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Abstract

In [BK], Brundan and Kleshchev showed that some parts of the representation theory of
the affine Hecke–Clifford superalgebras and its finite-dimensional “cyclotomic” quotients
are controlled by the Lie theory of type A

(2)
2l when the quantum parameter q is a primitive

(2l + 1)-th root of unity. We show that similar theorems hold when q is a primitive 4l-th

root of unity by replacing the Lie theory of type A
(2)
2l with that of type D

(2)
l .
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§1. Introduction

It is known that we can sometimes describe the representation theory of “Hecke
algebra” by “Lie theory”. In this paper, we use the terminology “Lie theory” as
a general term for objects related to or arising from Lie algebra, such as highest
weight representations, quantum groups, Kashiwara’s crystals, etc.

A famous example is Lascoux–Leclerc–Thibon’s interpretation [LLT] of
Kleshchev’s modular branching rule [Kl1]. It asserts that the modular branch-
ing graph of the symmetric groups in characteristic p coincides with Kashiwara’s
crystal associated with the level 1 integrable highest weight representation of the
quantum group Uv(g(A(1)

p−1)). Brundan’s modular branching rule for the Iwahori–
Hecke algebras of type A at the quantum parameter q = l

√
1 over C is a similar

result and can be regarded as a q-analogue of the above example [Br1].
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Another beautiful example is Ariki’s theorem [Ari] generalizing Lascoux–
Leclerc–Thibon’s conjecture for the Iwahori–Hecke algebras of type A [LLT]. It
relates the decomposition numbers of the Ariki–Koike algebras at q = l

√
1 over C

and Kashiwara–Lusztig’s canonical basis of an integrable highest weight represen-
tation of Uv(g(A(1)

l−1)). Varagnolo–Vasserot’s generalization of Ariki’s theorem to
q-Schur algebras [VV] and Yvonne’s conjectural generalization for cyclotomic q-
Schur algebras [Yvo] are also examples of connections between Hecke algebras and
Lie theory.

However, all the Lie theory involved so far is only that of type A(1)
n . Subse-

quently, based on the work of Grojnowski [Gro] and Grojnowski–Vazirani [GV],
Brundan and Kleshchev showed that some parts of the representation theory of
the affine Hecke–Clifford superalgebras introduced by Jones and Nazarov [JN]
and their finite-dimensional “cyclotomic” quotients1 introduced by Brundan and
Kleshchev [BK, §3,§4-b] are controlled by the Lie theory of type A(2)

2l when the
quantum parameter q is a primitive (2l+ 1)-th root of unity. Let Hn be the affine
Hecke–Clifford superalgebra (see Definition 3.1) over an algebraically closed field
F of characteristic different from 2 and let q be a (2l+1)-th primitive root of unity
for l ≥ 1. Their main results are as follows.

(1) The direct sum of the Grothendieck groups K(∞) =
⊕

n≥0 K0(RepHn) of
the categories RepHn of integral Hn-supermodules has a natural structure of
a commutative graded Hopf Z-algebra under induction and restriction [BK,
Theorem 7.1], and the restricted dual K(∞)∗ is isomorphic to the positive
part of the Kostant Z-form of the universal enveloping algebra of g(A(2)

2l ) [BK,
Theorem 7.17].

(2) The disjoint union B(∞) =
⊔
n≥0 Irr(RepHn) of the isomorphism classes of

irreducible integral Hn-supermodules has a natural crystal structure in the
sense of Kashiwara and it is isomorphic to Kashiwara’s crystal associated with
U−v (g(A(2)

2l )) [BK, Theorem 8.10].

(3) For each positive integral weight λ of A(2)
2l , one can define a finite-dimensional

quotient superalgebra Hλn of Hn, called the cyclotomic Hecke–Clifford super-
algebra [BK, §3, §4-b].

(4) Consider the direct sums K(λ) =
⊕

n≥0 K0(Hλn-smod) of the Grothendieck
groups of the categories Hλn-smod of finite-dimensional Hλn-supermodules and
K(λ)∗ =

⊕
n≥0 K0(ProjHλn) of the categories ProjHλn of finite-dimensional

projective Hλn-supermodules. Then K(λ)Q = Q ⊗Z K(λ) is naturally identi-

1As a special case they include the Hecke–Clifford superalgebras introduced by Olshan-
ski [Ols].
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fied2 with the integrable highest weight UQ-module of highest weight λ where
UQ stands for the Q-form of the universal enveloping algebra of g(A(2)

2l ) [BK,
Theorem 7.16(i)]. Moreover, the Cartan map K(λ)∗ → K(λ) is injective [BK,
Theorem 7.10] and K(λ)∗ ⊆ K(λ) are dual lattices in K(λ)Q under the Shapo-
valov form [BK, Theorem 7.16(iii)].

(5) The disjoint union B(λ) =
⊔
n≥0 Irr(Hλn-smod) is isomorphic to Kashiwara’s

crystal associated with the integrable Uv(g(A(2)
2l ))-module of highest weight

λ [BK, Theorem 8.11].

Analogous results for the degenerate affine Sergeev superalgebras of Nazarov
[Naz] and their cyclotomic quotients [BK, §4-i] over an algebraically closed field
F of charF = 2l + 1 are also established in [BK] parallel to those for the affine
Hecke–Clifford superalgebras and their cyclotomic quotients at q = 2l+1

√
1 over an

algebraically closed field F of charF 6= 2. As a very special corollary of the results
for the degenerate superalgebras, they beautifully obtain a modular branching rule
of the spin symmetric groups Ŝn. This may be the reason why they deal only with
the case q = 2l+1

√
1 for the affine Hecke–Clifford superalgebras in [BK].

Note that exactly the same results hold when q is a primitive 2(2l+1)-th root
of unity for l ≥ 1. This follows from the fact that −q is a primitive (2l+ 1)-th root
of unity and from the superalgebra isomorphism between the affine Hecke–Clifford
superalgebras (see Definition 3.1) Hn(q) and Hn(−q) given by

Xi 7→ Xi, Ci 7→ Ci, Tj 7→ −Tj

for 1 ≤ i ≤ n and 1 ≤ j < n. However, the case when the multiplicative order of q
is divisible by 4 is yet untouched.

The purpose of this paper is to show that Brundan–Kleshchev’s method is
still applicable to the case when q is a primitive 4l-th root of unity for any l ≥ 2.
In this case we have very similar results by replacing A(2)

2l with D
(2)
l in the above

summary. Roughly speaking, we prove the following four statements (for the precise
statements, see Corollary 6.11, Corollary 6.12, Theorem 6.13 and Theorem 6.14).

Theorem 1.1. Let F be an algebraically closed field of characteristic different
from 2 and let q be a primitive 4l-th root of unity for l ≥ 2. For each positive
integral weight λ of D(2)

l , we can define a finite-dimensional quotient superalgebra
Hλn of Hn (see Definition 4.1) so that the following hold.

2It is not proved so far but expected that the weight space decomposition of K(λ)Q coincides
with the block decomposition of {Hλn}n≥0 under this identification. In fact, it is settled in

the analogous situation when Hλn is replaced by the Ariki–Koike algebra [LM], the degenerate
Ariki–Koike algebra [Br2] or the odd level cyclotomic quotient of the degenerate affine Sergeev
superalgebra [Ruf]. See also [BK′, §2].
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(i) The graded dual of K(∞) =
⊕

n≥0 K0(RepHn) is isomorphic to U+
Z as a

graded Z-Hopf algebra (see Theorem 6.14).

(ii) K(λ)Q =
⊕

n≥0 Q ⊗ K0(Hλn-smod) has a left UQ-module structure which is
isomorphic to the integrable highest weight UQ-module of highest weight λ
(see Theorem 6.13 for details).

(iii) B(∞) =
⊔
n≥0 Irr(RepHn) is isomorphic to Kashiwara’s crystal associated

with U−v (g(D(2)
l )) (see Corollary 6.11).

(iv) B(λ) =
⊔
n≥0 Irr(Hλn-smod) is isomorphic to Kashiwara’s crystal associated

with the integrable Uv(g(D(2)
l ))-module of highest weight λ (see Corollary 6.12).

Here U+
Z is the positive part of the Kostant Z-form of the universal enveloping

algebra of g(D(2)
l ) and UQ is the Q-subalgebra of the universal enveloping algebra

of g(D(2)
l ) generated by the Chevalley generators (see §2.2).

A difference between our paper and [BK] is the consideration of representa-
tions of low rank affine Hecke–Clifford superalgebras, treated at length in §5.

Let us explain a reason behind our searching the “missing” connection between
Hecke algebra and Lie theory of type D(2)

n+1. It is well known that the level 1 crystal
B(Λ0) associated with Uv(A

(1)
n ) or Uv(A

(2)
2n ) is described by partitions [MM, Kan].

It is interesting that some of the combinatorics appearing in their descriptions
had already been studied in the representation theory of the (spin) symmetric
groups [Jam, Mor, MY], and such combinatorics controls modular branching of
the (spin) symmetric groups [Kl1, Kl2, BK]. Thus, it is natural to ask which level
1 crystal has such a combinatorial realization, i.e., its underlying set is a subset of
the set of partitions.

This problem is related to the Kyoto path model [KMN2
1, KMN2

2] or its com-
binatorial counterpart, Kang’s Young wall [Kan]. The key tool underlying their
realizations is a notion of perfect crystal [KMN2

2, Definition 1.1.1] which is intro-
duced in [KMN2

1] to compute one-point functions of vertex models in statistical
mechanics. As seen in [Kan], in order to realize B(Λ0) as a subset of the set of
partitions, we need a perfect crystal of level 1 which has no branching point.3 As
shown in [KMN2

2], such a perfect crystal of level 1 exists in types A(1)
n , A

(2)
2n and

D
(2)
n+1. Conversely, we can show that a pair of affine type and its perfect crystal of

3Let G = (V,E) be a directed graph, meaning that V is the set of vertices and E ⊆ V × V
is the adjacency relation: (v, w) ∈ E if and only if there exists a directed arrow from v to w. We
say that a vertex w is a branching point of G if there exist u and v such that u 6= v, u 6= w,
v 6= w, (w, u) ∈ E and (w, v) ∈ E.
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level 1 which has no branching point is one of the following:4

(A(1)
1 , B1,1), (A(1)

1 , (B1,1)⊗2), (A(1)
n , B1,1) (n ≥ 2),

(A(1)
n , Bn,1) (n ≥ 2), (A(2)

2n , B
1,1) (n ≥ 1), (D(2)

n+1, B
1,1) (n ≥ 2)

if we assume the conjecture that any perfect crystal is a finite number of ten-
sor products of Kirillov–Reshetikhin perfect crystals Br,s as stated in the first
paragraph of the introduction of [KNO] and also assume the conjectural proper-
ties [HKOTY, Conjecture 2.1], [HKOTT, Conjecture 2.1] of Kirillov–Reshetikhin
modules W (r)

s .
This crystal-theoretic fact distinguishes types A(1)

n , A
(2)
2n and D

(2)
n+1 from the

other affine types and it is a reason behind our searching the “missing” connection
between Hecke algebra and Lie theory of type D(2)

n+1.
Recently, Rouquier [Rou] and Khovanov and Lauda [KL] independently in-

troduced a new family of “quiver Hecke algebras” which categorifies the negative
part of the quantized enveloping algebra associated with a symmetrizable Kac–
Moody Lie algebra. Subsequently, Brundan and Kleshchev established algebra iso-
morphisms between blocks of the Ariki–Koike algebras and blocks of cyclotomic
quotients of quiver Hecke algebras of cyclic type [BK2]. Thus, it is reasonable to
expect that there is a connection such as Morita equivalence between blocks of
cyclotomic quotients of the appropriate quiver Hecke algebras and blocks of the
cyclotomic quotients of the affine Hecke–Clifford superalgebras.

Organization of the paper. The paper is organized as follows. In §2, we recall
our conventions and necessary facts for superalgebras, supermodules and Kashi-
wara’s crystal theory. In §3 (resp. §4), we define the affine Hecke–Clifford super-
algebras (resp. the cyclotomic Hecke–Clifford superalgebras) and review funda-
mental theorems for them from [BK]. In §5, we give some preparatory character
calculations concerning the behavior of representations of low rank affine Hecke–
Clifford superalgebras H2,H3 and H4 which are responsible for the appearance of
Lie theory of type D(2)

l . Finally, in §6 we prove Theorem 1.1.

§2. Preliminaries

§2.1. Superalgebras and supermodules

We briefly recall our conventions and notations for superalgebras and supermod-
ules following [BK, §2-b] (see also the references therein). In the rest of the paper,
we always assume that our field F is algebraically closed with charF 6= 2.

4(A
(1)
1 , (B1,1)⊗2) can be interpreted formally as the n = 1 case of (D

(2)
n+1, B

1,1).
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By a vector superspace, we mean a Z/2Z-graded vector space V = V0 ⊕ V1

over F and we denote the parity of a homogeneous vector v ∈ V by v ∈ Z/2Z.
Given two vector superspaces V and W , an F -linear map f : V → W is called
homogeneous if there exists p ∈ Z/2Z such that f(Vi) ⊆ Wp+i for i ∈ Z/2Z. In
this case we call p the parity of f and denote it by f .

A superalgebra A is a vector superspace which is a unital associative F -algebra
such that AiAj ⊆ Ai+j for i, j ∈ Z/2Z. By an A-supermodule, we mean a vector
superspace M which is a left A-module such that AiMj ⊆Mi+j for i, j ∈ Z/2Z. In
the rest of the paper, we only deal with finite-dimensional A-supermodules. Given
two A-supermodules V and W , an A-homomorphism f : V → W is an F -linear
map such that

f(av) = (−1)faaf(v)

for a ∈ A and v ∈ V . We denote the set of A-homomorphisms from V to W by
HomA(V,W ). We can thus form a superadditive category A-smod whose hom-set
is a vector superspace in a way that is compatible with composition. However,
we adopt a slightly different definition of isomorphisms from the categorical one.5

Two A-supermodules V and W are called evenly isomorphic (denoted V ' W )
if there exists an even A-homomorphism f : V → W which is an F -vector space
isomorphism. They are called isomorphic (denoted V ∼= W ) if V 'W or V ' ΠW .
Here for an A-supermodule M , ΠM is the A-supermodule defined by (ΠM)i =
Mi+1 for i ∈ Z/2Z and a new action given as follows from the old one:

a ·new m = (−1)aa ·old m.

We denote the isomorphism class of an A-supermodule M by [M ] and denote the
set of isomorphism classes of irreducible A-supermodules by Irr(A-smod).

Given two superalgebras A and B, A⊗B with multiplication defined by

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)b1a2(a1a2)⊗ (b1b2)

for ai ∈ A, bj ∈ B is again a superalgebra. Let V be an A-supermodule and let W
be a B-supermodule. Their tensor product V ⊗W is an A ⊗ B-supermodule by
the action given by

(a⊗ b)(v ⊗ w) = (−1)bv(av)⊗ (bw)

for a ∈ A, b ∈ B, v ∈ V , w ∈W . Let us assume that V and W are both irreducible.
We say that V is type Q if V ' ΠV ; otherwise V is type M. If V and W are both

5Note that for irreducible A-supermodules V and W , the following statements are equivalent.

(i) There exist f ∈ HomA(V,W ) and g ∈ HomA(W,V ) such that f ◦ g = idW and g ◦ f = idV .
(ii) There exist f ∈ HomA(V,W ) and g ∈ HomA(W,V ) which are both homogeneous and satisfy

f ◦ g = idW , g ◦ f = idV .
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of type Q, then there exists a unique (up to odd isomorphism) irreducible A⊗B-
supermodule X of type M such that

V ⊗W ' X ⊕ΠX

as A⊗B-supermodules. We denote X by V ~W . Otherwise V ⊗W is irreducible
but we also write it as V ~W . Note that V ~W is defined only up to isomorphism
in general and V ~W is of type M if and only if V and W are of the same type.

