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Low Energy Asymptotics of the Spectral Shift
Function for Pauli Operators with Nonconstant

Magnetic Fields

by

Georgi D. Raikov

Abstract

We consider the 3D Pauli operator with nonconstant magnetic field B of constant di-
rection, perturbed by a symmetric matrix-valued electric potential V whose coefficients
decay fast enough at infinity. We investigate the low-energy asymptotics of the corre-
sponding spectral shift function. As a corollary, for generic negative V , we obtain a gen-
eralized Levinson formula, relating the low-energy asymptotics of the eigenvalue counting
function and of the scattering phase of the perturbed operator.
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§1. Introduction

Suppose that the magnetic field B : R3 → R3 has a constant direction, say,

(1.1) B = (0, 0, b).

By the Maxwell equation, div B = 0, we should then have ∂b/∂x3 = 0. Assume
that the function b : R2 → R is continuous and bounded. In Subsection 2.1 we
describe in more detail the class of admissible functions b. Let A ∈ C1(R3; R3) be
a magnetic potential generating the magnetic field B, i.e. curl A = B. Introduce
the Pauli matrices

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
.
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Set σ̂ := (σ̂1, σ̂2, σ̂3). Let

(1.2) H0 := (σ̂ · (−i∇−A))2

be the unperturbed self-adjoint Pauli operator defined originally on C∞0 (R3; C2),
and then closed in L2(R3; C2). We have

H0 :=
(

(−i∇−A)2 − b 0
0 (−i∇−A)2 + b

)
=:
(
H−0 0
0 H+

0

)
= H−0 ⊕H

+
0 .

Further, let vjk ∈ L∞(R3), j, k = 1, 2. Assume that v11 and v22 are real-valued,
and v12 = v21. Introduce the symmetric matrix

V (x) :=
(
v11(x) v12(x)
v21(x) v22(x)

)
, x ∈ R3.

On the domain of H0 define the operator

H := H0 + V.

Assume that

(1.3) (H − i)−1 − (H0 − i)−1 ∈ S1(L2(R3; C2))

where S1(X) denotes the trace class of linear operators acting in the Hilbert
space X. By the diamagnetic inequality and the boundedness of b, we find that
(1.3) holds true if

(1.4) |vjk|1/2(−∆ + 1)−1 ∈ S2(L2(R3)), j, k = 1, 2,

where S2(X) denotes the Hilbert–Schmidt class of linear operators acting in X.
In its turn, (1.4) holds true if and only if vjk ∈ L1(R3).

By (1.3), there exists a unique ξ = ξ(·;H,H0) ∈ L1(R; (1 + E2)−1dE) which
vanishes identically on (−∞, inf σ(H)), such that the Lifshits–Krein trace formula

(1.5) Tr(f(H)− f(H0)) =
∫

R
ξ(E;H,H0)f ′(E) dE

holds for each f ∈ C∞0 (R) (see the original works [25], [22], or [33, Chapter 8]).
The function ξ(·;H,H0) is called the spectral shift function (SSF) for the operator
pair (H,H0). If E < 0 = inf σ(H0), then the spectrum of H below E could be at
most discrete, and for almost every E < 0 we have

(1.6) ξ(E;H,H0) = −N(E;H)

where N(E;H) denotes the number of eigenvalues of H lying in the interval
(−∞, E), and counted with their multiplicities. On the other hand, for almost
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every E ∈ σac(H0) = [0,∞) (see Corollary 2.2), the SSF ξ(E;H,H0) is related to
the scattering determinant detS(E;H,H0) for the pair (H,H0) by the Birman–
Krein formula

(1.7) detS(E;H,H0) = e−2πiξ(E;H,H0)

(see the original work [8] or [33, Section 8.4]).
A priori, the SSF ξ(E;H,H0) is defined for almost every E ∈ R. In this article,

if E ∈ (−∞, C) \ {0} where C > 0 is a constant defined in (2.13), we will identify
ξ(E;H,H0) with a representative of its equivalence class, described explicitly in
Subsection 4.1 under the assumption that the matrix V (x), x ∈ R3, is positive- or
negative-semidefinite. Under our generic assumptions on V , we check that the SSF
ξ(·;H,H0) is bounded on every compact subset of (−∞, C) \ {0}, and continuous
on (−∞, C)\ ({0}∪σpp(H)) where σpp(H) denotes the set of eigenvalues of H (see
Proposition 4.1).

