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Non-negativity of the Fourier Coefficients of Eta
Products Associated to Regular Systems of

Weights

by

Seidai Yasuda

Abstract

We prove Saito’s conjecture [9, Conjecture 13.5] about the non-negativity of the Fourier
coefficients of the eta products associated to regular systems of weights.
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§1. Introduction

Let W be a regular system of weights (see Section 2 for the definitions). Let η(τ)
be the Dedekind eta function. In [9], Kyoji Saito introduced an integer νW and a
holomorphic function ηW (τ) on the upper half plane H. The function ηW (τ) is a
finite product of functions of the form η(aτ)b for some integers a, b with a ≥ 1.

In [9], Saito made the following conjecture:

Conjecture 1.1 ([9, Conjecture 13.5]). Let W = (a, b, c, h) be a regular system
of weights. Then for any integer ν, all the coefficients in the q-expansion of
η(hτ)νηW (τ) are non-negative if and only if ν ≤ νW .

The aim of this paper is to prove the following theorem.

Theorem 1.2. Conjecture 1.1 is true.

Notation. In this paper we use the following notation. Let Z, Q and C denote
the ring of rational integers, the field of rational numbers, and the field of com-
plex numbers, respectively. For an integer a ∈ Z, we let Z<a ⊂ Z denote the
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subset of the integers smaller than a. For integers a1, . . . , ar ∈ Z, we denote by
gcd(a1, . . . , ar) (resp. by lcm(a1, . . . , ar)) the greatest common divisor (resp. the
least common multiple) of a1, . . . , ar.

§2. Eta products associated to regular systems of weights

We recall the notion of regular systems of weights, which was introduced by Kyoji
Saito [8], and the definition of ηW (τ) and νW in the statement of Conjecture 1.1.

A regular system of weights is a quadruple W = (a, b, c, h) of integers a, b, c, h
∈ Z satisfying the following two conditions:

(1) 1 ≤ a, b, c < h.

(2) The rational function

χW (T ) = T−h · (Th − T a)(Th − T b)(Th − T c)
(T a − 1)(T b − 1)(T c − 1)

belongs to Z[T, T−1].

According to [9, Section 1], we say that a regular system W = (a, b, c, h) of weights
is primitive if it satisfies the following two conditions:

(3) gcd(a, b, c, h) = 1.

(4) If h ∈ {a+ b, b+ c, a+ c} then a+ b+ c = h+ 1.

For a regular system W = (a, b, c, h) of weights, we use the notations µW ,
ϕW (λ) of [9]. Let us briefly recall them. We put

µW =
(h− a)(h− b)(h− c)

abc
.

It was shown in [8, (1.3) Theorem 1] that µW is a positive integer and that there
exist integers m1, . . . ,mµW

such that χW (T ) =
∑µW

j=1 T
mj . We let ϕW (λ) denote

the polynomial

ϕW (λ) =
µW∏
j=1

(λ− e2πmj

√
−1/h).

It was shown in [9, Section 2] that all the coefficients of ϕW (λ) are integers. Hence
for each d |h with d ≥ 1, there exists a unique integer eW (d) such that

ϕW (λ) =
∏

d≥1, d|h

(λd − 1)eW (d).

Let H = {τ ∈ C | Im τ > 0} be the complex upper half plane. For a ∈ Q, let qa de-
note the holomorphic function τ 7→ e2πa

√
−1τ on H. Let η(τ) = q1/24

∏
n≥1(1− qn)
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be the Dedekind eta function. We define the holomorphic function ηW (τ) to be
the product

ηW (τ) =
∏

d≥1, d|h

η(dτ)eW (d).

We define the integer νW as the sum

νW = −
∑

d≥1, d|h

deW (h/d).

We easily see that, for each regular system W of weights, there exists a prim-
itive regular system W ′ of weights and a positive integer d such that ηW (τ) =
ηW ′(dτ). Therefore, in the proof of Theorem 1.2, we may assume that W is prim-
itive.

§3. A classification of primitive regular systems of weights

Let W = (a, b, c, h) be a primitive regular system of weights. As is remarked in [8,
(1.6)], for any x ∈ {a, b, c}, there exists y ∈ {a, b, c} such that x divides h − y. If
we choose such a y for each x ∈ {a, b, c}, then we have a map φ from {a, b, c} to
itself which sends x to y. We say that we are in case i if we can choose the map φ
so that the image of φ has cardinality i. By permuting a, b, c if necessary, we may
assume without loss of generality that we are in one of the following seven cases:

Case 1: lcm(a, b, c) | (h− a) and gcd(b, c) = 1.

Case 2a: lcm(b, c) | (h− a), a | (h− b) and gcd(b, c) = 1.

Case 2b: lcm(a, c) | (h− a) and b | (h− b).
Case 2c: lcm(a, b) | (h− a) and c | (h− b).
Case 3a: lcm(a, b, c) |h.

