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Abstract

Using the well-known recognition and structural theorem(s) for root-graded Lie algebras
and their universal coverings, we give a finite presentation for the universal covering
algebra of a centerless Lie torus of type X 6= A, C, BC. We follow a unified approach for
the types under consideration.
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§1. Introduction

The notion of a Lie torus arises in the study of extended affine Lie algebras which
are natural generalizations of finite-dimensional simple Lie algebras and affine
Lie algebras. Extended affine Lie algebras and Lie tori have been under intensive
investigation in recent years.

It is well understood that the study of an extended affine Lie algebra, in any
aspect, somehow relates to the study of its core modulo the center, called the
centerless core. Here is the place where the notion of Lie tori arises; the centerless
core of an extended affine Lie algebra is a centerless Lie torus and conversely any
centerless Lie torus is the centerless core of an extended affine Lie algebra ([Yos]).
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Lie tori as well as extended affine Lie algebras are defined axiomatically ([Yos],
[AABGP]), and their structures are well studied. In particular, it is known that a
Lie torus is a root graded Lie algebra, a notion which turns out to be essential in
the structure theory of extended affine Lie algebras and Lie tori.

The structure of root graded Lie algebras of reduced types is determined up
to central isogeny in [BM] and [BZ]. Namely a root graded Lie algebra is cen-
trally isogenous to a Lie algebra having a prescribed structure coming from some
known algebra constructions, including the so called generalized Tits construction
(see Section 2). We refer to these results as Recognition Theorem(s) (see Theo-
rem 2.1). The Recognition Theorem together with several theorems from [ABG],
[BZ], [AG] and [BGK] enables us to decompose the universal covering algebra A

of the centerless core of an extended affine Lie algebra of type X = B` (` ≥ 3),
D` (` ≥ 4), E6, E7, E8, F4 and G2 as

(∗) A = (G ⊗ A)⊕ (V ⊗Am)⊕D

where G is a finite-dimensional simple Lie algebra of type X, V is an irreducible
G-module whose highest weight is the highest short root of G, A is the algebra of
Laurent polynomials in several variables, Am is the direct sum of m copies of A,
and D is a known subalgebra of A related to the inner derivations of the so called
coordinate algebra of A. We do not consider type B2 in this work as the structure
theory of a root graded Lie algebra of type B2 = C2 in [BZ] and [AG] is studied
within C` (` ≥ 2)-graded algebras. A similar presentation for type C (and also
type A) will be considered in a separate work.

In this work, we use decomposition (∗) to give a nullity-free finite presenta-
tion for the universal covering of the centerless core of a Lie torus of type X 6=
A`, C`, BC`. Since the ingredients appearing in (∗) and their algebra structures are
completely known (see Theorems 2.3 and 2.2), we are able to select a (finite) set
of generators for A and deduce a certain (finite) set of relations among them. This
then motivates the generators and defining relations of our presented Lie algebra.

There have been several attempts to present a Lie torus (up to center) by a
(finite) set of generators and relations. Historically, we may name the works of [Ka]
and [MRY] for toroidal Lie algebras; [SY] and [Yam] for elliptic Lie algebras (2-
extended affine Lie algebras); and [You] for Lie tori of type B`, (` ≥ 3). It is worth
mentioning that the universal covering of the centerless core of a finite-dimensional
simple Lie algebra or an affine Kac–Moody Lie algebra is just itself or its derived
algebra, respectively. Therefore, for the finite or affine case the well-known Serre-
type presentation is in fact given for the universal covering of the centerless core.
This might justify why we are considering the universal covering instead of a Lie
torus itself.
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The paper is arranged as follows. In Section 2, we record some necessary back-
ground and results needed for describing the universal covering of the centerless
core of a Lie torus in the form (∗). In brief, we establish some minor results re-
garding finite root systems and irreducible modules of finite-dimensional simple
Lie algebras (Lemmas 2.1–2.2). The generalized Tits construction and basic prop-
erties of root graded Lie algebras are reviewed. The Recognition Theorem(s) from
[BM] and [BZ] regarding the structure of root graded Lie algebras are recalled,
and some results from [BGK], [AG] and [ABG] regarding the universal covering
algebras of root graded Lie algebras and Lie tori are restated. Altogether, these
enable us to deduce the decomposition (∗). We end the section by obtaining from
(∗) a finite set of generators and a certain set of relations for A.

In Section 3, we introduce the generators and defining relations of our pre-
sented Lie algebra L̃, associated to a Lie torus of type X 6= A`, C`, BC`, and deduce
certain immediate consequences, which will be essential for the proof of our main
theorem (Theorem 4.1). For the convenience of the reader, we have shifted the
proofs of some of these results containing complicated technicalities to Section 5.
Section 4 is devoted to the proof of our Main Theorem (Theorem 4.1): the univer-
sal covering algebra of the centerless Lie torus under consideration is isomorphic
to its corresponding presented Lie algebra L̃. The proof is in several steps. In step
1, we prove that L̃ is root graded and we obtain some information regarding its
center. In the remaining steps we complete the proof for simply laced types, F4

and G2, respectively. For type B` (` ≥ 3), we refer the reader to [You], though
the proof for this type can also be deduced from our setting. This work continues
the line of research started in [You] for type B` (` ≥ 3); here we have enlarged
our setting in order to have a unified approach for the types under consideration.
Needless to say, in both works the defining generators and relations of the relevant
presented Lie algebras are inspired from the algebra structures of the ingredients
involved in the decomposition (∗).

For non-simply laced types, our presentation depends on certain crucial re-
lations (see (2.13)–(2.15)) among some structural data which are obtained using
several Mathematica programs. These data arise from the Lie algebra structure on
ingredients in (∗) (see (2.16)). For the convenience of the reader we have posted a
longer version of this paper at arXiv:math.QA/0906.0158; it contains an appendix
furnishing the detailed information about the data mentioned above.

§2. Terminology and prerequisites

Throughout this paper we suppose that R is an irreducible reduced finite root
system of type G2 or of rank greater than or equal 3 which is not of type A,C.
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By R×, we mean R\{0}. All vector spaces and tensor products are taken over the
field of complex numbers C. For an algebra A which is not a Lie algebra, by [a, b],
a, b ∈ A, we mean ab − ba. If α, β are two elements of a unital algebra A which
is associative, alternative or Jordan, we denote by Dα,β the inner derivation of A
based on α, β; we also use DA,A to denote the subspace spanC{Dα,β | α, β ∈ A}
of derivations of A [Sc].

For a positive integer ν, we denote by A[ν] the commutative associative algebra
of Laurent polynomials in ν variables t1, . . . , tν and we use Am[ν], for a positive
integer m, to denote the direct sum of m copies of A[ν]. Also by A0

[ν] we mean
the trivial vector space. For σ = (n1, . . . , nν) ∈ Zν we denote tn1

1 . . . tnνν by tσ.
We also make a convention that for elements x, x1, . . . , xm, y of a Lie algebra, by
[x1, . . . , xm, y] we always mean [x1, · · · [xm−1, [xm, y]] · · · ]. In this case if m = 0 we
interpret [x1, . . . , xm, y] as y; also by [xm, y] we mean [x, . . . , x, y] with x appearing
m times.

In a vector space, we define
∑m
i=1 · · · to be zero if m = 0. For simplicity of

notation we denote the set {1, . . . , k} be Jk, k a positive integer. For a Lie algebra
L, by Z(L) we mean the center of L, and by a centerless Lie algebra we mean a
Lie algebra with trivial center. We start the paper by recalling some (in general)
non-associative algebra constructions and some related theorems which are of use
throughout this work.

§2.1. General facts

Suppose that G is a finite-dimensional simple Lie algebra over C of type X 6= A,C

and of rank `, and R is the corresponding irreducible finite root system with a
root base ∆. Let R+, R+

sh [Rsh] and R+
lg [Rlg] be the set of positive roots, the set

of positive short roots [the set of short roots], and the set of positive long roots
[the set of long roots], respectively. If X is simply laced we assume by convention
that R+

lg = ∅. Also assume that n is the number of positive roots. We arrange the
set of positive roots as follows:

(2.1)

R+
lg∩∆︷ ︸︸ ︷

α1, . . . , αn` ,

R+
sh︷ ︸︸ ︷

αn`+1, . . . , α`, . . . , αns ,

R+
lg\∆︷ ︸︸ ︷

αns+1, . . . , αn .

Clearly if there is no long root (n` = 0), then n = ns. We may assume that αns is
the highest short root and αn is the highest root. For t ∈ Jn, we fix et ∈ Gαt and
ft ∈ G−αt such that (et, ht := [et, ft], ft) is an sl2-triple.

Using the finite-dimensional theory, one can prove the following lemma:

Lemma 2.1. (i) If Rlg 6= ∅, then Rsh ⊆ Rlg +Rsh.

(ii) For α ∈ R+
sh, there is β ∈ R+

sh such that α+ β ∈ R.
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Lemma 2.2. Let W be an irreducible finite-dimensional G-module.

(i) Suppose that the highest weight of W is λ ∈ R and take Π to be the set of
weights of W. Then for µ ∈ Π \ {0}, there are αi1 , . . . , αip ∈ R+ such that

Wµ = G−αip · · · G−αi1 · Wλ with αik 6= ±
(
λ−

k−1∑
r=1

αir

)
.

(ii) Suppose that the set of weights of W coincides with the set of short weights
and consider the weight space decomposition W = W0 ⊕

∑ns
i=n`+1 Cw±i in

which for n` + 1 ≤ i ≤ ns, w±i is a weight vector of weight ±αi. Then for
n` + 1 ≤ i ≤ ns,

ei · fi · wi = 2wi, ei · fi · fi · wi = 2fi · wi, Cei · w−i = Cfi · wi

and W0 is spanned by fi · wi, n` + 1 ≤ i ≤ `.

Proof. (i) We use a simple argument from the finite-dimensional theory.
(ii) We first note that if β ∈ Π \ {0}, then dim(Wβ) = 1, and if β ∈ Π and

α ∈ R are such that α + β ∈ Π, then Gα · Wβ = Wα+β . Now let U(N−) be the
universal enveloping algebra of N− :=

∑
α<0 Gα. Then if w is a highest vector, we

have U(N−) · w =W. Also for each β ∈ R+ we have

(2.2) G−β = [G−βs , . . . ,G−β1 ] for some βi ∈ ∆.

Combining these facts and using the module action yields the required expres-
sion for Wµ with µ ∈ R+. Note that the claim concerning αik ’s is automatically
satisfied.

Next let µ ∈ −R+. Then there is λ ∈ R+ such that either µ − λ ∈ R+ or
µ+ λ ∈ R+. Moreover if µ ∈ R+

sh, then λ can be chosen as an element of R+
sh such

that µ+ λ ∈ R. We have

Wµ =

{
G−(λ+µ) · W−µ if λ+ µ ∈ R+,

Gλ−µ · Gµ · Wµ−λ if λ− µ ∈ R+.

Now we replace Wµ or Wµ−λ by an expression obtained from the previous step
to get the required expression for Wµ. Note that from the way we found this
expression for Wµ, it becomes clear that the claim concerning αjk ’s holds.

2.1.1. Generalized Tits construction. Let A be a unital commutative asso-
ciative algebra and assume that X is a unital algebra over A. A normalized trace
on X is an A-linear map T : X → A satisfying, for x, x′, x′′ ∈ X,

T (1) = 1, T (xx′) = T (x′x), T ((xx′)x′′) = T (x(x′x′′)).
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If T is a normalized trace, the maps t and ∗ defined by

(2.3)
t : X ×X → A; (x, y) 7→ T (xy),

∗ : X ×X → X; (x, y) 7→ xy − t(x, y)1,

are called, respectively, the trace form and the ∗-operator with respect to T. We
use the same symbols T , t and ∗ to denote the normalized trace, the trace form and
the corresponding ∗-operator for different algebras. We also have X = A1 ⊕ X0,

where X0 := {x ∈ X | T (x) = 0}. Let Der0
A(X) be the Lie subalgebra of the

A-derivations of X which send X0 to X0. Let D be a Lie subalgebra of Der0
A(X)

and assume there is an A-bilinear transformation α : X0 × X0 → D which is
skew-symmetric.

Suppose now that A is another unital commutative associative algebra over C
and Y , Y0, D′ are similarly defined for A. Assume β : Y0×Y0 → D′ is an A-bilinear
transformation which is skew-symmetric. Suppose that

[d, α(x, x′)] = α(dx, x′) + α(x, dx′) and [d′, β(y, y′)] = β(d′y, y′) + β(y, d′y′)

for all x, x′ ∈ X0, y, y′ ∈ Y0, d ∈ D and d′ ∈ D′. Then the vector space

T (X/A, Y/A) := (D ⊗ A)⊕ (X0 ⊗ Y0)⊕ (A⊗D′)

is an algebra over C with the anticommutative multiplication given by

(2.4)

[d1 ⊗ b, a⊗ d′1] = 0, [d1 ⊗ b, d2 ⊗ b′] = [d1, d2]⊗ bb′,
[a⊗ d′1, a′ ⊗ d′2] = aa′ ⊗ [d′1, d

′
2],

[d1 ⊗ b, x⊗ y] = d1x⊗ by = −[x⊗ y, d1 ⊗ b],
[a⊗ d′1, x⊗ y] = ax⊗ d′1y = −[x⊗ y, a⊗ d′1],

[x⊗ y, x′ ⊗ y′] = α(x, x′)⊗ t(y, y′) + (x ∗ x′)⊗ (y ∗ y′) + t(x, x′)⊗ β(y, y′)

for d1, d2 ∈ D, b, b′ ∈ A, a, a′ ∈ A, d′1, d
′
2 ∈ D′, x, x′ ∈ X0 and y, y′ ∈ Y0.

This is called a generalized Tits construction. If X,Y are suitably chosen, then
T (X/A, Y/A) will be a Lie algebra [BZ, Proposition 3.9].

2.1.2. Root graded Lie algebras. The main purpose of this work is to give
a finite presentation for the universal covering algebra of a Lie torus. Lie tori
are centerless cores of extended affine Lie algebras [Yos]. In [AG] and [BGK], the
authors classify the Lie tori under consideration, using the so called recognition
theorems for root graded Lie algebras. We recall here these theorems and some
related topics which will be of use in the proof of our main theorem. In what follows
we denote the 8-dimensional octonion (Cayley) algebra by C. We consider the usual
normalized trace on C and denote by C0 its subspace of trace zero elements. The
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algebra of inner derivations of C is known to be a finite-dimensional simple Lie
algebra of type G2. Also we denote by J the exceptional simple Jordan algebra
whose inner derivations form a finite-dimensional simple algebra of type F4. In fact
if C3×3 is the algebra of 3× 3 matrices with entries from the octonion algebra C,
then J is its subspace of self-adjoint elements, under transpose-conjugate involution
x 7→ x̄t, with the product x·y := (xy+yx)/2. We also consider the usual normalized
trace on J and denote the subspace of trace zero elements of J by J0.