We extend the operation ~ as follows. Let A and B be superalgebras, and let
V be an A-supermodule and W a B-supermodule. Consider a pair (V, θV ) where
θV is either an odd involution of V or θV = idV , and also consider a similar pair
(W, θW ). If θV = idV or θW = idW , then we define (V, θV )~ (W, θW ) = V ⊗W . If
θV and θW are both odd involutions, then

θV ⊗ θW : V ⊗W → V ⊗W, v ⊗ w 7→ (−1)vθV (v)⊗ θW (w),

is an even A⊗B-supermodule homomorphism such that (θV ⊗ θW )2 = − idV⊗W .
Thus, V ⊗W decomposes into ±

√
−1-eigenspaces X±√−1. Note that X+

√
−1 and

X−
√
−1 are oddly isomorphic since

(θV ⊗ idW )(X±√−1) = (idV ⊗θW )(X±√−1) = X∓
√
−1.

Now we define (V, θV )~ (W, θW ) = X√−1. Of course, we can pick the other sum-
mand, but this specification makes arguments simpler when we consider functori-
ality.

We also introduce a Hom version of the above operation. Assume further
that B is a subsuperalgebra of A. If θV = idV or θW = idW , then we define
HomB((W, θW ), (V, θV )) = HomB(W,V ), which can be regarded as a supermodule
over C(A,B) := {a ∈ A | ab = (−1)abba for all b ∈ B} by means of the action
(cf)(v) = c(f(v)) for c ∈ C(A,B) and f ∈ HomB(W,V ). If θV and θW are both
odd involutions, then

Θ : HomB(W,V ) −→ HomB(W,V ), f 7→ (Θ(f))(v) = (−1)fθV (f(θW (v))),

is an even C(A,B)-supermodule homomorphism such that Θ2 = idHomB(W,V ).
Thus, HomB(W,V ) decomposes into ±1-eigenspaces X±1. Similarly, we see that
X±1 ' ΠX∓1, and we define HomB((W, θW ), (V, θV )) = X+1.

For a superalgebra A, we define the Grothendieck group K0(A-smod) to be the
quotient of the Z-module freely generated by all finite-dimensional A-supermodules
by the Z-submodule generated by

• V1−V2 +V3 for every short exact sequence 0→ V1 → V2 → V3 → 0 in A-smod0.

• M −ΠM for every A-supermodule M .
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Here A-smod0 is the abelian subcategory of A-smod whose objects are the same but
morphisms are even A-homomorphisms. Clearly, K0(A-smod) is a free Z-module
with basis Irr(A-smod). The importance of the operation ~ lies in the fact that it
gives an isomorphism

K0(A-smod)⊗Z K0(B-smod) ∼−→ K0(A⊗B-smod), [V ]⊗ [W ] 7→ [V ~W ],(1)

for two superalgebras A and B.
Finally, we make some remarks on projective supermodules. Let A be a su-

peralgebra. A projective A-supermodule is, by definition, a projective object in
A-smod; equivalently, it is a projective object in A-smod0 since there are canonical
isomorphisms

HomA-smod(V,W )0
∼= HomA-smod0

(V,W ),

HomA-smod(V,W )1
∼= HomA-smod0

(V,ΠW ) (∼= HomA-smod0
(ΠV,W )).

We denote by ProjA the full subcategory of A-smod consisting of all the projective
A-supermodules.

Let us assume further that A is finite-dimensional. Then, as in the usual
finite-dimensional algebras, every A-supermodule X has a (unique up to even
isomorphism) projective cover PX in A-smod0. If X is irreducible, then PX is
(evenly) isomorphic to a projective indecomposable A-supermodule. From this,
we easily see that M ∼= N if and only if PM ∼= PN for M,N ∈ Irr(A-smod). Thus,
K0(ProjA) is identified with K0(A-smod)∗ := HomZ(K0(A-smod),Z) through the
non-degenerate canonical pairing

〈 , 〉A : K0(ProjA)× K0(A-smod)→ Z,

([PM ], [N ]) 7→

{
dim HomA(PM , N) if typeM = M,
1
2 dim HomA(PM , N) if typeM = Q,

for all M ∈ Irr(A-smod) and N ∈ A-smod. Note that the right hand side is nothing
but the composition multiplicity [N : M ]. We also reserve the symbol

ωA : K0(ProjA)→ K0(A-smod)

for the natural Cartan map.

§2.2. Lie theory

We review the Lie theory we need. Note that all the Lie-theoretic objects are
considered over C as usual although we are considering representations of “Hecke
superalgebra” over F .
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Let A = (aij)i,j∈I be a symmetrizable generalized Cartan matrix and let g be
the corresponding Kac–Moody Lie algebra. We denote the weight lattice by P , the
set of simple roots by {αi | i ∈ I} and the set of simple coroots by {hi | i ∈ I}, etc.
as usual. We denote by UQ the Q-subalgebra of the universal enveloping algebra
of g generated by the Chevalley generators {ei, fi, hi | i ∈ I}. In other words, UQ
is a Q-subalgebra generated by {ei, fi, hi | i ∈ I} with the following relations:

[hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj ,
[ei, fj ] = δijhi, (ad ei)1−aik(ek) = (ad fi)1−aik(fk) = 0,

(2)

for all i, j, k ∈ I with i 6= k. We also denote by U+
Z (resp. U−Z ) the positive (resp.

negative) part of the Kostant Z-form of UQ, i.e., U+
Z (resp. U−Z ) is the subalgebra of

UQ generated by the divided powers {e(n)
i := eni /n! | n ≥ 1} (resp. {f (n)

i | n ≥ 1}).
Next, we recall the notion of Kashiwara’s crystal following [Kas].

Definition 2.1. A g-crystal is a 6-tuple (B,wt, {εi}i∈I , {ϕi}i∈I , {ẽi}i∈I , {f̃i}i∈I),
where

wt : B → P, εi, ϕi : B → Z t {−∞}, ẽi, f̃i : B t {0} → B t {0},

which satisfies the following axioms:

(i) For all i ∈ I, we have ẽi0 = f̃i0 = 0.

(ii) For all b ∈ B and i ∈ I, we have ϕi(b) = εi(b) + wt(b)(hi).

(iii) For all b ∈ B and i ∈ I, ẽib 6= 0 implies εi(ẽib) = εi(b)−1, ϕi(ẽib) = ϕi(b)+ 1
and wt(ẽib) = wt(b) + αi.

(iv) For all b ∈ B and i ∈ I, f̃ib 6= 0 implies εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)−1
and wt(f̃ib) = wt(b)− αi.

(v) For all b, b′ ∈ B and i ∈ I, b′ = f̃ib is equivalent to b = ẽib
′.

(vi) For all b ∈ B and i ∈ I, ϕi(b) = −∞ implies ẽib = f̃ib = 0.

Definition 2.2. Let B be a g-crystal. The crystal graph associated with B (and
usually denoted by the same symbol B) is an I-colored directed graph whose
vertices are the elements of B and there is an i-colored directed edge from b to b′

if and only if b′ = f̃ib for b, b′ ∈ B and i ∈ I.

Definition 2.3. Let B and B′ be g-crystals. Their tensor product crystal B⊗B′

is a g-crystal defined as follows:

B ⊗B′ = B ×B′,
εi(b⊗ b′) = max(εi(b), εi(b′)− wt(b)(hi)),

ϕi(b⊗ b′) = max(ϕi(b) + wt(b′)(hi), ϕi(b′)),
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ẽi(b⊗ b′) =

{
ẽib⊗ b′ if ϕi(b) ≥ εi(b′),
b⊗ ẽib′ if ϕi(b) < εi(b′),

f̃i(b⊗ b′) =

{
f̃ib⊗ b′ if ϕi(b) > εi(b′),

b⊗ f̃ib′ if ϕi(b) ≤ εi(b′),

wt(b⊗ b′) = wt(b) + wt(b′).

Here we regard b⊗ 0 and 0⊗ b as 0.

Definition 2.4. Let B and B′ be g-crystals. A crystal morphism g : B → B′ is a
map g : B t {0} → B′ t {0} such that

(i) g(0) = 0.

(ii) If b ∈ B and g(b) ∈ B′, then we have wt(g(b)) = wt(b), εi(g(b)) = εi(b) and
ϕi(g(b)) = ϕi(b) for all i ∈ I.

(iii) For b ∈ B and i ∈ I, we have g(ẽib) = ẽig(b) if g(b) ∈ B′ and g(ẽib) ∈ B′.
(iv) For b ∈ B and i ∈ I, we have g(f̃ib) = f̃ig(b) if g(b) ∈ B′ and g(f̃ib) ∈ B′.

If g commutes with all ẽi (resp. f̃i), then we call it an e-strict (resp. f -strict)
morphism. We call it a crystal embedding if it is injective, e-strict and f -strict.

Example 2.5. For each λ ∈ P+, we denote by Tλ = {tλ} the g-crystal defined
by

wt(tλ) = λ, ϕi(tλ) = εi(tλ) = −∞, ẽitλ = f̃itλ = 0.

Example 2.6. For each i ∈ I, we denote by Bi = {bi(n) | n ∈ Z} the g-crystal
defined by wt(bi(n)) = nαi and

εj(bi(n)) =

{
−n if j = i,

−∞ if j 6= i,
ϕj(bi(n)) =

{
n if j = i,

−∞ if j 6= i,

ẽj(bi(n)) =

{
bi(n+ 1) if j = i,

0 if j 6= i,
f̃j(bi(n)) =

{
bi(n− 1) if j = i,

0 if j 6= i.

These pathological g-crystals are utilized in the following characterizations
[KS, Proposition 3.2.3], [Sai, Proposition 2.3.1].

Proposition 2.7. Denote by B(∞) the associated g-crystal with the crystal base
of U−v (g). Let B be a g-crystal and b0 an element of B with wt(b0) = 0. If the
following conditions hold, then B is isomorphic to B(∞):

(i) wt(B) ⊆
∑
i∈I Z≤0αi.

(ii) b0 is a unique element of B such that wt(b0) = 0.
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(iii) εi(b0) = 0 for every i ∈ I.

(iv) ϕi(b) ∈ Z for any b ∈ B and i ∈ I.

(v) For every i ∈ I, there exists a crystal embedding Ψi : B → B ⊗ Bi such that
Ψi(B) ⊆ B × {f̃ni bi(0) | n ≥ 0}.

(vi) For any b ∈ B such that b 6= b0, there exists i ∈ I such that Ψi(b) = b′⊗f̃ni bi(0)
with n > 0.

Proposition 2.8. Denote by B(λ) the associated g-crystal with the crystal base of
the integrable highest Uv(g)-module of highest weight λ ∈ P+. Let B be a g-crystal
and bλ an element of B with wt(bλ) = λ. If the following conditions hold, then B

is isomorphic to B(λ):

(i) bλ is a unique element of B such that wt(bλ) = λ.

(ii) There is an f -strict crystal morphism Φ : B(∞)⊗Tλ → B such that Φ(b0⊗tλ)
= bλ and Im Φ = B t {0}. Here b0 is the unique element of B(∞) with
wt(b0) = 0.

(iii) The sets {b ∈ B(∞)⊗ Tλ | Φ(b) 6= 0} and B are isomorphic through Φ.

(iv) For any b ∈ B and i ∈ I, εi(b) = max{k ≥ 0 | ẽki (b) 6= 0} and ϕi(b) =
max{k ≥ 0 | f̃ki (b) 6= 0}.

§3. Affine Hecke–Clifford superalgebras of Jones and Nazarov

§3.1. Definition and vector superspace structure

From now on, we fix a non-zero quantum parameter q ∈ F× and set ξ = q − q−1

for convenience. Let us define our main ingredient Hn, the affine Hecke–Clifford
superalgebra [JN, §3]. Although Jones and Nazarov introduced it under the name
of affine Sergeev algebra, we call it the affine Hecke–Clifford superalgebra follow-
ing [BK, §2-d].

Definition 3.1. Let n ≥ 0 be an integer. The affine Hecke–Clifford superalgebra
Hn is defined by even generators X±1

1 , . . . , X±1
n , T1, . . . , Tn−1 and odd generators

C1, . . . , Cn with the following relations:

(i) XiX
−1
i = X−1

i Xi = 1, XiXj = XjXi for all 1 ≤ i, j ≤ n.

(ii) C2
i = 1, CiCj + CjCi = 0 for all 1 ≤ i 6= j ≤ n.

(iii) T 2
i = ξTi + 1, TiTj = TjTi, TkTk+1Tk = Tk+1TkTk+1 for all 1 ≤ k ≤ n − 2

and 1 ≤ i, j ≤ n− 1 with |i− j| ≥ 2.

(iv) CiX
±1
i = X∓1

i Ci, CiX±1
j = X±1

j Ci for all 1 ≤ i 6= j ≤ n.
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(v) TiCi = Ci+1Ti, (Ti + ξCiCi+1)XiTi = Xi+1 for all 1 ≤ i ≤ n− 1.

(vi) TiCj = CjTi, TiX±1
j = X±1

j Ti for all 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n with
j 6= i, i+ 1.

Note that the relations in Definition 3.1 imply the following for 1 ≤ i ≤ n−1:

TiCi+1 = CiTi − ξ(Ci − Ci+1),(3)

TiXi = Xi+1Ti − ξ(Xi+1 + CiCi+1Xi),(4)

TiX
−1
i = X−1

i+1Ti + ξ(X−1
i +X−1

i+1CiCi+1).(5)

We define the Clifford superalgebra Cn by odd generators C1, . . . , Cn with
relation (ii) and also define the Iwahori–Hecke (super)algebra HIW

n of type A by
(even) generators T1, . . . , Tn−1 with relations (iii). By [BK, Theorem 2.2], the
natural superalgebra homomorphisms

αA : F [X±1
1 , . . . , X±1

n ]→ Hn, αB : Cn → Hn, αC : HIW
n → Hn

are all injective and we have the following isomorphism of vector superspaces:

F [X±1
1 , . . . , X±1

n ]⊗ Cn ⊗HIW
n

∼−→ Hn, x⊗ c⊗ t 7→ αA(x)αB(c)αC(t).(6)

In what follows, we identify f ∈ F [X±1
1 , . . . , X±1

n ] with αA(f) ∈ Hn and omit αA,
etc. By (6), we easily see that the natural superalgebra homomorphisms

H0 → H1 → H2 → · · ·

are all injective and they form a tower of superalgebras. We also see that for each
composition µ = (µ1, . . . , µα) of n, the parabolic subsuperalgebra Hµ generated
by

{X±1
i , Ci | 1 ≤ i ≤ n} ∪

α−1⋃
k=1

{Tj | µ1 + · · ·+ µk ≤ j < µ1 + · · ·+ µk+1}

in Hn is isomorphic to Hµ1 ⊗ · · · ⊗ Hµα as a superalgebra.

§3.2. Automorphism and antiautomorphism

It is easily checked that there exist an automorphism σ of Hn and an antiauto-
morphism τ of Hn defined by

σ : Ti 7→ −Tn−i + ξ, Cj 7→ Cn+1−j , Xj 7→ Xn+1−j ,

τ : Ti 7→ Ti + ξCiCi+1, Cj 7→ Cj , Xj 7→ Xj

for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n [BK, §2-i].
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Let M be an Hn-supermodule. The dual space M∗ has again an Hn-super-
module structure by (hf)(m) = f(τ(h)m) for f ∈ M∗, m ∈ M and h ∈ Hn. We
denote this Hn-supermodule by Mτ . We also denote by Mσ the Hn-supermodule
obtained by twisting the action of Hn through σ. Then we have the following [BK,
Lemma 2.9, Theorem 2.14].

Lemma 3.2. Let M be an Hm-supermodule and let N be an Hn-supermodule.
Then

(i) (Ind
Hm+n
Hm,n M ⊗N)σ ∼= Ind

Hm+n
Hn,m Nσ ⊗Mσ.

(ii) (Ind
Hm+n
Hm,n M ⊗N)τ ∼= Ind

Hm+n
Hn,m Nτ ⊗Mτ .

