
Publ. RIMS Kyoto Univ. 46 (2010), 359–422
DOI 10.2977/PRIMS/12

Toward Resolution of Singularities over a Field of
Positive Characteristic

(The Idealistic Filtration Program)

Dedicated to Professor Heisuke Hironaka

Part II.
Basic invariants associated to the idealistic filtration

and their properties

by

Hiraku Kawanoue and Kenji Matsuki

Abstract

This is the second of a series of four papers entitled “Toward resolution of singularities
over a field of positive characteristic (the Idealistic Filtration Program)”. The goal is to
present the IFP, and to ultimately construct an explicit algorithm guided by the program.

In the classical setting in characteristic zero, resolution of singularities was carried
out by induction on dimension. We take a so-called “hypersurface of maximal contact”
to reduce the dimension by one. In the algorithm, we construct the strand of invariants
“ invclassic” of the following form:

invclassic = (w, s)(w, s)(w, s) · · · ,

where the unit (w, s) consists of the weak order w and the number s of the “old” compo-
nents in the boundary. Going from one unit to the next, the dimension of the object which
we use to extract the information to compute the invariants drops by one, manifesting
the induction on dimension. We run the algorithm with the center of blowup determined
as the maximal locus of “invclassic”.

In our new setting in positive characteristic, we no longer have a hypersurface of
maximal contact. However, we try to carry out the induction on “invariant σ”, which
indicates the behavior of “a Leading Generator System”. The notion of an LGS plays
the role of a collective substitute for a hypersurface of maximal contact in the IFP.
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Accordingly, in our new algorithm, we construct the strand of invariants “inv” of the
following form:

inv = (σ, eµ, s)(σ, eµ, s)(σ, eµ, s) · · · ,
where the unit (σ, eµ, s) consists of the above mentioned σ, followed by eµ and s, which
correspond to w and s in the classical setting, respectively. Going from one unit to the
next, the invariant σ of the LGS of the object, namely an idealistic filtration, strictly
drops, manifesting the induction on the invariant σ. We run the new algorithm with the
center of blowup determined as the maximal locus of “inv”.

The main purpose of this paper, Part II of the series, is to study the basic properties
of the invariants that appear in the strand of invariants “ inv”, establishing the upper semi-
continuity of the pair (σ, eµ) among others.

2010 Mathematics Subject Classification: Primary 14E15.
Keywords: resolution of singularities, positive characteristic, algorithm, idealistic filtra-
tion.
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Chapter 0. Introduction to Part II

§0.1. Overview of the series

This is the second of a series of papers under the title “Toward resolution of singu-
larities over a field of positive characteristic (the Idealistic Filtration Program)”:

Part I. Foundation; the language of the idealistic filtration
Part II. Basic invariants associated to the idealistic filtration

and their properties
Part III. Transformations and modifications of the idealistic filtration
Part IV. Algorithm in the framework of the idealistic filtration.

For a brief summary of the entire series, including its goal and the overview of the
Idealistic Filtration Program (called the IFP for short), we refer the reader to the
introduction in Part I [Kaw07]. The outline of Part II is presented below.

§0.2. Outline of Part II

As described in the overview of the IFP (cf. §0.2 in Part I), we construct a strand
of invariants, whose maximum locus determines each center of blowup of our algo-
rithm for resolution of singularities. The strand of invariants consists of units (cf.
0.2.3.2.2 in Part I), each of which is a triplet of numbers (σ, µ̃, s) associated to a
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certain idealistic filtration (cf. Chapter 2 in Part I) and a simple normal crossing
divisor E called a boundary. (To be precise, the invariant σ is a sequence of num-
bers indexed by Z≥0 as described in Definition 3.2.1.1 in Part I.) The purpose of
Part II is to establish the fundamental properties of the invariants σ and µ̃. They
are the main constituents of the unit, while the remaining factor s can easily be
computed as the number of (certain specified) components in the boundary pass-
ing through a given point, and needs no further mathematical discussion. Our goal
is to study the intrinsic nature of these invariants associated to a given idealistic
filtration. The discussion in Part II does not involve the analysis regarding the
exceptional divisors created by blowups, and hence could only be directly applied
to the situation in year 0 of our algorithm. The systematic discussion on how some
subtle adjustments should be made in the presence of the exceptional divisors after
year 0 and on how the strand of invariants functions in the algorithm, built upon
the analysis in Part III of the modifications and transformations of an idealistic
filtration, will have to wait for Part IV.

In the appendix, we report a new development, unexpected at the time of
writing Part I, which suggests a possibility of constructing an algorithm using
only the D-saturation (or DE-saturation) but not the R-saturation, still within
the framework of the IFP. This would avoid the problem of termination, which we
specified in the introduction to Part I as the only missing piece toward completing
our algorithm in positive characteristic. (See §0.3 for the further developments and
“evolution” of the IFP up to date.)

The following is a rough description of the content of each chapter and the
appendix in Part II. Throughout the description, let R be the coordinate ring of
an affine open subset of a nonsingular variety W of dimension d = dimW over an
algebraically closed field k of characteristic char(k) = p > 0 or char(k) = 0, where
in the latter case we set p =∞ formally (cf. 0.2.3.2.1 and Definition 3.1.1.1(2) in
Part I).

0.2.1. Invariant σ. Chapter 1 is devoted to the discussion of the invariant σ,
which is defined for a D-saturated idealistic filtration I over R (cf. 2.1.2 in Part I).
The subtle adjustment of the invariant σ, in the presence of the exceptional divi-
sor E, which is defined for a DE-saturated idealistic filtration (cf. 1.2.2 in Part I),
will be postponed to Parts III and IV.

0.2.1.1. Leading algebra and its structure. We fix a closed point P ∈ SpecR
⊂ W , with mP denoting the maximal ideal of the local ring RP . The leading
algebra L(IP ) of the localization IP of the idealistic filtration I at P is defined
to be the graded k-subalgebra of GP =

⊕
n∈Z≥0

(GP )n =
⊕

n∈Z≥0
mn
P /m

n+1
P (cf.

3.1.1 in Part I)
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L(IP ) =
⊕
n∈Z≥0

L(IP )n ⊂ GP ,

where
L(IP )n = {f = (f mod mn+1

P ) ; (f, n) ∈ IP , f ∈ mn
P }.

For e ∈ Z≥0 with pe ∈ Z>0, we define the pure part L(IP )pure
pe of L(IP )pe by the

formula
L(IP )pure

pe = L(IP )pe ∩ F e((GP )1) ⊂ L(IP )pe

where F e is the e-th power of the Frobenius map of GP .
The most remarkable structure of the leading algebra L(IP ) is that it is gen-

erated by its pure part (cf. Lemma 3.1.2.1 in Part I), i.e.,

L(IP ) = k[L(IP )pure] where L(IP )pure =
⊔

e∈Z≥0

L(IP )pure
pe .

This follows from the fact that IP is D-saturated, since so is I (cf. compatibility
of D-saturation with localization, discussed in §2.4 in Part I).

0.2.1.2. Definition of the invariant σ and its computation. We define the
invariant σ(P ) by the formula

σ(P ) = (d− lpure
pe (P ))e∈Z≥0 ∈

∏
e∈Z≥0

Z≥0 where lpure
pe (P ) = dimk L(IP )pure

pe ,

which reflects the behavior of the pure part of the leading algebra L(IP ). Varying P
among all the closed points, m-SpecR (i.e., all the maximal ideals of R), we obtain
the invariant

σ : m-SpecR→
∏
e∈Z≥0

Z≥0.

Recall that Lemma 3.1.2.1 in Part I gives the description of a specific set of gener-
ators for the leading algebra L(IP ) taken from its pure part. Using this lemma, we
can compute the dimension of the pure part, lpure

pe (P ) = dimk L(IP )pure
pe , in terms

of the dimension of the entire degree pe component, lpe(P ) = dimk L(IP )pe , and
in terms of the dimensions of the pure parts, lpure

pα (P ) for α = 0, . . . , e−1. That is,
lpure
pe (P ) can be computed inductively from lpe(P ) and the dimensions of the pure
parts of lower degree.

0.2.1.3. Upper semi-continuity of the invariant σ. We observe that lpe(P )
can be computed as the rank of a certain “Jacobian-like” matrix, and hence is easily
seen to be lower semi-continuous as a function of P . The upper semi-continuity
of the invariant σ = (d− lpure

pe )e∈Z≥0 then follows immediately from the inductive
computation of the pure part lpure

pe described in 0.2.1.2. The upper semi-continuity
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of the invariant σ as a function over m-Spec R also allows us to extend its domain
to SpecR. That is, we have the invariant σ defined over the extended domain

σ : SpecR→
∏
e∈Z≥0

Z≥0,

which is automatically upper semi-continuous as a function over SpecR.

0.2.1.4. Clarification of the meaning of the upper semi-continuity. We say
by definition that a function f : X → T , from a topological space X to a totally
ordered set T , is upper semi-continuous if the set X≥t = {x ∈ X ; f(x) ≥ t}
is closed for any t ∈ T . When the target space T is not well-ordered, however,
we have to be extra careful if we try to see the equivalence of this definition
to the other “well-known” conditions for the upper semi-continuity. The target
space of the invariant σ : m-SpecR →

∏
e∈Z≥0

Z≥0 is a priori not well-ordered.
Nevertheless, using the fact that lpure

pe (P ) is nondecreasing as a function of e ∈ Z≥0

for a fixed P ∈ m-SpecR, we observe that the target space for the invariant σ can
be replaced by some well-ordered subset. Then it can be easily seen that the upper
semi-continuity of the invariant σ in the above sense is actually equivalent to the
condition that, given a point P ∈ m-SpecR, there exists a neighborhood UP of P
such that σ(P ) ≥ σ(Q) for any point Q ∈ UP . From this upper semi-continuity,
interpreted in the equivalent condition, it follows that the domain of the invariant
σ can be extended from m-SpecR to SpecR, as mentioned at the end of 0.2.1.3. We
summarize the basic facts surrounding the definition of the upper semi-continuity
in Chapter 1 for the sake of clarification.

0.2.1.5. Local behavior of a leading generator system1, and its modifica-
tion into one which is uniformly pure. Recall that a subset H = {(hl, pel)}Nl=1

⊂ IP with associated nonnegative integers 0 ≤ e1 ≤ · · · ≤ eN is said to be a lead-
ing generator system (LGS) of the idealistic filtration IP if the leading terms of
its elements provide a specific set of generators for the leading algebra L(IP ), as
described in Lemma 3.1.2.1 in Part I. More precisely, it satisfies the following
conditions (cf. 3.1.3 in Part I):

(i) hl ∈ mpel

P and hl = (hl mod mpel+1
P ) ∈ L(IP )pure

pel for l = 1, . . . , N ,

(ii) {hl
pe−el

; el ≤ e} consists of #{l ; el ≤ e} distinct elements, and forms a k-
basis of L(IP )pure

pe for any e ∈ Z≥0.

1We use the abbreviation “LGS” for “Leading Generator System”. Prof. Cossart kindly sug-
gested to us that “LGS” could be read “Leading Giraud System” in honor of J. Giraud, whose
contribution (cf. [Gir74], [Gir75]) is profound in search of the right notion of “a hypersurface of
maximal contact” in positive characteristic.
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Since the leading algebra L(IP ) is generated by its pure part

L(IP )pure =
⊔

e∈Z≥0

L(IP )pure
pe (cf. 0.2.1.1),

we conclude from condition (ii) that the leading terms {hl = (hl mod mpel+1
P )}Nl=1

of H provide a set of generators for L(IP ), i.e., L(IP ) = k[{hl}Nl=1].
A basic question then about the local behavior of an LGS is:
Does H remain an LGS of IQ for any closed point Q in a neighborhood UP

of P (if we take UP small enough)?
Even though the answer is no in general, we show that we can modify a

given LGS H into a new one H′ such that H′ is an LGS of IQ for any closed
point Q in a neighborhood UP , as long as Q is in the local maximum locus of the
invariant σ (and Q is in the support of I). The last extra condition is equivalent to
σ(Q) = σ(P ) by the upper semi-continuity of the invariant σ. We then say H′ is
uniformly pure. We will use this modification as the main tool to derive the upper
semi-continuity of the pair of invariants (σ, µ̃) in Chapter 3.

0.2.2. Power series expansion. Chapter 2 is devoted to the discussion of the
power series expansion with respect to an LGS and its (weakly-)associated regular
system of parameters.

0.2.2.1. Similarities between a regular system of parameters and a lead-
ing generator system. If we have an LGS H = {(hl, pel)}Nl=1 in character-
istic zero (for a D-saturated idealistic filtration IP over RP at a closed point
P ∈ SpecR ⊂ W ), then the elements in the LGS are all concentrated at level 1,
i.e., el = 0 and pel = 1 for l = 1, . . . , N (cf. Chapter 3 in Part I). This im-
plies by the definition of an LGS that the set of the elements H = (h1, . . . , hl)
forms (a part of) a regular system of parameters (x1, . . . , xd). (Say, hl = xl for
l = 1, . . . , N .) In positive characteristic, this is no longer the case. However, we
can still regard the notion of an LGS as a generalization of the notion of a reg-
ular system of parameters, and we may expect some similarities between the two
notions. One of such expected similarities is the power series expansion, which we
discuss next.

0.2.2.2. Power series expansion with respect to a leading generator sys-
tem. In characteristic zero, any element f ∈ RP has a power series expansion
(with respect to the regular system of parameters X = (x1, . . . , xd), where hl = xl
for l = 1, . . . , N , with H = (h1, . . . , hN ) consisting of the elements of an LGS as
described in 0.2.2.1)

f =
∑

I∈(Z≥0)d

aIX
I =

∑
B∈(Z≥0)N

cBH
B
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where aI ∈ k and where cB is a power series in terms of the remainder (xN+1, . . . ,

xd) of the regular system of parameters.
In positive characteristic, we expect to have a power series expansion with

respect to an LGS. More specifically and more generally, the setting for Chapter 2
is given as follows. We have a subset H = {h1, . . . , hN} ⊂ RP consisting of N
elements, and nonnegative integers 0 ≤ e1 ≤ · · · ≤ eN attached to these elements,
satisfying the following conditions (cf. 4.1.1 in Part I):

(i) hl ∈ mpel

P and hl = (hl mod mpel+1
P ) = vp

el

l with vl ∈ mP /m
2
P for l = 1, . . . , N ,

(ii) {vl ; l = 1, . . . , N} ⊂ mP /m
2
P consists of N distinct and k-linearly independent

elements in the k-vector space mP /m
2
P .

We also take a regular system of parameters (x1, . . . , xd) such that

vl = xl = (xl mod m2
P ) for l = 1, . . . , N.

(We say that a regular system of parameters (x1, . . . , xd) is associated to H =
(h1, . . . , hN ) if the above condition is satisfied. For the description of the condition
of (x1, . . . , xd) being weakly-associated to H, we refer the reader to Chapter 2.)

Now we claim that any element f ∈ RP has a power series expansion of the
form

(?) f =
∑

B∈(Z≥0)N

cBH
B where cB =

∑
K∈(Z≥0)d

bB,KX
K ,

with bB,K being a power series in terms of the remainder (xN+1, . . . , xd) of the
regular system of parameters, and with K = (k1, . . . , kd) varying in the range
satisfying the condition

0 ≤ kl ≤ pel − 1 for l = 1, . . . , N and kl = 0 for l = N + 1, . . . , d.

The existence of a power series expansion of the form (?) and its uniqueness (with
respect to a fixed subset H and its chosen (weakly-)associated regular system of
parameters (x1, . . . , xd)) follow immediately, and are the results stated indepen-
dently of the notion of an idealistic filtration.

0.2.2.3. Formal coefficient lemma. In the general setting as described in
0.2.2.2, the discussion of the power series expansion of the form (?) does not
involve the notion of an idealistic filtration. The most interesting and important
result regarding the power series expansion of the form (?), however, is obtained
when we introduce and require the following condition for H to satisfy, involving
a D-saturated idealistic filtration IP over RP :

(iii) (hl, pel) ∈ IP for l = 1, . . . , N .
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Now the formal coefficient lemma claims

(f, a) ∈ ÎP , f =
∑

B∈(Z≥0)N

cBH
B ⇒ (cB , a− |[B]|) ∈ ÎP for any B ∈ (Z≥0)N .

(We recall that, for B = (b1, . . . , bN ) ∈ (Z≥0)N , we denote (pe1b1, . . . , peN bN )
by [B] and

∑N
l=1 p

elbl by |[B]|. For the definition of the completion ÎP of the
idealistic filtration IP , we refer the reader to §2.4 in Part I.) The statement of the
formal coefficient lemma turns out to be quite useful and powerful. In fact, Lemma
4.1.4.1 (Coefficient Lemma) in Part I can be obtained as a corollary to this formal
version in Part II. We will see some applications of the formal coefficient lemma
not only in Chapter 3 when we study the invariant µ̃, but also in Part III when
we analyze the modifications and transformations of an idealistic filtration, and in
Part IV when we give the description of our algorithm.

0.2.3. Invariant µ̃. Chapter 3 is devoted to the discussion of the invariant µ̃,
which is a counterpart in the new setting of the IFP to the notion of the “weak
order” in the classical setting, whose definition involves the exceptional divisors.
Naturally, when we carry out our algorithm, the definition of the invariant µ̃ in
the middle of its process involves the exceptional divisors created by blowups. It
also involves the subtle adjustments we have to make to the notion of an LGS for
a DE-saturated idealistic filtration in the presence of the exceptional divisor E (cf.
0.2.1). However, we restrict the discussion of the invariant µ̃ in Part II to the one
with no exceptional divisors involved, and hence to the discussion which could only
be directly applied to the situation in year 0 of the algorithm. The discussion with
the exceptional divisors taken into consideration, i.e., the discussion which can
then be applied to the situation after year 0 of the algorithm, will be postponed
until it finds an appropriate place in Part III or Part IV, where we will show
how we should adjust the arguments in Part II in the presence of the exceptional
divisors.

0.2.3.1. Definition of µ̃. Let I be a D-saturated idealistic filtration over R as
before. Let P ∈ SpecR ⊂ W be a closed point. Take an LGS H for IP , and let H
be the set consisting of its elements. Recall that in 3.2.2 in Part I we set

µH(IP ) = inf
{
µH(f, a) :=

ordH(f)
a

; (f, a) ∈ IP , a > 0
}

where
ordH(f) = sup{n ∈ Z≥0 ; f ∈ mn

P + (H)},
and that we define the invariant µ̃(P ) by the formula

µ̃(P ) = µH(IP ).
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There are two main issues concerning the invariant µ̃(P ).

Issue 1: Is µ̃(P ) independent of the choice of H and hence of H?
Issue 2: Is µ̃ an upper semi-continuous function of the closed point P ∈

SpecR ⊂W?