The main results of the article concern the asymptotic behavior of the SSF
ξ(E;H,H0) as E → 0 for perturbations V of definite sign. We show that even
for certain V of compact support, the SSF ξ(·;H,H0) has a singularity at the
origin (see Theorems 3.1 and 3.2). More precisely, we show that ξ(E;H,H0)→∞
as E ↓ 0 if the perturbation is positive, and ξ(E;H,H0) → −∞ as E ↑ 0 and
E ↓ 0 if the perturbation is negative. The singularities of the SSF at the origin
are described in terms of effective Hamiltonians of Berezin–Toeplitz type; their
spectral properties have been studied, for instance, in [29], [31], and [30]. Assuming
that the perturbation admits a power-like or exponential decay at infinity, or that
it has a compact support, we obtain the first asymptotic term of ξ(E;H,H0) as
E ↑ 0 and E ↓ 0 (see Corollaries 3.6 and 3.7). In particular, if the perturbation is
negative, we show that the limit

lim
E↓0

ξ(E;H,H0)
ξ(−E;H,H0)

exists, is finite and positive; it depends only on the decay rate of V at infinity (see
Corollary 3.8).

Similar results concerning the singularities at the Landau levels of the SSF
in the case where the unperturbed operator is the 3D Schrödinger operator with
constant magnetic field, and the perturbation is a scalar potential of constant sign
which decays fast enough at infinity, were obtained in [15]. The relation between
these singularities and the possible accumulation of resonances at the Landau
levels was considered in [10].

The paper is organized as follows. In Section 2 we discuss the class of admis-
sible magnetic fields, describe the basic spectral properties of the operator H0,
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and introduce the Berezin–Toeplitz operators we need. In Section 3 we formulate
our main results as well as some corollaries. Section 4 is devoted to auxiliary
material such as the representation of the SSF due to A. Pushnitski, and estimates
of appropriate sandwiched resolvents. Finally, Section 5 contains the proofs of
Theorems 3.1 and 3.2.

§2. Admissible magnetic fields and effective Hamiltonians

§2.1. Admissible magnetic fields

Let B have the form (1.1). Assume that b = b0 + b̃ where b0 > 0 is a constant,
while the function b̃ : R2 → R is such that the Poisson equation

(2.1) ∆ϕ̃ = b̃

admits a solution ϕ̃ : R2 → R, continuous and bounded together with its deriva-
tives up to the second order. Slightly abusing the terminology, we will say that b
is an admissible magnetic field. Also, we will call the constant b0 the mean value
of b, and b̃ the background of b. In our leading example, the admissible background
b̃ has the form

(2.2) b̃(x) =
∫

R2
eiλ·x dν(λ), x ∈ R2,

where ν is a Borel charge (i.e. a complex-valued measure) defined on R2 which
satisfies

|ν|(R2) <∞,(2.3)

ν(δ) = ν(−δ)(2.4)

for each Borel set δ ⊂ R2,

(2.5) ν({0}) = 0,

and

(2.6)
∫

R2
|λ|−2 d|ν|(λ) <∞.

If b̃ satisfies (2.2), then the Poisson equation (2.1) admits a solution

(2.7) ϕ̃(x) := −
∫

R2
|λ|−2eiλ·x dν(λ), x ∈ R2,

which possesses all the prescribed properties.
Let us give two further examples of admissible backgrounds b̃ of the form

(2.2).
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(i) Let λn ∈ R2\{0}, bn ∈ C, n ∈ N. Assume that
∑
n∈N |bn|(1+ |λn|−2) <∞.

Then the almost periodic function b̃(x) :=
∑
n∈N bne

iλn.x, x ∈ R2, is an admissible
background, provided that it is real-valued. In this case the charge ν in (2.2) is
singular with respect to the Lebesgue measure in R2. Evidently, the real-valued
periodic functions with zero mean value and absolutely convergent series of Fourier
coefficients belong to the above defined class of admissible backgrounds.

