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An Overdetermined Problem for an
Elliptic Equation

by

Robert Dalmasso

Abstract

We consider the following overdetermined boundary value problem: ∆u+ λu+ µ = 0 in
Ω, u = 0 on ∂Ω and ∂u/∂n = c on ∂Ω, where c 6= 0, λ and µ are real constants and
Ω ⊂ R2 is a smooth bounded convex open set. We first show that it may happen that
the problem has no solution. Then we study the existence of solutions for a wide class of
domains.
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§1. Introduction

Let Ω ⊂ R2 be a smooth bounded simply-connected open set. We consider solutions
of the following overdetermined elliptic boundary value problem:

∆u+ λu+ µ = 0 in Ω,(1.1)

u = 0 on ∂Ω,(1.2)
∂u

∂n
= c on ∂Ω,(1.3)

where λ, µ and c are real constants and ∂/∂n is the outward normal derivative.
If c = 0 and µ 6= 0 (or equivalently µ = 1) we get as a special case Schiffer’s

problem (Yau [18, p. 688, problem 80]). If µ = 0 and c 6= 0 the problem was posed
by Berenstein [1].

In 1981 Williams [16] proved that if ∂Ω is Lipschitz and (1.1)–(1.3) has a
solution for c = 0 and µ = 1, then ∂Ω is real analytic. In 2002 Williams [17]
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proved that if ∂Ω is C1 and (1.1)–(1.3) has a nonconstant solution u ∈ C2(Ω),
then ∂Ω is real analytic. In both cases the result holds in any dimension.

The following conjecture is stated in [17] (see also [10]):

Conjecture. Assume that ∂Ω is Lipschitz. If (1.1)–(1.3) has a nonconstant solu-
tion for some real constants λ, µ and c, then Ω is a disk.

Assume that Ω is the unit disk. Let Jz denote the z-th Bessel function. For
any λ > 0 such that

√
λ is not a zero of J1 we define the function

uλ(x) =
J0(
√
λ|x|)− J0(

√
λ)√

λJ1(
√
λ)

, |x| < 1.

For λ < 0 we define the function

uλ(x) = −iJ0(i
√
−λ|x|)− J0(i

√
−λ)√

−λJ1(i
√
−λ)

, |x| < 1.

We recall that J1 has only real zeros [14, pp. 482–483]. We easily verify that uλ is
a solution of (1.1)–(1.3) with c = −1 and µ = µλ given by

µλ =


√
λJ0(
√
λ)

J1(
√
λ)

, λ > 0,

i
√
−λJ0(i

√
−λ)

J1(i
√
−λ)

, λ < 0.

The functions uλ have a removable singularity at λ = 0 and the corresponding
solution is

u0(x) =
1
2

(1− |x|2), |x| < 1.

Therefore, when Ω is the unit disk, there is a continuum of coefficient pairs (λ, µλ)
and uλ which solve (1.1)–(1.3) with c 6= 0. Notice that when λ > 0 is such that
J0(
√
λ) = 0 we have µλ = 0. Then the corresponding Dirichlet problem has in-

finitely many solutions giving rise to the same constant normal derivative on the
boundary. Berenstein [1] proved the following converse.

Proposition 1.1. Let Ω be a simply-connected bounded open subset of R2 with
C2,ε boundary (ε > 0). Assume that (1.1)–(1.3) with µ = 0 and c 6= 0 has a
solution for infinitely many λ. Then Ω is a disk.

A smooth bounded simply-connected open set Ω ⊂ R2 is said to have the
Schiffer property if (for any λ) the only solution to (1.1)–(1.3) with c = 0 is the
trivial solution u = 0 (corresponding to µ = 0). It is well known that disks do not
have the Schiffer property. Indeed, let λ > 0 be such that J1(

√
λ) = 0. Then the
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function

vλ(x) =
1
λ

(
J0(
√
λ|x|)

J0(
√
λ)
− 1
)
, |x| < 1,

satisfies (1.1)–(1.3) with µ = 1 and c = 0 when Ω is the unit disk. Berenstein [1]
proved the following converse.