0.2.3.2. µ̃(P ) is independent of the choice of H. We settled Issue 1 affirma-
tively via the Coefficient Lemma in Part I. We would like to emphasize, on one
hand, that we carried out the entire argument in Part I at the algebraic level of
a local ring. This argument, showing that the invariant µ̃(P ) is determined inde-
pendently of the choice of an LGS, seems to be in contrast to the argument by
Włodarczyk [Wło05], who uses some (analytic) automorphism of the completion
of the local ring, showing that certain invariants are determined independently of
the choice of a hypersurface of maximal contact via the notion of homogeniza-
tion. Note that the notion of an LGS is a collective substitute for the notion of a
hypersurface of maximal contact (cf. 0.2.3.2.1 in Part I).

We remark, on the other hand, that we can give an analytic interpretation
of the invariant µ̃(P ) using the power series expansion discussed in Chapter 2. In
fact, we see that ordH(f) = ord(cO) where cO with O = (0, . . . , 0) ∈ (Z≥0)N is
the “constant term” of the power series expansion of the form (?). This explicit
interpretation leads to an alternative way to settle Issue 1, though quite similar
in spirit to the proof at the algebraic level, via the formal coefficient lemma. Note
that µ̃(P ) is rational, i.e., µ̃(P ) ∈ Q, if we assume that I is of r.f.g. type (and hence
that so is IP ). We recall that “of r.f.g. type” is an abbreviation for “of rationally
and finitely generated type” (cf. Definition 2.1.1.1(4) in Part I).

0.2.3.3. Upper semi-continuity of (σ, µ̃). Regarding Issue 2, the more precise
and correct formulation of the question is to ask if the pair (σ, µ̃) is upper semi-
continuous with respect to the lexicographical order. Since the invariant σ is up-
per semi-continuous, this is equivalent to asking if the invariant µ̃ is upper semi-
continuous along the local maximum locus of the invariant σ. We settle Issue 2
affirmatively in this precise form.

The difficulty in studying the behavior of the invariant µ̃(P ) = µH(IP ), as we
let P vary along the local maximum locus of the invariant σ, lies in the fact that
we also have to change the LGS H and hence H simultaneously. This is caused by
the fact that our definition of an LGS is a priori “pointwise” in nature and hence
we do not know, even if H is an LGS for IP at a point P , whether H remains
an LGS for IQ at a point Q in a neighborhood of P . In general, it does not.
There arises the need to modify a given LGS into one which is uniformly pure as
discussed in 0.2.1.5. With the modified and uniformly pure LGS, the upper semi-
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continuity at issue is reduced to that of the multiplicity of a function in the usual
setting. The upper semi-continuity can also be verified if we look at the power
series expansion with respect to a uniformly pure LGS, and study the behavior of
its coefficients.

0.2.4. Appendix. In the appendix, we report a new development, which estab-
lishes the nonsingularity principle using only the D-saturation but not the R-
saturation. Recall that in Part I we established the nonsingularity principle using
both the D-saturation and R-saturation (cf. 0.2.3.2.4 and Chapter 4 in Part I).
This opens up a possibility of constructing an algorithm, still in the framework
of the IFP, using only the D-saturation but not the R-saturation. Note that the
R-saturation invites the problem of termination, which we specified in the intro-
duction to Part I as the only missing piece toward completing our algorithm in
positive characteristic (cf. 0.3 below). Therefore, we believe that this new devel-
opment is a substantial step forward in our quest for establishing an algorithm for
resolution of singularities in positive characteristic.

This finishes the outline of Part II.

§0.3. Current status of the Idealistic Filtration Program

It has been more than a year since we posted the original version of Part II on the
electronic archive in August 2007. We would like to report on the current status
of the IFP, and make a note to Part I.

0.3.1. Current status. Since the advent of the new nonsingularity principle as
described in 0.2.4, we have been pursuing the scheme of constructing an algorithm
using only the D-saturation (or DE-saturation in the presence of an exceptional
divisor E). In fact, in characteristic zero, the scheme works almost perfectly, pro-
viding an algorithm for the local uniformization. We construct the strand of in-
variants weaving the units, where each unit is the triplet of the form (σ, µ̃, s). (In
order to obtain the global resolution of singularities, we have to work a little more
to overcome an anomaly: we observe the gap between the maximum locus of the
strand and the support of the “last” modification of an idealistic filtration. We
have to fill in this gap in order to globalize the choice of a center.) In positive
characteristic, as we do not use the R-saturation any more, the denominators of
the invariant µ̃ are well-controlled, being no obstruction to showing the termina-
tion of the algorithm. Recently, however, some “bad” examples surfaced; if we try
to naively follow the analogy to the case in characteristic zero, even when we blow
up a “(σ, µ̃, s)-permissible” center, we observe the strict increase of the invariant µ̃
in the examples. This would violate the principle that the strand of invariants we
construct should never increase after blowup. A few of these examples also indi-
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cate that the so-called monomial case needs a more careful treatment in positive
characteristic than in characteristic zero. In order to overcome these pathologies
observed in the “bad” examples, we introduce and insert a new invariant ν̃, making
the quadruple (σ, µ̃, ν̃, s) the new unit to constitute the strand of invariants. The
invariant ν̃ is closely related to the invariant “ν” used in [CP08] and [CP09]. We are
now testing if our algorithm, which constructs the “(σ, µ̃, ν̃, s)-permissible” center
in a quite explicit way, will provide a solution to the problem of local uniformiza-
tion (and global resolution) in positive characteristic. We want to emphasize that
we consider these new developments as the events in the process of “evolution” of
the IFP, rather than mutation, since the basic strategy of the IFP remains intact
as envisioned in Part I throughout our project. We reported the current status of
the evolution of the IFP at the workshop held at RIMS in December 2008, and
we refer the reader to [RIMS08] for the precise content of the report. More details
will be published in our subsequent papers in the near future.

0.3.2. Roles of σ and µ̃. Despite all the changes in the evolution process of the
IFP discussed above, the fundamental roles of the invariants σ and µ̃, as the first
two factors of the unit constituting the strand of invariants, remain unchanged.
Therefore, the main portion of Part II, discussing these fundamental roles, remains
unchanged.

0.3.3. Note to Part I. After Part I was published, we learned that the result
stated as Proposition 2.3.2.4 in Part I had already appeared in [LT74]. The ar-
guments both in Part I and [LT74] are closely related to the classical results of
Nagata [Nag57]. Due to our negligence, this fact was never mentioned in Part I,
even though [LT74] was included in the references for Part I.

Chapter 1. Invariant σ

The purpose of this chapter is to investigate the basic properties of the invariant σ.
In this chapter, R represents the coordinate ring of an affine open subset

SpecR of a nonsingular variety W of dimW = d over an algebraically closed
field k of characteristic char(k) = p > 0 or char(k) = 0, where in the latter case
we formally set p =∞ (cf. 0.2.3.2.1 and Definition 3.1.1.1(2) in Part I).

Let I be a D-saturated idealistic filtration over R, and IP its localization at a
closed point P ∈ SpecR ⊂W (cf. Chapter 2 in Part I).

§1.1. Definition and computation of σ

1.1.1. Definition of σ. First we recall the definition, given in 3.2.1 in Part I, of
the invariant σ at a closed point P ∈ Spec R ⊂W .
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Definition 1.1.1.1. The invariant σ at P , which we denote by σ(P ), is defined
to be the following infinite sequence indexed by e ∈ Z≥0:

σ(P ) = (d− lpure
p0 (P ), d− lpure

p1 (P ), . . . , d− lpure
pe (P ), . . . ) = (d− lpure

pe (P ))e∈Z≥0

where
d = dimW, lpure

pe (P ) = dimk L(IP )pure
pe .

(We refer the reader to Chapter 3 in Part I or 0.2.1.1 in the introduction to Part II
for the definitions of the leading algebra L(IP ) of the idealistic filtration IP , its
degree pe component L(IP )pe , and its pure part L(IP )pure

pe .)
The invariant σ obviously depends on the idealistic filtration I of concern.

However, since in Part II we mostly deal with a situation where the idealistic
filtration I is fixed, we suppress this dependence and omit I from the notation for
simplicity.

Remark 1.1.1.2. (1) The reason why we take the infinite sequence (d −
lpure
pe (P ))e∈Z≥0 instead of the infinite sequence (lpure

pe (P ))e∈Z≥0 is two-fold:

(i) If we consider the infinite sequence (lpure
pe (P ))e∈Z≥0 , it is lower semi-continuous

as a function of P . Taking the negative of each factor (+d) of the sequence, we
have our invariant upper semi-continuous, as we will see below. (We consider
that the bigger (lpure

pe (P ))e∈Z≥0 , the better the singularity. Therefore, as the
measure of how bad the singularity is, it is also natural to define our invariant
using its negative (−lpure

pe (P ))e∈Z≥0 .)
(ii) We reduce the problem of resolution of singularities of an abstract variety X

to that of embedded resolution. Therefore, it would be desirable or even nec-
essary to come up with an algorithm which would induce the “same” process
of resolution of singularities, no matter what ambient variety W we choose for
an embedding X ↪→W (locally).
While the infinite sequence (lpure

pe (P ))e∈Z≥0 (or its negative (−lpure
pe (P ))e∈Z≥0)

depends on the choice of W , the infinite sequence (dimW − lpure
pe (P ))e∈Z≥0

does not. Therefore, the latter is more appropriate as an invariant toward
constructing such an algorithm.

(2) The dimension of the pure part is nondecreasing as a function of e ∈ Z≥0,
and is uniformly bounded from above by d = dimW , i.e.,

0 ≤ lpure
p0 (P ) ≤ lpure

p1 (P ) ≤ · · · ≤ lpure
pe−1(P ) ≤ lpure

pe (P ) ≤ · · · ≤ d = dimW

and hence stabilizes after some point, i.e., there exists eM ∈ Z≥0 such that

lpure
pe (P ) = lpure

peM (P ) for e ≥ eM .
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That is, after some point, the dimension of the pure part stabilizes to a constant N
(= lpure

peM (P )) ∈ Z≥0. Therefore, although σ(P ) is an infinite sequence by definition,
essentially we are only looking at some finite part of it.

We remark that the constant N above is the number of elements in an LGS
(cf. 1.3.1), and that N is uniformly bounded by the dimension of the ambient
space, i.e., N ≤ dimW = d.

(3) In characteristic zero, the invariant σ(P ) consists of only one term d−lpure
p0 ,

while the remaining terms d − lpure
pe are not defined for e > 0, as we set p = ∞

in characteristic zero. (However, we may still say σ(P ) is an infinite sequence and
write σ(P ) ∈

∏
e∈Z≥0

Z≥0, for the sake of simplicity and uniformity of presentation,
intentionally ignoring the particular situation in characteristic zero.) Note that
lpure
p0 = lp0 = dimk L(IP )1 can be regarded as the number indicating “how many
linearly independent hypersurfaces of maximal contact we can take” for IP (cf.
Chapter 3 in Part I).

(4) The so-called “Hironaka’s invariant τ ”, according to the original definition
(cf. [Oda87]), is associated to a standard basis. Given a fixed ideal I, we count
the minimum number of (additive) elements which generate a k-algebra containing
the initial ideal of I. On the other hand, our invariant σ is associated to an LGS.
Given a D-saturated idealistic filtration I, we determine σ by looking at its leading
algebra (cf. 1.3.1). Therefore, these two invariants generally arise in two distinct
settings, and hence they are different (cf. 1.3.1.1), especially in the sense that the
notion of a standard basis does not appear in the definition of an LGS or of an
idealistic filtration. We note, however, that, given a fixed ideal, it is possible to
create an idealistic filtration, using the degrees of the initial terms as the levels,
so that we recover the information on Hironaka’s invariants τ and ν∗ from it. For
example, the minimum number of (additive) generators mentioned above coincides
with the number of elements in an LGS of its D-saturation, and the information on
the invariant ν∗ is encoded in the leading algebra of the original idealistic filtration
before taking its D-saturation. We would like to mention that neither investigating
the leading algebra of a non-D-saturated idealistic filtration nor focusing only on
the total number of elements in an LGS is at the center of the construction of our
algorithm according to the IFP.

1.1.2. Computation of σ. The next lemma computes lpure
pe (P ) in terms of

lpe(P ) and in terms of lpure
pα (P ) for α = 0, . . . , e − 1, which we can assume in-

ductively have already been computed. We also see that lpe(P ) can be com-
puted as the rank of a certain “Jacobian-like” matrix, and hence that it is lower
semi-continuous as a function of P . This immediately leads to the lower semi-
continuity of the sequence (lpure

pe (P ))e∈Z≥0 and hence to the upper semi-continuity
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of σ(P ) = (d− lpure
pe (P ))e∈Z≥0 as a function of P . We will discuss the upper semi-

continuity of σ in detail in the next section.

Lemma 1.1.2.1. The following assertions concerning the computation of lpure
pe (P )

hold.
(1) Assume P 6∈ Supp(I). Then IP = RP ×R, and hence lpure

pe (P ) = d for any
e ∈ Z≥0. Accordingly, the invariant σ(P ) takes the absolute minimum value, i.e.,

σ(P ) = (0, 0, . . . , 0, . . .) = (0)e∈Z≥0 .

(2) Assume P ∈ Supp(I). Then lpure
pe (P ) can be computed inductively as fol-

lows: Suppose we have already computed lpure
pα (P ) for α = 0, . . . , e − 1. We define

lmixed
pe (P ) as the coefficient of the term zp

e

in the expansion of the polynomial∏e−1
α=0(

∑p−1
j=1 z

jpα)l
pure
pα

(P ) ∈ Z≥0[z]. Then

lpure
pe (P ) = lpe(P )− lmixed

pe (P ).

Moreover, in case (2), we can compute lpe(P ) as follows: Let {s1, . . . , sr}
be a set of generators for the ideal Ipe of the idealistic filtration at level pe, i.e.,
(s1, . . . , sr) = Ipe ⊂ R, and (x1, . . . , xd) a regular system of parameters at P . Then

lpe(P ) = rank [∂XI (st)]
t=1,...,r
|I|=pe .

Proof. (1) In this case, by the definition of Supp(I) (cf. Definition 2.1.1.1(6) in
Part I), there exists an element (f, a) ∈ IP with a > 0 such that ordP (f) < a.
There also exists an appropriate differential operator δ of degree ordP (f) such
that δ(f) = u is a unit of RP . Then we have, by the (differential) condition in
Definition 2.1.2.1 in Part I,

(δ(f), a− ordP (f)) = (u, a− ordP (f)) ∈ IP

and hence by condition (i) in Definition 2.1.1.1 in Part I,

(IP )a−ordP (f) = RP .

This implies by condition (ii) in Definition 2.1.1.1 in Part I that

(IP )n(a−ordP (f)) = RP ∀n ∈ Z>0.

We then conclude by condition (iii) in Definition 2.1.1.1 in Part I that

IP = RP × R.

From this the assertions on lpure
pe (P ) and σ(P ) easily follow, since L(IP ) = GP .

(2) We abbreviate lpure
pw (P ) as γw for w ∈ Z≥0. We see by Lemma 3.1.2.1 in

Part I that there exists a subset {νβ ; 1 ≤ β ≤ γe} ⊂ m/m2 such that {Fα(νβ) ;
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1 ≤ β ≤ γα} is a k-basis of L(IP )pure
pα for 0 ≤ α ≤ e. Note that L(IP ) is

generated by L(IP )pure =
⊔
e∈Z≥0

L(IP )pure
pe . Accordingly, the set of monomials

Φ = {V [S] ; |[S]| = pe} is a k-basis of L(IP )pe , where S = (sαβ ; 0 ≤ α ≤ e,

1 ≤ β ≤ γα) is a multi-index, [S] = (sαβpα ; α, β), and V T =
∏
α,β ν

tαβ
β . Since

V [S+peα,β ] = V [S+eα+1,β ] for α < e, we may assume that 0 ≤ sα,β < p for any
α < e. Note also that se,β ≤ 1 for any 0 ≤ β ≤ γe, since se,βpe ≤ |[S]| = pe.
Therefore, the monomials in the set Φ are the ones appearing in the homogeneous
part of degree pe of the polynomial below:[( ∏

0≤α<e

∏
1≤β≤γα

p−1∑
sα,β=0

vsα,βp
α
) ∏

1≤β≤γe

(1 + vp
e

β )
]
pe

=
[ ∏

0≤α<e

∏
1≤β≤γα

p−1∑
sα,β=0

v
sα,βp

α

β

]
pe

♥

+
∑

1≤β≤γe

vp
e

β .

Observe that each monomial in the set Φ appears with coefficient 1 in the poly-
nomial above, a fact which follows immediately when we consider the p-adic ex-
pansion of the exponent of V [S]. Thus, in order to count the number of monomials
in ♥, we have only to set νβ = z for all β’s, and look at the coefficient of zp

e

,
which is exactly lmixed

pe (P ). Therefore, we conclude

lpe(P ) = #Φ = lmixed
pe (P ) + lpure

pe (P ).

In order to prove the “moreover” part, we have only to recall that L(IP )pe is
generated as a k-vector space by the degree pe terms of the power series expansions
of {st}t=1,...,r with respect to a regular system of parameters (x1, . . . , xd), i.e.,

L(IP )pe = 〈st mod mpe+1
P ; t = 1, . . . , r〉 = 〈st mod (x1, . . . , xd)p

e+1 ; t = 1, . . . , r〉

and that their coefficients appear as the entries of the matrix given in the state-
ment, i.e.,

st =
∑
|I|=pe

∂XI (st)X
I mod (x1, . . . , xd)p

e+1.

This completes the proof of Lemma 1.1.2.1.

Remark 1.1.2.2. (1) The description of L(IP )pe , using a specific set of gener-
ators for the leading algebra L(IP ) given by Lemma 3.1.2.1 in Part I, and its
decomposition into the pure and mixed parts, will be discussed again in relation
to the proof of Proposition 1.3.3.3.

(2) Let us consider ζ(P ) = (lpe(P ))e∈Z≥0 . Then noting lp0(P ) = lpure
p0 (P ), we

conclude by Lemma 1.1.2.1 that σ(P ) determines ζ(P ) and vice versa.
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In particular, for P,Q ∈ m-SpecR, we have

σ(P ) = σ(Q) ⇔ ζ(P ) = ζ(Q), σ(P ) ≥ σ(Q) ⇔ ζ(P ) ≤ ζ(Q).

Therefore, the upper semi-continuity of the invariant σ, which we will show in the
next section, is equivalent to the lower semi-continuity of the invariant ζ.

§1.2. Upper semi-continuity

1.2.1. Basic facts surrounding the definition of the upper semi-continu-
ity. In this subsection, we clarify some basic facts surrounding the definition of
the upper semi-continuity. We denote by f : X → T a function from a topological
space X to a totally ordered set T .

Definition 1.2.1.1. We say f is upper semi-continuous if the set

X≥t := {x ∈ X ; f(x) ≥ t}

is closed for any t ∈ T .

Lemma 1.2.1.2. Consider the conditions below:

(i) For any x ∈ X, there exists an open neighborhood Ux such that f(x) ≥ f(y)
for any y ∈ Ux.

(ii) The set X>t = {x ∈ X ; f(x) > t} is closed for any t ∈ T .
(iii) f is upper semi-continuous.

