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Non-negativity of the Fourier Coefficients of Eta
Products Associated to Regular Systems of
Weights
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Abstract

We prove Saito’s conjecture [9, Conjecture 13.5] about the non-negativity of the Fourier
coefficients of the eta products associated to regular systems of weights.
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81. Introduction

Let W be a regular system of weights (see Section [2] for the definitions). Let n(7)

be the Dedekind eta function. In [9], Kyoji Saito introduced an integer vy and a

holomorphic function ny (7) on the upper half plane ). The function ny (7) is a

finite product of functions of the form 7(a7)? for some integers a,b with a > 1.
In [9], Saito made the following conjecture:

Conjecture 1.1 ([9, Conjecture 13.5]). Let W = (a,b,c,h) be a regular system
of weights. Then for any integer v, all the coefficients in the gq-expansion of
n(ht)’nw (1) are non-negative if and only if v < vy .

The aim of this paper is to prove the following theorem.
Theorem 1.2. Conjecture[11] is true.

Notation. In this paper we use the following notation. Let Z, Q and C denote
the ring of rational integers, the field of rational numbers, and the field of com-
plex numbers, respectively. For an integer a € Z, we let Z., C Z denote the
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subset of the integers smaller than a. For integers ai,...,a, € Z, we denote by
ged(aq, ..., ar) (resp. by lem(aq,. .., a,)) the greatest common divisor (resp. the
least common multiple) of aq, ..., a,.

§2. Eta products associated to regular systems of weights

We recall the notion of regular systems of weights, which was introduced by Kyoji
Saito [8], and the definition of ny (7) and vy in the statement of Conjecture

A regular system of weights is a quadruple W = (a, b, ¢, h) of integers a,b,c, h
€ Z satisfying the following two conditions:
(1) 1 <a,b,c < h.
(2) The rational function
p (Th=T)(T" —T°)(T" —T)

(Te —1)(T? —1)(Tc - 1)

xw(T)=T"

belongs to Z[T,T1].
According to [9, Section 1], we say that a regular system W = (a, b, ¢, h) of weights
is primitive if it satisfies the following two conditions:
(3) ged(a,b,c,h) = 1.
4 Ifhe{a+bb+c,a+chthena+b+c=h+1

For a regular system W = (a,b,c,h) of weights, we use the notations uy,
ew(A) of [9]. Let us briefly recall them. We put

(h—a)(h—="b)(h—c¢)
abe ’

pw =

It was shown in [8, (1.3) Theorem 1] that uw is a positive integer and that there

exist integers mi, ..., my,, such that xw(T') = 352 T™. We let ow (A) denote
the polynomial
rw
pw(N) = [J(A = eEmmav=iim),
j=1

It was shown in [9, Section 2] that all the coefficients of ¢y (A) are integers. Hence
for each d|h with d > 1, there exists a unique integer ey (d) such that

ow () = H (/\d _ 1)ew(d)-
d>1,d|h

Let § = {7 € C | Im7 > 0} be the complex upper half plane. For a € Q, let ¢* de-
note the holomorphic function 7 — €27V=17 on §. Let () = ¢'/?* [[>:(1—¢")
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be the Dedekind eta function. We define the holomorphic function nw (7) to be
the product
m(r) = ] nldr)@.
d>1,d|h
We define the integer vy as the sum

vw =— Y dew(h/d).
d>1,d|h
We easily see that, for each regular system W of weights, there exists a prim-
itive regular system W’ of weights and a positive integer d such that ny (1) =
nw (d7). Therefore, in the proof of Theorem [1.2] we may assume that W is prim-
itive.

