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The Rigid Analytical Regulator and K2 of
Drinfeld Modular Curves

by

Ambrus Pál

Abstract

We evaluate a rigid analytical analogue of the Beilinson–Bloch–Deligne regulator on cer-
tain explicit elements in the K2 of Drinfeld modular curves, constructed from analogues of
modular units, and relate its value to special values of L-series using the Rankin–Selberg
method.
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1. Introduction

Motivation 1.1. In the paper [10] which is now classical B. Gross formulated a
generalization of his original p-adic analogue of Stark’s conjecture in a form which
makes good sense both over number fields and function fields. This conjecture
was proved by D. Hayes for function fields in [12]. In this paper Hayes gave an
explicit rigid analytical construction of Stark units and expressed them in terms
of special values of L-functions using this explicit construction. This paper is part
of the project to formulate and prove results which generalize Hayes’s theorem the
same way as Beilinson’s conjectures generalize Stark’s. In a previous paper ([22])
we constructed a rigid analytical regulator analogous to the classical Beilinson–
Bloch–Deligne regulator refining the tame regulator in case of Mumford curves. In
our current work we express the value of this regulator on certain explicit elements
of the K2 group of Drinfeld modular curves, which are analogues of A. Beilinson’s
construction using modular units, in terms of special values of L-functions. Using

Communicated by A. Tamagawa. Received May 21, 2007.

A. Pál: Department of Mathematics, 180 Queen’s Gate, Imperial College, London SW7 2AZ,
United Kingdom;
e-mail: a.pal@imperial.ac.uk

c© 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



290 A. Pál

the function field analogue of the Shimura–Taniyama–Weil conjecture we derive
a formula for every elliptic curve defined over the rational function field of tran-
scendence degree one over a finite field having split multiplicative reduction at
the point at infinity analogous to the classical theorem of Beilinson on the K2 of
elliptic curves defined over the rational number field.

In the rest of this introductory chapter we first describe the rigid analytic
regulator for Tate elliptic curves, then define the ∞-adic L-function of elliptic
curves of the type mentioned above and formulate our main theorem.

Notation 1.2. Let F∞ be a field complete with respect to a discrete valuation
and let O∞ be its valuation ring. There is a canonical way to extend the absolute
value of F∞ induced by its valuation to its algebraic closure. Let C∞ denote the
completion of the algebraic closure of F∞ with respect to this absolute value and
let | · | denote the absolute value induced by the completion process. Let |C∞|
denote the set of values of the latter. Let P1 denote the projective line over C∞.
We call a set D ⊂ P1 an open disc if it is the image of the set {z ∈ C∞ | |z| < 1}
under a Möbius transformation. Recall that a subset U of P1 is a connected rational
subdomain if it is non-empty and it is the complement of the union of finitely many
pairwise disjoint open discs. Let ∂U denote the set of these complementary open
discs. Let O(U) and O∗(U) denote the algebra of holomorphic functions on U and
the group of invertible elements of this algebra, respectively. For each f ∈ O(U)
let ‖f‖ denote supz∈U |f(z)|. This is a finite number, and makes O(U) a Banach
algebra over C∞. The latter is the closure of the subalgebra of restrictions of
rational functions with respect to the supremum norm ‖·‖ by definition. For every
real number 0 < ε < 1 we define the sets Oε(U) = {f ∈ O(U) | ‖1− f‖ ≤ ε} and
Uε = {z ∈ C∞ | |1−z| ≤ ε}. Recall that a function f : C∗∞ → C∞ is holomorphic if
its restriction f |U is holomorphic for every connected rational subdomain U ⊂ C∗∞.
For every x ∈ P1 and every pair of rational non-zero functions f, g ∈ C∞((t)) on
the projective line let {f, g}x denote the tame symbol of the pair (f, g) at x. Let
M(C∗∞) denote the field of meromorphic functions of C∗∞. For every field L let
K2(L) denote the Milnor K2 of the field L. Finally for every x ∈ C∞ and positive
number ρ ∈ |C∞| let D(x, ρ) denote the open disc {z ∈ C∞ | |z − x| < ρ}. The
following result is an immediate consequence of the results of [22].

Theorem 1.3. For every 0 < r ∈ |C∞| there is a unique homomorphism:

{·}r : K2(M(C∗∞))→ C∗∞

with the following properties:
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(i) for every pair of rational functions f, g ∈M(C∗∞)∗ we have:

{f ⊗ g}r =
∏

x∈D(0,r)

{f, g}x,

(ii) for every real number 0 < ε < 1 and functions f ∈ M(C∗∞) ∩ Oε(U) and
g ∈ M(C∗∞) ∩ O∗(U) we have {f, g}r ∈ Uε where U is a connected rational
subdomain in C∗∞ such that D(0, r) ∈ ∂U .

Notation 1.4. For every field K, for any variety V defined over K and for any
extension L of K let VL denote the base change of V to L. For every field K and
regular irreducible projective curve C defined over K let F(C) denote the function
field of the curve C over K. For every closed point x of C there is a tame symbol
at x which is a homomorphism from K2(F(C)) into the multiplicative group of
the residue field at x. We define the group K2(C) as the intersection of the kernels
of all tame symbols. (In this paper we will sometimes use the somewhat incorrect
notation K2(X) to denote H2

M(X,Z(2)) for various types of spaces X as the latter
is rather awkward.) Let E be an elliptic curve defined over F∞ which has a rigid-
analytic Tate uniformization over F∞. The latter is equivalent to the property
that the special fiber of the Néron model of E over the spectrum of O∞ is split
multiplicative. Let θ : C∗∞ → E(C∞) be the Tate uniformization (over C∞). It
induces a homomorphism

θ∗ : F(EF∞)→M(C∗∞)

by pull-back which in turn induces a homomorphism K2(F(EF∞))→ K2(M(C∗∞))
which will be denoted by the same symbol by slight abuse of notation.

Proposition 1.5. For every k ∈ K2(EF∞) and 0 < r ∈ |C∞| we have {θ∗(k)}r
∈ F ∗∞ and the latter is independent of the choice of r.

Let {·} : K2(EF∞)→ F ∗∞ denote the homomorphism defined by the common
value of the regulators {θ∗(·)}r.

Definition 1.6. For every field K let K denote its separable closure. Let F denote
the function field of X, where the latter is a geometrically connected smooth
projective curve defined over the finite field Fq of characteristic p. Fix a closed
point ∞ of the curve X and let E be an elliptic curve defined over F which has
split multiplicative reduction at ∞. For every closed point x of X let deg(x) and
Lx(E, t) denote the degree of x and the local factor of the Hasse–Weil L-function
of E at x, respectively. The latter is an element of Z[[t]]. Let ψ∗E(xn) ∈ Z denote
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the unique number such that

Lx(E, t) =
∞∑
n=0

ψ∗E(xn)tn deg(x).

Let K be a number field and let ∆ denote its ring of integers. Let χ : Gal(F |F )
→ K∗ be a K-valued one-dimensional Galois representation of F which has finite
image. Note that χ is automatically almost everywhere unramified and its image
lies in ∆∗. Let Γ denote the quotient of Gal(F |F ) by the kernel of χ. Assume that χ
splits at∞ and let m be an effective divisor whose support does not contain∞ and
the conductor of χ and E divides m and m∞, respectively. (Note that such an m

exists because we assumed that E has split multiplicative reduction at ∞.) For
every Galois group G of a finite abelian extension of F and for every closed point x
of X where G is unramified let φGx denote the image of a geometric Frobenius at x
in G. The element φGx ∈ G is well-defined as G is abelian. Assume now that G is
the Galois group of a finite abelian extension of F which only ramifies at ∞. We
define the L-function LGm(E,χ, t) as the Euler product:

LGm(E,χ, t) =
∏

x/∈supp(m∞)

( ∞∑
n=0

ψ∗E(xn)χ(φΓ
x)(φGx )ntn deg(x)

)
∈ ∆[G][[t]],

where supp(d) denotes the support of any effective divisor d on X. The infinite
product LGm(E,χ, t) is well-defined, as the constant term of every factor appearing
in the product is 1, and there are only finitely many factors with a term of degree
less than m for any positive integer m. Actually even more is true:

Proposition 1.7. The power series LGm(E,χ, t) is an element of ∆[G][t].

Definition 1.8. An important consequence of the proposition above is that the
polynomial LGm(E,χ, t) can be evaluated at 1, i.e. the element LGm(E,χ, 1) ∈ ∆[G]
is well-defined. Let G∞ denote the Galois group of the maximal abelian extension
of F unramified at every closed point x of X different from ∞. It is a profinite
group. Also note that if H denotes the Galois group of the maximal abelian ex-
tension of F unramified at every closed point x of X and totally split at ∞, then
the kernel of the natural projection G∞ → H is canonically isomorphic to the
profinite completion of F ∗∞/F∗q , the multiplicative group of the completion F∞
of F with respect to the valuation at ∞ divided out by the multiplicative group
of the constant field of X. (Note that this notation is compatible with what we
have introduced in 1.2 and 1.4.) For any ring R and abelian profinite group M let
R[[M ]] denote the R-dual of the ring of continuous functions f : M → R, where
f is continuous with respect to the discrete topology on R and the Krull topology



The K2 of Drinfeld Modular Curves 293

on M . The ring R[[M ]] is also the projective limit of R-coefficient group rings of
the finite quotients of M . The elements LGm(E,χ, 1) satisfy the obvious compat-
ibility, so their limit defines an element Lm(E,χ) in ∆[[G∞]], which we will call
the ∞-adic L-function of E twisted with χ. For every M as above let IM /∆[[M ]]
denote the kernel of the natural augmentation map ∆[[M ]]→ ∆. We will usually
drop the subscript M to ease notation. It is known that the group IM/I2

M is natu-
rally isomorphic to M ⊗∆. Finally let θ′ ∈M ⊗∆ denote the class of any θ ∈ IM
in IM/I

2
M .

Proposition 1.9. We have Lm(E,χ) ∈ I and Lm(E,χ)′ ∈ F ∗∞/F∗q ⊗∆.

Let L denote the Galois extension of F whose Galois group is Γ. By our
assumptions the field L has an imbedding into F∞ which extends the canonical
inclusion F ⊂ F∞. Fix once and for all such an imbedding. By slight abuse of
notation let {·} : K2(EL) ⊗ K → F ∗∞ ⊗ K denote also the composition of the
homomorphism K2(EL)⊗K → K2(EF∞)⊗K induced by the imbedding above and
the unique K-linear extension of the homomorphism {·}. Assume that F = Fq(T )
is the rational function field of transcendence degree one over Fq, where T is an
indeterminate, and ∞ is the point at infinity on X = P1

Fq
. Also assume that χ is

non-trivial. Now we are able to state our main result:

Theorem 1.10. There is an element κE(χ) ∈ K2(EL)⊗K such that

{κE(χ)} = L(E, q−1)Lm(E,χ)′ in F ∗∞ ⊗K.

It is easy to deduce that the valuation of Lm(E,χ)′ with respect to ∞⊗ idK
is equal to −Lm(E,χ, 1) from the interpolation property. (For the explanation
of this notation see the next chapter.) Deligne’s purity theorem implies that the
latter is non-zero under mild, purely local conditions on χ and m. If the special
value L(E, q−1) also happens to be non-zero we get that the element κE(χ) ∈
K2(EL)⊗K is not torsion hence our main result is non-vacuous.

Contents 1.11. In the next chapter we prove the basic properties of the L-
function Lm(E,χ) by simple cohomological means. We introduce our mail tool,
which we call double Eisenstein series, in the third chapter. They are really anal-
ogous to the product of two Eisenstein series in the classical setting, but they
cannot be written as such due to the lack of logarithm in positive characteristic.
Here we also establish their basic properties, among them Proposition 3.5, which
is analogous to analytic continuation. The link between double Eisenstein series
and the rigid analytic regulator of elements in K2 analogous to Beilinson’s con-
struction is provided by the Kronecker limit formula 4.10 of the fourth chapter.
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The fifth chapter is somewhat technical: it identifies function field analogues of
modular units with the rigid analytic functions appearing in the previous chapter
and studies the action of the Hecke algebra on the source and target groups of the
rigid analytic regulator. We execute the principal calculation of the paper in the
sixth chapter. Perhaps the crucial reason why the Rankin–Selberg computation
can be carried out is that the double Eisenstein series does become a product of
two series after the first step of the calculation. In the seventh chapter we use the
function field analogue of the Shimura–Taniyama–Weil conjecture as well as its
explicit description due to Gekeler and Reversat to conclude the proof of our main
result. The aim of the last chapter is to prove a useful lemma on the action of
correspondences on motivic cohomology groups which is used in the fifth chapter.

2. The ∞-adic L-functions of elliptic curves

Definition 2.1. Note that for a finite group G we have ∆[[G]] = ∆[G] naturally.
Let M be an abelian profinite group, let H be a finite quotient of M and let K
denote the kernel of the quotient map M → H. We let IMH denote the ideal of the
quotient map ∆[[M ]]→ ∆[H]. It is obvious that the augmentation ideal I = IM{1}
and IMH ⊆ I for any H.

Lemma 2.2. We have θ′ ∈ K ⊗∆ for any θ ∈ IMH .

Proof. The same as the proof of Lemma 3.9 of [21] whose claim is just slightly
different.

Notation 2.3. Let E be an elliptic curve defined over F which has split multi-
plicative reduction at ∞ as in the introduction whose notation we are going to
use without further notice. Let G be the Galois group of a finite abelian extension
of F which only ramifies at ∞ and let H(G) denote the maximal quotient of G
such that the corresponding abelian extension of F is unramified at every closed
point x of X and totally split at ∞.

Proposition 2.4. The following holds:

(i) the power series LGm(E,χ, t) is an element of ∆[G][t],

(ii) we have LGm(E,χ, 1) ∈ IGH(G).

