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Deformations of Transverse Calabi–Yau
Structures on Foliated Manifolds

by

Takayuki Moriyama

Abstract

We develop a deformation theory of transverse structures given by calibrations on foliated
manifolds, including transverse Calabi–Yau, hyperkähler, G2 and Spin(7) structures. We
show that the deformation space of the transverse structures is smooth under a cohomo-
logical assumption. As an application, we obtain unobstructed deformations of transverse
Calabi–Yau structures on foliated manifolds. We also prove a Moser type stability result
for transverse structures, which implies Moser’s stability theorem for presymplectic forms.
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§1. Introduction

Kodaira and Spencer worked out the deformation theory of compact complex
manifolds [10]. They showed that there exists a family of deformations of complex
structures parameterized by a smooth finite-dimensional space which is versal,
under a cohomological assumption. Kuranishi proved a general theorem on the
existence of a versal deformation space for a given complex structure, where the
versal deformation space (Kuranishi space) is given by an analytic space which
is not necessarily smooth [11]. Duchamp–Kalka [4] and Gomez-Mont [7] showed
a weak version of Kuranishi’s theorem for deformations of transversely holomor-
phic foliations on compact manifolds. Girbau, Haefliger and Sundararaman [6]
constructed the Kuranishi space of deformations of transversely holomorphic foli-
ations on compact manifolds.

In this paper, we introduce a different deformation theory of transverse ge-
ometric structures on foliated manifolds. We consider transverse structures de-
fined in terms of systems of closed forms called transverse calibrations (see Def-
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inition 1.1). In the theory of Riemannian holonomy groups, it is useful to char-
acterize geometric structures as systems of closed forms. From this point of view,
McLean [12] produced the deformation theory of compact special Lagrangian sub-
manifolds. Goto [12] discussed a deformation space of calibrations defined by closed
differential forms. By considering Calabi–Yau, hyperkähler, G2 and Spin(7) struc-
tures as calibrations, he showed that these deformations are unobstructed. We
fix a foliation on a manifold and deform the transverse calibrations on it. One
of the advantages of our approach is that we can use Hodge theory on a foliated
manifold [5]. (Recently, this transverse version of Hodge theory plays an impor-
tant role in Sasakian geometry [2].) As a result, in a suitable case such as trans-
verse Calabi–Yau, hyperkähler, G2 and Spin(7) structures, we obtain a smooth
deformation space of the structures. We can also generalize Moser’s theorem in
symplectic geometry to transverse calibrations, and prove Moser’s stability theo-
rem for presymplectic forms. (We refer to [3] for another generalization of Moser’s
theorem given by Crainic and Fernandes in Poisson geometry.)

Let M be a compact manifold of dimension p + q and F a foliation on M

of codimension q. The foliation F is defined by data {Ui, fi, T, γij} consisting of
an open covering {Ui}i of M , a q-dimensional transverse manifold T , submersions
fi : Ui → T and diffeomorphisms γij : fi(Ui ∩ Uj) → fj(Ui ∩ Uj) for Ui ∩ Uj 6= ∅
satisfying fj = γij ◦ fi. A transverse structure on (M,F) is a geometric structure
on T which is invariant under γij . For example, a transverse Kähler structure
is defined by a Kähler structure on T preserved by γij . A foliation F is called
transverse Kähler if there exists a transverse Kähler structure on (M,F). On the
compact manifold M with a transverse Kähler foliation F , if the basic canonical
line bundle is trivial, then there exists a transverse Calabi–Yau structure on (M,F)
by applying the basic version of Yau’s theorem [5]. Alternative definitions for
such transverse structures can be given in terms of basic sections of basic bundles
over (M,F) (see Section 2). In particular, any transverse Calabi–Yau structure is
characterized by a pair of closed basic forms (see Definition 6.3).

We discuss the deformation space of transverse Calabi–Yau structures on
(M,F) by introducing Goto’s deformation theory of calibrations to the geometry of
foliations. Our idea is to consider basic differential forms on (M,F) instead of dif-
ferential forms on M . Let W be a q-dimensional vector space and

∧p
W ∗ the space

of skew-symmetric tensors of the dual space W ∗. Then the group G = GL(W ) acts
diagonally on the direct sum

⊕`
i=1

∧pi W ∗. Let ΦW = (φ1, . . . , φ`) be an element
of
⊕`

i=1

∧pi W ∗ and O (= AO(W )) the G-orbit through ΦW with an isotropy
group H, so O is the homogeneous space G/H. On the foliated manifold (M,F),
we have a completely integrable distribution F of dimension p and the quotient
bundle Q = TM/F over M . Let AO(M,F) be the fiber bundle

⋃
x∈M AO(Qx)
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and EO the set Γ(M,AO(M,F)) ∩
⊕`

i=1

∧pi

B of sections of AO(M,F) defined to
be basic forms, where

∧pi

B denotes the space of basic pi-forms on M .

Definition 1.1. A system Φ of differential forms on (M,F) is called a transverse
calibration associated with the orbit O if Φ is an element of EO whose components
are closed as differential forms.

Let M̃O(M,F) be the set of transverse calibrations associated with O. We
can identify M̃O(M,F) with the intersection EO ∩H where H is the Hilbert space
consisting of all closed forms on M . If we consider EO as a Hilbert manifold, then
the infinitesimal tangent space of M̃O(M,F) at Φ is regarded as the intersection
TΦEO∩H. We investigate whether the infinitesimal tangent space is identified with
the tangent space of actual deformations.

Definition 1.2. A transverse calibration Φ ∈ M̃O(M,F) is unobstructed if for
any α ∈ TΦEO ∩H, there exists an integral curve Φt in M̃O(M,F) such that

d

dt
Φt

∣∣∣∣
t=0

= α.

For Φ ∈ M̃O(M,F), we define in Section 3.2 a complex (]Φ) and maps

pk : Hk(]Φ)→
⊕

iH
pi+k−1
B (M)

for each k ≥ 0, where Hk
B(M) is the basic de Rham cohomology group on (M,F).

We also define the ellipticity of an orbit O (Definition 3.1). Then we obtain the
main theorem:

Theorem 1.1. Let O be an elliptic orbit. If Φ ∈ M̃O(M,F) and the map p2 :
H2(]Φ)→

⊕
iH

pi+1
B (M) is injective, then Φ is unobstructed.

We can regard a transverse Calabi–Yau structure on (M,F) as a transverse
calibration associated with the orbit OCY of Calabi–Yau structures. Then we ob-
tain

Theorem 1.2. Any transverse Calabi–Yau structure on (M,F) is unobstructed.

In Section 2, we prepare some results in foliated geometry and provide defini-
tions of “basic” objects, for example, basic vector bundles, basic sections, etc. In
Section 3, we introduce transverse calibrations on (M,F). Each transverse calibra-
tion induces a deformation complex. Then we see that the deformation complex is
a subcomplex of the basic de Rham complex. In Section 4, we provide a sufficient
condition for the transverse structures to have unobstructed deformations (Theo-
rem 4.1). We consider a generalization of Moser’s stability theorem (Theorem 5.1)
in Section 5. As an application, we obtain Moser’s stability theorem for presym-
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plectic forms and prove that the deformations of transverse Calabi–Yau structures
on (M,F) are unobstructed in the last section.