Proposition 1.2. Let Ω be a simply-connected bounded open subset of R2 with
C2,ε boundary (ε > 0). Assume that (1.1)–(1.3) with µ = 1 and c = 0 has a
solution for infinitely many λ. Then Ω is a disk.

Remark 1. An elementary proof of Propositions 1.1 and 1.2 is given in [5] in the
particular case where Ω is a convex set with positive curvature.

The Schiffer conjecture asserts that disks are the only smooth bounded simply-
connected open sets for which (1.1)–(1.3) with µ = 1 and c = 0 has a solution for
even a single value of λ. Williams [15] established that for smooth bounded simply-
connected open sets the Schiffer property is equivalent to the Pompeiu property.
We shall not define the latter, instead we refer the reader to the bibliographic
survey of the Pompeiu problem ([19]). Wide classes of smooth bounded simply-
connected open sets in R2 having the Schiffer property were studied in [9] and the
references therein. In [3] and [4] we gave some elementary results allowing us to
exhibit very simple examples of planar domains having the Schiffer property. How-
ever, when c 6= 0, we do not know of any example supporting the above conjecture,
even in the particular case studied by Berenstein. We first examine this problem.

Proposition 1.3. There exist smooth bounded simply-connected open sets Ω ⊂ R2

such that, for any fixed constant c 6= 0, (1.1)–(1.3) has no solution.

The width of a convex planar domain in a given direction is the distance
between two parallel supporting lines perpendicular to that direction. A set of
constant width has the same width in all directions. Clearly disks have constant
width. However there are plenty of smooth domains which have constant width
but which are not disks: see [2], [5], [11] and [13].

Now we can state our main result.

Theorem 1.1. Let Ω ⊂ R2 be a bounded convex open set satisfying the following
conditions:

(i) ∂Ω is a C∞ curve with positive curvature;

(ii) Ω has the Schiffer property;

(iii) Ω is not of constant width.
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Let c be a nonzero constant. Then there exist at most finitely many different pairs
of coefficients (λm, µm) ∈ R2 such that the Cauchy problem

∆u+ λmu+ µm = 0 in Ω, u = 0 and
∂u

∂n
= c on ∂Ω,

has a solution.

Remark 2. A true ellipse satisfies the conditions of Theorem 1.1. Indeed, it is well
known that a true ellipse has the Schiffer property: a very simple proof is given
in [6].

§2. Preliminaries

We assume first that Ω ⊂ R2 is a bounded simply-connected open set with C∞

boundary ∂Ω. Let x = x(s) = (x1(s), x2(s)), s ∈ [0, L], be a parametrization of
∂Ω by arc length. We denote by τ(s) = (τ1(s), τ2(s)) the tangent to ∂Ω at x(s)
and by ν(s) = (ν1(s), ν2(s)) the exterior normal to ∂Ω at x(s). We have

τ1(s) = x′1(s), τ2(s) = x′2(s), s ∈ [0, L],

and
ν1(s) = x′2(s), ν2(s) = −x′1(s), s ∈ [0, L].

The Frenet formulas are

x′′(s) = −κ(s)ν(s), ν′(s) = κ(s)x′(s), s ∈ [0, L],

where κ = κ(s) is the curvature.
Now suppose that there exists u ∈ C∞(Ω) satisfying (1.1)–(1.3). We shall use

some formulas established in a more general situation [7, Lemma 2.5 p. 101 and
Lemma 2.6 p. 104] (see also [5]).

Lemma 2.1.

(1) We have

(λc2 + µ2)
∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2 ds+Aµ+B = 0,

where A and B are independent of λ and µ. Moreover

A = 2ic
∫ L

0

(2κ(x · ν + i(x1ν2 − x2ν1))− 1)(ν1 + iν2)2 ds,

B = −2ic2
∫ L

0

κ(κ(x · ν + i(x1ν2 − x2ν1))− 1)(ν1 + iν2)2 ds.
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(2) Let k = 2p with p ≥ 2. We have

0 = (−1)pλp−1(λc2 + µ2)
∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)k ds

+ µ2

p∑
j=2

Aj,kλ
p−j + µ

p∑
j=1

Bj,kλ
p−j +

p∑
j=1

Cj,kλ
p−j ,

where Aj,k, Bj,k and Cj,k are independent of λ and µ. Moreover

B1,k = (−1)pikc
∫ L

0

(κ(2x · ν + ik(x1ν2 − x2ν1))− 1)(ν1 + iν2)k ds.