Then we have the following implications:

(i)⇔(ii)⇒(iii).

Moreover, if f(X) ⊂ W ⊂ T where W is well-ordered (in the sense that every
nonempty subset has the least element), then conditions (ii) and (iii) are equivalent.

Proof. The proof is elementary, and left to the reader as an exercise.

Corollary 1.2.1.3. For the invariant σ : m-SpecR →
∏
e∈Z≥0

Z≥0, where the
target space

∏
e∈Z≥0

Z≥0 is totally ordered with respect to the lexicographical order,
conditions (i), (ii), (iii) in Lemma 1.2.1.2 are all equivalent.

Proof. As mentioned in Remark 1.1.1.2(2), the dimension of the pure part,
lpure
pe (P ), is nondecreasing as a function of e ∈ Z≥0. Accordingly, σ(P )(e) =
d − lpure

pe (P ) is nonincreasing as a function of e ∈ Z≥0. Therefore, setting
f = σ, X = m-SpecR and T =

∏
e∈Z≥0

Z≥0, we see f(X) ⊂ S ⊂ T where
S = {(te)e∈Z≥0 ∈ T ; te1 ≥ te2 if e1 < e2}. Observe that S is well-ordered (with
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respect to the total order induced by the one on T ). In fact, for a nonempty subset
U ⊂ S, we can construct its least element umin = (umin,e)e∈Z≥0 inductively by the
following formula:

umin,e = min{ue ∈ Z≥0 ; u = (ui)i∈Z≥0 ∈ U such that ui = umin,i for i < e}.

Now we see that the statement of the corollary follows from Lemma 1.2.1.2.

The following basic description of the stratification into level sets, in the case
where the ambient space X is noetherian, can be easily seen, and its proof is left
to the reader.

Corollary 1.2.1.4. Let f : X → T be an upper semi-continuous function. Sup-
pose that X is noetherian, and that f(X) ⊂ W ⊂ T where W is well-ordered.
Then f takes only finitely many values over X, i.e.,

{f(x) ; x ∈ X} = {t1 < · · · < tn} ⊂ T.

Accordingly, we have a strictly decreasing finite sequence of closed subsets

X = X≥t1 ) · · · ) X≥tn ) ∅,

which provides the stratification of X into the level sets

{x ∈ X ; f(x) = ti} = X≥ti \X≥ti+1 for i = 1, . . . , n.

1.2.2. Upper semi-continuity of the invariant σ

Proposition 1.2.2.1. The invariant σ : m-SpecR→
∏
e∈Z≥0

Z≥0 is upper semi-
continuous.

Proof. Set X = m-SpecR and T =
∏
e∈Z≥0

Z≥0 for notational simplicity. By the
definition of the upper semi-continuity (cf. 1.2.1.1), we have only to show that

X<t = {x ∈ X ; σ(x) < t}

is open for any t ∈ T . Fix t = (te)e∈Z≥0 ∈ T , and take x ∈ X<t. We define

α = min{e ∈ Z≥0 ; σ(x)(e) < te},
Ue = {y ∈ X ; lpe(y) > lpe(x)− 1} (0 ≤ e ≤ α).

Since the function lpe is lower semi-continuous (cf. Lemma 1.1.2.1), each Ue is
open. Set

U =
⋂

0≤e≤α

Ue = {y ∈ X ; lpe(y) ≥ lpe(x), 0 ≤ e ≤ α}.
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Since U is obviously an open neighborhood of x, we have only to show U ⊂ X<t.
Assuming U 6⊂ X<t, we deduce a contradiction. Take y ∈ U \X<t. Observe that
σ(y) ≥ t. Observe also that, by the definition of α, we have σ(x)(e) = te for
0 ≤ e < α and σ(x)(α) < tα. Set

β = min{0 ≤ e ≤ α ; σ(y)(e) > σ(x)(e)}.

We have σ(y)(e) = σ(x)(e) for 0 ≤ e < β and σ(y)(β) > σ(x)(β) by definition.
It then follows from the definition of σ that lpure

pe (y) = lpure
pe (x) for 0 ≤ e < β.

This implies by Lemma 1.1.2.1 that lmixed
pβ (y) = lmixed

pβ (x). Since y ∈ U ⊂ Uβ , we
conclude that

lpure
pβ

(y) = lpβ (y)− lmixed
pβ (y) ≥ lpβ (x)− lmixed

pβ (x) = lpure
pβ

(x),

and hence that

σ(y)(β) = d− lpure
pβ

(y) ≤ d− lpure
pβ

(x) = σ(x)(β),

which is a contradiction.
This completes the proof of Proposition 1.2.2.1.

Corollary 1.2.2.2. We can extend the domain from m-SpecR to SpecR to have
the invariant σ : SpecR→

∏
e∈Z≥0

Z≥0, by defining

σ(Q) = min{σ(P ) ; P ∈ m-SpecR, P ∈ Q} for Q ∈ SpecR.

The formula is equivalent to saying that σ(Q) is equal to σ(P ) with P being a
general closed point on Q. The invariant σ with the extended domain is also upper
semi-continuous.

Moreover, since SpecR is noetherian and since σ(SpecR) ⊂ S where S is
the well-ordered subset of T =

∏
e∈Z≥0

Z≥0 as described in the proof of Corol-
lary 1.2.1.3, conditions (i) and (ii) in Lemma 1.2.1.2, as well as the assertions of
Corollary 1.2.1.4, hold for the upper semi-continuous function σ : SpecR→ T .

Proof. Observe that, given Q ∈ SpecR, σ(Q) is well-defined, since the existence of
the minimum (i.e., the least element) on the right hand side is guaranteed by the
fact that the value set of the invariant σ is well-ordered (cf. the proof of Corollary
1.2.1.3). Note that there exists a nonempty dense open subset U of Q ∩m-SpecR
such that σ(Q) = σ(P ) for P ∈ U , a fact implied by condition (i) of the upper
semi-continuity of the invariant σ (cf. Corollary 1.2.1.3). The upper semi-continuity
of the invariant σ with the extended domain SpecR is immediate from the upper
semi-continuity of the invariant σ with the original domain m-SpecR.
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The “moreover” part follows immediately from the statements of Lemma
1.2.1.2, Corollary 1.2.1.3 and Corollary 1.2.1.4.

This completes the proof of Corollary 1.2.2.2.

§1.3. Local behavior of a leading generator system

1.3.1. Definition of a leading generator system and a remark about the
subscripts. We say that a subset H = {(hl, pel)}Nl=1 ⊂ IP , with nonnegative
integers 0 ≤ e1 ≤ · · · ≤ eN attached, is an LGS (of the localization IP of the
D-saturated idealistic filtration I over R at a closed point P ∈ m-SpecR) if the
leading terms of its elements provide a specific set of generators for the leading
algebra L(IP ) as described in Lemma 3.1.2.1 in Part I (cf. 0.2.1.2). More precisely,
it satisfies the following conditions:

(i) hl ∈ mpel

P and hl = (hl mod mpel+1
P ) ∈ L(IP )pure

pel for l = 1, . . . , N ,

(ii) {hl
pe−el

; el ≤ e} consists of #{l ; el ≤ e} distinct elements, and forms a k-
basis of L(IP )pure

pe for any e ∈ Z≥0.

(We refer the reader to Definition 3.1.3.1 and Proposition 3.1.3.2 in Part I for the
definition and existence of an LGS, respectively.)

Since the leading algebra L(IP ) is generated by its pure part L(IP )pure =⊔
e∈Z≥0

L(IP )pure
pe (cf. 0.2.1.1), we conclude from condition (ii) that the leading

terms of H
{hl = (hl mod mpel+1

P )}Nl=1

provide a set of generators for L(IP ), i.e., L(IP ) = k[h1, . . . , hN ].
We remark that, for the subscripts of an LGS H, we sometimes use the

letter “l” as above, writing H = {(hl, pel)}Nl=1 with nonnegative integers 0 ≤
e1 ≤ · · · ≤ eN attached, and sometimes we use the letters i and j, writing
H = {(hij , pei)}ji=1,...,M with nonnegative integers 0 ≤ e1 < · · · < eM attached.
In the latter use of the subscripts, conditions (i) and (ii) are written as in 3.1.3 of
Part I:

(i) hij ∈ mpei

P and hij = (hij mod mpei+1
P ) ∈ L(IP )pure

pei for any i, j,

(ii) {hij
pe−ei

; ei ≤ e} consists of #{(i, j) ; ei ≤ e} distinct elements, and forms a
k-basis of L(IP )pure

pe for any e ∈ Z≥0.

In the future, we use the subscripts in both ways, while choosing one at a time,
depending upon the situation and convenience.

Remark 1.3.1.1. The definition of an LGS may remind some reader of that
of a standard basis: A standard basis of an ideal I consists of those elements
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{hλ}λ∈Λ ⊂ I whose initial terms generate the initial ideal in(I). An LGS of an
idealistic filtration I consists of those elements {(hl, pel)}Nl=1 ⊂ I whose leading
terms generate the leading algebra L(I). While they look similar (and are closely
related in some aspects), they are different objects: a standard basis deals with
a fixed ideal, while an LGS deals with a collection of ideals {Ia}a∈R indexed by
the levels a ∈ R. Accordingly, we find most of the arguments on the properties of
an LGS, including the one on Proposition 1.3.3.3 below, unique to our situation
and not directly derived as consequences of the classical results about a standard
basis.

1.3.2. A basic question. Let H be an LGS of IP . If we take a neighborhood UP
of P small enough, then H is a subset of IQ for any closed point Q ∈ UP ∩m-SpecR.
We may then ask the following question regarding the local behavior of the LGS:

Is H an LGS of IQ?

A moment’s thought reveals that the answer to this question is in general no.
In fact, due to the upper semi-continuity of the invariant σ, by shrinking UP if
necessary, we may assume σ(P ) ≥ σ(Q) for any closed point Q ∈ UP ∩m-SpecR.
If σ(P ) > σ(Q), then there is no way that H could be an LGS of IQ. (Note that
the invariant σ is completely determined by the LGS.)

We refine our question to avoid the obvious calamity as above:

Is H an LGS of IQ for any closed point Q ∈ C ∩ m-SpecR ⊂
UP ∩ m-SpecR where C = {Q ∈ UP ; σ(P ) = σ(Q)}?

The answer to this question, for an arbitrary LGS H of IP , is still no. One of
the conditions for H to be an LGS of IP requires any element (hij , pei) ∈ H to
be pure at P , i.e., (hij mod mpei+1

P ) ∈ L(IP )pure
pei . However, even when a closed

point Q ∈ UP ∩m-SpecR satisfies the condition Q ∈ C ∩m-SpecR, some element
(hij , pei) may fail to be pure at Q, i.e., (hij mod mpei+1

Q ) 6∈ L(IQ)pure
pei , and hence

H fails to be an LGS at Q.
Now we refine our question further:

Can we modify a given LGS H of IP into H′ so that H′ remains
an LGS of IQ for any closed point Q ∈ C ∩ m-SpecR ⊂ UP ∩
m-SpecR where C = {Q ∈ UP ; σ(P ) = σ(Q)}?

The main goal of the next subsection is to give an affirmative answer to this last
question (adding one extra condition of the point Q being in the support Supp(I)
of the idealistic filtration), and also to give an explicit description of how we make
the modification. We say we modify the given LGS into one which is “uniformly
pure” (along C intersected with Supp(I)).
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1.3.3. Modification of a given leading generator system into one which
is uniformly pure

Definition 1.3.3.1. Let H be an LGS of the localization IP of the D-saturated
idealistic filtration I over R at a closed point P ∈ m-SpecR. We say H is uniformly
pure (in a neighborhood UP of P along the local maximum locus C of the invari-
ant σ intersected with the support Supp(I) of the idealistic filtration) if there exists
an open neighborhood UP of P such that the following conditions are satisfied:

(1) H ⊂ IQ for all Q ∈ UP ,
(2) σ(P ) is the maximum of the invariant σ over UP , i.e., σ(P ) ≥ σ(Q) for all

Q ∈ UP ,
(3) C = {Q ∈ UP ; σ(P ) = σ(Q)} is a closed subset of UP ,
(4) H is an LGS of IQ for any Q ∈ C ∩ Supp(I) ∩m-SpecR.

(For the definition of Supp(I), we refer the reader to Definition 2.1.1.1(6) in Part I.)

Remark 1.3.3.2. We remark that in condition (4) of Definition 1.3.3.1, in order
for H to be uniformly pure, we require H is an LGS of IQ for any closed point
“Q ∈ C ∩ Supp(I) ∩ m-SpecR” (i.e., we only consider those closed points in the
support Supp(I) of the idealistic filtration I), whereas in the last form of the basic
question in 1.3.2 we merely wrote “Q ∈ C ∩m-SpecR”. The reason for adding this
extra condition on Q to be in Supp(I) (as mentioned in the last paragraph of 1.3.2)
is as follows:

(i) Consider the case where σ(P ) = (0, 0, . . . , 0, . . .) = (0)e∈Z≥0 . (Recall
that (0)e∈Z≥0 is the absolute minimum in the value set of the invariant σ (cf.
Lemma 1.1.2.1(1)). By the upper semi-continuity of the invariant σ, for a suffi-
ciently small open neighborhood UP of P , we have σ(Q) = σ(P ) = (0)e∈Z≥0 for any
closed point Q ∈ UP ∩m-SpecR and hence C∩m-SpecR = UP ∩m-SpecR. On the
other hand, the condition σ(P ) = (0)e∈Z≥0 implies that, given any LGS H of IP ,
the elements {hij} are generators of the maximal ideal mP with #{(i, j)} = d.
(Note that, in this case, all the elements of a leading generator system are concen-
trated at level 1, i.e., 1 = i = M and 0 = e1 = ei = eM .) Therefore, H cannot be
an LGS of IQ for a closed point Q ∈ UP ∩m-SpecR if Q 6= P . That is, it would not
satisfy the condition described in the last form of the basic question. However, in
this case, we have either UP ∩ Supp(I) = ∅ or UP ∩ Supp(I) = {P} (if we take UP
sufficiently small). Therefore, condition (4) in Definition 1.3.3.1 is automatically
satisfied.

(ii) Consider the case where σ(P ) 6= (0)e∈Z≥0 . In this case, C ∩ m-SpecR =
C ∩ Supp(I) ∩ m-SpecR, since any closed point Q ∈ C ∩ m-SpecR (i.e., σ(Q) =
σ(P ) 6= (0)e∈Z≥0) is necessarily in Supp(I) (cf. Lemma 1.1.2.1(1)). Therefore, there
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is no difference between the condition in the last form of the basic question and
condition (4) in Definition 1.3.3.1.

In other words, the extra condition on Q to be in Supp(I) is introduced so
that we can avoid the “obvious” counterexample to an affirmative answer to the
last form of the basic question in the special case σ(P ) = (0)e∈Z≥0 .

Before giving the statement of Proposition 1.3.3.3 and its proof, we recall that
Lemma 3.1.2.1 in Part I gives the description of a specific set of generators for the
leading algebra L(IP ):

We can choose {e1 < · · · < eM} ⊂ Z≥0 and V1 t · · · t VM ⊂ G1 = m1
P /m

2
P

with Vi = {vij}j satisfying the following conditions:

(i) F ei(Vi) ⊂ L(IP )pure
pei for 1 ≤ i ≤M ,

(ii)
⊔
ei≤e F

e(Vi) is a k-basis of L(IP )pure
pe for any e ∈ Z≥0.

Since L(IP )pure generates L(IP ), we have L(IP ) = k[
⊔M
i=1 F

ei(Vi)].
Using these notations, we can take the following k-bases of Lpe(P ) and

Lpure
pe (P ) consisting of monomials:{ ∏

eα≤e

(vp
eα

αβ )bαβ ;
∑
α,β

peαbαβ = pe
}

: a k-basis of Lpe(IP ),

{(vp
eα

αβ )bαβ ; eα ≤ e, peαbαβ = pe} : a k-basis of Lpure
pe (IP ).

Though not canonical, we define Lmixed
pe (IP ) to be the k-vector space spanned by

the monomials which are not pure:{ ∏
eα≤e

(vp
eα

αβ )bαβ ;
∑
α,β

peαbαβ = pe, and peαbαβ 6= pe ∀α, β
}

:

a k-basis of Lmixed
pe (IP ).

Let H = {(hij , pei)}ji=1,...,M be an LGS such that the leading terms of its elements
correspond to the specific generators of L(IP ) mentioned above, i.e.,

hij = F ei(vij) ∀i, j.

We define MixH,i to be the set of indices B that give rise to the monomials of the
leading terms of H in the mixed part L(IP )mixed

pei , i.e.,

MixH,i

=
{
B = (bαβ) ∈ (Z≥0)#H ; |[B]| =

∑
α,β

peαbαβ = pei , and peαbαβ 6= pei ∀α, β
}
.

Now we are ready to state and prove Proposition 1.3.3.3.
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Proposition 1.3.3.3. Let H = {(hij , pei)}ji=1,...,M be an LGS of the localization
IP of the D-saturated idealistic filtration I over R at a closed point P ∈ m-SpecR,
with nonnegative integers 0 ≤ e1 < · · · < eM attached. Then H can be modified
into another LGS H′ which is uniformly pure.

More precisely, there exists {gijB} ⊂ mP where the subscript B ranges over
the set MixH,i such that, setting h′ij = hij −

∑
gijBH

B, the modified set H′ =
{(h′ij , pei)}

j
i=1,...,M is an LGS of IP which is uniformly pure.

Proof. It suffices to prove that there exists an affine open neighborhood UP =
SpecRf of P , where Rf is the localization of R at an element f ∈ R, such that
the following conditions are satisfied:

(1) H ⊂ If (and hence H′ ⊂ If where H′ is described in condition (4) below),
(2) σ(P ) is the maximum of σ over UP , i.e., σ(P ) ≥ σ(Q) for all Q ∈ UP ,
(3) C = {Q ∈ UP ; σ(P ) = σ(Q)} is a closed subset of UP ,
(4) there exists {gijB} ⊂ Rf where the subscript B ranges over the set MixH,i such

that {gijB} ⊂ mP and that, setting h′ij = hij −
∑
gijBH

B , the modified set
H′ = {(h′ij , pei)}

j
i=1,...,M is an LGS of IQ for any Q ∈ C ∩Supp(I)∩m-SpecR.

Step 1. Check of conditions (1), (2) and (3).

It is easy to choose an affine open neighborhood UP = SpecRf of P satisfying
condition (1). By the upper semi-continuity of the invariant σ, we may also assume
condition (2) is satisfied (cf. condition (i) in Lemma 1.2.1.2 and Corollary 1.2.1.3).
Then condition (3) automatically follows, since C = UP ∩ (SpecR)≥σ(P ) is closed
(cf. Definition 1.2.1.1).

We remark that in terms of the invariant ζ (cf. Remark 1.1.2.2(2)) conditions
(2) and (3) are equivalent to the following:

(2)ζ ζ(P ) is the minimum of ζ over UP , i.e., ζ(P ) ≤ ζ(Q) for all Q ∈ UP ,
(3)ζ C = {Q ∈ UP ; ζ(P ) = ζ(Q)}.