83. A classification of primitive regular systems of weights

Let W = (a,b,c, h) be a primitive regular system of weights. As is remarked in [8]
(1.6)], for any = € {a,b,c}, there exists y € {a,b,c} such that = divides h — y. If
we choose such a y for each = € {a,b,c}, then we have a map ¢ from {a,b, c} to
itself which sends x to y. We say that we are in case i if we can choose the map ¢
so that the image of ¢ has cardinality ¢. By permuting a, b, ¢ if necessary, we may
assume without loss of generality that we are in one of the following seven cases:
Case 1: lem(a,b,¢) | (h —a) and ged(b,c) = 1.
Case 2a: lem(b,¢) | (h —a), a|(h —b) and ged(b,¢) = 1.
Case 2b: lem(a,c¢)|(h —a) and b| (h — ).
Case 2c: lem(a,b) | (h—a) and ¢|(h —b).
Case 3a: lem(a, b, c) | h.
Case 3b: b|(h —a), a|(h—b) and ¢| (h — ¢).
Case 3c: ¢|(h—a), a|(h—>0) and b|(h —¢).
Here we explain the reason why the equality ged(b, ¢) = 1 holds in case 1. Suppose
that we are in case 1 and that ged (b, ¢) = d > 1. Let ¢ € C be a primitive d-th root
of unity. The denominator (7% —1)(T® — 1)(T¢ — 1) in the definition of xw (T) has
vanishing order at least 2 at T = ¢, while 7" — T has vanishing order 1. Hence
Th —T? or T" — T° must have a zero at T = ¢, which implies that d divides h — b
or h — c. Since d divides b, ¢ and h — a, it follows that d divides a, b, ¢ and h.
This gives a contradiction. We can check the equality ged(b,¢) = 1 in case 2a by
a similar argument.

We also mention without proof that the converse is true in the following sense,
although we will not use it: if four integers a, b, ¢, h are in one of the seven cases
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above, and if they satisfy conditions (1), (3) and (4) in the definition of a primitive
regular system of weights, then W = (a,b,c, h) is a primitive regular system of
weights.

§4. A formula for n(h7)"Wnw (1)

Let H; denote the set of holomorphic functions f on $) satisfying the following
property: f is not identically zero and there exists an integer m > 1 such that
[ is written as f(7) = > s ang™'™ with a, € Z, a,, > 0 for all n € Z. Let
Hﬁ)r C H. denote the subset of the functions f = En>>7oo
limy, 00 @p/ n* = 0 for some k > 1. The set H, forms a multiplicative monoid and

anq™'™ € H, satisfying

HY is a submonoid of Hy. The complement H, \ HY is an ideal of H in the
following sense: if f € H \ HY and g € H, then fg € H, \ H}. In fact, let f,g
in Hy and write f =3 o ang™™ and g = Yoo bng™'™ . Take an integer
ng such that b,, > 0. Then the coefficient of q"/m"’”o/m/ in the g-expansion of fg
is larger than or equal to a,by,, for each n. Hence f ¢ HJOr implies fg & Hﬂ.

For an integer a > 1, we put

From the well-known relation between 7, (7) and the generating function of the a-
cores ([3l, (2.1)], originally due to [7]) or Klyachko’s identity ([6], see [3, Section 2]

and [5] for different proofs), we see that 7, (7) € H}. For integers oy, ..., 0y, > 1
such that lem(ay, ..., a,,) divides h, we put
b T T fay)

Mar,...,cm;h] (T) = 77(7_)

For a regular system of weights W = (a, b, ¢, h), we put

fap,n = Nged(a,p,n) (h7/ged(a, b, 1)),
fo.en = Ngcd(b,c,h) (h7/ged(b, ¢, b)),
fa,e,n = Nged(a,e,n)(h7/gcd(a, ¢, h)).
Lemma 4.1. Let W = (a,b,c, h) be a primitive reqular system of weights.

h—a h—a
lem(a,b) plcm(a,c)

1) In case 1, we have n(ht)*Vnw (1) = Javn Taen " Manl (7).

h—a—b

flcm(a,b)

2) In case 2a, we have n(ht)"Wnw (1) = ab.h (7).