Case 3b: b | (h− a), a | (h− b) and c | (h− c).
Case 3c: c | (h− a), a | (h− b) and b | (h− c).

Here we explain the reason why the equality gcd(b, c) = 1 holds in case 1. Suppose
that we are in case 1 and that gcd(b, c) = d > 1. Let ζ ∈ C be a primitive d-th root
of unity. The denominator (T a−1)(T b−1)(T c−1) in the definition of χW (T ) has
vanishing order at least 2 at T = ζ, while Th − T a has vanishing order 1. Hence
Th− T b or Th− T c must have a zero at T = ζ, which implies that d divides h− b
or h − c. Since d divides b, c and h − a, it follows that d divides a, b, c and h.
This gives a contradiction. We can check the equality gcd(b, c) = 1 in case 2a by
a similar argument.

We also mention without proof that the converse is true in the following sense,
although we will not use it: if four integers a, b, c, h are in one of the seven cases
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above, and if they satisfy conditions (1), (3) and (4) in the definition of a primitive
regular system of weights, then W = (a, b, c, h) is a primitive regular system of
weights.

§4. A formula for η(hτ)νW ηW (τ)

Let H+ denote the set of holomorphic functions f on H satisfying the following
property: f is not identically zero and there exists an integer m ≥ 1 such that
f is written as f(τ) =

∑
n�−∞ anq

n/m with an ∈ Z, an ≥ 0 for all n ∈ Z. Let
H0

+ ⊂ H+ denote the subset of the functions f =
∑
n�−∞ anq

n/m ∈ H+ satisfying
limn→∞ an/n

k = 0 for some k ≥ 1. The set H+ forms a multiplicative monoid and
H0

+ is a submonoid of H+. The complement H+ \ H0
+ is an ideal of H+ in the

following sense: if f ∈ H+ \H0
+ and g ∈ H+ then fg ∈ H+ \H0

+. In fact, let f, g
in H+ and write f =

∑
n�−∞ anq

n/m and g =
∑
n�−∞ bnq

n/m′ . Take an integer
n0 such that bn0 > 0. Then the coefficient of qn/m+n0/m

′
in the q-expansion of fg

is larger than or equal to anbn0 for each n. Hence f 6∈ H0
+ implies fg 6∈ H0

+.
For an integer α ≥ 1, we put

ηα(τ) =
η(ατ)α

η(τ)
.

From the well-known relation between ηα(τ) and the generating function of the α-
cores ([3, (2.1)], originally due to [7]) or Klyachko’s identity ([6], see [3, Section 2]
and [5] for different proofs), we see that ηα(τ) ∈ H0

+. For integers α1, . . . , αm ≥ 1
such that lcm(α1, . . . , αm) divides h, we put

η[α1,...,αm;h](τ) =
η(hτ)h−

P
j αj

∏
j η(hτ/αj)

η(τ)
.

For a regular system of weights W = (a, b, c, h), we put

fa,b,h = ηgcd(a,b,h)(hτ/gcd(a, b, h)),

fb,c,h = ηgcd(b,c,h)(hτ/gcd(b, c, h)),

fa,c,h = ηgcd(a,c,h)(hτ/gcd(a, c, h)).

Lemma 4.1. Let W = (a, b, c, h) be a primitive regular system of weights.

(1) In case 1, we have η(hτ)νW ηW (τ) = f
h−a

lcm(a,b)

a,b,h f
h−a

lcm(a,c)

a,c,h η[a;h](τ).

(2) In case 2a, we have η(hτ)νW ηW (τ) = f
h−a−b
lcm(a,b)

a,b,h ηh(τ).

(3) In case 2b, we have η(hτ)νW ηW (τ) = f
h

lcm(a,b)

a,b,h f
h−a

lcm(a,c)

a,c,h η[a,b;h](τ).

(4) In case 2c, we have η(hτ)νW ηW (τ) = f
h−a

lcm(a,b)

a,b,h η[a;h](τ).



Non-negativity of Eta Products 553

(5) In case 3a, we have η(hτ)νW ηW (τ) = f
h

lcm(a,b)

a,b,h f
h

lcm(b,c)

b,c,h f
h

lcm(a,c)

a,c,h η[a,b,c;h](τ).

(6) In case 3b, we have η(hτ)νW ηW (τ) = f
h−a−b
lcm(a,b)

a,b,h η[c;h](τ).

(7) In case 3c, we have η(hτ)νW ηW (τ) = ηh(τ).