Proof. Let l be a prime different from p. The Gal(F |F )-module H1(EF ,Ql) is
absolutely irreducible because the curve E is not isotrivial. Let ρ denote the cor-
responding l-adic Galois representation. For every character φ : G → Q∗l let the
same symbol denote the corresponding homomorphism Ql[G][[t]] → Ql[[t]] and
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the corresponding l-adic Galois representation by the usual abuse of notation. For
every l-adic Galois representation ψ which is unramified at almost all closed points
of X we will use the same symbol to denote the constructible l-adic sheaf on X

which is the direct image of ψ with respect to the generic point Spec(F ) → X.
Fix an imbedding of K into Ql. This way the Galois representation χ becomes an
l-adic representation, too. The series LGm(E,χ, t) ∈ Ql[[t]] is characterized by the
property:

φ(LGm(E,χ, t)) = L(X(m∞), ρ⊗ χφ, t)

for every character φ : G→ Q∗l where X(d) denotes the complement of the support
of any effective divisor d in X and L(U,ψ, t) denotes the Grothendieck L-function
of any constructible l-adic sheaf ψ on a variety U over Fq. The l-adic Galois
representation ρ ⊗ χφ is absolutely irreducible, therefore the twisted L-function
L(X(m∞), ρ ⊗ χφ, t) is a polynomial for every character φ : G → Q∗l by the
Grothendieck–Verdier formula. Hence so is LGm(E,χ, t) as claim (i) says. For every
character φ : H(G)→ Q∗l let the same symbol denote the composition of the quo-
tient map G→ H(G) and the character φ as well. In this case the restriction of the
l-adic Galois representation corresponding to φ to the decomposition group at ∞
is trivial. The same holds for χ by assumption. Moreover E has split multiplicative
reduction at ∞ so we have:

φ(LGm(E,χ, t)) = (1− tdeg(∞))L(X(m), ρ⊗ χφ, t)

for every such character. As the twisted L-function L(X(m), ρ⊗χφ, t) is a polyno-
mial by the Grothendieck–Verdier formula, we have φ(LGm(E,χ, 1)) = 0 for every
such character as well. The latter is equivalent to the property that LH(G)

m (E,χ, 1)
is zero as claim (ii) says.

As we explained in Definition 1.8 part (i) of the proposition above implies that
the object Lm(E,χ) is well-defined. For every group M let M̂ denote its profinite
completion and let ∞ : F̂ ∗∞/F∗q ⊗∆→ ∆̂ = Ẑ⊗∆ denote the profinite completion
of the valuation∞ as well. The following proposition takes care of Proposition 1.9
and the remark after Theorem 1.10. For the sake of simple notation let Lm(E,χ, t)
denote L(X(m), ρ⊗ χ, t).

Proposition 2.5. The following holds:

(i) we have Lm(E,χ) ∈ I and Lm(E,χ)′ ∈ F ∗∞/F∗q ⊗∆,

(ii) we have ∞(Lm(E,χ)′) = −Lm(E,χ, 1).

Proof. The first half of claim (i) and the fact that Lm(E,χ)′ ∈ F̂ ∗∞/F∗q ⊗∆ follow
at once from claim (ii) of Proposition 2.4 and Lemma 2.2 by taking the limit.
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On the other hand note that F ∗∞/F∗q ⊗ ∆ is the pre-image of ∆ with respect

to ∞ in F̂ ∗∞/F∗q ⊗ ∆ hence the second half of claim (i) is an immediate conse-
quence of claim (ii). Now we only have to show the latter. The profinite group
G∞ surjects onto the Galois group of the maximal constant field extension of F
which is isomorphic to Ẑ. This induces a surjection ∆[[G∞]]→ ∆[[Ẑ]]. The choice
of a topological generator of Ẑ, or equivalently the choice of a system of gen-
erators of the finite quotients of Ẑ compatible with the projections furnishes an
injection ∆[t] → ∆[[Ẑ]] such that the image of t is the generator. In case of the
natural choice of the global geometric Frobenius as a topological generator, the
image φx of a geometric Frobenius at x in G∞ maps to tdeg(x) for every closed
point x on X under the map above. Hence the image of Lm(E,χ) under this map
is L̃m(E,χ, t) = (1− tdeg(∞))Lm(E,χ, t) as we saw in the proof of Proposition 2.4.
The ideal I /∆[[G∞]] maps into the augmentation ideal J /∆[[Ẑ]] corresponding
to the trivial quotient of Ẑ, and the induced map I/I2 → J/J2 is the tensor prod-
uct of the surjection G∞ → Ẑ introduced above and the identity of ∆. Since the
intersection J ∩∆[t] is the ideal generated by t− 1, the image of Lm(E,χ)′ under
the map I/I2 → J/J2 is just the derivative L̃(E, 1)′ ∈ ∆ ⊂ ∆̂. On the other hand
the restriction of the surjection G∞ → Ẑ to F ∗∞ is deg(∞) times the valuation
map ∞ : F ∗∞ → Z, so:

deg(∞)∞(Lm(E,χ)′) = ((1− tdeg(∞))Lm(E,χ, t))′|t=1 = −deg(∞)Lm(E,χ, 1)

as we claimed.

3. Double Eisenstein series

Notation 3.1. Let |X|, A,O denote the set of closed points ofX, the ring of adeles
of F and its maximal compact subring of A, respectively. As in the introduction
we will fix a closed point ∞ in the set |X|. For every divisor m of X let m also
denote the O-module in the ring A generated by the ideles whose divisor is m,
by abuse of notation. For every idele m ∈ A∗ let the same symbol also denote
the divisor of m if this notation does not cause confusion. For any closed point v
in |X| we will let Fv, fv and Ov denote the corresponding completion of F , its
constant field, and its discrete valuation ring, respectively. For every v ∈ |X| let
v : F ∗v → Z denote the valuation normalized such that v(πv) = deg(v) for every
uniformizer πv ∈ Fv. For any idele, adele, adele-valued matrix or function defined
on the above which decomposes as an infinite product of functions defined on the
individual components the subscript v will denote the v-th component. Let Af , Of
denote the restricted direct product

∏′
x 6=∞ Fx and the direct product

∏
x 6=∞Ox,

respectively. The former is also called the ring of finite adeles of F and the latter is
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its maximal compact subring. For every g ∈ GL2(A) (or g ∈ A, etc.) let gf denote
its finite component in GL2(Af ). We will consider A∗f as well as F ∗v (for every place
v ∈ |X|) as a subgroup of A∗ in the natural way. Similarly we will consider Af
and Fv as a subring of A and GL2(A) and GL2(Fv) as a subgroup of GL2(A).
Let | · | denote the normalized absolute value on the ring A and for any idele or
divisor y let deg(y) denote its degree related to the normalized absolute value by
the formula |y| = q− deg(y). In accordance with our convention | · | will denote the
absolute value with respect to ∞ if its argument is in F∞. For each (u, v) ∈ F 2

∞
let ‖(u, v)‖, ∞(u, v) denote max(|u|, |v|) and min(∞(u),∞(v)), respectively. Let
Z denote the center of the group scheme GL2, let

Γ∞ =
{(

a b

c d

)
∈ GL2(O∞)

∣∣∣∣∞(c) > 0
}

be the Iwahori subgroup of GL2(F∞) and let

K(m) = {g ∈ GL2(O) | g ≡ I mod m},

for every effective divisor m where I is the identity matrix. We will adopt the
convention which assigns 0 or 1 as value to the empty sum or product, respectively.

Definition 3.2. Let F 2
< denote the set {(a, b) ∈ F 2

∞ | |a| < |b|}. Let m be an
effective divisor on X whose support does not contain ∞. Let the same symbol
also denote the ideal m∩Of by abuse of notation. For every g ∈ GL2(A), (α, β) ∈
(Of/m)2, and integer n let

Wm(α, β, g, n) = {0 6= f ∈ F 2 | fgf ∈ (α, β) + mO2
f , −n =∞(fg∞)},

Vm(α, β, g, n) = {f ∈Wm(α, β, g, n) | fg∞ ∈ F 2
<},

Um(α, β, g, n) = Wm(α, β, g, n)− Vm(α, β, g, n).

Also let

Wm(α, β, gf ) =
⋃
n∈Z

Wm(α, β, g, n),

Um(α, β, g) =
⋃
n∈Z

Um(α, β, g, n) and Vm(α, β, g) =
⋃
n∈Z

Vm(α, β, g, n).

Obviously the first set is well-defined. For every finite quotient G of F ∗\A∗/O∗f
let ·G : A∗ → G denote the quotient map. Let EGm(α, β, γ, δ, g, x, y) denote the
Z[G][[x, y]](x−1, y−1)-valued function
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EGm(α, β, γ, δ, g, x, y)

=
det(g−1

f )G

(xy)deg(det(g))
·

∑
(a,b)∈Um(α,β,g)
(c,d)∈Vm(γ,δ,g)

det
(
a b

c d

)G
∞
x2∞((a,b)g∞)y∞(2(c,d)g∞),

for every g ∈ GL2(A), variables x, y, and pairs (α, β) and (γ, δ) as above. In order
to see that this function is indeed well-defined first note that(

a b

c d

)
=
(
a1 b1
c1 d1

)
· det(g∞)−1 = (a1d1 − b1c1) · det(g∞)−1

is non-zero where (a1, b1) = (a, b)g∞ and (c1, d1) = (c, d)g∞ because |a1| ≥ |b1|
and |c1| < |d1| by the definition of the sets Um(α, β, g) and Vm(γ, δ, g) therefore

|a1d1 − b1c1| = |a1d1| 6= 0.

Hence the terms of the infinite sum above are defined. The sum itself is well-
defined and Z[G][[x, y]](x−1, y−1)-valued as the cardinality of the sets Um(α, β, g)
and Vm(γ, δ, g) is finite for all n and zero for n sufficiently small.

Proposition 3.3. The following holds:

(i) the function EGm(α, β, γ, δ, g, x, y) is left-invariant with respect to GL2(F ) and
right-invariant with respect to K(m∞)Γ∞Z(F∞),

(ii) the C[G]-valued infinite sum EGm(α, β, γ, δ, g, q−s, q−t) converges absolutely, if
Re(s) > 1 and Re(t) > 1, for every g.

Proof. We are going to prove claim (i) first. Since for every ρ ∈ GL2(F ) and n ∈ Z
we have:

Um(α, β, ρg, n) = Um(α, β, g, n)ρ−1 and Vm(γ, δ, ρg, n) = Vm(γ, δ, g, n)ρ−1,

we get that

EGm(α, β, γ, δ, ρg, x, y) =
det(ρ−1

f )G det(g−1
f )G

(xy)deg(det(ρ))+deg(det(g))

·
∑

(a,b)∈Um(α,β,g)
(c,d)∈Vm(γ,δ,g)

det
(
a b

c d

)G
∞

det(ρ−1
∞ )Gx2∞((a,b)ρ−1ρg∞)y2∞((c,d)ρ−1ρg∞)

= EGm(α, β, γ, δ, g, x, y),

because det(ρ−1) ∈ F ∗ and deg(det(ρ)) = 0 as the degree of every principal divisor
is zero. On the other hand for every λ ∈ GL2(F∞) the set {f ∈ F 2

∞ | fλ ∈ F 2
<} is
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obviously left-invariant by Γ∞Z(F∞) hence

Um(α, β, gρ) = Um(α, β, g) and Vm(γ, δ, gρ) = Vm(γ, δ, g)

for every ρ ∈ K(m∞)Γ∞Z(F∞) and g ∈ GL2(A). Therefore

EGm(α, β, γ, δ, gρ, x, y) =
det(ρ−1

f )G det(g−1
f )G

(xy)deg(det(z))+deg(det(g))

·
∑

(a,b)∈Um(α,β,g)
(c,d)∈Vm(γ,δ,g)

det
(
a b

c d

)G
∞
x2∞((a,b)g∞)+∞(det(z))y2∞((c,d)g∞)+∞(det(z))

= EGm(α, β, γ, δ, g, x, y),

where ρ = κz with κ ∈ K(m∞)Γ∞ and z ∈ Z(F∞) because κ∞ is an isometry
with respect to the norm ‖ · ‖, deg(det(κ)) = 0 and det(κf )G = 1 by definition.
Our proof of claim (ii) is the same as the argument that may be found in [20]. The
coefficient of each element of G in the series EGm(α, β, γ, δ, g, q−s, q−t) is majorized
by the product E(g, s)E(g, t) where:

E(g, s) = |det(g)|s
∑

f∈F 2−{0}
fg∈O2

f

‖ (fg)∞ ‖−2s,

so it will be sufficient to prove that E(g, s) converges absolutely for each g ∈
GL2(A) if Re(s) > 1. For every g ∈ GL2(A) let E(g) denote the sheaf on X whose
group of sections for every open subset U ⊆ X is

E(g)(U) = {f ∈ F 2 | fg ∈ O2
v, ∀v ∈ |U |},

where we denote the set of closed points of U by |U |. The sheaf E(g) is a coherent
locally free sheaf of rank two. If Fn denotes the sheaf F ⊗ OX(∞)n for every
coherent sheaf F on X and integer n, then for every g ∈ GL2(A) and s ∈ C the
series above can be rewritten as

E(g, s) =
∑
n∈Z
|H0(X, E(g)n)−H0(X, E(g)n−1)|q−s deg(E(g)n).

By the Riemann–Roch theorem for curves:

dimH0(X,F)− dimH0(X,KX ⊗F∨) = 2− 2g(X) + deg(F)

for any coherent locally free sheaf F of rank two on X, where KX , F∨ and g(X)
is the canonical bundle on X, the dual of F , and the genus of X, respectively.
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Because dimH0(X,F−n) = 0 for n sufficiently large depending on F , we have
that

|H0(X, E(g)n)| = q2−2g(X)+deg(E(g))+2n deg(∞) and |H0(X, E(g)−n)| = 1,

if n is a sufficiently large positive number. Hence

E(g, s) = p(q−s) + q2−2g(X)+(1−s) deg(E(g))(1− q− deg(∞))
∞∑
n=0

q2n(1−s) deg(∞),

where p is a polynomial. The claim now follows from the convergence of the geo-
metric series.