§2. Preparations on foliated geometry

In this section, we provide some results in foliated geometry. For these results and
the notation, we refer to [1], [14] and [13]. We assume that M is a compact manifold
of dimension p + q and F is a foliation on M of codimension q. We denote by F

a completely integrable distribution of dimension p associated to the foliation F .
Let Q be the normal bundle TM/F and π : TM → Q the natural projection.

§2.1. Basic vector fields and basic forms

A vector field u ∈ Γ(TM) is foliated if [u, v] ∈ Γ(F ) for any v ∈ Γ(F ). We denote
by Γ(M,F) the set of foliated vector fields on (M,F). Let X(M,F) be the quotient
space of Γ(M,F) by Γ(F):

X(M,F) = Γ(M,F)/Γ(F )

We call an element u of X(M,F) a basic vector field on (M,F).
A differential k-form φ ∈

∧k on M is a basic form on (M,F) if the interior
product ivφ and the Lie derivative Lvφ vanish for any v ∈ Γ(F ). Let

∧k
B be the

set of basic k-forms on (M,F):∧k
B = {φ ∈

∧k | ivφ = Lvφ = 0, ∀v ∈ Γ(F )}.

For a section u ∈ Γ(Q) and a basic k-form φ ∈
∧k

B, the interior product iuφ and
the Lie derivative Luφ are defined by the (k− 1)-form iũφ and the k-form Lũφ for
a lift ũ ∈ Γ(TM) of u, respectively. If u is a basic vector field, then iuφ and Luφ

are basic forms.
We define a foliated diffeomorphism to be a diffeomorphism f of M preserving

the foliation F , i.e., f∗(F ) = F . We denote by Diff(M,F) the group of foliated
diffeomorphisms:

Diff(M,F) = {f ∈ Diff(M) | f∗(F ) = F}.

We can define an action of Diff(M,F) on the space of basic forms
∧∗

B by pull-
back. For u ∈ X(M,F), any lift ũ ∈ Γ(TM) of u induces a one-parameter family
of foliated diffeomorphisms ft. Then the Lie derivative Luφ for φ ∈

∧k
B may be

regarded as the limit d
dtf
∗
t φ
∣∣
t=0

.

§2.2. Basic bundles and basic sections

Let ι : P →M be a principal fiber bundle and ω a connection form on P . The hor-
izontal subbundle H is defined by the subbundle Kerω of the tangent bundle TP .
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Then the derivative ι∗ restricted to H is the isomorphism from H to TM . Hence
we have the subbundle F̃ = ι−1

∗ (F ) of H over P . If F̃ is integrable, then F̃ induces
the foliation F̃ on P .

Definition 2.1. A principal fiber bundle P is foliated if there exists a connection
form ω on P such that the bundle F̃ is integrable. Moreover, if the form ω is basic
with respect to the induced foliation F̃ , then the bundle P is called basic.

A vector bundle π : E → M is called foliated (resp. basic) if the associated
principal bundle PE is a foliated (resp. basic) bundle. In the case π : E → M

is a foliated vector bundle, the bundle PE → M admits a foliation F̃ on the
total space PE by the definition. This foliation F̃ induces a foliation F̃E on E.
In addition, if E is basic then there exists a connection ∇ of E whose connection
form is basic. Such a connection ∇ is called a basic connection on E.

Definition 2.2. Let E be a basic vector bundle with a basic connection ∇. A sec-
tion s ∈ Γ(E) is called basic if ∇vs = 0 for any v ∈ Γ(F ).

We denote by ΓB(E) the set of basic sections of E. Observe that for a basic
bundle E, the dual bundle E∗ and the exterior powers

∧∗
E∗ are also basic bundles.

We consider a hermitian metric h on E as a section of a basic bundle. Then we
call E a basic hermitian bundle if the hermitian metric h is basic.

§2.3. Riemannian foliations

We define an action of Γ(F ) on any section u ∈ Γ(Q) as follows:

Lvu = π[ũ, v] ∈ Γ(Q)

for any vector field v ∈ Γ(F ) where ũ ∈ Γ(TM) is a lift of u, i.e., a vector
field u ∈ Γ(TM) with π(ũ) = u. This action is independent of the choice of lifts
ũ ∈ Γ(TM) of u. Let g be a Riemannian metric on M . Then we have an orthogonal
decomposition TM = F⊥ ⊕g F and the isomorphism σ : Q→ F⊥. We denote by
S2Q∗ the symmetric 2-tensors of Q∗. Set a metric gQ = σ∗gF⊥ ∈ Γ(S2Q∗) for the
induced metric gF⊥ on F⊥. Then the map σ : (Q, gQ)→ (F⊥, gF⊥) is an isometry.
Let ∇M be the Levi-Civita connection with respect to g. Then we introduce a
connection ∇ on Q as follows:

(2.1) ∇vu =

{
Lvu, v ∈ Γ(F ),
π(∇Mv ũ), v ∈ Γ(F⊥),

for u ∈ Γ(Q), where ũ ∈ Γ(TM) is a lift of u. In general, the connection (2.1) is
not necessarily basic.
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A foliation F is Riemannian if the data {Ui, fi, T, γi,j} are such that T is a
Riemannian manifold and each γi,j is an isometry. A Riemannian metric g is called
bundle-like if LvgQ = 0 for any v ∈ Γ(F ) where the tensor LvgQ ∈ Γ(S2Q∗) is
defined by

(2.2) (LvgQ)(u,w) = v(gQ(u,w))− gQ(Lvu,w)− gQ(u, Lvw)

for u,w ∈ Γ(Q). It turns out that F is a Riemannian foliation if and only if there
exists a bundle-like Riemannian metric g on M . For a bundle-like metric g, the
connection ∇ in (2.1) is basic. Hence Q is a basic vector bundle for a Riemannian
foliation F . It is easy to see that any basic section of

∧k
Q∗ is a basic k-form

on M : ∧k
B = ΓB(

∧k
Q∗).

The space ΓB(Q) is nothing but X(M,F):

X(M,F) = ΓB(Q).

So we also call an element s of ΓB(Q) a basic vector field. Moreover, a basic vector
field s ∈ ΓB(Q) is identified with a foliated vector field us = σ(s) ∈ Γ(F⊥) by the
isomorphism σ. Therefore we have the following identification:

(2.3) ΓB(Q) ' {u ∈ Γ(F⊥) | [u, v] ∈ Γ(F ), ∀v ∈ Γ(F )}.

From now, we consider any basic section of Q as a vector field on M under the
identification of (2.3). Then a basic vector field u ∈ ΓB(Q) induces a one-parameter
family of foliated diffeomorphisms ft since a vector field u ∈ Γ(F⊥) yields a one-
parameter family of diffeomorphisms.