Before giving a proof of Lemma 4.1, we need some preparation. For f ∈
Q[T, T−1] let S(f) ⊂ Q[T, T−1] denote the multiplicative set of the elements
g ∈ Q[T, T−1] such that f and g have no common zero in C except for T = 0.
Let Q[T, T−1](f) denote the localization of Q[T, T−1] with respect to S(f). Then
the canonical homomorphism Q[T, T−1] → Q[T, T−1](f) induces an isomorphism

Q[T, T−1]/(f)
∼=−→ Q[T, T−1](f)/(f) of residue rings.

Sublemma 4.2. Let i ≥ 1 be a positive integer and let n be a non-zero integer.
Then T i−1

Tn−1 is in Q[T, T−1](T i−1), and

T i − 1
Tn − 1

≡ gcd(i, n)
n

· T i − 1
T gcd(i,n) − 1

mod (T i − 1).

Proof. Since T i−1
T−n−1 = −Tn · T

i−1
Tn−1 , we may assume that n ≥ 1. Put d = gcd(i, d).

We have T i−1
Tn−1 = T i−1

Td−1
· T

d−1
Tn−1 . Since Tn−1

Td−1
= Tn−d + · · ·+ T d + 1, we have

Tn − 1
T d − 1

≡ n

d
mod (T d − 1).

Hence Tn−1
Td−1

∈ S(Td−1) and Td−1
Tn−1 ≡

d
n mod (T d − 1). The Q-linear map

Q[T, T−1](Td−1) → Q[T, T−1](T i−1) which sends f ∈ Q[T, T−1](Td−1) to T i−1
Td−1

· f
induces a Q-linear map Q[T, T−1](Td−1)/(T d − 1) → Q[T, T−1](T i−1)/(T i − 1).
Hence the claim follows.

Sublemma 4.3. Let i ≥ 1 be a positive integer and let d1, d2 be positive divisors
of i. Then

T i − 1
T d1 − 1

· T
i − 1

T d2 − 1
≡ i

lcm(d1, d2)
· T i − 1
T gcd(d1,d2) − 1

mod (T i − 1).

Proof. We have T i−1
Td2−1

= T i−1
Td1−1

· T
d1−1

Td2−1
. We put d = gcd(i, d). By Sublemma 4.2,

the element Td1−1
Td2−1

is in Q[T, T−1](Td1−1) and

T d1 − 1
T d2 − 1

≡ d

d2
· T

d1 − 1
T d − 1

mod (T d1 − 1).

Hence
T i − 1
T d2 − 1

≡ i

lcm(d1, d2)
· T

d1 − 1
T d − 1

mod (T d1 − 1).
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The Q-linear map Q[T, T−1](Td1−1) → Q[T, T−1](T i−1) which sends f ∈
Q[T, T−1](Td1−1) to T i−1

Td1−1
·f induces a Q-linear map Q[T, T−1](Td1−1)/(T d1−1)→

Q[T, T−1](T i−1)/(T i − 1). Hence the claim follows.

Proof of Lemma 4.1. Let W = (a, b, c, h) be a primitive regular system of weights.
By Sublemma 4.2 we have

Th − T x

T x − 1
≡ gcd(x, h)

x
· Th − 1
T gcd(x,h) − 1

− 1 mod (Th − 1)

for x ∈ {a, b, c}. Hence χW (T ) is congruent modulo (Th − 1) to(
gcd(a, h)

a

Th − 1
T gcd(a,h) − 1

− 1
)(

gcd(b, h)
b

Th − 1
T gcd(b,h) − 1

− 1
)

×
(

gcd(c, h)
c

Th − 1
T gcd(c,h) − 1

− 1
)
.

By Sublemma 4.3, we have

Th − 1
T gcd(x,h) − 1

· Th − 1
T gcd(y,h) − 1

≡ h · gcd(x, y, h)
gcd(x, h) gcd(y, h)

· Th − 1
T gcd(x,y,h) − 1

mod (Th − 1)

for x, y ∈ {a, b, c} and

Th − 1
T gcd(a,h) − 1

· Th − 1
T gcd(b,h) − 1

· Th − 1
T gcd(a,h) − 1

≡ h2

gcd(a, h) gcd(b, h) gcd(c, h)
· T

h − 1
T − 1

mod (Th − 1).

Hence

(4.1) χW (T ) ≡ h2

abc

Th − 1
T − 1

− h gcd(a, b, h)
ab

Th − 1
T gcd(a,b,h) − 1

− h gcd(b, c, h)
bc

Th − 1
T gcd(b,c,h) − 1

− h gcd(a, c, h)
ac

Th − 1
T gcd(a,c,h) − 1

+
gcd(a, h)

a

Th − 1
T gcd(a,h) − 1

+
gcd(b, h)

b

Th − 1
T gcd(b,h) − 1

+
gcd(c, h)

c

Th − 1
T gcd(c,h) − 1

− 1 mod (Th − 1).