Definition 2.1. Suppose that G is a finite-dimensional simple Lie algebra over C
with a Cartan subalgebra H and root system R so that G has a root space de-
composition G =

⊕
µ∈R Gµ with H = G0. An R-graded Lie algebra L over C with

grading pair (G,H) is a Lie algebra satisfying the following conditions:

(i) L contains G as a subalgebra,

(ii) L =
⊕

µ∈R Lµ, where Lµ := {x ∈ L | [h, x] = µ(h)x for all h ∈ H},
(iii) L0 =

∑
µ∈R× [Lµ,L−µ].

For a positive integer ν, an R-graded Lie algebra L with grading pair (G,H)
is called (R,Zν)-graded if L =

⊕
σ∈Zν Lσ is a Zν-graded Lie algebra such that

G ⊆ L0 and supp(L) := {σ ∈ Zν | Lσ 6= {0}} generates Zν . Since G ⊆ L0, Lσ is an
H-module for σ ∈ Zν and so we have L =

⊕
µ∈R

⊕
σ∈Zν Lσµ where Lσµ := Lσ ∩ Lµ

for σ ∈ Zν and µ ∈ R. An (R,Zν)-graded Lie algebra L is called division (R,Zν)-
graded if for each µ ∈ R×, σ ∈ Zν and 0 6= x ∈ Lσµ, there exists y ∈ L−σ−µ such
that modulo Z(L), [x, y] equals the unique element of H representing µ through
the induced form on the dual of H. A division (R,Zν)-graded Lie algebra L with
dimC(Lσµ) ≤ 1 for all σ ∈ Zν and µ ∈ R× is called a Lie ν-torus or simply a Lie
torus. In this case the set {α + σ | α ∈ R, σ ∈ Zν , Lσα 6= {0}} ⊆ spanR R ⊕ Zν is
called the root system of L. For µ ∈ R×, define Sµ := {σ ∈ Zν | Lσµ 6= {0}}; by
[Yos, Theorem 1.5], Sµ = Sν if µ and ν have the same length. If two root lengths
occur, we set S := Sµ for any choice of a short root µ and L := Sν for any choice
of a long root ν and call (S,L) the corresponding pair of L.

Definition 2.2. Let B be a unital commutative associative algebra, W be a B-
module and g :W×W → B be a symmetric B-bilinear form onW. Then J(W) :=
B1⊕W with the multiplication, for w,w′ ∈ W, b, b′ ∈ B,

(b1 + w) · (b′1 + w′) = bb′1 + g(w,w′)1 + bw′ + b′w

is a Jordan algebra called the Clifford Jordan algebra of g.

Definition 2.3. Two perfect Lie algebras are said to be centrally isogenous if they
have the same universal covering algebra, up to isomorphism.
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Theorem 2.1 (Recognition Theorem). Let L be an R-graded Lie algebra with
grading pair (G,H).

(i) ([BM]) If R is simply laced, there is a commutative associative unital algebra
A such that L is centrally isogenous with G ⊗A.

(ii) ([BZ]) If R is of type B`, ` ≥ 3, there exists a unital commutative associative
algebra A and a unital A-module B with a symmetric A-bilinear form (·, ·) :
B ×B → A such that L is centrally isogenous with

T
(
J(V)/C, J(B)/A

)
= (G ⊗A)⊕ (V ⊗B)⊕DJ(B),J(B)

where V is the (2`+1)-dimensional vector space equipped with a non-degenerate
symmetric bilinear form with respect to which the set of skew-symmetric en-
domorphisms of V is isomorphic to G.

(iii) ([BZ]) If R is of type G2, then there is a unital commutative associative algebra
A and a unital Jordan algebra J over A having a normalized trace T satisfying
the identity

ch3(y) := y3−3T (y)y2+( 9
2T (y)2− 3

2T (y2))y+(T (y3)− 9
2T (y2)T (y)+ 9

2T (y)3)1 = 0

such that L is centrally isogenous with

T (C/C, J/A) = (G ⊗A)⊕ (C0 ⊗ J0)⊕DJ,J

where C0 and J0 are the trace zero elements of the octonion algebra C and J

respectively.

(iv) ([BZ]) If R is of type F4, there exists a unital commutative associative algebra
A and a unital alternative algebra A over A having a normalized trace T

satisfying the identity

ch2(y) := y2 − 2T (y)y + (2T (y)2 − T (y2))1 = 0

such that L is centrally isogenous with

T (J/C,A/A) = (G ⊗A)⊕ (J0 ⊗A0)⊕DA,A,

where A0 is the subspace of trace zero elements of A.

Let L be any R-graded Lie algebra. By the Recognition Theorem (and its
proof), we know that L has a decomposition as

(G ⊗A)⊕ (V ⊗B)⊕D

so that G⊗1 is identified with G of Definition 2.1(i), where V is the irreducible finite-
dimensional G-module whose highest weight is the highest short root, equipped
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with a normalized trace, and D is a subalgebra of L. Also A,B are two vector
spaces, with B = 0 in simply laced cases, such that a := A⊕B is an algebra which
we refer to as the coordinate algebra of L (see [BGKN], [BM]). It is noticeable that
using (2.4), one can see that Z(L) ⊆ D, and L/Z(L) is centerless as L is perfect.

Theorem 2.2 ([ABG, Theorem 4.13]). Let L = (G ⊗ A) ⊕ (V ⊗ B) ⊕ Da,a be a
centerless R-graded Lie algebra where a = A ⊕ B is the coordinate algebra of L.
Take s to be the subspace of a⊗ a spanned by the elements of the form

(α⊗ β) + (β ⊗ α), (αβ ⊗ γ) + (βγ ⊗ α) + (γα⊗ β), a⊗ b

for a ∈ A, b ∈ B, α, β, γ ∈ a. Consider the factor space

{a, a} := (a⊗ a)/s

and for α, β ∈ a, let {α, β} denote (α⊗ β) + s in {a, a}. Set L̂ := (G ⊗A)⊕ (V ⊗
B)⊕ {a, a}. Define a multiplication on L̂ by

(2.5)

[x⊗ a, x′ ⊗ a′] = [x, x′]⊗ aa′ + κ(x, x′){a, a′},
[x⊗ a, v ⊗ b] = xv ⊗ ab = −[v ⊗ b, x⊗ a],

[x⊗ a, {α, α′}] = 0 = −[{α, α′}, x⊗ a],

[v ⊗ b, v′ ⊗ b′] = Dv,v′ ⊗ t(b, b′) + (v ∗ v′)⊗ (b ∗ b′) + t(v, v′){b, b′},
[{α, α′}, v ⊗ b] = v ⊗Dα,α′b = −[v ⊗ b, {α, α′}],
[{α, α′}, {β, β′}] = {Dα,α′β, β

′}+ {β,Dα,α′β
′},

for x, x′ ∈ G, a, a′ ∈ A, v, v′ ∈ V, b, b′ ∈ B and α, α′, β, β′ ∈ a where κ denotes the
Killing form of G. Also consider the map π̂ : L̂ → L given by x⊗a 7→ x⊗a; u⊗b 7→
u⊗ b; {α, α′} 7→ Dα,α′ . Then (L̂, π̂) is the universal covering algebra of L.

To state the next theorem, we need to recall some algebras from [BGKN] and
[AABGP]. For 1 ≤ p ≤ 3 with p ≤ ν, take A0 to be A[ν] and

Ap := Ap−1 ⊕Ap−1xp

to be the algebra obtained from Ap−1 using the Cayley–Dickson process with

x2
p = tp.

The last one is called the Cayley torus (or octonion torus). We mention that
the Cayley torus is alternative but not associative; the center and the nucleus
of this algebra coincide with A[ν]. We know that Ap−1 is a subalgebra of Ap for
1 ≤ p ≤ 3. Moreover these four algebras are algebras over A[ν], in fact they are free
A[ν]-modules. Next note that for 1 ≤ i ≤ 8, there exist unique s1, s2, s3 ∈ {0, 1}



516 S. Azam, H. Yamane and M. Yousofzadeh

such that i = 1 + s1 + 2s2 + 4s3. Take wi := (xs11 x
s2
2 )xs33 . Then {wi | 1 ≤ i ≤ 2p}

is an A[ν]-basis for Ap, 0 ≤ p ≤ 3. We consider the normalized trace

(2.6) T : Ap → A[ν];
2p∑
i=1

riwi 7→ r1,

on Ap, 0 ≤ p ≤ 3, and define t and ∗ to be as before.
Next take J0 := A[ν], J1 to be the commutative associative algebra over A[ν]

with generator x1 subject to the relation x3
1 = t1, and J2 to be the plus algebra

of the associative algebra over A[ν] generated by x1, x2 subject to the relations
x3

1 = t1, x3
2 = t2, x1x2 = e2πi/3x2x1. Let J3 := J2 ⊕ (J2 · x3) ⊕ (J2 · x2

3) be the
Jordan algebra obtained from J2 using Tits’ first Jordan algebra construction [J,
Chapter IX] with x3

3 = t3. We mention that whenever we use Jp, 1 ≤ p ≤ 3, we
assume p ≤ ν.

One sees that for 1 ≤ i ≤ 27, there exist unique s1, s2, s3 ∈ {0, 1, 2} such
that i = 1 + s1 + 3s2 + 9s3. Take wi := (xs11 · x

s2
2 ) · xs33 . Then {wi | 1 ≤ i ≤ 3p}

is an A[ν]-basis for Jp, 0 ≤ p ≤ 3. Define the following normalized trace on Jp,
0 ≤ p ≤ 3:

(2.7) T : Jp → A[ν];
3p∑
i=1

riwi 7→ r1.

Theorem 2.3. Let L be the centerless core of an extended affine Lie algebra of
type R. Taking G to be a finite-dimensional simple Lie algebra of type R, L is
isomorphic to one of the following:

(i) ([BGK]) G ⊗A[ν] if R is simply laced.

(ii) ([AG]) T (J(V)/C, J(Am[ν])/A[ν]) if R is of type B` (` ≥ 3), where V is the
2` + 1-dimensional vector space having a symmetric non-degenerate bilinear
form with respect to which the set of skew-symmetric endomorphisms of V is
isomorphic to G and J(Am[ν]) is the Clifford Jordan algebra with respect to the
symmetric A[ν]-bilinear form on Am[ν] given by

(2.8)

g : Am[ν] ×A
m
[ν] → A[ν],

g
( m∑
r=1

arwr,

m∑
r=1

brwr

)
=

m∑
r=1

arbrt
τr

where τ0, . . . , τm ∈ Zν satisfy τ0 = 0 and τr 6≡τs (mod 2Zν) for 0 ≤ s 6= r ≤ m.
Moreover the root system of L is of the form (S+S)∪ (Rsh +S)∪ (Rlg + 2Zν)
where S =

⋃m
j=0(2Zν + τj). (Here {w1, . . . , wm} is the standard basis of Am[ν]

as a free A[ν]-module.)
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(iii) ([AG]) T (J/C, C/A[ν]) if R is of type F4, where C = Ap for some 0 ≤ p ≤ 3.
Moreover, if C = Ap, 0 ≤ p ≤ 3, then the root system of L is Zν ∪ (Rsh +Zν)∪
(Rlg + (2Zp ⊕ Zν−p)).

(iv) ([AG]) T (C/C,J /A[ν]) if R is of type G2, where J = Jp for some 0 ≤ p ≤ 3.
Moreover, if J = Jp, 0 ≤ p ≤ 3, then the root system of L is Zν ∪(Rsh +Zν)∪
(Rlg + (3Zp ⊕ Zν−p)).

Remark. Using the same notation as before, if a = A⊕B is the coordinate algebra
of a Lie torus L with the universal covering algebra A, one sees from [BZ] that A is
a subset of the associative center of a and so (2.5) implies that {A,A} = {{a, a′} |
a, a′ ∈ A} ⊆ Z(A).

§2.2. Induced relations

As before we assume that R is a finite irreducible reduced root system of type
X 6= A,C. Let L be a centerless Lie ν-torus of type R and A be its universal
covering algebra. Using [Yos, Theorem 7.3], we identify L with the centerless core
of an extended affine Lie algebra and so by Theorems 2.3 and 2.2, we may write

(2.9) A = (G ⊗A[ν])⊕ (V ⊗Am[ν])⊕D

for some non-negative integer m, where G is a finite-dimensional simple Lie algebra
of type X, V is an irreducible G-module whose highest weight is the highest short
root of G, and D is a known subalgebra of A. We remark that if X is simply laced,
we have by convention m = 0 and so the middle part in (2.9) vanishes. Since the
ingredients appearing in (2.9) and their algebra structures are completely known
(see [BGK], [AG] and [ABG]), we are able to select a set of generators for A and
deduce certain relations among them which in turn motivate the generators and
defining relations of a presented Lie algebra (isomorphic to A) which we define in
the next section.

If A =
∑
α∈R Aα, G =

∑
α∈R Gα and V = (

∑
α∈Rsh

Vα) ⊕ V0, are the corre-
sponding weight space decompositions of A, G and V respectively, then

(2.10) Aα =


Gα ⊗A[ν] if α ∈ Rlg,

(Gα ⊗A[ν])⊕ (Vα ⊗Am[ν]) if α ∈ Rsh,∑
β∈R× [Aβ ,A−β ] if α = 0.

It is known that ifX is not simply laced, then G is the set of inner derivations of
an algebra equipped with a normalized trace T , and that V is the set of zeros of this
trace. We fix a highest weight vector v := vns of V. Next using Proposition 2.2(i),
we fix jt1, . . . , j

t
nt , k

t
1, . . . , k

t
n′t
∈ J`, n` + 1 ≤ t ≤ ns, such that

(2.11) vt := [fjt1 , . . . , fjtnt ,v] and v−t = [fkt1 , . . . , fktn′t
,v]
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are non-zero elements of Vαt and V−αt respectively. Then

V =
( ns⊕
t=n`+1

Cv±t
)
⊕ V0,

where V0 is the corresponding zero weight space. We recall the trace form t as in
(2.3) and ask the reader to check that

(2.12) t(vns , v±i) = 0 (n` + 1 ≤ i ≤ ns − 1).