Lemma 2.2.

(1) We have

(λc2 + µ2)
∫ L

0

(ν1 + iν2)3 ds+ aµ+ b = 0,

where a and b are independent of λ and µ. Moreover

a = −8c
∫ L

0

κ(ν1 + iν2)3 ds and b = 4c2
∫ L

0

κ2(ν1 + iν2)3 ds.

(2) Let k = 2p+ 1 with p ≥ 2. We have

0 = (−1)pλp−1(λc2 + µ2)
∫ L

0

(ν1 + iν2)k ds

+ µ2

p∑
j=2

αj,kλ
p−j + µ

p∑
j=1

βj,kλ
p−j +

p∑
j=1

γj,kλ
p−j ,

where αj,k, βj,k and γj,k are independent of λ and µ. Moreover

α2,k = (−1)p
2
3

(p− 1)p(p+ 1)(p+ 2)
∫ L

0

κ2(ν1 + iν2)k ds,

β1,k = (−1)p−1(k2 − 1)c
∫ L

0

κ(ν1 + iν2)k ds,

γ1,k = (−1)p
2
3
p(p+ 1)(p2 + p+ 1)c2

∫ L

0

κ2(ν1 + iν2)k ds,

β2,5 = −16c
∫ L

0

κ3(ν1 + iν2)5 ds,

γ2,5 = −16c2
(

8
3

∫ L

0

κ4(ν1 + iν2)5 ds+
∫ L

0

κ′2(ν1 + iν2)5 ds

)
.
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Remark 3. In [7], B, β2,5 and γ2,5 are not given explicitly, but they can be easily
obtained from the proof.

Lemma 2.3. Assume that Ω has the Schiffer property. Given any c ∈ R\{0} and
λ ∈ R, there exists at most one µ ∈ R such that the Cauchy problem

∆v + λv + µ = 0 in Ω, v = 0 and
∂v

∂n
= c on ∂Ω,

has a solution.

Proof. Suppose there exist c ∈ R\{0} and λ ∈ R for which the above problem has a
solution for two different values µ1 and µ2. We denote by v1 and v2 two solutions
corresponding to µ1 and µ2 respectively. The function u = (v1 − v2)/(µ1 − µ2)
satisfies (1.1)–(1.3) with µ = 1 and c = 0 and we reach a contradiction.

Assume moreover that ∂Ω has positive curvature and that 0 ∈ Ω. Since the
curve ∂Ω turns continuously, to each point x = x(s) ∈ ∂Ω we can associate a
unique θ (modulo 2π) and θ describes a complete circuit 0 ≤ θ ≤ 2π as 0 ≤ s ≤ L.
For each angle θ, 0 ≤ θ < 2π, let h(θ) denote the distance from the origin to the
supporting line of Ω with outward normal ν = (cos θ, sin θ). We have

h(θ) = x · ν,

and h has period 2π. From the Serret–Frenet formulas we can derive the following
second order ordinary differential equation involving the support function h and
the radius of curvature ρ:

h(θ) + h′′(θ) = ρ(θ).

When 0 /∈ Ω, the support function is defined in the following way. By translation
there exists a = (a1, a2) ∈ R2 such that 0 ∈ Ω̃ = a + Ω. If h̃ denotes the support
function of Ω̃ we have

h(θ) = −a1 cos θ − a2 sin θ + h̃(θ).

We refer the reader to Flanders [8] and the references therein for a detailed
discussion.

For any f : [0, 2π]→ C such that f ∈ L2[0, 2π] we denote by

cn(f) =
1

2π

∫ 2π

0

f(θ)e−inθ dθ, n ∈ Z,

the Fourier coefficients.