Definition 3.4. For every abelian group M and for every finite set S let M [S]
and M [S]0 denote the group of functions f : S → M and its subgroup consisting
of functions f ∈M [S] with the property∑

α∈S
f(α) = 0,

respectively. Let Vm denote the set (Of/m)2−{0, 0} and for every C ∈ R[Vm] and
D ∈ R[Vm] let EGm(C,D, g, x, y) denote the function:

EGm(C,D, g, x, y) =
∑

(α,β)∈Vm

(γ,δ)∈Vm

C(α, β)D(γ, δ)EGm(α, β, γ, δ, g, x, y),

where R ⊇ Z is an arbitrary commutative ring.

Proposition 3.5. For every C,D ∈ R[Vm]0 the function EGm(C,D, g, x, y) takes
values in R[G][x, y, x−1, y−1].

Proof. We may assume by bilinearity that C = (α, β)−(γ, δ) and D = (ε, ι)−(κ, λ)
for some pairs (α, β), (γ, δ), (ε, ι), (κ, λ) ∈ Vm. Now pick two elements (r, s) ∈
Um(α−γ, β− δ, g) and (u, v) ∈ Vm(ε−κ, ι−λ, g). Then for every sufficiently large
natural number n we have:

Um(α, β, g, n) = {(a+ r, b+ s) | (a, b) ∈ Um(γ, δ, g, n)},
Vm(ε, ι, g, n) = {(a+ u, b+ v) | (a, b) ∈ Vm(κ, λ, g, n)}.

Therefore

EGm(C,D, g, x, y) = P (x, y)

+
det(g−1

f )G

(xy)deg(det(g))

∑
(a,b)∈Um(γ,δ,gf )
(c,d)∈Vm(κ,λ,g)

[
a b

c d

]
x2∞((a,b)g∞)y2∞((c,d)g∞),
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where P (x, y) ∈ Z[G][x, y, x−1, y−1] and[
a b

c d

]
= det

(
a+ r b+ s

c+ u d+ v

)G
∞
− det

(
a+ r b+ s

c d

)G
∞

− det
(

a b

c+ u d+ v

)G
∞

+ det
(
a b

c d

)G
∞
.

In order to finish the proof it is enough to show that the determinants in
the expression above can be paired in such a way that in every pair the de-
terminants have different signs and they represent the same element in G if
max(‖(a, b)g∞‖, ‖(c, d)g∞‖) is sufficiently large. This follows from the lemma be-
low or its pair which we get by switching the rows of the matrices depending on
whether ‖(a, b)g∞‖ or ‖(c, d)g∞‖ is the larger one among the two, respectively.

Lemma 3.6. For each k ∈ GL2(F∞) let ‖k‖ denote the maximum of the absolute
values of the entries of k. Then for every g ∈ GL2(F∞) and (r, s), (a, b), (c, d) ∈ F 2

∞
such that (a, b)g /∈ F 2

< and (c, d)g ∈ F 2
< we have:∣∣∣∣1− det

((
a+ r b+ s

c d

)
·
(
a b

c d

)−1)∣∣∣∣ ≤ ‖(r, s)‖ ‖g−1‖ |det(g)|
‖(a, b)g‖

.

Proof. Using Cramer’s rule we get that(
a+ r b+ s

c d

)
·
(
a b

c d

)−1

=
(1 + rd−sc

ad−bc
−rb+sa
ad−bc

0 1

)
,

so ∣∣∣∣1− det
((

a+ r b+ s

c d

)
·
(
a b

c d

)−1)∣∣∣∣ =
∣∣∣∣rd− scad− bc

∣∣∣∣ ≤ ‖(r, s)‖ · ‖(c, d)‖
|ad− bc|

.

On the other hand let (a1, b1) = (a, b)g and (c1, d1) = (c, d)g. Then |a1| ≥ |b1| and
|c1| < |d1| similarly as we noted at the end of Definition 3.2 therefore

|ad− bc| =
∣∣∣∣det

(
a1 b1
c1 d1

)
· det(g−1)

∣∣∣∣ = |a1d1 − b1c1| · |det(g)|−1

= |a1d1| · |det(g)|−1 = ‖(a1, b1)‖ · ‖(c1, d1)‖ · |det(g)|−1

≥ ‖(a, b)g‖ · ‖(c, d)‖ · ‖g−1‖−1 · |det(g)|−1.

Definition 3.7. As a consequence of Proposition 3.5 the functionEGm(C,D, g, x, y)
can be evaluated at x = y = 1. Let

EGm(C,D, g) = EGm(C,D, g, 1, 1) ∈ R[G]
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for every g ∈ GL2(A). In accordance with the previously introduced notation for
every finite abelian group G we let IG /Z[G] denote the augmentation ideal of Z[G],
that is, the kernel of the augmentation map Z[G] → Z. There is an isomorphism
IG/I

2
G = G induced by the map given by the rule g 7→ 1− g ∈ IG for every g ∈ G.

Proposition 3.8. Assume that R = Z. Then we have EGm(C,D, g) ∈ IG for every
g ∈ GL2(A).

Proof. It will be sufficient to prove that E
{1}
m (C,D, g) = 0 where {1} is the

trivial group. We may assume again by bilinearity that C = (α, β) − (γ, δ) and
D = (ε, ι) − (κ, λ) for some pairs (α, β), (γ, δ), (ε, ι), (κ, λ) ∈ Vm. Pick again two
elements (r, s) ∈ Um(α− γ, β− δ, g) and (u, v) ∈ Vm(ε−κ, ι−λ, g). Then for every
sufficiently large natural number n we have:⋃

m≤n

Um(α, β, g,m) =
⋃
m≤n

{(a+ r, b+ s) | (a, b) ∈ Um(γ, δ, g,m)}

and ⋃
m≤n

Vm(ε, ι, g,m) =
⋃
m≤n

{(a+ u, b+ v) | (a, b) ∈ Vm(κ, λ, g,m)}.

Hence we have:∣∣∣ ⋃
m≤n

Um(α, β, g,m)
∣∣∣ =

∣∣∣ ⋃
m≤n

Um(γ, δ, g,m)
∣∣∣, |Um(α, β, g, n)| = |Um(γ, δ, g, n)|,∣∣∣ ⋃

m≤n

Vm(ε, ι, g,m)
∣∣∣ =

∣∣∣ ⋃
m≤n

Vm(κ, λ, g,m)
∣∣∣, |Vm(ε, ι, g, n)| = |Vm(κ, λ, g, n)|

for every sufficiently large natural number n. Therefore

E
{1}
m (C,D, g) =

∑
m,n∈Z

(
(|Um(α, β, g,m)| − |Um(γ, δ, g,m)|)

· (|Vm(ε, ι, g, n)| − |Vm(κ, λ, g, n)|)
)

= lim
n→∞

((∣∣∣ ⋃
m≤n

Um(α, β, g,m)
∣∣∣− ∣∣∣ ⋃

m≤n

Um(γ, δ, g,m)
∣∣∣)

·
(∣∣∣ ⋃
k≤n

Vm(ε, ι, g, k)
∣∣∣−∣∣∣ ⋃

k≤n

Vm(κ, λ, g, k)
∣∣∣))

= 0.

Definition 3.9. In accordance with the notation we introduced in Definition 1.8
let θ′ ∈ G denote the class of any θ ∈ IG. For every C,D ∈ Z[Vm]0 and N ∈ Z let
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Em(C,D, g, n) denote the F ∗∞-valued function:

Em(C,D, g,N) =
∏

m,n≤n
(α,β)∈Vm

(γ,δ)∈Vm

∏
(a,b)∈Um(α,β,g,m)
(c,d)∈Vm(γ,δ,g,n)

det
(
a b

c d

)C(α,β)D(γ,δ)

.

Finally let Em(C,D, g) denote the limit

Em(C,D, g) = lim
N→∞

Em(C,D, g,N)

if the latter exists. The following claim is an immediate corollary to Lemma 3.6 and
Proposition 3.8 using the same argument we used in the proof of Proposition 3.5.

Proposition 3.10. The limit above exists and

EGm(C,D, g)′ = Em(C,D, g)G.

4. The Kronecker limit formula

Notation 4.1. We are going to use the notation we introduced in 1.2. For every
connected rational subdomain U of P1 the elements of ∂U are called the boundary
components of U , by slight abuse of language. Let R(U) ⊂ O(U) denote the
subalgebra of restrictions of rational functions holomorphic on U and R∗(U)
denote the group of invertible elements of this algebra. The group R∗(U) consists
of rational functions which do not have poles or zeros lying in U .

Theorem 4.2. There is a unique map {·, ·}D : O∗(U)×O∗(U)→ C∗∞ for every
D ∈ ∂U , called the rigid analytic regulator, with the following properties:

(i) For any two f, g ∈ R∗(U) their regulator is:

{f, g}D =
∏
x∈D
{f, g}x,

(ii) the regulator {·, ·}D is bilinear in both variables,

(iii) the regulator {·, ·}D is alternating: {f, g}D · {g, f}D = 1,

(iv) if f, 1− f ∈ O(U)∗, then {f, 1− f}D is 1,

(v) for each f ∈ Oε(U) and g ∈ O∗(U) we have {f, g}D ∈ Uε.

Proof. This is Theorem 2.2 of [22].

Definition 4.3. If U is still a connected rational subdomain of P1, and f, g are
two meromorphic functions on U , then for all x ∈ U the functions f and g have a
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power series expansion around x, so in particular their tame symbol {f, g}x at x
is defined. Let M(U) denote the field of meromorphic functions on U . The tame
symbol extends to a homomorphism {·, ·}x : K2(M(U)) → C∗∞. We define the
group K2(U) as the kernel of the direct sum of the tame symbols:⊕

x∈U
{·, ·}x : K2(M(U))→

⊕
x∈U

C∗∞.

Let k =
∑
i fi ⊗ gi ∈ K2(U), where fi, gi ∈M(U), and let D ∈ ∂U . Let moreover

Y be a connected rational subdomain of U such that fi, gi ∈ O∗(Y ) for all i and
∂U ⊆ ∂Y . Define the rigid analytical regulator {k}D by the formula:

{k}D =
∏
i

{fi|Y , gi|Y }D.

Theorem 1.3 is based on the previous result and the following theorem:

Theorem 4.4. (i) For each k ∈ K2(U) the rigid analytical regulator {k}D is
well-defined, and it is a homomorphism {·}D : K2(U)→ C∗∞,

(ii) for any two functions f, g ∈ O∗(U) we have {f ⊗ g}D = {f, g}D,

(iii) for every k ∈ K2(U) the product of all regulators on the boundary components
of U is equal to 1: ∏

D∈∂U

{k}D = 1,

(iv) for every connected subdomain Y ⊆ U , boundary component D ∈ ∂Y ∩ ∂U
and k ∈ K2(M(U)) we have:

{k|Y }D = {k}D.

Proof. This is Theorem 3.2 of [22].

Definition 4.5. For every ρ ∈ GL2(F∞) and z ∈ P1 let ρ(z) denote the image of z
under the Möbius transformation corresponding to ρ. Let moreover D(ρ) denote
the open disc

D(ρ) = {z ∈ P1(C∞) | 1 < |ρ−1(z)|}.

Let D denote the set of open discs of the form D(ρ) where ρ ∈ GL2(F∞). For
each D ∈ D let D(F∞) denote D ∩ P1(F∞). Let P denote those subsets S of D
such that the sets D(F∞), D ∈ S form a pairwise disjoint partition of P1(F∞).
For each S ∈ P let Ω(S) denote the unique connected rational subdomain defined
over F∞ with the property ∂Ω(S) = S. Let Ω denote the rigid analytic upper half
plane, or Drinfeld’s upper half plane over F∞. The set of points of Ω is C∞ −F∞,
denoted also by Ω by abuse of notation. Recall that a function f : Ω → C∞ is
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holomorphic if the restriction of f onto Ω(S) is holomorphic for every S ∈ P. Let
O(Ω) and M(Ω) denote the C∞-algebra of holomorphic functions and the field
of meromorphic functions on Ω, respectively. The latter is of course the quotient
field of the former. We define K2(Ω) as the intersection of the kernels of all the
tame symbols {·, ·}x inside K2(M(Ω)) where x runs through the set Ω. By part
(iv) of Theorem 4.4 for each k ∈ K2(Ω) the value {k}(ρ) = {k|Ω(S)}D(ρ), where
ρ ∈ GL2(F∞) and D(ρ) ∈ S ∈ P, is independent of the choice of S. We define the
regulator {k} : GL2(F∞)→ C∗∞ of k as the function given by this rule.

Lemma 4.6. Let ρ = ( x y0 1 ) where x ∈ F ∗∞ and y ∈ F∞. Then for every 0 6=
(a, b) ∈ F 2

∞ and 0 6= (c, d) ∈ F 2
∞ the following holds:

(i) if (a, b)ρ ∈ F 2
< and (c, d)ρ ∈ F 2

< then

{(az + b)⊗ (cz + d)}D(ρ) = 1,

(ii) if (a, b)ρ /∈ F 2
< and (c, d)ρ /∈ F 2

< then a 6= 0, b 6= 0 and

{(az + b)⊗ (cz + d)}D(ρ) = b/a,

(iii) if (a, b)ρ /∈ F 2
< and (c, d)ρ ∈ F 2

< then a 6= 0 and

{(az + b)⊗ (cz + d)}D(ρ) =
1
a

det
(
a b

c d

)
,

(iv) if (a, b)ρ ∈ F 2
< and (c, d)ρ /∈ F 2

< then b 6= 0 and

{(az + b)⊗ (cz + d)}D(ρ) = cdet
(
a b

c d

)−1

.