Now consider the coordinate algebra a = A[ν]⊕Am[ν] of L. Using Theorem 2.1,
we find that Am[ν] is the kernel of a normalized trace T of a. We recall the trace
form t(·, ·) : a × a → A[ν], t(x, y) := T (xy), and the operator ∗ : a × a → Am[ν]

defined by x ∗ y := xy − t(x, y)1. Let {wr | 1 ≤ r ≤ m} be the standard basis for
the A[ν]-module Am[ν]. Then one observes that for 1 ≤ r, s ≤ m, there are unique
constants ar,s, a′r,s ∈ C, tr,s ∈ Jm and unique ν-tuples σr,s, σ′r,s ∈ Zν with

(2.13)

σr,s = σs,r, tr,s = ts,r, ar,s = −as,r for type F4,

ar,s = as,r for type B,G2,

(1− δr,s)a′r,s + δr,sar,s = 0 and (1− δr,s)ar,s + δr,sa
′
r,s 6= 0

satisfying

(2.14) t(wr, ws) = a′r,st
σ′r,s and wr ∗ ws = ar,st

σr,swtr,s .

We set
Dc := {ar,s, a′r,s, σr,s, σ′r,s, tr,s | r, s ∈ Jm}.

We consider Dc as a data-set for the coordinate algebra a of L. In fact, as {wi |
i ∈ Jm} is an A[ν]-basis for Am[ν], and also the ∗-operator and t(·, ·) are A[ν]-bilinear,
the data in Dc completely describe the structure of a = A[ν] ⊕Am[ν].

Next for n` + 1 ≤ i ≤ ns − 1, define t′±i ∈ Jn and n` + 1 ≤ ti ≤ ns as follows.
If αns ± αi is a root, take t′±i to be such that αns ± αi = αt′±i , and n otherwise.
Also if αns − αi is a short root, take ti to be such that αns − αi = αti , and ns
otherwise. One observes that there are m±i,m′±i ∈ C with m′±i = 0 and m±i = 0
if αns ± αi is not a root or a short root respectively such that

(2.15) dvns ,v±i = m′±iet′±i and vns ∗ v±i = m±ivti .

We set
Dm := {t′±i, ti,m±i,m′±i | n` + 1 ≤ i ≤ ns − 1}.

We draw the attention of the reader to the fact that the data appearing in Dm are
derived from the structure of the G-module V. We next take C to be the Cartan
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matrix of R with respect to ∆ and call

(2.16) D := (C,Dm,Dc)

the structural data associated to L.
Now let x1, . . . , xp ∈ H and y1, . . . , yq be some non-zero root vectors of G.

Let j1, . . . , jp ∈ J` and set tσ = t±1
j1
· · · t±1

jp
. Then it follows from (2.5) that, for

1 ≤ i ≤ m,

(2.17)

[y1 ⊗ 1, . . . , yq ⊗ 1, x1 ⊗ t±1
j1
, . . . , xp ⊗ t±1

jp
, en ⊗ 1]

= [y1, . . . , yq, x1, . . . , xp, en]⊗ tσ,
[y1 ⊗ 1, . . . , yq ⊗ 1, x1 ⊗ t±1

j1
, . . . , xp ⊗ t±1

jp
, vns ⊗ wi]

= y1 . . . yqx1 . . . xpvns ⊗ tσwi.

Next suppose that {ei, fi, hi | i ∈ J`} is a set of Chevalley generators for G.
We claim that

(2.18) {ei ⊗ 1, fi ⊗ 1, hi ⊗ 1, hi ⊗ t±1
j ,v ⊗ wt | i ∈ J`, j ∈ Jν , t ∈ Jm}

is a generating set for A (recall that v = vns). Indeed, using (2.10), it is enough
to show that (G ⊗ A[ν]) ⊕ (V ⊗ Am[ν]) is generated by this set. We show V ⊗ Am[ν]

is generated by the set (2.18); a similar argument works for G ⊗ A[ν]. Consider a
generating element v⊗ tσwi of the vector space V ⊗Am[ν] where i ∈ Jm and σ ∈ Zν

with tσ = t±1
j1
· · · t±1

jp
for some j1, . . . , jp ∈ Jν . It is known that v can be written as

a linear combination of elements of the form fi1 . . . fiqvns for some i1, . . . , iq ∈ J`.
So without loss of generality, we assume i1, . . . , iq ∈ J` and v = fi1 . . . fiqvns .

Next we take x1, . . . , xp ∈ H such that αns(x1) 6= 0, . . . , αns(xp) 6= 0, so there is
r ∈ C \ {0} such that vns = rx1 . . . xpvns . So by (2.17), we have

v ⊗ tσwi = fi1 . . . fiqvns ⊗ tσwi = rfi1 . . . fiqx1 . . . xpvns ⊗ tσwi
= r[fi1 ⊗ 1, . . . , fiq ⊗ 1, x1 ⊗ t±1

j1
, . . . , xp ⊗ t±1

jp
, vns ⊗ wi].

This proves the claim.
For n`+1 ≤ i ≤ ns−1 and r, s ∈ Jm, take σr,s, σ′r,s ∈ Zν , m±i,m′±i, ar,s, a′r,s ∈

C, t′±i ∈ Jn, tr,s ∈ Jm, n` + 1 ≤ ti ≤ ns and m±i,m′±i ∈ C as in (2.14) and (2.15).
Using (2.5) and (2.12), one sees that

(2.19) [vns ⊗ wr, v±i ⊗ ws] = (m′±ia
′
r,set′±i ⊗ t

σ′r,s) + (m±iar,svti ⊗ tσr,swtr,s).

Following [You], we call this kind of relations basic short part relations.
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Next let α ∈ R×, β ∈ Rsh, xα ∈ Gα and vβ ∈ Vβ . Then (2.5) implies that for
i, r ∈ J`, j ∈ Jν and s ∈ Jm, the following relations are satisfied in A, the universal
covering algebra of L:

[α(hr)(hi ⊗ t±1
j )− α(hi)(hr ⊗ t±1

j ), xα ⊗ 1] = 0,

[β(hr)(hi ⊗ t±1
j )− β(hi)(hr ⊗ t±1

j ), vβ ⊗ ws] = 0,

to which we refer as quasi-diagonal relations, and also

[hr ⊗ tj , hi ⊗ t−1
j , x⊗ 1] = α(hi)α(hr)x⊗ 1,

[hr ⊗ tj , hi ⊗ t−1
j , y ⊗ ws] = β(hi)β(hr)y ⊗ ws,

that we refer to as canceling relations.

§3. A generic presentation

From now on we fix a centerless Lie torus L of type X 6= A,C,BC and we let A

be its universal covering algebra. Let D be the structural data associated to L.
In this section, starting from D, we introduce a presented Lie algebra L̃ := L̃(D),
called the presented Lie algebra associated to L (or D). The main objective of this
work is to show that L̃ is isomorphic to A.

We use the same notation as in Section 2. In particular, we let G be the
finite-dimensional simple Lie algebra of rank ` corresponding to the Cartan matrix
C = (ci,j). Let H be a fixed Cartan subalgebra of G and (·, ·) be the Killing form
of G. We recall that R is the root system of G and ∆ is a base of R. Also V is
an irreducible G-module whose highest weight is the highest short root. We keep
the same arrangement for roots as in (2.1). Throughout this work, by 〈α, β〉, for
roots α, β ∈ R with β 6= 0, we mean 2(α, β)/(β, β). Let m be a non-negative
integer which we take to be zero if R is simply laced. Whenever we use expressions
containing a letter with subscripts going through {1, . . . ,m}, we understand that
we are in the case m 6= 0. Now for a non-negative integer ν, let L̃ be the Lie
algebra defined by 3`+m+ `ν generators

(3.1) {ei, fi, hi, h±i,a, v
r | i ∈ J`, r ∈ Jm, a ∈ Jν},

subject to the following relations (we collect our relations, depending on their
nature, in groups (R1)–(R9) below and give a name to some of these groups,
based on the role which they play):

Serre’s relations:

(R1)
[hi, hj ] = 0, [ei, fj ] = δi,jhi, [hi, ej ] = cj,iej , [hi, fj ] = −cj,ifj ,
(adei)−cj,i+1(ej) = 0, (adfi)−cj,i+1(fj) = 0; i, j ∈ J`.
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Highest short weight relations:

(R2)
[ei, vr] = 0, [hi, vr] = 〈αns , αi〉vr,

[f 〈αns ,αi〉+1
i , vr] = 0; i ∈ J`, r ∈ jm.

Since {ei, fi, hi}`i=1 satisfies Serre’s relations, the subalgebra of L̃ generated
by the 3` elements {ei, fi, hi | i ∈ J`} is a finite-dimensional simple Lie algebra of
the same type as R [H, Theorem 18.3]. So we identify this subalgebra with the Lie
algebra G as in Subsection 2.1 with Cartan subalgebra H =

⊕
i∈J` Chi, and the

corresponding root system R. This then also allows us to identify the 3` generators
ei, fi, hi, i ∈ J`, here with the corresponding elements in Subsection 2.1. Next let
`+ 1 ≤ i ≤ n and use Lemma 2.2(i) to fix j1, . . . , jni ∈ Jn such that

(3.2) ei := [fj1 , . . . , fjni , en]

is a non-zero element of Gαi . For a ∈ Jν define

(3.3) e±i,a := 1
2 [fj1 , . . . , fjni , h

±
n,a, en].

Next we set

(3.4)

H := spanC{h±i,a | i ∈ J`, a ∈ Jν},

Zh := spanC{[h±i,a, h
±
j,b] | i, j ∈ J`, a, b ∈ Jν},

Sg := spanC{ei, fi, hi, h±i,a, v
r | i ∈ J`, a ∈ Jν , r ∈ Jm}.

We also note that using (R2), one concludes that, for r ∈ Jm, the G-submodule Vr

of L̃ generated by vr is an irreducible G-module whose highest weight is the highest
short root αns of R (see [H, Theorem 21.4]). Considering (2.11), we set

(3.5) vrt := [fjt1 , . . . , fjtnt , v
r] and vr−t = [fkt1 , . . . , fktn′t

, vr].

Now we have the weight space decomposition

Vr =
ns⊕

t=n`+1

(Cvr±t)⊕ Vr0 ,

where Vr0 is the corresponding zero weight space.
For h =

∑`
i=1 rihi ∈ H and a ∈ Jν , take

(3.6) h±a :=
∑̀
i=1

rih
±
i,a,

and for `+ 1 ≤ t ≤ n, set
h±t,a := (ht)±a .
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Let σ = (m1, . . . ,mν) ∈ Zν . We call |σ| :=
∑ν
t=1 |mt| the norm of σ. Let σ 6= 0

and 1 ≤ i1 < · · · < ip ≤ ν be all ij ∈ Jν for which mij 6= 0. Then |σ| =
∑p
j=1 |mij |.

For 1 ≤ t ≤ n, we set

(3.7) btσ := (hsgn(mi1 )
t,i1

, . . . , h
sgn(mi1 )
t,i1︸ ︷︷ ︸

|mi1 |

, . . . , h
sgn(mip )

t,ip
, . . . , h

sgn(mip )

t,ip︸ ︷︷ ︸
|mip |

)

where sgn(m) for m ∈ Z is the sign of m. In fact btσ = (bt1, . . . , b
t
|σ|) where for

k ∈ J|σ|,

btk :=

{
h+
t,ia

if mia > 0,
h−t,ia if mia < 0,

in which a is the unique element of {1, . . . , p} with

1 +
a−1∑
j=1

|mij | ≤ i ≤
a∑
j=1

|mij |.

We also set bt0 := (h−t,1, h
+
t,1). We call bσ := bnσ the norm-tuple of σ.

Convention 3.1. For σ ∈ Zν , we denote the norm-tuple of σ by bσ=(bσ1 , . . . , b
σ
|σ|)

and by (b1, . . . , b|σ|) if there is no confusion. For h ∈ H, if i ∈ J|σ|, define hi,σ to
be h±a (see (3.6)) if bσi = h±n,a for some a ∈ Jν . Also with an abuse of notation we
write

[rbtσ, x] := [rbt1, . . . , rb
t
|σ|, x] (t ∈ Jn, x ∈ L̃, r ∈ C).

We now introduce some more relations:

(R3) [e±i,a, fi] = h±i,a; i ∈ J`, a ∈ Jν .

(R4) [H,H] = {0}, [Sg, Zh] = {0}.

(R5) [〈αt, αj〉h±i,a − 〈αt, αi〉h
±
j,a,Cet + Cft] = 0; a ∈ Jν , i, j ∈ J`, t ∈ Jn.

Canceling relations:

(R6) [h−i,a, h
+
j,a, et] = 〈αt, αi〉〈αt, αj〉et, [h−i,a, h

+
j,a, ft] = 〈αt, αi〉〈αt, αj〉ft;

a ∈ Jν , i, j, t ∈ Jn.

We consider (3.5) to define our next two sets of relations:

(R7) [〈αt, αj〉h±i,a − 〈αt, αi〉h
±
j,a,Cv

r
±t] = 0;

a ∈ Jν , r ∈ Jm, i, j ∈ J`, n` + 1 ≤ t ≤ ns.
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Canceling module relations:

(R8) [h−i,a, h
+
j,a, v

r
±t] = 〈αt, αi〉〈αt, αj〉vr±t;

a ∈ Jν , i, j ∈ J`, r ∈ Jm, n` + 1 ≤ t ≤ ns.

Finally we recall (2.19) and (3.7) to state our last set of relations:

Basic short part relations:

(R9) [vr, vs±i] = m′±ia
′
r,s[

1
2b
t′±i
σ′r,s

, et′±i ] +m±iar,s[ 1
2btiσr,s , v

tr,s
ti ];

r, s ∈ Jm, n` + 1 ≤ i ≤ ns − 1.

Remark. It is known that 〈αi, αj〉 = αi(hj) for i, j ∈ Jn, so we may use relations
(R1)–(R9) with αi(hj) instead of 〈αi, αj〉.

Definition 3.1. Starting from a centerless Lie torus L with the structural data D,
we call the Lie algebra L̃ defined by generators (3.1) and relations (R1)–(R9) the
presented Lie algebra associated to L (or D).

We are now ready to state our main theorem.

Main Theorem. Let L be a centerless Lie torus of type X 6= A,C,BC with the
universal covering A, and associated presented Lie algebra L̃. Then L̃ ∼= A. In
particular A is a finitely presented Lie algebra.