§2.4. Transversely elliptic operators

Let E be a basic bundle of rank N . A linear map D : ΓB(E)→ ΓB(E) is called a
basic differential operator of order ` if, in local coordinates (x1, . . . , xp, y1, . . . , yq)
for which F is given by the equations dy1 = · · · = dyq = 0, D has the following
expression:

D =
∑
|s|≤`

as(y)
∂|s|

∂s1y1 . . . ∂sqyq
,

where s = (s1, . . . , sq) ∈ Nq and each as is an N×N -matrix valued basic function.
We define the principal symbol of D at z = (x, y) and the basic covector ξ ∈ Q∗z
as the linear map σ(D)(z, ξ) : Ez → Ez given by

σ(D)(z, ξ)(η) =
∑
|s|=`

ξs11 . . . ξsq
q as(y)(η)

for any η ∈ Ez.
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Definition 2.3. A basic differential operator D is transversely elliptic if
σ(D)(z, ξ) is an isomorphism for every z ∈M and ξ(6= 0) ∈ Q∗z.

We suppose that E is a hermitian basic bundle with a hermitian metric h and
` = 2`′. Then a quadratic form A(D)(z, ξ) : Ez → C is given by

A(D)(z, ξ)(η) = (−1)`
′
〈σ(D)(z, ξ)(η), η〉.

Definition 2.4. A basic differential operator D is strongly transversely elliptic if
A(D)(z, ξ) is positive definite for every z ∈M and every non-zero ξ ∈ Q∗z.

Let {(Ek, Dk)}k=0,1,...,q be a family of hermitian basic bundles and basic
differential operators of order 1 with the differential complex

(2.4) · · · Dk−1−−−→ ΓB(Ek) Dk−−→ ΓB(Ek+1)
Dk+1−−−→ · · ·

where Dk : ΓB(Ek) → ΓB(Ek) for k = 0, 1, . . . , q. We denote by σk the principal
symbol σ(Dk)(z, ξ) of Dk. Then the complex (2.4) is transversely elliptic if the
symbol sequence

· · · σk−1−−−→ Ekz
σk−→ Ek+1

z

σk+1−−−→ · · ·

is exact for any z and any non-zero ξ. Note that the complex (2.4) is transversely
elliptic if and only if the basic operator Lk = D∗kDk + Dk−1D

∗
k−1 is strongly

transversely elliptic, where D∗k is the formal adjoint operator. We have the Hodge
theory for the transversely elliptic complex (2.4) with the cohomology Hk

B(E∗):

Proposition 2.1 ([1, Theorem 15]). (i) The kernel HkB of Lk is finite-dimen-
sional and we have an orthogonal decomposition

ΓB(Ek) = HkB ⊕ Im(Dk−1)⊕ Im(D∗k).

(ii) The orthogonal projection ΓB(Ek) → HkB induces an isomorphism from
Hk

B(E∗) to HkB.

§2.5. Transverse Riemannian structures

A Riemannian foliation is characterized by the following structure:

Definition 2.5. A symmetric 2-tensor g̃ ∈ Γ(
⊗2

Q∗) is a transverse Riemannian
structure on (M,F) if g̃ is positive definite on Q and satisfies Lv g̃ = 0 for any
v ∈ Γ(F ) where Lv g̃ is defined by (2.2).

A bundle-like metric g induces a transverse Riemannian structure gQ on
(M,F). Conversely, for a transverse Riemannian structure g̃, we can take a bundle-
like metric g such that gQ = g̃. Given a transverse Riemannian structure gQ on
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(M,F), the complexification Q ⊗ C is a basic hermitian bundle, and hence so is∧k
Q∗ ⊗ C. Thus from Proposition 2.1 we have

Proposition 2.2 ([1, Theorem 16]). (i) The kernel HkB of the basic Laplacian
dd∗+d∗d on

∧k
B is finite-dimensional and we have an orthogonal decomposition∧k

B = HkB ⊕ Im(d)⊕ Im(d∗).

(ii) The orthogonal projection
∧k

B → HkB induces an isomorphism from the basic
de Rham cohomology Hk

B(M) to HkB.

§2.6. Transverse Kähler structures

We can define an action of Γ(F ) on any section J ∈ Γ(End(Q)) as follows:

(LvJ)(u) = Lv(J(u))− J(Lvu)

for v ∈ Γ(F ) and u ∈ Γ(Q). If J ∈ Γ(End(Q)) is a complex structure of Q, i.e.
J2 = −idQ, and if LvJ = 0 for any v ∈ Γ(F ), then a tensor NJ ∈ Γ(

⊗2
Q∗ ⊗Q)

can be defined by

NJ(u,w) = [Ju, Jw]Q − [u,w]Q − J [u, Jw]Q − J [Ju,w]Q

for u,w ∈ Γ(Q), where [u,w]Q denotes the bracket π[ũ, w̃] for any lifts ũ and w̃.

Definition 2.6. A section J ∈ Γ(End(Q)) is a transverse complex structure on
(M,F) if J is a complex structure of Q, i.e. J2 = −idQ, such that LvJ = 0 for
any v ∈ Γ(F ) and NJ = 0.

A foliation F is transversely holomorphic if and only if there exists a transverse
complex structure on (M,F). Thus we may regard a transverse complex structure
as a generalization of complex structures on complex manifolds. A transverse com-
plex structure J on (M,F) give rises to the decomposition

∧k
B⊗C =

⊕
r+s=k

∧r,s
B

in the same manner as in complex geometry. We denote by Hr,s
B (M) the (r, s)-

basic Dolbeault cohomology group. We provide the following remark about the
integrability condition of a transverse complex structure.

Remark. Let J be a complex structure of Q such that LvJ = 0 for any v ∈ Γ(F ).
Then J is a transverse complex structure, i.e. NJ = 0, if and only if d(

∧1,0
B ) ⊂∧2,0

B ⊕
∧1,1

B , which is equivalent to d(
∧0,1

B ) ⊂
∧1,1

B ⊕
∧0,2

B , where d denotes the
exterior derivative.

Definition 2.7. A pair of sections (g̃, J) ∈ Γ(
⊗2

Q∗)×Γ(End(Q)) is a transverse
Kähler structure on (M,F) if g̃ is a transverse Riemannian structure and J is a
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transverse complex structure on (M,F) such that

g̃(·, J ·) is a d-closed form and g̃(Ju, Jw) = g̃(u,w)

for u,w ∈ Γ(Q).

A transversely Kähler foliation F is defined by data {Ui, fi, T, γij} with a
Kähler manifold T and local diffeomorphisms γij preserving the Kähler structure.
We remark that there exists a transverse Kähler structure on (M,F) if and only
if F is a transverse Kähler foliation. Given a transverse Kähler structure (g̃, J),
the bundles

∧k
B ⊗ C and

∧r,s
B are all basic hermitian bundles. Then each basic

Dolbeault cohomology group Hr,s
B (M) is finite-dimensional from Proposition 2.1.

Moreover, the basic de Rham–Hodge decomposition holds:

Proposition 2.3 ([1, Theorem 17]). Let F be a transverse Kähler foliation on M .
Then there exists an isomorphism

Hk
B(M,C) =

⊕
r+s=kH

r,s
B (M).