Proof. Let D(ρ)c denote the complement of D(ρ) in P1. Obviously

D(ρ)c = {z ∈ C∞ | |z − y| ≤ |x|}.

Hence (a, b)ρ ∈ F 2
< if and only if the polynomial az + b has no zeros in D(ρ)c and

(a, b)ρ /∈ F 2
< if and only if a 6= 0 and the polynomial az + b does have a zero in

D(ρ)c. By Weil’s reciprocity law:

{(az + b)⊗ (cz + d)}−1
D(ρ) =

∏
t∈D(ρ)−1

{az + b, cz + d}t.

Since the tame symbol of az + b and cz + d at t ∈ C∞ is 1 if neither az + b nor
cz + d has a zero at t claim (i) is clear. In the second case az + b and cz + d each
have a single pole at ∞ but no zero in D(ρ) therefore

{(az + b)⊗ (cz + d)}D(ρ) = {az + b, cz + d}∞ = b/a.
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Claim (iv) follows from claim (iii) by the antisymmetry of the regulator. In the
latter case az+ b has a single zero in D(ρ)c and cz+ d has no zeros in D(ρ)c hence

{(az + b)⊗ (cz + d)}D(ρ) = {az + b, cz + d}−1
−b/a =

1
a

det
(
a b

c d

)
.

Definition 4.7. We are going to need a mild extension of the regulator we
introduced in Definition 4.5. Let K2(GL2(Af ) × Ω) denote the set of functions
k : GL2(Af )→ K2(Ω). We define the regulator of an element k ∈ K2(GL2(Af )×Ω)
as the function {k} : GL2(A) → C∗∞ given by the rule {k}(g) = {k(gf )}(g∞) for
every g ∈ GL2(A). Since the set K2(GL2(Af ) × Ω) consists of functions taking
values in the group K2(Ω) it is equipped with a group structure whose operation
will be denoted by addition. Let O∗(GL2(Af ) × Ω) denote the set of functions
u : GL2(Af )×Ω→ C∗∞ which are holomorphic in the second variable. Then there
is a bilinear map:

⊗ : O∗(GL2(Af )× Ω)×O∗(GL2(Af )× Ω)→ K2(GL2(Af )× Ω)

given by the rule (u ⊗ v)(g) = u|g×{·} ⊗ v|g×{·} for every g ∈ GL2(Af ). For each
(α, β) ∈ (Of/m)2, andN a positive integer let εm(α, β,N)(g, z) denote the function:

εm(α, β,N)(g, z) =
∏
n≤N

( ∏
(a,b)∈Wm(α,β,g,n)

(az + b) ·
∏

(c,d)∈Wm(0,0,g,n)

(cz + d)−1
)
.

on the set GL2(Af )×Ω. The latter is clearly holomorphic in the second variable.

Lemma 4.8. The limit

εm(α, β)(g, z) = lim
N→∞

εm(α, β,N)(g, z)

converges uniformly in z on every admissible open subdomain of Ω for every fixed g
and defines a function holomorphic in the second variable.

Proof. See Lemma 4.5 of [20] on pages 145–146.

Definition 4.9. For every C ∈ Z[Vm]0 let εm(C, g, z) denote the function:∏
(α,β)∈Vm

εm(α, β)(g, z)C(α,β)

on the set GL2(Af )×Ω. For every C,D ∈ Z[Vm]0 let κm(C,D) denote the element:

εm(C, g, z)⊗ εm(D, g, z)

of the set K2(GL2(Af )× Ω).
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Kronecker Limit Formula 4.10. For all g ∈ GL2(A) we have:

{κm(C,D)}(g)G = (EGm(C,D, g)− EGm(D,C, g))′.

Proof. Assume first that g∞ = ( x y0 1 ) for some x ∈ F ∗∞ and y ∈ F∞. By Proposition
3.10 it will be sufficient to prove that{ ∏

(α,β)∈Vm

εm(α, β,N)(g, z)C(α,β) ⊗
∏

(γ,δ)∈Vm

εm(γ, δ,N)(g, z)D(γ,δ)
}
D(g∞)

is equal to
Em(C,D, g,N) · Em(D,C, g,N)−1

for every sufficiently large N . By bilinearity and Lemma 4.6 the regulator in the
left hand side of the equation that we wish to prove is equal to

∏
m,n≤N

(α,β)∈Vm

(γ,δ)∈Vm

( ∏
(a1,b1)∈Um(α,β,g,m)
(c1,d1)∈Vm(γ,δ,g,n)

a−1
1 det

(
a1 b1
c1 d1

)

·
∏

(a2,b2)∈Vm(α,β,g,m)
(c2,d2)∈Um(γ,δ,g,n)

c2 det
(
a2 b2
c2 d2

)−1

·
∏

(a3,b3)∈Um(α,β,g,m)
(c3,d3)∈Um(γ,δ,g,n)

a−1
3 c3

)C(α,β)D(γ,δ)

.

Therefore what we need to show is:∏
m,n≤N

(α,β)∈Vm

(γ,δ)∈Vm

( ∏
(a,b)∈Um(α,β,g,m)

a−|Wm(γ,δ,g,n)|

·
∏

(c,d)∈Um(γ,δ,g,n)

c|Wm(α,β,g,m)|
)C(α,β)D(γ,δ)

= 1.

The latter follows from the fact that for every C ∈ Z[Vm]0 and for every sufficiently
large N the equation: ∑

n≤N
(α,β)∈Vm

C(α, β)|Wm(α, β, g, n)| = 0

holds. On the other hand the latter has already been shown in the course of the
proof of Proposition 3.8 (at least in the special case when C = (α, β) − (γ, δ)
for some (α, β), (γ, δ) ∈ Vm but the general case follows at once from this one by
linearity). Let us consider now the general case. First note that both sides of the
equation in the theorem above are right-invariant with respect to Z(F∞)Γ∞ hence
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if the claim is true for g then it is true for gz as well for every z ∈ Z(F∞)Γ∞. Let
Π ∈ GL2(F∞) be the matrix whose diagonal entries are zero, and its lower left
and upper right entries are π and 1, respectively, where π is a uniformizer of F∞.
Then for every ρ ∈ GL2(F∞) the open discs D(ρ) and D(ρΠ) are complementary
in P1 hence claim (iii) of Theorem 4.4 (Weil’s reciprocity law) implies that

{κm(C,D)}(g)G · {κm(C,D)}(gΠ)G = 1

for every g ∈ GL2(A). A matrix ρ ∈ GL2(F∞) can be written as a product
ρ =

( x y
0 1

)
z where x ∈ F ∗∞, y ∈ F∞ and z ∈ Z(F∞)Γ∞ if and only if ∞ ∈ D(ρ).

Since either D(ρ) or D(ρΠ) contains the point∞ it will be sufficient to prove that
the identity above holds for EGm(C,D, g)′/EGm(D,C, g)′ as well. But

Um(α, β, gΠ) = Vm(α, β, g) and Vm(α, β, gΠ) = Um(α, β, g),

therefore EGm(C,D, g) = (−1)GEGm(D,C, gΠ) for any g ∈ GL2(A), so the latter is
obvious.

5. Modular units and Hecke operators

Notation 5.1. Let A = Of ∩F : it is a Dedekind domain. The ideals of A and the
effective divisors onX with support away from∞ are in a bijective correspondence.
These two sets will be identified in all that follows. For any non-zero ideal m/A let
Y (m) denote the coarse moduli for parameterizing Drinfeld modules of rank two
over A of general characteristic with full level m-structure. It is an affine algebraic
curve defined over F . For every Drinfeld module φ : A → C{τ} of rank two
equipped with a full level m-structure ι : (A/m)2 → C, where C is an F -algebra,
let uφ,ι : Y (m)→ Spec(C) be the universal map.

Lemma 5.2. There is a unique element εm(D) ∈ Γ(Y (m),O∗) for everyD ∈ Z[Vm]0
such that

u∗φ,ι(εm(D)) =
∏

(α,β)∈Vm

ι(α, β)D(α,β) ∈ C

for every C, φ and ι as above.

Proof. We may assume that m is a proper ideal without loss of generality. For any
non-zero ideal m / A let H(m) denote Γ(Y (m),O). We may assume by linearity
that D = (α, β) − (γ, δ) for some (α, β), (γ, δ) ∈ Vm. Let (φ, ι) and (ψ, κ) be
ordered pairs of two Drinfeld modules φ and ψ of rank two over C equipped
with a full level m-structure ι and κ, respectively. Recall that (φ, ι) and (ψ, κ)
are isomorphic if there is an isomorphism j : Ga → Ga between φ and ψ such
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that the composition j ◦ ι is equal to κ. As j is just multiplication by a scalar
we get that the element ι(α, β)/ι(γ, δ) depends only on the isomorphism class of
the pair (φ, ι). In particular the claim is obvious when the moduli scheme Y (m)
is fine because we have εm(D) = ιm(α, β))/ιm(γ, δ) in this case where the map
ιm : (A/m)2 → H(m) is the universal full level m-structure for the universal Drinfeld
module φm : A→ H(m){τ} over Y (m). The latter holds if m has at least two prime
divisors. In general the universal map H(m)→

⊕
p-mH(mp) is an étale injection,

so it is faithfully flat. Therefore the sequence

0→ H(m)→
⊕
p-m

H(mp) ⇒
(⊕

p-m

H(mp)
)
⊗H(m)

(⊕
p-m

H(mp)
)

is exact by Proposition 2.18 of [18], pages 16–17. For every (κ, λ) ∈ Vm and prime
ideal p - m let (κ, λ, p) denote the unique element of Vmp such that (κ, λ, p) ≡
(κ, λ) mod m and (κ, λ, p) ≡ (0, 0) mod p. Moreover for every prime ideal p - m let
D(p) ∈ Z[Vmp]0 denote the element (α, β, p)− (γ, β, p). Then the element⊕

p-m

εmp(D(p)) ∈
⊕
p-m

H(mp)

is in the kernel of the second map in the exact sequence above, therefore it is the
image of a unique element εm(D) ∈ H(m) which satisfies the required property.

Definition 5.3. The group GL2(F ) acts on the product GL2(Af )×Ω on the left
by acting on the first factor via the natural embedding and on Drinfeld’s upper
half plane via Möbius transformations. The group Kf (m) = K(m)∩GL2(Of ) acts
on the right of this product by acting on the first factor via the regular action.
Since the quotient set GL2(F )\GL2(Af )/Kf (m) is finite, the set

GL2(F )\GL2(Af )× Ω/Kf (m)

is the disjoint union of finitely many sets of the form Γ\Ω, where Γ is a subgroup of
GL2(F ) of the form GL2(F )∩ gKf (m)g−1 for some g ∈ GL2(Af ). As these groups
act on Ω discretely, the set above naturally has the structure of a rigid analytic
curve. Let Y (m)F∞ also denote the underlying rigid analytical space of the base
change of Y (m) to F∞ by abuse of notation.

Theorem 5.4. There is a rigid-analytical isomorphism:

Y (m)F∞ ∼= GL2(F )\GL2(Af )× Ω/Kf (m).

Proof. See [4], Theorem 6.6.
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Proposition 5.5. For every D ∈ Z[Vm]0 the function corresponding to εm(D)
under the isomorphism of Theorem 5.4 above is the function εm(D, g, z) introduced
in Definition 4.9.

Proof. First we are going to recall the map underlying the isomorphism of Theorem
5.4 on C∞-valued points. For every (g, z) ∈ GL2(Af )× Ω let e(g,z)(w) denote the
corresponding exponential function:

e(g,z)(w) = z
∏

(a,b)∈Wm(0,0,gf )

(
1− w

az + b

)
.

The infinite product above is converging absolutely and defines an entire function.
The exponential e(g,z) uniformizes a Drinfeld module φ(g,z) over C∞ which is
equipped with a full level m-structure ι given by the formula:

ι(α, β) = e(g,z)(az + b) where (a, b) ∈Wm(α, β, gf )

for every (α, β) ∈ (Of/m)2 independent of the choice of (a, b). Since obviously we
have ι(α, β) = εm(α, β, g, z) the claim is now clear.

Definition 5.6. LetM be an abelian group and let n be any effective divisor onX.
By an M -valued automorphic form over F of level n (and trivial central character)
we mean a locally constant function φ : GL2(A) → M satisfying φ(γgkz) = φ(g)
for all γ ∈ GL2(F ), z ∈ Z(A), and k ∈ K0(n), where

K0(n) =
{(

a b

c d

)
∈ GL2(O)

∣∣∣∣ c ≡ 0 mod n

}
.

Let A(n,M) denote the Z-module of M -valued automorphic forms of level n. Now
let n be an effective divisor on X whose support does not contain∞. Let H(n,M)
denote the Z-module of automorphic forms φ of level n∞ satisfying the following
two identities:

φ

(
g

(
0 1
π 0

))
= −φ(g) (∀g ∈ GL2(A)),

and

φ

(
g

(
0 1
1 0

))
+
∑
ε∈f∞

φ

(
g

(
1 0
ε 1

))
= 0 (∀g ∈ GL2(A)),

where π is a uniformizer in F∞ and we consider GL2(F∞) as a subgroup of GL2(A)
and we understand the product of their elements accordingly. Such automorphic
forms are called harmonic.
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Definition 5.7. Let m, n be effective divisors of X. Define the set:

H(m, n)

=
{(

a b

c d

)
∈ GL2(A)

∣∣∣∣ a, b, c, d ∈ O, (ad− cb) = m, n ⊇ (c), (d) + n = O
}
.