In the remaining part of this section we establish several results which are
needed prior to the proof of the main theorem. The proof proper will be presented
in Section 4. An outline of the proof is as follows. We first show that L̃ as a G-
module (G is a subalgebra of L̃) is a direct sum of irreducible G-modules whose
highest weights belong to R. We then use this to show that L̃ is an R-graded Lie
algebra. Using the fact that both L̃ and A are R-graded Lie algebras and invoking
the structure of R-graded Lie algebras, we prove that L̃ is a central extension of A,
and finally we prove that A is isomorphic to L̃.

We recall that A is generated by (2.18) and so one can easily deduce from
Subsection 2.2 that there exists a Lie algebra epimorphism ψ : L̃ → A as follows:

(3.8)
ei 7→ ei ⊗ 1, fi 7→ fi ⊗ 1, hi 7→ hi ⊗ 1,

h±i,a 7→ hi ⊗ t±1
a , vr 7→ vns ⊗ wr;

a ∈ Jν , i ∈ J`, r ∈ Jm.

We shall prove ψ is an isomorphism. From now on we fix σ = (m1, . . . ,mν) ∈ Zν

and associate to σ the following elements of L̃:

(3.9) eσ := [ 1
2bσ, en], vrσ := [bσ, vr]; r ∈ Jm (see Convention 3.1).
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Using (R6) and (R8), we have

e0 = en and vr0 = vr.

Now considering L̃ as a G-module, we set

(3.10)
Gσ := the G-submodule of L̃ generated by eσ,

Vrσ := the G-submodule of L̃ generated by vrσ.

Proposition 3.1. For α ∈ R×, set

L̃0
α :=

{
Gα +

∑m
r=1 Vrα if α ∈ Rsh,

Gα if α ∈ Rlg.

(i) Recall (3.6) and let a ∈ Jν , x, y ∈ H and t ∈ Jn. Then

[αt(x)y±a − αt(y)x±a , L̃0
±αt ] = {0};

in particular if x ∈ H is such that αt(x) = 0, then [x±a , L̃0
±αt ] = {0}.

(ii) Let p ∈ Z>0, a1, . . . , ap ∈ Jν , and t ∈ Jn, and suppose that xj , yj ∈ H are
such that αt(yj) 6= 0 for j ∈ Jp. Then for e ∈ L̃0

±αt , we have

[(x1)±a1
, . . . , (xp)±ap , e] =

p∏
j=1

(αt(xj)/αt(yj))[(y1)±a1
, . . . , (yp)±ap , e]

with the same sign in (xj)±aj and (yj)±aj for j ∈ Jp.
(iii) Let p, q ∈ Z>0, a1, . . . , ap, b1, . . . , bq ∈ Jν , and t, t′ ∈ Jn with t 6= t′, and

suppose that xj , yj ∈ H, j ∈ Jp, are such that αt(yj) 6= 0 and αt′(yj) = 0.
Then for zj ∈ H with αt(zj) = 0, j ∈ Jq, e ∈ L̃0

±αt and f ∈ L̃0
±αt′ , we have

[[(z1)±b1 , . . . , (zq)
±
bq
, f ], [(x1)±a1

, . . . , (xp)±ap , e]]

=
p∏
j=1

(αt(xj)/αt(yj))[(z1)±b1 , . . . , (zq)
±
bq
, (y1)±a1

, . . . , (yp)±ap , [f, e]]

with the same sign in (xj)±aj and (yj)±aj for j ∈ Jp.

Proof. (i) The first expression is immediate using (R5) and (R7). For the second
expression, we note that as αt 6= 0, one finds y ∈ H such that αt(y) 6= 0. Now the
statement holds by considering the first expression.

(ii) Using (i), we have for all j ∈ Jp,

[(xj)±aj , e] = (αt(xj)/αt(yj))[(yj)±aj , e].

Now we are done using the Jacobi identity together with (R4).
(iii) Using (i), we deduce that for all i ∈ Jp and j ∈ Jq, [(yi)±ai , f ] = 0

and [(zj)±bj , e] = 0. Now (R4) together with the Jacobi identity implies that
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[[(z1)±b1 , . . . , (zq)
±
bq
, f ], (yi)±ai ] = 0 for all i ∈ Jp. Also using (ii), we can replace

[(x1)±a1
, . . . , (xp)±ap , e] with an expression as on the right hand side of the display

appearing in (ii). Now we are done using these together with the Jacobi iden-
tity.

The following proposition determines, up to isomorphism, the modules Gσ and
Vrσ appearing in (3.10).

Proposition 3.2. (i) Gσ is an irreducible finite-dimensional G-module with high-
est pair (eσ, αn). In fact, Gσ ∼= G as G-modules.

(ii) For r ∈ Jm, Vrσ is an irreducible finite-dimensional G-module with highest pair
(vrσ, αns). In fact, Vrσ ∼= V as G-modules.

Proof. (i) From (3.8), one can see that ψ(eσ) = en ⊗ tσ 6= 0. Therefore eσ 6= 0.
Thus by [H, Theorem 21.4], it is enough to show that, for all i ∈ J`,

(3.11) [hi, eσ] = αn(hi)eσ, [ei, eσ] = 0, [fαn(hi)+1
i , eσ] = 0.

Fix i ∈ J`. We first note that the equalities in (3.11) hold for σ = 0 as en is
a maximal vector in the G-module G. Now let σ be non-zero with norm-tuple
bσ = (b1, . . . , b|σ|). Considering Convention 3.1, one deduces from (R4) together
with (an iterated use of) the Jacobi identity that

[hi, eσ] = [hi, [ 1
2bσ, en]] = −[ 1

2bσ, [en, hi]] = αn(hi)eσ.

To prove the next two equalities in (3.11), we use induction on |σ|. Assume
0 6= σ is non-zero with [ei, eσ] = 0 = [fαn(hi)+1

i , eσ]. We are done if we show that
for a0 ∈ Jν ,

[ei, [ 1
2h
±
n,a0

, eσ]] = 0 = [fαn(hi)+1
i , [ 1

2h
±
n,a0

, eσ]].

Since αn and αi are not proportional, there exists x ∈ H such that αn(x) 6= 0 and
αi(x) = 0. Therefore using (R4) and Proposition 3.1(i), we have

[ 1
2h
±
n,a0

, eσ] ∈ C[x±a0
, eσ] and [x±a0

, ei] = 0.

Now using these together with the Jacobi identity and the induction hypothesis,
we get

[ei, [ 1
2h
±
n,a0

, eσ]] ∈ C[ei, [x±a0
, eσ]] = C[[x±a0

, ei], eσ] = 0 = [[x±a0
, fi], eσ]

and

[fαn(hi)+1
i , 1

2h
±
n,a0

, eσ] ∈ C[fαn(hi)+1
i , x±a0

, eσ] = C[x±a0
, f
αn(hi)+1
i , eσ] = 0.

(ii) Use an argument analogous to the one in (i).
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Using Proposition 3.2(i), one concludes that there exists a G-module isomor-
phism ϕσ : G → Gσ mapping en to eσ. Therefore Gσ admits a weight space de-
composition Gσ =

∑
γ∈R(Gσ)γ , where (Gσ)γ = ϕσ(Gγ), γ ∈ R. For a ∈ Jν , we set

(3.12) σ±a := (0, . . . , 0, ±1︸︷︷︸
a-th

, 0, . . . , 0) and ϕ±a := ϕσ±a .

From (3.9) we have ϕ±a (en) = eσ±a = 1
2 [h±n,a, en]. Now considering (3.2), (3.3) and

(R3) we have, for i ∈ J` and a ∈ Jν ,

(3.13) e±i,a = ϕ±a (ei) and h±i,a = ϕ±a (hi).

Next set, for t ∈ Jn, a ∈ Jν and `+ 1 ≤ j ≤ n,

(3.14)
et,σ := ϕσ(et), ft,σ := ϕσ(ft), ht,σ := ϕσ(ht),

f±t,a := ϕ±a (ft), e±j,a := ϕ±a (ej), hj,a := ϕ±a (hj)

and finally set

(3.15) Z := spanC{[hi,σ, hi,τ ] | i ∈ J`, σ, τ ∈ Zν}.

We next note that as ϕσ, σ ∈ Zν , is a G-module isomorphism and [ei, fj ] = δi,jhi,

i, j ∈ J`, we get, for a ∈ Jν and i, j ∈ J`,

(3.16) [ei,σ, fj ] = −[fi,σ, ej ] = δi,jhi,σ.

Now let r ∈ Jm. Then Proposition 3.2(ii) guarantees the existence of a G-
module isomorphism

(3.17) ψrσ : V → Vrσ such that v = vns 7→ vrσ (see (3.9)).

Set ψr := ψr0. Since ψr(v) = vr, (2.11) and (3.5) imply that

(3.18) vr±t = ψr(v±t); n` + 1 ≤ t ≤ ns.

Also as Vrσ is an irreducible finite-dimensional G-module of highest weight αns , we
have

(3.19)
Vrσ = (Vrσ)0 ⊕

ns⊕
t=n`+1

(Vrσ)±t where

(Vrσ)±t := (Vrσ)±αt = Cvrσ,±t, vrσ,±t := ψrσ(v±t); n` + 1 ≤ t ≤ ns.

Proposition 3.3. Let t ∈ Jn and α = ±αt. Suppose for j ∈ J|σ|, xj ∈ H is such
that α(xj) 6= 0. For j ∈ J|σ|, recall Convention 3.1 and set cj := (xj)j,σ. Then for
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e ∈ L̃0
α (see Proposition 3.1), we have

1∏|σ|
j=1(±α(xj))

[c1, . . . , c|σ|, e] =

{
ϕσ(e) if e ∈ Gα,
ψrσ(e) if e ∈ Vrα for some r ∈ Jm.

Proof. Using Proposition 3.1(ii), it is enough to show that the right hand side of
the expression equals [y1,σ

1 , . . . , y
|σ|,σ
|σ| , e] for some y1, . . . , y|σ| ∈ H with α(yi) = 1,

i ∈ J|σ|. Take {
v := en and λ := αn if e ∈ Gα,
v := vr and λ := αns if e ∈ Vrα for some r ∈ Jm.

Using Lemma 2.2(i), we may suppose e = [fip , . . . , fi1 , v] where p ∈ N, i1, . . . , ip
∈ Jn and for q ∈ Jp, αiq 6= ±(λ−

∑q−1
r=1 αir ).

For 1 ≤ q ≤ p, αiq 6= ±(λ−
∑q−1
r=1 αir ), so there is xq ∈ H such that αiq (xq) = 0

and (λ−
∑q−1
r=1 αir )(xq) = 1. Now we recall Convention 3.1 and note that Propo-

sition 3.1(i) implies that [fiq , x
i,σ
q ] = 0, i ∈ J|σ|. So invoking Proposition 3.1(ii)

together with the Jacobi identity, we get

[fiq , x
1,σ
q , . . . , x|σ|,σq , fiq−1 , . . . , fi1 , v] = [x1,σ

q , . . . , x|σ|,σq , fiq , fiq−1 , . . . , fi1 , v]
if q 6=p= [x1,σ

q+1, . . . , x
|σ|,σ
q+1 , fiq , fiq−1 , . . . , fi1 , v].

Using this repeatedly, one has

[x1,σ
p , . . . , x|σ|,σp , e] = [x1,σ

p , . . . , x|σ|,σp , fip , . . . , fi1 , v]

= [fip , . . . , fi1 , x
1,σ
1 , . . . , x

|σ|,σ
1 , v]

=

{
[fip , . . . , fi1 , eσ] if e ∈ Gα,
[fip , . . . , fi1 , v

r
σ] if e ∈ Vrα for some r ∈ Jm.

Now we are done as ϕσ and ψrσ are G-module homomorphisms.

Recall from Section 2 that we have fixed a specific order for (simple) roots, in
terms of their lengths. Accordingly, for type F4, we consider the following funda-
mental system:

(3.20) {α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 = 1
2 (ε1 − ε2 − ε3 − ε4)},

where as usual εi’s are the standard orthogonal basis for R4. Using the module
theory for type F4, we may find complex numbers a, b, a′, b′, a′′3 , b

′′
3 , a
′′
4 , b
′′
4 satisfying
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(3.21)

(a′′3a
′ + b′′3a)b = −(a′′3b

′ + b′′3b)a, (a′′4a
′ + b′′4a)b′ = −(a′′4b

′ + b′′4b)a
′,

t(a′f3 · v3 + af4 · v4, b
′f3 · v3 + bf4 · v4) = 1,

(a′f3 · v3 + af4 · v4) ∗ (b′f3 · v3 + b, f4 · v4) = 0,

ei · (f3 · v3) = a′′i vi, ei · (f4 · v4) = b′′i vi,

where 3 ≤ i ≤ 4 and t is the trace form introduced in Section 2. We then define

Dr,s
σ,τ :=

{
[a′[f3, v

r
σ,3] + a[f4, v

r
σ,4], b′[f3, v

s
τ,3] + b[f4, v

s
τ,4]] for type F4,

[[f`, vrσ,`], [f`, v
s
τ,`]] otherwise,

where r, s ∈ Jm and σ, τ ∈ Zν . Now set

(3.22) D := spanC{Dr,s
σ,τ | r, s ∈ Jm, σ, τ ∈ Zν}.

In Propositions 3.4 and 3.5 below, we prove several crucial relations among
the elements of L̃, which reveal the algebra structure between parts Gσ, Vrσ, D and
Z (see (3.10), (3.15) and (3.22)) of L̃. Since the proofs of these two propositions
are quite technical and a bit long, we postpone them until Section 5.

Proposition 3.4. Let r ∈ Jm, a ∈ Jν , i 6= j ∈ J` and σ, τ ∈ Zν . Set τ±a = τ±σa.
Then considering (3.14), we have

(i) [ei,τ , ei,σ] = 0 = [fi,τ , fi,σ],

(ii) [ei,σ, hj,τ ] = −αi(hj)ei,σ+τ and [fi,σ, hj,τ ] = αi(hj)fi,σ+τ ,

(iii) [hi,τ , e±i,a] = [h±i,a, ei,τ ] = 2ei,τ±a and [hi,τ , f±i,a] = [h±i,a, fi,τ ] = −2fi,τ±a ,

(iv) [h±j,a, hi,σ] = (αi(hj)/2)[h±i,a, hi,σ],

(v) [e±i,a, fi,τ ] = 1
2 [h±i,a, hi,τ ] + hi,τ±a ,

(vi) [vr, hi,σ] = −αns(hi)vrσ, in particular

[hi,σ, hi,τ , vr] = [hi,τ , hi,σ, vr].