Moreover, if M and N are both irreducible, the same holds for ~ in place of ⊗.

§3.3. Cartan subsuperalgebra An
The subsuperalgebra

An := 〈X±i , Ci〉1≤i≤n (⊆ Hn)

plays the role of a “Cartan subalgebra” in the rest of the paper.

Definition 3.3. For each integer i ∈ Z, we define

q(i) = 2 · q
2i+1 + q−(2i+1)

q + q−1
, b±(i) =

q(i)
2
±
√
q(i)2

4
− 1

and choose a subset Iq ⊆ Z such that the map Iq → {q(i) | i ∈ Z}, i 7→ q(i), gives
a bijection. An An-supermodule M is called integral if the set of eigenvalues of
Xj + X−1

j is a subset of {q(i) | i ∈ Iq} for all 1 ≤ j ≤ n (equivalently, the set of
eigenvalues of X1 + X−1

1 is a subset of {q(i) | i ∈ Iq} by [BK, Lemma 4.4]). Let
µ be a composition of n. An Hµ-supermodule M is called integral if Res

Hµ
An M is

integral.

We denote the full subcategory of An-smod (resp. Hµ-smod) consisting of
integral representations by RepAn (resp. RepHµ). We also denote by chµ the
Z-linear homomorphism induced by the restriction functor Res

Hµ
An

chµ : K0(RepHµ)→ K0(RepAn)

between the Grothendieck groups. We always write ch instead of chn and call chM

the formal character of the Hn-supermodule M .
We recall a special case of covering modules [BK, §4-h].

Definition 3.4. Let m ≥ 1 and let i ∈ Iq. We define a 2m-dimensional H1-super-
module L±m(i) with an even basis {w1, . . . , wm} and an odd basis {w′1, . . . , w′m}
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and the following matrix representations of actions of generators with respect to
this basis:

X1 :

(
J(b±(i);m) O

O J(b±(i);m)−1

)
, C1 :

(
O Em
Em O

)
.

Here J(α;m) := (δi,jα+ δi,j+1)1≤i,j≤m stands for the Jordan matrix of size m.

We also define, for m ≥ 1, H1-homomorphisms g±m : L±m+1(i)� L±m(i) by

wk 7→

{
wk if 1 ≤ k ≤ m,
0 if k = m+ 1,

w′k 7→

{
w′k if 1 ≤ k ≤ m,
0 if k = m+ 1.

Here wk and w′k on the left hand side are those of L±m+1(i) whereas wk and w′k on
the right hand side are those of L±m(i). Note that there is an odd isomorphism g◦m :
L+
m(i) ∼−→ L−m(i) since J(b+(i);m) and J(b−(i);m)−1 are similar. For convenience,

we abbreviate L+
m(i) (resp. L+

1 (i)) to Lm(i) (resp. L(i)) and g+
m to gm.

Definition 3.5. For i ∈ Iq we define anH1-supermodule Rm(i) = H1/N(i) where
N(i) is the two-sided ideal generated by

f(i) =

{
(X1 +X−1

1 − q(i))m if q(i) 6= ±2,

(X1 − b+(i))m (= (X1 − b−(i))m) if q(i) = ±2.

As in [BK, §4-h] (or by elementary linear algebra), we have the following.

Lemma 3.6. Let i ∈ Iq.

(i) If q(i) 6= ±2, then there exists an even isomorphism Rm(i) ' L+
m(i) ⊕ L−m(i)

for m ≥ 1 which commutes with the obvious surjection Rm(i)� Rm+1(i).

(7)

R1(i)

o

R2(i)oooo

o

R3(i)oooo

o

· · ·oooo

L1(i)⊕ΠL1(i) L2(i)⊕ΠL2(i)
g1+Πg1oooo L3(i)⊕ΠL3(i)

g2+Πg2oooo · · ·oooo

(ii) If q(i) = ±2, then Rm(i) ' L+
m(i) = L−m(i) and there exist odd involutions g◦k

for k ≥ 1 that make the following diagram commute:

(8)

R1(i)

o

R2(i)oooo

o

R3(i)oooo

o

· · ·oooo

L1(i)

g◦1

GG
L2(i)

g◦2

GG
oooo L3(i)

g◦3

GG
oooo · · ·oooo
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In virtue of An ∼= A⊗n1 and (1), we have the following (see [BK, Lemma 4.8]).

Lemma 3.7. We have Irr(RepAn) = {L(i1)~ · · ·~L(in) | (i1, . . . , in) ∈ Inq }. For
(i1, . . . , in) ∈ Inq , L(i1) ~ · · · ~ L(in) is of type Q if and only if #{1 ≤ k ≤ n |
q(ik) = ±2} is odd.

§3.4. Block decomposition

The (super)center Z(Hn) of Hn is naturally identified with the algebra of sym-
metric polynomials of X1 + X−1

1 , . . . , Xn + X−1
n [JN, Proposition 3.2(b)], [BK,

Theorem 2.3] via

F [X1 +X−1
1 , . . . , Xn +X−1

n ]Sn
∼−→ Z(Hn), f 7→ f.

Thus, Hn is a finite Z(Hn)-module and this implies that all irreducible Hn-super-
modules are finite-dimensional. For any M ∈ RepHn, we have a decomposition
M =

⊕
γ∈Inq /Sn

M [γ] with

M [γ] = {m ∈M | ∀f ∈ Z(Hn), ∃N ∈ Z>0, (f − χγ(f))Nm = 0}

in RepHn. Here χγ is a central character attached to γ = [(γ1, . . . , γn)] by

χγ : Z(Hn)→ F, f(X1 +X−1
1 , . . . , Xn +X−1

n ) 7→ f(q(γ1), . . . , q(γn)).

Note that if γ1 6= γ2 in Inq /Sn, then χγ1 6= χγ2 .

Definition 3.8. Let M ∈ Irr(RepHn). Then there exists a unique γ ∈ Inq /Sn

such that M = M [γ]. In this case, we say that M belongs to the block γ.

We remark that this terminology coincides with the usual notion of block. This
follows from a general result of Müller [BG, III.9.2] for an algebra which is finite
over its center and the fact that the set {χγ | γ ∈ Inq /Sn} exhausts the possible
central characters arising from RepHn. In fact, for any γ = [(γ1, . . . , γn)] ∈ Inq /Sn,
all the composition factors of IndHnAn L(γ1)~ · · ·~ L(γn) belong to γ since

ch IndHnAn L(i1)~ · · ·~ L(in) =
∑
w∈Sn

[L(iw(1))~ · · ·~ L(iw(n))].

This identity [BK, Lemma 4.10] follows from the Mackey theorem [BK, Theo-
rem 2.8].

§3.5. Kashiwara operators

Recall the Kato supermodules L(in) := IndHnAn L(i)~n [BK, §4-g]. Using them, we
can introduce Kashiwara operators ẽi and f̃i that send an irreducible supermod-
ule to another one (if defined). We first recall a fundamental property of Kato’s
modules [BK, Theorem 4.16(i)].
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Theorem 3.9. For i ∈ Iq and n ≥ 1, L(in) is irreducible of the same type as
L(i)~n and it is the only irreducible supermodule in its block of RepHn.

Definition 3.10. For i ∈ Iq, 0 ≤ m ≤ n and M ∈ RepHn, we denote by ∆imM

the simultaneous generalized q(i)-eigenspace of the commuting operators Xk+X−1
k

for all n−m < k ≤ n. Note that ∆imM is an Hn−m,m-supermodule. We also define
εi(M) = max{m ≥ 0 | ∆imM 6= 0}.

By [BK, §5-a], we have the following [BK, Lemma 5.5, Theorem 5.6, Corol-
lary 5.8].

Theorem 3.11. Let i ∈ Iq, m ≥ 0 and M ∈ Irr(RepHn).

(i) N := Cosoc Ind
Hn+m
Hn,m M ~ L(im) is irreducible with εi(N) = εi(M) + m, and

any other irreducible composition factor L of Ind
Hn+m
Hn,m M ~ L(im) satisfies

εi(L) < εi(M) + n.

(ii) Assume that 0 ≤ m ≤ εi(M). There exists (up to isomorphism) an irreducible
Hn−m-supermodule L such that typeL = typeM , εi(L) = εi(M) − m and
Soc ∆imM ∼= L~ L(im).

(iii) Assume that εi(M) > 0. Then

Soc Res
Hn−1,1
Hn−1

∆i(M) '

{
L⊕ΠL if typeM = Q or q(i) 6= ±2,

L if typeM = M and q(i) = ±2,

for some irreducible Hn−1-module L of the same type as M if q(i) 6= ±2 and
of the opposite type to M if q(i) = ±2.

Definition 3.12. Let us write B(∞) :=
⊔
n≥0 Irr(RepHn). For i ∈ Iq, we define

maps ẽi, f̃i : B(∞) t {0} → B(∞) t {0} as follows:

• ẽi0 = f̃i0 = 0.

• For M ∈ Irr(RepHn), we set f̃iM = Cosoc Ind
Hn+1
Hn,1 M ~ L(i).

• For M ∈ Irr(RepHn), we set ẽiM = 0 if εi(M) = 0, otherwise ẽiM = L for a
unique L ∈ Irr(RepHn−1) with Soc ∆iM ∼= L~ L(i).

Note that εi(M) = max{m ≥ 0 | (ẽi)mM 6= 0} for M ∈ Irr(RepHn) and
i ∈ Iq by Theorem 3.11(ii). By [BK, Lemma 5.10], ẽi and f̃i satisfy one of the
axioms of Kashiwara’s crystal (see Definition 2.1(v)):

Lemma 3.13. For M,N ∈ B(∞) and i ∈ Iq, f̃iM = N is equivalent to ẽiN = M .
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Definition 3.14. For i = (i1, . . . , in) ∈ Inq , we define L(i) = f̃in f̃in−1 · · · f̃i2 f̃i11.
Here 1 is the trivial representation of H0 = F .

Note that L(i) for i = (i, . . . , i) coincides with the Kato supermodule L(in)
by Theorem 3.9. By an inductive use of Lemma 3.13, we have the following [BK,
§5-d, Lemma 5.15].

Corollary 3.15. For any L ∈ Irr(RepHn) there exists i ∈ Inq such that L ∼= L(i).
ResHnAn L(i) has a submodule isomorphic to L(i1)~ · · ·~ L(in).

Also a repeated use of Theorem 3.11(ii) implies the following [BK, Lemma
5.14].

Corollary 3.16. Let M ∈ Irr(RepHn) and let µ be a composition of n. For any
irreducible composition factor N of ResHnHµ M , we have typeM = typeN .

§3.6. Root operators

We shall define root operators ei as direct summands of Res
Hn−1,1
Hn−1

∆i. Note that
for any M ∈ RepHn and i ∈ Iq, we have a natural identification

Res
Hn−1,1
Hn−1

∆iM ' lim−→
m

HomH′1(Rm(i),M).(9)

Here H′1 stands for a subsuperalgebra in Hn generated by {X±1
n , Cn} isomorphic

to H1. Considering (7) or (8), we can chose a summand of Res
Hn−1,1
Hn−1

∆iM appro-
priately as follows.

Definition 3.17. For M ∈ Irr(RepHn) and i ∈ Iq, we define

eiM = lim−→
m

HomH′1((Lm(i), θ◦m), (M, θM )) (∈ RepHn−1).

Here the θ’s are defined as follows.

• θ◦m = idLm(i) if q(i) 6= ±2, and θ◦m = g◦m otherwise.

• θM = idM if typeM = M, and θM is an odd involution of M otherwise.

Thus, by Theorem 3.11(iii), we have

Res
Hn−1,1
Hn−1

∆i(M) '

{
eiM if typeM = M and q(i) = ±2,

eiM ⊕ΠeiM if typeM = Q or q(i) 6= ±2.

By the commutativity of ResHnHn−1
and τ -duality, we obtain the following [BK,

Lemma 6.6(i)].
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Corollary 3.18. Let M ∈ Irr(RepHn) and i ∈ Iq. Then eiM is non-zero if and
only if ẽiM is non-zero, in which case eiM is a self-dual indecomposable module
with irreducible socle and cosocle isomorphic to ẽiM .

Also, as seen in [BK, §6-d], we have the following [BK, Theorem 6.11].

Theorem 3.19. Let M ∈ Irr(RepHn) and i ∈ Iq.

(i) In K0(RepHn), we have [eiM ] = εi(M)[ẽiM ] +
∑
ca[Na] where Na are irre-

ducibles with εi(Na) < εi(M)− 1.

(ii) If q(i) 6= ±2, then εi(M) is the maximal size of a Jordan block of Xn +X−1
n

on M with eigenvalue q(i).

(iii) If q(i) = ±2, then εi(M) is the maximal size of a Jordan block of Xn on M

with eigenvalue b+(i) = b−(i).

(iv) EndHn−1(eiM) ' EndHn−1(ẽiM)⊕εi(M) as vector superspaces.

§3.7. Kashiwara’s crystal structure

In this subsection, let A = (aij)i,j∈Iq be an arbitrary symmetrizable general-
ized Cartan matrix indexed by Iq. We identify Inq /Sn and Γn := {

∑
i∈Iq kiαi ∈∑

i∈Iq Z≥0αi |
∑
i∈Iq ki = n} by

bA : Inq /Sn
∼−→ Γn, [(γ1, . . . , γn)] 7→

n∑
k=1

αγk .

For M ∈ Irr(RepHn) belonging to a block γ ∈ Inq /Sn and i ∈ Iq, we define

wt(M) = −bA(γ), ϕi(M) = εi(M) + 〈hi,wt(M)〉.

By Theorem 3.11 and Lemma 3.13, we can check the following [BK, Lemma 8.5].

Lemma 3.20. The 6-tuple (B(∞),wt, {εi}i∈Iq , {ϕi}i∈Iq , {ẽi}i∈Iq , {f̃i}i∈Iq ) is a
g(A)-crystal.

Finally, we introduce the σ-version of the above operations for M ∈ B(∞)
and i ∈ Iq:

ẽ∗iM = (ẽi(Mσ))σ, f̃∗iM = (f̃i(Mσ))σ, ε∗i (M) = εi(Mσ).

Of course, we have ε∗i (M) = max{k ≥ 0 | (ẽ∗i )kM 6= 0}. However, ε∗i (M) has
another description as follows by Theorem 3.19(ii)&(iii).
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Lemma 3.21. Let i ∈ Iq and M ∈ Irr(RepHn).

• If q(i) 6= ±2, then ε∗i (M) is the maximal size of a Jordan block of X1 +X−1
1 on

M with eigenvalue q(i).

• If q(i) = ±2, then ε∗i (M) is the maximal size of a Jordan block of X1 on M with
eigenvalue b+(i) = b−(i).

We also quote results [BK, Lemmas 8.1, 8.2, 8.4] concerning the commutativity
of ẽi and f̃∗j .

Lemma 3.22. Let M ∈ Irr(RepHn) and i, j ∈ Iq.

(i) εi(f̃∗iM) = εi(M) or εi(f̃∗iM) = εi(M) + 1.

(ii) If i 6= j, then εi(f̃∗jM) = εi(M).

(iii) If εi(f̃∗jM) = εi(M) (denoted by ε), then ẽεi f̃
∗
jM
∼= f̃∗j ẽ

ε
iM .

(iv) If εi(f̃∗iM) = εi(M) + 1, then ẽif̃
∗
iM
∼= M .

§3.8. Hopf algebra structure

Consider the graded Z-free module

K(∞) =
⊕
n≥0

K0(RepHn)

with natural basis B(∞) and define Z-linear maps

�m,n : K0(RepHm)⊗ K0(RepHn) ∼−→ K0(RepHm,n)
Ind
Hm+n
Hm,n−−−−−−→ K0(RepHm+n),

∆m,n : K0(RepHm+n)
Res
Hm+n
Hm,n−−−−−−→ K0(RepHm,n) ∼−→ K0(RepHm)⊗ K0(RepHn),

� =
∑
m,n≥0

�m,n : K(∞)⊗K(∞)→ K(∞), ι : Z ∼−→ K0(RepH0)
inj
↪−→ K(∞),

∆ =
∑
m,n≥0

∆m,n : K(∞)→ K(∞)⊗K(∞), ε : K(∞)
proj
−� K0(RepH0) ∼−→ Z.