(1)

(2)

(3) In case 2b, we have n(h7)"Wnw (1) = fﬁ% m&%n[a?b;h} (7).
(4)

a,c,h

h—a
Tem(a,b)

4) In case 2¢, we have n(ht)"Wnw (1) = Faon " Mash) (7).
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h h h
(5) In case 3a, we have n(hr)" nw (1) = fo3" foen ™ faren ™ Mab,en) (7)-
h—a—b

(6) In case 3b, we have n(h7)"W nw (1) = flfgr,‘;l“’“ Niesn) (7).

a

(7) In case 3c, we have n(hT)"Wnw (1) = np(7).

Before giving a proof of Lemma we need some preparation. For f €
Q[T, T~ let Siyy C Q[T,T7'] denote the multiplicative set of the elements
g € Q[T, T~] such that f and g have no common zero in C except for T' = 0.
Let Q[T,T~!](s) denote the localization of Q[T',T~'] with respect to S(s). Then
the canonical homomorphism Q[T,T~!] — Q[T,T~!] () induces an isomorphism

QIT, T~1/(f) = QIT, T~/ (f) of residue rings.

Sublemma 4.2. Let i > 1 be a positive integer and let n be a non-zero integer.
Then ;n:ll is in Q[T, T‘l](Ti,l), and

T —1  ged(i,n) T -1

Tn — 1 n ’ Teed(in) — 1 mod (T o 1)
Proof. Since TT_i,f_ll =-T". %, we may assume that n > 1. Put d = ged(4, d).
i i d n
We have %“n:11 = %ﬂd:i . ;nj Since gdj =774 ... 47941 we have
-1 n .,
Hence % € Sipa_yy and gij = % mod (7% —1). The Q—lineay map
Q[T, T_l](Td,_l) — (@[T, T_l](Tiil) which sends f S Q[T, T_l](Td_l) to % : f
induces a Q-linear map Q[T, T~ za_q)/(T4 — 1) — Q[T, T (i_1)/(T" — 1).
Hence the claim follows. O

Sublemma 4.3. Leti > 1 be a positive integer and let dy, ds be positive divisors
of i. Then
TP -1 T'—1 _ i T -1
le -1 sz -1 B lcm(dl,dg) Tng(d17d2) —1

mod (T% —1).

Tdz 1 Tdi—1 Tdz2—1°

Proof. We have L =L = L =L . T1=1 e put d = ged(i,d). By Sublemma
the element % is in Q[T, T~ "] (pa, 1y and

T4 -1 d THh -1
Td>—1 " dy Td-1

mod (T% —1).

Hence )
Tt —1 i T

1
= : d (7% —1).
T 1= Tom(drdy) Ti—1 "od( )
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The Q-linear map Q[T, T '|ga_yy — Q[T, T '(pi_yy which sends f €
QIT, T~ (par 1) to % -f induces a Q-linear map Q[T', T~ a, 1) /(T4 —1) —
Q[T, T~ (ri—1)/(T*" — 1). Hence the claim follows. O

Proof of Lemma , Let W = (a,b,c, h) be a primitive regular system of weights.
By Sublemma [4.2] we have
Th —T*  ged(x, h) Th —1
Te—1 ~— x  Tedwh) 1

— 1 mod (Th—l)

for x € {a,b, c}. Hence xw (T) is congruent modulo (7" — 1) to

( ged(a,h)  Th—1 1) (gcd(h hy Th-1 1>

a Tgcd(a,h) -1 - b Tgcd(b,h) —1

h _
" ged(e,h)  Th -1 1)
c Tecd(e,h) — 1

By Sublemma we have

Th —1 . T -1 _ h - ged(x,y, h) . Th —1 mod (T" — 1)
Teed(xh) — 1 Teedly:h) —1 7 ged(x, h) ged(y, h) Teedl@yh) — 1
for z,y € {a,b,c} and
T -1 ™ -1 T -1
Tecd(a,h) _ 7 ’ Tged(b,h) _ 1 ' Teed(a,h) _ q
h? Th -1
= : d (T —1).
ged(a, h) ged(b, h) ged(e,h) T —1 mod ( )
Hence
h?> Th —1  hged(a,b,h) Th—1
4.1 T = — — Tl
( ) XW( ) abe T —1 ab Tged(ab,h) _ 1
hged(b, c, h) Th —1 hged(a,c, h) Th -1
- be Tecd(b,e,h) 1 - ac Tecd(a,c,h) _ 1
N ged(a,h)  Th—1 ged(b,h)  Th—1

a Tgcd(a,h) -1 + b Tgcd(b,h) -1
ged(e,h)  Th—1
+ c Teed(e,h) — 1

—1mod (T" —1).