Proposition 3.5. For α ∈ H? \ {0}, σ ∈ Zν and r ∈ Jm, define (Gσ)α and (Vrσ)α
to be zero if α is not a root or a short root respectively. Let σ, τ ∈ Zν , r, s ∈ Jm
and t ∈ Jn. Then we have:

(i)
[
H,

n∑
t′=1

∑
σ∈Zν

(Gσ)±αt′
]
⊆

n∑
t′=1

∑
σ∈Zν

(Gσ)±αt′ .

(ii) [vr, (Gσ)±αt ] ⊆ (Vrσ)±αt+αns and [vr, (Gσ)0] ⊆ (Vrσ)αns .

(iii) [H, (Vrσ)0] = {0}.

(iv)
[
H,

m∑
p=1

∑
δ∈Zν

Vpδ
]
⊆

m∑
p=1

∑
δ∈Zν

Vpδ .

(v) [vs, vrσ] = 0.
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(vi) For α ∈ Rsh ∪ {0} \ {±αns}, we have

[vs, (Vrσ)α] ⊆
∑
δ∈Zν

(Gδ)α+αns
+

∑
1≤p≤m

∑
δ∈Zν

(Vpδ )α+αns
.

Moreover only the first [second ] summation on the right hand side occurs if
r = s [r 6= s].

(vii) [vs, vrσ,−ns ] ⊆
∑
δ∈Zν

(Gδ)0 +
∑

1≤k≤m

∑
δ∈Zν

(Vkδ )0 +D.

(viii) [vr,D] ⊆
m∑
k=1

∑
δ∈Zν

Vkδ .

(ix) [H,D] = {0}.
(x) D is a trivial G-module.

(xi) Considering (3.15), we have Z ⊆ Z(L̃).

§4. Main theorem

In this section we state and prove the main theorem of this work. The notation
and terminology will be as in the previous sections.

Theorem 4.1 (Main Theorem). Let L be a centerless Lie torus of type X 6=
A,C,BC with the universal covering A, and associated presented Lie algebra L̃.
Then ψ : L̃ → A (see (3.8)) is an isomorphism. In particular A is a finitely pre-
sented Lie algebra.

Proof. We proceed in a few steps.

Step 1. Considering (3.13) and Propositions 3.2, 3.4(iv) together with Proposition
3.5 and using the same argument as in [You, Theorem 2.2 and Proposition 2.11],
we find that

L̃ =
∑
σ∈Zν

Gσ +
∑
σ∈Zν

∑
r∈Jm

Vrσ +D + Z and Z(L̃) ⊆ D + Z.

and that L̃ is an R-graded Lie algebra. Moreover L̃ =
⊕

α∈R L̃α where

L̃α =



∑
σ∈Zν

(Gσ)0 +
∑
σ∈Zν

∑
r∈Jm

(Vrσ)0 +D + Z if α = 0,∑
σ∈Zν

(Gσ)α +
∑
σ∈Zν

∑
r∈Jm

(Vrσ)α if α ∈ Rsh,∑
σ∈Zν

(Gσ)α if α ∈ Rlg.
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Now we note that as L̃ is an R-graded Lie algebra, so is L̃/Z(L̃), and as Z(L̃) ⊆
D + Z, one can identify L̃/Z(L̃) as

(4.1) L̃/Z(L̃) =
∑
σ∈Zν

Gσ +
∑
σ∈Zν

∑
r∈Jm

Vrσ +D′ where D′ := D/Z(L̃).

We shall keep the same notation for the images of ei, fi, hi, h±i,j and vr in
L̃/Z(L̃) and use [·, ·]− for the Lie bracket on L̃/Z(L̃). Now using (3.8), (2.9) and
Theorem 2.3, we have an epimorphism

(4.2)
ψ′ : L̃/Z(L̃)→ A/Z(A) = (G ⊗A[ν])⊕ (V ⊗Am[ν])⊕DAm[ν],Am[ν] ;

ei 7→ ei ⊗ 1, fi 7→ fi ⊗ 1, hi 7→ hi ⊗ 1, h±i,j 7→ hi ⊗ t±1
j , vr 7→ vns ⊗ wr

for i ∈ J`, j ∈ Jν and r ∈ Jm. Next let α, β, α+β ∈ R×, γ, α+ γ ∈ Rsh, σ, τ ∈ Zν

and r ∈ Jm. It follows using Proposition 3.3 and (2.5) that ψ′((Gσ)α) = Gα ⊗ tσ

and ψ′((Vrσ)γ) = Vγ ⊗ tσwr. Therefore, by (2.5), we have

(4.3)

ψ′([(Gσ)α, (Gτ )β ]−) = [ψ′((Gσ)α), ψ′((Gτ )β)] = Gα+β ⊗ tσ+τ 6= {0},
ψ′([(Gσ)α, (Vrτ )γ ]−) = [ψ′((Gσ)α), ψ′((Vrτ )γ)] = Vα+γ ⊗ tσ+τwr 6= {0},
ψ′([(Vsη)ζ , (Vrτ )γ ]−) = [ψ′((Vsη)ζ), ψ′((Vrτ )γ)] = [Vη ⊗ tζws,Vτ ⊗ tγwr].

Step 2 (Simply laced types). We define a Zν-grading on L̃ as follows. Recalling
(3.12), we set

deg(ei) = deg(fi) = deg(hi) := 0, deg(h±i,a) := ±2σa

and note that this defines a Zν-grading on the free Lie algebra generated by the
set {ei, fi, hi, h±i,a | i ∈ J`, a ∈ Jν}. As the relations (R1)–(R9) are generated by
homogeneous elements, the above grading induces a grading on L̃ which naturally
defines a grading on L̃/Z(L̃). We set

(4.4) (L̃/Z(L̃))σα := (L̃/Z(L̃))α ∩ (L̃/Z(L̃))σ; α ∈ R, σ ∈ Zν ,

so

(4.5) (L̃/Z(L̃))σα := (Gσ)α; α ∈ R, σ ∈ Zν .

We next note that as L̃/Z(L̃) is a centerless R-graded Lie algebra, by the
Recognition Theorem there exists a unital commutative associative algebra A such
that as a Lie algebra L̃/Z(L̃) can be identified with G ⊗A. Considering this iden-
tification we have

(L̃/Z(L̃))α = Gα ⊗A; α ∈ R×.
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Using the same argument as in [You, Subsection 2.6], one can identifyA withA[ν] in
such a way that h±i,a is identified with hi⊗t±1

a . This in particular implies that ψ′ (see
(4.2)) is an isomorphism from L̃/Z(L̃) to A/Z(A). Now taking π1 : L̃ → L̃/Z(L̃)
and π2 : A → A/Z(A) to be the natural projection maps and considering (3.8),
we see that ψ′−1 ◦ π2 ◦ψ = π1. We conclude that ψ : L̃ → A is a central extension
of A, but L̃ is perfect, so by [MP, Proposition I.9.3], we conclude that ψ : L̃ → A

is an isomorphism and so L̃ ∼= A.

Step 3 (Type G2). We recall that for type G2, there is 0 ≤ p ≤ 3 such that
the corresponding pair of the R-graded Lie algebra A/Z(A) is (S,L) where S :=
Zσ1⊕· · ·⊕Zσν , L := 3Zσ1⊕· · ·⊕3Zσp⊕Zσp+1⊕· · ·⊕Zσν , and that m = 3p−1.
For r ∈ Jm, define

(4.6) σr :=
p∑
i=1

siσi where r =
p∑
i=1

3i−1si for s1, s2, s3 ∈ {0, 1, 2}.

Let σ = (n1, . . . , nν) ∈ Zν , for 1 ≤ i ≤ p, suppose that mi, ri ∈ Z are such that
ri ∈ {0, 1, 2} and ni = 3mi + ri, and set

(4.7)

rσ :=
p∑
i=1

3i−1ri, δσ :=
p∑
i=1

miσi +
ν∑

i=p+1

niσi,

θσ := δσ + σrσ = δσ +
p∑
i=1

riσi.

Note that δσ = θσ if σ ∈ L. Now we would like to define a Zν-grading on L̃. For
this, we recall (3.12), (4.7) and set, for i ∈ J`, a ∈ Jp, p+ 1 ≤ b ≤ ν and r ∈ Jm,

deg(ei) = deg(fi) = deg(hi) := 0, deg(h±i,a) := ±3σa,

deg(h±i,b) := ±σb, deg(vr) := σr.

This defines a Zν-grading on the free Lie algebra generated by

{ei, fi, hi, h±i,a, v
r | i ∈ J`, a ∈ Jν , r ∈ Jm}.

As before relations (R1)–(R9) are generated by homogeneous elements, so this
grading is naturally transferred to L̃ and also to L̃/Z(L̃). Next we note that if
σ = (n1, . . . , nν) ∈ Zν and r ∈ Jm with σr =

∑p
i=1 siσi, then

(4.8)

Gσ is homogeneous of degree
p∑
i=1

3niσi +
ν∑

i=p+1

niσi,

Vrσ is homogeneous of degree
p∑
i=1

(3ni + si)σi +
ν∑

i=p+1

niσi.
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As before set

(L̃/Z(L̃))σα := (L̃/Z(L̃))α ∩ (L̃/Z(L̃))σ; α ∈ R, σ ∈ Zν .

Since L̃ is a G2-graded Lie algebra, the Recognition Theorem states that there
are a unital commutative associative algebra A and a unital Jordan algebra J
over A having a normalized trace satisfying the ch3-identity (see Theorem 2.1)
such that L̃ is centrally isogenous with

(G ⊗A)⊕ (V ⊗ J0)⊕DJ ,J

where V = C0 (see §2.1.2). Next set B := J0 and note that DJ ,J = DJ0,J0 . Now
we have

(4.9) (L̃/Z(L̃))α =

{
(Gα ⊗A)⊕ (Vα ⊗B) if α ∈ Rsh,

Gα ⊗A if α ∈ Rlg.

On the other hand, using (4.1), (4.8), (4.6) and (4.7), we have, for σ ∈ Zν and
α ∈ R×,

(4.10) (L̃/Z(L̃))σα =

{
(Vrσδσ )α if α ∈ Rsh and σ ∈ S \ L,
(Gδσ )α if α ∈ R× and σ ∈ L.

Next let α ∈ Rlg and σ ∈ L. Then using (4.9) and the one-dimensionality of
(L̃/Z(L̃))σα and Gα we find that there is a one-dimensional subspace Aδσα of A such
that

(L̃/Z(L̃))σα = Gα ⊗Aδσα .

Using the same argument as for simply laced types, we see that Aδσα = Aδσβ for all
α, β ∈ Rlg and σ ∈ L. Set

Aδσ := Aδσα for σ ∈ L and any choice of α ∈ Rlg.

Now let σ ∈ L and α be a short root, and take β to be a long root such that
α− β ∈ R×. Then recalling (2.5), we have

(L̃/Z(L̃))σα = (Gδσ )α = ϕδσ ([Gα−β ,Gβ ]) = [Gα−β , ϕδσ (Gβ)]

= [Gα−β , (Gδσ )β ] = [Gα−β , (Gδσ )β ]− = [Gα−β ,Gβ ⊗Aδσ ]− = Gα ⊗Aδσ .

Therefore

(4.11) (L̃/Z(L̃))σα = Gα ⊗Aδσ ; α ∈ R×, σ ∈ L.

Next suppose that α ∈ Rsh and σ ∈ S \ L. Then the one-dimensionality
of (L̃/Z(L̃))σα and Vα together with (4.9) and (4.10) implies that there is a one-
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dimensional subspace Bθσα such that

(4.12) (L̃/Z(L̃))σα = Vα ⊗Bθσα .

If σ ∈ S \ L and α, β ∈ Rsh are such that α− β ∈ R×, then we have

Vα ⊗Bθσα = (L̃/Z(L̃))σα = (Vrσδσ )α = ψrσδσ (Gα−β · Vβ) = [Gα−β , ψrσδσ (Vβ)]

= [Gα−β , (Vrσδσ )β ] = [Gα−β ,Vβ ⊗Bθσβ ]− = Gα−β · Vβ ⊗Bθσβ = Vα ⊗Bθσβ ,

which implies that Bθσα = Bθσβ . Use [AG, (5.11)] to conclude that Bθσα = Bθσβ for
all α, β ∈ Rsh and define

(4.13) Bθσ := Bθσα for σ ∈ S \ L and any choice of α ∈ Rsh.

Now take σ, τ ∈ L and α, β ∈ R× such that α + β ∈ R×. Then (4.3), (4.11),
(2.5) and Remark 2.1.2 imply that

0 6= [(L̃/Z(L̃))σα, (L̃/Z(L̃))τβ ]− ⊆ (L̃/Z(L̃))σ+τ
α+β = Gα+β ⊗Aδσ+τ ,

[(L̃/Z(L̃))σα, (L̃/Z(L̃))τβ ]− = [Gα ⊗Aδσ ,Gβ ⊗Aδτ ]− ⊆ Gα+β ⊗AδσAδτ .

Also for σ ∈ L, τ ∈ S \ L, α ∈ Rlg and β ∈ Rsh such that α+ β ∈ Rsh, (4.3),
(4.12), (4.11), (2.5) and Remark 2.1.2 imply that

0 6= [(L̃/Z(L̃))σα, (L̃/Z(L̃))τβ ]− ⊆ (L̃/Z(L̃))σ+τ
α+β = Vα+β ⊗Bθσ+τ = Vα+β ⊗Bδσ+θτ ,

[(L̃/Z(L̃))σα, (L̃/Z(L̃))τβ ]− = [Gα ⊗Aδσ ,Vβ ⊗Bθτ ]− ⊆ Vα+β ⊗Aδσ ·Bθτ .

Therefore the one-dimensionality of the subspaces appearing on the right hand
sides implies that

(4.14)
(i) Aδσ ·Aδτ = Aδσ+δτ = Aδσ+τ ; σ, τ ∈ L,

(ii) Aδσ ·Bθτ = Bδσ+θτ = Bθσ+τ ; σ ∈ L, τ ∈ S \ L.

One can see that there are short roots α, β such that α + β ∈ Rsh and there
are x ∈ Vα, y ∈ Vβ such that

Dx,y 6= 0 and x ∗ y 6= 0.