Now we have only to check, by shrinking UP if necessary, that condition (4) is also
satisfied.

Step 2. Preliminary analysis to check condition (4).

First consider the idealistic filtration J = GRf (H) generated by H over Rf .
Note that J ⊂ If but that J may not be D-saturated. In order to distinguish the
invariant ζ for I (or equivalently for If over UP ) from the invariant ζ for J, we
denote them by ζI and ζJ, respectively.

Since ζJ is lower semi-continuous, by shrinking UP if necessary we may assume

(2)ζJ ζJ(P ) is the minimum of ζJ over UP , i.e., ζJ(P ) ≤ ζJ(Q) for all Q ∈ UP .
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For any closed point Q ∈ C ∩ Supp(I) ∩m-SpecR, we compute

ζI(P ) = ζJ(P ) ≤ ζJ(Q) ≤ ζI(Q) = ζI(P ).

We remark that the first equality is a consequence of the fact that the set
{hij,P = (hij mod mpei+1

P )}ji=1,...,M generates both L(IP ) and L(JP ) as k-algebras,
the second inequality is a consequence of (2)ζJ , the third inequality is a consequence
of the inclusion J ⊂ If , and the last equality follows from the definition of the closed
subset C.

Therefore, we see that

ζI(P ) = ζJ(P ) = ζJ(Q) = ζI(Q) ∀Q ∈ C ∩ Supp(I) ∩m-SpecR.

Step 3. Some consequences of the equality ζI(P ) = ζJ(P ) = ζJ(Q) = ζI(Q) for
any Q ∈ C ∩ Supp(I) ∩m-SpecR.

The equality obtained at the end of Step 2 leads to a few conclusions that we
list below:

(a) The set {hij,Q = (hij mod mpei+1
Q )}ji=1,...,M generates L(IQ) as a k-algebra for

any Q ∈ C ∩ Supp(I) ∩m-SpecR. Moreover

{HQ
B

; B = (bij), |[B]| = pe, and bij = 0 if ei > e}

forms a basis of L(IQ)pe as a k-vector space, since it obviously generates
L(IQ)pe and since

#{HQ
B

; B = (bij), |[B]| = pe, and bij = 0 if ei > e}

= #{HP
B

; B = (bij), |[B]| = pe, and bij = 0 if ei > e}
= lpe(P ) = lpe(Q) = dimk L(IQ)pe .

(b) There exist nonnegative integers 0 ≤ e1 < · · · < eM , independent of Q ∈
C ∩ Supp(I) ∩ m-SpecR, such that a jump of the dimension of the pure part
only occurs at these numbers, i.e.,

0 = lpure
p0 (Q) = · · · = lpure

pe1−1(Q)

< lpure
pe1 (Q) = · · · = lpure

pe2−1(Q)

...

< lpure
peM (Q) = · · · ,

as lpure
pe (Q) = lpure

pe (P ) for any Q ∈ C ∩ Supp(I) ∩ m-SpecR and e ∈ Z≥0 (cf.
Lemma 1.1.2.1).
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Applying Lemma 3.1.2.1 in Part I to L(IQ) for Q ∈ C ∩ Supp(I) ∩ m-SpecR, we
see that we can take V1,Q t · · · t VM,Q ⊂ G1,Q = m1

Q/m
2
Q with Vi,Q = {vij,Q}j ,

where 1 ≤ j ≤ lpure
pei (Q)− lpure

pei−1 (Q), satisfying the following conditions:

(i) F ei(Vi,Q) ⊂ L(IQ)pure
pei for 1 ≤ i ≤M ,

(ii)
⊔
ei≤e F

e(Vi,Q) is a k-basis of L(IQ)pure
pe for any e ∈ Z≥0.

Since L(IQ)pure generates L(IQ), we have L(IQ) = k[
⊔M
i=1 F

ei(Vi,Q)].
Using this information, we also deduce the following.

(c) The hij,Q are all pure when i = 1, i.e., h1j,Q ∈ L(IQ)pure
pe1 , and we take

v′1j,Q ∈ G1,Q so that F e1(v′1j,Q) = h1j,Q for j = 1, . . . , lpure
pe1 (Q). As can be

seen by induction on i = 1, . . . ,M , for each (i, j) there exists a unique set
{κijB,Q}B∈MixH,i ⊂ k such that hij,Q −

∑
B∈MixH,i

κijB,QHQ
B

is pure, i.e.,

hij,Q −
∑
B∈MixH,i

κijB,QHQ
B ∈ L(IQ)pure

pei . We take v′ij,Q ∈ G1,Q such that

F ei(v′ij,Q) = hij,Q −
∑
B∈MixH,i

κijB,QHQ
B
. Setting V ′i,Q = {v′ij,Q}j , we see

that we can replace V1,Q t · · · t VM,Q with V ′1,Q t · · · t V ′M,Q, i.e.,

• F ei(V ′i,Q) ⊂ L(IQ)pure
pei for 1 ≤ i ≤M ,

•
⊔
ei≤e F

e(V ′i,Q) is a k-basis of L(IQ)pure
pe for any e ∈ Z≥0.

We also have L(IQ) = k[
⊔M
i=1 F

ei(V ′i,Q)].

In fact, we prove conclusion (c) below, claiming the existence and uniqueness of
{κijB,Q} ⊂ k as described above, showing simultaneously by induction on i that
we can replace V1,Q t · · · tVM,Q with V ′1,Q t · · · tV ′i,Q tVi+1,Q t · · · tVM,Q in the
assertions of Lemma 3.1.2.1 in Part I, and hence ultimately with V ′1,Qt· · ·tV ′M,Q.

(Existence) By induction hypothesis, we may replace V1,Q t · · · t VM,Q with
V ′1,Q t · · · tV ′i−1,Q tVi,Q t · · · tVM,Q in the assertions of Lemma 3.1.2.1 in Part I.
Expressing hij,Q as a degree pei homogeneous polynomial in terms of F e1(V ′1,Q)t
· · · tF ei−1(V ′i−1,Q)tF ei(Vi,Q), we see that there exists {τijB,Q}B∈MixH,i ⊂ k such
that hij,Q−

∑
B∈MixH,i

τijB,QF
∗(V ′Q)B ∈ L(IQ)pure

pei , where F ∗(V ′Q) = (F eα(v′αβ,Q)).
Note that, although v′αβ,Q has yet to be defined if α ≥ i, since bαβ = 0 if α ≥ i

for B = (bαβ) ∈ MixH,i, the expression hij,Q −
∑
B∈MixH,i

τijB,QF
∗(V ′Q)B is well-

defined. By substituting

F eα(v′αβ,Q) = hαβ,Q −
∑

B∈MixH,α

καβB,QHQ
B

for α < i,

we see that there exists {κijB,Q}B∈MixH,i ⊂ k such that

hij,Q −
∑

B∈MixH,i

κijB,QHQ
B ∈ L(IQ)pure

pei .
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We remark that the set{
F ei−eα

(
hαβ,Q −

∑
B∈MixH,α

καβB,QHQ
B
)}

α=1,...,i, β=1,...,lpure
peα

(Q)−lpure
p
eα−1 (Q)

⊂ L(IQ)pure
pei

is linearly independent, since

{HQ
B

; B = (bαβ), |[B]| = pei , and bαβ = 0 if eα > ei}

is linearly independent (cf. conclusion (a) above), and that its cardinality∑i
α=1(lpure

peα (Q)− lpure
peα−1 (Q)) is equal to lpure

pei (Q). Therefore, the above set forms a
basis of L(IQ)pure

pei .
(Uniqueness) Suppose there exists another set {κ′ijB,Q}B∈MixH,i ⊂ k such

that hij,Q −
∑
B∈MixH,i

κ′ijB,QHQ
B ∈ L(IQ)pure

pei . Then∑
B∈MixH,i

κijB,QHQ
B −

∑
B∈MixH,i

κ′ijB,QHQ
B

=
∑

B∈MixH,i

(κijB,Q − κ′ijB,Q)HQ
B ∈ L(IQ)pure

pei .

From the conclusion at the end of the argument for “Existence” it follows that
there exists

{γαβ}α=1,...,i, β=1,...,lpure
peα

(Q)−lpure
p
eα−1 (Q) ⊂ k

such that∑
B∈MixH,i

(κijB,Q − κ′ijB,Q)HQ
B

=
∑

1≤α≤i
1≤β≤lpure

peα
(Q)−lpure

p
eα−1 (Q)

γαβF
ei−eα

(
hαβ,Q −

∑
B∈MixH,α

καβB,QHQ
B
)
.

Again since {HQ
B

; B = (bαβ), |[B]| = pei , and bαβ = 0 if eα > ei} is linearly
independent, we conclude that γαβ = 0 for all α, β and hence that

κijB,Q − κ′ijB,Q = 0 ∀B ∈ MixH,i .

This finishes the proof of the uniqueness.
Now take v′ij,Q ∈ G1,Q such that F ei(v′ij,Q) = hij,Q −

∑
B∈MixH,i

κijB,QHQ
B
.

Setting V ′i,Q = {v′ij,Q}j , we see that we can replace V1,Qt· · ·tVM,Q with V ′1,Qt· · ·
tV ′i,Q t Vi+1,Q t · · · t VM,Q in the assertions of Lemma 3.1.2.1 in Part I.

This completes the proof for conclusion (c) by induction on i.

Step 4. Finishing argument to check condition (4).
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In order to check condition (4), it suffices to show that there exists
{gijB}B∈MixH,i ⊂ Rf such that

gijB(Q) = κijB,Q ∀Q ∈ C ∩ Supp(I) ∩m-SpecR.

Fix a regular system of parameters (x1, . . . , xd) at P . By shrinking UP if necessary,
we may assume that (x1, . . . , xd) is a regular system of parameters over UP , i.e.,
(x1 − x1(Q), . . . , xd − xd(Q)) is a regular system of parameters at Q for any Q ∈
UP ∩m-SpecR.

Now we analyze the condition of hij,Q −
∑
B∈MixH,i

κijB,QHQ
B

being pure,
i.e.,

(♥) hij,Q −
∑

B∈MixH,i

κijB,QHQ
B ∈ L(IQ)pure

pei .

This happens if and only if, when we compute the power series expansions of
hij and

∑
B∈MixH,i

κijB,QH
B
Q with respect to the regular system of parameters

(x1 − x1(Q), . . . , xd − xd(Q)) and when we compare the degree pei terms, their
mixed parts coincide (even though their pure parts may well not coincide). Since
the coefficients of (the mixed parts of) the power series can be computed using
the partial derivatives with respect to X = (x1, . . . , xd), we conclude that condi-
tion (♥) is equivalent to the linear equation

(♥♥) [∂XIH
B(Q)]B∈MixH,i

I∈MixX,i
[κijB,Q]B∈MixH,i = [∂XIhij(Q)]I∈MixX,i ,

where
MixX,i = {I = (i1, . . . , id) ; |I| = pei , il 6= pei ∀l = 1, . . . , d}

and where

[∂XIH
B(Q)]B∈MixH,i

I∈MixX,i
is a matrix of size (# MixX,i)× (# MixH,i),

[κijB,Q]B∈MixH,i is a matrix of size (# MixH,i)× 1,
[∂XIhij(Q)]I∈MixX,i is a matrix of size (# MixX,i)× 1.

In particular, at the closed point P , we have the linear equation

[∂XIH
B(P )]B∈MixH,i

I∈MixX,i
[κijB,P ]B∈MixH,i = [∂XIhij(P )]I∈MixX,i .

Since the unique solution [κijB,P ]B∈MixH,i exists (cf. conclusion (c)), we conclude
that the coefficient matrix of the linear equation has full rank, i.e.,

rank [∂XIH
B(P )]B∈MixH,i

I∈MixX,i
= # MixH,i .

Therefore, there exists a subset S ⊂ MixX,i with #S = # MixH,i such that the
corresponding minor has a nonzero determinant, i.e.,

det [∂XIH
B(P )]B∈MixH,i

I∈S ∈ k×.
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Then the solution [κijB,P ]B∈MixH,i can be expressed as follows:

[κijB,P ]B∈MixH,i = ([∂XIH
B(P )]B∈MixH,i

I∈S )−1[∂XIhij(P )]I∈S .

(Note that actually the matrix [κijB,P ]B∈MixH,i as well as the matrix
[∂XIhij(P )]I∈S is a zero matrix.) By shrinking UP if necessary, we may assume

det [∂XIH
B ]B∈MixH,i
I∈S ∈ (Rf )×

and hence that

det [∂XIH
B(Q)]B∈MixH,i

I∈S ∈ k× ∀Q ∈ C ∩ Supp(I) ∩m-SpecR.

Then the solution [κijB,Q]B∈MixH,i for (♥♥) can be expressed as follows:

[κijB,Q]B∈MixH,i = ([∂XIH
B(Q)]B∈MixH,i

I∈S )−1[∂XIhij(Q)]I∈S .

It follows immediately that if we define the set {gijB}B∈MixH,i by the formula

[gijB ]B∈MixH,i = ([∂XIH
B ]B∈MixH,i
I∈S )−1[∂XIhij ]I∈S ,

then it satisfies the desired condition

gijB(Q) = κijB,Q ∀Q ∈ C ∩ Supp(I) ∩m-SpecR.

Finally, by shrinking UP if necessary so that the above argument is valid for any
element hij taken from the given LGS H, we see that condition (4) is satisfied.

This completes the proof of Proposition 1.3.3.3.

Chapter 2. Power series expansion

As in Chapter 1, we denote by R the coordinate ring of an affine open subset
SpecR of a nonsingular variety W of dimW = d over an algebraically closed
field k with char(k) = p > 0 or char(k) = 0, where in the latter case we formally
set p =∞ (cf. 0.2.3.2.1 and Definition 3.1.1.1(2) in Part I).

We fix a closed point P ∈ W . Let IP be a D-saturated idealistic filtration
over RP = OW,P , the local ring at the closed point, with mP being its maximal
ideal. Let H = {(hl, pel)}Nl=1 be an LGS of IP .

In characteristic zero, the elements in the LGS are all concentrated at level 1,
i.e., el = 0 and pel = 1 for l = 1, . . . , N (cf. Chapter 3 in Part I). This implies
by the definition of an LGS that the set of the elements H = (hl ; l = 1, . . . , N)
forms (a part of) a regular system of parameters (x1, . . . , xd). (Say hl = xl for
l = 1, . . . , N .) In positive characteristic, this is no longer the case. However, we
can still regard the notion of an LGS as a generalization of the notion of a regular
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system of parameters, and we may expect some common properties shared by the
two notions.

Now any element f ∈ RP (or more generally any element f ∈ R̂P ) can be
expressed as a power series with respect to the regular system of parameters and
hence with respect to the LGS as above in characteristic zero. That is, we can
write

f =
∑

I∈(Z≥0)d

aIX
I =

∑
B∈(Z≥0)N

cBH
B

where aI ∈ k and cB is a power series in terms of the remainder (xN+1, . . . , xd) of
the regular system of parameters.

Chapter 2 is devoted to the study of the power series expansion with respect to
the elements in an LGS (and its (weakly-)associated regular system of parameters),
one of the expected common properties mentioned above, which is valid both in
characteristic zero and in positive characteristic.

§2.1. Existence and uniqueness

2.1.1. Setting for the power series expansion. First we describe the setting
for Chapter 2, which is slightly more general than just dealing with an LGS.
Actually, until we reach §2.2, our argument does not involve the notion of an
idealistic filtration.

Let H = {h1, . . . , hN} ⊂ RP be a subset consisting of N elements, and 0 ≤
e1 ≤ · · · ≤ eN nonnegative integers attached to these elements, satisfying the
following conditions (cf. 4.1.1 in Part I):

(i) hl ∈ mpel

P and hl = (hl mod mpel+1
P ) = vp

el

l with vl ∈ mP /m
2
P for l = 1, . . . , N ,

(ii) {vl ; l = 1, . . . , N} ⊂ mP /m
2
P consists of N distinct and k-linearly independent

elements in the k-vector space mP /m
2
P .

We also take a regular system of parameters (x1, . . . , xd) such that

vl = xl = (xl mod m2
P ) for l = 1, . . . , N.

We say (x1, . . . , xd) is associated to H = (h1, . . . , hN ) if the above condition is
satisfied.

2.1.2. Existence and uniqueness of the power series expansion

Lemma 2.1.2.1. Let the setting be as described in 2.1.1. Then any element f ∈
R̂P has a power series expansion, with respect to H = (h1, . . . , hN ) and its asso-
ciated regular system of parameters (x1, . . . , xd), of the form

(?) f =
∑

B∈(Z≥0)N

cBH
B where cB =

∑
K∈(Z≥0)d

bB,KX
K ,
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with bB,K being a power series in terms of the remainder (xN+1, . . . , xd) of the
regular system of parameters, and with K = (k1, . . . , kd) varying in the range
satisfying the condition

0 ≤ kl ≤ pel − 1 for l = 1, . . . , N and kl = 0 for l = N + 1, . . . , d.

Moreover, the power series expansion of the form (?) is unique.
Note that, when we want to make explicit the dependence of the coefficient cB

on f , we write cB(f) instead of cB.

Proof. (Existence) We construct a sequence {fr}r∈Z≥0 ⊂ RP inductively, satisfy-
ing the following conditions:

(i) f − fr ∈ m̂P
r+1,

(ii) fr =
∑
|[B]|≤r cB,rH

B where

• cB,r =
∑
bB,K,rX

K ,
• bB,K,r =

∑
|[B]|+|K|+|J|≤r aB,K,JX

J is a polynomial in (xN+1, . . . , xd) with

◦ aB,K,J ∈ k,
◦ J = (j1, . . . , jd) varying in the range jl = 0 for l = 1, . . . , N ,
◦ K varying in the range specified above, satisfying the condition |[B]| +
|K|+ |J | ≤ r.

Case 1: Construction of f0. In this case, we set f0 = cO,0 = bO,O,0 = aO,O,O =
f ∈ k. Then conditions (i) and (ii) are obviously satisfied.

Case 2: Construction of fr+1 assuming that of fr. Suppose inductively that we
have constructed fr satisfying conditions (i) and (ii) above. Now express f − fr =∑
aI,rX

I with aI,r ∈ k as a power series expansion in terms of the regular system
of parameters X = (x1, . . . , xd).

Given I = (i1, . . . , id) with |I| = r + 1, determine
B = (b1, . . . , bN ),
K = (k1, . . . , kN , 0, . . . , 0) ∈ (Z≥0)d,
J = (0, . . . , 0, jN+1, . . . , jd) ∈ (Z≥0)d

by the formulas

il =

{
blp

el + kl with bl ∈ Z≥0 and 0 ≤ kl ≤ pel − 1 for l = 1, . . . , N,

jl for l = N + 1, . . . , d.