Note that �m,n is well-defined since for any M ∈ RepHm,n we have Ind
Hm+n
Hm,n M ∈

RepHm+n by [BK, Lemma 4.6].
Transitivity of induction and restriction makes (K(∞), �, ι) a graded Z-al-

gebra and (K(∞),∆, ε) a graded Z-coalgebra. Injectivity of the formal character
map ch : K0(RepHn) ↪→ K0(RepAn) [BK, Theorem 5.12] implies L ∼= Lτ for all
L ∈ B(∞) [BK, Corollary 5.13]. Combining this with Lemma 3.2(ii), we see that
the multiplication of (K(∞), �, ι) is commutative. By the Mackey theorem [BK,
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Theorem 2.8], we see that (K(∞), �,∆, ι, ε) is a graded Z-bialgebra.6 Since a con-
nected (non-negatively) graded bialgebra is a Hopf algebra [Swe, p. 238], we get
the following [BK, Theorem 7.1].

Theorem 3.23. (K(∞), �,∆, ι, ε) is a commutative graded Hopf algebra over Z.
Thus, K(∞)∗ is a cocommutative graded Hopf algebra over Z.

Here K(∞)∗ is a graded dual of K(∞), i.e.,

K(∞)∗ =
⊕
n≥0

HomZ(K0(RepHn),Z).

K(∞)∗ has a natural Z-free basis {δM |M ∈ B(∞)} defined by δM ([M ]) = 1 and
δM ([N ]) = 0 for all [N ] ∈ B(∞) with N 6∼= M .

§3.9. Left K(∞)∗-module structure on K(∞)

By [Swe, Proposition 2.1.1], for a coalgebra C and a right C-comodule ω : M →
M ⊗ C, M is turned into a left C∗-module by

C∗ ⊗M idC∗⊗ω−−−−−→ C∗ ⊗M ⊗ C swap⊗ idC−−−−−−→M ⊗ C∗ ⊗ C idM⊗〈,〉−−−−−→M ⊗ Z ∼−→M.

This implies that each coalgebra C is naturally regarded as a left C∗-module. It
is easily seen that if C is a connected (non-negatively) graded coalgebra then the
left action of C∗ is faithful. Thus, K(∞) has a natural faithful left K(∞)∗-module
structure and it coincides with the root operators ei in the following sense [BK,
Lemmas 7.2 and 7.4].

Lemma 3.24. For i ∈ Iq, r ≥ 1 and M ∈ K(∞), we have δL(ir) ·M = e
(r)
i M .

Note that e(r)
i is a priori an operator on K(∞)Q := Q⊗K(∞), however as seen

in Lemma 3.24 it is a well-defined operator on K(∞). We can prove this directly by
defining a divided power root operator e(r)

i in a module-theoretic way [BK, §6-c].

§4. Cyclotomic Hecke–Clifford superalgebra

§4.1. Definition and vector superspace structure

Definition 4.1. Let n ≥ 1 and assume that R = adX
d
1 + · · · + a0 ∈ F [X1]

(⊆ Hn) satisfies C1R = a0X
−d
1 RC1 (equivalently, the coefficients {ai}di=0 of R

6In checking the details, we need the commutativity of the following diagrams for m ≥ k and
n ≥ l, which follows from Corollary 3.16:

K0(RepHm,n)
∼

Res
Hm,n
Hk,l��

K0(RepHm)⊗ K0(RepHn)

Res
Hm
Hk
⊗Res

Hn
Hl��

K0(RepHk,l)
∼

K0(RepHk)⊗ K0(RepHl)

K0(RepHm,n)
∼

K0(RepHm)⊗ K0(RepHn)

K0(RepHk,l)
∼

Ind
Hm,n
Hk,l

OO

K0(RepHk)⊗ K0(RepHl)

Ind
Hm
Hk
⊗Ind

Hn
Hl

OO
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satisfy ad = 1 and ai = a0ad−i for all 0 ≤ i ≤ d). We define the cyclotomic
Hecke–Clifford superalgebra HRn = Hn/〈R〉 for n ≥ 1 and set HR0 = F .

Note that the antiautomorphism τ of Hn induces an antiautomorphism of HRn
also denoted by τ . As in the affine case, for an HRn -supermodule M we write Mτ

for the dual space M∗ with HRn -supermodule structure induced by τ .
By [BK, Theorem 3.6], HRn is a finite-dimensional superalgebra whose basis

is the canonical image of the elements

{Xα1
1 · · ·Xαn

n Cβ1
1 · · ·Cβnn Tw | 0 ≤ αk < d, βk ∈ Z/2Z, w ∈ Sn}.

Thus, we have the following commutativity between towers of superalgebras:

H0
� � //

����

H1
� � //

����

H2
� � //

����

· · ·

HR0
� � // HR1

� � // HR2
� � // · · ·

It makes it possible to define inductions and restrictions for {HRn }n≥0 as well as
Mτ and we have the following [BK, Theorem 3.9, Corollary 3.15].

Theorem 4.2. Let M be an HRn -supermodule.

(i) There is a natural isomorphism of HRn -modules

Res
HRn+1

HRn
Ind
HRn+1

HRn
M ' (M ⊕ΠM)d ⊕ Ind

HRn
HRn−1

Res
HRn
HRn−1

M.

(ii) The functors Res
HRn+1

HRn
and Ind

HRn+1

HRn
are left and right adjoint to each other.

(iii) There is a natural isomorphism Ind
HRn+1

HRn
(Mτ ) ' (Ind

HRn+1

HRn
M)τ of HRn+1-

modules.

We also define two natural functors (note that prR is a left adjoint to inflR)

prR : Hn-smod→ HRn -smod, M 7→M/〈R〉M,

inflR : HRn -smod→ Hn-smod, M 7→ Res
HRn
Hn M.

In the following, we assume that the functor inflR factors through the forgetful
functor RepHn → Hn-smod. By [BK, Lemma 4.4], this is equivalent to assuming
that the set of roots of R is a subset of {b±(i) | i ∈ Iq}. Thus, in the following,
every HRn -module M is automatically integral and has a decomposition M =⊕

γ∈Inq /Sn
prR((inflRM)[γ]) as an HRn -module.
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§4.2. Kashiwara operators

Kashiwara operators for cyclotomic superalgebras are defined using those defined
for affine superalgebras as follows. By Lemma 3.13, ẽRi and f̃Ri clearly satisfy
Definition 2.1(v).

Definition 4.3. Let us write B(R) :=
⊔
n≥0 Irr(HRn -smod). For i ∈ Iq, we define

maps ẽRi , f̃
R
i : B(R) t {0} → B(R) t {0} as follows:

• ẽRi 0 = f̃Ri 0 = 0.

• For M ∈ Irr(HRn -smod), we set ẽRi M = (prR ◦ ẽi ◦ inflR)M and f̃Ri M = (prR ◦
f̃i ◦ inflR)M .

We also define, for M ∈ B(R) and i ∈ Iq,

εRi (M) = max{k ≥ 0 | (ẽRi )k(M) 6= 0} (= εi(inflRM)),

ϕRi (M) = max({k ≥ 0 | (f̃Ri )k(M) 6= 0} t {+∞}).

Note that although ϕRi (M) might take the value +∞, it always takes a finite value
as seen in Lemma 4.9(ii) below.

§4.3. Root operators

Definition 4.4. For M ∈ HRn -smod such that inflRM belongs to a block γ ∈
Inq /Sn with bA(γ) =

∑
i∈Iq kiαi, we define

ResRi M =

prR((inflR Res
HRn
HRn−1

M)[b−1
A (γ − αi)]) if ki > 0,

0 if ki = 0,

IndRi M = prR((inflR Ind
HRn+1

HRn
M)[b−1

A (γ + αi)]).

In general, for M ∈ HRn -smod we define ResRi M (resp. IndRi M) by applying ResRi
(resp. IndRi ) for each summand of M =

⊕
γ∈Inq /Sn

prR((inflRM)[γ]).

By Theorem 4.2 and central character considerations, we get the follow-
ing [BK, Lemma 6.1].

Corollary 4.5. Let i ∈ Iq.

(i) ResRi and IndRi are left and right adjoint to each other.

(ii) For each M ∈ HRn -smod there are natural isomorphisms

IndRi (Mτ ) ' (IndRi M)τ , ResRi (Mτ ) ' (ResRi M)τ .
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Note that ResRi is nothing but prR ◦ Res
Hn−1,1
Hn−1

◦∆i ◦ inflR and it can be de-
scribed as follows (see also (9)). Replacing each operator with its left adjoint and
checking the well-definedness, we have the following [BK, Lemma 6.2].

Lemma 4.6. Let M ∈ HRn -smod and i ∈ Iq. There are natural isomorphisms

ResRi M ' lim−→
m

prR HomH′1(Rm(i), inflRM),

IndRi M ' lim←−
m

prR Ind
Hn+1
Hn⊗H1

((inflRM)⊗Rm(i)).

Here both sequences stabilize after finitely many terms.

As in the affine case, we can choose a suitable summand of ResRi M and IndRi M

using (7) or (8).

Definition 4.7. Let M ∈ Irr(HRn -smod). We define

eRi X = lim−→
m

prR HomH′1((Lm(i), θ◦m), (inflRX, inflR θX)),

fRi X = lim←−
m

prR Ind
Hn+1
Hn⊗H1

(inflRX, inflR θX)~ (Lm(i), θ◦m)

for each X = M or X = P := PM and i ∈ Iq. Here θ’s are defined as follows:

• θ◦m = idLm(i) if q(i) 6= ±2, and θ◦m = g◦m otherwise.

• θM = idM if typeM = M, and θM is an odd involution of M otherwise.

• θP = idP if typeM = M, and θP is an odd involution of P whose existence is
guaranteed by [Kl2, Lemma 12.2.16]7 otherwise.

Note that for a projective indecomposable P and i ∈ Iq, eRi P and fRi P

are again projectives since they are summands of ResRi and IndRi respectively
(see also Corollary 4.5). Thus, we define operators eRi and fRi on K(R) :=⊕

n≥0 K0(HRn -smod) and K(R)∗ ∼=
⊕

n≥0 K0(ProjHRn ).

Lemma 4.8. For any projective indecomposable HRn -supermodule P and i ∈ Iq,
we have in K0(HRn−1-smod) and K0(HRn+1-smod) respectively

eRi (ωHRn [P ]) = ωHRn−1
([eRi P ]), fRi (ωHRn [P ]) = ωHRn+1

([fRi P ]).

7In [BK, §6-c], the authors claim that for typeM = Q a lift θP which is also an odd involution
of the odd involution θM is unique. However, this is not true in general. Note that any odd
involution of P works in the rest of this paper since our aim is to halve ResRi P or IndRi P in the

same way as ResRi M or IndRi M to obtain Lemma 4.8.
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Proof. Let A and B be superalgebras and consider an (even) exact functor X :
A-smod → B-smod which sends every projective to a projective. Then for any
projective indecomposable projective A-supermodule P , we easily see X(ωA[P ]) =
ωB([XP ]) in K0(B-smod). By Corollary 4.5(i), this implies that

ResRi (ωHRn [P ]) = ωHRn−1
([ResRi P ]), IndRi (ωHRn [P ]) = ωHRn+1

([IndRi P ]).

We shall only show eRi (ωHR [P ]) = ωHRn−1
([eRP ]) in K0(HRn−1-smod) because the

other is similar. By (7), (8), Lemma 4.6 and Definition 4.7, we have

[eRi P ] =

{
[ResRi P ] if q(i) = ±2 and type CosocP = M,
1
2 [ResRi P ] otherwise

in K0(ProjHRn−1). Similarly, for M ∈ Irr(HRn−1-smod) we have

[eRi M ] =

{
[ResRi M ] if q(i) = ±2 and typeM = M,
1
2 [ResRi M ] otherwise

in K0(HRn−1-smod). Thus, it is enough to show that for each irreducible factor N of
P we have typeN = type CosocP . Take a unique γ ∈ Inq /Sn such that P = P [γ]. It
is clear that N also belongs to the block γ. By Corollary 3.16, typeN is determined
by its central character.

Since eRi = prR◦ei◦ inflR and ẽRi = prR◦ ẽi◦ inflR, Corollary 3.18 and Theorem
3.19 hold for M ∈ RepHRn and i ∈ Iq by replacing ei, ẽi and εi appearing there
with eRi , ẽRi and εRi respectively. We quote the corresponding properties of fRi , f̃Ri
and ϕRi [BK, Theorem 6.6(ii), Lemma 6.18, Corollary 6.24].

Lemma 4.9. Let M ∈ Irr(HRn -smod) and i ∈ Iq.

(i) fRi M is non-zero if and only if f̃Ri M is non-zero, in which case it is a self-
dual indecomposable module with irreducible socle and cosocle isomorphic to
f̃iM .

(ii) ϕRi (M) is the smallest m ≥ 1 (thus, takes a finite value by Lemma 4.6) such
that fRi M = prR Ind

Hn+1
Hn⊗H1

(inflRM, inflR θM ) ~ (Lm(i), θ◦m) if fRi M 6= 0. If
fRi M = 0 then ϕRi (M) = 0.

(iii) In K0(RepHn), we have [fRi M ] = ϕRi (M)[f̃iM ] +
∑
ca[Na] where Na are

irreducibles with εRi (Na) < εRi (M) + 1.

(iv) EndHRn−1
(fRi M) ' EndHRn−1

(f̃Ri M)⊕ϕ
λ
i (M) as vector superspaces.

Corollary 4.10. For any M ∈ Irr(HRn -smod) and i ∈ Iq, we have (eRi )ε
R
i (M)+1[M ]

= (fRi )ϕ
R
i (M)+1[M ] = 0 in K(R).
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Proof. The equality (eRi )ε
R
i (M)+1[M ] = 0 follows from Theorem 3.19(i). To prove

(fRi )ϕ
R
i (M)+1[M ]=0, it is enough to show that (fRi )m[M ] 6=0 implies (f̃Ri )mM 6=0

for any m ≥ 0. By the definition, (fRi )m[M ] 6= 0 is equivalent to [(IndRi )mM ] 6= 0.
By Corollary 4.5(i), we have

HomHRn+m
((IndRi )mM,N) ∼= HomHRn (M, (ResRi )mN)(10)

= HomHn(inflRM,Res
Hn,m
Hn ∆im inflRN)

for any N ∈HRn+m-smod. Since (IndRi )mM 6=0, there exists an N ∈ Irr(HRn+m-smod)
such that (10) is non-zero. Take any irreducible sub-Hn-supermodule X ∼= inflRM

of Res
Hn,m
Hn ∆im inflRN and consider the Hn,m-supermodule X ′ := H′mX where

H′m stands for the subsuperalgebra in Hn+m generated by {X±1
k , Ck, Tl | n < k ≤

n+m, n < l < n+m} isomorphic toHm. Then ch(n,m)X
′ = c·[X~L(im)] for some

c ∈ Z≥1 by Theorem 3.9. Comparing with Soc ∆im inflRN ∼= (ẽmi inflRN)~L(im)
by Theorem 3.11(ii) (see also [BK, Lemma 5.9(i)]), we see that (inflRM ∼=) X ∼=
ẽmi inflRN , which implies (f̃Ri )mM ∼= N 6= 0.

As proved in [BK, Lemma 7.14], [ResRi IndRj M ]− [IndRj ResRi M ] is a multiple
of [M ] for any M ∈ Irr(HRn -smod). By Theorem 3.19(i) and Lemma 4.9(iii), this
implies the following.

Corollary 4.11. For any M ∈ Irr(HRn -smod) and i, j ∈ Iq, we have eRi (fRj [M ])−
fRj (eRi [M ]) = δi,j(ϕRi (M)− εRi (M)) · [M ] in K(R).