§3. Transverse calibrations

§3.1. Orbits in vector spaces

Let W be a vector space of dimension q. We choose ` natural numbers (p1, . . . , p`)
∈ N`. We denote by ρ the representation of G = GL(W) on the space

⊕`
i=1

∧pi W ∗

where each
∧pi W ∗ is the space of skew-symmetric tensors of degree pi of the dual

space W ∗. We fix an element ΦW = (φ1, . . . , φ`) ∈
⊕`

i=1

∧pi W ∗ and denote by
H the isotropy group of ΦW :

H = {g ∈ G | ρgΦW = ΦW }

Then the G-orbit
O = {ρgΦW ∈

⊕`
i=1

∧pi W ∗ | g ∈ G}
through ΦW is regarded as the homogeneous space G/H. We denote by AO(W )
the G-orbit O through ΦW . For an element Φ0 ∈ AO(W ), the tangent space
TΦ0AO(W ) is given by

E1
Φ0

(W ) = {ρ̂ξΦ0 ∈
⊕`

i=1

∧pi W ∗ | ξ ∈ g},

where g is the Lie algebra of G and ρ̂ is the differential representation of g. We
also define vector spaces E0

Φ0
(W ) and EkΦ0

(W ) by

E0
Φ0

(W ) = {ivΦ0 = (ivφ1, . . . , ivφ`) ∈
⊕`

i=1

∧pi−1
W ∗ | v ∈W},

EkΦ0
(W ) = {α ∧ ivΦ0 ∈

⊕`
i=1

∧pi+k−1
W ∗ | α ∈

∧k
W ∗, v ∈W}
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for integers k ≥ 2. Then we have a complex

(]Φ0) 0→ E0
Φ0

(W ) ∧u−→ E1
Φ0

(W ) ∧u−→ E2
Φ0

(W ) ∧u−→ · · ·

for a form u ∈W ∗.

Definition 3.1. An orbit O is elliptic if the complex (]Φ0) is exact for any non-
zero element u ∈W ∗ at E1

Φ0
(W ) and E2

Φ0
(W ).

We give some examples of elliptic orbits. Now we assume that W is even-
dimensional, that is, q = 2n.

Example 1. The set of all symplectic forms on W is an orbit Osymp, which is
isomorphic to the quotient space GL(2n,R)/Sp(2n,R). For any Φ0 ∈ Osymp, the
complex (]Φ0) is

0→
∧1

W ∗
∧u−→

∧2
W ∗

∧u−→
∧3

W ∗
∧u−→ · · ·

for any element u ∈W ∗. Thus the orbit Osymp is elliptic.

Example 2. A non-zero complex n-form Ω ∈
∧n ⊗ C is called an SLn(C) struc-

ture on W if the form Ω satisfies

W ⊗ C = Ker Ω⊕Ker Ω,

where Ker Ω denotes the space {v ∈W ⊗C | ivΩ = 0}. We remark that an SLn(C)
structure Ω induces a complex structure JΩ on W defined by

(3.1) JΩ(v) =

{
−
√
−1v for v ∈ Ker Ω,

√
−1v for v ∈ Ker Ω.

Then Ω is an (n, 0)-form with respect to the complex structure JΩ. Let OSL be
the set of SLn(C) structures on W . Then it turns out that OSL is an orbit such
that

OSL = GL(2n,R)/SL(n,C).

For any Φ0 ∈ OSL, the complex (]Φ0) is

0→
∧n−1,0

W ∗
∧u−→

∧n,0
W ∗ ⊕

∧n−1,1
W ∗

∧u−→
∧n,1

W ∗ ⊕
∧n−1,2

W ∗
∧u−→ · · ·

for any u ∈W ∗. Here we regard the element u as an element of
∧1,0

W ∗⊕
∧0,1

W ∗

such that ū = u. So this orbit OSL is elliptic.
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Example 3. A pair (Ω, ω) ∈
∧n

B ⊗ C ⊕
∧2

B is called a Calabi–Yau structure on
W if Ω is an SLn(C) structure and ω is a symplectic structure on W such that

Ω ∧ ω = 0,

Ω ∧ Ω̄ = cnω
n 6= 0,

ω(·, JΩ·) is positive definite,

where cn = 1
n! (−1)n(n−1)/2(2/

√
−1)n. LetOCY be the set of Calabi–Yau structures

on W . Then OCY is an elliptic orbit such that

OCY = GL(2n,R)/SU(n)

(cf. [8, Proposition 4.9]).

§3.2. Transverse calibrations in foliated manifolds

Let M be a compact manifold of dimension p + q and F a Riemannian foliation
on M of codimension q. We consider the completely integrable distribution F

associated to F and the quotient bundle Q = TM/F over M . For each x ∈M , we
identify Qx with W = Rq. Then, as in Section 3.1, we have an orbit AO(Qx) =
AO(W ) at x ∈M for an orbit O. Note that the orbit AO(Qx) ⊂

⊕
i

∧pi Q∗x does
not depend on the choice of the identification h : Qx ' W . Then we can define a
G/H-bundle AO(M,F) by

AO(M,F) =
⋃
x∈M
AO(Qx)→M.

Since AO(M,F) ⊂
⊕

i

∧pi Q∗, we can consider the Lie derivative and the exte-
rior derivative for any section of AO(M,F) as a differential form. We denote by
EO(M,F) the space of sections of AO(M,F) which are basic forms:

EO(M,F) = Γ(AO(M,F)) ∩
∧∗

B .

Let Ker Φ be the space {v ∈ TM | ivΦ = 0} for Φ ∈ EO(M,F).

Definition 3.2. A section Φ ∈ EO(M,F) is called a transverse calibration asso-
ciated with the orbit O if Φ is a closed form such that Ker Φ = F .

We denote by M̃O(M,F) the space of transverse calibrations associated
with O. The group Diff(M,F) acts on M̃O(M,F) by pull-back. Given a transverse
calibration Φ ∈ M̃O(M,F), we can consider the vector spaces EkΦx

(Qx) at each
point x ∈M , and define vector bundles

EkΦ(M,F) =
⋃
x∈M

EkΦx
(Qx)→M
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for integers k ≥ 0. Each bundle EkΦ(M,F) is a basic bundle since its associated
principal bundle is that of the normal bundle Q∗. It follows that a section ivΦ ∈
Γ(E0

Φ(M,F)) is basic if and only if v ∈ Γ(Q) is a basic section from Ker Φ = F

and Lw(ivΦ) = iLwvΦ for any w ∈ Γ(F ). Hence we have

ΓB(E0
Φ(M,F)) = {ivΦ ∈

⊕`
i=1

∧pi−1
Q∗ | v ∈ ΓB(Q)},

ΓB(E1
Φ(M,F)) = {ρ̂ξΦ ∈

⊕`
i=1

∧pi Q∗ | ξ ∈ ΓB(End(Q))}.

We introduce the graded vector spaces EΦ(M,F) =
⊕

k E
k
Φ(M,F). For sim-

plicity, we shall denote by ΓB(Ek) and ΓB(E) the spaces ΓB(EkΦ(M,F)) and
ΓB(EΦ(M,F)), respectively.

