote the composition of the map:

Hk
s : H0(P1

A − S,ΩkP1
A−S

)→ ΩkLs

Ωk(φs)−−−−→ ΩkA((t)),

where the first arrow is induced by the tautological map P1
A − S → Spec(Ls), and

the residue Resk : ΩkA((t)) → Ωk−1
A . By claim (iv) of Proposition 5.2 the map:

Resks : H0(P1
A − S,ΩkP1

A−S
)→ Ωk−1

A

is independent of the choice of φs. Recall that there is a canonical inclusion
H0(P1

A,Ω
2
P1

A
(S)) ⊂ H0(P1

A − S,ΩkP1
A−S

).

Proposition 6.7. The sequence:

0→ Ω2
A

π∗−→ H0(P1
A,Ω

2
P1

A
(S))

⊕s∈SRes2s−−−−−−→
⊕
s∈S

Ω1
A

P
s∈S(·)

−−−−−→ Ω1
A → 0

is exact where π∗ is the pull-back with respect to the map π : P1
A → Spec(A).

Proof. By base change we may assume that k is algebraically closed, which implies
that it is infinite. Let R ⊇ S be any finite set. Note that for every ω ∈ 1

tΩ
2
A[[t]] we
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have ω ∈ Ω2
A[[t]] if and only if Res2(ω) = 0. Therefore

H0(P1
A,Ω

2
P1

A
(S)) = {ω ∈ H0(P1

A,Ω
2
P1

A
(R)) | Res2

s(ω) = 0 (∀s ∈ R− S)}.

Hence it is sufficient to prove the proposition above for R instead of S. In partic-
ular we may assume that the point at infinity ∞ ∈ P1

A lies in S after a suitable
automorphism of the A-scheme P1

A. Let x be the coordinate function of the affine
line A1

A = P1
A −∞. For every ∞ 6= s ∈ S let the same letter denote the unique

element of A such that the image of the section s is the zero scheme of x−s ∈ A[x].
Every ω ∈ H0(P1

A − S,Ω2
P1

A−S
) can be written uniquely in the form:

ω = ω0 +
∑

s∈S−∞

n(s)∑
k=1

ωs,k
(x− s)k

dx+
n(∞)∑
j=0

ω∞,jx
jdx

where ω0 ∈ Ω2
A, n(s), n(∞) ∈ N and ωs,k, ω∞,j ∈ Ω1

A. For every ∞ 6= s ∈ S we
may assume that x− s maps to t with respect to φs. Then it is obvious that

H2
s (ηxndx), H2

s (η(x− r)−ndx) ∈ Ω2
A[[t]]

for every η ∈ Ω1
A, n ∈ N and s 6= r ∈ S −∞. Therefore we have ωs,k = 0 for every

k > 1 when ω ∈ H0(P1
A,Ω

2
P1

A
(S)). We may assume also that x−1 maps to t with

respect to φ∞. In this case it is obvious that

H2
∞

(
ωs,1

dx

x− s

)
= −ωs,1

dt

t
+ ηs

for some ηs ∈ Ω2
A[[t]] for every s ∈ S −∞ but

H2
∞(ω∞,jxjdx) = −ω∞,jt−j−2dt

for every j = 0, 1, . . . , n(∞) so we must have:

ω = ω0 +
∑

s∈S−∞

ωs,1
x− s

dx.

By the above Res2
s(ω) = ωs,1 for every s ∈ S−∞ and Res2

∞(ω) = −
∑
s∈S−∞ ωs,1

so the claim is now obvious.

Notation 6.8. Now we are going to consider the same situation that we looked
at in the introduction. Let B be a smooth irreducible projective curve over k and
let π : X → B be a regular irreducible projective surface fibred over B such that
the fiber X∞ of X over the closed point ∞ of B is totally degenerate. Then the
base change X of X to the completion F of the function field of B with respect to
the valuation corresponding to ∞ is a Mumford curve over F . Let U ⊂ X be an



Kernel and Image of the Rigid Regulator 283

open subvariety such that its complement is a normal crossings divisor D which is
the pre-image of a finite set of closed points of B containing ∞. The base change
of X to the valuation ring of F is a semi-stable model of X whose fiber is X∞
hence the rigid analytic regulator {·} introduced in Definition 5.12 of [17] supplies
a diagram:

H0(U, ,K2,U)→ H2
M(X,Z(2))

{·}−−→ H(Γ(X∞), F ∗),

where the first homomorphism is induced by functoriality. This composition will
be denoted by the symbol {·} as well.