Now if σ, γ ∈ S \ L, considering (4.7) and using (2.5), (2.13) and (2.14), we have

[Vα ⊗ tδσwrσ ,Vβ ⊗ tδγwrγ ] 6= 0

and so (4.10) and (4.3) imply that 0 6= [(L̃/Z(L̃))σα, (L̃/Z(L̃))γβ ]− ⊆ (L̃/Z(L̃))σ+γ
α+β

and so the one-dimensionality of the subspaces implies that

(4.15) [(L̃/Z(L̃))σα, (L̃/Z(L̃))γβ ]− = (L̃/Z(L̃))σ+γ
α+β .
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This together with (4.10)–(4.13) implies that

[Vα ⊗Bθσ ,Vβ ⊗Bθγ ] =

{
Vα+β ⊗Bθσ+γ if σ + γ ∈ S \ L,
Gα+β ⊗Aδσ+γ if σ + γ ∈ L.

Now if 0 6= a ∈ Bθσ and 0 6= b ∈ Bθγ , then (L̃/Z(L̃))σα = Cx⊗ a and (L̃/Z(L̃))τβ =
Cy ⊗ b. Also using (2.5), we have

[x⊗ a, y ⊗ b] = Dx,y ⊗ t(a, b) + (x ∗ y)⊗ (a ∗ b) + t(x, y)Da,b.

Therefore if σ + γ ∈ L, we have 0 6= t(a, b) ∈ Aδσ+τ and a ∗ b = 0, which yields
ab = a ∗ b+ t(a, b) ∈ Aδσ+γ = Aθσ+γ . Also if σ + γ ∈ S \L, then 0 6= a ∗ b ∈ Bθσ+γ

and t(a, b) = 0, which implies that ab = a ∗ b + t(a, b) ∈ Bθσ+γ . Summarizing, we
have

(4.16) Bθσ ·Bθγ =

{
Aθσ+γ if σ + γ ∈ L,
Bθσ+γ if σ + γ ∈ S \ L.

Next set

J σ :=

{
Aθσ if σ ∈ L,
Bθσ if σ ∈ S \ L.

Now as (L̃/Z(L̃))α =
∑
σ∈Zν (L̃/Z(L̃))σα, α ∈ R×, one can use (4.14) and (4.16)

to deduce that J = A ⊕ B =
⊕

σ∈Zν J σ is a graded Jordan algebra with one-
dimensional summands satisfying J σ · J τ = J σ+τ . Therefore the same argument
as in [AG, Proposition 5.58] shows that A is graded isomorphic to A[ν] and J is
graded isomorphic to Jp. Considering the Remark in §2.1.2 and using the same
argument as in [You, Subsection 2.6], we may identify A with A[ν] in such a way
that

(4.17) h±i,a = hi ⊗ t±1
a ; i ∈ Jn, j ∈ Jν .

Now let r ∈ Jm = Jp3−1. Considering (4.7) and (4.6), one finds that rσr = r

and δσr = 0, so Vrσrδσr
= Vrσr0 = Vr and θσr = σr. Therefore using (4.10), (4.12),

(4.13) and (3.19), we have

(Vr)ns = (Vrσr0 )ns = (Vrσrδσr
)ns = (L̃/Z(L̃))σ

r

αns
= Vαns ⊗B

θσr(4.18)

= Vαns ⊗B
σr .

Thus considering (2.11), for each r ∈ Jm one finds βr ∈ Bσr such that vr =
vns ⊗ βr. Since V, as a G-module, is generated by vns , (2.4) implies that

(4.19) vr±i = v±i ⊗ βr; n` + 1 ≤ i ≤ ns, r ∈ Jm.
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Now one can see that there is n` + 1 ≤ i ≤ ns− 1 such that vns ∗ v−i 6= 0 and
Dvns ,v−i

6= 0. Using (R9), we find for r, s ∈ Jm that

(4.20) [vr, vs−i] = m′−ia
′
r,s[

1
2b
t′−i
σ′r,s

, et′−i ] +m−iar,s[ 1
2btiσr,s , v

tr,s
ti ].

If q1 := |σr,s| and q2 := |σ′r,s|, then there are j1, . . . , jq1 , i1, . . . , iq2 ∈ Jν such that
tσr,s = t±1

j1
· · · t±1

jq1
and tσ

′
r,s = t±1

i1
· · · t±1

iq2
. Now (3.7), Convention 3.1, (4.17), (R4),

(4.19), (2.5) and (2.15) imply that

m−iar,s[ 1
2btiσr,s , v

tr,s
ti ] = m−iar,s[ 1

2hti ⊗ t
±1
jq1
, . . . , 1

2hti ⊗ t
±1
j1
, vti ⊗ βtr,s ](4.21)

= m−iar,svti ⊗ t±1
j1
. . . t±1

jq1
βtr,s

= m−iar,svti ⊗ tσr,sβtr,s = vns ∗ v−i ⊗ ar,stσr,sβtr,s

and

m′−ia
′
r,s[

1
2b
t′−i
σ′r,s

, et′−i ] = m′−ia
′
r,s[

1
2ht′−i ⊗ t

±1
iq2
, . . . , 1

2ht′−i ⊗ t
±1
i1
, et′−i ⊗ 1](4.22)

= m′−ia
′
r,set′−i ⊗ t

±1
iq2
. . . t±1

i1
= dvns ,v−i ⊗ a

′
r,st

σ′r,s .

Also (4.20)–(4.22) imply that

[vr, vs−i] = dvns ,v−i ⊗ a
′
r,st

σ′r,s + (vns ∗ v−i)⊗ ar,stσr,sβtr,s .

On the other hand (4.19) together with (2.5) implies that

[vr, vs−i] = [vns ⊗ βr, v−i ⊗ βs]
= dvns ,v−i ⊗ t(β

r, βs) + (vns ∗ v−i)⊗ (βr ∗ βs) + dβr,βs .

Altogether, these imply that

(4.23) t(βr, βs) = a′r,st
σ′r,s and βr ∗ βs = ar,st

σr,sβtr,s .

Now (2.14) and (4.23) imply that we can identify βr with wr for r ∈ Jm. Therefore
ψ′ (see (4.2)) is an isomorphism from L̃/Z(L̃) to A/Z(A). Now considering (3.8)
and using the same argument as for simply laced types, we conclude that ψ : L̃ → A

is an isomorphism.

Step 3 (Type F4). We recall that for type F4, there is 0 ≤ p ≤ 3 such that
the corresponding pair of the R-graded Lie algebra A/Z(A) is (S,L) where S :=
Zσ1⊕· · ·⊕Zσν and L := 2Zσ1⊕· · ·⊕2Zσp⊕Zσp+1⊕· · ·⊕Zσν , and that m = 2p−1.
For r ∈ Jm, define

(4.24) σr :=
p∑
i=1

siσi where r =
p∑
i=1

2i−1si for s1, s2, s3 ∈ {0, 1}.
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Let σ = (n1, . . . , nν) ∈ Zν , for 1 ≤ i ≤ p, suppose that mi, ri ∈ Z are such that
ri ∈ {0, 1} and ni = 2mi + ri, and set

(4.25)

rσ :=
p∑
i=1

2i−1ri, δσ :=
p∑
i=1

miσi +
ν∑

i=p+1

niσi,

θσ := δσ + σrσ = δσ +
p∑
i=1

riσi.

We mention that δσ = θσ if σ ∈ L. Now we would like to define a Zν-grading on L̃.
For this, we note that for i ∈ J`, a ∈ Jp, p+ 1 ≤ b ≤ ν and r ∈ Jm,

deg(ei) = deg(fi) = deg(hi) := 0, deg(h±i,a) := ±2σa,

deg(h±i,b) := ±σb, deg(vr) := σr,

define a Zν-grading on the free Lie algebra generated by {ei, fi, hi, h±i,a, vr | i ∈ J`,
a ∈ Jν , r ∈ Jm}. As before relations (R1)–(R9) are generated by homogeneous
elements, so this grading is naturally transferred to L̃ and also to Z(L̃). Next we
note that if σ = (n1, . . . , nν) ∈ Zν , and if i ∈ Jp, si ∈ {0, 1} and r :=

∑p
i=1 2i−1si,

then

(4.26)

Gσ is homogeneous of degree
p∑
i=1

2niσi +
ν∑

i=p+1

niσi,

Vrσ is homogeneous of degree
p∑
i=1

(2ni + si)σi +
ν∑

i=p+1

niσi.

As before set

(L̃/Z(L̃))σα := (L̃/Z(L̃))α ∩ (L̃/Z(L̃))σ; α ∈ R, σ ∈ Zν .

Since L̃ is an F4-graded Lie algebra, the Recognition Theorem states that
there is a unital commutative associative algebra A and an alternative algebra C
over A having a normalized trace T satisfying the ch2-identity (see Theorem 2.1)
such that L̃ is centrally isogenous with

(G ⊗A)⊕ (V ⊗ C0)⊕DC,C

where V = J0 (see §2.1.2). Next set B := C0 and note that DC,C = DC0,C0 . Now
we have

(4.27) (L̃/Z(L̃))α =

{
(Gα ⊗A)⊕ (Vα ⊗B) if α ∈ Rsh,

Gα ⊗A if α ∈ Rlg.

Also for σ ∈ Zν and α ∈ R× by (4.26) and (4.1), we have

(4.28) (L̃/Z(L̃))σα =

{
(Vrσδσ )α if α ∈ Rsh and σ ∈ S \ L,
(Gδσ )α if α ∈ R× and σ ∈ L.
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Using the same argument as for type G2, one finds one-dimensional sub-
spaces Aδσ , σ ∈ L, and Bθσ , σ ∈ S \ L, of A and B respectively satisfying

(4.29)

(i) Aδσ ·Aδτ = Aδσ+δτ = Aδσ+τ ; σ, τ ∈ L,
(ii) Aδσ ·Bθτ = Bδσ+θτ = Bθσ+τ ; σ ∈ L, τ ∈ S \ L,

(iii) Bθσ ·Bθτ =

{
Aθσ+τ if σ, τ ∈ S \ L, σ + τ ∈ L,
Bθσ+τ if σ, τ ∈ S \ L, σ + τ ∈ S \ L,

such that

(4.30) (L̃/Z(L̃))σα =

{
Gα ⊗Aδσ if α ∈ R×, σ ∈ L,
Vα ⊗Bθσ if α ∈ Rsh, σ ∈ S \ L.

Now for σ ∈ Zν , set

Cσ :=

{
Aθσ if σ ∈ L,
Bθσ if σ ∈ S \ L.

Then (4.16) implies that C :=
⊕

σ∈Zν Cσ is a graded alternative algebra with one-
dimensional summands satisfying Cσ · Cτ = Cσ+τ . Therefore the same argument
as in [AG, Proposition 5.45] shows that A is graded isomorphic to A[ν] and C is
graded isomorphic to Ap. Hence as before we may identify A with A[ν] such that

(4.31) h±i,a = hi ⊗ t±1
a ; i ∈ Jn, j ∈ Jν .

Considering (3.8) and using the same argument as for type G2, one concludes that
ψ : L̃ → A is an isomorphism.

§5. Postponed proofs

In this section we present the proofs of Propositions 3.4 and 3.5. For this, we first
need to prove the following claim about type F4.

Claim. Suppose that R is of type F4. For σ, τ ∈ Zν , 1 ≤ r, s ≤ m with r 6= s, we
have

(i) [vsσ,3, [f3, v
r
τ,3]] = 0.

(ii) [vsσ,4, [f4, v
r
τ,4]] = 0.

(iii) [vsσ,3, [f4, v
r
τ,4]] = −[vrσ,3, [f4, v

s
τ,4]].

(iv) [vsσ,4, [f3, v
r
τ,3]] = −[vrσ,4, [f3, v

s
τ,3]].

Proof of the Claim. (i) Knowing that ε1 − ε4 is a positive long root, take i ∈ Jn
such that αi = ε1 − ε4. Now as −αi + αns = ε4 = α3 (see (3.20)), we have
C[fi, vsσ] = Cvsσ,3. Also as ε1 − ε4 is not a short root, [f3, v

s
σ] = 0, and as αi is
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a long root, [fi, f3, v
r
τ,3] = 0. Therefore using the Jacobi identity together with

Propositions 3.3, 3.1(iii) and (R9), we have

[vsσ,3, [f3, v
r
τ,3]] ∈ C[[fi, vsσ], [f3, v

r
τ,3]] = C([fi, vsσ, f3, v

r
τ,3]− [vsσ, fi, f3, v

r
τ,3])

= C[fi, vsσ, f3, v
r
τ,3]− 0 = C[fi, f3, v

s
σ, v

r
τ,3]

⊆C[fi, f3, H, . . . ,H︸ ︷︷ ︸
|σ|+|τ |

, vs, vr3] = 0.

(ii) We know that α4 = 1
2 (ε1 − ε2 − ε3 − ε4). Take j, t ∈ Jn such that αj =

1
2 (ε1 + ε2 + ε3 − ε4) and αt = ε2 + ε3, which are positive roots. Now we have

α4 + αj = αi = ε1 − ε4 and αj − α4 = αt,

which are long roots, and so [ft, [e4,Vrτ,−4]] = 0 and [e4,Vsσ,j ] = 0. Now the Jacobi
identity together with Propositions 3.3 and 3.1(iii) implies that

[vsσ,4, [f4, v
r
τ,4]] ∈ [vsσ,4, [e4,Vrτ,−4]] = [[ft,Vsσ,j ], [e4,Vrτ,−4]]

= [ft,Vsσ,j , [e4,Vrτ,−4]] + [Vsσ,j , ft, [e4,Vrτ,−4]]

= [ft, [Vsσ,j , e4],Vrτ,−4] + [ft, e4,Vsj ,Vrτ,−4] = [ft, e4,Vsσ,j ,Vrτ,−4]

⊆C[ft, e4, H, . . . ,H︸ ︷︷ ︸
|σ|+|τ |

,Vsj ,Vr−4] = 0.

(iii) Consider Lemma 2.1 and take i, j ∈ Jn such that αi = ε1 − ε4 and
−αj = 1

2 (−ε1−ε2−ε3 +ε4) = −αi+α4. Next we note that −α4 +α3 is not a root
and αi +αns = ε4 = α3. Therefore [f4, v

s
σ,3] = 0 and fi · vns = zv3 for some z ∈ C,

which in turn implies that z[fi, vsσ] = vsσ,3. We next note that as αns 6= αj , there
are h1, h2 ∈ H such that αns(h1) = 1 = αj(h2) and αns(h2) = 0 = αj(h1). We
take ci := (h1)i,σ, c′j := (h2)j,τ for 1 ≤ i ≤ |σ|, 1 ≤ j ≤ |τ | (see Convention 3.1).
Also as αns + α4 is not a root, Propositions 3.3 and 3.1(iii) together with (R9)
imply that [vsσ, v

r
τ,4] = 0. So the Jacobi identity and Proposition 3.1(iii) imply that

[vsσ,3, [f4, v
r
τ,4]] = [f4, v

s
σ,3, v

r
τ,4] = z[f4, [fi, vsσ], vrτ,4]

= z[f4, fi, [vsσ, v
r
τ,4]]− z[f4, v

s
σ, fi, v

r
τ,4] = −z[f4, v

s
σ, fi, v

r
τ,4]

=−z[f4, c1, . . . , c|σ|, c
′
1, . . . , c

′
|τ |, v

s, fi, v
r
4].