This implies

h?  hged(a,b,h)?  hged(b,e,h)?  hged(a,c, h)?
- — + +
abe ab be ac
ged(a,h)?  ged(b,h)?  ged(c, h)?
B a B b Bl c .

(42) vw =
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We note that each coefficient on the right hand side of is a rational
number and may not be an integer. In each of the seven cases listed in Section [3]
we can rewrite the right hand side of in such a way that each term has
coefficients in Z, and then the claim of Lemma[4.1] follows from this new description
of xw(T) mod (T" — 1). In the next two paragraphs we explain the details in case
3a and case 3b, which gives proofs of the claims (5) and (6). The other five claims
can be proved in a similar manner and the details are left to the reader.

Suppose that we are in case 3a. We have ged(a,h) = a, ged(b,h) = b,
and ged(e,h) = c. Hence ged(a,b,h) = ged(a,b), ged(b,ec,h) = ged(b,c), and
ged(a, e, h) = ged(a, ¢). By and we have

h? Th —1 h Th —1 h Th —1
4.3 T = — — —
(43) xw(T) abc T—1  lem(a,b) Teed(@bd) — 1 lem(b, ) Teedbe) — 1
__h Th -1 +Th—1+Th—1+Th—1
lem(a,c) Teed(ac) —1 = Ta—1  Tb—-1 Tec—1
— 1 mod (T" —1)
and
h? hged(a,b)  hged(b,c)  heged(a,c)
vy =———a—b—c
abe lem(a, b) lem(b, ¢) lem(a, ¢)

We note that every term on the right hand side of (4.3]) has coefficients in Z. Hence
()\h _ 1)h2/abc()\h/a _ 1)(>\h/b _ 1)(>\h/c _ 1)

w(A) = ; ;
14 ( ) ()\gcdéa,,b) _ 1)1cmén,,b) ()\gcd?b,c) _ 1)lcln?b,c) ()\gcdéla,(:) _ l)lcm?a,(:) ()\ _ 1)

and

() n(hr)"/ ey (hr fa)n(hr [b)n(hr /<)

wiT) = h h h :

ht Tem(a,b) ht cm(b,c hTt cm(a,c
n(gcd(a,b))l ( b)n(gcd(b,c))l ¢ )n(gcd(a,c))1 ( )77(7_)

Therefore

h h h
M) (7) = ST FET P M (7)
Suppose that we are in case 3b. We have ged(a, h) = ged(b, h) = ged(a, b) and
ged(e, h) = ¢. Hence ged(a, b, h) = ged(a,b) and ged(b, ¢, h) = ged(a, ¢, h) = 1. By

(4.1) we have
R Th -1 h T —1 hTh—1 h Th-1

1.4 =" - 2 L
44 xw(T) abc T—1 lem(a,b) Teedl@d) -1 be T—1 ac T—1
ged(a,b)  Th—1 ged(a,b)  Th—1 Th —1

Tecd(ab) _ 1 b Tecd(ab) — 1 + Tec —1 -1

h(h—a—b) T -1 h—a—-b Th—-1 Th —1 N
= — -1 d(T" -1
abc T—-1 lem(a,b) Teed(ab) —1 e mod ( )
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and

h(h—a—5b) (h—a—b)ged(a,b)
abe lem(a, b)
We note that every term in the last line of (4.4) has coefficients in Z. Hence

—c+h.