By Schur’s lemma, Theorem 4.2(i), Theorem 3.19(iv), Lemma 4.9(ii) and
Lemma 4.9(iv), we have the following. See also [BK, Lemma 6.20].

Corollary 4.12. For any M ∈ Irr(HRn -smod), we have∑
i∈Iq

(2− δb+(i),b−(i))(ϕRi (M)− εRi (M)) = d.

§4.4. Left K(∞)∗-module structure on K(R)

Clearly, inflR induces an injection K(R) ↪→ K(∞) and a map ∆R : K(R) →
K(R)⊗K(∞) with the following commutative diagram:

K(∞) ∆ // K(∞)⊗K(∞)

K(R)
∆R

//
?�

inflR

OO

K(R)⊗K(∞)
?�

inflR⊗ idK(∞)

OO
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Thus, K(R) is a subcomodule of the right regular K(∞)-comodule. This implies
that K(R) is a K(∞)∗-submodule of a left K(∞)∗-module K(∞) in §3.9 where
an operator (eRi )(r) acts as δL(ir) by Lemma 3.24 for i ∈ Iq and r ≥ 1.

§4.5. Injectivity of the Cartan map

The purpose of this subsection is to show the injectivity of the Cartan map ωHRn
of HRn [BK, Theorem 7.10]. It is essentially the same as [BK, §7-c] but arguments
are slightly different because we do not define divided power operators e(r)

i , (eRi )(r)

and (fRi )(r) in a module-theoretic way as [BK, §6-c].
We first recall the following formula [BK, Lemma 7.6] which follows from the

definitions that eRi and fRi are suitable summands of ResRi and IndRi respectively.

Lemma 4.13. For any x ∈ K0(ProjHRn ) and y± ∈ K0(HRn±1-smod), we have

〈eRi x, y−〉HRn−1
= 〈x, fRi y−〉HRn , 〈fRi x, y+〉HRn+1

= 〈x, eRi y+〉HRn .

Since (eRi )(r) is a well-defined operator on K(R), we have the following. See
also [BK, Corollary 7.7].

Corollary 4.14. (fRi )(r) is a well-defined operator on K(R)∗ for any i ∈ Iq and
r ≥ 1. More precisely, if

(eRi )(r)[M ] =
∑

N∈Irr(HRn−r-smod)

aM,N [N ], (fRi )(r)[M ] =
∑

N∈Irr(HRn+r-smod)

bM,N [N ]

in K0(HRn−r-smod) and Q⊗ K0(HRn+r-smod) respectively, then

(fRi )(r)[PN ] =
∑

M∈Irr(HRn+r-smod)

aM,N [PM ],

(eRi )(r)[PN ] =
∑

M∈Irr(HRn−r-smod)

bM,N [PM ]

in K0(ProjHRn+r) and Q⊗ K0(ProjHRn−r) respectively.

Lemma 4.15. Let M ∈ Irr(HRn -smod) and i ∈ Iq. For m ≤ ε := εRi (M), we have

(eRi )m[PM ] =
∑

L∈Irr(HRn−m-smod)

εRi (L)≥ε−m

bL[PL](11)

in K0(ProjHRn−m). Moreover, in case m = ε, we have

(eRi )ε[PM ] = ε!
(
ε+ ϕRi (M)

ε

)
[P(eeRi )εM ] +

∑
L∈Irr(HRn−ε-smod)

εRi (L)>0

bL[PL].
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Proof. By Corollary 4.14, bL is the coefficient of [M ] in (fRi )m[L] in K0(HRn -smod).
By Lemma 4.9(iii), we have

(fRi )m[L] ∈
∑

N∈Irr(HRn -smod)

εRi (N)≤m+εRi (L)

Z≥0[N ].

This implies ε ≤ m+ εRi (L) if bL 6= 0 and completes the proof of (11).
Suppose bL 6= 0 and εRi (L) = 0. Again, by Lemma 4.9(iii), we have (f̃Ri )εL ∼=

M and bL = ε!
(
ϕRi (L)
ε

)
. Thus, L ∼= (ẽRi )εM and bL = ε!

(
ε+ϕRi (M)

ε

)
.

Theorem 4.16. ωHRn : K0(ProjHRn )→ K0(HRn -smod) is injective for all n ≥ 0.

Proof. We argue by induction on n. The case n = 0 is clear.
Suppose n > 0 and ωHR

n′
is injective for all smaller n′ < n. We show that if

ωHRn

( ∑
M∈Irr(HRn -smod)

aM [PM ]
)

= 0(12)

for aM ∈ Z, then aM = 0 for all M ∈ Irr(HRn -smod). To prove this, it is enough
to show that for each i ∈ Iq we have aM = 0 for all M ∈ Irr(HRn -smod) with
εRi (M) > 0. This is because there exists some i ∈ Iq such that εRi (M) > 0 for any
M ∈ Irr(HRn -smod) if n > 0.

For each i ∈ Iq, we use induction on εRi (M) > 0. Suppose that for a given M
with ε := εRi (M) > 0 we have aN = 0 for all N with 0 < εRi (N) < ε. Applying
(eRi )ε to (12), we have

0 =
∑

L∈Irr(HRn -smod)

εRi (L)=ε

ε!
(
ε+ ϕRi (L)

ε

)
aLωHRn−ε([P(eeRi )εL]) + ωHRn−ε(X)

where X ∈
∑
L′ ∈ Irr(HRn−ε-smod) with εRi (L′) > 0 Z[PL′ ] by Lemmas 4.8 and 4.15. By

the induction hypothesis, we have aM = 0.

§4.6. Symmetric non-degenerate bilinear form on K(R)Q

By Theorem 4.16,
⊕

n≥0 K0(ProjHRn ) ∼= K(R)∗ ⊆ K(R) are two integral lattices of
K(R)Q := Q⊗K(R). Thus, by tensoring with Q,

⊕
n≥0〈, 〉HRn : K(R)∗×K(R)→ Z

induces a non-degenerate bilinear form on K(R)Q which we denote by 〈 , 〉R.

Lemma 4.17. Let M ∈ Irr(HRn -smod) and i ∈ Iq. Then

[PM ] = (fRi )(ε)[P(eeRi )εM ]−
∑

L∈Irr(HRn -smod)

εRi (L)>ε

aL[PL]

for ε = εRi (M) in K0(ProjHRn ).
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Proof. Write (fRi )(ε)[P(eeRi )εM ] =
∑
L∈Irr(HRn -smod) bL[PL] in K0(ProjHRn ). By Corol-

lary 4.14, bL is the coefficient of [(ẽRi )εM ] of (eRi )(ε)[L] in K0(HRn−ε-smod). Thus,
bL 6= 0 implies εRi (L) ≥ ε. Finally, suppose bL 6= 0 and εRi (L) = ε. By Theorem
3.19(i), we have bL = 1 and (ẽRi )εL ∼= (ẽRi )εM , i.e., L ∼= M .

A repeated use of Lemma 4.17 implies the following [BK, Theorem 7.9].

Theorem 4.18. We have
⊕

n≥0 K0(ProjHRn ) = U−Z [1R] where 1R is the trivial
supermodule of HR0 = F .

Proof. We prove [PM ] ∈ U−Z [1R] for all M ∈ B(R). Suppose for contradiction that
there exists an M ∈ Irr(HRn -smod) such that [PM ] 6∈ U−Z [1R]. We take such an
M with minimum n. Since n > 0, there exists an i ∈ Iq with εRi (M) > 0. We
take N with maximum εRi (N) (≥ εRi (M) > 0) in {N ∈ Irr(HRn -smod) | [PN ] 6∈
U−Z [1R]} ( 6= ∅). However, [PN ] ∈ U−Z [1R] by the choice of N and Lemma 4.17, a
contradiction.

Using Lemma 4.13 inductively together with the equality K0(HRn+1-smod)Q =∑
i∈Iq f

R
i K0(HRn -smod)Q by Theorem 4.18, we get the following result [BK, The-

orem 7.11].

Corollary 4.19. The non-degenerate bilinear form 〈 , 〉R on K(R)Q is symmetric.

§5. Character calculations

The purpose of this section is to give preparatory character calculations concerning
the behavior of representations of low rank affine Hecke–Clifford superalgebras
H2,H3 and H4 for §6.2. Since they are responsible for the appearance of Lie theory
of type D(2)

l and omitted8 in [BK], we give detailed and self-contained calculations.

§5.1. Preparations

We note that if a given M ∈ Irr(RepHn) has a formal character of the form
chM = c · [L(ii) ~ · · · ~ L(in)] for some c ∈ Z≥1 then M ∼= L(i1, . . . , in) by
Corollary 3.15. We also recall the shuffle lemma [BK, Lemma 4.11] to compute the
formal characters.

Lemma 5.1. For M ∈ Irr(RepHm) and N ∈ Irr(RepHn) with

chM =
∑

i∈Imq

ai[L(i1)~ · · ·~ L(im)] and chN =
∑
j∈Inq

bj [L(j1)~ · · ·~ L(jn)],

8For degenerate affine Sergeev superalgebras, detailed character calculations can be found
in [Kl2, Chapter 18].
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we have

ch Ind
Hm+n
Hm,n M ~N =

∑
i∈Imq
j∈Inq

aibj

( ∑
k∈Im+n

q

[L(k1)~ · · ·~ L(km+n)]
)
.

Here we sum over k ∈ Im+n
q satisfying the following condition: there exist

1 ≤ u1 < · · · < um ≤ m + n and 1 ≤ v1 < · · · < vn ≤ m + n such that
(ku1 , . . . , kum) = (i1, . . . , im), (kv1 , . . . , kvn) = (j1, . . . , jn) and {u1, . . . , um} t
{v1, . . . , vn} = {1, . . . ,m+ n}.

We also need the following [BK, Lemma 4.3], which is proved by direct cal-
culation.

Lemma 5.2. Let a, b ∈ F× with a + a−1 = q(i) and b + b−1 = q(j) for some
i, j ∈ Iq. If |i− j| ≤ 1, then

a−2(ab− 1)2(ab−1 − 1)2

· (a−2(ab− 1)2(ab−1 − 1)2 − ξ2a−1b−1(ab− 1)2 − ξ2a−1b(ab−1 − 1)2) = 0.

Corollary 5.3. For any i, j ∈ Z with |i− j| = 1 and q(j) 6= q(i), we have

ξ2

(q(j)− q(i))2
(q(i)q(j)− 4) = 1.

Proof. We take a and b satisfying a+ a−1 = q(i) and b+ b−1 = q(j). We have

a−2(ab− 1)2(ab−1 − 1)2 − ξ2(a−1b−1(ab− 1)2 + a−1b(ab−1 − 1)2) = 0

by Lemma 5.2 and q(i) 6= q(j). A direct calculation shows that the left hand side
is equal to (q(i)− q(j))2 − ξ2(q(i)q(j)− 4).

In the rest of this section, for each i ∈ Iq we write the basis elements w1 and
w′1 of L(i) (= L+

1 (i)) in Definition 3.4 as vi
0

and vi
1

respectively. Recall that the
irreducible H1-supermodule L(i) = Fvi

0
⊕Fvi

1
is given by the grading L(i)j = Fvij

for j ∈ Z/2Z and the following action:

X±1 v
i
0

= b±(i)vi
0
, X±1 v

i
1

= b∓(i)vi
1
, C1v

i
0

= vi
1
, C1v

i
1

= vi
0
.

§5.2. On the block [(i, j)] with |i− j| = 1

Lemma 5.4. For any i, j ∈ Z such that

|i− j| = 1, q(j) 6= q(i), (typeL(i), typeL(j)) 6= (Q,Q),

define an H2-supermodule M and an A2-supermodule N as follows:

M := IndH2
H1,1

L(j)⊗ L(i), N := (X2 +X−1
2 − q(i))M ⊆ ResH2

H1,1
M.
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Then:

(i) N is T1-invariant, i.e., N is an H2-supermodule.

(ii) chN = [L(i)⊗ L(j)].

Proof. Note that ch1,1N = [L(i) ⊗ L(j)] because 0 ( N ( M and chM =
[L(i) ⊗ L(j)] + [L(j) ⊗ L(i)] by Lemma 5.1 and ch Cosoc(M) = chL(ji) contains
a term [L(j)⊗L(i)] by Corollary 3.15. Thus, it is enough to show that T1N ⊆ N .

By (3) and (4), we have

(X2 +X−1
2 − q(i))T1 = T1(X1 +X−1

1 − q(i))
+ ξ(X2 + C1C2X1 −X−1

1 −X−1
2 C1C2).

From this, we see that X and Y defined below form a basis of N0:

X := (X2 +X−1
2 − q(i))T1 ⊗ vj0 ⊗ v

i
0

= (q(j)− q(i))T1 ⊗ vj0 ⊗ v
i
0

+ ξ((b+(i)− b−(j))1⊗ vj
0
⊗ vi

0
− (b+(i)− b+(j))1⊗ vj

1
⊗ vi

1
),

Y := (X2 +X−1
2 − q(i))T1 ⊗ vj1 ⊗ v

i
1

= (q(j)− q(i))T1 ⊗ vj1 ⊗ v
i
1

+ ξ((b−(i)− b−(j))1⊗ vj
0
⊗ vi

0
+ (b−(i)− b+(j))1⊗ vj

1
⊗ vi

1
).

To show T1N ⊆ N , it is enough to show T1N0 ⊆ N0. For this purpose, it is
enough to show the following equalities which follow from Corollary 5.3:

T1X = ξ

(
1 +

b+(i)− b−(j)
q(j)− q(i)

)
X − ξ b+(i)− b+(j)

q(j)− q(i)
Y,

T1Y = ξ
b−(i)− b−(j)
q(j)− q(i)

X + ξ

(
1 +

b−(i)− b+(j)
q(j)− q(i)

)
Y.

Corollary 5.5. For any i, j ∈ Z such that

|i− j| = 1, q(j) 6= q(i), (typeL(i), typeL(j)) 6= (Q,Q),

we have:

(i) chL(ij) = [L(i)⊗ L(j)].

(ii) There exists a basis {X,Y } of L(ij)0 such that the matrix representations of
L(ij) with respect to the basis {X,Y,C1X,C1Y } are as follows:

X±1
1 :


b±(i) 0 0 0

0 b∓(i) 0 0
0 0 b±(i) 0
0 0 0 b∓(i)

 , X±1
2 :


b±(j) 0 0 0

0 b∓(j) 0 0
0 0 b±(j) 0
0 0 0 b∓(j)

 ,
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C1 :


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , C2 :


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ,

T1 :
ξ

q(j)− q(i)


b+(j)− b−(i) b−(i)− b−(j) 0 0
b+(j)− b+(i) b−(j)− b+(i) 0 0

0 0 b+(j)− b+(i) b−(j)− b+(i)
0 0 b−(i)− b+(j) b−(j)− b−(i)

 .

§5.3. On the block [(i, i, j)] with |i− j| = 1

Lemma 5.6. For any i, j ∈ Z such that

|i− j| = 1, q(j) 6= q(i), (typeL(i), typeL(j)) = (M,M),

define an H3-supermodule M and an H2,1-supermodule N as follows:

M := IndH3
H2,1

L(ij)⊗ L(i), N := (X3 +X−1
3 − q(i))M ⊆ ResH3

H2,1
M.

If q(i)q(j) + q(j)2 − 8 6= 0, then T2N 6⊆ N and M is irreducible.

Proof. Since ch CosocM = L(iji) contains a term [L(i)⊗L(j)⊗L(i)] by Corollary
3.15 and chM = [L(i) ⊗ L(j) ⊗ L(i)] + 2[L(i)⊗2 ⊗ L(j)] by Lemma 5.1, if M
is reducible then M has a unique irreducible submodule M ′ with ResH3

H2,1
M ′ ∼=

L(i2)⊗ L(j) by Theorem 3.9. Thus, if M is reducible then ResH3
H2,1

M ′ = N . This
implies that if T2N 6⊆ N then M is irreducible.