Then it is straightforward to see, after renaming aI,r as aB,K,J , that∑
|I|=r+1

aI,rX
I =

∑
|[B]|+|K|+|J|=r+1

aB,K,JX
JXKHB mod mr+2

P .
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Set

bB,K,r+1 =
∑

|[B]|+|K|+|J|≤r+1

aB,K,JX
J , cB,r+1 =

∑
bB,K,r+1X

K ,

fr+1 =
∑

|[B]|≤r+1

cB,r+1H
B .

Then fr+1 clearly satisfies conditions (i) and (ii).
This finishes the inductive construction of the sequence {fr}r∈Z≥0 ⊂ RP .
Now set

bB,K = lim
r→∞

bB,K,r =
∑

aB,K,JX
J , cB = lim

r→∞
cB,r =

∑
bB,KX

K ,

where each of the above limits exists by condition (ii). Then condition (i) implies

f = lim
r→∞

fr = lim
r→∞

∑
|[B]|≤r

cB,rH
B =

∑
cBH

B ,

proving the existence of a power series expansion of the form (?).
(Uniqueness) In order to show the uniqueness of the power series expansion

of the form (?), we have only to verify

0 =
∑

B∈(Z≥0)N

cBH
B of the form (?) ⇔ cB = 0 ∀B ∈ (Z≥0)N .

As the implication (⇐) is obvious, we show (⇒). Suppose 0 =
∑
B∈(Z≥0)N cBH

B ,
and assume that there exists B ∈ (Z≥0)N such that cB 6= 0. Set s =
min{ord(cBHB) ; cB 6= 0}. Write

cB =
∑

K∈(Z≥0)d

bB,KX
K and bB,K =

∑
J∈(Z≥0)d

aB,K,JX
J with aB,K,J ∈ k,

where K = (k1, . . . , kd) varies in the range

0 ≤ kl ≤ pel − 1 for l = 1, . . . , N and kl = 0 for l = N + 1, . . . , d,

and where J = (j1, . . . , jd) varies in the range

jl = 0 for l = 1, . . . , N.

Then we have

0 =
∑
B

cBH
B =

∑
B

∑
K

(∑
J

aB,K,JX
JXK

)
HB

=
∑

|[B]|+|K|+|J|=s

aB,K,JX
JXK

( N∏
l=1

xp
elbl
l

)
mod m̂P

s+1
.
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On the other hand, we observe that the set {XJXK(
∏N
l=1 x

pelbl
l )}|[B]|+|K|+|J|=s =

{XI}|I|=s of all monomials of degree s obviously forms a basis of the vector space
m̂P

s
/m̂P

s+1, and aB,K,J 6= 0 for some B,K, J with |[B]| + |K| + |J | = s by the
assumption and by the choice of s. This is a contradiction! Therefore, we conclude
that cB = 0 for any B ∈ (Z≥0)N .

This finishes the proof of the implication (⇒), and hence the proof of the
uniqueness of the power series expansion of the form (?).

This completes the proof of Lemma 2.1.2.1.

Remark 2.1.2.2. (1) It follows immediately from the argument showing the ex-
istence and uniqueness of the power series expansion f =

∑
cBH

B of the form (?)
that

ord(f) = min{ord(cBHB)} = min{ord(cB) + |[B]|}

and hence that
ord(cB) ≥ ord(f)− |[B]| ∀B ∈ (Z≥0)N .

(2) In the setting 2.1.1, we defined the notion of a regular system of parameters
associated to H = (h1, . . . , hN ). We say that a regular system of parameters
(x1, . . . , xd) is weakly-associated to H = (h1, . . . , hN ) if

det [∂
xp
e

i
(hp

e−el

l )]l=1,...,Le
i=1,...,Le

∈ R×P for e = e1, . . . , eN where Le = #{l ; el ≤ e}.

All the assertions of Lemma 2.1.2.1 hold if we only require a regular system of
parameters (x1, . . . , xd) to be weakly-associated to H, instead of associated to H.

Example 2.1.2.3. The existence part of the above proof provides an actual algo-
rithm to compute the power series expansion of the form (?) for any given f ∈ R̂.
The reader is encouraged to carry out the computation for himself. Here we only
mention one example: Assume char(k) = 2. Let f = x2. Then, with respect to
H′ = {h′ = x2} (with e1 = 2 attached), the power series expansion of the form (?)
is trivial, i.e., f = h′. However, with respect to H = {h = uh′} where u = 1 + xy

and hence where h has the same leading term as h′, the power series expansion of
the form (?) becomes an infinite series

x2 = uh+ y2h2 + uy4h3 + uy8h5 + y10h6 + uy16h9 + y18h10 + · · ·

=
∞∑
k=0

η(k)y2khk+1 where η(k) =


0 if bk/2jc ≡ 3 mod 4 (∃j ∈ Z)

u if bk/2jc 6≡ 3 mod 4 (∀j ∈ Z), k ∈ 2Z,
1 if bk/2jc 6≡ 3 mod 4 (∀j ∈ Z), k 6∈ 2Z.
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§2.2. Formal coefficient lemma

2.2.1. Setting for the formal coefficient lemma. As we can see from the
description of the setting 2.1.1, our discussion on the power series expansion of
the form (?) (cf. Lemma 2.1.2.1) so far does not involve the notion of an idealistic
filtration. However, the most interesting and important result of Chapter 2 is
obtained in Lemma 2.2.2.1 below, called the formal coefficient lemma, when we
get the notion of an idealistic filtration involved and impose an extra condition
related to it as follows:

Let H = {h1, . . . , hN} ⊂ RP be a subset consisting of N elements, and
0 ≤ e1 ≤ · · · ≤ eN nonnegative integers attached to these elements, satisfying con-
ditions (i) and (ii) of 2.1.1. Let X = (x1, . . . , xd) be a regular system of parameters
associated to H = (h1, . . . , hN ) with hl = xp

el

l mod mpel+1
P for l = 1, . . . , N . Let

IP be a D-saturated idealistic filtration over RP . We impose the following extra
condition:

(iii) (hl, pel) ∈ IP for l = 1, . . . , N .

2.2.2. Statement of the formal coefficient lemma and its proof. Now our
assertion is that, under the setting of 2.2.1 and given an element in (the comple-
tion of) the idealistic filtration, the coefficients of the power series expansion of the
form (?), with “appropriate” levels attached, belong to the completion of the idealis-
tic filtration. We formulate this assertion as the following formal coefficient lemma.

Lemma 2.2.2.1. Let the setting be as described in 2.2.1. Let ÎP be the completion
of the idealistic filtration IP (cf. §2.4 in Part I). Take an element (f, a) ∈ ÎP . Let
f =

∑
B∈(Z≥0)N cBH

B be the power series expansion of the form (?) (cf. Lemma
2.1.2.1). Then

(cB , a− |[B]|) ∈ ÎP ∀B ∈ (Z≥0)N .

Proof. We will derive a contradiction assuming

(cB , a− |[B]|) 6∈ ÎP for some B ∈ (Z≥0)N .

Note that, under this assumption, there should exist B ∈ (Z≥0)N with B 6= O
such that (cB , a− |[B]|) 6∈ ÎP . (In fact, suppose (cB , a− |[B]|) ∈ ÎP for all B 6= O.
Then the equality cO = f −

∑
B 6=O cBH

B and the inclusions (f, a) ∈ ÎP and
(cBHB , a) ∈ ÎP for all B 6= O would imply (cO, a) = (cO, a− |[O]|) ∈ ÎP , contrary
to the assumption.)

We introduce the following notations:

lB = |[B]|+ sup{n ∈ Z≥0 ; cB ∈ (ÎP )a−|[B]| + m̂P
n} for B ∈ (Z≥0)N \ {O},
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l = min
B∈(Z≥0)N , B 6=O

{lB},

ΓB = (ÎP )a−|[B]| + m̂P
l−|[B]|+1 for B ∈ (Z≥0)N ,

LB = max
{
B +K ; cB ∈ ΓB +

∑
K≤M

m̂P
l−|[B+M ]|

HM
}

for B ∈ (Z≥0)N \ {O}, lB = l,
L = min

B∈(Z≥0)N , B 6=O, lB=l
{LB},

B0 = max
B∈(Z≥0)N , B 6=O, lB=l,LB=L

{B}

ΛB = ΓB +
∑

L<B+M

m̂P
l−|[B+M ]|

HM for B ∈ (Z≥0)N .

Note that l < ∞ by the assumption cB 6∈ (ÎP )a−|[B]| for some B 6= O. Note
that the maximum of B +K, the minimum of LB , and the maximum of B are all
taken with respect to the lexicographical order on (Z≥0)N . Observe that if lB = l

with B 6= O, then [B] < a. Observe also that we have only to consider K with
|[K]| ≤ l− |[B]| in order to compute the maximum for B+K. These observations
guarantee the existence of the maximum of B + K for B ∈ (Z≥0)N , B 6= {O},
lB = l, and the maximum of B for B ∈ (Z≥0)N , B 6= O, lB = l, LB = L. We
remark that when r ≤ 0, we understand that by convention m̂P

r represents R̂P .
We claim, for B,K ∈ (Z≥0)N ,

(i) HKΛB+K ⊂ ΛB ,
(ii) ∂[K](ΛB) ⊂ ΛB+K .

(We identify [K], forK = (k1, . . . , kN ) ∈ (Z≥0)N , with (pe1k1, . . . , p
eNkN , 0, . . . , 0)

∈ (Z≥0)d, and hence ∂[K] denotes ∂X[K] = ∂
x
pe1k1
1 ···xp

eN kN
N

in claim (ii).)

In fact, since (HK , |[K]|) ∈ ÎP and HK ∈ m̂P
|[K]|, we see that

HKΛB+K = HK
(

ΓB+K +
∑

L<B+K+M

m̂P
l−|[B+K+M ]|

HM
)

= HK
(

(ÎP )a−|[B+K]| + m̂P
l−|[B+K]|+1 +

∑
L<B+K+M

m̂P
l−|[B+K+M ]|

HM
)

⊂ (ÎP )a−|[B]| + m̂P
l−|[B]|+1 +

∑
L<B+M

m̂P
l−|[B+M ]|

HM

(by replacing old M +K with new M)

= ΓB +
∑

L<B+M

m̂P
l−|[B+M ]|

HM = ΛB ,

proving claim (i).
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In order to show claim (ii), observe

• ∂[K]((ÎP )a−|[B]|) ⊂ (ÎP )a−|[B+K]|, since ÎP is D-saturated,

• ∂[K](m̂P
l−|[B]|+1) ⊂ m̂P

l−|[B+K]|+1,
∂[K]−I(m̂P

l−|[B+M ]|) ⊂ m̂P
l−|[B+K+M ]|+|I| for I with I ≤ [K],

• ∂I(HM ) ⊂
(

[M ]
I

)
HM−I + m̂P

|[M ]|−|I|+1, and
(

[M ]
I

)
= 0 unless I = [J ] for some

J ∈ (Z≥0)N .

Using these observations, we compute

∂[K](ΛB) = ∂[K]

(
ΓB +

∑
L<B+M

m̂P
l−|[B+M ]|

HM
)

= ∂[K]

(
(ÎP )a−|[B]| + m̂P

l−|[B]|+1 +
∑

L<B+M

m̂P
l−|[B+M ]|

HM
)

= ∂[K]((ÎP )a−|[B]|) + ∂[K](m̂P
l−|[B]|+1) +

∑
L<B+M

∂[K](m̂P
l−|[B+M ]|

HM )

= ∂[K]((ÎP )a−|[B]|) + ∂[K](m̂P
l−|[B]|+1)

+
∑

L<B+M

[ ∑
I≤[K]

∂[K]−I(m̂P
l−|[B+M ]|)∂I(HM )

]
(by the generalized product rule; cf. Lemma 1.2.1.2(3) in Part I)

= ∂[K]((ÎP )a−|[B]|) + ∂[K](m̂P
l−|[B]|+1)

+
∑

L<B+M

[ ∑
I=[J], I≤[K]

∂[K]−I(m̂P
l−|[B+M ]|)∂I(HM )

+
∑

I 6=[J], I≤[K]

∂[K]−I(m̂P
l−|[B+M ]|)∂I(HM )

]
⊂ (ÎP )a−|[B+K]| + m̂P

l−|[B+K]|+1

+
∑

L<B+M

[ ∑
I=[J], J≤K, J≤M

m̂P
l−|[B+M+K−J]|

HM−J
]

⊂ ΓB+K +
∑

L<B+M+(K−J)=B+K+(M−J), J≤K, J≤M

m̂P
l−|[B+K+M−J]|

HM−J

⊂ ΓB+K +
∑

L<B+K+M

m̂P
l−|[B+K+M ]|

HM = ΛB+K

(by replacing old M − J with new M),

checking claim (ii).
Now by definition, for each B ∈ (Z≥0)N with B 6= O, lB = l, LB = L, we can

choose bB ∈ m̂P
l−|[L]| such that cB − bBHL−B ∈ ΛB . For each B ∈ (Z≥0)N with

B 6= O but lB 6= l or LB 6= L, we set bB = 0 and have cB − bBHL−B ∈ ΛB .
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Therefore, for each B ∈ (Z≥0)N with B 6= O, we have

cB − bBHL−B ∈ ΛB

and hence by claim (i) (with B,K ∈ (Z≥0)N there being equal to O, B below,
respectively)

(cB − bBHL−B)HB ∈ ΛO.

Now we compute (with “≡” denoting equality modulo ΛB0):

∂[B0]f = ∂[B0]

(∑
cBH

B
)

= ∂[B0]

(∑
B 6=O

cBH
B
)
≡ ∂[B0]

(∑
B 6=O

bBH
L
)

(since B0 6= O,
∑
B 6=O

cBH
B −

∑
B 6=O

bBH
L ∈ ΛO and by claim (ii))

=
∑

B 6=O,lB=l,LB=L

∂[B0](bBHL−BHB)

=
∑

B 6=O, lB=l, LB=L

[ ∑
I≤[B0]

∂I(bBHL−B)∂[B0]−I(HB)
]

(by the generalized product rule; cf. Lemma 1.2.1.2(3) in Part I)

≡
∑

B 6=O, lB=l, LB=L

[ ∑
I≤[B0], I=[K]

∂[K](bBHL−B)∂[B0−K](HB)
]

(refer to the last observation used to prove claim (ii)).

Therefore we obtain the equation

∂[B0]f ≡
∑

B 6=O, lB=l, LB=L

bBH
L−B∂[B0](HB)

by using the following observation:

For K 6= O, we have ∂[K](bBHL−B) = ∂[K](−(cB − bBHL−B)) ∈ ΛB+K and
hence ∂[K](bBHL−B)∂[B0−K](HB) ∈ ΛB+K∂[B0−K](HB) ⊂ ΛB0 .

Note that the last inclusion in the observation above is verified as follows:

ΛB+K∂[B0−K](HB)

=
(

ΓB+K +
∑

L<B+K+M

m̂P
l−|[B+K+M ]|

HM
)
∂[B0−K](HB)

=
(

(ÎP )a−|[B+K]| + m̂P
l−|[B+K]|+1 +

∑
L<B+K+M

m̂P
l−|[B+K+M ]|

HM
)
∂[B0−K](HB)
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⊂ (ÎP )a−|[B0]| + m̂P
l−|[B0]|+1 +

( ∑
L<B+K+M

m̂P
l−|[B+K+M ]|

HM
)

·
((

[B]
[B0 −K]

)
HB−(B0−K) + m̂P

[B]−[B0−K]+1
)

⊂ (ÎP )a−|[B0]| + m̂P
l−|[B0]|+1

+
∑

L<B0+(M+B+K−B0)

m̂P
l−|[B0+(M+B+K−B0)]|

HM+B+K−B0

⊂ (ÎP )a−|[B0]| + m̂P
l−|[B0]|+1 +

∑
L<B0+M

m̂P
l−|[B0+M ]|

HM

= ΓB0 +
∑

L<B0+M

m̂P
l−|[B0+M ]|

HM = ΛB0 .

In carrying out the above computation, we make a couple of notes. Note that,
in order to obtain the first inclusion, we used the observation ∂[B0−K](HB) ∈
(ÎP )|[B]|−|[B0−K]| and ∂[B0−K](HB) ∈ m̂P

|[B]|−|[B0−K]|, as well as the last obser-
vation used to prove claim (ii). Note also that, when [B] 6≥ [B0 − K], we have(

[B]
[B0−K]

)
= 0, and hence we have the second inclusion valid ignoring the third

term starting with
∑
L<B0+(M+B+K−B0).

On the other hand, continuing with the last term of the equations (∗), we
have, by the maximality of B0,∑

B 6=O, lB=l, LB=L

bBH
L−B∂[B0](HB)

≡
∑

B 6=O, lB=l, LB=L

(
B

B0

)
bBH

L−B0 = bB0H
L−B0 .

Therefore, we conclude ∂[B0]f ≡ bB0H
L−B0 . However, since ∂[B0]f ∈ (ÎP )a−|[B0]|

⊂ ΛB0 , we conclude that bB0H
L−B0 ∈ ΛB0 and hence cB0 ∈ ΛB0 , which contradicts

the choice of B0 with LB0 = L.
This finishes the proof of Lemma 2.2.2.1.

Remark 2.2.2.2. The essential idea of the proof by contradiction above actually
leads to an explicit and concrete construction of the coefficients using the differen-
tial operators and taking limits. We present this construction below. Given f ∈ R̂,
let f =

∑
B∈(Z≥0)N cBH

B be the power series expansion of the form (?).

◦ Construction of the “constant” term cO. We construct a sequence {gn}n∈Z≥0

⊂ R̂ inductively as follows:

(1) g0 = f .
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(2) gn = (1 − HBn−1∂[Bn−1])gn−1, where the multi-index Bn−1 is characterized
and chosen in the following manner: with gn−1 =

∑
B∈(Z≥0)N cB(gn−1)HB

being the power series expansion of the form (?) for gn−1, we have{
ord(cBn−1(gn−1)HBn−1) = min{ord(cB(gn−1)HB) ; B 6= O} = νn−1,

Bn−1 = min{B ; B 6= O, ord(cB(gn−1)HB) = νn−1}.

Then we realize the constant term cO as the limit of the above sequence, i.e.,

cO = lim
n→∞

gn.

◦ Construction of the coefficient cB for B ∈ (Z≥0)N in general. We construct a
sequence {fn}n∈Z≥0 ⊂ R̂ inductively as follows:

(1) f0 = 0.
(2) fn = fn−1 +HBn−1cO(∂[Bn−1](f − fn−1)), where cO is the operator taking the

“constant” term and where the multi-index Bn−1 is characterized and chosen
in the following manner: with f − fn−1 =

∑
B∈(Z≥0)N cB(f − fn−1)HB being

the power series expansion of the form (?) for f − fn−1, we have{
ord(cBn−1(f − fn−1)HBn−1) = ord(f − fn−1),
Bn−1 = min{B ; ord(cB(f − fn−1)HB) = ord(f − fn−1)}.

Then we realize f and cB as the limits of the above sequence and {cB(fn)}n∈Z≥0 ,
respectively, i.e.,

f = lim
n→∞

fn, cB = lim
n→∞

cB(fn).