Vw = —

()\h _ 1)h(h7a7b)/abc(>\h/c _ 1)
pw(A) = (\i/ged(@b) — 1)(h—a—b)/lem(@b) (x — 1)

and h(h—a—b)/ab
o () = 1) (hmamb)/aben(hr /c)
n(ht/ged(a, b)) (h=a=b)/lem(ably ()’
Therefore -
n(hr)"Yw (1) = foon” Men) (7)- O

Proposition 4.4. Let r > 2 and let ay,...,a, > 1 be positive integers satisfying
ged(a,a5) =1 for 1 < i < j < max(r —1,2). Put h = H§:1 a;. Then the eta
product

n(hT)H;'zl(ajfl)

MNai,...,ar (T) = _
et ey 1((@ey a)m) 07
belongs to H?r. Here we understand Hjet, aj =1 for J =0.

Proof. We proceed in a manner similar to [I, Section 3]. If a; = 1 for some j, we
easily see that 74, .. q,) = 1. We assume a; > 2 for all j. If r = 2, we may assume

without loss of generality that ay is odd. We put h' = H;;i a;. Let

M={jeZ|1<j<h/2 a;ftjfori=1,...,r—1}.

Then
n(al,“.,ar}(’r)
_ arj(n—1)h 1— g—ard nh)
_ b/24 ( ’ ’ ar—2 (1-q"7q )( q q
=4q M, (W' T)n(h'7)n(h7) o VT —— )
]IJM };[1 (1—qign=DM)(1 —g=igmh")

where b = (h— (=1)") [j_, (a; — 1) — h(2a, — 2). Hence the claim follows from [T}
Theorem 1.2]. O

85. Proof of Theorem [1.2

In this section, we prove Theorem [I.2] assuming the following theorem, whose proof
will be given in Section [6.3]

Theorem 5.1. Let h > 1 be an integer.

(1) For any a > 1 dividing h, we have ;g (7) € HY.
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(2) For any a,b > 1 such that h > max(a,b) and lem(a,b) divides h, we have
Na,bin) (T) € HS)F-

(3) Let a,b,c > 1 be three integers such that lem(a, b, ¢) divides h. Suppose that
there exist o, 3,y € Z satisfying o Z 3 mod m, 8 # v mod %, and
a # v mod —2—. Then Ma,b,e;n] (T) € HE,

lem(a,c) *

Corollary 5.2. Let W = (a,b, ¢, h) be a primitive reqular system of weights. Then
n(ht)"Wnw(r) € HY.

Proof of Corollary[5.3. If lem(a, b, ) f h, then the claim follows immediately from

Lemma [4.1| and Theorem Thus we may assume that lem(a, b, ¢) | h.
h h

First suppose that all of are greater than one and

Tem(a,b) > Tem(b,c) * Tem(a,c
max(lcm(a)b), lcm}(Lb,c)7 lcm}(la,c)) > 3(. B)y per(rm)lting (a, li,c if necessary, we may as-
sume that m > 3. Then the claim follows from Lemma 5) and Theo-
rem [5.1f(3) for (a, 3,7) = (—1,0,1).

Next suppose that min(lcm’(la,b), lcm}(Lb,c)’ lcm?a,c)) = 1. In this case, we have
h = lem(a,b,c). We may assume that h/lem(a,b) = 1. We put d = ged(a,d),
a =a/d, V' =0b/d, o} = ged(a,c), and b} = ged(b, ¢). We have h = a'b'd. Since
ged(a, b, ¢) = ged(a, b, ¢, h) = 1, any two of d, a}, and b} are relatively prime. Hence
the quotients a), = a'/a} = a/(da}) and by = V' /b) = b/(db}) are integers and we
have a} b} = ged(ab, ¢). Since ¢ divides h and h divides ab. we have a{b} = c. Since

we are in case 3a and since lem(a, ¢) = ac/a) = a’bjd and lem(b, ¢) = be/b) = ajV'd,
it follows from Lemma [£.1](5) that