Using (R4) together with the same argument as above, we conclude that

[vrσ,3, [f4, v
s
τ,4]] = −z[f4, c1, . . . , c|σ|, c

′
1, . . . , c

′
|τ |, v

r, fγ , v
s
2].

But in type F4, ar,s = −as,r (see (2.14)), so using (R9), we are done.
(iv) Use the same argument as in (i).
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We are now ready to prove Propositions 3.4 and 3.5.

Proof of Proposition 3.4. (i) We prove the first equality, as the argument for the
second is similar. We use induction on |τ |. If |τ | = 0, then ei,τ = ei, and [ei, ei,σ] =
ϕσ([ei, ei]) = 0. Now assume the result holds for all τ with |τ | = s. Let σ′ =
(m1, . . . ,mν) be such that |σ′| = s+1. Then there is a ∈ Jν such that ma 6= 0. Set
τ := σ′−σsgn(ma)

a and γ := σ+σ
sgn(ma)
a (see (3.12)). Then |τ | = |σ′|− 1 = s. Now

Proposition 3.3, the Jacobi identity and (R4), (R6) together with the induction
hypothesis give

[ei,σ′ , ei,σ] = [[ 1
2h

sgn(ma)
i,a , ei,τ ], ei,σ] = [1

2h
sgn(ma)
i,a , ei,τ , ei,σ]− [ei,τ , 1

2h
sgn(ma)
i,a , ei,σ]

= [ 1
2h

sgn(ma)
i,a , ei,τ , ei,σ]− [ei,τ , ei,γ ] = 0− 0 = 0.

(ii) Since i 6= j, there are x, y ∈ H such that

αj(x) = 1, αi(x) = 0, αj(y) = 0, αi(y) = 1.

Now using (3.16), the Jacobi identity and Propositions 3.3 and 3.1(iii),(ii), we have

[ei,σ, hj,τ ] =−[ei,σ, fj , ej,σ] = [fj , ej,σ, ei,σ]

= [fj , [x1,τ , . . . , x|τ |,τ , ej ], [y1,σ, . . . , y|σ|,σ, ei]]

= [fj , x1,σ, . . . , x|σ|,σ, y1,τ , . . . , y|τ |,τ , ej , ei]

= [fj , y1,σ, . . . , y|σ|,σ, y1,τ , . . . , y|τ |,τ , ej , ei]

= [y1,σ, . . . , y|σ|,σ, y1,τ , . . . , y|τ |,τ , fj , ej , ei]

=−αi(hj)[y1,σ, . . . , y|σ|,σ, y1,τ , . . . , y|τ |,τ , ei] = −αi(hj)ei,τ+σ.

Note that to get the last equality, we use (R6), (R4) (canceling relations). The
second assertion is proved similarly.

(iii) We first note that by (3.16), the Jacobi identity and (i),

(5.1) [ei,τ , hi,σ] = [ei,τ , [ei,σ, fi]] = [fi,
0︷ ︸︸ ︷

ei,σ, ei,τ ]− [ei,σ, ϕτ [fi, ei]] = [ei,σ, hi,τ ].

Therefore using Proposition 3.3, we have

[hi,τ , e±i,a] = [h±i,a, ei,τ ] = 2ei,τ±a .

The second claim is proved similarly.
(iv) For t ∈ J|σ|, using (R5), one finds that (αi(hj)/2)[h±i,a, fi] = [h±j,a, fi] and

(αi(hj)/2)[h±i,a, ei] = [h±j,a, ei]. Also by Proposition 3.3, we get

[(−1
2 hi)

1,σ, . . . , (−1
2 hi)

|σ|,σ, fi] = fi,σ.
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Now these together with the Jacobi identity and (R4) imply that

[h±j,a, ei, fi,σ] = [ei, h±j,a, fi,σ] + [[h±j,a, ei], fi,σ]

= [ei, (−1
2 hi)

1,σ, . . . , (−1
2 hi)

|σ|,σ, h±j,a, fi] + [[h±j,a, ei], fi,σ]

=
αi(hj)

2
([ei, (−1

2 hi)
1,σ, . . . , (−1

2 hi)
|σ|,σ, h±i,a, fi] + [[h±i,a, ei], fi,σ])

=
αi(hj)

2
([ei, h±i,a, fi,σ] + [[h±i,a, ei], fi,σ]) =

αi(hj)
2

[h±i,a, ei, fi,σ].

Now we are done as by (3.16), [ei, fi,σ] = hi,σ.

(v) Using Proposition 3.3 together with the Jacobi identity and (3.16), we
have

[e±i,a, fi,τ ] = [[ 1
2h
±
i,a, ei], fi,τ ] = [ 1

2h
±
i,a, ei, fi,τ ]− [ei, 1

2h
±
i,a, fi,τ ]

= [ 1
2h
±
i,a, hi,τ ] + [ei, fi,τ±a ] = 1

2 [h±i,a, hi,τ ] + hi,τ±a .

(vi) We first note that as αns 6= αi, there are x, y ∈ H such that αns(y) = 0,
αi(y) = 1, αns(x) = 1, αi(x) = 0 and so using Proposition 3.1(i), we have
[vr, yi,σ] = 0, i ∈ J|σ|, which together with Proposition 3.3 implies that [vr, fi,σ] =
[y1,σ, . . . , y|σ|,σ, vr, fi]. Now using this, (3.16), the Jacobi identity, (R2), and Propo-
sitions 3.1(iii) and 3.3, we get

[vr, hi,σ] = [vr, ei, fi,σ] = [ei, vr, fi,σ] = [x1,σ, . . . , x|σ|,σ, ei, v
r, fi]

=−αns(hi)[x1,σ, . . . , x|σ|,σ, vr] = −αns(hi)vrσ.

This completes the proof of the first assertion.
Now we have [vr, hi,σ] = −αns(hi)[x1,σ, . . . , x|σ|,σ, vr] and [vr, hi,τ ] =

−αns(hi)[x1,τ , . . . , x|τ |,τ , vr]. Next we note that using (3.16), Propositions 3.3 and
3.1(i), the Jacobi identity and (R4), we find that [hi,τ , xj,σ] = 0, j ∈ J|σ|, so

[hi,τ , hi,σ, vr] = αns(hi)[x
1,σ, . . . , x|σ|,σ, hi,τ , v

r]

= (αns(hi))
2[x1,σ, . . . , x|σ|,σ, x1,τ , . . . , x|τ |,τ , vr].

Similarly [hi,τ , hi,σ, vr] = (αns(hi))
2[x1,σ, . . . , x|σ|,σ, x1,τ , . . . , x|τ |,τ , vr]. Now using

(R4), we are done.

Proof of Proposition 3.5. (i) is immediate using Proposition 3.3 together with
(R4), (R6).

(ii) We first suppose that t 6= ns. Then there exists x ∈ H such that αns(x) = 0
and αt(x) = 1. Recall Convention 3.1, and set cj := xj,σ for j ∈ J|σ|. Then using
Propositions 3.3 and 3.1(i), we have

[vr, (Gσ)±αt ] = [vr, c1, . . . , c|σ|,G±αt ] = [c1, . . . , c|σ|, vr,G±αt ]
⊆ [c1, . . . , c|σ|, (Vr)±αt+αns ] = (Vrσ)±αt+αns .
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Next let t = ns. Then as αt is not a simple root, there are 1 ≤ j ≤ ` and
1 ≤ i ≤ n such that αt − αj = αi. Now (Gσ)αt = [ej , (Gσ)αi ] and so by (R2), the
Jacobi identity and the first part of the proof, we have

[vr, (Gσ)αt ] = [vr, ej , (Gσ)αi ] = [ej , vr, (Gσ)αi ] ⊆ [ej , (Vrσ)αi+αns ] ⊆ (Vrσ)αt+αns .

Also as αt = αns is a short root, Lemma 2.1 implies that there are i, j ∈ Jn such
that αt + αj = αi, so (Gσ)−αt = [ej , (Gσ)−αi ]. Now as before we have

[vr, (Gσ)−αt ] = [vr, ej , (Gσ)−αi ] = [ej , vr, (Gσ)−αi ]

⊆ [ej , (Vrσ)−αi+αns ] ⊆ (Vrσ)−αt+αns .

Next using (R2), the Jacobi identity and the first part of the proof, we have

[vr, (Gσ)0] =
∑̀
i=1

[vr, ei, (Gσ)−αi ] =
∑̀
i=1

[ei, vr, (Gσ)−αi ]

⊆
∑̀
i=1

[ei, (Vrσ)−αi+αns ] ⊆ (Vrσ)αns .

(iii) Using Lemma 2.2(ii), one sees that (Vrσ)0 is spanned by [fi, vrσ,i] for n`+1
≤ i ≤ `. So it is enough to show that there is a basis {xj ∈ H | j ∈ J`} of H such
that [(xj)±a , fi, v

r
σ,i] = 0 for all j ∈ J` and a ∈ Jν . Fix n` + 1 ≤ i ≤ `. By Lemma

2.1(i), αi = β+ γ where β is a short root and γ is a long root. Take t, t′ ∈ Jn such
that β = ±αt and γ = ±αt′ and set

e :=

{
ft′ if γ = αt′ ,

et′ if γ = −αt′ ,
f :=

{
ft if β = αt,

et if β = −αt,
v :=

{
vrt if β = αt,

vr−t if β = −αt.

Then e ∈ G−γ , f ∈ G−β , [e, f ] ∈ G−αi and v ∈ (Vr)β and so we have

(5.2) [e, vrσ,i] ∈ Cψrσ(v) and [f, vrσ,i] = 0.

Consider a basis {xi | 1 ≤ i ≤ `−1} for ker(αi). Also note that since αt′ 6= αi,

there is x` ∈ H such that αt(x`) = 0 and αi(x`) 6= 0. Therefore {xi | 1 ≤ i ≤ `} is
a basis for H. Now we note, using Proposition 3.3, that vrσ,i ∈ [H, . . . ,H︸ ︷︷ ︸

|σ| times

, vri ] and

ψrσ(v) ∈ [H, . . . ,H︸ ︷︷ ︸
|σ| times

, v]. Using the Jacobi identity together with Proposition 3.1(i),

(R4) and (5.2), we have, for 1 ≤ j′ ≤ `− 1,

[(xj′)±a , fi, v
r
σ,i] ∈ C[fi, (xj′)±a , H, . . . ,H︸ ︷︷ ︸

|σ| times

, vri ] ⊆ C[fi, H, . . . ,H︸ ︷︷ ︸
|σ| times

, (xj′)±a , v
r
i ] = 0,
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and

[(x`)±a , fi, v
r
σ,i] ∈ C[(x`)±a , [e, f ], vrσ,i]⊆C[(x`)±a , [f, ψ

r
σ(v)]]

⊆C([f, (x`)±a , H, . . . ,H︸ ︷︷ ︸
|σ| times

, v]

⊆C([f,H, . . . ,H︸ ︷︷ ︸
|σ| times

, (x`)±a , v] = 0.

This completes the proof of this part.
(iv) follows from (iii) together with Proposition 3.3, (R4) and (R7).
(v) Using Lemma 2.1(i), one finds t, t′ ∈ Jn such that αt′ is a short root, αt

is a long root and αns = ±αt′ + αt. We note that vrσ is a weight vector of weight
αns and so vrσ ∈ C[et, vrσ,±t′ ]. Now using (R2), we have

[vs, vrσ] ∈ C[vs, [et, vrσ,±t′ ]] = [[et, vs],Vrσ,±t′ ] + [et, vs, vrσ,±t′ ] = [et, vs, vrσ,±t′ ].

Since t′ 6= ns, there is h ∈ H such that αt′(h) = 1 and αns(h) = 0. For
i ∈ J|σ| set ci := hi,σ (Convention 3.1). Now using Proposition 3.3, we have
Cvrσ,±t′ = C[c1, . . . , c|σ|, vr±t′ ] and so by Proposition 3.1(i),

[vs, vrσ,±t′ ] ∈ C[vs, c1, . . . , c|σ|, vr±t′ ] = C[c1, . . . , c|σ|, vs, vr±t′ ].

As t′ 6= ns and 2αns is not a root, we are done using (R9) together with Proposition
3.3.

(vi) Suppose that α is a short root not equal to ±αns . Then there is n` + 1
≤ t ≤ ns − 1 such that α = ±αt. Since α 6= αns , there is h ∈ H such that
α(h) = 1 and αns(h) = 0. Now using Proposition 3.3, one finds that (Vrσ)±αt =
C[h1,σ, . . . , h|σ|,σ, vr±t] and so Proposition 3.1(iii) implies that

[vs, (Vrσ)±αt ] = C[vs, h1,σ, . . . , h|σ|,σ, vr±t] = C[h1,σ, . . . , h|σ|,σ, vs, vr±t].

Hence we are done using (R9) together with Proposition 3.3. Next suppose α = 0.
By Lemma 2.2(ii), (Vrσ)0 is spanned by [ei, vrσ,−i], n`+1 ≤ i ≤ `. Fix n`+1 ≤ i ≤ `.
Then we have

[vs, [ei, vrσ,−i]] = [ei, [vs, vrσ,−i]].

This together with the previous step completes the proof.
(vii) We first consider type F4. Take i, j, t′, p, q ∈ Jn such that

αi = 1
2 (ε1 − ε2 − ε3 − ε4), αj = ε2 + ε3, αt′ = 1

2 (ε1 − ε2 − ε3 + ε4),

αp = 1
2 (ε1 + ε2 + ε3 − ε4), αq = 1

2 (ε1 + ε2 + ε3 + ε4).
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Recalling b, b′ from (3.21), one observes that there are non-zero scalars
a1, a2, a3, a4, y, z ∈ C satisfying −za

′

a2
+ ya

a3a1
6= 0 and

(5.3)

[[fj , fi], vp] = a1[f4, v4], [vns , fns ] = a2[v3, f3], vns = a3[et′ , vp],

[ft′ , fj , fi, b′[f3, v3] + b[f4, v4]] = yv−ns ,

[fns , b
′[f3, v3] + b[f4, v4]] = zv−ns .