Starting from (f, a) ∈ ÎP , we see inductively that (gn, a) ∈ ÎP . This implies
(cO, a) ∈ ÎP , since (ÎP )a is complete. Using this information, we also prove induc-
tively (cB(fn), a− |[B]|) ∈ ÎP . This implies (cB , a− |[B]|) ∈ ÎP , since (ÎP )a−|[B]| is
complete. In this way, the construction gives an “alternative” proof (but essentially
the same as above) to Lemma 2.2.2.1.

Chapter 3. Invariant µ̃

The purpose of this chapter is to study the basic properties of the invariant µ̃.
Since the unit for the strand of invariants in our algorithm is a triplet of numbers
(σ, µ̃, s) (or a quadruplet (σ, µ̃, ν̃, s) (cf. 0.3.1)), we also study the behavior the pair
(σ, µ̃) endowed with the lexicographical order. The discussion of the invariant µ̃
or of the pair (σ, µ̃) in this chapter is restricted to and concentrated on the case
where there are no exceptional divisors involved, and hence can only be applied
directly to the process in year 0 of our algorithm. We will postpone the general
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discussion, involving the exceptional divisors and hence applicable to the process
after year 0 of our algorithm, until Part III and Part IV (cf. 0.2.3).

The setting for this chapter is identical to that of Chapter 1.
Namely, R represents the coordinate ring of an affine open subset SpecR of

a nonsingular variety W of dimW = d over an algebraically closed field k with
char(k) = p > 0 or char(k) = 0, where in the latter case we formally set p = ∞
(cf. 0.2.3.2.1 and Definition 3.1.1.1(2) in Part I).

Let I be an idealistic filtration over R. We assume that I is D-saturated. We
remark that then, by compatibility of localization with D-saturation (cf. Propo-
sition 2.4.2.1(2) in Part I), the localization IP is also D-saturated for any closed
point P ∈ Spec R.

§3.1. Definition of µ̃

3.1.1. Definition of µ̃ as µH. We fix a closed point P ∈ SpecR ⊂W . Take an
LGS H = {(hl, pel)}l=1,...,N with nonnegative integers 0 ≤ e1 ≤ · · · ≤ eN attached
for the D-saturated idealistic filtration IP . Let H = {hl}l=1,...,N be the set of its
elements in H, and (H) ⊂ RP the ideal generated by H.

Definition 3.1.1.1. First we recall a few definitions given in 3.2.2 in Part I. For
f ∈ RP (or more generally for f ∈ R̂P ), we define its multiplicity (or order)
modulo (H), denoted by ordH(f), to be

ordH(f) = sup{n ∈ Z≥0 ; f ∈ mn
P + (H)} (or sup{n ∈ Z≥0 ; f ∈ m̂P

n + (H)}).

Note that we set ordH(0) =∞ by definition. We also define

µH(IP ) := inf
{
µH(f, a) =

ordH(f)
a

; (f, a) ∈ IP , a > 0
}
.

(We remark that µH(ÎP ) is defined in a similar manner.)
Finally the invariant µ̃ at P , which we denote by µ̃(P ), is defined by the

formula
µ̃(P ) = µH(IP ).

In order to justify the definition, we should show that µH(IP ) is independent
of the choice of H, i.e., independent of the choice of an LGS H for IP . We will
show this independence in the next subsection.

Remark 3.1.1.2. (1) The usual order is multiplicative, i.e., we have an equality

ord(fg) = ord(f) + ord(g) ∀f, g ∈ RP .
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The order modulo (H) is also multiplicative if e1 = · · · = eN = 0. However, in
general, we can only expect that the order modulo (H) is weakly multiplicative,
i.e., we only have an inequality

ordH(fg) ≥ ordH(f) + ordH(g) ∀f, g ∈ RP .

In fact, if el > 0 for some l = 1, . . . , N , then it is easy to see (cf. Remark 3.2.1.2(1))
that we indeed have a strict inequality for some f, g ∈ RP , i.e.,

ordH(fg) > ordH(f) + ordH(g) for some f, g ∈ RP .

(2) Assume further that the idealistic filtration I is of r.f.g. type (cf. Definition
2.1.1.1(4) and §2.3 in Part I). Then the invariant µ̃ takes rational values with some
bounded denominator δ (independent of P ).

In fact, take a finite set of generators T for I = GR(T ) of the form

T = {(fλ, aλ)}λ∈Λ ⊂ R×Q>0, #Λ <∞, with aλ = pλ/qλ where pλ, qλ ∈ Z>0.

Set δ =
∏
λ∈Λ pλ. Then

µ̃(P ) = µH(IP ) = inf
{
µH(f, a) =

ordH(f)
a

; (f, a) ∈ IP , a > 0
}

= min
{
µH(fλ, aλ) =

ordH(fλ)
aλ

=
ordH(fλ) · qλ

pλ

}
(cf. Lemma 2.2.1.2(1) in Part I and Remark 3.1.1.2(1) above)

∈ 1
δ

Z≥0 ∪ {∞}.

(3) Our invariant µ̃, the order modulo an LGS, is quite different from the
so-called “residual order”, the order modulo a p-th power element (or modulo a
pe-th power element for some appropriate e ∈ Z≥0, depending upon the situa-
tion) used in some other approaches toward resolution of singularities in positive
characteristic. In fact, they form quite a contrast. Firstly, even though the leading
terms of the elements in an LGS are pe-th power elements for some e ∈ Z≥0, their
higher terms are not necessarily pe-th power elements. Therefore, we consider two
different modulo’s in order to compute the invariant µ̃ and the residual order.
Secondly, they behave differently under blowup. The residual order may strictly
increase under blowup, as Hauser’s example of a “Kangaroo point” or Moh’s ex-
ample exhibits (cf. [RIMS08]). On the other hand, when we compute the pair (σ, µ̃)
for these examples, we see that the pair never increases. A further comparison of
the invariant µ̃ and the residual order will be given in our subsequent papers.
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3.1.2. Invariant µH is independent of H. We show that µH(IP ) is indepen-
dent of the choice of H.

Proposition 3.1.2.1. Let the setting be as described in 3.1.1. Then µH(IP ) is
independent of the choice of H, i.e., independent of the choice of an LGS H for IP .

Proof. Suppose

µP (I) = inf
{
µP (f, a) =

ordP (f)
a

; (f, a) ∈ IP , a > 0
}
< 1.

Then P 6∈ Supp(I). By Lemma 1.1.2.1(1), we have IP = RP × R. We conclude
that the set of elements H in any LGS H for IP is a regular system of parame-
ters {x1, . . . , xd} for RP , where d = dimW . Accordingly, we have µH(IP ) = 0,
independently of the choice of H.

Therefore, in the following, we may assume 1 ≤ µP (I) and hence that 1 ≤
µP (I) ≤ µH(IP ) for any choice of H.

Case 1: µH(IP ) = 1 for any choice of H. In this case, µH(IP ) = 1 is obviously
independent of the choice of H by the case assumption.

Case 2: µH(IP ) > 1 for some choice of H. In this case, fixing the set of the
elements H in an LGS H for IP with µH(IP ) > 1, we show

(∗) µH′(IP ) ≥ µH(IP ) (> 1)

where H′ is the set of the elements in another LGS H′ for IP .
This is actually sufficient to show the required independence, since by switch-

ing the roles of H and H′, we conclude µH(IP ) ≥ µH′(IP ) and hence µH(IP ) =
µH′(IP ).

First we make the following two easy observations:

(A) Let H′′ = {h′′l }l=1,...,N be another set of elements in RP obtained from H′ by
a linear transformation, i.e., for each e ∈ Z≥0 we have

[h′′p
e−el

l ; el ≤ e] = [h′p
e−el

l ; el ≤ e]ge for some ge ∈ GL(#{el ; el ≤ e}, k).

Then H′′ is the set of the elements in an LGS H′′ = {(h′′l , pel)}Nl=1 for IP , and
we have µH′(IP ) = µH′′(IP ).
Going back to our situation, we see that there is H′′, obtained from H′ by
a linear transformation, such that H′′ and H share the same leading terms.
Therefore, in order to show the inequality (∗), by replacing H′ with H′′ we
may assume that H and H′ share the same leading terms, i.e.,

hl ≡ h′l mod mpel+1
P for l = 1, . . . , N.
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(B) Assume thatH andH′ share the same leading terms. Then we have a sequence
of the sets of the elements of LGS’s for IP

H = H0,H1, . . . ,HN = H′

where the adjacent sets share all but one element. We have only to show

µHl(IP ) ≥ µHl−1(IP ) for l = 1, . . . , N

in order to verify the inequality (∗).

According to the observations above, therefore, we have only to show the
inequality (∗) under the following extra assumptions:

(1) H and H′ share the same leading terms, i.e.,

hl ≡ h′l mod mpel+1
P for l = 1, . . . , N.

(2) H and H′ share all but one element, i.e.,

hl = h′l for l = 1, . . . , N except l = l0.

In order to ease the notation, we set

h = hl0 , h′ = h′l0 , G = H \ {hl0} = H′ \ {h′l0}.

Let ν be any positive number such that 1 < ν < µH(IP ).
Since (h, pel0 ), (h′, pel0 ) ∈ IP , we have (h − h′, pel0 ) ∈ IP . Therefore, by the

definition of µH(IP ) and by the inequality 1 < ν < µH(IP ), we have

h− h′ ∈ m
dνpel0 e
P + (H), i.e., h− h′ = f1 + f2 with f1 ∈ m

dνpel0 e
P , f2 ∈ (H).

On the other hand, by the extra assumption (1), we have

h− h′ ∈ mp
el0 +1
P .

Observing dνpel0 e ≥ pel0 + 1 (recall ν > 1), we thus conclude that

f2 = (h− h′)− f1 ∈ (H) ∩mp
el0 +1
P

and hence that

h− h′ = f1 + f2 ∈ m
dνpel0 e
P + (H) ∩mp

el0 +1
P ⊂ m

dνpel0 e
P + hmP + (G) ∩mp

el0 +1
P ,

where the last inclusion follows from Lemma 4.1.2.3 in Part I. That is, we have

h− h′ = g1 + hr + g2 with g1 ∈ m
dνpel0 e
P , r ∈ mP , g2 ∈ (G) ∩mp

el0 +1
P .
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Therefore, (1− r)h = g1 + h′ + g2. Since u = 1− r is a unit in RP , we conclude

h = u−1g1 + u−1h′ + u−1g2 ∈ m
dνpel0 e
P + (H′).

Given an element (f, a) ∈ IP (a > 0), we hence have

f ∈
∑
B

(IP )′a−|[B]|H
B

(by the Coefficient Lemma in Part I, where (IP )′t = (IP )t ∩m
dνte
P )

=
∑

b=bl0 , C=(b1,...,bl0−1,0,bl0+1,...,bN )

(IP )′
a−|[C]|−bpel0 h

bHC ⊂
∑
b

(IP )′
a−bpel0 h

b + (G)

⊂
∑
b

(IP )′
a−bpel0 m

bdνpel0 e
P + (H′) (since h ∈ m

dνpel0 e
P + (H′)).

Therefore,

ordH′(f) ≥ min
b
{ordP ((IP )′

a−bpel0 m
bdνpel0 e
P )} ≥ min

b
{dν(a− bpel0 )e+ bdνpel0 e}

≥ νa.

This implies

µH′(f, a) =
ordH′(f)

a
≥ ν.

Since this inequality holds for any positive number with 1 < ν < µH(IP ), we
conclude

µH′(f, a) ≥ µH(IP ).

Since (f, a) ∈ IP (a > 0) is arbitrary, we finally conclude

µH′(IP ) ≥ µH(IP ).

This completes the proof of the inequality (∗), and hence the proof in Case 2.
This completes the proof of Proposition 3.1.2.1.

§3.2. Interpretation of µ̃ in terms of the power series expansion

The purpose of this section is to give an interpretation of the invariant µ̃ = µH in
terms of the power series expansion of the form (?) discussed in Chapter 2.

3.2.1. The order ordH(f) of f modulo (H) is equal to the order ord(cO)
of the constant term of the power series expansion for f

Lemma 3.2.1.1. Let the setting be as described in 3.1.1. Then, given f ∈ R̂P , we
have

ordH(f) = ord(cO),

where cO is the “constant” term of the power series expansion f =
∑
cBH

B of the
form (?) as described in Lemma 2.1.2.1.
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Proof. Since f ≡ cO mod (H), we obviously have

ordH(f) = ordH(cO) ≥ ord(cO).

Suppose ordH(f) > ord(cO) = r. Then by definition we can write

f = f1 + f2 with f1 ∈ m̂P
r+1

, f2 ∈ (H).

Therefore, we have
f1 = f − f2 =

∑
cBH

B − f2.

Since f2 ∈ (H), we conclude by the uniqueness of the power series expansion of
the form (?) that the constant term cO = cO(f) for f is also the constant term
cO(f1) for f1, i.e., cO = cO(f1). On the other hand, by Remark 2.1.2.2(1),

r = ord(cO) = ord(cO(f1)) ≥ ord(f1) ≥ r + 1,

a contradiction! Therefore, ordH(f) = ord(cO). This completes the proof of Lemma
3.2.1.1.

Remark 3.2.1.2. (1) We justify Remark 3.1.1.2(1), using Lemma 3.2.1.1. Sup-
pose el > 0 for some l = 1, . . . , N . Take a, b ∈ Z>0 such that a+b = pel . Set f = xal
and g = xbl . Then cO(f) = xal and cO(g) = xbl . Therefore, by Lemma 3.2.1.1 we
have

ordH(f) + ordH(g) = ord(cO(f)) + ord(cO(g)) = a+ b.

On the other hand, we observe that

fg = xal x
b
l = xp

el

l ∈ mpel+1
P + (hl) ⊂ mpel+1

P + (H),

which implies

ordH(fg) ≥ pel + 1 > pel = a+ b = ordH(f) + ordH(g).

(2) We remark that the above interpretation of ordH(f) is still valid even
if we consider the power series expansion of the form (?) with respect to H =
(h1, . . . , hN ) and a regular system of parameters only weakly-associated to H (cf.
Remark 2.1.2.2(2)), instead of the power series expansion of the form (?) with
respect to H and a regular system of parameters associated to H as described in
Lemma 2.1.2.1.

3.2.2. Alternative proof of the Coefficient Lemma. The interpretation
given in 3.2.1 allows us to derive the Coefficient Lemma (Lemma 4.1.4.1 in Part I)
as a corollary to the formal coefficient lemma (Lemma 2.2.2.1 in Part II).
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Corollary 3.2.2.1 (= Coefficient Lemma). Let ν ∈ R≥0 be such that ν < µH(Ip).
Set

(IP )′t = (IP )t ∩m
dνte
P ,

where we use the convention that mn
P = RP for n ≤ 0. Then for any a ∈ R, we

have
(IP )a =

∑
B

(IP )′a−|[B]|H
B .

Proof. Note that we already gave a proof to the Coefficient Lemma in Part I. Here
we present an alternative proof based upon the formal coefficient lemma, although
both proofs share some common spirit.

Since HB ∈ (IP )|[B]|, we clearly have the inclusion

(IP )a ⊃
∑
B

(IP )′a−|[B]|H
B .

Therefore, we have only to show the opposite inclusion

(IP )a ⊂
∑
B

(IP )′a−|[B]|H
B .

Now, as observed in Remark 4.1.4.2(2) in Part I, we have∑
B

(IP )′a−|[B]|H
B =

∑
|[B]|<a+peN

(IP )′a−|[B]|H
B .

Therefore, actually we have only to show

(IP )a ⊂
∑

|[B]|<a+peN

(IP )′a−|[B]|H
B .

Since R̂P is faithfully flat over RP , we have only to prove this inclusion at the
level of completion. That is, we have only to show

(ÎP )a ⊂
∑

|[B]|<a+peN

(ÎP )′a−|[B]|H
B ,

noting {
(IP )t ⊗RP R̂P = (ÎP )t,
(IP )′t ⊗RP R̂P = ((IP )t ∩m

dνte
P )⊗R R̂P = (ÎP )t ∩ m̂P

dνte = (ÎP )′t.

Take f ∈ (ÎP )a. Let f =
∑
B cBH

B be the power series expansion of the form
(?) as described in Lemma 2.1.2.1.
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Observe that, for each C ∈ (Z≥0)N with |[C]| ≥ a + peN , there exists BC ∈
(Z≥0)N with a ≤ |[BC ]| < a + peN such that BC < C (cf. Remark 4.1.4.2(2) in
Part I). We choose one such BC and call it φ(C).

For each B ∈ (Z≥0)N with a ≤ |[B]| < a+ peN , we set

c′B = cB +
∑

C withφ(C)=B

cCH
C−B .

Then c′B ∈ R̂P = (ÎP )′a−|[B]|, since a− |[B]| ≤ 0.
On the other hand, for each B ∈ (Z≥0)N with |[B]| < a, we have by the

formal coefficient lemma
cB ∈ (ÎP )a−|[B]|.

We also have by Lemma 3.2.1.1

ord(cB) = ordH(cB) ≥ dµH(IP )(a− |[B]|)e ≥ dν(a− |[B]|)e.

Therefore,
cB ∈ (ÎP )a−|[B]| ∩ m̂P

dν(a−|[B]|)e = (ÎP )′a−|[B]|.

We conclude

f =
∑
B

cBH
B =

∑
|[B]|<a

cBH
B +

∑
a≤|[B]|<a+peN

c′BH
B ∈

∑
|[B]|<a+peN

(ÎP )′a−|[B]|H
B .

Since f ∈ (ÎP )a is arbitrary, we finally conclude

(ÎP )a ⊂
∑

|[B]|<a+peN

(ÎP )′a−|[B]|H
B .

This completes the “alternative” proof of the Coefficient Lemma.

3.2.3. Alternative proof of Proposition 3.1.2.1. The interpretation given in
3.2.1 also allows us to provide an alternative proof of Proposition 3.1.2.1 via the
formal coefficient lemma (cf. Lemma 2.2.2.1).

Corollary 3.2.3.1 (= Proposition 3.1.2.1). Let the setting be as described in
3.1.1. Then µH(IP ) is independent of the choice of H, i.e., independent of the
choice of a leading generator system H for IP .

Alternative proof. Let H′ be the set of the elements in another LGS H′. We want
to show µH′(IP ) = µH(IP ). By the same argument as in the proof of Proposition
3.1.2.1, we may assume that H and H′ share the same leading terms, i.e.,

hl ≡ h′l mod mpel+1
P for l = 1, . . . , N.
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Since H and H′ share the same leading terms, we can take a regular system of
parameters (x1, . . . , xd) associated to both H and H ′ simultaneously. In the follow-
ing, when we consider the power series expansion of the form (?), we understand
that it is with respect to H and (x1, . . . , xd) or with respect to H ′ and (x1, . . . , xd).

Now since µH′(IP ) = µH′(ÎP ) and µH(IP ) = µH(ÎP ), we have only to show

µH′(ÎP ) = µH(ÎP ).