’ b/
D7) 1w (T) = fabnfyoon FarenMab.en) (T)-

Since

fap,nfo.enfare.nMab,esn) (T)
n(hr)" == (a'7)n (b7 )n(ahbdr)
n(7)
n(hr)(@ DO =Ddrar+bi—aibiy (/)b 1)y (ahbydr)
n(T)n(a’t'T)n(a’bydr)n(ast/dr)
Cp(hr) (@ =D =D =@ =D Dy (o) (br)n(abbhdr)

= na(a’'7)m, (a'bydr )14y (a5b'dT) -

= e (7) H(@r (@i dr)
n(hr)* Patest = by (a7 yn(br)n () by dr)
— 7 NN d .
MNa' b ,d) (T)n(al,b17a2b2)( ) n(a/ldT)n(blldT>

= M(ar b,y (T) a1 at by (AT)Magbs b sa ) (@1 AT ) Mararny) (D1 AT,
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we have

v ah—1
(5.1) n(h)"Ww (1) = fo2n achn< v,y (Tt b sas by (A7)
X n[aébé,b/;a’zb’](a’ldT)n[a’;a/b/z](blldT)'

Hence if a}, > 2 and b} > 2, then n(h7)""nw (r) € H) by Proposition and
Theorem Interchanging the roles of a and b, we see that n(hr)""nw (1) € HY
ifa] > 2and by > 2. If af = af, = 1 (vesp. b} = by, = 1), then h = b (resp.
h = a), which is a contradiction. If a5 = by = 1, then 9 v arpr) = Maybybrsayb] =
Mariary] = 1. It follows from that n(h7)""nw (1) = Narp,a) (7). Hence
n(h7)"Wnw(r) € H} by Proposition If af = b) = 1 and a,by > 2, then
ab =d, by =1 and fo.eh = faeh = Mal, by albl) = 1. It follows from that

N(h)"Vnw (1) = Nar b ,a) (T)Marvr b0t (AT ) Narae) (dT)
n(hr) (@ =D =1 d=1)
— n(m)n(a'T) ')~y (dr) " tn(ar)n(br)n(a’ b T)n(hr)
n(ar)  n(hr)”"=n(br)
n(hr)" n(dr)
_ p(hr)@ DO Dy (g (b'r)
n(T)n(a’b'r)
= M[a,b;h] (T)Ud(a/b,T)-

Hence n(h7)"Wnw(7) € HY by Theorem .(2

Next suppose that lcm}(La 5= lcm(b g = lcm}(La g = 2. Then h =2 -lecm(a, b, c).
We put af = lem(a,b,c)/a, by = lem(a,b,c)/b, and ¢§ = lem(a,b,c)/c. Then
ged(a, b)) = ged(bh, ch) = ged(ak, c5) = 1 and lem(a, b, ¢) = asbsch. Tt follows
from Lemma 5) that

U(hT)VW nw (T) = fs,b,hflic,hfg,c,hn[a,b,c;h] (T)

Since

fa,b,hfb,c,hfa,c,hn[a,b,c;h] (T)
()" (2a (2 r)n(2c4T)
n(r)

= MNe}, (2a3b37)77b' (2‘13637)% (2b303 ) -
_ p(hr)hmambmetai ity (0aL mn(2b4T)n (24 7)
n(T)n(2azb57)n(2b5¢57)n(205¢57)
n(ht)"/?n(27)
n(r)

= Nal by.c4) (27) - = Nay,by.cy) (2T) My 250) (T),
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we have

N(hT)"nw (T) = fab,nfo.ehfaeniag by,el) (2700 201 (T)-

Hence n(h7)""nw(r) € HY by Proposition and Theorem 1). This com-
pletes the proof. O

Proof of Theorem[I.9. The “if” part follows from Corollary[5.2] Let W be a regular
system of weights. To prove the “only if” part for W, it suffices to prove that
n(h7)""w iy (1) € H,y. Assume that n(h7)""+iny (1) € Hy. The asymptotics
p(n) ~ e”\/m/(éln\/g) of the partition function p(n) (see [], [I0]) shows that
n(hr)~" € HL\HY. Hence n(hr)""nw (1) = n(ht) =t n(ht)"" oy (1) € HL\HY.
This gives a contradiction. Thus n(h7)*w ny (1) & H,. O