Proposition 3.1. The module ΓB(E) is a differential graded module in⊕
k(
⊕

i

∧pi+k−1
B ) with respect to the derivative dB, where dB is the exterior deriva-

tive d restricted to the space of basic forms.

Proof. We prove that dBa ∈ ΓB(Ek) for all a ∈ ΓB(Ek−1). To show this, it is
sufficient to prove that dBivΦ ∈ ΓB(E1) for any element ivΦ ∈ ΓB(E0), since
ΓB(E) is generated by ΓB(E0). The basic vector field v induces a one-parameter
transformation {ft} such that each ft is an element of Diff(M,F). Then it follows
from dΦ = 0 that

divΦ = LvΦ =
d

dt
f∗t Φ

∣∣∣∣
t=0

.

Since f∗t Φ is in EO(M,F), d
dtf
∗
t Φ
∣∣
t=0

lies in the tangent space of EO(M,F) at Φ,
which is the space ΓB(E1). This implies that divΦ = d

dtf
∗
t Φ|t=0 ∈ ΓB(E1).

Thus we obtain a complex

(]Φ) 0→ ΓB(E0) d0−→ ΓB(E1) d1−→ ΓB(E2) d2−→ · · ·

where di = dB|Ei for each i. The complex (]Φ) is a subcomplex of the basic de
Rham complex:

(3.2)
0 → ΓB(E0) d0−→ ΓB(E1) d1−→ ΓB(E2) d2−→ · · ·

↓ ↓ ↓
· · · →

⊕
i

∧pi−1
B

dB−→
⊕

i

∧pi

B

dB−→
⊕

i

∧pi+1
B

dB−→ · · ·

We denote by Hk(]Φ) the cohomology groups of the complex (]Φ):

Hk(]Φ) = {α ∈ ΓB(Ek) | dkα = 0}/{dk−1β ∈ ΓB(Ek) | β ∈ ΓB(Ek−1)}.

Then, for each k ≥ 0, we define pk as the map in cohomology induced by the chain
map in (3.2):

pk : Hk(]Φ)→
⊕

iH
pi+k−1
B (M).
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If O is an elliptic orbit, then the complex (]Φ) is transverse elliptic at ΓB(E1)
and ΓB(E2). Hence the cohomology groups Hk(]Φ) for k = 1, 2 are finite-dimen-
sional from Proposition 2.1.

§4. Deformations of transverse calibrations

We suppose that F is a Riemannian foliation on a compact manifold M and
M̃O(M,F) is the set of transverse calibrations associated with an orbit O on
(M,F). Let H be the space of all closed forms on M and let E be the space of
sections Φ of EO(M,F) satisfying Ker Φ = F . The space M̃O(M,F) is the inter-
section H ∩ E . Hence we can regard the infinitesimal tangent space of M̃O(M,F)
as H∩TΦE (= H∩ΓB(E1)). We will investigate whether the infinitesimal tangent
space agrees with the tangent space of actual deformations.

Definition 4.1. A transverse calibration Φ ∈ M̃O(M,F) is unobstructed if for
any α ∈ H ∩ ΓB(E1) there exists a smooth curve Φt in M̃O(M,F) such that

d

dt
Φt

∣∣∣∣
t=0

= α.

We provide the following criterion for the unobstructedness of transverse cal-
ibrations:

Theorem 4.1. Let O be an elliptic orbit. If p2 : H2(]Φ) →
⊕

iH
pi+1
B (M) is

injective for Φ ∈ M̃O(M,F), then Φ is unobstructed.

Proof. We apply the argument of Section 2 in [8] to basic differential forms. Define
a linear operator Ad1

ad :
∧∗

B →
∧∗

B for a ∈ ΓB(End(Q)) as the commutator
[d, ρ̂a] = d ◦ ρ̂a − ρ̂a ◦ d:

Ad1
ad = [d, ρ̂a].

Inductively, we define linear operators Ad`ad :
∧∗

B →
∧∗

B for ` ≥ 2 as

Ad`ad = [Ad`−1
a d, ρ̂a]

for a ∈ ΓB(End(Q)). Let (eAda)d be the formal power series defined by

(eAda)d =
∞∑
`=0

1
`!

(Ad`ad).

The action ρea of the exponential ea ∈ ΓB(GL(Q)) is written as

(4.1) ρea = 1 + ρ̂a +
1
2!
ρ̂aρ̂a +

1
3!
ρ̂aρ̂aρ̂a + · · · .
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Then

(4.2) ρe−adρea = (eAda)d

for any section a ∈ ΓB(End(Q)).
We start to show the theorem. Suppose that α is in H∩ ΓB(E1). Then there

exists an element a1 ∈ ΓB(End(Q)) such that α = ρ̂a1Φ by the definition of
ΓB(E1). Now we consider formal power series a(t) in t:

a(t) = a1t+
1
2!
a2t

2 +
1
3!
a3t

3 + · · · ∈ ΓB(End(Q))[[t]]

where each ak is a basic section of End(Q). We define an element Φt of E as

Φt = ρea(t)Φ

for ea(t) ∈ ΓB(GL(Q))[[t]]. Then Φt satisfies d
dtΦt

∣∣
t=0

= α. Hence it is sufficient to
show that there exists an element a(t) such that Φt is a closed form, that is,

(4.3) dρea(t)Φ = 0.

Equation (4.3) is equivalent to

(4.4) (eAda(t)d)Φ = 0

by (4.2). Now we define ((eAda(t)d)Φ)[k] to be the k-th homogeneous part of
(eAda(t)d)Φ with respect to t. Then (4.4) reduces to the system of infinitely many
equations

(4.5) ((eAda(t)d)Φ)[k] = 0.

We determine the coefficients ak by induction on k, in order to obtain a
solution a(t). First, the element a1 satisfies dρ̂a1Φ = 0 since ρ̂a1Φ = α ∈ H. It
follows from the condition dΦ = 0 that ((eAda(t)d)Φ)[1] = dΦ+[d, ρ̂a1 ]Φ = 0. Next,
we assume that a1, . . . , ak−1 satisfy ((eAda(t)d)Φ)[j] = 0 for j ≤ k− 1. We define a
form Ob(a1, . . . , ak−1) by

Ob(a1, . . . , ak−1) =
( k∑
`=2

1
`!

(Ad`a(t)d)Φ
)

[k]

.

For simplicity, we denote by Obk the obstruction form Ob(a1, . . . , ak−1). Then
Obk is a section of ΓB(E2) and satisfies

((eAda(t)d)Φ)[k] = Obk +
1
k!
dρ̂ak

Φ.
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From the induction hypothesis, we have (dρea(t)Φ)[k] = ((eAda(t)d)Φ)[k]. Thus Obk
is d-exact and d2-closed. We can consider the cohomology class [Obk] in H2(]Φ)
and call it the k-th obstruction class. In the case of ((eAda(t)d)Φ)[k] = 0, one has
[Obk] = [ 1

k!dρ̂ak
Φ] = 0 in H2(]Φ). Conversely, if the class [Obk] is zero, then ak

may be found so that a(t) satisfies the equation ((eAda(t)d)Φ)[k] = 0. In fact, by
applying basic Hodge theory to the basic elliptic complex (]Φ), we can take an
element ak such that

(4.6)
1
k!
ρ̂ak

Φ = −d∗1G](Obk)

where G] and d∗1 are the Green’s operator and the adjoint operator of d1, respec-
tively.