We observe that

µH′(ÎP ) = inf
{
µH′(f, a) =

ordH′(f)
a

; (f, a) ∈ ÎP , a > 0
}

= inf
{

ord(c′O(f))
a

; (f, a) ∈ ÎP , a > 0, f =
∑

c′B(f)H ′B
}

(by the interpretation given in 3.2.1)

= inf
{

ord(f)
a

; (f, a) ∈ ÎP , a > 0, f = c′O(f)
}

(by the formal coefficient lemma)

and similarly that

µH(ÎP ) = inf
{
µH(f, a) =

ordH(f)
a

; (f, a) ∈ ÎP , a > 0
}

= inf
{

ord(cO(f))
a

; (f, a) ∈ ÎP , a > 0, f =
∑

cB(f)HB

}
(by the interpretation given in 3.2.1)

= inf
{

ord(f)
a

; (f, a) ∈ ÎP , a > 0, f = cO(f)
}

(by the formal coefficient lemma).

On the other hand, the condition f = c′O(f) is equivalent to saying that f , as a
power series in terms of (x1, . . . , xN , xN+1, . . . , xd), is of the form f =

∑
bKX

K ,
with bK being a power series in terms of the remainder (xN+1, . . . , xd) of the
regular system of parameters, and with K = (k1, . . . , kd) varying in the range

0 ≤ kl ≤ pel − 1 for l = 1, . . . , N and kl = 0 for l = N + 1, . . . , d.

Since the regular system of parameters (x1, . . . , xN , xN+1, . . . , xd) is associated to
both H and H ′ simultaneously, this condition is no different from the condition
f = cO(f). That is, we have

f = c′O(f) ⇔ f = cO(f).
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Therefore, by looking at the last expressions for µH′(ÎP ) and µH(ÎP ) above, we
conclude

µH′(ÎP ) = µH(ÎP ).

This completes the alternative proof.

§3.3. Upper semi-continuity of (σ, µ̃)

The purpose of this section is to establish the upper semi-continuity of (σ, µ̃),
where the pair is endowed with the lexicographical order.

Recall that we have a D-saturated idealistic filtration I over R.

3.3.1. Statement of the upper semi-continuity of (σ, µ̃) and its proof

Proposition 3.3.1.1. The function

(σ, µ̃) : X = m-SpecR→
( ∏
e∈Z≥0

Z≥0

)
× (R≥0 ∪ {∞})

is upper semi-continuous with respect to the lexicographical order on (
∏
e∈Z≥0

Z≥0)
× (R≥0 ∪ {∞}). That is, for any (α, β) ∈ (

∏
e∈Z≥0

Z≥0)× (R≥0 ∪ {∞}), the locus
X≥(α,β) is closed (cf. Definition 1.2.1.1).

Assume further that the idealistic filtration I is of r.f.g. type (cf. Defini-
tion 2.1.1.1(4) and §2.3 in Part I ). Then the invariant µ̃ takes the rational values
with some bounded denominator δ, and the upper semi-continuity allows us to
extend the domain to define the function

(σ, µ̃) : SpecR→
( ∏
e∈Z≥0

Z≥0

)
× (R≥0 ∪ {∞}),

where for Q ∈ SpecR we have by definition

(σ, µ̃)(Q) = min{(σ, µ̃)(P ) = (σ(P ), µ̃(P )) ; P ∈ m-SpecR, P ∈ Q},

or equivalently (σ, µ̃)(Q) is equal to (σ, µ̃)(P ) with P being a general closed point
in Q. The function (σ, µ̃) with the extended domain is upper semi-continuous.

Moreover, since SpecR is noetherian and since (σ, µ̃)(SpecR) is contained
in a well-ordered subset W of T = (

∏
e∈Z≥0

Z≥0) × (R≥0 ∪ {∞}) (e.g., we can
set W = S × ( 1

δZ≥0 ∪ {∞}) where S is the well-ordered subset of
∏
e∈Z≥0

Z≥0

as described in the proof of Corollary 1.2.1.3), conditions (i) and (ii) in Lemma
1.2.1.2, as well as the assertions in Corollary 1.2.1.4, hold for the upper semi-
continuous function (σ, µ̃) : SpecR→ T .

Proof. First we show the upper semi-continuity of the function

(σ, µ̃) : X = m-SpecR→
( ∏
e∈Z≥0

Z≥0

)
× (R≥0 ∪ {∞}).
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We have only to show that, for any (α, β) ∈ (
∏
e∈Z≥0

Z≥0) × (R≥0 ∪ {∞}), the
locus X≥(α,β) is closed.

Step 1. Reduction to the (local) situation where X = m-SpecR is an affine open
neighborhood of a fixed point P , α = σ(P ) 6= (0)e∈Z≥0 is the maximum of the in-
variant σ, and where an LGS H of IP is uniformly pure along the (local) maximum
locus C of the invariant σ.

Observe that X≥(α,β) = X>α∪ (X≤α∩X≥(α,β)). Since X>α is a closed subset
by the upper semi-continuity of the invariant σ (cf. Corollary 1.2.1.3 and Propo-
sition 1.2.2.1), we have only to show X≥(α,β) is closed in the open subset X≤α, or
equivalently in any affine open subset U contained in X≤α. By replacing X with U ,
we may assume that the invariant σ never exceeds α inX. Then again by the upper
semi-continuity of the invariant σ, the maximum locus C = {Q ∈ X ;σ(Q) = α}
(= X≥α) of the invariant σ is a closed subset. Since X≥(α,β) ⊂ C, we have only to
show that, for any point P ∈ C, there exists an affine open neighborhood UP of
P such that UP ∩X≥(α,β) is closed.

Suppose α = σ(P ) = (0)e∈Z≥0 . Then, taking UP sufficiently small, we have
UP ∩ Supp(I) = ∅ or {P} (cf. Remark 1.3.3.2(i)). Therefore, we conclude that
UP ∩X≥(α,β) = UP , {P} or ∅, and hence is closed. (Note that, for a point Q ∈ UP ,
we have (σ, µ̃)(Q) = ((0)e∈Z≥0 , 0) if Q /∈ Supp(I), and (σ, µ̃)(Q) = ((0)e∈Z≥0 ,∞) if
Q ∈ Supp(I).)

Therefore, in the following, we may concentrate on the case where α = σ(P ) 6=
(0)e∈Z≥0 . We take a leading generator system H of IP . By Proposition 1.3.3.3 and
by shrinking UP if necessary, we may assume that H is uniformly pure along C.
Note that C = C ∩ Supp(I), due to the condition σ(P ) 6= (0)e∈Z≥0 (cf. Remark
1.3.3.2). Finally by replacing X with UP , we are reduced to the (local) situation
as described in Step 1.

We may also assume by shrinking UP if necessary, after taking a regular system
of parameters (x1, . . . , xd) associated to H = (h1, . . . , hN ) at P , that we have a
regular system of parameters (x1, . . . , xd) over SpecR such that the matrices

[∂
xp
e

i
(hp

e−ej

j )]j=1,...,Le
i=1,...,Le

for e = e1, . . . , eN where Le = #{l ; el ≤ e}

are all invertible, and hence that the conditions described in the setting 4.1.1 of
Part I for the supporting lemmas to hold are satisfied (at any point in C).

(We would like to bring to the reader’s attention the difference in notation
from 4.1.1 of Part I. The symbol “R ” here denotes the coordinate ring of an affine
open subset SpecR in W (cf. the beginning of Chapter 3), while the “R ” there
denotes the local ring at a closed point.)
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Step 2. Reduction to statement (♠), which is further reduced to statement (♥).

We observe that, in order to provide an argument for the upper semi-continu-
ity, it suffices to prove the following slightly more general statement (♠) (which
does not involve any idealistic filtration):

(♠) Let C ⊂ m-SpecR be a closed subset. Let H = {h1, . . . , hN} ⊂ R be a
subset consisting of N elements, and 0 ≤ e1 ≤ · · · ≤ eN nonnegative integers
attached to these elements, satisfying the following conditions at each point
P ∈ C (cf. 4.1.1 in Part I):

(i) hl ∈ mpel

P and hl = (hl mod mpel+1
P ) = vp

el

l with vl ∈ mP /m
2
P for l =

1, . . . , N ,
(ii) {vl ; l = 1, . . . , N} ⊂ mP /m

2
P consists of N distinct and k-linearly inde-

pendent elements in the k-vector space mP /m
2
P .

We also have a regular system of parameters (x1, . . . , xd) over SpecR such
that the matrices

[∂
xp
e

i
(hp

e−ej

j )]j=1,...,Le
i=1,...,Le

for e = e1, . . . , eN where Le = #{l ; el ≤ e}

are all invertible. Then for any f ∈ R and r ∈ Z≥0 the locus

Vr(f,H) := {P ∈ C ; f ∈ mr
PRP + (H)RP } = {P ∈ C ; ordH(f)(P ) ≥ r}

is a closed subset.

In fact, if we prove statement (♠), then X(α,β) =
⋂

(f,a)∈I,a>0 Vdβae(f,H) is closed
for any (α, β) ∈ (

∏
e∈Z≥0

Z≥0) × (R≥0 ∪ {∞}), and hence we have the required
upper semi-continuity of the function (σ, µ̃).

Furthermore, in order to prove statement (♠), we have only to show the
following statement (♥) for any f ∈ R and r ∈ Z≥0:

(♥) There exist ωl ∈ R (l = 1, . . . , N) such that

Vr(f,H) =
{
P ∈ C ; f −

N∑
l=1

ωlhl ∈ mr
PRP

}
.

In fact, if we show statement (♥), then Vr(f,H) being a closed set follows from
the usual upper semi-continuity of the order function for f−

∑N
l=1 ωlhl, and hence

we have statement (♠).

Step 3. Proof of statement (♥) by induction on r.
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We use induction on r. We set

e := e1 = min{el ; l = 1, . . . , N},
L := max{l ; l = 1, . . . , N, el = e} = #{l ; l = 1, . . . , N, el = e},
e′ := eL+1 (if L = N, then we set e′ :=∞),
χ := #{e1, . . . , eN}.

Case 1: r ≤ pe. In this case, we have only to set ωl = 0 (l = 1, . . . , l) in order to
show statement (♥).

Case 2: r > pe. Observing Vr(f,H) ⊂ Vr−1(f,H) and replacing f with f −∑N
l=1 ωlhl via the application of statement (♥) for r − 1 by induction, we may

assume

f ∈ mr−1
P RP ∀P ∈ Vr(f,H).

We also observe, by Supporting Lemma 3 in Part I (cf. Lemma 4.1.2.3 in Part I),
that, at each point P ∈ Vr(f,H), there exist βl,P ∈ mr−1−pel

P RP such that

f −
∑
l=1

βl,Phl ∈ mr
PRP .

Now we use induction on the pair (χ,L).

Caseχ = 1 (L = N, e′ =∞)

In this case, by applying Supporting Lemma 2 in Part I (cf. Lemma 4.1.2.2
in Part I) with v = r, s = r − 1 and α = −f , we see that

βL ∈ Fv(−f) +
N−1∑
l=1

(Fvβl,P )hl + (hrL) + mr−pe
P RP(∗)

⊂ Fv(−f) +
N−1∑
l=1

(Fvβl,P )hl + mr−pe
P RP .

See Supporting Lemmas 1 and 2 in Part I (cf. Lemma 4.1.2.1 and Lemma 4.1.2.2 in
Part I) for the definition of the differential operator Fv. We would like to emphasize
that, even though Supporting Lemma 2 is a local statement at P , the differential
operator Fv is defined globally over SpecR and hence Fv(−f) ∈ R.

From (∗), we deduce the following.
When N = 1, we have only to set ω1 = Fv(−f) in order to obtain state-

ment (♥).
When N > 1, we observe that

Vr(f,H) = Vr(f, {h1, . . . , hN−1, hN}) = Vr(f − Fv(−f)hN , {h1, . . . , hN−1}).
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Now statement (♥) for f and r with respect to H = {h1, . . . , hN−1, hN} follows
from statement (♥) for f−Fv(−f)hN and r with respect to {h1, . . . , hN−1}, which
holds by induction on (χ,L) = (1, N − 1).

Caseχ > 1

In this case, by applying Supporting Lemma 2 in Part I (cf. Lemma 4.1.2.2
in Part I) with v = pe

′−e − 1, s = r − 1 and α = −f , we see that

βL ∈ Fv(−f) +
∑

1≤l≤N,l 6=L

(Fvβl,P )hl + (hvL) + mr−pe
P RP

⊂ Fv(−f) +
∑

1≤l≤N,l 6=L

hlRP + (hvL) + mr−pe
P RP .

Hence, we conclude that

f − Fv(−f)hL ∈
∑

1≤l≤N,l 6=L

hlRP + hp
e′−e

L RP + mr
PRP

and so

Vr(f,H) = Vr(f, {h1, . . . , hL−1, hL, hL+1, . . . , hN})

= Vr(f − Fv(−f)hL, {h1, . . . , hL−1, h
pe
′−e

L , hL+1, . . . , hN}).

Now statement (♥) for f and r with respect to H = {h1, . . . , hL−1, hL, hL+1,

. . . , hN} follows from statement (♥) for f − Fv(−f)hL and r with respect to

{h1, . . . , hL−1, h
pe
′−e

L , hL+1, . . . , hN}, which holds by induction on (χ,L). (In fact,
if originally L = 1, then the invariant χ drops by 1, and if originally L > 1, then
the invariant χ remains the same but the invariant L drops by 1.)

This completes the proof of statement (♥).
This completes the proof of the upper semi-continuity of the function

(σ, µ̃) : X = m-SpecR→
( ∏
e∈Z≥0

Z≥0

)
× (R≥0 ∪ {∞}).

If we assume further that the idealistic filtration is of r.f.g. type, then, as shown
in Remark 3.1.1.2(2), the invariant µ̃ takes rational values with some bounded
denominator δ. Then (σ, µ̃)(m-SpecR) is contained in a well-ordered set W =
S × ( 1

δZ≥0 ∪ {∞}) where S is the well-ordered subset of
∏
e∈Z≥0

Z≥0 as described
in the proof of Corollary 1.2.1.3. Now the assertion regarding the extension of
the domain of the function (σ, µ̃) from m-SpecR to SpecR and the rest of the
assertions in Proposition 3.3.1.1 follow from the same argument as in the proof of
Corollary 1.2.2.2, where we discussed the extension of the domain of the invariant σ
from m-SpecR to SpecR.

This completes the proof of Proposition 3.3.1.1.
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Remark 3.3.1.2. Hironaka discusses the phenomenon of “generic up and down”,
some pathological behavior of the residual order at nonclosed points, before he
deals with its upper semi-continuity over closed points. In contrast, the pair of
our invariants (σ, µ̃), in the framework of the IFP, is defined originally only at
closed points. The values of the pair at the nonclosed points are defined through
the upper semi-continuity over closed points, extending the domain from m-SpecR
to SpecR as in Proposition 3.3.1.1. Therefore, in the framework of the IFP, we
do not face the issue of specialization or generization, which is inherent to the
consideration of the residual order.

3.3.2. Alternative proof of the upper semi-continuity of (σ, µ̃). We can
give an alternative proof of the upper semi-continuity of (σ, µ̃), using the inter-
pretation of µ̃ in terms of the power series expansion of the form (?) as presented
in 3.2.

Alternative proof of the upper semi-continuity of (σ, µ̃). By the same argument as
before, we are reduced to the (local) situation as described in Step 1 of the original
proof.

Take a regular system of parameters XP = (x1, . . . , xd) = (x1,P , . . . , xd,P )
at P , which is associated to H = (h1, . . . , hN ). By shrinking SpecR if necessary,
we may assume that XQ = (x1,Q, . . . , xd,Q) = (x1 − x1(Q), . . . , xd − xd(Q)) with
xi(Q) ∈ k is a regular system of parameters, which is weakly-associated to H at
any point Q ∈ C.

By the same argument as before, we have only to show that, given f ∈ R and
r ∈ Z≥0, the locus Vr(f,H) = {Q ∈ C ; ordH(f)(Q) ≥ r} is a closed subset as in
Step 2 of the original proof.

This is where the alternative argument using the interpretation of µ̃ presented
in 3.2 begins: Let f =

∑
cB,QH

B be the power series expansion of f at Q ∈ C with
respect to H and the regular system of parameters XQ, which is weakly-associated
to H at Q. By Lemma 3.2.1.1 and Remark 3.2.1.2(2), we have

ordH(f)(Q) = ord(cO,Q).

Let

cO,Q =
∑

γI,QX
I
Q, γI,Q ∈ k,

be the power series expansion of cO,Q with respect to XQ. Then we have

ord(cO,Q) ≥ r ⇔ γI,Q = 0 ∀I with |I| < r.
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On the other hand, since the coefficients γI,Q can be computed from the coefficients
of the power series expansions

f =
∑
aI,f,QX

I
Q where aI,f,Q = ∂XIQ(f)(Q) = ∂XIP (f)(Q)∈ k,

hl =
∑
aI,hl,QX

I
Q where aI,hl,Q = ∂XIQ(hl)(Q) = ∂XIP (hl)(Q)∈ k for l= 1, . . . , N,

via the invertible matrices appearing in the condition of XQ being weakly-associ-
ated to H,

[∂
xp
e

i,Q
(hp

e−ej

j )]j=1,...,Le
i=1,...,Le

(Q) = [∂
xp
e

i,P
(hp

e−ej

j )]j=1,...,Le
i=1,...,Le

(Q) for e = e1, . . . , eN

where Le = #{l ; el ≤ e}, we conclude that, for each I, there exists γI ∈ R such
that γI(Q) = γI,Q for all Q ∈ C.

Finally we conclude that

Vr(f,H) = {Q ∈ C ; ordH(f)(Q) ≥ r} = {Q ∈ C ; γI(Q) = 0 ∀I with |I| < r}

is a closed subset.
This completes the alternative proof of the upper semi-continuity of (σ, µ̃).

Appendix

The purpose of this appendix is to present the new nonsingularity principle using
only the D-saturation, as opposed to the old nonsingularity principle using both
the D-saturation and R-saturation. (The combination of the D-saturation and
R-saturation was called the B-saturation in 2.1.5 and 2.2.3 in Part I.)

In Part I, we emphasized the importance of the R-saturation (and of the
B-saturation) in carrying out the IFP. In fact, the R-saturation was crucial in
establishing the nonsingularity principle, as formulated in Chapter 4 of Part I,
which was supposed to lie at the heart of constructing our algorithm. However,
the R-saturation has also been the main culprit in our quest to complete the
algorithm, causing the following problems:

• By taking the R-saturation, we may increase the denominator of the invariant
µ̃ indefinitely, and hence may not have the descending chain condition on the
value set of the strand of invariants consisting of the units of the form (σ, µ̃, s).
This brings about the problem of termination, as mentioned in the introduction
to Part I.
• If we take the R-saturation, the value of the invariant µ̃ may strictly increase

under blowup, even when the value of the invariant σ stays the same. This
violates the principle that our strand of invariants, consisting of the units of the
form (σ, µ̃, s), should never increase under blowup.
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While writing Part II, we came to realize that we can establish the nonsingu-
larity principle, as formulated below, using only the D-saturation but not the
R-saturation. This indicates that we can construct an algorithm, still in the frame-
work of the IFP, without using the R-saturation, and hence that we may avoid
the problem of termination, as well as the other technical problems, that the use
of the R-saturation brings about.