Definition 6.9. For every ω ∈ H0(X,Ω2
X(D)) we are going to define a function

Res(ω) : E(Γ(X∞))→ Ω̂1
F as follows. Fix an edge e ∈ E(Γ(X∞)) and let s ∈ S(X∞)

denote the image of e under the normalization map. Let C be the irreducible com-
ponent of X∞ which corresponds to the initial vertex of e under the identification
of Notation 1.2. Let Ôs,X denote the completion of the stalk Os,X of the structure
sheaf of X at s and let t ∈ Os,X be an element whose zero scheme is the germ of the
curve C. Because t generates a prime ideal in Ôs,X the latter gives rise to a discrete
valuation on the quotient field Me of Ôs,X. Let M̂e denote the completion of Me

with respect to this valuation and let ie : Spec(M̂e) → X denote the tautological
map. Note that the closure of the image of the stalk O∞,B of the structure sheaf
of B at∞ in Os,X with respect to the map induced by π : X→ B in Ôs,X is canon-
ically isomorphic to the valuation ring O of F . Hence M̂e is canonically equipped
with the structure of an F -algebra. Let φ : M̂e → M̂ be the unique valuation-
preserving F -algebra homomorphism such that φ(t) = x where we continue to use
the notation of the previous chapter. Note that q2(Ω(φ)(i∗e(ω))) ∈ Ω̂kcM (log) where

qk : ΩkcM → Ω̂kcM is the quotient map. Hence the value:

Res(ω)(e) = Res2(q2(Ω(φ)(i∗e(ω)))) ∈ Ω̂1
F

is well-defined and it is independent of the choice of the element t by Remark 5.7.

For every oriented graph G and commutative group R let F(G,R) denote the
group of functions f : E(G)→ R.

Theorem 6.10. We have Res(dlog2(k)) ∈ H(Γ(X0), Ω̂1
F ) for every k ∈

H0(U,K2,U) and the diagram:

H0(U,K2,U)
{·} //

dlog2

��

H(Γ(X∞), F ∗)

dlog

��
H0(X,Ω2

X(D)) Res // F(Γ(X∞), Ω̂1
F )

is commutative.
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Proof. We are going to show that dlog({k}(e)) = Res(dlog2(k))(e) for every edge
e ∈ E(Γ(X∞)). Then the theorem will follow immediately because {k} is a har-
monic cochain. The identity above follows immediately from Theorem 5.8 and the
following alternate description of the rigid analytic regulator. The pull-back of k
with respect to ie is an element i∗e(k) ∈ K2(M̂e). Let φ∗ : K2(M̂e) → K2(M̂) be
the homomorphism induced by φ. Then we have {k}(e) = {φ∗(i∗e(k))}D.

Proposition 6.11. Let k be an element of H0(U,K2,U) such that Res(dlog2(k))
= 0. Then dlog2(k) = 0, too.

Proof. Let x ∈ F be a uniformizer. The closed subscheme of B defined by the n-th
power of the defining sheaf of ideals of the closed subscheme ∞ is canonically iso-
morphic to Spec(On) where On = O/xnO as in chapter 5. Let in : Spec(On)→ B

be the closed immersion corresponding to this isomorphism. For every irreducible
component C ∈ V(Γ(X∞)) let Cn denote the closed subscheme of X defined
by the n-th power of the defining sheaf of ideals of the closed subscheme C.
Let cn : Cn → X be the closed immersion. Then there is a unique morphism
pn : Cn → Spec(On) such that cn ◦ π = pn ◦ in. As an On-scheme Cn is iso-
morphic to the projective line over Spec(On). Let S denote the Cartier divisor
on Cn which is the pull-back of the divisor on X that is the sum of those irre-
ducible components of X∞ which are intersecting C with respect to the map cn
and are different from C. Then S is the sum of images of sections of the map
pn. Let C0 be the divisor of the element x ∈ On ⊂ H0(Cn,OCn). Multiplication
by x induces a map O(S + C0) → O(S). By our assumptions the residues of
xc∗n(dlog2(k)) ∈ H0(Cn,Ω2

Cn
(S)) introduced in Definition 6.6 are all zero. Hence

xc∗n(dlog2(k)) ∈ Ω2
On

by Proposition 6.7. But Ω2
On

= 0 hence we get that the for-
mal completion of dlog2(k) along the closed scheme X∞ must be zero. The claim
is now clear.

Assume now that k is a field of characteristic p.

Corollary 6.12. The map:

{·} : H0(U,K2,U)/pnH0(U,K2,U)→ H0(Γ(X∞), F ∗/(F ∗)p
n

)

induced by the regulator {·} is injective for every natural number n.

Proof. We are going to prove the claim by induction on n. Let F(U) denote the
function field of U. Assume first that n = 1 and let k ∈ H0(U,K2,U) be an element
such that {k} ∈ H(Γ(X∞), (F ∗)p). By Theorem 6.10 we have:

Res(dlog2(k)) = dlog ◦ {k} = 0,
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hence dlog2(k) = 0 by Proposition 6.11. Therefore k = pl for some l ∈ K2(F(U))
by the Bloch–Gabber–Kato theorem. Let P denote the set of prime divisors of U

and for every P ∈ P let fP denote the function field of the irreducible curve P .
The localization sequence for K-theory furnishes an exact sequence:

0→ H0(U,K2,U)→ K2(F(U))→
⊕
P∈P

f∗P

where the second map is the direct sum of tame symbols along the irreducible
components. The image of l with respect to the second map is p-torsion. But the
group f∗P has no non-zero p-torsion so l is the image of an element of H0(U,K2,U).
Assume now that the claim is proved for n − 1 and let k ∈ H0(U,K2,U) be an
element such that {k} ∈ H(Γ(X∞), (F ∗)p

n

). By the induction hypothesis there is
an element l ∈ H0(U,K2,U) such that k = pn−1l. Because the group F ∗ has no
p-torsion we have {l} ∈ H(Γ(X∞), (F ∗)p) therefore l ∈ pH0(U,K2,U) by the above.
Hence k ∈ pnH0(U,K2,U) as we wished to prove.