If the map p2 : H2(]Φ)→
⊕

iH
pi+1
B (M) is injective, then the obstruction class

[Obk] ∈ H2(]Φ) vanishes for all k since Obk is d-exact. By the above argument,
the elements ak defined by (4.6) satisfy (4.5) for all k ≥ 1. Hence we obtain a
solution a(t) of (4.3) as a formal power series. Moreover, this formal power series
converges uniformly in the Sobolev norm ‖ · ‖s.

We discuss the regularity of the solution a(t) constructed above. We recall that
the element a1 satisfies dρ̂a1Φ = 0 as an initial condition and the coefficients ak
for k ≥ 2 are defined by (4.6). Hence the power series a(t) satisfies

d∗0ρ̂a(t)Φ = d∗0ρ̂a1Φ

since d∗0ρ̂ak
Φ = 0 for k ≥ 2. Moreover, we have

dρ̂a(t)Φ +
∞∑
`=2

1
`
dρ̂`a(t)Φ = 0

from dρea(t)Φ = 0 and (4.1). Thus ρ̂a(t)Φ is weak solution of the basic elliptic
differential equation

∆]ρ̂a(t)Φ + d∗1

( ∞∑
`=2

1
`
dρ̂`a(t)Φ

)
= d0d

∗
0ρ̂a1Φ

where ∆] is the basic Laplace operator d∗1d1 +d0d
∗
0. Elliptic regularity implies that

the solution ρ̂a(t)Φ is smooth for a smooth element ρ̂a1Φ. Hence the form ρea(t)Φ
is also smooth.

§5. A generalization of Moser’s stability theorem

Let M be a compact manifold of dimension p + q and F a Riemannian folia-
tion on M of codimension q. Let M̃O(M,F) be the set of transverse calibrations
associated with an orbit O on (M,F).
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We fix a transverse calibration Φ ∈ M̃O(M,F). Let EkΦ denote the vector
bundle EkΦ(M,F) defined in Section 3.2. We define a vector bundle Ek,⊥Φ to be the
orthogonal complement of EkΦ in

⊕
i

∧pi+k−1
Q∗ with respect to the metric induced

by the transverse Riemannian structure on (M,F). We can identify ΓB(Ek,⊥Φ ) with
the quotient

⊕
i

∧pi+k−1
B /ΓB(EkΦ) since each vector bundle Ek,⊥Φ is isomorphic to

the quotient bundle
⊕

i

∧pi+k−1
Q∗/EkΦ. Then the basic exterior derivative dB on⊕

i

∧pi+k−1
B induces a differential operator d⊥ : ΓB(Ek,⊥Φ )→ ΓB(Ek+1,⊥

Φ ), and we
obtain the differential complex

(]⊥Φ) 0→ ΓB(E0,⊥
Φ ) d⊥−→ ΓB(E1,⊥

Φ ) d⊥−→ ΓB(E2,⊥
Φ ) d⊥−→ · · ·

For simplicity, we shall denote by Ek,⊥ the bundle Ek,⊥Φ . The complex (]⊥Φ) is
related to the basic de Rham complex as follows:

(5.1)
· · · →

⊕
i

∧pi−1
B

dB−→
⊕

i

∧pi

B

dB−→
⊕

i

∧pi+1
B

dB−→ · · ·
↓ ↓ ↓

0 → ΓB(E0,⊥) d⊥−→ ΓB(E1,⊥) d⊥−→ ΓB(E2,⊥) d⊥−→ · · ·

where the vertical arrows are epimorphisms. We denote by Hk(]⊥Φ) the cohomology
groups of the complex (]⊥Φ):

Hk(]⊥Φ) = {α ∈ ΓB(Ek,⊥) | d⊥α = 0}/{d⊥β ∈ ΓB(Ek,⊥) | β ∈ ΓB(Ek−1,⊥)}.

Then, for each k ≥ 0, we define pk,⊥ as the map in cohomology induced by the
chain map in (5.1):

pk,⊥ :
⊕

iH
pi+k−1
B (M)→ Hk(]⊥Φ).

We see that there is a relation between the complex (]⊥Φ) and the complex (]Φ)
defined in Section 3.2. By the construction of Ek,⊥ we obtain the commutative
diagram

0 0 0
↓ ↓ ↓

0 → ΓB(E0) d0−→ ΓB(E1) d1−→ ΓB(E2) d2−→ · · ·
↓ ↓ ↓

· · · →
⊕

i

∧pi−1
B

dB−→
⊕

i

∧pi

B

dB−→
⊕

i

∧pi+1
B

dB−→ · · ·
↓ ↓ ↓

0 → ΓB(E0,⊥) d⊥−→ ΓB(E1,⊥) d⊥−→ ΓB(E2,⊥) d⊥−→ · · ·
↓ ↓ ↓
0 0 0

where the columns are exact. By the standard construction of a long exact sequence
in cohomology from a short exact sequence of chain complexes, we can easily show
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Lemma 5.1. If the complex (]Φ) is transversely elliptic at ΓB(Ek), then the com-
plex (]⊥Φ) is also transversely elliptic at ΓB(Ek−1,⊥).

Next, we provide a sufficient condition for the map p1,⊥ to be surjective.

Lemma 5.2. If the map p2 : H2(]Φ)→
⊕

iH
pi+1
B (M) is injective, then the map

p1,⊥ :
⊕

iH
pi

B (M)→ H1(]⊥Φ) is surjective.

Proof. We define an injection i and a surjection π as follows:

0→ ΓB(Ek) i→
⊕

i

∧pi+k−1
B

π→ ΓB(Ek,⊥)→ 0

for each k ≥ 0. Now we consider the diagram

0 0 0
↓ ↓ ↓

ΓB(E1) d1−→ ΓB(E2) d2−→ ΓB(E3)
↓ ↓ ↓⊕
i

∧pi

B

dB−→
⊕

i

∧pi+1
B

dB−→
⊕

i

∧pi+2
B

↓ ↓

ΓB(E1,⊥) d⊥−→ ΓB(E2,⊥)
↓ ↓
0 0

Suppose [φ⊥] ∈ H1(]⊥Φ) where φ⊥ is an element of ΓB(E1,⊥) with d⊥φ⊥ = 0. Then
we can choose an element φ′ ∈

⊕
i

∧pi

B such that π(φ′) = φ⊥. This φ′ satisfies
π(dBφ

′) = d⊥π(φ′) = 0. From the exactness of ΓB(E2)→
⊕

i

∧pi+1
B → ΓB(E2,⊥),

there exists an element ψ ∈ ΓB(E2) with i(ψ) = dBφ
′. Then ψ is d2-closed, and the

class [ψ] ∈ H2(]Φ) is in the kernel of p2. So we can take an element φ′′ ∈ ΓB(E1)
with d1φ

′′ = ψ since p2 is injective. Now we define φ by φ′ − i(φ′′) ∈
⊕

i

∧pi+1
B .