Even though we are still in the evolution process of the IFP (see 0.3.1 for
the current status of the IFP), we consider this new nonsingularity principle a
substantial step forward in our quest to construct an algorithm for the local or
global resolution of singularities in positive characteristic.

In this appendix, R represents the coordinate ring of an affine open subset
SpecR of a nonsingular variety W of dimW = d over an algebraically closed
field k with char(k) = p > 0 or char(k) = 0, where in the latter case we formally
set p =∞ (cf. 0.2.3.2.1 and Definition 3.1.1.1(2) in Part I).

§A.1. Nonsingularity principle using only D-saturation
but not R-saturation

A.1.1. Statement

Theorem A.1.1.1. Let I be an idealistic filtration over R. Let P ∈ SpecR ⊂ W

be a closed point.

(1) Assume that I is D-saturated and that µ̃(P ) = ∞. Then there exist a regular
system of parameters (x1, . . . , xN , yN+1, . . . , yd) at P and nonnegative integers
e1 ≤ · · · ≤ eN such that H = {(xp

el

l , pel)}Nl=1 is an LGS of IP and IP =
GRP (H).

(2) Assume further that I is of r.f.g. type. Then there exists an affine open neigh-
borhood P ∈ UP = SpecRr of P such that (x1, . . . , xN , yN+1, . . . , yd) is a
regular system of parameters over UP , and

H = {(xp
el

l , pel)}Nl=1 ⊂ Ir, Ir = GRr (H).

(Note that Rr and Ir represent the localizations of R and I at r ∈ R, respec-
tively.) In particular,

• Supp(I) ∩ UP = V (x1, . . . , xN ), which is hence nonsingular,
• (σ(Q), µ̃(Q)) = (σ(P ),∞) for any closed point Q ∈ Supp(I) ∩ UP .

Remark A.1.1.2. (1) It is straightforward to see that assertion (1) actually
gives the following characterization: An idealistic filtration IP over RP is D-
saturated and µ̃(P ) =∞ if and only if there exist a regular system of parameters



Toward Resolution of Singularities, II 415

(x1, . . . , xN , yN+1, . . . , yd) and a subset of the form H = {(xp
el

l , pel)}Nl=1 ⊂ IP such
that IP = GRP (H). (The subset H is then automatically an LGS of IP .)

(2) We construct the strand of invariants in our algorithm (cf. 0.2.3.2.2 in the
introduction to Part I), and in year 0 it takes the form

invnew(P ) = (σ1
0 , µ̃

1
0, s

1
0)(σ2

0 , µ̃
2
0, s

2
0) · · · (σn−1

0 , µ̃n−1
0 , sn−1

0 )(σn0 , µ̃
n
0 , s

n
0 ),

with the last n-th unit (σn0 , µ̃
n
0 , s

n
0 ) being equal to (σn0 ,∞, 0). The subscript “0”

refers to year “0”, while the superscript “j” refers to stage “j”. (Note that, if we
insert the new invariant ν̃ so that the unit changes from the triplet (σ, µ̃, s) to the
quadruplet (σ, µ̃, ν̃, s), then the strand of invariants also changes accordingly (cf.
0.3.1).)

The (local) maximum locus of the strand of invariants coincides with the sup-
port Supp(In0 ) of the last n-th modification In0 . (Note that in year 0 we always
have µ̃ > 1 and hence there is no gap between the (local) maximum locus and
the support of the modification, an anomaly observed when µ̃ = 1.) The idealistic
filtration In0 is D-saturated with µ̃(P ) =∞. Therefore, applying Theorem A.1.1.1,
we conclude that Supp(In0 ) is nonsingular (in a neighborhood of P ). (Note that all
the idealistic filtrations we deal with in our algorithm are of r.f.g. type.) Therefore,
we conclude that the center of blowup, which is chosen to be the maximum locus
of the strand, is nonsingular. This is why Theorem A.1.1.1 is called the (new) non-
singularity principle of the center. (After year 0, we have to make several technical
adjustments, including an adjustment to overcome the gap between the (local)
maximum locus and the support of the last modification and another adjustment
to introduce the DE-saturation in the presence of the exceptional divisor E instead
of the usual D-saturation. The basic tool for us to guarantee the nonsingularity of
the center, however, is still Theorem A.1.1.1.)

(3) If we assume further that IP is R-saturated, then having assertion (1), we
immediately come to the conclusion that e1 = · · · = eN = 0, i.e., all the elements
in the LGS (and hence of any LGS) are concentrated at level 1. That is, we obtain
the old nonsingularity principle Theorem 4.2.1.1 in Part I as a corollary to the
new nonsingularity principle Theorem A.1.1.1 of this appendix.

A.1.2. Proof

Proof for assertion (1).

Step 1. Show IP = GRP (H) for any LGS H of IP .

First, note that, if P 6∈ Supp(I), then we would have IP = RP × R (cf.
Lemma 1.1.2.1(1)) and hence µ̃(P ) = 0. Thus our assumption µ̃(P ) = ∞ implies
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P ∈ Supp(I). Second, we claim IP = GRP (H) for any LGS H of IP . To prove this,
we can use the same argument as in the proof of the nonsingularity principle in
Chapter 4 of Part I. Note that this part of the proof did not use the assumption
that IP is R-saturated.

Alternatively, we can give a proof of the claim using the formal coefficient
lemma (cf. Lemma 2.2.2.1), without referring to the arguments in Part I:

Take an element f ∈ (IP )a ⊂ (ÎP )a, and let f =
∑
B∈(Z≥0)N cBH

B be the
power series expansion of the form (?) as described in Lemma 2.1.2.1. From the
formal coefficient lemma it follows that

(cB , a− |[B]|) ∈ ÎP ∀B ∈ (Z≥0)N .

Suppose there exists B ∈ (Z≥0)N with |[B]| < a such that cB 6= 0. Then we would
have

µ̃(P ) = µH(IP ) = µH(ÎP ) ≤ ordH(cB)
a− |[B]|

=
ord(cB)
a− |[B]|

<∞ (cf. Lemma 3.2.1.1),

a contradiction! Therefore, we conclude

cB = 0 ∀B ∈ (Z≥0)N with |[B]| < a.

This implies f ∈ (HB ; |[B]| ≥ a). Since f ∈ (IP )a is arbitrary, we conclude
(IP )a ⊂ (HB ; |[B]| ≥ a), while the opposite inclusion is obvious. Therefore, we
finally conclude

(IP )a = (HB ; |[B]| ≥ a) ∀a ∈ R,

which is equivalent to IP = GRP (H) (cf. Lemma 2.2.1.2 in Part I).

Step 2. Inductive construction of an LGS and a regular system of parameters of
the desired form via claim (♦).

Now, by induction, we assume that we have found an LGS H = {(hij , pei)}
of IP and a regular system of parameters ({xij}, yN+1, . . . , yd) at P such that

hij =

{
xp

ei

ij if ei < eu,

xp
ei

ij mod mP
pei+1 if ei ≥ eu.

Note that we use double subscripts for elements in the LGS, where the first
subscript indicates the level pei with e1 < · · · < eM . So we have the total of
N = #{(i, j)} elements atM distinct levels in the LGS. (See 1.3.1.) The inductive
assumption means that we have found an LGS and a regular system of parameters
of the desired form up to i = u− 1.
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We want to show, by replacing hij and xij for i = u via the use of claim (♦),
which we state next, that we can also have

hij =

{
xp

ei

ij if ei < eu+1,

xp
ei

ij mod mP
pei+1 if ei ≥ eu+1.

Step 3. Statement and proof of claim (♦).

For l ∈ Z≥0, we set

Jl = F eu(mP ) +
(
X [C] =

∏
ei<eu

x
peicij
ij ; C = (cij ; ei < eu), |[C]| ≥ peu

)
+ (IP )peu ∩mP

peu+1 + mP
l,

where F represents the Frobenius map. This step is devoted to proving the follow-
ing claim:

(♦) (IP )peu ⊂ Jl ∀l ∈ Z≥0.

Observe that

(IP )peu = (HB ; |[B]| ≥ peu) (since IP = GRP (H))

= (X [C] ; C = (cij ; ei < eu), |[C]| ≥ peu)

+ (hij ; ei = eu) + (hij ; ei > eu)

⊂ (X [C] ; C = (cij ; ei < eu), |[C]| ≥ peu) + F eu(mP ) + mP
peu+1

⊂ Jpeu+1.

Therefore, the required inclusion holds for l ≤ peu + 1.
Now assume, by induction, that (IP )peu ⊂ Jl holds for a fixed l ≥ peu + 1.

We want to show (IP )peu ⊂ Jl+1. Take an arbitrary element f ∈ (IP )peu ⊂ Jl. We
may choose {αST ; S, T} ⊂ k such that

f −
∑

|(S,T )|=l

αSTX
SY T ∈ Jl+1.

Note that then there exists w ∈ mP such that

(♥) wp
eu

+
∑

|(S,T )|=l

αSTX
SY T ∈ (IP )peu + mP

l+1.

Set

sij = peisij,q + sij,r with 0 ≤ sij,r < pei , Sq = (sij,q) and Sr = (sij,r).
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Then we have S = [Sq] + Sr and XSY T = X [Sq ]XSrY T . We analyze the terms in∑
|(S,T )|=l

αSTX
SY T =

∑
|(S,T )|=l

αSTX
[Sq ]XSrY T .

Case 1: Sq = 0. In this case, we write for simplicity

XSY T = XSrY T = ZV

by setting {
(X,Y ) = ({xij}, yN+1, . . . , yd) = (z1, . . . , zd) = Z,

(S, T ) = (Sr, T ) = ({sij,r}, tN+1, . . . , td) = (v1, . . . , vd).

Subcase 1.1: peu |V . In this subcase, we conclude

αSTX
SY T = αSTZ

V ∈ F eu(mP ) ⊂ Jl+1.

Subcase 1.2: peu - V . In this subcase, let vω be a factor, not divisible by peu , of V .
Set

vω = peuvω,q + vω,r with 0 < vω,r < peu .

Apply ∂zvω,rω
to (♥) and obtain

∂zvω,rω

(
wp

eu
+

∑
|(S,T )|=l

αSTX
SY T

)
= ∂zvω,rω

( ∑
|(S,T )|=l

αSTX
SY T

)
= αSTZ

V−vω,reω + (other monomials of degree l − vω,r)
∈ ((IP )peu−vω,r + mP

l−vω,r+1) ∩mP
l−vω,r

= (IP )peu−vω,r ∩mP
l−vω,r + mP

l−vω,r+1.

On the other hand, we observe that

(IP )peu−vω,r ∩mP
l−vω,r ⊂

∑
1≤i≤M

hijmP
l−vω,r−pei .

(We use the convention that mP
l−vω,r−pei = RP if l − vω,r − pei ≤ 0.)

In fact, let g ∈ (IP )peu−vω,r ∩ mP
l−vω,r be an arbitrary element, and g =∑

cB(g)HB the power series expansion of the form (?) as described in Lemma
2.1.2.1. Then it follows from the condition µ̃(P ) = ∞ and 0 < peu − vω,r that
cO(g) = 0 (cf. Lemma 3.2.1.1), and from the construction that ordP (cB(g)) ≥
(l − vω,r) − |[B]| for any B ∈ (Z≥0)N (cf. Remark 2.1.2.2(1)). Therefore, f ∈∑

1≤i≤M hijmP
l−vω,r−pei . This proves the inclusion above. (Note that the inclusion

can also be derived using Lemma 4.1.2.3 in Part I via the fact that IP = GRP (H).)
However, this inclusion implies that any monomial of degree l − vω,r in the

power series expansion of an element in (IP )peu−vω,r ∩ mP
l−vω,r with respect to
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the regular system of parameters (x1, . . . , xN , yN+1, . . . , yd) should be divisible
by some element in the set {xp

ei

ij ; 1 ≤ i ≤ M}, and hence that the monomial
ZV−vω,reω cannot appear as Sq = 0.

Therefore, in this subcase, we conclude αST = 0.

Case 2: Sq 6= 0

Subcase 2.1: sij,q > 0 for some i ≥ u. In this subcase,

XSY T ∈ xp
ei

ij mP
l−pei ⊂ (hij + mP

pei+1)mP
l−pei

⊂ hijmP
l−pei + mP

l+1 ⊂ (IP )peu ∩mP
peu+1 + mP

l+1 ⊂ Jl+1.

(Note that, in order to obtain the second last inclusion above, we use the fact
that hij ∈ mP

peu+1 if i > u, and the condition l ≥ peu + 1 if i = u.) Therefore,
αSTX

SY T ∈ Jl+1.

Subcase 2.2: sij,q = 0 for any i ≥ u and |[Sq]| ≥ peu . In this subcase, we conclude

αST = αSTX
[Sq ]XSrY T ∈ (X [C] ; C = (cij ; ei < eu), |[C]| ≥ peu) ⊂ Jl+1.

Subcase 2.3: sij,q = 0 for any i ≥ u and |[Sq]| < peu . Note that 0 < |[Sq]| by the
case assumption. In this subcase, apply ∂X[Sq ] to (♥) and obtain

∂X[Sq ]

(
wp

eu
+

∑
|(S,T )|=l

αSTX
SY T

)
= ∂X[Sq ]

( ∑
|(S,T )|=l

αSTX
SY T

)
= αSTX

SrY T + (other monomials of degree l − |[Sq]|)
∈ ((IP )peu−|[Sq ]| + mP

l−|[Sq ]|+1) ∩mP
l−|[Sq ]|

= (IP )peu−|[Sq ]| ∩mP
l−|[Sq ]| + mP

l−|[Sq ]|+1.

On the other hand, we observe

(IP )peu−|[Sq ]| ∩mP
l−|[Sq ]| ⊂

∑
1≤i≤M

hijmP
l−|[Sq ]|−pei .

(We use the convention that mP
l−|[Sq ]|−pei = RP if l−|[Sq]|−pei ≤ 0. The inclusion

follows from the same argument as in Subcase 1.2.)
However, this inclusion implies that any monomial of degree l − |[Sq]| in the

power series expansion of an element in (IP )peu−|[Sq ]| ∩mP
l−|[Sq ]| with respect to

the regular system of parameters (x1, . . . , xN , yN+1, . . . , yd) should be divisible by
some element in the set {xp

ei

ij ; 1 ≤ i ≤M}, and hence that the monomial XSrY T

cannot appear.
Therefore, in this subcase, we conclude αST = 0.
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From the above analysis of the terms in
∑
|(S,T )|=l αSTX

SY T , it follows that

f ∈
∑

|(S,T )|=l

αSTX
SY T + Jl+1 = Jl+1.

Since f ∈ (IP )peu is arbitrary, we conclude (IP )peu ⊂ Jl+1, completing the induc-
tive argument for claim (♦).

Step 4. Finishing argument for the inductive construction.

Claim (♦) states

(IP )peu ⊂ Jl = F eu(mP ) + (X [C] ; C = (cij ; ei < eu), |[C]| ≥ peu)

+ (IP )peu ∩mP
peu+1 + mP

l ∀l ∈ Z≥0.

This implies

(IP )peu ⊂ F eu(mP ) + (X [C] ; C = (cij ; ei < eu), |[C]| ≥ peu)

+ (IP )peu ∩mP
peu+1 + F eu(mP

l)RP ∀l ∈ Z≥0.

Since RP is a finite F eu(RP )-module, including

F eu(mP ) + (X [C] ; C = (cij ; ei < eu), |[C]| ≥ peu) + (IP )peu ∩mP
peu+1

as an F eu(RP )-submodule, we conclude (cf. [Mat86, page 62, last line]) that

(IP )peu ⊂
⋂

l∈Z≥0

[F eu(mP ) + (X [C] ; C = (cij ; ei<eu), |[C]| ≥ peu)

+ (IP )peu ∩mP
peu+1 + F eu(mP

l)RP ]

=F eu(mP ) + (X [C] ; C = (cij ; ei<eu), |[C]| ≥ peu) + (IP )peu ∩mP
peu+1.

Since (X [C] ; C = (cij ; ei < eu), |[C]| ≥ peu) ⊂ (IP )peu , we also conclude

(IP )peu = F eu(mP ) ∩ (IP )peu + (X [C] ; C = (cij ; ei < eu), |[C]| ≥ peu)

+ (IP )peu ∩mP
peu+1.

Now choose {h′uj = x′uj
peu} ⊂ F eu(mP ) ∩ (IP )peu such that

{h′uj mod mpeu+1
P } ∪ {X [C] mod mpeu+1

P ; C = (cij ; ei < eu), |[C]| = peu}

forms a k-basis of L(IP )peu .
In order to finish the inductive argument (cf. Step 2) to complete the proof

for assertion (1), we have only to replace {hij} and {xij} with {h′ij} and {x′ij}.

Proof for assertion (2). Take a regular system of parameters (x1, . . . , xN , yN+1,

. . . , yd) and an LGS H of IP as described in assertion (1).
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By choosing an affine neighborhood P ∈ UP = SpecRr of P sufficiently small,
we may assume that (x1, . . . , xN , yN+1, . . . , yd) is a regular system of parameters
over UP and that H = {(xp

el

l , pel)}Nl=1 ⊂ Ir.
Now we know by assumption that I is of r.f.g. type, i.e., I = GR({(fλ, aλ)}λ∈Λ)

for some {(fλ, aλ)}λ∈Λ ⊂ R×Q≥0 with #Λ <∞.
Since IP = GRP (H), we can write each fλ as a finite sum of the form∑

gB,λH
B with gB,λ ∈ RP and |[B]| ≥ aλ. By shrinking UP = SpecRr if neces-

sary, we may assume that the coefficients gB,λ are in Rr for all B and λ ∈ Λ. Then
we have

Ir = GRr ({(fλ, aλ)}λ∈Λ) ⊂ GRr (H).

Since the opposite inclusion Ir ⊃ GRr (H) is obvious, we conclude Ir = GRr (H). It
follows immediately from the above conclusions that

Supp(I) ∩ UP = Supp(Ir) = Supp(GRr (H))

= {Q ∈ UP ; µQ(xp
el

l , pel) ≥ 1 for l = 1, . . . , N}
= V (x1, . . . , xN ),

which is nonsingular.
Given any closed point Q ∈ Supp(I)∩UP = V (x1, . . . , xN ), it also follows from

the above conclusions that (x1, . . . , xN ) is a part of a regular system of parameters
at Q with a subset H = {(xp

el

l , pel)}Nl=1 ⊂ IQ such that IQ = GRQ(H). This implies
that H is an LGS of IQ and that µ̃(Q) =∞. Therefore, (σ(Q), µ̃(Q)) = (σ(P ),∞).
This concludes the proof of Theorem A.1.1.1.
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