An Overdetermined Problem 597

§3. Proof of Proposition 1.3

Let r > 32. Define

h(θ) = r + cos 3θ + cos 5θ, 0 ≤ θ ≤ 2π.

Then h is of class C∞ and has period 2π. Since

ρ(θ) = r − 8 cos 3θ − 24 cos 5θ > 0, 0 ≤ θ ≤ 2π,

h must be the support function of a convex set Ω.

Lemma 3.1. Let Ω be as above. Assume that there exist c 6= 0, λ, µ ∈ R and
u ∈ C∞(Ω) satisfying (1.1)–(1.3). With the notations of Lemmas 2.1 and 2.2, b/c2

and B/c2 depend only on r and we have∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2 ds = 16iπ,
∫ L

0

(ν1 + iν2)3 ds = −8π, A = a = 0,

and

B

c2
= −26 · 7iπ

r2
+ o

(
1
r2

)
,

b

c2
=

25π

r2
+ o

(
1
r3

)
, as r → +∞.

Proof. We have ∫ L

0

(ν1 + iν2)3 ds =
∫ 2π

0

ρ(θ)e3iθ dθ = −8π,∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2 ds = −
∫ 2π

0

h′(θ)ρ(θ)e2iθ dθ,

and

−
∫ 2π

0

h′(θ)ρ(θ)e2iθ dθ =
∫ 2π

0

(3 sin 3θ + 5 sin 5θ)(r − 8(cos 3θ + 3 cos 5θ))e2iθ dθ

= − 23 · 32

∫ 2π

0

e2iθ sin 3θ cos 5θ dθ

− 23 · 5
∫ 2π

0

e2iθ sin 5θ cos 3θ dθ = 16iπ,

a = − 8c
∫ 2π

0

e3iθ dθ = 0,

A = 2ic
∫ 2π

0

(2(h(θ)− ih′(θ))− ρ(θ))e2iθ dθ = 0.

Next as r → +∞ we have

B

c2
= − 2i

∫ 2π

0

h(θ)− ih′(θ)
ρ(θ)

e2iθ dθ
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= − 2i
r

∑
n≥0

8n

rn

∫ 2π

0

(r + cos 3θ + cos 5θ + 3i sin 3θ + 5i sin 5θ)

× (cos 3θ + 3 cos 5θ)ne2iθ dθ

= − 24i

r2

∫ 2π

0

(22 · 13 cos 3θ cos 5θ + 32i sin 3θ cos 5θ

+ 5i cos 3θ sin 5θ)e2iθ dθ + o

(
1
r2

)
= − 26 · 7iπ

r2
+ o

(
1
r2

)
,

and

b

c2
= 4

∫ 2π

0

e3iθ

ρ(θ)
dθ =

4
r

∑
n≥0

8n

rn

∫ 2π

0

(cos 3θ + 3 cos 5θ)ne3iθ dθ

=
25

r2

∫ 2π

0

e3iθ cos 3θ dθ + o

(
1
r3

)
=

25π

r2
+ o

(
1
r3

)
.

Now we can complete the proof of Proposition 1.3. Choose Ω as in Lemma
3.1 with r sufficiently large. Using Lemmas 2.1(1), 2.2(1) and 3.1 we get

λ+
µ2

c2
− 28
r2

+ o

(
1
r2

)
= 0 and λ+

µ2

c2
− 4
r2

+ o

(
1
r3

)
= 0,

and we obtain a contradiction.

Remark 4. For any r > 32, Ω has the Schiffer property and Ω is of constant
width. Indeed, if (1.1)–(1.3) has a nontrivial solution when c = 0, then Lemma
2.2(1) implies that ∫ L

0

(ν1 + iν2)3 ds = 0,

and we have a contradiction. On the other hand h(θ)+h(θ+π) = 2r for θ ∈ [0, 2π],
hence Ω is of constant width.