The set H(m, n) is compact and it is a double K0(n)-coset, so it is a disjoint union
of finitely many right K0(n)-cosets. Let R(m, n) be a set of representatives of these
cosets. For any φ ∈ A(n, R) define the function Tm(φ) by the formula:

Tm(φ)(g) =
∑

h∈R(m,n)

φ(gh).

It is easy to check that Tm(φ) is independent of the choice of R(m, n) and Tm(φ) ∈
A(n,M) as well. So we have a Z-linear operator Tm : A(n,M)→ A(n,M).

Definition 5.8. Let X be a Hausdorff topological space. For any commutative
ring R let M(X, R) denote the set of R-valued finitely additive measures on the
open and compact subsets of X. For every abelian group M let C0(X,M) denote
the group of compactly supported locally constant functions f : X→M . For every
f ∈ C0(X,M) and µ ∈M(X, R) we define the modulus µ(f) of f with respect to µ
as the Z-submodule of R generated by the elements µ(f−1(g)), where 0 6= g ∈M .
We also define the integral of f on X with respect to µ as the sum:∫

X

f(x) dµ(x) =
∑
g∈M

g ⊗ µ(f−1(g)) ∈M ⊗ µ(f).

Of course this definition is nothing more than a convenient formalism. For its
elementary properties see Lemma 5.2 of [22]. Let M be a Q-vector space and let
φ be an element of A(n,M). If for all g ∈ GL2(A):∫

F\A
φ

((
1 x

0 1

)
g

)
dµ(x) = 0,

where µ is the normalized Haar measure on F\A such that µ(F\A) = 1 we call
φ a cusp form. Let A0(n,M) (respectively H0(n,M)) denote the Q-module of
M -valued cuspidal automorphic forms (respectively cuspidal harmonic forms) of
level n (resp. of level n∞).

Notation 5.9. For any ideal n / A let Y0(n) denote the coarse moduli scheme for
rank two Drinfeld modules of general characteristic equipped with a Hecke level-n
structure. It is an affine algebraic curve defined over F . Let X0(n) denote the
unique irreducible smooth projective curve over F which contains Y0(n) as an open
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subvariety. For every proper ideal m / A there is the m-th Hecke correspondence
on the Drinfeld modular curve X0(n) which in turn induces an endomorphism of
the Jacobian J0(n) of the curve X0(n), called the Hecke operator Tm (for a detailed
description see for example [6] or [7]). The m-th Hecke correspondence also induces
a pair of compatible homomorphisms:

Tm : H2
M(X0(n)L,K(2))→ H2

M(X0(n)L,K(2))

and

Tm : H2
M(Y0(n)L,K(2))→ H2

M(Y0(n)L,K(2))

for every number field K and for every extension L ⊇ F . These operators are
denoted by the same symbol we use for the operators introduced in Definition 5.7,
but this will not cause confusion as we will see. For the moment it is sufficient to
remark that they act on different objects.

Notation 5.10. Let π(n) : Y (n) → Y0(n) be the map induced by the forgetful
functor which assigns to every Drinfeld module φ : A→ C{τ} of rank two equipped
with a full level m-structure ι : (A/m)2 → C, where C is an F -algebra, the Drinfeld
module φ equipped with the Hecke level-n structure generated by ι(0, 1). Hence
Y0(n) also has a rigid analytic uniformization of the kind described in Theorem 5.4
where the role of the group K(n) is played by K0(n). Hence we may evaluate
the regulator introduced in Definition 4.7 on the pull-back of the elements of
H2
M(Y0(n)F∞ ,Z(2)) with respect to this uniformization. Let {·} denote also the

uniqueK-linear extension toH2
M(Y0(n)F∞ ,K(2)) of this regulator for every number

field K by abuse of notation.

For the rest of the paper we assume that F = Fq(T ) is the rational function
field of transcendence degree one over Fq, where T is an indeterminate, and ∞ is
the point at infinity on X = P1

Fq
.

Proposition 5.11. For every k ∈ H2
M(Y0(n)F∞ ,K(2)) the following holds:

(i) we have {k} ∈ H(n, F ∗∞ ⊗K),

(ii) we have {k} ∈ H0(n, F ∗∞ ⊗K) when k ∈ H2
M(X0(n)F∞ ,K(2)),

(iii) we have {Tm(k)} = Tm{k} for every proper ideal m / A.

Proof. By definition and the invariance theorem of [22] the regulator {k} is left
GL2(F )-invariant and right K0(n∞)Z(F∞)-invariant. By our assumptions on F

and ∞ we have F ∗O∗f = A∗f hence {k} is also Z(A)-invariant. Therefore it is an
element of A(n∞, F ∗∞⊗K). By claim (iii) of Theorem 4.4 the additional conditions
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of Definition 5.6 also hold for {k} as the following two sets of discs:

D(ρ), D
(
ρ

(
0 1
π 0

))
and D

(
ρ

(
0 1
1 0

))
,

{
D

(
ρ

(
1 0
ε 1

)) ∣∣∣∣ ε ∈ f∞

}
each give a pairwise disjoint covering of the set P1(F∞) for every ρ ∈ GL2(F∞).
Claim (i) is proved. The second claim is an immediate consequence of Theorem
6.3 of [22]. Finally let us concern ourselves with the proof of claim (iii). For every
h ∈ GL2(Af ) let h : GL2(Af ) × Ω → GL2(Af ) × Ω simply denote the map given
by the rule (g, z) 7→ (gh, z) for every g ∈ GL2(Af ) and z ∈ Ω. By slight abuse
of notation let the same symbol denote the unique map h : Y (n)F∞ → Y (n)F∞
which satisfies the relation h ◦ π(n) = π(n) ◦ h. Let R(m, n) ⊂ H(m, n) be a set of
representatives which is also a subset of GL2(Af ). Then we have:

π(n)∗(Tm(k)) =
∑

h∈R(m,n)

h∗(k)

in H2
M(Y (n)F∞ ,K(2)). Hence by the invariance theorem (Theorem 3.11 of [22])

for every g ∈ GL2(A) we have:

{Tm(k)}(g) =
∑

h∈R(m,n)

{h∗(k)}(g) =
∑

h∈R(m,n)

{k}(gh) = Tm{k}(g)

as we claimed.

Let L ⊂ F∞ be a finite extension of F and let

{·} : H2
M(X0(n)L,K(2))→ F ∗∞ ⊗K

denote also the composition of the homomorphism

H2
M(X0(n)L,K(2))→ H2

M(X0(n)F∞ ,K(2))

induced by the functoriality of motivic cohomology and the homomorphism {·}.
Let C ⊂ X0(n)×X0(n) be a correspondence and let

C∗ : H2
M(X0(n)L,K(2))→ H2

M(X0(n)L,K(2))

denote the homomorphism induced by C.

Lemma 5.12. We have {C∗(k)} = 0 for every k ∈ H2
M(X0(n)L,K(2)) if the

endomorphism J(C) : J0(n)→ J0(n) induced by C is zero.

Proof. We may assume without loss of generality that k ∈ H2
M(X0(n)L,Z(2)). Let

Y be a smooth, projective curve over Fq whose function field is L and let X be a
regular flat projective model of X0(n)L over Y . By passing to a finite extension
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of L, if it is necessary, we may also assume that X is semi-stable. By Proposition 8.6
there is a positive integer j such that the element jC∗(k) ∈ H2

M(X0(n)L,Z(2))
lies in the image of the natural map H2

M(X,Z(2)) → H2
M(X0(n)L,Z(2)). By

Proposition 6.5 of [23] the group H2
M(X,Z(2)) is the extension of a torsion group by

a p-divisible subgroup. The image of the restriction of the regulator of Notation 5.10
to H2

M(X0(n)L,Z(2)) lies in H(n, F ∗∞) so its image has a torsion p-divisible part.
Therefore the image of the restriction of this regulator to H2

M(X,Z(2)) is torsion.
The claim is now clear.

Remarks 5.13. Let T(n) denote the algebra with unity generated by the endo-
morphisms Tm of the Jacobian J0(n), where m /A is any proper ideal. The algebra
T(n) is known to be commutative. By claim (iii) of Proposition 5.11 and the lemma
above the algebra of correspondences generated by the Hecke correspondences
leaves the kernel of the regulator of Notation 5.10 restricted to H2

M(X0(n)L,K(2))
invariant and its action on the image of this homomorphism factors through the
Hecke algebra T(n)⊗Q. Moreover the Hecke operator Tm acts on this image via the
operator Tm given by the formula in Definition 5.7 by claim (iii) of Proposition 5.11.

Definition 5.14. Let µG be the unique left-invariant Haar measure on the locally
compact abelian topological group GL2(A)/Z(A) such that µG(GL2(O)/Z(O)) is
equal to 1. Since this measure is left-invariant with respect to the discrete action of
the group GL2(F )/Z(F ), it induces a measure on Z(A)GL2(F )\GL2(A) which will
be denoted by the same symbol by abuse of notation. Let V , W be vector spaces
over Q, and let φ, ψ be a V -valued and a W -valued, locally constant function on
Z(A)GL2(F )\GL2(A), respectively. Also assume that ψ has compact support, for
example ψ ∈ H0(n,W ). Then the integral∫

Z(A)GL2(F )\GL2(A)

φ(g)⊗ ψ(g) dµG(g) ∈ V ⊗Q W

is well-defined. It will be denoted by 〈φ, ψ〉, and will be called the Petersson product
of φ and ψ.

Lemma 5.15. For every k ∈ H2
M(Y0(n)L,K(2)) there is a k′ ∈ H2

M(X0(n)L,K(2))
such that 〈{k}, ψ〉 = 〈{k′}, ψ〉 for every ψ ∈ H0(n,Q).

Proof. Let U denote the group H0(Y0(n)L,O∗) and let V denote the K-vector sub-
space of H2

M(Y0(n)L,K(2)) generated by the product L∗⊗U ⊆ H2
M(Y0(n)L,Z(2)).

By our assumptions on F and ∞ the curve X0(n) is geometrically irreducible.
Moreover the group generated by the linear equivalence class of degree zero di-
visors defined over L supported on the complement of Y0(n)L in the Jacobian of
X0(n)L is finite by the main theorem of [8]. Hence there is a u ∈ V such that
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{k}x = {u}x for every closed point x in the complement of Y0(n)L where {·}x
denotes the K-linear extension of the tame symbol at x (this fact is referred to
as Bloch’s lemma in [24]). Therefore k′ = k − u lies in H2

M(X0(n)L,K(2)) by the
localization sequence. Hence it will be sufficient to prove that 〈{u}, ψ〉 = 0 for
every u ∈ V and for every ψ ∈ H0(n,Q). In fact we will show the same claim for
every ψ ∈ H0(n,Q). The operators Tm act semisimply on the finite-dimensional
vector space H0(n,Q) therefore the latter decomposes as the direct sum of Hecke
eigenspaces. Hence we may assume that ψ above is a Hecke eigenform by lin-
earity. By the projection formula for the norm map in Milnor K-theory we have
Tm(u1 ⊗ u2) = u1 ⊗ Tm(u2) for every u1 ∈ L∗, u2 ∈ U and Hecke correspondence
Tm. Let q - n be a non-zero prime ideal which has a generator π ∈ A such that
π ≡ 1 mod n. Then the Hecke correspondence Tq maps the cusps, the geometric
points in the complement of Y0(n), into themselves with multiplicity 1 + qdeg(q)

according to the proof of Proposition 3.1 of [8] on page 365. (Strictly speaking this
claim is proved for the cusps of the Drinfeld modular curve X(n) there but the
former claim immediately follows from the latter.) Hence we have:

(1 + qdeg(q))〈{u}, ψ〉 = 〈Tq{u}, ψ〉 = 〈{u}, Tq(ψ)〉 = ψ∗(q)〈{u}, ψ〉

using the self-adjointness of the operator Tq with respect to the Petersson product
where ψ∗(q) ∈ Q is the q-th Hecke eigenvalue of ψ. By the Ramanujan–Petersson
conjecture (proved in [4] first in this case) ψ∗(q) is not equal to 1 + qdeg(q) when
deg(q) is sufficiently large hence 〈{u}, ψ〉 must be zero.

6. The Rankin–Selberg method

Notation 6.1. Let m / A be a proper ideal. Recall that a Dirichlet character of
conductor m is a continuous homomorphism χ : A∗f → C∗ which is trivial on F ∗Om

where Om = {u ∈ O∗f | u ≡ 1 mod m}. Then there is a unique homomorphism from
(Of/m)∗ into C∗, which will be denoted by χ as well by abuse of notation, such that
χ is trivial on the class of constants F∗q ⊂ O∗f and we have χ(z) = χ(z) for every
z ∈ O∗f where z denotes the class of z in the quotient group (Of/m)∗. Moreover
we let χ denote also the unique extensions of these two homomorphisms onto Af
and Of/m which are zero on the complement of A∗f and (Of/m)∗, respectively.
We are going to assume that the homomorphism χ is non-trivial. In this case∑
α∈Of/m

χ(α) is zero. Let χ1, χ2 ∈ C[Vm]0 denote the functions given by the rules:

χ1(α, β) = χ(α) (∀(α, β) ∈ Vm), χ2(α, β) =

{
χ(β) when α = 0,

0 otherwise.
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Let EGm(χ, g, x, y) denote the function χ(det(gf ))−1EGm(χ1, χ2, g, x, y) for every
finite quotient G of F ∗\A∗/O∗f .

Lemma 6.2. The function EGm(χ, g, x, y) is left-invariant with respect to GL2(F )
and right-invariant with respect to K(m∞)Γ∞Z(A).