This implies

(4.2) νW = − h2

abc
+
h gcd(a, b, h)2

ab
+
h gcd(b, c, h)2

bc
+
h gcd(a, c, h)2

ac

− gcd(a, h)2

a
− gcd(b, h)2

b
− gcd(c, h)2

c
+ h.
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We note that each coefficient on the right hand side of (4.1) is a rational
number and may not be an integer. In each of the seven cases listed in Section 3,
we can rewrite the right hand side of (4.1) in such a way that each term has
coefficients in Z, and then the claim of Lemma 4.1 follows from this new description
of χW (T ) mod (Th − 1). In the next two paragraphs we explain the details in case
3a and case 3b, which gives proofs of the claims (5) and (6). The other five claims
can be proved in a similar manner and the details are left to the reader.

Suppose that we are in case 3a. We have gcd(a, h) = a, gcd(b, h) = b,
and gcd(c, h) = c. Hence gcd(a, b, h) = gcd(a, b), gcd(b, c, h) = gcd(b, c), and
gcd(a, c, h) = gcd(a, c). By (4.1) and (4.2) we have

(4.3) χW (T ) ≡ h2

abc

Th − 1
T − 1

− h

lcm(a, b)
Th − 1

T gcd(a,b) − 1
− h

lcm(b, c)
Th − 1

T gcd(b,c) − 1

− h

lcm(a, c)
Th − 1

T gcd(a,c) − 1
+
Th − 1
T a − 1

+
Th − 1
T b − 1

+
Th − 1
T c − 1

− 1 mod (Th − 1)

and

νW = − h2

abc
− a− b− c+

h gcd(a, b)
lcm(a, b)

+
h gcd(b, c)
lcm(b, c)

+
h gcd(a, c)
lcm(a, c)

+ h.

We note that every term on the right hand side of (4.3) has coefficients in Z. Hence

ϕW (λ) =
(λh − 1)h

2/abc(λh/a − 1)(λh/b − 1)(λh/c − 1)

(λ
h

gcd(a,b) − 1)
h

lcm(a,b) (λ
h

gcd(b,c) − 1)
h

lcm(b,c) (λ
h

gcd(a,c) − 1)
h

lcm(a,c) (λ− 1)

and

ηW (τ) =
η(hτ)h

2/abcη(hτ/a)η(hτ/b)η(hτ/c)

η
(

hτ
gcd(a,b)

) h
lcm(a,b) η

(
hτ

gcd(b,c)

) h
lcm(b,c) η

(
hτ

gcd(a,c)

) h
lcm(a,c) η(τ)

.

Therefore
η(hτ)νW ηW (τ) = f

h
lcm(a,b)

a,b,h f
h

lcm(b,c)

b,c,h f
h

lcm(a,c)

a,c,h η[a,b,c;h](τ).

Suppose that we are in case 3b. We have gcd(a, h) = gcd(b, h) = gcd(a, b) and
gcd(c, h) = c. Hence gcd(a, b, h) = gcd(a, b) and gcd(b, c, h) = gcd(a, c, h) = 1. By
(4.1) we have

(4.4) χW (T ) ≡ h2

abc

Th − 1
T − 1

− h

lcm(a, b)
Th − 1

T gcd(a,b) − 1
− h

bc

Th − 1
T − 1

− h

ac

Th − 1
T − 1

+
gcd(a, b)

a

Th − 1
T gcd(a,b) − 1

+
gcd(a, b)

b

Th − 1
T gcd(a,b) − 1

+
Th − 1
T c − 1

− 1

≡ h(h− a− b)
abc

Th − 1
T − 1

− h− a− b
lcm(a, b)

Th − 1
T gcd(a,b) − 1

+
Th − 1
T c − 1

− 1 mod (Th − 1)



556 S. Yasuda

and

νW = −h(h− a− b)
abc

+
(h− a− b) gcd(a, b)

lcm(a, b)
− c+ h.

We note that every term in the last line of (4.4) has coefficients in Z. Hence

ϕW (λ) =
(λh − 1)h(h−a−b)/abc(λh/c − 1)

(λh/gcd(a,b) − 1)(h−a−b)/lcm(a,b)(λ− 1)
.

and

ηW (τ) =
η(hτ)h(h−a−b)/abcη(hτ/c)

η(hτ/gcd(a, b))(h−a−b)/lcm(a,b)η(τ)
.

Therefore
η(hτ)νW ηW (τ) = f

h−a−b
lcm(a,b)

a,b,h η[c;h](τ).

Proposition 4.4. Let r ≥ 2 and let a1, . . . , ar ≥ 1 be positive integers satisfying
gcd(ai, aj) = 1 for 1 ≤ i < j ≤ max(r − 1, 2). Put h =

∏r
j=1 aj. Then the eta

product

η〈a1,...,ar〉(τ) =
η(hτ)

Qr
j=1(aj−1)∏

J⊂{1,...,r} η((
∏
j∈J aj)τ)(−1)]J

belongs to H0
+. Here we understand

∏
j∈J aj = 1 for J = ∅.