In the rest of the proof, we show that T2N 6⊆ N if q(i)q(j) + q(j)2 − 8 6= 0.
We take a basis (α1, α2, α3, α4) := (X,Y,C1X,C1Y ) of L(ij) as in Corollary 5.5.
Then a basis of M is given by

{Xβ,k,l := β ⊗ αk ⊗ vil | β ∈ {1, T2, T1T2}, k ∈ {1, 2, 3, 4}, l ∈ Z/2Z}

and a basis of N0 is given by {Yk, Zk | 1 ≤ k ≤ 4} where

Yk := (X3 +X−1
3 −q(i))XT2,k,f(k), Zk := (X3 +X−1

3 −q(i))XT1T2,k,f(k)(= T1Yk)

for k = 1, 2, 3, 4 and f(1) = f(2) = 0 and f(3) = f(4) = 1. More explicitly,

Y1 = (q(j)− q(i))T2 ⊗ α1 ⊗ vi0
+ ξ((b+(i)− b−(j))1⊗ α1 ⊗ vi0 + (b+(i)− b+(j))1⊗ α4 ⊗ vi1),

Y2 = (q(j)− q(i))T2 ⊗ α2 ⊗ vi0
+ ξ((b+(i)− b+(j))1⊗ α2 ⊗ vi0 + (b−(j)− b+(i))1⊗ α3 ⊗ vi1),
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Y3 = (q(j)− q(i))T2 ⊗ α3 ⊗ vi1
+ ξ((b−(i)− b−(j))1⊗ α3 ⊗ vi1 + (b−(i)− b+(j))1⊗ α2 ⊗ vi0),

Y4 = (q(j)− q(i))T2 ⊗ α4 ⊗ vi1
+ ξ((b−(i)− b+(j))1⊗ α4 ⊗ vi1 + (b−(j)− b−(i))1⊗ α1 ⊗ vi0),

Z1 = (q(j)− q(i))T1T2 ⊗ α1 ⊗ vi0

+
ξ2

q(j)− q(i)
((b+(i)− b−(j))(b+(j)− b−(i))1⊗ α1 ⊗ vi0

+ (b+(i)− b−(j))(b+(j)− b+(i))1⊗ α2 ⊗ vi0
+ (b+(i)− b+(j))(b−(j)− b+(i))1⊗ α3 ⊗ vi1
+ (b+(i)− b+(j))(b−(j)− b−(i))1⊗ α4 ⊗ vi1),

Z2 = (q(j)− q(i))T1T2 ⊗ α2 ⊗ vi0

+
ξ2

q(j)− q(i)
((b+(i)− b+(j))(b−(i)− b−(j))1⊗ α1 ⊗ vi0

+ (b+(i)− b+(j))(b−(j)− b+(i))1⊗ α2 ⊗ vi0
+ (b−(j)− b+(i))(b+(j)− b+(i))1⊗ α3 ⊗ vi1
+ (b−(j)− b+(i))(b−(i)− b+(j))1⊗ α4 ⊗ vi1).

To prove T2N0 6⊆ N0 it is enough to show T2Z1 6∈ N0. Note that

T2Z1 = ξ((b+(j)− b−(i))T1T2 ⊗ α1 ⊗ vi0 + (b+(j)− b+(i))T1T2 ⊗ α2 ⊗ vi0) + ∆

for a suitable ∆ ∈ span{XT2,k,l | 1 ≤ k ≤ 4, l ∈ Z/2Z}. Thus, if T2Z1 ∈ N0, then
we must have

T2Z1 = ξ
b+(j)− b−(i)
q(j)− q(i)

Z1 + ξ
b+(j)− b+(i)
q(j)− q(i)

Z2

+
ξ2

(q(j)− q(i))2

(
(b+(i)− b−(j))(b+(j)− b−(i))Y1

+ (b+(i)− b−(j))(b+(j)− b+(i))Y2

+ (b+(i)− b+(j))(b−(j)− b+(i))Y3 + (b+(i)− b+(j))(b−(j)− b−(i))Y4

)
.

In particular, the coefficient of 1⊗α1 ⊗ vi0 on the right hand side must be 0. This
gives us

ξ3

(q(j)− q(i))2
(b+(i)− b−(i))(q(i)q(j) + q(j)2 − 8) = 0.

Thus, we have T2Z1 6∈ N0 if q(i)q(j) + q(j)2 − 8 6= 0.
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Corollary 5.7. Assume q is a primitive 4l-th root of unity for l ≥ 3 and assume
i, j ∈ Z satisfy

|i− j| = 1, q(j) 6= q(i), (typeL(i), typeL(j)) = (M,M).

Then:

(i) L(iji) ∼= L(iij) ∼= Ind3
2,1 L(ij)⊗ L(i).

(ii) chL(iji) = chL(iij) = 2[L(i)⊗2 ⊗ L(j)] + [L(i)⊗ L(j)⊗ L(i)].

(iii) chL(jii) = 2[L(j)⊗ L(i)⊗2] + [L(i)⊗ L(j)⊗ L(i)].

Proof. q(i)q(j) + q(j)2 − 8 = 0 is equivalent to q4i+3±3 = 1 or q4i+1±3 = 1 since

(q2j+1 + q−2(j+1))2 + (q2i+1 + q−2(i+1))(q2j+1 + q−2(j+1))− 2(q + q−1)2

= (q2(i±1)+1 + q−2((i±1)+1))2 + (q2i+1 + q−2(i+1))(q2(i±1)+1 + q−2((i±1)+1))

− 2(q + q−1)2

= (q + q−1)(q2i+1.5±1.5 − q−(2i+1.5±1.5))(q2i+0.5±1.5 − q−(2i+0.5±1.5)).

Since typeL(i) = M, we have l ≥ 3 and 1 ≤ i ≤ l − 2. Thus 2 ≤ 4i− 2 < 4i+ 6 ≤
4l − 2 and we see that q4i+3±3 6= 1 and q4i+1±3 6= 1.

By Lemma 5.6, L(iji) ∼= M := Ind3
2,1 L(ij)⊗L(i). Thus, chL(iji) = 2[L(i)⊗2⊗

L(j)]+[L(i)⊗L(j)⊗L(i)] by Lemma 5.1. This implies ∆jM 6= 0 and ẽjM ∼= L(i2)
by Theorem 3.9. Thus, we have M ∼= L(iij).

Finally, consider the irreducible supermodule L(iij)σ. It belongs to the same
block as L(iij) ∼= L(iji), but it is not isomorphic to L(iij) ∼= L(iji) in virtue of
their formal characters. Thus, we have L(iij)σ ∼= L(jii).

Lemma 5.8. For any i, j ∈ Z such that

|i− j| = 1, q(j) 6= q(i), (typeL(i), typeL(j)) = (Q,M),

define an H3-supermodule M and an H2,1-supermodule N as follows:

M := IndH3
H2,1

L(ij)~ L(i), N := (X3 +X−1
3 − q(i))M ⊆ ResH3

H2,1
M.

Then:

(i) N is T2-invariant, i.e., N is an H3-supermodule.

(ii) chN = 2[L(i)~2 ~ L(j)] and chM/N = [L(i)~ L(j)~ L(i)].

Proof. As in the first paragraph of the proof of Lemma 5.6, if N is T2-invariant
then chN = 2[L(i)~2~L(j)] and chM/N = [L(i)~L(j)~L(i)]. Thus, it is enough
to show that N is T2-invariant.
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In the rest of the proof, we write a instead of b+(i) = b−(i) and take a basis
{X,Y,C1X,C1Y } of L(ij) as in Corollary 5.5.

We can take a realization of L(ij)~L(i) as an H2,1-submodule W of L(ij)⊗
L(i) given as follows because a direct calculation shows that W is H2,1-invariant:

W := W0 ⊕W1, W0 := FX ′ ⊕ FY ′, W1 := F (C1X
′)⊕ F (C1Y

′),

X ′ := X ⊗ vi
0

+
√
−1(C1X)⊗ vi

1
, Y ′ := Y ⊗ vi

0
−
√
−1(C1Y )⊗ vi

1
.

More precisely, we can check that the matrix representations with respect to the
basis {X ′, Y ′, C1X

′, C1Y
′} are given as follows.

X±1
1 :

0BB@
a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

1CCA, X±1
2 :

0BB@
b±(j) 0 0 0

0 b∓(j) 0 0
0 0 b±(j) 0
0 0 0 b∓(j)

1CCA, X±1
3 :

0BB@
a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

1CCA,

C1 :

0BB@
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1CCA, C2 :

0BB@
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

1CCA, C3 :

0BB@
0 0

√
−1 0

0 0 0 −
√
−1

−
√
−1 0 0 0

0
√
−1 0 0

1CCA,

T1 :
ξ

q(j)− q(i)


b+(j)− a a− b−(j) 0 0
b+(j)− a b−(j)− a 0 0

0 0 b+(j)− a b−(j)− a
0 0 a− b+(j) b−(j)− a

 .

Hereafter, we put (α1, α2, α3, α4) := (X ′, Y ′, C1X
′, C1Y

′). Then a basis of M is
given by {Xβ,k := β⊗αk | β ∈ {1, T2, T1T2}, k ∈ {1, 2, 3, 4}}. It is enough to show
that T2N0 ⊆ N0. We can choose

{Yk := (X3 +X−1
3 − q(i))XT2,k, Yk+2 := (X3 +X−1

3 − q(i))XT1T2,k | 1 ≤ k ≤ 2}

as a basis of N0. More explicitly, we have

Y1 = (q(j)− q(i))T2 ⊗ α1 + ξ((a− b−(j))1⊗ α1 +
√
−1(a− b+(j))1⊗ α2),

Y2 = (q(j)− q(i))T2 ⊗ α2 + ξ(
√
−1(a− b−(j))1⊗ α1 + (a− b+(j))1⊗ α2),

Y3 = (q(j)− q(i))T1T2 ⊗ α1

+
ξ2

q(j)− q(i)
(b+(j)− a)(a− b−(j))((1−

√
−1)1⊗ α1 + (1 +

√
−1)1⊗ α2),

Y4 = (q(j)− q(i))T1T2 ⊗ α2

+
ξ2

q(j)− q(i)
(b+(j)− a)(a− b−(j))((−1 +

√
−1)1⊗ α1 + (1 +

√
−1)1⊗ α2).
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Now we can check the following relations using Corollary 5.3:

T2Y1 = ξ
b+(j)− a
q(j)− q(i)

Y1 + ξ
(a− b+(j))

√
−1

q(j)− q(i)
Y2,

T2Y2 = ξ
(a− b−(j))

√
−1

q(j)− q(i)
Y1 + ξ

b−(j)− a
q(j)− q(i)

Y2,

T2Y3 =
ξ(b+(j)− a)
q(j)− q(i)

(Y3 + Y4)

+
ξ2(b+(j)− a)(a− b−(j))

(q(j)− q(i))2
((1−

√
−1)Y1 + (1 +

√
−1)Y2),

T2Y4 =
ξ(a− b−(j))
q(j)− q(i)

(Y3 − Y4)

+
ξ2(b+(j)− a)(a− b−(j))

(q(j)− q(i))2
((−1 +

√
−1)Y1 + (1 +

√
−1)Y2).

Corollary 5.9. For any i, j ∈ Z such that

|i− j| = 1, q(j) 6= q(i), (typeL(i), typeL(j)) = (Q,M),

setting a = b+(i) = b−(i), we have:

(i) chL(iij) = 2[L(i)~2 ~ L(j)] and chL(iji) = [L(i)~ L(j)~ L(i)].

(ii) There exists a basis {Y1, Y2, Y3, Y4} of L(iij)0 such that
Y3 = T1Y1, Y4 = T1Y2,

X±1
3 Y1 = b±(j)Y1, X±1

3 Y2 = b∓(j)Y2,

X±1
3 Y3 = b±(j)Y3, X±1

3 Y4 = b∓(j)Y4,

T2Y1 =
ξ(b+(j)− a)
q(j)− q(i)

(Y1 −
√
−1Y2), T2Y2 =

ξ(a− b−(j))
q(j)− q(i)

(
√
−1Y1 − Y2),

T2Y3 =
ξ(b+(j)− a)
q(j)− q(i)

(Y3 + Y4)

+
ξ2(b+(j)− a)(a− b−(j))

(q(j)− q(i))2
((1−

√
−1)Y1 + (1 +

√
−1)Y2),

T2Y4 =
ξ(a− b−(j))
q(j)− q(i)

(Y3 − Y4)

+
ξ2(b+(j)− a)(a− b−(j))

(q(j)− q(i))2
((−1 +

√
−1)Y1 + (1 +

√
−1)Y2),

C3Y1 = − C1Y2, C3Y2 = C1Y1,

C3Y3 =
√
−1(C1Y4)− ξ(1 +

√
−1)(C1Y2),

C3Y4 =
√
−1(C1Y3) + ξ(1−

√
−1)(C1Y1).
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Proof. It is enough to show the last four relations. Direct calculations using (3)
give us

C1Y1 = (q(j)− q(i))T2 ⊗ α3 + ξ((a− b−(j))1⊗ α3 +
√
−1(a− b+(j))1⊗ α4),

C1Y2 = (q(j)− q(i))T2 ⊗ α4 + ξ(
√
−1(a− b−(j))1⊗ α3 + (a− b+(j))1⊗ α4),

C1Y3 = −
√
−1(q(j)− q(i))T1T2 ⊗ α3 + (q(j)− q(i))ξ(1 +

√
−1)T2 ⊗ α3 + ∆1,

C1Y4 =
√
−1(q(j)− q(i))T1T2 ⊗ α4 + (q(j)− q(i))ξ(1−

√
−1)T2 ⊗ α4 + ∆2,

C3Y1 = (q(j)− q(i))T2 ⊗ (−α4) + ∆3 = −C1Y2,

C3Y2 = (q(j)− q(i))T2 ⊗ α3 + ∆4 = C1Y1,

C3Y3 = − (q(j)− q(i))T1T2 ⊗ α4 + ∆5 =
√
−1(C1Y4)−

√
−1ξ(1−

√
−1)(C1Y2),

C3Y4 = (q(j)− q(i))T1T2 ⊗ α3 + ∆6 =
√
−1(C1Y3)−

√
−1ξ(1 +

√
−1)(C1Y1).

Here ∆1, . . . ,∆6 are suitable elements in span{1⊗ αk | 1 ≤ k ≤ 4} (⊆M).

§5.4. On the block [(i, i, i, j)] with |i− j| = 1 and
(typeL(i), typeL(j)) = (Q,M)

Lemma 5.10. For any i, j ∈ Z such that

|i− j| = 1, q(j) 6= q(i), (typeL(i), typeL(j)) = (Q,M),

define an H4-supermodule M and an H3,1-supermodule N as follows:

M := IndH4
H3,1

L(iij)⊗ L(i), N := (X4 +X−1
4 − q(i))M ⊆ ResH4

H3,1
M.

If q(j) + 2q(i) 6= 0, then T3N 6⊆ N and M is irreducible.

Proof. By the same reasoning as in Lemma 5.6, if T3N 6⊆ N then M is irreducible.
In the rest of the proof, we show that if q(j) + 2q(i) 6= 0 then T3N 6⊆ N .