Assume now that k is a finite field of characteristic p.

Theorem 6.13. The following holds:

(i) the quotient group H0(U,K2,U)/H0(X,K2,X) is a finitely generated abelian
group whose rank is at most as large as the rank of the group H(Γ(D),Z).

(ii) the kernel Ker({·}) of the regulator {·} : H0(U,K2,U)→ H(Γ(X∞), F ∗) has a
subgroup of finite index which lies in H0(X,K2,X),

(iii) the kernel Ker({·}) above is p-divisible. It is torsion if Parshin’s conjecture
holds, and it is finite if the Bass conjecture holds,

(iv) the image Im({·}) of the regulator {·} : H0(U,K2,U) → H(Γ(X∞), F ∗) is
p-saturated,

(v) the rank of Im({·}) is at most as large as the rank of the group H(Γ(D),Z),

(vi) the image Im({·}) is discrete if D = X∞.

Proof. Let us recall that S(D), V(Γ(D)) denote the set of singular points and
the set of irreducible components of the curve D, respectively. The localization
sequence for K-theory induces a complex:

H0(X,K2,X)→ H0(U,K2,U) T−→
⊕

C∈V(Γ(D))

H0(C − S(D),O∗C)→
⊕

e∈S(D)

Ze

which is exact at the term H0(U,K2,U), where the second map is the direct sum of
tame symbols along the irreducible components and the third map is the sum of the
maps which for every C ∈ V(Γ(D)) assign to every element of H0(C − S(D),O∗C)
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its divisor considered as a zero cycle supported on S(D). The kernel of the latter
is a finitely generated abelian group of rank H(Γ(D),Z) hence claim (i) is clear.
By Corollary 6.9 the kernel Ker({·}) of the map:

{·} : H0(U,K2,U)→ H(Γ(X∞), F ∗)

is p-divisible. Therefore its image with respect to the map T above is finite be-
cause the maximal p-divisible subgroup of a finitely generated abelian group is
finite. Hence the kernel of T in Ker({·}) is a subgroup of finite index which lies in
H0(X,K2,X). Therefore claim (ii) holds.

According to Parshin’s conjecture the group H0(X,K2,X) should be torsion.
Then the same is true for Ker({·})∩H0(X,K2,X) and therefore Ker({·}) is torsion
as well by claim (ii). The Bass conjecture states that H0(X,K2,X) should be a
finitely generated abelian group. Hence the same is true for its subgroup Ker({·})∩
H0(X,K2,X). Note that this group is also p-divisible: every element of Ker({·}) ∩
H0(X,K2,X) has a p-th root in Ker({·}) ⊆ H0(U,K2,U). On the other hand if
px ∈ H0(X,K2,X) for some x ∈ H0(U,K2,U) then x ∈ H0(X,K2,X) using the
localization sequence the same way we did in the proof of Corollary 6.12 already.
Hence Ker({·})∩H0(X,K2,X) is a finite group whose order is not divisible by p so
Ker({·}) is finite as well by claim (ii). Claim (iii) is now proved.

Because the maximal p-divisible subgroup of H(Γ(X∞), F ∗) is finite the image
of H0(X,K2,X) with respect to the rigid analytic regulator is torsion by Proposition
6.5. But the torsion of H(Γ(X∞), F ∗) is finite so Im({·}) is finitely generated and
claim (v) is true by claim (i). On the other hand note that a finitely generated
subgroup Λ ⊂ H(Γ(X∞), F ∗) is p-saturated if and only if

pnΛ = Λ ∩ pnH(Γ(X∞), F ∗)

for every n ∈ N. The latter holds for Im({·}) by Corollary 6.12 so claim (iv) is
true. Let Reg : H0(U,K2,U) → H(Γ(X∞),Z) denote the tame regulator which is
defined as follows. For every k ∈ H0(U,K2,U) and for every edge e ∈ E(Γ(X∞))
we define Reg(k)(e) as the valuation of the tame symbol of k along the irreducible
component o(e) of X∞ with respect to the valuation corresponding to the closed
point which is the image of e with respect to the normalization map. By Theorem
5.6 of [17] the diagram:

H0(U,K2,U)
{·} //

Reg

��

H(Γ(X∞), F ∗)

v

��
H(Γ(X∞),Z) H(Γ(X∞),Z)
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commutes where v is the map induced by the normalized valuation on F . If
D = X∞ then the kernel of Reg contains H0(X,K2,X) as a subgroup of finite
index according to the complex we wrote down above. Since H0(X,K2,X) is p-
divisible its image with respect to the regulator {·} is finite. Hence the kernel of
the map v in Im({·}) is finite, too. Therefore Im({·}) must be discrete as claim
(vi) says.
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[9] J. Fresnel and M. van der Put, Géométrie analytique rigide et applications, Birkhäuser,
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