Remark 5. Notice that in the case considered by Berenstein (µ = 0) we can easily
give examples of sets Ω satisfying the conclusion of Proposition 1.3 and such that:

(i) Ω have the Schiffer property;

(ii) Ω are not of constant width.

Indeed, let r > 11 and define

h(θ) = r + cos 2θ + cos 3θ, θ ∈ [0, 2π].
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Then h is of class C∞ and has period 2π. Since

ρ(θ) = r − 3 cos 2θ − 8 cos 3θ > 0 , 0 ≤ θ ≤ 2π,

h must be the support function of a convex set Ω. As in Lemma 3.1 we have∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2 ds = 2irπ,
∫ L

0

(ν1 + iν2)3 ds = −8π,

and
B

c2
= −4iπ

r
+ o

(
1
r2

)
,

b

c2
=

25π

r2
+ o

(
1
r2

)
, as r → +∞.

Then using Lemmas 2.1(1) and 2.2(1) we obtain

λ− 2
r2

+ o

(
1
r3

)
= 0 and λ− 4

r2
+ o

(
1
r3

)
= 0,

and we have a contradiction. On the other hand, since∫ L

0

(ν1 + ν2)3 ds 6= 0 and c2(h) 6= 0,

(i) and (ii) are satisfied.
In fact we could also treat the case µ 6= 0. From Lemmas 2.1(1) and 2.2(1)

we get two equations for λ, µ/c and µ2/c2. Then Lemma 2.2(2) with p = 2 gives
a third equation:

α2,5
µ2

c2
+
β2,5

c

µ

c
+
γ1,5

c2
λ+

γ2,5

c2
= 0.

However, to get a contradiction requires tedious calculations; we leave the details
to the reader.

§4. Proof of Theorem 1.1

Let c 6= 0 be a given constant. Assume that (1.1)–(1.3) has a solution corresponding
to a sequence of infinitely many different pairs (λm, µm) ∈ R2, m ∈ N. Lemma
2.3 implies that infinitely many of the constants λm are different. Then we may
assume that all the constants λm are different. Now we have two cases to consider:

Case 1: There exists a subsequence of (λm) that we still denote under (λm) such
that λm → ±∞ as m→∞.

Since the problem is invariant under translation we can assume that c1(h) =
c−1(h) = 0. We have

(4.1) c2p+1(ρ) = 0 ∀p ∈ Z.
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Indeed, suppose the contrary. Then there exists p ≥ 1 such that c2p+1(ρ) 6= 0.
Suppose first that c3(ρ) 6= 0. By Lemma 2.2(1) we have

(4.2) λmc
2 + µ2

m +
b

2π c3(ρ)
= 0 ∀m ∈ N.

(4.2) implies that |µm| → +∞ and λm → −∞ as m → ∞. Then using (4.2) and
Lemma 2.1 we get

(4.3) A = B1,2p = 0 ∀p ≥ 2.

Since

(4.4) A = −2πc c2(h′) = 4iπc c2(h),

and

(4.5) B1,2p = (−1)p−12πc c2p(h′) = (−1)p4ipπc c2p(h),

we deduce that

(4.6) c2n(h) = 0 ∀n ∈ Z \ {0}.

But (4.6) implies that Ω is of constant width and we reach a contradiction. Now
if c3(ρ) = 0, there exists p ≥ 2 such that

c2j+1(ρ) = 0, j = 1, . . . , p− 1, and c2p+1(ρ) 6= 0.

By Lemma 2.2(2), µm satisfies a polynomial equation of degree 2 with coefficients
depending on λm. It is quite easy to see that |µm| → +∞ as m → ∞. Then we
deduce that

λm
µ2
m

c2 + 1→ 0 as m→∞,

from which we derive

(4.7) λmc
2 + µ2

m +
(−1)p

2π c2p+1(ρ)
(γ1,2p+1 − c2α2,2p+1)→ 0

as m → ∞ because β1,2q+1 = 0 for q ≥ 2. Using (4.7) and Lemma 2.1 we deduce
that (4.3) holds and we conclude as before. Thus (4.1) is proved.