We write a for b+(i) = b−(i) as in the proof of Lemma 5.8 and we take a basis
{Y1, Y2, Y3, Y4} of L(iij)0 as in Corollary 5.9. Thus, we can choose

{Zβ,k := β ⊗ Yk ⊗ vi0,Wβ,k := β ⊗ C1Yk ⊗ vi1 |
β ∈ {1, T3, T2T3, T1T2T3}, k ∈ {1, 2, 3, 4}}

as a basis of M0 and{
Z ′β,k := (X4 +X−1

4 − q(i))Zβ,k,
W ′β,k := (X4 +X−1

4 − q(i))Wβ,k

∣∣∣∣ β ∈ {T3, T2T3, T1T2T3}, k ∈ {1, 2, 3, 4}
}

as a basis of N0. More explicitly, we have

Z ′T3,1 = (q(j)− q(i))T3 ⊗ Y1 ⊗ vi0
+ ξ((a− b−(j))1⊗ Y1 ⊗ vi0 + (a− b+(j))1⊗ C1Y2 ⊗ vi1),
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Z ′T3,2 = (q(j)− q(i))T3 ⊗ Y2 ⊗ vi0
+ ξ((a− b+(j))1⊗ Y2 ⊗ vi0 + (b−(j)− a)1⊗ C1Y1 ⊗ vi1),

Z ′T3,3 = (q(j)− q(i))T3 ⊗ Y3 ⊗ vi0 + ξ((a− b−(j))1⊗ Y3 ⊗ vi0
+
√
−1(b+(j)− a)1⊗ C1Y4 ⊗ vi1 − ξ(1 +

√
−1)(b+(j)− a)1⊗ C1Y2 ⊗ vi1),

Z ′T3,4 = (q(j)− q(i))T3 ⊗ Y4 ⊗ vi0 + ξ((a− b+(j))1⊗ Y4 ⊗ vi0
+
√
−1(b−(j)− a)1⊗ C1Y3 ⊗ vi1 + ξ(1−

√
−1)(b−(j)− a)1⊗ C1Y1 ⊗ vi1),

W ′T3,1 = (q(j)− q(i))T3 ⊗ C1Y1 ⊗ vi1
+ ξ((a− b−(j))1⊗ C1Y1 ⊗ vi1 + (a− b+(j))1⊗ Y2 ⊗ vi0),

W ′T3,2 = (q(j)− q(i))T3 ⊗ C1Y2 ⊗ vi1
+ ξ((a− b+(j))1⊗ C1Y2 ⊗ vi1 + (b−(j)− a)1⊗ Y1 ⊗ vi0),

W ′T3,3 = (q(j)− q(i))T3 ⊗ C1Y3 ⊗ vi1 + ξ((a− b−(j))1⊗ C1Y3 ⊗ vi1
+
√
−1(b+(j)− a)1⊗ Y4 ⊗ vi,0 − ξ(1 +

√
−1)(b+(j)− a)1⊗ Y2 ⊗ vi,0),

W ′T3,4 = (q(j)− q(i))T3 ⊗ C1Y4 ⊗ vi1 + ξ((a− b+(j))1⊗ C1Y4 ⊗ vi1
+
√
−1(b−(j)− a)1⊗ Y3 ⊗ vi0 + ξ(1−

√
−1)(b−(j)− a)1⊗ Y1 ⊗ vi0),

Z ′T2T3,k = T2Z
′
T3,k = (q(j)− q(i))T2T3 ⊗ Yk ⊗ vi0 + ∆k (1 ≤ k ≤ 4),

W ′T2T3,k = T2W
′
T3,k = (q(j)− q(i))T2T3 ⊗ C1Yk ⊗ vi1 + ∆k+4 (1 ≤ k ≤ 4).

Here each ∆m for 1 ≤ m ≤ 8 is a suitable element in span{1 ⊗ Cd1Yk ⊗ vie | k ∈
{1, 2, 3, 4}, d ∈ {0, 1}, e ∈ Z/2Z} (⊆ M). We write ∆3 =

∑4
k=1 Pk1 ⊗ Yk ⊗ vi0 +∑4

k=1Qk1 ⊗ C1Yk ⊗ vi1 with suitable coefficients. We define Ωm, ΩZ,k and ΩW,k
to be the coefficients of 1 ⊗ Y1 ⊗ vi

0
in ∆m, Z ′T3,k

and W ′T3,k
respectively. Now

T3Z
′
T2T3,3

is expanded as follows:

ξ(b+(j)− a)(T2T3 ⊗ Y3 ⊗ vi0 + T2T3 ⊗ Y4 ⊗ vi0)

+
ξ2(b+(j)−a)(a−b−(j))

q(j)− q(i)
((1−

√
−1)T2T3 ⊗ Y1 ⊗ vi0 +(1+

√
−1)T2T3 ⊗ Y2 ⊗ vi0)

+
4∑
k=1

PkT3 ⊗ Yk ⊗ vi0 +
4∑
k=1

QkT3 ⊗ C1Yk ⊗ vi1.

Thus, if T3Z
′
T2T3,3

∈ N0, then we must have

T3Z
′
T2T3,3 =

ξ(b+(j)− a)
q(j)− q(i)

(Z ′T2T3,3 + Z ′T2T3,4) +
4∑
k=1

PkZ
′
T3,k

+QkW
′
T3,k

q(j)− q(i)

+
ξ2(b+(j)− a)(a− b−(j))

(q(j)− q(i))2
((1−

√
−1)Z ′T2T3,1 + (1 +

√
−1)Z ′T2T3,2).
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In particular, the coefficient of 1⊗ α1 ⊗ vi,0 on the right hand side must be 0, in
other words

S :=
ξ(b+(j)− a)
q(j)− q(i)

(Ω3 + Ω4) +
4∑
k=1

PkΩZ,k +QkΩW,k
q(j)− q(i)

+
ξ2(b+(j)− a)(a− b−(j))

(q(j)− q(i))2
((1−

√
−1)Ω1 + (1 +

√
−1)Ω2) = 0.

Note that ΩZ,2 = ΩZ,3 = ΩZ,4 = ΩW,1 = ΩW,3 = 0 and the necessary data are
calculated as follows:

Ω1 =
ξ2

q(j)− q(i)
(a− b−(j))(b+(j)− a),

Ω2 =
ξ2
√
−1

q(j)− q(i)
(a− b+(j))(a− b−(j)),

Ω3 =
ξ3(1−

√
−1)

(q(j)− q(i))2
(a− b−(j))2(b+(j)− a),

Ω4 =
ξ3(1−

√
−1)

(q(j)− q(i))2
(b+(j)− a)2(a− b−(j)),

ΩZ,1 = ξ(a− b−(j)), ΩW,2 = ξ(b−(j)− a), ΩW,4 = ξ2(1−
√
−1)(b−(j)− a),

P1 = Ω3 =
ξ3(1−

√
−1)

(q(j)− q(i))2
(a− b−(j))2(b+(j)− a),

Q4 =
−
√
−1ξ2

q(j)− q(i)
(b+(j)− a)(a− b−(j)),

Q2 =
ξ3(1 +

√
−1)
√
−1

(q(j)− q(i))2
(b+(j)− a)2(a− b−(j))

+
ξ3(1 +

√
−1)

q(j)− q(i)
(b+(j)− a)(a− b−(j)).

Using them, we have

S =
ξ4(1−

√
−1)

(q(j)− q(i))3
(a− b−(j))(b+(j)− a)

· (4(a− b−(j))(b+(j)− a) + (b+(j)− a)2 + (a− b−(j))2).

Note that (a− b−(j))(b+(j)− a) = aq(j)− 2 6= 0 since q(j) 6= ±2. Thus, we have

4(a− b−(j))(b+(j)− a) + (b+(j)− a)2 + (a− b−(j))2 = (q(j) + 4a)(q(j)− 2a) = 0.

Again, by q(j) 6= ±2, we have q(j) + 4a = q(j) + 2q(i) = 0 if T3Z
′
T2T3,3

∈ N0.
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Corollary 5.11. Assume q is a primitive 4l-th root of unity for l ≥ 3 and i, j ∈ Z
satisfy

|i− j| = 1, q(j) 6= q(i), (typeL(i), typeL(j)) = (Q,M).

Then:

(i) L(iiji) ∼= L(iiij) ∼= IndH4
H3,1

L(iij)⊗ L(i).

(ii) chL(iiji) = chL(iiij) = 6[L(i)~3 ~ L(j)] + 2[L(i)~2 ~ L(j)~ L(i)].

(iii) chL(jiii) = 6[L(j)~ L(i)~3] + 2[L(i)~ L(j)~ L(i)~2].

(iv) chL(ijii) = 2[L(i)~ L(j)~ L(i)~2] + 2[L(i)~2 ~ L(j)~ L(i)].

Proof. We only need to consider the cases (i, j) = (0, 1), (l−1, l−2). In each case,
we see that q(j)+2q(i) = 0 implies q6 = 1. Thus, we have L(iiji) ∼= IndH4

H3,1
L(iij)⊗

L(i) by Lemma 5.10. By the same reasoning as in Corollary 5.7, we have L(iiij) ∼=
L(iiji). Note that L(jiii) 6∼= L(ijii) since L(ji) 6∼= L(ij) by Corollary 5.5. Since
εi(L(iiij)σ) = 3, we see that L(jiii) ∼= L(iiij)σ. Now it is easily seen that L(iiji) ∼=
IndH4
H3,1

L(iij)~ L(i).

§5.5. The case when q is a primitive 8-th root of unity

Lemma 5.12. Let q be a primitive 8-th root of unity. There is a basis B =
{w1, w2} of L(01) such that w1 is even and w2 is odd and the matrix representa-
tions with respect to B are as follows:

X±1
1 :

(
1 0
0 1

)
, X±1

2 :

(
−1 0
0 −1

)
, C1 :

(
0 1
1 0

)
, C2 :

(
0 −q2

q2 0

)
, T1 :

(
q 0
0 q3

)
.

Proof. We can check by direct calculation that these matrices satisfy the defin-
ing relations of H2. It is clearly irreducible and note that the whole space is a
simultaneous (2,−2) = (q(0), q(1))-eigenspace of (X1 +X−1

1 , X2 +X−1
2 ).

Corollary 5.13. We have chL(01) = [L(0)~L(1)] and chL(10) = [L(1)~L(0)].

Lemma 5.14. Let q be a primitive 8-th root of unity. We can take a basis B =
{wi | 1 ≤ i ≤ 8} of L(001) such that wi is even and wi+4 is odd for 1 ≤ i ≤ 4 and
the matrix representations with respect to B are as follows:

Xi :

(
MXi O

O MXi

)
, X±1

3 : −E8, X−1
1 : 2E8 −X1, X−1

2 : 2E8 −X2,

Cj :

(
O MCj

−MCj O

)
, T1 :

1
1 + q2

(
MT1 O

O MT1

)
,
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T2 :


MT2 O O O

O MT2 O O

O O MT2 O

O O O MT2

 ,

for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3 where

MX1 =


1 0 −2 2q
0 1 2q −2q2

2 2q−1 1 0
2q−1 −2q2 0 1

 , MX2 =


−1 −2q−1 0 0
2q 3 0 0
0 0 −1 2q
0 0 −2q−1 3

 ,

MC1 =


q2 0 2q2 2q−1

0 q2 2q−1 −2
2q2 2q −q2 0
2q 2 0 −q2

 , MC2 =


0 0 q2 0
0 0 2q−1 −1
q2 0 0 0
2q 1 0 0

 ,

MC3 =


0 0 −1 0
0 0 0 q2

1 0 0 0
0 q2 0 0

 ,

MT1 =


q3 q2 −q3 −1
0 q3 0 q

q3 q2 q3 1
0 q 0 q3

 , MT2 =

(
q3 + q 1

1 0

)
.

Proof. We can check by direct calculation that these matrices satisfy the defining
relations ofH3 and the whole space is a simultaneous (2, 2,−2) = (q(0), q(0), q(1))-
eigenspace of (X1 + X−1

1 , X2 + X−1
2 , X3 + X−1

3 ). Since dimL(02) ~ L(1) = 8, by
Theorem 3.9 this supermodule is irreducible.

Corollary 5.15. Let q be a primitive 8-th root of unity. Then

chL(001) = 2[L(0)~2 ~ L(1)],

chL(010) = [L(0)~ L(1)~ L(0)],

chL(100) = 2[L(1)~ L(0)~2].

Proof. Since chL(001) = 2[L(0)~2 ~ L(1)], we have L(100) ∼= L(001)σ. Consider
M = IndH3

H2,1
L(01) ~ L(0). By Corollary 5.13 and Lemma 5.1, we have chM =

[L(0) ~ L(1) ~ L(0)] + 2[L(0)~2 ~ L(1)]. Applying Theorem 3.11(i), we see that
L(010) ∼= CosocM with chL(010) = [L(0)~ L(1)~ L(0)].

Corollary 5.16. Let q be a primitive 8-th root of unity. Then M :=
IndH4
H3,1

L(001)~ L(0) is an irreducible H4-supermodule.
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Proof. Take a basis {wi | 1 ≤ i ≤ 8} as in Lemma 5.14. Consider the following
linear transformations with respect to this basis:

X±1
4 : E8, C4 :

(
O −E4

−E4 O

)
.

We can check that the matrix representations of {X±1
i , Ci, Tj | 1 ≤ i ≤ 4, 1 ≤ j

≤ 3} satisfy the defining relations of H3,1. Thus, they are also matrix representa-
tions of L(001)~ L(0).

To prove that M is irreducible, it is enough to show that theH3,1-supermodule
N := (X4 +X−1

4 −q(0))M is not T3-invariant as in the proof of Lemma 5.10. Thus,
it is enough to show that T3Z 6= (Z −W )/2 where

Z := (X4 +X−1
4 − 2)T3 ⊗ w1 = −4T3 ⊗ w1 + 2ξ(w1 + w3),

W := (X4 +X−1
4 − 2)T3 ⊗ w3 = −4T3 ⊗ w3 + 2ξ(w3 − w1),

T3Z = −2ξ(T3 ⊗ w1 − T3 ⊗ w3)− 4 · 1⊗ w1.

This follows from 2ξ 6= −4.

Corollary 5.17. Let q be a primitive 8-th root of unity. Then:

(i) L(0010) ∼= L(0001) ∼= IndH4
H3,1

L(001)~ L(0).

(ii) chL(0010) = chL(0001) = 6[L(0)~3 ~ L(1)] + 2[L(0)~2 ~ L(1)~ L(0)].

(iii) chL(1000) = 6[L(1)~ L(0)~3] + 2[L(0)~ L(1)~ L(0)~2].

(iv) chL(0100) = 2[L(0)~ L(1)~ L(0)~2] + 2[L(0)~2 ~ L(1)~ L(0)].

Proof. Same as the proof of Corollary 5.11.

§6. Hecke–Clifford superalgebras and crystals of type D
(2)
l

Recall that F is an algebraically closed field of characteristic different from 2. From
now on, we assume that q is a primitive 4l-th root of unity for l ≥ 2 and choose
{0, 1, . . . , l − 1} as Iq. Note that q(0) = 2 and q(l − 1) = −2.

§6.1. Lie theory of type D
(2)
l

Consider the Dynkin diagram and the affine Cartan matrix indexed by Iq of type
D

(2)
l as follows.9

9According to Kac’s notation [Kac, Table Aff 1-3], D
(2)
2 should be regarded as A

(1)
1 .
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In the rest of this section, let g be the corresponding Kac–Moody Lie algebra

and apply definitions in §3.7 for A = D
(2)
l .

§6.2. Representations of low rank affine Hecke–Clifford superalgebras

The purpose of this subsection is to show that [BK, Lemmas 5.19 and 5.20] still
hold in our setting, i.e., when q is a primitive 4l-th root of unity for l ≥ 2. This
fact is responsible for the appearance of the Lie theory of type D(2)

l .

Lemma 6.1. Let i, j ∈ Iq with |i − j| = 1. Then, for all a, b ≥ 0 with a + b <

−〈hi, αj〉, there is a non-split short exact sequence

(13) 0→ L(ia+1jib)→ Ind
Ha+b+2
Ha+b+1,1

L(iajib)~ L(i)→ L(iajib+1)→ 0.

Moreover, for every a, b ≥ 0 with a+ b ≤ −〈hi, αj〉, we have

(14) chL(iajib) = a!b![L(i)~a ~ L(j)~ L(i)~b].

Proof. (14) is established in Corollaries 5.5, 5.9, 5.13 and 5.15. The existence of
a non-split short exact sequence (13) follows from Lemma 5.1, Theorem 3.11(i),
Definition 3.14 and the injectivity of the formal character map ch : K0(RepHn) ↪→
K0(RepAn) [BK, Theorem 5.12].