Proof. By claim (i) of Proposition 3.3 we only need to show that EGm(χ, g, x, y)
is right-invariant with respect to Z(Af ). But Z(Af ) = Z(F )Z(Of ) hence we only
have to show that EGm(χ, g, x, y) is right-invariant with respect to Z(Of ). In order
to do so we will introduce some convenient notation which we will also use later on
without further notice. By our usual abuse of notation for i = 1, 2 let χi : O2

f → C
denote the function such that χi(f) = χi(f) for every f ∈ O2

f where f denotes the
class of f in the quotient group (Of/m)2. For every g ∈ GL2(A) let

W (g) = {0 6= f ∈ F 2 | fgf ∈ O2
f}, V (g) = {f ∈W (g) | fg∞ ∈ F 2

<}

and U(g) = W (g) − V (g). For every g ∈ GL2(A) and z ∈ Z(Of ) = O∗f we have
U(gz) = U(g) and V (gz) = V (g). Moreover we have χi(fz) = χi(f)χ(z) for every
f ∈ O2

f and i = 1, 2. Therefore

EGm(χ, gz, x, y) = χ(z)−2χ(det(gf ))−1
det(z−1)G det(g−1

f )G

(xy)deg(det(z))+deg(det(g))

·
∑

(a,b)∈U(g)
(c,d)∈V (g)

(
χ1((a, b)gfz)χ2((c, d)gfz)

· det
(
a b

c d

)G
∞
x2∞((a,b)g∞)y2∞((c,d)g∞)

)
= EGm(χ, g, x, y),

because deg(det(z)) = 0 and det(z)G = 1 by definition.

Definition 6.3. Let χ0 : Of → C denote the function such that χ0(u) = χ(u) for
every u ∈ Of where u denotes again the class of u in the quotient group Of/m. Let
G be a finite quotient group of F ∗\A∗/O∗f . Note that for every non-zero q / A the
value yG ∈ G depends only on q for every y ∈ A∗f where the divisor of y is q. Let
qG denote this common value. Similarly note that for every non-zero ideal q / A

relatively prime to m the value χ0(a) depends only on q for every a ∈ A which
generates the ideal q. We let χ(q) denote this common value. For every G as above
let LGm(χ, x) be the infinite series:∑

(q,m)=1

χ(q)(qG)−1xdeg(q) ∈ C[G][[x]].
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Note that for every complex number s the C[G]-valued seriesLGm(χ, q−s) is absolutely
convergent when Re(s) > 1.

For every z ∈ A∗f let LGm(χ, z, s) denote the C[G]-valued series:

LGm(χ, z, s) = (z−1)G|z|s
∑
u∈F∗
uz∈Of

χ0(uz)uG∞|u|−s∞

if the latter is absolutely convergent.

Lemma 6.4. For every z ∈ A∗f we have LGm(χ, z, s) = χ(z)(q − 1)LGm(χ, q−s).

Proof. First we are going to show that the function χ(z)LGm(χ, s) is invariant with
respect to O∗f . For every v ∈ O∗f we have

χ(zv)LGm(χ, ηzv, s) = χ(v)(v−1)G|v|sχ(z)(z−1)G|z|s ·
∑
u∈F∗
uzv∈Of

χ0(uz)χ0(v)uG∞|u|−s∞

= LGm(χ, z, s),

because χ(v) = χ0(v), vG = 1 and |v| = 1. Now we may assume that z ∈ F ∗

because A∗F = F ∗O∗f . In this case

χ(z)LGm(χ, z, s) = LGm(χ, z, s) =
∑

06=u∈A

χ0(u)(uGf )−1|u|−s∞

= (q − 1)LGm(χ, q−s)

because we have (uGf )−1 = uG∞ for every u ∈ F ∗, and because χ(z) = 1 and
|zf | = |z|−1

∞ as the degree of every principal divisor is zero.

Definition 6.5. Let B denote the group scheme of invertible upper triangular two
by two matrices. For every finite quotient G as above and g ∈ B(A) let KG

m (χ, g, s)
denote the C[G]-valued function:

KG
m (χ, g, s) = χ((xz)f )((xz)−1

f )G|xz2|s
∑

(v,w)∈U(g)

χ0((vxz)f )vG∞ |(vxz)∞|−2s

where g = ( xz yz0 z ) ∈ B(A) and s is a complex number when this infinite sum is
absolutely convergent. The latter holds if Re(s) > 1 because the series above is
majorized by the series E(g, s). Finally for every pair of complex numbers s, t
with Re(s) > 1, Re(t) > 1 we let HG

m (χ, g, s, t) denote the C[G]-valued function on
GL2(A) given by the formula:

HG
m (χ, g, s, t) = LGm(χ, q−2t)|x|tKG

m

(
χ,

(
xz yz

0 z

)
, s

)
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if

g =
(
xz yz

0 z

)
k where k ∈ K(m∞)Γ∞,

and HG
m (χ, g, s, t) = 0, otherwise.

Lemma 6.6. The following holds:

(i) the functionKG
m (χ, g, s) is left-invariant with respect toB(F ) and right-invariant

with respect to (B(O) ∩K(m))Z(A),

(ii) the function HG
m (χ, g, s, t) is well-defined and it is left-invariant with respect to

B(F ) and right-invariant with respect to K(m∞)Γ∞Z(A).

Proof. The proof of the first claim is the same as the proofs of claim (i) of
Proposition 3.3 and Lemma 6.4. In order to prove that HG

m (χ, g, s, t) is well-defined
we need to show that |x|t = |a|t and

KG
m

(
χ,

(
xz yz

0 z

)
, s

)
= KG

m

(
χ,

(
ac bc

0 c

)
, s

)
where(

xz yz

0 z

)
,

(
ac bc

0 c

)
∈ B(A) and

(
xz yz

0 z

)
·
(
ac bc

0 c

)−1

∈ K(m∞)Γ∞.

The latter is an immediate consequence of claim (i). Similarly the invariance
properties of HG

m (χ, g, s, t) claimed above are obvious from claim (i) and the
definition.

Proposition 6.7. For every g ∈ GL2(A) the sum on the right hand side below is
absolutely convergent and we have:

EGm(χ, g, q−s, q−t) = (q − 1)
∑

ρ∈B(F )\GL2(F )

HG
m (χ, ρg, s, t),

when Re(s) > 1 and Re(t) > 1.

Proof. For every ρ ∈ GL2(F ) the value of HG
m (χ, ρg, s, t) depends only on the left

B(F )-coset of ρ because HG
m (χ, g, s, t) is left-invariant with respect to B(F ). Hence

the infinite sum on the right hand side above is well-defined. By grouping the terms
of the absolutely convergent series on the left hand side we get:

EGm(χ, g, q−s, q−t) =
∑

ρ∈B(F )\GL2(F )

χ(det((ρg)f ))−1 det((ρg)−1
f )G|det(ρg)|s+t

·
( ∑

(v,w)∈U(ρg)
u∈F∗,(0,u)∈V (ρg)

χ1((v, w)ρgf )χ2((0, u)ρgf )(vu)G∞‖(v, w)ρg∞‖−2s‖(0, u)ρg∞‖−2t
)
.
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By the Iwasawa decomposition we may write g as

g = pk, where p =
(
a b

0 c

)
∈ B(A) and k =

(
k11 k12

k21 k22

)
∈ GL2(O).

Because k∞ is an isometry we only have to show that

HG
m (χ, g, s, t) =

(
χ(cf )(c−1

f )G|ac|t
∑
u∈F∗

(0,u)∈V (g)

χ2((0, u)gf )uG∞‖(0, u)p∞‖−2t
)

·
(
χ(af )(a−1

f )G|ac|s
∑

(v,w)∈U(g)

χ1((v, w)gf )vG∞‖(v, w)p∞‖)−2s
)

by the above. The first infinite sum is zero unless there is a d ∈ Af such that
d(k21, k22)f ∈ O2

f and the latter is congruent to (0, α) modulo mOf for some
α ∈ (Of/m)∗. The latter is possible exactly when kf is in K0(m). We may even
assume that kf is in K(m) by changing p, if necessary. By the definition of the
set V (g) we also need that |(k22)∞| > |(k21)∞| for the first sum to be non-zero.
Since (k22)∞ ∈ O∞ we have ∞((k21)∞) > 0 so k∞ ∈ Γ∞. In this case we have
(0, u)g∞ ∈ F 2

< for every u ∈ F ∗ automatically so

{u ∈ F ∗ | (0, u) ∈ V (g)} = {u ∈ F ∗ | uc ∈ Of}.

Hence the first term of the product above is |a/c|tχ(cf )LG(χ, cf , 2t). By Lemma
6.4 we know that the latter is |a/c|t(q−1)L(χ, q−2t). On the other hand the second
term is visibly KG

m (χ, g, s) because U(g) = U(p) and χ1(fkf ) = χ1(f) for every
f ∈ O2

f since kf ∈ K(m).

Definition 6.8. Let µB be the unique left-invariant Haar measures on the locally
compact abelian topological groups Z(A)\B(A) such that µB(Z(O)\B(O)) is
equal to 1. Since this measure is left-invariant with respect to the discrete action
of the group Z(F )\B(F ), it induces a measure on Z(A)B(F )\B(A), which will be
denoted by the same symbol by abuse of notation. The measure µB has a simple
description. Let µ and µ∗ be the unique Haar measures on the locally compact
abelian topological groups A and A∗, respectively, such that µ(O) and µ∗(O∗) are
both equal to 1. Since the measures µ and µ∗ are left-invariant with respect to the
discrete subgroups F ⊂ A and F ∗ ⊂ A∗, respectively, by definition, they induce
a measure on F\A and F ∗\A∗, respectively, which will be denoted by the same
letter by abuse of notation. Then we have∫
Z(A)B(F )\B(A)

f

(
x y

0 1

)
dµB

((
x y

0 1

))
=
∫
F∗\A∗

dµ∗(x)
∫
F\A

f

(
x y

0 1

)
d
µ(y)
|x|

for every Lebesgue-measurable function f : Z(A)B(F )\B(A)→ C.
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Lemma 6.9. For every ψ ∈ A0(m∞,C) the integrands of the two integrals below
are absolutely Lebesgue-integrable and∫

Z(A)GL2(F )\GL2(A)

EGm(χ, g, q−s, q−t)ψ(g) dµG(g)

= µ(m)
∫
Z(A)B(F )\B(A)

HG
m (χ, b, s, t)ψ(b) dµB(b)

where µ(m) = (q − 1)µG(Z(O)\K(m∞)Γ∞Z(O)) when Re(s) > 1 and Re(t) > 1.

Proof. We may talk about the Lebesgue-integrability of the integrands above
because they are C[G]-valued functions. By Theorem 2.2.1 in [11], pages 255–256,
we know that any cuspidal automorphic form which is invariant with respect to
Z(A) has compact support as a function on Z(A)GL2(F )\GL2(A). Hence the
integral on the left in the equation above is absolutely convergent and we may
interchange the integration and the summation in Proposition 6.7 to get that∫
Z(A)GL2(F )\GL2(A)

EGm(χ, g, q−s, q−t)ψ(g) dµG(g)

= (q − 1)
∫
Z(A)B(F )\GL2(A)

HG
m (χ, b, s, t)ψ(b) dµG(b)

where the measure on Z(A)B(F )\GL2(A) induced by µG will be denoted by the
same symbol by the usual abuse of notation. The map:

π : Z(A)B(F )\B(A)× Z(O)\K(m∞)Γ∞Z(O)→ Z(A)B(F )\GL2(A)

given by the rule (b, k) 7→ bk is continuous, hence for every Borel-measurable
set B ⊆ Z(A)B(F )\GL2(A) the pre-image π−1(B) is also Borel-measurable. Let
µB×µG denote the direct product of the measures µB and µG on the direct product
Z(A)B(F )\B(A) × Z(O)\K(m∞)Γ∞Z(O). Then we have µB × µG(π−1(B)) =
µG(B) for every B above. Moreover the map π maps surjectively onto the support
of HG

m (χ, b, s, t) as a function on GL2(A) as we saw in Definition 6.4 so the integral
above is equal to:

(q − 1)
∫
Z(A)B(F )\B(A)

dµB(b)
∫
Z(O)\K(m∞)Γ∞Z(O)

HG
m (χ, bk, s, t)ψ(bk) dµG(k)

by Fubini’s theorem. By definition the integrand of the interior integral is constant
on the domain of integration. The claim is now obvious.

Definition 6.10. Let τ : F\A→ C∗ be a non-trivial continuous character and let
d be an idele such that D = dO, where D is the O-module defined as

D = {x ∈ A | τ(xO) = 1}.
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It is well-known that the linear equivalence class of the divisor of d is the anticanonical
class. Moreover for every η ∈ F ∗ the map x 7→ τ(ηx) is another non-trivial
continuous homomorphism. Therefore by choosing an appropriate character τ , we
may assume that d is any idele of degree two, as every such divisor is linearly
equivalent to the anticanonical class. In particular we may assume that d = π2

where π ∈ F∞ is a uniformizer. For every non-zero ideal r / A let S(m, r) denote
the set:

S(m, r) = {0 6= q / A | (m, q) = 1, q | r}.
Moreover for every G as in Definition 6.3 let σGm(χ, r, x) ∈ C[G][x] denote the
polynomial given by the formula:

σGm(χ, r, x) =
∑

q∈S(m,r)

χ(q)(qG)−1xdeg(q).

Proposition 6.11. For each complex s with Re(s) > 1 we have:∫
F\A

KG
m

(
χ,

(
xd y

0 1

)
, s

)
τ(−y) dµ(y) = (q − 1)|xd|1−sσGm(χ, xf , q1−2s),

if the divisor of x is effective, and the integral is zero, otherwise.

Proof. The integral above is well-defined because the integrand is F -invariant by
claim (i) of Lemma 6.6. Note that we have u 6= 0 for every 0 6= (u, v) ∈ F 2 such that
χ0((uxd)f ) 6= 0. Therefore by grouping the terms in the infinite sum of Definition
6.5 we get the following identity:

KG
m

(
χ,

(
xd y

0 1

)
, s

)
= χ((xd)f )((xd)−1

f )G|xd|s
∑
v∈F

∑
u∈F∗

(u,0)∈U
((
xd (y+v)
0 1

))χ0((uxd)f )uG∞|(uxd)∞|−2s.