Proof. We proceed in a manner similar to [1, Section 3]. If aj = 1 for some j, we
easily see that η〈a1,...,ar〉 = 1. We assume aj ≥ 2 for all j. If r = 2, we may assume
without loss of generality that a1 is odd. We put h′ =

∏r−1
j=1 aj . Let

M = {j ∈ Z | 1 ≤ j < h′/2, ai - j for i = 1, . . . , r − 1}.

Then

η〈a1,...,ar〉(τ)

= qb/24
∏
j∈M

(
ηar (h′τ)η(h′τ)η(hτ)ar−2

∏
n≥1

(1− qarjq(n−1)h)(1− q−arjqnh)
(1− qjq(n−1)h′)(1− q−jqnh′)

)
,

where b = (h− (−1)r)
∏r
j=1(aj − 1)−h(2ar − 2). Hence the claim follows from [1,

Theorem 1.2].

§5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 assuming the following theorem, whose proof
will be given in Section 6.3.

Theorem 5.1. Let h ≥ 1 be an integer.

(1) For any a ≥ 1 dividing h, we have η[a;h](τ) ∈ H0
+.
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(2) For any a, b ≥ 1 such that h > max(a, b) and lcm(a, b) divides h, we have
η[a,b;h](τ) ∈ H0

+.

(3) Let a, b, c ≥ 1 be three integers such that lcm(a, b, c) divides h. Suppose that
there exist α, β, γ ∈ Z satisfying α 6≡ β mod h

lcm(a,b) , β 6≡ γ mod h
lcm(b,c) , and

α 6≡ γ mod h
lcm(a,c) . Then η[a,b,c;h](τ) ∈ H0

+.

Corollary 5.2. Let W = (a, b, c, h) be a primitive regular system of weights. Then
η(hτ)νW ηW (τ) ∈ H0

+.

Proof of Corollary 5.2. If lcm(a, b, c) - h, then the claim follows immediately from
Lemma 4.1 and Theorem 5.1. Thus we may assume that lcm(a, b, c) |h.

First suppose that all of h
lcm(a,b) ,

h
lcm(b,c) ,

h
lcm(a,c) are greater than one and

max
(

h
lcm(a,b) ,

h
lcm(b,c) ,

h
lcm(a,c)

)
≥ 3. By permuting a, b, c if necessary, we may as-

sume that h
lcm(a,c) ≥ 3. Then the claim follows from Lemma 4.1(5) and Theo-

rem 5.1(3) for (α, β, γ) = (−1, 0, 1).
Next suppose that min( h

lcm(a,b) ,
h

lcm(b,c) ,
h

lcm(a,c) ) = 1. In this case, we have
h = lcm(a, b, c). We may assume that h/lcm(a, b) = 1. We put d = gcd(a, b),
a′ = a/d, b′ = b/d, a′1 = gcd(a, c), and b′1 = gcd(b, c). We have h = a′b′d. Since
gcd(a, b, c) = gcd(a, b, c, h) = 1, any two of d, a′1, and b′1 are relatively prime. Hence
the quotients a′2 = a′/a′1 = a/(da′1) and b′2 = b′/b′1 = b/(db′1) are integers and we
have a′1b

′
1 = gcd(ab, c). Since c divides h and h divides ab. we have a′1b

′
1 = c. Since

we are in case 3a and since lcm(a, c) = ac/a′1 = a′b′1d and lcm(b, c) = bc/b′1 = a′1b
′d,

it follows from Lemma 4.1(5) that

η(hτ)νW ηW (τ) = fa,b,hf
a′2
b,c,hf

b′2
a,c,hη[a,b,c;h](τ).

Since

fa,b,hfb,c,hfa,c,hη[a,b,c;h](τ)

= ηd(a′b′τ)ηb′1(a′b′2dτ)ηa′1(a′2b
′dτ) · η(hτ)h−a−b−a

′
1b
′
1η(a′τ)η(b′τ)η(a′2b

′
2dτ)

η(τ)

=
η(hτ)(a

′−1)(b′−1)d+a′1+b
′
1−a

′
1b
′
1η(a′τ)η(b′τ)η(a′2b

′
2dτ)

η(τ)η(a′b′τ)η(a′b′2dτ)η(a′2b′dτ)

= η〈a′,b′,d〉(τ) · η(hτ)(a
′−1)(b′−1)−(a′1−1)(b′1−1)η(aτ)η(bτ)η(a′2b

′
2dτ)

η(dτ)η(a′b′2dτ)η(a′2b′dτ)