Then it is easy to see that dBφ = 0 and π(φ) = φ⊥. Thus we obtain the class
[φ] ∈

⊕
iH

pi

B (M) satisfying p1,⊥([φ]) = [φ⊥], and this finishes the proof.

We now show that the dimension of H1(]Φ) is invariant under deformations
of Φ ∈ M̃O(M,F):

Proposition 5.1. Let O be an elliptic orbit and {Φt}t∈[0,1] a smooth family of
M̃O(M,F). If the maps p1 and p2 are injective for each t ∈ [0, 1], then dimH1(]Φt)
is independent of t ∈ [0, 1].

Proof. The complex (]Φt
) is transversely elliptic at E1

Φt
by the definition of the el-

liptic orbit O. The complex (]⊥Φt
) is also transversely elliptic at E1,⊥

Φt
by Lemma 5.1.
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Therefore, each of the cohomology groups H1(]Φt
) and H1(]⊥Φt

) is the kernel of a
transversely elliptic operator. Hence the dimensions dimH1(]Φt

) and dimH1(]⊥Φt
)

are upper semicontinuous in t.
We have the exact sequence

0→ H1(]Φt
)→

⊕
iH

pi

B (M)→ H1(]⊥Φt
)→ 0

for each t ∈ [0, 1] by using Lemma 5.2 and the assumptions on p1 and p2. This
sequence yields

(5.2) dimH1(]Φt
) =

∑
i

dimHpi

B (M)− dimH1(]⊥Φt
)

for each t ∈ [0, 1]. From (5.2) and the upper semicontinuity of dimH1(]⊥Φt
) it

follows that dimH1(]Φt) is lower semicontinuous. On the other hand, it is upper
semicontinuous. Therefore it is independent of t in a small interval, and hence in
the whole [0, 1] by compactness. This completes the proof.

Let Diff0(M,F) denote the identity component of Diff(M,F). We provide a
generalization of Moser’s stability theorem:

Theorem 5.1. Let O be an elliptic orbit and {Φt}t∈[0,1] a smooth family of
M̃O(M,F) with the same basic cohomology class [Φt] = [Φ0] ∈

⊕
iH

pi

B (M). If
the maps p1 and p2 are injective for each t ∈ [0, 1], then there exists a smooth
family {ft}t∈[0,1] of Diff0(M,F) such that f0 = idM and f∗t Φt = Φ0.

Proof. By assumption we may choose an element At ∈
⊕

i

∧pi

B with smooth de-
pendence on t such that

Φt − Φ0 = dAt

for each t ∈ [0, 1]. It suffices to find a smooth family ft ∈ Diff0(M,F) such that

(5.3)
d

dt
(f∗t Φt) = 0.

Note that (f−1
t )∗ḟ∗t Φt is the infinitesimal transformation Lvt

Φt for some basic
vector field vt. So (5.3) is equivalent to

LvtΦt + dȦt = 0.

Hence the proof reduces to finding a smooth family of basic vector fields vt ∈ ΓB(Q)
with Lvt

Φt = −dȦt. Now the class [dȦt] of H1(]Φt
) vanishes since p1 : H1(]Φt

)→⊕
iH

pi

B (M) is injective. Thus we can define an element Bt of ΓB(E0
Φt

) as

Bt = −d∗0G]Φt
dȦt
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where d∗0 and G]Φt
denote the adjoint operator of d0 and Green’s operator at

ΓB(E1
Φt

) of the complex (]Φt
), respectively. Note that dimH1(]Φt

) is independent
of t from Proposition 5.1, so the families dȦt = Φ̇t and G]Φt

are smooth in t ∈ [0, 1].
Hence there exists a smooth family vt ∈ ΓB(Q) such that Bt = ivt

Φt by the
definition of ΓB(E0

Φt
). Then LvtΦt = dBt = −dȦt. We thus obtain a smooth

family {ft}t∈[0,1] in Diff0(M,F) satisfying (5.3), which completes the proof.

§6. Applications

We assume that M is a compact manifold with a Riemannian foliation F of codi-
mension 2n. Let F denote the integrable distribution induced by F .

§6.1. Transverse symplectic structures

A transverse symplectic foliation F on M is characterized by the following struc-
ture.

Definition 6.1. A real 2-form ω ∈
∧2 is called a transverse symplectic structure

on (M,F) if ω is a basic form on (M,F) such that dω = 0 and ωn 6= 0.

Let M̃symp(M,F) be the set of transverse symplectic structures on (M,F).
A transverse symplectic structure ω is a transverse calibration associated with the
orbit Osymp. Hence we can regard M̃symp(M,F) as the set of transverse calibra-
tions associated with Osymp.

Lemma 6.1. For any ω ∈ M̃symp(M,F), the maps pk : Hk(]ω)→ Hk+1
B (M) are

injective for k ≥ 1.

Proof. For a transverse symplectic structure ω ∈ M̃symp(M,F), it is known that
ΓB(Ekω) =

∧k+1
B for k ≥ 0. Therefore we obtain the cohomology group Hk(]ω) =

Hk+1
B (M) for each k ≥ 1, so each pk : Hk(]ω)→ Hk+1

B (M) is an isomorphism.

Observe that a transverse symplectic structure ω on (M,F) is a presymplec-
tic form on M such that Kerω = F . By applying Theorem 5.1 to the elliptic
orbit Osymp, we obtain Moser’s stability theorem for presymplectic forms:

Theorem 6.1. Let {ωt}t∈[0,1] be a smooth family of presymplectic forms on M

with Kerωt = F and the same basic cohomology class [ωt] = [ω0] ∈ H2
B(M) for all

t ∈ [0, 1]. Then there exists a smooth family {ft}t∈[0,1] in Diff0(M,F) such that
f0 = idM and f∗t ωt = ω0.
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§6.2. Transverse SLn(C) structures

Definition 6.2. A nowhere vanishing complex n-form Ω ∈
∧n ⊗ C is called a

transverse SLn(C) structure on (M,F) if Ω is a basic form such that dΩ = 0 and

Q⊗ C = Ker Ω/F ⊕Ker Ω/F

where Ker Ω = {v ∈ TM ⊗ C | ivΩ = 0}.

A transverse SLn(C) structure Ω induces a complex structure JΩ of Q such
that Ω is an (n, 0)-basic form on (M,F) (see Example 2). Then we can check that
dθ ∈

∧2,0
B ⊕

∧1,1
B for any θ ∈

∧1,0
B because (dθ)∧Ω = 0. It follows from the Remark

before Definition 2.7 that JΩ is a transverse complex structure on (M,F). Hence
(F , JΩ) is a transverse holomorphic foliation on M . Let M̃SL(M,F) be the space of
transverse SLn(C) structures on (M,F). Any element Ω ∈ M̃SL(M,F) induces a
transverse calibration associated with the orbit OSL, and conversely. Thus, we can
identify M̃SL(M,F) with the set M̃OSL(M,F) of transverse calibrations associated
with the orbit OSL. We recall that the orbit OSL is elliptic. For Ω ∈ M̃SL(M,F)
the complex (]Ω) is

0→
∧n−1,0

B

d0−→
∧n,0

B ⊕
∧n−1,1

B

d1−→
∧n,1

B ⊕
∧n−1,2

B

d2−→ · · · .