Now we recall that Vs and Vrσ are G-modules whose weights are short roots and
note that αp − αi, αt′ + αq are not short roots and αi + αq = ε1 = αns . So the
Jacobi identity together with (vi) implies that

X := y[et′ , vsp, v
r
σ,−ns ] ∈ C[et′ , vsp, fi, v

r
σ,−q](5.4)

= C([et′ , [vsp, fi]︸ ︷︷ ︸
0

, vrσ,−q] + [et′ , fi, vsp, v
r
σ,−q])

= C[et′ , fi, [ft′ , vs], vrσ,−q]

⊆ C[et′ , fi, ft′ , vs, vrσ,−q] + C[et′ , fi, vs, ft′ , vrσ,−q︸ ︷︷ ︸
0

]

⊆
[
et′ , fi, ft′ ,

∑
τ∈Zν

(Gτ )αi +
∑

1≤p≤m

∑
τ∈Zν

(Vpτ )αi
]

⊆
∑
τ∈Zν

(Gτ )0 +
∑

1≤k≤m

∑
τ∈Zν

(Vkτ )0.

Next we note that αj + αi = αp = αns − αt′ , so the Jacobi identity, Proposition
3.2 and (vi) imply that

[[fj , fi], vsp, (Vrσ)0]⊆C[fp, vsp, (Vrσ)0] ⊆ C[fp, [ft′ , vs], (Vrσ)0](5.5)

= C([fp, ft′ , vs, (Vrσ)0]− [fp, vs, ft′ , (Vrσ)0])

= C([fp, ft′ , vs, (Vrσ)0]− [fp, vs, (Vrσ)−αt′ ])

⊆
∑
τ∈Zν

(Gτ )0 +
∑

1≤k≤m

∑
τ∈Zν

(Vkτ )0.

Now set v0,1 := [f3, v
r
σ,3], v0,2 := [f4, v

r
σ,4]. As ψs and ψrσ are G-module homomor-

phisms, (5.3) implies that

[[fj , fi], vsp] = a1[f4, v
s
4], vsns = a3[et′ , vsp], [ft′ , fj , fi, b′v0,1 + bv0,2] = yvr−αns .

Next we note that b′v0,1 + bv0,2 ∈ (Vrσ)0, so [fj , fi, b′v0,1 + bv0,2] ∈ (Vrσ)−αi−αj and
so [ht′ , fj , fi, b′v0,1 + bv0,2] = [fj , fi, b′v0,1 + bv0,2]. Also as αj and αi+αj −αt′ are
not short roots, [et′ , fj , fi, b′v0,1 + bv0,2] = 0 and [fj , b′v0,1 + bv0,2] = 0. Together
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with (5.4) and (5.5), this implies that

[vs, vrσ,−ns ] =
a3

y
[[et′ , vsp], ft′ , fj , fi, b

′v0,1 + bv0,2]

=
a3

y
([et′ , vsp, ft′ , fj , fi, b

′v0,1 + bv0,2]− [vsp, et′ , ft′ , fj , fi, b
′v0,1 + bv0,2])

=
a3

y
(X − [vsp, ht′ , fj , fi, b

′v0,1 + bv0,2]− [vsp, ft′ , et′ , fj , fi, b
′v0,1 + bv0,2])

=
a3

y
(X − [vsp, fj , fi, b

′v0,1 + bv0,2])

=
a3

y
(X − [vsp, [fj , fi], b

′v0,1 + bv0,2]− [vsp, fi, fj , b
′v0,1 + bv0,2])

=
a3

y
(X − [[vsp, [fj , fi]], b

′v0,1 + bv0,2]− [[fj , fi], vsp, b
′v0,1 + bv0,2])

∈ a3

y
(X + a1[[f4, v

s
4], b′v0,1 + bv0,2]− [[fj , fi], vsp, (Vrσ)0])

≡ a1a3

y
[[f4, v

s
2], b′v0,1 + bv0,2]

(
mod

∑
τ∈Zν

(Gτ )0 +
∑

1≤k≤m

∑
τ∈Zν

(Vkτ )0

)
.

On the other hand, using (vi), we have [fns , v
s, b′v0,1 +bv0,2] ∈

∑
τ∈Zν (Gτ )0 +∑

1≤k≤m
∑
τ∈Zν (Vkτ )0, so the Jacobi identity implies that

[vs, vrσ,−ns ] =
1
z

[vs, fns , b
′v0,1 + bv0,2]

=
1
z

([[vs, fns ], b
′v0,1 + bv0,2] + [fns , v

s, b′v0,1 + bv0,2])

=
a2

z
([[vs3, f3], b′v0,1 + bv0,2] + [fns , v

s, b′v0,1 + bv0,2])

≡ a2

z
[[vs3, f3], b′v0,1 + bv0,2]

(
mod

∑
τ∈Zν

(Gτ )0 +
∑

1≤k≤m

∑
τ∈Zν

(Vkτ )0

)
.

We have the following congruences modulo
∑
τ∈Zν (Gτ )0+

∑
1≤k≤m

∑
τ∈Zν (Vkτ )0:(

−za′

a2
+

ya

a3a1

)
[vs, vrσ,−αns ]≡ −za

′

a2
[vs, vrσ,−αns ] +

ya

a3a1
[vs, vrσ,−αns ]

≡ [a′[f3, v
s
1] + a[f4, v

s
2], b′[f3, v

r
σ,3] + b[f4, v

r
σ,4]] ∈ D.

For types other than F4, we first note that C[f`, vs` ] = C[fns , v
s]. We have

[vs, vrσ,−ns ] ∈ [vs, [fns , (Vrσ)0]] = C[vs, [fns , [f`, v
r
`,σ]]]

⊆C[[vs, fns ], [f`, v
r
`,σ]] + C[f, vs, [f`, vr`,σ]]

⊆C[[f`, vs` ], [f`, v
r
`,σ]] + C[fns , v

s, [f`, vr`,σ]].

Now we are done using (vi).
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(viii), (ix) Use the same argument as in [You, Lemma 2.5].
(x) We fix p, q ∈ Jm and γ, δ ∈ Z and show that

[ei, D
p,q
γ,δ] = [fi, D

p,q
γ,δ] = 0; 1 ≤ i ≤ `.

We know that Vpγ , V
q
δ are G-modules, so for n` + 1 ≤ j ≤ `, [fj , v

p
γ,j ] ∈ (Vpγ )0 and

[fj , v
q
δ,j ] ∈ (Vqδ )0, therefore [ei, fj , v

p
γ,j ] = 0 and [ei, fj , v

q
δ,j ] = 0 for 1 ≤ i ≤ n`,

which together with the Jacobi identity implies that

[ei, D
p,q
γ,δ] = [fi, D

p,q
γ,δ] = 0; 1 ≤ i ≤ n`.

Therefore it remains to prove that

[ei, D
p,q
γ,δ] = [fi, D

p,q
γ,δ] = 0; n` + 1 ≤ i ≤ `.

We first consider type F4. In this case the only simple short roots appearing in
our fixed basis are α3, α4. Therefore it is enough to show that [ei, D

p,q
γ,δ] = 0 for

i = 3, 4. Using the Jacobi identity, the Claim and (3.21), we have

[e3, D
p,q
γ,δ] = [e3, [a′[f3, v

p
γ,3] + a[f4, v

p
γ,4], b′[f3, v

q
δ,3] + b[f4, v

q
δ,4]]]

= (a′′3a
′ + b′′3a)[vpγ,3, b

′[f3, v
q
δ,3] + b[f4, v

q
δ,4]]

− (a′′3b
′ + b′′3b)[v

q
γ,3, a

′[f3, v
p
δ,3] + a[f4, v

p
δ,4]]

= (a′′3a
′ + b′′3a)b[vpγ,3, [f4, v

q
δ,4]]− (a′′3b

′ + b′′3b)a[vqγ,3, [f4, v
p
δ,4]]

= 0.

Also

[e4, D
p,q
γ,δ] = [e4, [a′[f3, v

p
γ,3] + a[f4, v

p
γ,4], b′[f3, v

q
δ,3] + b[f4, v

q
δ,4]]]

= (a′′4a
′ + b′′4a)[vpγ,4, b

′[f3, v
q
δ,3] + b[f4, v

q
δ,4]]

− (a′′4b
′ + b′′4b)[v

q
γ,4, a

′[f3, v
p
δ,3] + a[f4, v

p
δ,4]]

= (a′′4a
′ + b′′4a)b′[vqγ,4, [f3, v

q
δ,3]]− (a′′4b

′ + b′′4b)a
′[vqγ,4, [f3, v

p
δ,3]]]

= 0.

Using (R9) together with (2.13), we get

(5.6) [vp, vq±j ] = [vq, vp±j ]; n`+1 ≤ j ≤ ns.

We note that in the cases under consideration, (Vqγ)0 is a one-dimensional subspace
of Vqγ . Let n` + 1 ≤ i ≤ `. Then there is x ∈ C such that

x[fi, v
q
γ,i] = [f`, v

q
γ,`] and x[fi, v

p
δ,i] = [f`, v

p
δ,`].
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Now using Propositions 3.3 and 3.1(iii), and (5.6), we have [fns , v
p
δ , v

q
γ,i] =

[fns , v
q
γ , v

p
δ,i]. This together with the Jacobi identity implies that

[ei, [f`, v
p
δ,`], [f`, v

q
γ,`]] = [[fns , v

p
δ ], [ei, [fns , v

q
γ ]]]− [[fns , v

q
γ ], [ei, [fns , v

p
δ ]]](5.7)

= x[[fns , v
p
δ ], [ei, [fi, v

q
γ,i]]− x[[fns , v

q
γ ], [ei, [fi, v

p
δ,i]]

= x[[fns , v
p
δ ], [[ei, fi], v

q
γ,i]]− x[[fns , v

q
γ ], [[ei, fi], v

p
δ,i]]

= 2x[[fns , v
p
δ ], vqγ,i]− 2x[[fns , v

q
γ ], vpδ,i]

= 2x([fns , v
p
δ , v

q
γ,i]− [vpδ , fns , v

q
γ,i]

− [fns , v
q
γ , v

p
δ,i] + [vqγ , fns , v

p
δ,i])

= 2x(−[vpδ , fns , v
q
γ,i] + [vqγ , fns , v

p
δ,i]).

Now if α` − αi is not a short root then [fns , v
p
δ,i] = [fns , v

q
γ,i] = 0 and so we are

done, otherwise there are n` + 1 ≤ k ≤ ns and y ∈ C such that

[fns , v
p
δ,i] = yvpδ,±k and [fns , v

q
γ,i] = yvqγ,±k.

This together with (5.7), Propositions 3.3 and 3.1(iii), and (5.6) implies that

[ei, D
p,q
γ,δ] ∈ C[ei, [f`, v

p
δ,`], [f`, v

q
γ,`]] = C(−[vpδ , v

q
γ,±k] + [vqγ , v

p
δ,±k]) = 0.

Using the same argument as above, one can show that

[fi, D
p,q
γ,δ] = 0.

(xi) Let i ∈ J` and γ, δ ∈ Zν and fix j ∈ J`, r ∈ Jm and a ∈ Jν . We need to
prove

[ej , [hi,γ , hi,δ]] = [fj , [hi,γ , hi,δ]] = [h±j,a, [hi,γ , hi,δ]] = [vp, [hi,γ , hi,δ]] = 0.

Using the Jacobi identity together with Proposition 3.4(ii), we have

[ej , [hi,γ , hi,δ]] = [hi,δ, hi,γ , ej ]− [hi,γ , hi,δ, ej ] = αj(hi)([hi,δ, ej,γ ]− [hi,γ , ej,δ])

= (αj(hi))2(ej,γ+δ − ej,γ+δ) = 0.

The proof for the second term is similar and for the last one it is immediate using
Proposition 3.4(vi). Now it remains to prove [h±j,a, [hi,γ , hi,δ]] = 0. For this we first
prove [h±i,a, h

±
i,b, hi,δ] = 0 for all b ∈ Jν . Fix b ∈ Jν and use Proposition 3.4(v),(iii)

to get

[f±i,a, h
±
i,b, hi,δ] = 2[f±i,a, [e

±
i,b, fi,δ]− hi,δ+γ±b ] = 2[f±i,a, [e

±
i,b, fi,δ]]− 4fi,δ+γ±a +γ±b

= 2[fi,δ, e±i,b, f
±
i,a]− 2[e±i,b, fi,δ, f

±
i,a]− 4fi,δ+γ±b +γ±a

= 2[fi,δ, e±i,b, f
±
i,a]− 4fi,δ+γ±b +γ±a

.
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But again using Proposition 3.4(v),(iii), we obtain

2[fiδ, [e±i,b, f
±
i,a]] = 2[fiδ, [e±i,b, fi,γ±a ]] = [fi,δ, [h±i,b, h

±
i,a]] + 2[fi,δ, hi,γ±a +γ±b

]

= [h±i,a, h
±
i,b, fi,δ]− [h±i,b, h

±
i,a, fi,δ] + 4fi,γ±b +γ±b +δ

=−2[h±i,a, fi,δ+γ±b ] + 2[h±i,b, fi,δ+γ±a ] + 4fi,γ±b +γ±j +δ

= 4fi,δ+γ±a +γ±b
− 4fi,δ+γ±a +γ±b

+ 4fi,γ±b +γ±a +δ = 4fi,γ±b +γ±a +δ.

Therefore
[f±i,a, h

±
i,b, hi,δ] = 0

and so by (3.16), the Jacobi identity and the first part of the proof, we have

[h±i,a, h
±
i,b, hi,δ] = [[ei, f±i,a], h±i,b, hi,δ]

= [ei, f±i,a, h
±
i,b, hi,δ]− [f±i,a, ei, h

±
i,b, hi,δ] = 0− 0 = 0.

Now using Proposition 3.4(iv), the information obtained and the fact that (3.1) is
a generating set for the Lie algebra, one can conclude that [h±j,b, hi,δ] ∈ Z(L̃) for
all b ∈ Jν . Similarly one can get [h±j,b, hi,γ ] ∈ Z(L̃). Therefore the Jacobi identity
implies that

[h±j,a, [hi,γ , hi,δ]] = [hi,γ , [h±j,a, hi,δ]]− [hi,δ, [h±j,a, hi,γ ]] = 0.

This completes the proof.
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