= η〈a′,b′,d〉(τ)η〈a′1,b′1,a′2b′2〉(dτ) · η(hτ)a
′b′2+a

′
2b
′−a′−b′−a′2b

′
2η(aτ)η(bτ)η(a′1b

′
1dτ)

η(a′1dτ)η(b′1dτ)

= η〈a′,b′,d〉(τ)η〈a′1,b′1,a′2b′2〉(dτ)η[a′2b′2,b′;a′2b′](a
′
1dτ)η[a′;a′b′2](b

′
1dτ),
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we have

(5.1) η(hτ)νW ηW (τ) = f
a′2−1
b,c,h f

b′2−1
a,c,h η〈a′,b′,d〉(τ)η〈a′1,b′1,a′2b′2〉(dτ)

× η[a′2b′2,b′;a′2b′](a
′
1dτ)η[a′;a′b′2](b

′
1dτ).

Hence if a′2 ≥ 2 and b′1 ≥ 2, then η(hτ)νW ηW (τ) ∈ H0
+ by Proposition 4.4 and

Theorem 5.1. Interchanging the roles of a and b, we see that η(hτ)νW ηW (τ) ∈ H0
+

if a′1 ≥ 2 and b′2 ≥ 2. If a′1 = a′2 = 1 (resp. b′1 = b′2 = 1), then h = b (resp.
h = a), which is a contradiction. If a′2 = b′2 = 1, then η〈a′1,b′1,a′2b′2〉 = η[a′2b′2,b′;a′2b] =
η[a′;a′b′2] = 1. It follows from (5.1) that η(hτ)νW ηW (τ) = η〈a′,b′,d〉(τ). Hence
η(hτ)νW ηW (τ) ∈ H0

+ by Proposition 4.4. If a′1 = b′1 = 1 and a′2, b
′
2 ≥ 2, then

a′2 = a′, b′2 = b′ and fb,c,h = fa,c,h = η〈a′1,b′1,a′2b′2〉 = 1. It follows from (5.1) that

η(hτ)νW ηW (τ) = η〈a′,b′,d〉(τ)η[a′b′,b′;a′b′](dτ)η[a′;a′b′](dτ)

=
η(hτ)(a

′−1)(b′−1)(d−1)

η(τ)η(a′τ)−1η(b′τ)−1η(dτ)−1η(aτ)η(bτ)η(a′b′τ)η(hτ)−1

× η(aτ)
η(hτ)b′

· η(hτ)a
′b′−a′η(bτ)
η(dτ)

=
η(hτ)(a

′−1)(b′−1)dη(a′τ)η(b′τ)
η(τ)η(a′b′τ)

= η[a,b;h](τ)ηd(a′b′τ).

Hence η(hτ)νW ηW (τ) ∈ H0
+ by Theorem 5.1(2).

Next suppose that h
lcm(a,b) = h

lcm(b,c) = h
lcm(a,c) = 2. Then h = 2 · lcm(a, b, c).

We put a′3 = lcm(a, b, c)/a, b′3 = lcm(a, b, c)/b, and c′3 = lcm(a, b, c)/c. Then
gcd(a′3, b

′
3) = gcd(b′3, c

′
3) = gcd(a′3, c

′
3) = 1 and lcm(a, b, c) = a′3b

′
3c
′
3. It follows

from Lemma 4.1(5) that

η(hτ)νW ηW (τ) = f2
a,b,hf

2
b,c,hf

2
a,c,hη[a,b,c;h](τ).

Since

fa,b,hfb,c,hfa,c,hη[a,b,c;h](τ)

= ηc′3(2a′3b
′
3τ)ηb′3(2a′3c

′
3τ)ηa′3(2b′3c

′
3τ) · η(hτ)h−a−b−cη(2a′3τ)η(2b′3τ)η(2c′3τ)

η(τ)

=
η(hτ)h−a−b−c+a

′
3+b
′
3+c

′
3η(2a′3τ)η(2b′3τ)η(2c′3τ)

η(τ)η(2a′3b
′
3τ)η(2b′3c

′
3τ)η(2b′3c

′
3τ)

= η〈a′3,b′3,c′3〉(2τ) · η(hτ)h/2η(2τ)
η(τ)

= η〈a′3,b′3,c′3〉(2τ)η[h/2;h](τ),
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we have

η(hτ)νW ηW (τ) = fa,b,hfb,c,hfa,c,hη〈a′3,b′3,c′3〉(2τ)η[h/2;h](τ).

Hence η(hτ)νW ηW (τ) ∈ H0
+ by Proposition 4.4 and Theorem 5.1(1). This com-

pletes the proof.