Hence∫
F\A

KG
m

(
χ,

(
xd y

0 1

)
, s

)
τ(−y) dµ(y)

= χ((xd)f )((xd)−1
f )G

· |xd|s
∑
u∈F∗

u(xd)f∈Of

χ0((uxd)f )uG∞|uxd|−2s
∞

∫
uyf∈Of

|y∞|≤|xd|∞

τ(−y) dµ(y)

by interchanging summation and integration. For every u ∈ F ∗ the domain of
integration of the integral above is a direct product of the sets u−1

f Of ⊂ Af and
xdO∞ ⊂ F∞. The integral itself is non-zero if and only if the product set above lies
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in the kernel of τ . The latter is equivalent to the conditions (ud)−1
f = u−1

f ∈ Of
and ∞(x) ≥ 0. In this case the integral is equal to:

µ(u−1
f Of × xdO∞) = |u|−1µ(Of × uxdO∞) = |uxd|∞.

Let T (m, x) denote the set:

T (m, x) = {u ∈ F ∗ | (ux)f ∈ Of , u−1
f ∈ Of}.

By the above the left hand side of the equation in the claim above is equal to:

χ(xf )|xd|1−s
∑

u∈T (m,x)

χ0((ux)f )((ux)−1
f )G|(ux)f |2s−1

when∞(x) ≥ 0, and it is zero, otherwise. The set T (m, x) is empty when xf is not
an element of Of . Therefore the expression above is zero unless the divisor of x is
effective. Note that in the latter case for every u ∈ T (m, x) the number χ0((ux)f ) is
zero unless the divisor of (ux)f is an element of S(m, xf ). On the other hand every
element of S(m, xf ) is the divisor of an idele of the form (ux)f for some u ∈ T (m, x)
and u is unique up to a factor in F∗q . Note that the sum above is invariant in the
variable x with respect to the action of O∗f . Hence we may assume that xf = ηf
for some η ∈ F ∗. In this case we have χ(xf ) = 1 and χ(q) = χ0((ux)f ) for every
u ∈ T (m, x) where q is the divisor of (ux)f . The claim is now clear.

Notation 6.12. Recall that we call two divisors r and s on X relatively prime if
their supports are disjoint. For every ψ ∈ A0(m,C) let ψ∗ : Div(X) → C denote
the Fourier coefficients of ψ whose existence was established in Proposition 1 of
Chapter III in [25], page 21, proved on pages 19–20 of [25]. Recall that a function
f : Div(X)→ R is called multiplicative, where R is a commutative ring with unity,
if it is zero on non-effective divisors, f(1) = 1 and for every pair of relatively prime
divisors r and s we have f(rs) = f(r)f(s). (Similarly anR-valued function on the set
of non-zero ideals of A is called multiplicative if it satisfies the last two properties of
the previous definition.) Let us recall the situation considered in the introduction.
Let E be an elliptic curve defined over F which has split multiplicative reduction
at ∞. By assumption the conductor of E is of the form n∞ where n is an effective
divisor which is supported in the complement of∞ in X. Let ψ∗E denote the unique
multiplicative function into the multiplicative semigroup of Q such that ψ∗E(xn)
is the same as in 1.6 for each natural number n and each closed point x on X.
A cuspidal harmonic form φE ∈ H0(n,Q) is called a normalized Hecke eigenform
attached to E if its Fourier coefficient φ∗E(q) is equal to |q|ψ∗E(q) for every effective
divisor q.

The following proposition is an easy consequence of the Langlands correspon-
dence:
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Proposition 6.13. There is a unique normalized Hecke eigenform attached to E.

Proof. The only not entirely obvious fact is that the normalized Hecke eigenform
has values in Q, see for example the proof of Proposition 3.3 in [21].

Theorem 6.14. Assume that n divides m. Then for every Re(s) > 1 and Re(t) > 1
we have:∫
Z(A)GL2(F )\GL2(A)

EGm(χ, g, q−s, q−t)φE(g) dµG(g)

= (q − 1)µ(m)LGm(χ, q−2t)
|d|t−s

1− qs−t−1

∑
06=r/A

|r|1+t−sσGm(χ, r, q1−2s)ψ∗E(r).

Proof. By Lemma 6.9 and the description of the measure µB as a double integral
at the end of Definition 6.8 we know that the integral on the left hand side of the
equation above is equal to:

µ(m)LGm(χ, q−2t)
∫
F∗\A∗

dµ∗(x)
∫
F\A
|x|tKG

m

(
χ,

(
x y

0 1

)
, s

)
φE

((
x y

0 1

))
d
µ(y)
|x|

.

(6.14.1)
Using the Fourier expansion of φE = φE we get from Proposition 6.11 that∫

F\A
KG

m

(
χ,

(
xd y

0 1

)
, s

)
φE

((
xd y

0 1

))
dµ(y)

= (q − 1)
∑
η∈F∗

|ηxd|1−sσGm(χ, (ηx)f , q1−2s)φ∗E(ηx).

By plugging the equation above into the double integral in (6.14.1) we get that
the latter is equal to:

(q − 1)
∫

A∗
|xd|t−sσGm(χ, xf , q1−2s)φ∗E(x) dµ∗(x)

if we also interchange the summation in the index η and the integration. The
integrand above is constant on the cosets of the subgroup O∗ ⊂ A∗ hence the
integral is equal to the infinite sum:

|d|t−s
∑

06=r/A
k∈N

|r∞k|t−sσGm(χ, r, q1−2s)φ∗E(r∞k)

=
|d|t−s

1− qs−t−1

∑
06=r/A

|r|1+t−sσGm(χ, r, q1−2s)ψ∗E(r),

where we also used that the function ψ∗E is multiplicative and ψ∗E(∞k) = 1 for
every k ∈ N.
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7. An ∞-adic analogue of Beilinson’s theorem

Let R be an arbitrary commutative ring with unity. Let ∗ : R[[t]]×R[[t]]→ R[[t]]
denote the map given by the rule:(∑

n∈N
ant

n
)
∗
(∑
n∈N

bnt
n
)

=
∑
n∈N

anbnt
n.

Lemma 7.1. We have:

1
(1− α1t)(1− β1t)

∗ 1
(1− α2t)(1− β2t)

=
1− α1β1α2β2t

2

(1− α1α2t)(1− α1β2t)(1− β1α2t)(1− β1β2t)

for every α1, β1 ∈ R and α2, β2 ∈ R.

Proof. We may assume that R = Z[x1, y1, x2, y2] and αi = xi, βi = yi for i = 1, 2
without loss of generality. Note that

αi − βi
(1− αit)(1− βit)

=
αi

1− αit
− βi

1− βit

for i = 1 and i = 2. Also note that

1
1− γ1t

∗ 1
1− γ2t

=
1

1− γ1γ2t

for every γ1, γ2 ∈ R by definition. Because the map ∗ is R-bilinear we have

(α1 − β1)(α2 − β2)
1

(1− α1t)(1− β1t)
∗ 1

(1− α2t)(1− β2t)

=
(

α1

1− α1t
− β1

1− β1t

)
∗
(

α2

1− α2t
− β2

1− β2t

)
=

(α1 − β1)(α2 − β2)(1− α1β1α2β2t
2)

(1− α1α2t)(1− α1β2t)(1− β1α2t)(1− β1β2t)

by the above. Since our assumption above implies that αi−βi is not a zero divisor
in R for i = 1, 2 the claim is now clear.

Notation 7.2. Let us consider the situation described in Definition 1.6. The Galois
representation χ corresponds to a Dirichlet character of conductor m described in
Notation 6.1 by class field theory if an embedding of K into the field of complex
numbers is also provided. We let χ denote this Dirichlet character, too. Moreover the
profinite completion of the group F ∗\A∗/O∗f and G∞ are canonically isomorphic
by class field theory. In particular there is a bijective correspondence between the
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finite quotients of these groups. These two sets are going to be identified in all that
follows. For every effective divisor d on X let Ld(E, x) be the L-function:

Ld(E, t) = L(X(d), ρ, t) ∈ C[t]

where we continue to use the notation introduced in the proof of Proposition 2.4.

Proposition 7.3. We have:

Lm∞(E, t)LGm(E,χ, xt)
LGm(χ, qxt2)

=
∑

06=q/A
(q,m)=1

ψ∗E(q)σGm(χ, q, x)tdeg(q).

Proof. Note that the l-adic representation ρ is unramified at every prime ideal
q /A which does not divide m therefore the local factor Lq(E, t) of the Hasse–Weil
L-function of E at q can be written as

Lq(E, t) =
1

(1− α(q)tdeg(q))(1− β(q)tdeg(q))
,

where α(q) and β(q) are complex numbers such that α(q) + β(q) = ψ∗E(q) and
α(q) ·β(q) = qdeg(q). On the other hand it is clear from the definition of σGm(χ, q, x)
that the latter is a K[G][x]-valued multiplicative function on the set of non-zero
ideals of A. Therefore the power series on both sides of the equation in the claim
above are Euler products, that is, the left hand side and the right hand side of the
equation above are equal to:∏

q∈|X|
q6∈supp(m∞)

Aq(x, y) and
∏

q∈|X|
q6∈supp(m∞)

Bq(x, y),

respectively, where

Aq(x, y) =
1− χ(q)(qG)−1(qxt2)deg(q)

(1− α(q)tdeg(q))(1− β(q)tdeg(q))

· 1
(1− α(q)χ(q)(qG)−1(xt)deg(q))(1− β(q)χ(q)(qG)−1(xt)deg(q))

and

Bq(x, y) =
∞∑
n=0

ψ∗E(qn)σGm(χ, qn, x)tdeg(q)n

for every q ∈ |X| such that q 6∈ supp(m∞) by the above. Clearly it is sufficient to
prove that for every q the factors of these Euler products at q are equal. But the
latter follows at once from Lemma 7.1 and the fact that

∞∑
n=0

σGm(χ, qn, x)tdeg(q)n =
1

(1− tdeg(q))(1− χ(q)(qG)−1(xt)deg(q))
.
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Theorem 7.4. We have:

〈EGm(χ, g, x, y), φE〉 = (q − 1)µ(m)
(
x

y

)2

Lm

(
E,

y

qx

)
LGm(E,χ, xy).

Proof. By definition both sides of the equation above are elements of the ring
C[G][[x, y]][x−1, y−1]. But in fact the left and the right hand sides are elements
of the ring C[G][x, y, x−1, y−1] by Propositions 3.5 and 2.4, respectively. We also
know that after we substitute q−s and q−t into x and y, respectively, both sides of
the equation above become absolutely convergent when Re(s) > 1 and Re(t) > 1.
Therefore it will be sufficient to prove that they are equal after these substitutions
by the unique continuation of holomorphic functions. Since d is the anticanonical
class, its degree is two, so the integral 〈EGm(χ, g, q−s, q−t), φE〉 can be rewritten as
the infinite sum:

(q − 1)µ(m)LGm(χ, q−2t)
|d|t−s

1− qs−t−1

∑
06=r/A

|r|1+t−sσGm(χ, r, q1−2s)ψ∗E(r)

= (q − 1)µ(m)q2s−2tLm(E, q1+s−t)LGm(E,χ, q−s−t)

by Theorem 6.14 and Proposition 7.3. The claim is now clear.

Notation 7.5. It is clear from Theorem 5.4 that the irreducible components of
the curve Y (m)F∞ are in a bijective correspondence with the set:

GL2(F )\GL2(Af )/Kf (m)

of double cosets. In fact for a double coset represented by an element g ∈ GL2(Af )
the corresponding connected component is the image of {g} × Ω under the uni-
formization map of Theorem 5.4. Therefore the rule which associates χ(deg(g))−1

to the irreducible component corresponding to the double coset represented by
the element g ∈ GL2(Af ) gives rise to a well-defined K-valued function on the
irreducible components of the curve Y (m)F∞ . Actually this function is invariant
under the action of the absolute Galois group of the extension L of F we introduced
after Proposition 1.9 hence the function above is an algebraic cycle on Y (m)L of
codimension zero with coefficients in K. For every irreducible component C of
Y (m)L we let χ−1(C) denote the coefficient of C in this algebraic cycle.

Definition 7.6. For every C,D ∈ Z[Vm]0 let κm(C,D) denote the element:

εm(C)⊗ εm(D) ∈ H2
M(Y (m),Z(2))

where we use the notation of Lemma 5.2. By Proposition 5.5 the pull-back of
κm(C,D) with respect to the uniformization map of Theorem 5.4 is the element
of K2(GL2(Af ) × Ω) introduced in Definition 4.9 which is denoted by the same
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symbol hence our new notation will not cause any confusion. Clearly κm(C,D) is
linear in the variables C and D. Let the same symbol denote by abuse of notation
the unique ∆-bilinear extension:

κm(·, ·) : ∆[Vm]0 ×∆[Vm]0 → H2
M(Y (m),∆(2))

of this pairing. Let κm(χ) denote the unique element of H2
M(Y (m)L,∆(2)) whose

restriction to every irreducible component C of Y (m)L is χ−1(C)κm(χ1, χ2)|C .

Theorem 7.7. We have

〈{κm(χ)}, φE〉 = b(E,m)L(E, q−1)Lm(E,χ)′

in F ∗∞ ⊗K where b(E,m) ∈ K∗.