§6. Proof of Theorem

86.1. AP-coverings

An AP-subset is a subset L C Z of the form L = a + bZ for some a,b € Z with
b > a > 0. The integers a, b are uniquely determined by L and are denoted by a(L),
i(L), respectively. For an AP-subset L, let ¥, : Z — Z denote the unique order-
preserving injection whose image is equal to L and which sends 0 € Z to a(L). An
AP-covering of Z is a family £ = {L;};es of AP-subsets satisfying Z =[], ; L;.

We put E(q) = ¢~ "/**n(r) =[5, (1 —¢").
Proposition 6.1. Let £ = {L;};cs be an AP-covering of Z. Then the function
_ HjeJ E(qi(Lj))

E(q)

belongs to Hy. Moreover if J is a finite set, then Eg(T) belongs to H?r,

Eg(r)

We make the following conjecture which generalizes Proposition [6.1

Conjecture 6.2. Let J be a finite or countable set. Suppose that for each j € J a

itive i s ai [es E(@™9)
positive integer m; > 1 is given such that ZjeJ 1/m;<1. Then %T €H,.

1/m; =1, then Hyes P77) o HY.

Moreover, if J is a finite set and F0)

jeJ
We note that Corollary [5.2]is an immediate consequence of Lemma [4.1] if we
assume Conjecture [6.2]
86.2. Maya diagrams

We prove Proposition by using the notion of Maya diagrams. Our argument
can be regarded as a generalization of the argument in [3, Section 2]. A Maya



560 S. YASUDA

diagram (cf. [2, §4.1]) is a subset S C Z such that z € S for z < 0 and = ¢ S
for x > 0. A Maya diagram S is said to be of minimum energy if there exists
a € 7Z such that S = Z_,. We say that two Maya diagrams S, S’ are equivalent
if $ =S + x for some z € Z. Let S be a Maya diagram and take a subset S’ of
S N Z«o whose complement (S NZ<g)\ S’ is a finite set. The integer

co(S) =4S\ S') = #(S\ Z<o)

depends only on S and is independent of the choice of S’. We call the integer e(.S)
the charge of S. A Maya diagram S is said to be of charge zero if ¢(S) = 0. For a
Maya diagram S, we let ST denote the unique Maya diagram of minimal energy
with ¢(S) = ¢(ST). Explicitly ST = Z_(s). For any Maya diagram S, there exists
a unique Maya diagram, which we denote by S, of charge zero which is equivalent
to S, since ¢(S + ) = ¢(S) + « for z € Z.

Let S be a Maya diagram and take a subset S’ of SN St whose complement
(SN ST\ S is a finite set. The integer

e(S)= > y— >y

yeSsS\s’ yeST\S’

depends only on S and is independent of the choice of S. We call it the energy
of S. Tt follows immediately from the definition that e(S) > 0, and equality holds
if and only if S = ST. For each integer n > 0, there exists a canonical one-to-one
correspondence between the partitions of n and Maya diagrams S of charge zero
with e(S) = n. For a given Maya diagram M = {my, ma,...} with m; > mg > ---
of charge zero with e(S) = n, the corresponding partition of n is given as follows.
For i = 1,2,... we put n; = m; +i. We have n;y > ny > --- and n; = 0 for
1> 0. Let » > 0 denote the smallest non-negative integer such that n;;; = 0.
Then n =ny + --- + n,, which gives the partition corresponding to M. Hence

(6.1) Bl = > ¢,

SeMayal
where Maya® denotes the set of Maya diagrams of charge zero.