Proof of Theorem 1.2. The “if” part follows from Corollary 5.2. Let W be a regular
system of weights. To prove the “only if” part for W , it suffices to prove that
η(hτ)νW +1ηW (τ) 6∈ H+. Assume that η(hτ)νW +1ηW (τ) ∈ H+. The asymptotics
p(n) ∼ eπ

√
2n/3/(4n

√
3) of the partition function p(n) (see [4], [10]) shows that

η(hτ)−1 ∈ H+\H0
+. Hence η(hτ)νW ηW (τ) = η(hτ)−1·η(hτ)νW +1ηW (τ) ∈ H+\H0

+.
This gives a contradiction. Thus η(hτ)νW +1ηW (τ) 6∈ H+.

§6. Proof of Theorem 5.1

§6.1. AP-coverings

An AP-subset is a subset L ⊂ Z of the form L = a + bZ for some a, b ∈ Z with
b > a ≥ 0. The integers a, b are uniquely determined by L and are denoted by a(L),
i(L), respectively. For an AP-subset L, let ψL : Z → Z denote the unique order-
preserving injection whose image is equal to L and which sends 0 ∈ Z to a(L). An
AP-covering of Z is a family L = {Lj}j∈J of AP-subsets satisfying Z =

∐
j∈J Lj .

We put E(q) = q−1/24η(τ) =
∏
n≥1(1− qn).

Proposition 6.1. Let L = {Lj}j∈J be an AP-covering of Z. Then the function

EL(τ) =

∏
j∈J E(qi(Lj))
E(q)

belongs to H+. Moreover if J is a finite set, then EL(τ) belongs to H0
+.

We make the following conjecture which generalizes Proposition 6.1.

Conjecture 6.2. Let J be a finite or countable set. Suppose that for each j ∈ J a
positive integer mj≥1 is given such that

∑
j∈J 1/mj≤1. Then

Q
j∈J E(qmj )

E(q) ∈H+.

Moreover, if J is a finite set and
∑
j∈J 1/mj = 1, then

Q
j∈J E(qmj )

E(q) ∈ H0
+.

We note that Corollary 5.2 is an immediate consequence of Lemma 4.1 if we
assume Conjecture 6.2.

§6.2. Maya diagrams

We prove Proposition 6.1 by using the notion of Maya diagrams. Our argument
can be regarded as a generalization of the argument in [3, Section 2]. A Maya
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diagram (cf. [2, §4.1]) is a subset S ⊂ Z such that x ∈ S for x � 0 and x 6∈ S
for x � 0. A Maya diagram S is said to be of minimum energy if there exists
a ∈ Z such that S = Z<a. We say that two Maya diagrams S, S′ are equivalent
if S′ = S + x for some x ∈ Z. Let S be a Maya diagram and take a subset S′ of
S ∩ Z<0 whose complement (S ∩ Z<0) \ S′ is a finite set. The integer

c(S) = ](S \ S′)− ](S \ Z<0)

depends only on S and is independent of the choice of S′. We call the integer e(S)
the charge of S. A Maya diagram S is said to be of charge zero if c(S) = 0. For a
Maya diagram S, we let S† denote the unique Maya diagram of minimal energy
with c(S) = c(S†). Explicitly S† = Z<c(S). For any Maya diagram S, there exists
a unique Maya diagram, which we denote by S[, of charge zero which is equivalent
to S, since c(S + x) = c(S) + x for x ∈ Z.

Let S be a Maya diagram and take a subset S′ of S ∩ S† whose complement
(S ∩ S†) \ S′ is a finite set. The integer

e(S) =
∑

y∈S\S′
y −

∑
y∈S†\S′

y

depends only on S and is independent of the choice of S. We call it the energy
of S. It follows immediately from the definition that e(S) ≥ 0, and equality holds
if and only if S = S†. For each integer n ≥ 0, there exists a canonical one-to-one
correspondence between the partitions of n and Maya diagrams S of charge zero
with e(S) = n. For a given Maya diagram M = {m1,m2, . . .} with m1 > m2 > · · ·
of charge zero with e(S) = n, the corresponding partition of n is given as follows.
For i = 1, 2, . . . we put ni = mi + i. We have n1 ≥ n2 ≥ · · · and ni = 0 for
i � 0. Let r ≥ 0 denote the smallest non-negative integer such that ni+1 = 0.
Then n = n1 + · · ·+ nr, which gives the partition corresponding to M . Hence

(6.1) E(q)−1 =
∑

S∈Maya0

qe(S),

where Maya0 denotes the set of Maya diagrams of charge zero.

Proof of Proposition 6.1. Let L = (Lj)j∈J be an AP-covering of Z. Let S be a
Maya diagram. For each j ∈ J , the inverse image ψ−1

Lj
(S) is also a Maya diagram.