Proof. The Hecke eigenform φE is locally constant and has compact support as a
function on GL2(F )\GL2(A) hence it takes only finitely many values. In particular
there is a positive n ∈ N such that nφE takes integer values. Let C,D ∈ ∆[Vm]0
be two functions such that the function χ(det(gf ))−1EGm(C,D, ·, x, y) is right
Z(A)K(m∞)-invariant. Then the integral:

PGE (C,D, x, y) = n〈χ(det(gf ))−1EGm(C,D, ·, x, y), φE〉 ∈ ∆[[x, y]](x−1, y−1)

is well-defined and it is in fact an element of ∆[x, y, x−1, y−1] according to Propo-
sition 3.5. Therefore we may evaluate PGE (C,D, x, y) at x = y = 1. As we already
noted at the end of the proof of the limit formula 4.10 we have:

EGm(C,D, g) = (−1)GEGm(D,C, gΠ)

for every g ∈ GL2(A) (using the notation of that proof). Therefore we get the
equality PGE (C,D, 1, 1) = −(−1)GPGE (D,C, 1, 1) because φE is harmonic and the
Petersson product is translation-invariant. The elements PGE (C,D, 1, 1) satisfy the
obvious compatibility: let PE(C,D) denote their limit. Then PE(C,D) ∈ ∆[[G∞]]
lies in I by Proposition 3.8. Moreover we have:

2PE(χ1, χ2)′ = PE(χ1, χ2)′/PE(χ2, χ1)′ = 〈{κm(χ)}, φE〉n ∈ G∞ ⊗K

by the Kronecker limit formula 4.10 using the notation we introduced in Notation 6.1.
Therefore we get that

〈{κm(χ)}, φE〉 =
q − 1

2
µ(m)Lm(E, q−1)Lm(E,χ)′

using Theorem 7.4. Since Lm(E, q−1) = a(E,m)L(E, q−1) for some a(E,m) ∈ Q∗

the claim follows.

The function field analogue of the Shimura–Taniyama–Weil conjecture claims
the following:
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Theorem 7.8. There is a non-trivial map π : X0(n)→ E defined over F .

Proof. Although this theorem is certainly very well known and has been stated
in the literature several times already, in some cases with an indication of proof,
its complete proof have not been written yet; we will present it now for the sake
of record. Let l be a prime different from p and let VF denote the base change
of any algebraic variety V over F to the separable closure F of the field F . The
Gal(F |F )-module H1(EF ,Ql) is absolutely irreducible, because the curve E is not
isotrivial. By the global Langlands correspondence for function fields (see [17],
proved in this case in [3] already) there is a corresponding cuspidal automorphic
representation π of GL2(A). Let ω denote the grössencharacter of F which assigns
to each idele its normalized absolute value. By the compatibility of the local and
global Langlands correspondences the∞-adic component of π⊗ω−1 is isomorphic
to the Steinberg representation. Also the conductor of π is n∞, so there is a non-zero
automorphic form φ of level n∞ and trivial central character which is an element
of π⊗ω−1. By the above φ is also harmonic, so by the main theorem of [4] there is
an absolutely irreducible Gal(F |F ) submodule of H1(X0(n)F ,Ql) corresponding
to the representation π. This representation must be isomorphic to H1(EF ,Ql),
because the Langlands correspondence is a bijection. By Zarhin’s theorem (see
[26] and [27]) there is a homomorphism from the Jacobian of X0(n) onto E which
induces this isomorphism. We get the map of the claim by composing the map
above with a finite-to-one map from X0(n) into its Jacobian.

Our next goal is to give an explicit description of the relation between the
modular parameterization of the elliptic curve E in the theorem above and the
normalized Hecke eigenform attached to E, due to Gekeler and Reversat [9].

Definition 7.9. Let deg(u) : GL2(F∞)→ Z denote the unique function for every
holomorphic function u : Ω → C∗∞ such that the regulator {c ⊗ f} introduced in
Definition 4.5 is equal to cdeg(u) for every c ∈ C∗∞. Then deg(u) is just the van der Put
logarithmic derivative of u introduced in [5]. Similarly to the notation we introduced
in Definition 4.7 let deg(u) : GL2(A) → Z be the function given by the formula
deg(gf , g∞) = deg(u(gf , ·))(g∞) for each g ∈ GL2(Af ) if u : GL2(Af )× Ω → C∗∞
is holomorphic in the second variable. Recall that θ : C∗∞ → E(C∞) denotes
the Tate uniformization of E. A theta function attached to E (and the modular
parameterization π) is a function uE : GL2(Af ) × Ω → C∗∞ holomorphic in the
second variable for each g ∈ GL2(Af ) if it satisfies the following properties:

(a) we have uE(gk, z) = uE(g, z) for each g ∈ GL2(Af ), z ∈ Ω and k ∈ K0(n) ∩
GL2(Af ),

(b) the harmonic cochain deg(uE) is cEφE , where cE is a positive integer.
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(c) the diagram:

GL2(Af )× Ω
uE

//

��

C∗∞

θ

��
Y0(n) π // E(C∞)

is commutative where the vertical map on the left is the uniformization map
mentioned in Notation 5.10.

Theorem 7.10 (Gekeler–Reversat). There is a theta function attached to E.

Proof. See [9], Section 9.5, pages 86–88.

Proof of Theorem 1.10. Let κm,n(χ) ∈ H2
M(Y0(n)L,K(2)) denote the push-forward

of the element κm(χ) with respect to the map Y (m) → Y0(m) induced by the
forgetful map between the functors represented by these moduli curves. Then
we have 〈{κm(χ)}, ψ〉 = 〈{κm,n(χ)}, ψ〉 for every ψ ∈ H0(n,Q) by the invariance
theorem (Theorem 3.11 of [22]). Moreover there is a κm,n(χ)′ ∈ H2

M(X0(n)L,K(2))
such that 〈{κm,n(χ)}, ψ〉 = 〈{κm,n(χ)′}, ψ〉 for every ψ as above by Lemma 5.15.
Let C ⊂ X0(n)×X0(n) denote the correspondence which is the composition of the
uniformization map π : X0(n)→ E of Theorem 7.8 and its graph Γ(π) ⊂ E×X0(n)
considered as a correspondence from E to X0(n). Then the endomorphism J(C) :
J0(n)→ J0(n) induced by C is equal to d(E)TE where d(E) is a non-zero rational
number and TE ∈ T(n)⊗Q is a projection operator. Moreover we have TE(φE) = φE
therefore

b(E,m)L(E, q−1)Lm(E,χ)′ = 〈{κm(χ)}, φE〉 = 〈{κm,n(χ)′}, φE〉
= 〈{κm,n(χ)′}, TE(φE)〉 = 〈TE{κm,n(χ)′}, φE〉
= d(E)−1〈{C∗(κm,n(χ)′)}, φE〉

using the self-adjointness of the operator TE with respect to the Petersson product
in the fourth equation and Lemma 5.12 in the last equation. By the invariance
theorem (Theorem 3.11 of [22]) the harmonic form {C∗(κm,n(χ)′)} is equal to
{π∗(κm,n(χ)′)}deg(uE) where π∗(κm,n(χ)′) ∈ H2

M(EL,K(2)) is the push-forward
of κm,n(χ)′ with respect to the uniformization π : X0(n)→ E. Hence we have

L(E, q−1)Lm(E,χ)′ =
c(E)

b(E,m)d(E)
{π∗(κm,n(χ)′)}〈φE , φE〉

by the definition of theta functions. As the Petersson product is positive definite
restricted to H0(n,Q) the claim is now obvious.
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8. The action of certain correspondences on K2

In this chapter the notation used will be somewhat independent of the one used in
the rest of the paper.

Notation 8.1. Let l be a prime number and for every scheme S on which l is
invertible let

c2,2 : H2
M(S,Q(2))→ H2

et(S,Ql(2))

denote the étale Chern class map. Let L be a field complete with respect to a
discrete valuation and let O denote its valuation ring. Assume that the residue
field of O is a finite field of characteristic p 6= l. Let X→ Spec(O) be a flat, regular,
proper and semi-stable scheme over Spec(O) such that its generic fiber X is a
smooth, geometrically irreducible curve over Spec(L). Let Y denote the special
fiber of X and let

∂ : H2
M(X,Q(2))→ H1

M(Y,Q(1))

denote the boundary map furnished by the localization sequence for the pair (X, Y ).

Lemma 8.2. For every element k ∈ H2
M(X,Q(2)) such that c2,2(x) = 0 we have

∂(k) = 0.

Proof. Let R denote the ring of global sections of the sheaf of total quotient rings
of OY . Since the residue field of any closed point y of Y is a finite field, the
homomorphism

j∗ : H1
M(Y,Q(1))→ H1

M(Spec(R),Q(1)) = R∗ ⊗Q

induced by the natural map j : Spec(R)→ Y is injective. Let

c1,1 : R∗ ⊗Q→ H1
et(Spec(R),Q(1))

be the connecting homomorphism of the long cohomological exact sequence attached
to Kummer’s short exact sequence. Let π : Ỹ → Y be the normalization of Y , and let
Div(Ỹ ) denote the group of divisors on Ỹ . Since the homomorphism R∗ → Div(Ỹ )
which assigns to every r ∈ R∗ the divisor of π∗(r) has a finite kernel and the group
Div(Ỹ ) is a free abelian group, the intersection

⋂
n∈N(R∗)l

n

is finite. Hence the
homomorphism c1,1 is injective. Therefore for every k ∈ H2

M(X,Q(2)) we have
∂(k) = 0 if the equation c1,1 ◦ j∗ ◦ ∂(k) = 0 holds. Let K be the function field of
the curve X and let i : Spec(K)→ X be the generic point. The claim now follows
from the fact that the diagrams:
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H2
M(X,Q(2)) i∗ //

c2,2

��

H2
M(Spec(K),Q(2)) ∂ //

c2,2

��

R∗ ⊗Q

c2,1

��
H2
et(X,Ql(2)) i∗ // H2

et(Spec(K),Ql(2)) ∂ // H1
et(Spec(R),Ql(1))

and

H2
M(X,Q(2)) i∗ //

∂

��

H2
M(Spec(K),Q(2))

∂

��
H1
M(Y,Q(1))

j∗ // R∗ ⊗Q

are commutative, where the symbols ∂ denote the respective localisation maps
everywhere in the diagrams.

Notation 8.3. For every smooth, projective, geometrically irreducible curve Z
defined over a field K let Jac(Z) denote the Jacobian of Z, as usual. Moreover for
every correspondence C ⊂ Z × Z let

C∗ : H2
M(Z,Q(2))→ H2

M(Z,Q(2))

and
J(C) : Jac(Z)→ Jac(Z)

denote the endomorphisms induced by C onH2
M(Z,Q(2)) and Jac(Z), respectively.

Let L and X be as in Notation 8.1 and let C ⊂ X ×X be a correspondence.

Lemma 8.4. We have c2,2(C∗(k)) = 0 for every k ∈ H2
M(X,Q(2)) if the endo-

morphism J(C) is zero.

Proof. Let X denote the base change of X to the separable closure L of L. Note
that there is a Hochschild–Serre spectral sequence:

Hi(Gal(L|L), Hj
et(X,Ql(2)))⇒ Hi+j

et (X,Ql(2)).

Because H0
et(X,Ql(2)) = Ql(2) and H2

et(X,Ql(2)) = Ql(1) we have

H2(Gal(L|L), H0
et(X,Ql(2))) = 0 = H0(Gal(L|L), H2

et(X,Ql(2)))

by local class field theory. In particular E2,0
∞ = E0,2

∞ = 0 for the spectral sequence
mentioned above. Moreover H3(Gal(L|L),M) = 0 for every Gal(L|L)-module M
hence E3,0

2 = 0. Therefore we have E1,1
∞ = E1,1

2 = H1(Gal(L|L), H1(X,Ql(2)))
and so there is an isomorphism:

ιX : H2
et(X,Ql(2))→ H1(Gal(L|L), H1(X,Ql(2))).
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Let
Tl(C) : H1(X,Ql(2)))→ H1(X,Ql(2)))

be the endomorphism of H1(X,Ql(2))) induced by C. The map Tl(C) induces a
homomorphism on cohomology:

Tl(C)∗ : H1(Gal(L|L), H1(X,Ql(2)))→ H1(Gal(L|L), H1(X,Ql(2)))

by functoriality. Then we have the following commutative diagram:

H2
M(X,Q(2))

c2,2 //

C∗

��

H2
et(X,Ql(2))

ιX //

C∗

��

H1(Gal(L|L), H1(X,Ql(2)))

Tl(C)∗

��
H2
M(X,Q(2))

c2,2 // H2
et(X,Ql(2))

ιX // H1(Gal(L|L), H1(X,Ql(2)))

Since we have H1(X,Ql(2)) = H1(Jac(X),Ql(2)) the map Tl(C) is zero when
the endomorphism J(C) is. In this case Tl(C)∗ is also zero, so the claim is now
clear.

Notation 8.5. As in the introduction, let F denote the function field of X, where
the latter is a geometrically connected smooth projective curve defined over the
finite field Fq of characteristic p. Let Z be a smooth, projective, geometrically
irreducible curve defined over F and let C ⊂ Z × Z be a correspondence. Assume
that Z has a flat, regular, proper and semi-stable model Z→ X over X.

Proposition 8.6. Assume that the endomorphism J(C) is zero. Then for every
k ∈ H2

M(Z,Q(2)) the element C∗(k) ∈ H2
M(Z,Q(2)) lies in the image of the natural

map H2
M(Z,Q(2))→ H2

M(Z,Q(2)).

Proof. For every closed point x of X let Zx denote the fiber of Z at x. By the
exactness of the localisation sequence it will be sufficient to show that the image
of C∗(k) under the boundary map:

∂ : H2
M(Z,Q(2))→ H1

M(Zx,Q(1))

is zero for every x as above. But this follows at once from Lemmas 8.2 and 8.4
applied to the base change of Z to the completion of F with respect to x.
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[5] J. Fresnel and M. van der Put, Géométrie analytique rigide et applications, Birkhäuser,
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