Proof of Proposition . Let £ = (Lj)jes be an AP-covering of Z. Let S be a
Maya diagram. For each j € J, the inverse image 1/12]_1(5) is also a Maya diagram.
We say that S is £-reduced if z/JZJ_l(S ) is of minimum energy for every j € J. For a

Maya diagram S, we let S¢ denote the unique Maya diagram which is £-reduced
and c(ng1 (9)) = c(wzjl(Sg)) for every j € J. Explicitly,

Se = [T v, (w5 (S)).

jeJ
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Since 1/);1 (Z<o) = Z<o, it follows from the definition of ¢(S) that ¢(S) =
dies C(QZJZ;(S)) Hence ¢(S) = ¢(Se).

We let Maya% denote the set of £-reduced Maya diagrams of charge zero.
Let

Fg : Maya’ — Maya% X H Maya’
jeJ
denote the map which sends S € Maya” to (Se, ((wzjl(S))b)jeJ). We claim that
Fyg is bijective. For S = (', (S;)jes) € Mayal x [Les Maya®, we put
Ge(8) = [T vr, (S5 + cw ) (5)),
jeJ
which is a Maya diagram. We have
_ ) —1 / _ —1 ! _ AN
(CalS) = 3 el + e (8) = 3 e} () = efS) = 0.
jeJ jeJ

Hence G¢(S) € Maya’. It is immediate from the definition of Gg that Fg(Ge(S))
= S. For S € Maya’, we have Gg(Fe(S)) = S since (¢ ()" + (v (Se)) =
w;jl(S) or each j € J. Since the map Gg is the inverse of Fg, the map Fg is
bijective.

Let S € Maya” and take a subset S’ of S NS¢ NZ.o whose complement is a
finite set. Then

() —es)=d( > v- X )

JE€J ye(S\S')NL; yE€(Se\S")NL;

:Zi(bj)'( > y— > y)

et yeVYD (\UL [ (5)  ye(wp (Se)\vp (S")
= S i(L)ewr (S):

jeJ
Hence if we put Fe(S) = (Se, (S;);es), then
(6.2) e(S) = e(Se) + Y i(L;)e(S;).

jeJ
Since the map Fg is bijective, it follows from the equalities (6.1) and (6.2) that
E(q)—l _ ( Z qe(s/)) ) H E(qi(Lj))_l-
S’eMaya? jeJ

Hence

Ee(r)= > ¢“eH,.
S’GMaya%
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Let S’ € Maya®. For each j € J we put m; = c(wzil(S’)). Then >, ,m; =0
and e(S’) = 3, (a(Lj)m; +i(L;)m;(m; — 1)/2). Therefore,
Eo(r) = Z g2=i(alLg)my+i(L;)m;(m;=1)/2)
(mj)ies
where the summation is over the systems of integers (m;);es such that m; = 0

for all but finitely many j and }_, m; = 0. Hence E¢(7) € HY if J is a finite set.
This completes the proof. O

§6.3. Proof of Theorem
The claim (1) follows from Proposition for the AP-covering

h
Z=_71 I G+ro).
1<j<h-1
bt
Let a,b,h be as in claim (2). First suppose that 2 > lcm(a,b). Then claim (2)
follows from Proposition [6.1] for the AP-covering

h h
Z=-Z1I|1+ — ] .
- ( + bz)u ]_[ (j +hZ)
1<j<h—1
24,5161
Next suppose that h = lem(a,b). Then ged(a,b) # min(a,b). We put o/ =
a/gcd(a,b), b = b/ged(a,b). Then a’, b’ > 2 and we have

/ /
a’b’—a’—b

Mabin) (T) = Nar brarv) (T) fi o
Hence to prove (2), we may assume that ged(a,b) = 1 and h = ab. Since
n(abr)@=DC=Dp(ar)n(br
Mo (7) = (ab7) (a7)n( )’
n(abr)n(t)
we have 1), p;45(T) € H} by Proposition This proves claim (2).
Let «, 3,7 be as in claim (3). Then it follows from Proposition for the
AP-covering
h h h
Z:<a+Z>H<ﬂ+Z>H(v+Z)H 11 (j + hZ)
a b c .
0<j<h—1
BHG—a), HG—B), 21 —)

that 1 p,e;n) (1) € HE)H which proves claim (3). O
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