We say that S is L-reduced if ψ−1
Lj

(S) is of minimum energy for every j ∈ J . For a
Maya diagram S, we let SL denote the unique Maya diagram which is L-reduced
and c(ψ−1

Lj
(S)) = c(ψ−1

Lj
(SL)) for every j ∈ J . Explicitly,

SL =
∐
j∈J

ψLj ((ψ−1
Lj

(S))†).
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Since ψ−1
Lj

(Z<0) = Z<0, it follows from the definition of c(S) that c(S) =∑
j∈J c(ψ

−1
Lj

(S)). Hence c(S) = c(SL).
We let Maya0

L denote the set of L-reduced Maya diagrams of charge zero.
Let

FL : Maya0 →Maya0
L ×

∏
j∈J

Maya0

denote the map which sends S ∈Maya0 to (SL, ((ψ−1
Lj

(S))[)j∈J). We claim that
FL is bijective. For S = (S′, (Sj)j∈J) ∈Maya0

L ×
∏
j∈J Maya0, we put

GL(S) =
∐
j∈J

ψLj (Sj + c(ψ−1
Lj

(S′))),

which is a Maya diagram. We have

c(GL(S)) =
∑
j∈J

c(Sj + c(ψ−1
Lj

(S′))) =
∑
j∈J

c(ψ−1
Lj

(S′)) = c(S′) = 0.

Hence GL(S) ∈Maya0. It is immediate from the definition of GL that FL(GL(S))
= S. For S ∈ Maya0, we have GL(FL(S)) = S since (ψ−1

Lj
(S))† + c(ψ−1

Lj
(SL)) =

ψ−1
Lj

(S) or each j ∈ J . Since the map GL is the inverse of FL, the map FL is
bijective.

Let S ∈Maya0 and take a subset S′ of S ∩ SL ∩Z<0 whose complement is a
finite set. Then

e(S)− e(SL) =
∑
j∈J

( ∑
y∈(S\S′)∩Lj

y −
∑

y∈(SL\S′)∩Lj

y
)

=
∑
j∈J

i(Lj) ·
( ∑
y∈ψ−1

Lj
(S)\ψ−1

Lj
(S′)

y −
∑

y∈(ψ−1
Lj

(SL)\ψ−1
Lj

(S′)

y
)

=
∑
j∈J

i(Lj)e(ψ−1
Lj

(S)).

Hence if we put FL(S) = (SL, (Sj)j∈J), then

(6.2) e(S) = e(SL) +
∑
j∈J

i(Lj)e(Sj).

Since the map FL is bijective, it follows from the equalities (6.1) and (6.2) that

E(q)−1 =
( ∑
S′∈Maya0

L

qe(S
′)
)
·
∏
j∈J

E(qi(Lj))−1.

Hence
EL(τ) =

∑
S′∈Maya0

L

qe(S
′) ∈ H+.
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Let S′ ∈ Maya0
L. For each j ∈ J we put mj = c(ψ−1

Li
(S′)). Then

∑
j∈J mj = 0

and e(S′) =
∑
j(a(Lj)mj + i(Lj)mj(mj − 1)/2). Therefore,

EL(τ) =
∑

(mj)j∈J

q
P

j(a(Lj)mj+i(Lj)mj(mj−1)/2),

where the summation is over the systems of integers (mj)j∈J such that mj = 0
for all but finitely many j and

∑
jmj = 0. Hence EL(τ) ∈ H0

+ if J is a finite set.
This completes the proof.

§6.3. Proof of Theorem 5.1

The claim (1) follows from Proposition 6.1 for the AP-covering

Z =
h

a
Zq

∐
1≤j≤h−1

h
a -j

(j + hZ).

Let a, b, h be as in claim (2). First suppose that h > lcm(a, b). Then claim (2)
follows from Proposition 6.1 for the AP-covering

Z =
h

a
Zq

(
1 +

h

b
Z
)
q

∐
1≤j≤h−1

h
a -j,h

b -(j−1)

(j + hZ).

Next suppose that h = lcm(a, b). Then gcd(a, b) 6= min(a, b). We put a′ =
a/gcd(a, b), b′ = b/gcd(a, b). Then a′, b′ ≥ 2 and we have

η[a,b;h](τ) = η[a′,b′;a′b′](τ)fa
′b′−a′−b′

a,b,h .

Hence to prove (2), we may assume that gcd(a, b) = 1 and h = ab. Since

η[a,b;ab](τ) =
η(abτ)(a−1)(b−1)η(aτ)η(bτ)

η(abτ)η(τ)
,

we have η[a,b;ab](τ) ∈ H0
+ by Proposition 4.4. This proves claim (2).

Let α, β, γ be as in claim (3). Then it follows from Proposition 6.1 for the
AP-covering

Z =
(
α+

h

a
Z
)
q
(
β +

h

b
Z
)
q
(
γ +

h

c
Z
)
q

∐
0≤j≤h−1

h
a -(j−α), h

b -(j−β), h
c -(j−γ)

(j + hZ)

that η[a,b,c;h](τ) ∈ H0
+, which proves claim (3).
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