Lemma 6.2. Let i, j ∈ Iq with |i− j| = 1 and set n = 1−〈hi, αj〉. Then L(inj) ∼=
L(in−1ji). Moreover, for every a, b ≥ 0 with a+ b = −〈hi, αj〉, we have

L(iajib+1) ∼= Ind
Hn+1
Hn,1 L(iajib)~ L(i) ∼= Ind

Hn+1
H1,n

L(i)~ L(iajib)

with character

a!(b+ 1)![L(i)~a ~ L(j)~ L(i)~(b+1)] + (a+ 1)!b![L(i)~(a+1) ~ L(j)~ L(i)~b].

Proof. Character formulas are established in Corollaries 5.7, 5.11 and 5.16. The
rest of the reasoning is the same as the proof of Lemma 6.1.

Corollary 6.3. The operators {ei : K(∞) → K(∞) | i ∈ Iq} satisfy the Serre
relations, i.e.,

eiej = ejei if |i− j| > 1,

e2
i ej + eje

2
i = 2eiejei if |i− j| = 1 and i 6= 0 and i 6= l − 1,

e3
i ej + 3eieje2

i = 3e2
i ejei + eje

3
i otherwise.

(15)
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Proof. By Lemma 3.24 and coassociativity of ∆, it is enough to check the same
relations on K0(RepH2),K0(RepH3) and K0(RepH4) respectively. This is achieved
using the character formulas in Lemmas 6.1 and 6.2.

The same argument using Lemmas 6.1 and 6.2 establishes the following [BK′,
Lemma 5.23].

Lemma 6.4. Let M ∈ Irr(RepHn) and i, j ∈ Iq with i 6= j. Then the following
hold where k = −〈hi, αj〉 and ε = εi(M):

(i) There exists a unique pair (a, b) of non-negative integers with a+ b = k such
that for every m ≥ 0 we have εi(f̃mi f̃jM) = m+ ε− a.

(ii) [Cosoc Ind f̃m−ki M ~ L(iajib) : f̃mi f̃jM ] > 0 for m ≥ k.

(iii) [Cosoc Ind ẽk−mi M ~ L(iajib) : f̃mi f̃jM ] > 0 for 0 ≤ m < k ≤ m+ ε.

Note that Lemma 6.4(ii)&(iii) is equivalent to saying that

[Cosoc Ind(f̃ε+m−ki ẽεiM)~ L(iajib) : f̃mi f̃jM ] > 0

for every m ≥ 0 with k ≤ m+ ε.
Keep the setting of Lemma 6.4. Since there are surjections

Ind ẽεiM ~ L(iε+m−k)� f̃ε+m−ki ẽεiM, IndL(ia)~ L(jib)� L(iajib)

by Theorem 3.11(i) and Lemma 6.1 respectively, we have

[Cosoc Ind(ẽεiM ~ L(iε+m−b)~ L(jib)) : f̃mi f̃jM ] > 0.

By Frobenius reciprocity there is a non-zero injective homomorphism

ẽεiM ~ L(iε+m−b)~ L(jib) ↪→ ResHn−ε,ε+m−b,b+1 f̃
m
i f̃jM.

Thus, we also have a non-zero injective homomorphism

ẽεiM ~ L(iε+m−b) ↪→ ResHn−ε,ε+m−b f̃
m
i f̃jM.

Again by Frobenius reciprocity, for every m ≥ 0 with k ≤ m+ ε we have

[ResHn+m−b f̃
m
i f̃jM : f̃m−bi M ] > 0.(16)

§6.3. Cyclotomic Hecke–Clifford superalgebra

Definition 6.5. For each positive integral weight λ ∈ P+, we define a polynomial

fλ = (X1 − 1)λ(h0)(X1 + 1)λ(hl−1)
l−2∏
i=1

(X2
1 − q(i)X1 + 1)λ(hi).
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Note that since the canonical central element is c = h0 + hl−1 +
∑l−2
i=1 2hi,

the degree of fλ is λ(c). It is clear that the set of roots of fλ is a subset of
{b±(i) | i ∈ Iq} and we can easily check that fλ satisfies the assumption in
Definition 4.1. From now on, we apply all the constructions in §4 for R = fλ and
abbreviate K(R), eRi , etc. to K(λ), eλi , etc. respectively.

As a corollary of Lemma 3.21, we have the following characterization of
Im(inflλ : B(λ) ↪→ B(∞)) [BK, Corollary 6.13].

Corollary 6.6. Let λ ∈ P+ and M ∈ B(∞). We have prλM = M if and only if
ε∗i (M) ≤ λ(hi) for all i ∈ Iq.

Lemma 6.7. Let i, j ∈ Iq with i 6= j and M ∈ Irr(Hλn-smod) such that ϕλj (M) > 0.
Then ϕλi (f̃λj M)− ελi (f̃λj M) ≤ ϕλi (M)− ελi (M)− aij.

Proof. Put ε = ελi (M) = εi(inflλM). Apply Lemma 6.4 to inflλM and take a pair
(a, b) as in Lemma 6.4(i). Since ελi (f̃λj M) = εi(f̃j inflλM) = ε − a, it is enough
to show that ϕλi (f̃λj M) ≤ ϕλi (M) + b. Note that m > ϕλi (M) + b implies that
−aij ≤ m+ ε since m+ ε+ aij > ϕλi (M) + (ε− a). Thus, we have

ε∗i (f̃
m
i f̃j inflλM) ≥ ε∗i (f̃m−bi inflλM) > λ(hi).

Here the first inequality follows from (16) and the second inequality follows from
Corollary 6.6 and the σ-version of Lemma 3.22(ii). Again by Corollary 6.6, we have
prλ f̃mi f̃j inflλM = 0 for each m > ϕλi (M) + b, i.e., ϕλi (f̃λj M) ≤ ϕλi (M) + b.

Theorem 6.8. For any M ∈ Irr(Hλn-smod) and i ∈ Iq, we have ϕλi (M)−ελi (M) =
〈hi, λ+ wt(inflλM)〉.

Proof. By Corollary 6.6, we have ϕλi (1λ) = λ(hi). Combining this with the obvious
ελi (1λ) = 0 and Lemma 6.7, we inductively have ϕλi (M) − ελi (M) ≤ 〈hi, λ +
wt(inflλM)〉. Thus, it is enough to show that

(ϕλ0 (M)− ελ0 (M)) + (ϕλl−1(M)− ελl−1(M)) +
l−2∑
i=1

2(ϕλi (M)− ελi (M)) = λ(hi),

which is the same thing as Corollary 4.12.

Corollary 6.9. The 6-tuple (B(λ),wtλ, {ελi }i∈Iq , {ϕλi }i∈Iq , {ẽλi }i∈Iq , {f̃λi }i∈Iq ) is
a g-crystal by defining wtλ(M) = λ+ wt(inflλM) for M ∈ B(λ).

§6.4. Lie-theoretic descriptions of B(∞) and B(λ)

Theorem 6.10. For each i ∈ Iq, the map

Ψi : B(∞)→ B(∞)⊗Bi, [M ] 7→ [(ẽ∗i )
ε∗i (M)M ]⊗ bi(−ε∗i (M)),

is a crystal embedding.
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Proof. We prove Ψi([f̃jM ]) = f̃jΨi([M ]) for any i, j ∈ Iq and [M ] ∈ B(∞). In
case i 6= j, this follows from the σ-versions of Lemma 3.22(ii)&(iii).

Let us assume i = j and put a = ε∗i (M). By Definition 2.3,

f̃iΨi([M ]) =

{
[f̃i(ẽ∗i )

aM ]⊗ bi(−a) if εi((ẽ∗i )
aM) + a+ 〈hi,wt(M)〉 > 0,

[(ẽ∗i )
aM ]⊗ bi(−a− 1) if εi((ẽ∗i )

aM) + a+ 〈hi,wt(M)〉 ≤ 0.

Comparing with the σ-versions of Lemma 3.22(i)&(iii)&(iv), it is enough to show

ε∗i (f̃iM) =

{
a if εi((ẽ∗i )

aM) + a+ 〈hi,wt(M)〉 > 0,

a+ 1 if εi((ẽ∗i )
aM) + a+ 〈hi,wt(M)〉 ≤ 0.

Consider the case εi((ẽ∗i )
aM) + a + 〈hi,wt(M)〉 > 0 and take λ1 ∈ P+ such

that λ1(hj) is large enough for any j 6= i and λ1(hi) = a. Note that M can be
regarded as an element of B(λ1) by Corollary 6.6. By Theorem 6.8, we have

ϕλ1
i (prλ1 M) = ελ1

i (prλ1 M) + 〈hi, λ1 + wt(M)〉 = εi(M) + a+ 〈hi,wt(M)〉
≥ εi((ẽ∗i )aM) + a+ 〈hi,wt(M)〉 ≥ 1.

Thus, ε∗i (f̃iM) ≤ λ1(hi) = a by Corollary 6.6. This implies ε∗i (f̃iM) = a by the
σ-version of Lemma 3.22(i).

Finally, consider the case εi((ẽ∗i )
aM) + a+ 〈hi,wt(M)〉 ≤ 0, i.e.,

ε∗i ((ẽi)
aMσ) + a+ 〈hi,wt(Mσ)〉 = ε∗i ((ẽi)

aMσ)− a+ 〈hi,wt((ẽi)aMσ)〉 ≤ 0.

Take λ2 ∈ P+ such that λ2(hj) is large enough for any j 6= i and λ2(hi) =
r+ε∗i ((ẽi)

aMσ) for r = a−ε∗i ((ẽi)aMσ)−〈hi,wt((ẽi)aMσ)〉 (≥ 0). Again (ẽi)aMσ

can be regarded as an element of B(λ2) and we have

ϕλ2
i (prλ2(ẽi)aMσ) = ελ2

i (prλ2(ẽi)aMσ) + 〈hi, λ2 + wt((ẽi)aMσ)〉
= 〈hi, λ2 + wt((ẽi)aMσ)〉 = a

by Theorem 6.8. Combined with Corollary 6.6, this implies{
εi(M) = ε∗i (M

σ) = ε∗i (f̃
a
i (ẽi)aMσ) ≤ λ2(hi),

εi(f̃∗iM) = ε∗i (f̃iM
σ) = ε∗i (f̃

a+1
i (ẽi)aMσ) ≥ λ2(hi) + 1.

Thus, by Lemma 3.22(i), we have

εi(M) = λ2(hi) = a− 〈hi,wt((ẽi)aMσ)〉 = −a− 〈hi,wt(M)〉.

Take λ3 ∈ P+ such that λ3(hj) is large enough for any j 6= i and λ3(hi) = a.
Again M can be regarded as an element of B(λ3) and we have

ϕλ3
i (prλ3 M) = ελ3

i (prλ3 M) + 〈hi, λ3 + wt(M)〉 = εi(M) + a+ 〈hi,wt(M)〉 = 0
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by Theorem 6.8. Thus, ε∗i (f̃iM) > λ3(hi) = a by Corollary 6.6. This implies
ε∗i (f̃iM) = a+ 1 by the σ-version of Lemma 3.22(i).

Corollary 6.11. The g-crystal B(∞) is isomorphic to B(∞).

Proof. Apply Proposition 2.7 to B = B(∞) and b0 = [1].

Corollary 6.12. For each λ ∈ P+, the g-crystal B(λ) is isomorphic to B(λ).

Proof. Apply Proposition 2.8 to B = B(λ), bλ = [1λ] and the map

Φ : B(∞)⊗ Tλ → B(λ), [M ]⊗ tλ 7→ [prλM ].

The latter is an f -strict crystal morphism since f̃λi = prλ ◦f̃i ◦ inflλ by Definition
4.3 and f̃iM 6= 0 for any M ∈ B(∞) by Definition 3.12.

§6.5. Lie-theoretic descriptions of K(∞)Q and K(λ)Q

Theorem 6.13. For each λ ∈ P+, we have the following.

(i) K(λ)Q has a left UQ(= 〈ei, fi, hi | (2)〉i∈Iq )-module structure by

ei[M ] = [eλiM ], fi[M ] = [fλi M ], hi[M ] = 〈hi,wtλ(M)〉[M ],

and it is isomorphic to the integrable highest weight UQ-module of highest
weight λ with highest weight vector [1λ].

(ii) The symmetric non-degenerate bilinear form 〈 , 〉λ on K(λ)Q from §4.6 coin-
cides with the usual Shapovalov form satisfying 〈[1λ], [1λ]〉λ = 1 under the
above identification.

(iii)
⊕

n≥0 K0(ProjHλn) ∼= K(λ)∗ ⊆ K(λ) are two integral lattices of K(λ)Q con-
taining [1λ] with K(λ)∗ = U−Z [1λ] and K(λ) being its dual under the Shapo-
valov form.

Proof. By §4.4 and Corollary 6.3, the operators {eλi : K(λ) → K(λ) | i ∈ Iq}
satisfy the Serre relations (15). This implies that the operators {fλi : K(λ)∗ →
K(λ)∗ | i ∈ Iq} satisfy the Serre relations by Lemma 4.13. Thus, both operators
satisfy the Serre relations on K(λ)Q by Theorem 4.16. By Corollary 4.11 and
Theorem 6.8, we have [eλi , f

λ
j ] = δi,jhi as operators on K(λ)Q. Since other relations

of (2) are immediately deduced from the definition of the action of hi, K(λ)Q has
a left UQ-module structure by the above actions. By Corollary 4.10, eλi and fλi are
both nilpotent operators on K(λ)Q. Since the action of {hi | i ∈ Iq} is diagonalized
with finite-dimensional weight spaces by the definition, K(λ)Q is an integrable
UQ-module. By Theorem 4.18, K(λ)Q = U−Q [1λ] is a highest weight UQ-module of
highest weight λ with highest weight vector [1λ]. Now (ii) is a direct consequence
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of Lemma 4.13 and Corollary 4.19, and (iii) is a restatement of Theorem 4.16 and
Corollary 4.18.

Theorem 6.14. There exists a graded Z-Hopf algebra isomorphism U+
Z

∼−→
K(∞)∗ which takes e(r)

i to δL(ir) for each i ∈ Iq and r ≥ 0.

Proof. By §3.9 and Corollary 6.3, there exists a graded Z-algebra map π : U+
Z →

K(∞)∗ which takes e(r)
i to δL(ir) for each i ∈ Iq and r ≥ 0. It is easily checked

that it is a graded Z-coalgebra map since δL(i) is mapped to δL(i)⊗1+1⊗δL(i) via
the comultiplication of K(∞)∗. Thus, π is a graded Z-Hopf algebra map by [Swe,
Lemma 4.0.4].

It is enough to show that π is an isomorphism of graded Z-modules. By Corol-
lary 6.6, we have a natural isomorphism lim−→λ∈P+ K0(Hλn-smod) ∼−→ K0(RepHn).
Combined with Theorem 4.18, this gives us

HomZ(K0(RepHn),Z) ∼= lim←−
λ∈P+

HomZ(K0(Hλn-smod),Z)

∼= lim←−
λ∈P+

K0(ProjHλn) = lim←−
λ∈P+

(U−Z )n[1λ] ∼←− (U−Z )n,

where (U−Z )n is the set of homogeneous elements of U−Z of degree n via the principal
grading, i.e., deg f

(r)
i = r for all i ∈ Iq and r ≥ 0. The last isomorphism follows

easily from the fact (U−Z )n[1λ] ⊆ K(λ)Q ∼= U−Q /
∑
i∈I U

−
Q f

λ(hi)+1
i as shown in

Theorem 6.13. By tracing this isomorphism, we see that the graded Z-module
isomorphism K(∞)∗ ∼= U−Z is given by the composite

U−Z
∼−→ U+

Z
π→ K(∞)∗

where U−Z
∼→ U+

Z is the algebra anti-isomorphism given by fi 7→ ei for all i ∈ Iq.
See also the proof of [BK, Theorem 7.17] in [BK′, §3].
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