Now we claim that there exists p ∈ N \ {0} such that∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2p ds 6= 0.

Indeed, suppose the contrary. Then∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2p ds = −2π c2p(h′ρ) = 0 ∀p ∈ Z.
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Using (4.1) and the fact that cn(ρ) = (1− n2)cn(h) for n ∈ Z, we can write

c2p+1(h′ρ) =
+∞∑
j=−∞

c2p+1−j(h′)cj(ρ) =
+∞∑
j=−∞

c2(p−j)+1(h′)c2j(ρ)

= i

+∞∑
j=−∞

(2(p− j) + 1)c2(p−j)+1(h)c2j(ρ) = 0

for all p ∈ Z (recall that c1(h) = c−1(h) = 0). Therefore we have

cn(h′ρ) = 0 ∀n ∈ Z,

hence h′ρ = 0. Since ρ is positive we deduce that h is constant, contrary to (iii),
and our claim is proved.

Now assume that c2(h′ρ) 6= 0. Then Lemma 2.1(1) implies that

(4.8) λmc
2 + µ2

m +
c2(h′)
c2(h′ρ)

cµm −
B

2π c2(h′ρ)
= 0 ∀m ∈ N.

Therefore |µm| → +∞ as m→∞. Using (4.8), Lemma 2.1(2) and (4.5) we deduce
that

(4.9) c2p(h′) =
c2(h′)
c2(h′ρ)

c2p(h′ρ) ∀p ≥ 2.

Clearly (4.9) also holds for p = 0, 1. Since c2p+1(h′) = c2p+1(h′ρ) = 0 for all p ∈ Z,
we conclude that

(4.10) h′ =
c2(h′)
c2(h′ρ)

h′ρ.

It is quite elementary to see that (4.10) implies that ρ is constant, contradicting
(iii).

Now, as c2(h′ρ) = 0, there exists p ≥ 2 such that

(4.11) c2j(h′ρ) = 0, j = 1, . . . , p− 1, and c2p(h′ρ) 6= 0.

By Lemma 2.1(2), µm satisfies a polynomial equation of degree 2 with coefficients
depending on λm. Clearly |µm| → +∞ as m→∞. Then we deduce that

λm
µ2
m

c2 + 1→ 0 as m→∞,

from which we derive

(4.12) λmc
2 + µ2

m + (−1)p−1 B1,2p

2π c2p(h′ρ)
µm +

(−1)p−1

2π c2p(h′ρ)
(C1,2p − c2A2,2p)→ 0
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as m→∞. Since |µm| → +∞, (4.11) and Lemma 2.1 imply that

A = 0 and B1,4 = · · · = B1,2p−2 = 0 if p ≥ 3.

Then using (4.12), Lemma 2.1(2) and (4.5) we deduce that

(4.13) c2q(h′) =
c2p(h′)
c2p(h′ρ)

c2q(h′ρ) ∀q ≥ p+ 1.

Since (4.13) also holds for q = 0, . . . , p, we conclude as before.

Case 2: The sequence (λm) is bounded.
Let (εj) and (ϕj), j ∈ N, denote the eigenvalues and a complete orthonormal

system of real eigenvectors for −∆ with Dirichlet boundary conditions. For any
z ∈ C \ {εj ; j ∈ N} we define vz as the solution of

∆vz + zvz + 1 = 0 in Ω, vz = 0 on ∂Ω.

Since ∫
∂Ω

∂vz
∂n

dσ(x) =
+∞∑
j=0

εj
z − εj

(∫
Ω

ϕj dx

)2

,

the function

z 7→
∫
∂Ω

∂vz
∂n

dσ(x)

is meromorphic on C, nontrivial, and has a pole at εj if and only if the correspond-
ing eigenspace is not orthogonal to the constants. Now we define the function

(4.14) µ(z) =
c|∂Ω|∫

∂Ω
∂vz

∂n dσ(x)
.