Unfortunately, the maps p1 and p2 are not always injective for Ω ∈ M̃SL(M,F).
However, we obtain

Proposition 6.1. If (F , JΩ) is a transverse Kähler foliation, then Ω is unob-
structed.

Proof. We suppose that Ω ∈ M̃SL(M,F) is such that (F , JΩ) is a transverse Kähler
foliation on M . By modifying the argument of Proposition 4.4 in [8], we obtain

H1(]Ω) = Hn,0
B (M)⊕Hn−1,1

B (M), H2(]Ω) = Hn,1
B (M)⊕Hn−1,2

B (M).

The maps p1 and p2 are injective by Proposition 2.3. Applying Theorem 4.1 to the
elliptic orbit OSL completes the proof.

§6.3. Transverse Calabi–Yau structures

Definition 6.3. A pair (Ω, ω) ∈
∧n

B ⊗ C⊕
∧2

B is called a transverse Calabi–Yau
structure on (M,F) if Ω is a transverse SLn(C) structure and ω is a transverse
symplectic structure on (M,F) such that

Ω ∧ ω = 0, Ω ∧ Ω̄ = cnω
n 6= 0, ω(·, JΩ·) is positive definite on Q,

where cn = 1
n! (−1)n(n−1)/2(2/

√
−1)n.
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We denote by M̃CY(M,F) the space of transverse Calabi–Yau structures on
(M,F). Any element Φ = (Ω, ω) of M̃CY(M,F) is a transverse calibration associ-
ated with the elliptic orbit OCY.

Proposition 6.2. The maps p1 and p2 are injective for any Φ ∈ M̃CY(M,F).

Proof. Given Φ ∈ M̃CY(M,F), by adapting the computation of cohomology
groups in [8, Theorem 4.8] to basic forms we obtain

H1(]Φ) =Hn,0
B (M)⊕Hn−1,1

B (M)⊕ P1,1
B,R,

H2(]Φ) =Hn,1
B (M)⊕Hn−1,2

B (M)⊕ (H2,1
B (M)⊕H1,2

B (M))R

where (H2,1
B (M)⊕H1,2

B (M))R and P1,1
B,R denote the real part of H2,1

B (M)⊕H1,2
B (M)

and the space of real harmonic and primitive basic (1, 1)-forms, respectively. Hence
the maps

p1 : H1(]Φ)→ Hn
B(M,C)⊕H2

B(M),

p2 : H2(]Φ)→ Hn+1
B (M,C)⊕H3

B(M)

are injective from Proposition 2.3 and the Lefschetz decomposition of basic differ-
ential forms (cf. [5, Section 3.4.7]).

We obtain the following results:

Theorem 6.2. Any element of M̃CY(M,F) is unobstructed.

Proof. This follows immediately from Theorem 4.1 and Proposition 6.2.

Theorem 6.3. Let {(Ωt, ωt)}t∈[0,1] be a smooth family of transverse Calabi–Yau
structures on (M,F) with the same basic cohomology class ([Ωt], [ωt]) = ([Ω0], [ω0])
∈ Hn

B(M,C) ⊕ H2
B(M) for any t ∈ [0, 1]. Then there exists a smooth family

{ft}t∈[0,1] in Diff0(M,F) such that f0 = idM and (f∗t Ωt, f∗t ωt) = (Ω0, ω0).

Proof. Apply Theorem 5.1 and Proposition 6.2.

Remark. We can also obtain Moser’s stability theorems and unobstructed defor-
mations of transverse hyperkähler, G2 and Spin(7) structures by applying Theo-
rems 4.1 and 5.1 to these structures (cf. Sections 5, 6 and 7 in [8]).

§6.4. Linear foliations on tori

Let T 2n+1 be the real torus R2n+1/Z2n+1 of dimension 2n + 1. We take a local
coordinate (x1, . . . , xn, y1, . . . , yn, t) on T 2n+1. Then a foliation F(λ,µ) is induced
by the vector field

ξ =
n∑
i=1

λi
∂

∂xi
+ µi

∂

∂yi
− ∂

∂t
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for (λ, µ) = (λ1, . . . , λn, µ1, . . . , µn) ∈ R2n. The foliation F(λ,µ) is called a linear
foliation on T 2n+1. Note that F(λ,µ) is a Riemannian foliation with respect to the
standard flat metric on T 2n+1. We define zi to be the complex function

zi = xi + λit+
√
−1(yi + µit)

for i = 1, . . . , n. Then (z1, . . . , zn) becomes a transverse coordinate on
(T 2n+1,F(λ,µ)). Now we define a pair (Ω, ω) of forms as

Ω = dz1 ∧ · · · ∧ dzn, ω =
√
−1
2

n∑
i=1

dzi ∧ dz̄i.

Then it is easy to check that (Ω, ω) is a transverse Calabi–Yau structure on
(T 2n+1,F(λ,µ)). In particular, the n-form Ω is a transverse SLn(C) structure so that
(F(λ,µ), JΩ) is a transverse Kähler foliation. Hence, it follows from Proposition 6.1
that Ω ∈ M̃SL(T 2n+1,F(λ,µ)) is unobstructed and H1(]Ω) equals Hn,0

B (T 2n+1) ⊕
Hn−1,1

B (T 2n+1). The vector space Hp,q
B (T 2n+1) is generated by the classes of the

wedge products dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ z̄jq , and thus we obtain

dimC H
p,q
B (T 2n+1) =

(
n

p

)(
n

q

)
.

The first cohomology group H1(]Ω) can be regarded as a parameter space of de-
formations of the transverse SLn(C) structure Ω, and has the dimension

dimC H
1(]Ω) = dimC(Hn,0

B (T 2n+1)⊕Hn−1,1
B (T 2n+1)) = 1 + n2.

Next, we consider the deformations of transverse Calabi–Yau structures on
(T 2n+1,F(λ,µ)). By Theorem 6.2, any element Φ ∈ M̃CY(T 2n+1,F(λ,µ)) is unob-
structed and H1(]Φ) is equal to Hn,0

B (T 2n+1)⊕Hn−1,1
B (T 2n+1)⊕ P1,1

B,R. It follows
that

dimR P1,1
B,R = dimC P1,1

B = n2 − 1

from the basic Lefschetz decomposition H1,1
B (T 2n+1) = P1,1

B +Cω. Hence, any ele-
ment Φ ∈ M̃CY(T 2n+1,F(λ,µ)) essentially has a deformation space parameterized
by H1(]Φ) whose dimension is

dimR H
1(]Φ) = 2(1 + n2) + n2 − 1 = 3n2 + 1.
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