Lemma 4.1. In the above setting µ is a meromorphic function on C and µ(λm) =
µm for every m ∈ N such that λm ∈ R \ {εj ; j ∈ N}

Proof. µ is clearly a meromorphic function on C. If um is a solution of (1.1)–(1.3)
corresponding to (λm, µm), where λm ∈ R \ {εj ; j ∈ N}, then um = µmvλm

.
Therefore

c = µm
∂vλm

∂n
,

and we get µ(λm) = µm.
Now, by taking a subsequence if necessary, we may assume that λm ∈ R \

{εj ; j ∈ N} for all m ∈ N and that there exists λ? ∈ R such that

λm → λ? as m→∞.
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With the notations of Lemmas 2.1 and 2.2, for each p ≥ 1 we define meromorphic
functions on C by setting

F1(z) = (c2z + µ(z)2)
∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2 ds+Aµ(z) +B,

G1(z) = (c2z + µ(z)2)
∫ L

0

(ν1 + iν2)3 ds+ aµ(z) + b,

Fp(z) = (−1)pzp−1(c2z + µ(z)2)
∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2p ds

+ µ(z)2

p∑
j=2

Aj,2pz
p−j + µ(z)

p∑
j=1

Bj,2pz
p−j +

p∑
j=1

Cj,2pz
p−j ,

Gp(z) = (−1)pzp−1(c2z + µ(z)2)
∫ L

0

(ν1 + iν2)2p+1 ds

+ µ(z)2

p∑
j=2

αj,2p+1z
p−j + µ(z)

p∑
j=1

βj,2p+1z
p−j +

p∑
j=1

γj,2p+1z
p−j ,

if p ≥ 2, where µ is defined in (4.14). By Lemmas 2.1, 2.2 and 4.1, for every p ≥ 1,
we have

Fp(λm) = Gp(λm) = 0 ∀m ∈ N.
Notice that, for each p ≥ 1, the poles of Fp and Gp are included in {εj ; j ∈ N}.
Since a nontrivial meromorphic function defined on all of C except at its poles
cannot have a sequence of zeros with a finite limit point, we deduce that Fp ≡ 0
and Gp ≡ 0 for all p ≥ 1. Then there exists a sequence (λ̃m) increasing to +∞ in
R \ {εj ; j ∈ N} such that Fp(λ̃m) = Gp(λ̃m) = 0 for p ≥ 1 and m ∈ N. Now we
can argue as in Case 1.

§5. Concluding remarks

The following theorem was proved in [13, Theorem 3.2 p. 1198].

Theorem 5.1. Let Ω ⊂ R2 be a bounded convex open set of class C3,α (α ∈ (0, 1]).
Assume that Ω is not of constant width and that Ω has the Schiffer property. Let
ψ ∈ C1(∂Ω) be such that:

(i) ψ is not identically constant;

(ii) ψ has at most countably many zeros.

Then there exist at most finitely many different pairs of coefficients (λm, µm) ∈ R2

such that the Cauchy problem

∆u+ λmu+ µm = 0 in Ω, u = 0 and
∂u

∂n
= ψ on ∂Ω,

has a solution.
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Using a completely different approach we proved the same theorem in [5,
Theorem 1.3 p. 774] under slightly different assumptions. However the conditions
there imply that Ω is not of constant width and that Ω has the Schiffer property.
On the other hand we only assume in [5] that ψ ∈ C∞(∂Ω) is not identically
constant. Theorem 1.1 shows that this assumption is not necessary.

The proof of Theorem 1.1 in Case 1 shows that λm → +∞ cannot occur.
Then the arguments in Case 2 easily lead to a contradiction.

We have seen in the proof of Theorem 1.1 that if (1.1)–(1.3) has a solution
corresponding to a sequence of infinitely many different pairs (λm, µm) ∈ R2,
m ∈ N, and if there exists p ≥ 1 such that c2p+1(ρ) 6= 0, then Ω is of constant
width. A class of smooth bounded convex sets of constant width for which there
exist at most finitely many different pairs of coefficients (λm, µm) ∈ R2 such that
(1.1)–(1.3) has a solution is given in [7, Proposition 6.2 p. 118]. We have the
following stronger result, where we use the notations introduced in Section 2.

Theorem 5.2. Let Ω ⊂ R2 be a bounded convex open set satisfying the following
conditions:

(i) ∂Ω is a C∞ curve with positive curvature;

(ii) Ω has the Schiffer property;

(iii) Ω has constant width;

(iv) {p ∈ N \ {0} ; c2p+1(ρ) 6= 0} is finite.

Let c be a nonzero constant. Then there exist at most finitely many different pairs
of coefficients (λm, µm) ∈ R2 such that the Cauchy problem

∆u+ λmu+ µm = 0 in Ω, u = 0 and
∂u

∂n
= c on ∂Ω,

has a solution.

Proof. We shall need a simple lemma proved in [7, Lemma 6.1 p. 118].

Lemma 5.1. In the setting of Theorem 5.2, for all p ∈ N, there exists q ≥ p such
that c2q+1(1/ρ) 6= 0.

Now as in the proof of Theorem 1.1 we are led to Case 1. Assume first that
c3(ρ) 6= 0. Then (4.2) holds, hence |µm| → +∞ and λm → −∞ as m→∞. Using
Lemma 2.2(2) we deduce that

(5.1) c2n+1

(
1
ρ

)
=

2
n(n+ 1)

c3(1/ρ)
c3(ρ)

c2n+1(ρ) ∀n ≥ 2.

(Notice that (5.1) also holds for n = 1.) Then Lemma 5.1 and (iv) give a contra-
diction. Now if c3(ρ) = 0, as in the proof of Theorem 1.1 we arrive at (4.7). Since
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for all n ≥ 2,

γ1,2n+1 − c2α2,2n+1 = (−1)n4πn(n+ 1)c2 c2n+1(1/ρ),

using Lemma 2.2(2) we deduce that if c2j+1(ρ) = 0, j = 1, . . . , p− 1, and c2p+1(ρ)
6= 0, then

(5.2) c2n+1

(
1
ρ

)
=
p(p+ 1)
n(n+ 1)

c2p+1(1/ρ)
c2p+1(ρ)

c2n+1(ρ) ∀n ≥ p+ 1

(clearly (5.2) also holds for n = p and in fact also for n = 1, . . . , p − 1), and
we conclude as before. The arguments in Case 2 are the same as in the proof of
Theorem 1.1.

Notice that the class B in [7, Definition 1.1 p. 94 and Proposition 6.2 p. 118]
is strictly contained in the class defined in Theorem 5.2. Indeed, if c3(ρ) 6= 0, then
Ω has the Schiffer property: see Remark 4 or [7, Proposition 6.1 p. 117]. However
there are plenty of smooth domains of constant width having the Schiffer property
and such that c3(ρ) = 0. Let us give an example. Let r > 72 and define

h(θ) = r + cos 5θ + cos 7θ, θ ∈ [0, 2π].

Then h is of class C∞ and has period 2π. Since

ρ(θ) = r − 24 cos 5θ − 48 cos 7θ > 0, 0 ≤ θ ≤ 2π,

h must be the support function of a convex set Ω. Clearly c3(ρ) = 0. Since h(θ) +
h(θ+π) = 2r, Ω has constant width. Assume that (1.1)–(1.3) has a solution when
c = 0 and µ = 1. In Lemma 2.1(1) we have A = B = 0 and∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2 ds = −
∫ 2π

0

h′(θ)ρ(θ)e2iθ dθ = 36iπ 6= 0,

and we reach a contradiction.
Finally let u be a solution of (1.1)–(1.3). With the notations of Section 4, the

eigenvalue ε0 is simple and the eigenfunction ϕ0 is of constant sign. Integrating by
parts we obtain

ε0

∫
Ω

uϕ0 dx = −
∫

Ω

u∆ϕ0 dx = −
∫

Ω

ϕ0∆u dx = λ

∫
Ω

uϕ0 dx+ µ

∫
Ω

ϕ0 dx.

If λ = ε0, we deduce that µ = 0. Then by the classical result of Serrin [12], Ω is a
disk.
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