(ii) Let f : R2 → C be a Lebesgue measurable function which satisfies f(λ) =
f(−λ), λ ∈ R2, and

∫
R2(1 + |λ|−2)|f(λ)| dλ < ∞. Then b̃(x) :=

∫
R2 e

iλ·xf(λ) dλ
is again an admissible background. In this case the charge ν in (2.2) is absolutely
continuous with respect to the Lebesgue measure in R2.

For (x1, x2) ∈ R2 set ϕ0 := b0(x2
1 + x2

2)/4 and

(2.8) ϕ := ϕ0 + ϕ̃,

ϕ̃ being introduced in (2.1). Then ∆ϕ0 = b0 and ∆ϕ = b. Put A := (A1, A2, A3)
with

(2.9) A1 := − ∂ϕ

∂x2
, A2 :=

∂ϕ

∂x1
, A3 = 0.

The magnetic potential A := (A1, A2, A3) ∈ C1(R3,R3) generates the magnetic
field B = curl A = (0, 0, b). Changing the gauge if necessary, we will assume that
the magnetic potential A in (1.2) is given by (2.9).

§2.2. Spectral properties of the operator H0

Introduce the the annihilation and the creation operators

a = a(b) := −2ie−ϕ
∂

∂z
eϕ, a∗ = a(b)∗ := −2ieϕ

∂

∂z
e−ϕ,

the function ϕ being defined in (2.8), and z := x1 + ix2, z := x1 − ix2. The
operators a and a∗ defined initially on C∞0 (R2), and then closed in L2(R2), are
mutually adjoint. Set

H−⊥ = H−⊥ (b) := a∗a, H+
⊥ = H+

⊥ (b) := aa∗,

H⊥ = H⊥(b) :=
(
H−⊥ 0
0 H+

⊥

)
= H−⊥ ⊕H

+
⊥ .

Then we have

KerH−⊥ = Ker a =
{
u ∈ L2(R2)

∣∣∣∣ u = ge−ϕ,
∂g

∂z
= 0
}
,

(2.10)
KerH+

⊥ = Ker a∗ =
{
u ∈ L2(R2)

∣∣∣∣ u = geϕ,
∂g

∂z
= 0
}
,

KerH⊥ = {u = (u1, u2) | u1 ∈ KerH−⊥ , u2 ∈ KerH+
⊥}.(2.11)
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Note that KerH−⊥ (respectively, KerH+
⊥ ) is a weighted holomorphic (respectively,

antiholomorphic) space of Fock–Segal–Bargmann type (see e.g. [18, Section 2 and
Subsection 3.2]). Since we have chosen b0 > 0, and ϕ̃ is supposed to be bounded,
we find that dim KerH−⊥ =∞ while dim KerH+

⊥ = 0.

Proposition 2.1 ([30, Proposition 1.2]). Let b be an admissible magnetic field
with b0 > 0. Then 0 = inf σ(H⊥) is an isolated eigenvalue of infinite multiplicity.
More precisely,

(2.12) dim KerH⊥ =∞,

and
(0, C) ⊂ R \ σ(H⊥)

with

(2.13) C := 2b0 exp(−2 osc ϕ̃),

where osc ϕ̃ := supx∈R2 ϕ̃(x)− infx∈R2 ϕ̃(x).

Remarks. (i) Relation (2.12) holds true also for more general backgrounds b̃. For
example, it is sufficient that b̃ is bounded, and the solution ϕ̃ ∈ C2(R2) of the
Poisson equation (2.1) satisfies only

(2.14) ϕ̃(x) = o(|x|2), |x| → ∞.

If b̃ is of the form (2.2), and relations (2.3)–(2.5) (but not necessarily (2.6)) hold,
then

ϕ̃(x) :=
∫

R2

(λ · x)2

|λ|2

∫ 1

0

(1− s)eisλ·xds dν(λ), x ∈ R2,

is in C2(R2), and satisfies (2.1) and (2.14). However, some of our further results,
in particular, Lemma 2.3 below, may not be true for such more general magnetic
fields.

(ii) If b is a periodic magnetic field, the fact that the origin is an isolated
eigenvalue of H⊥ was already mentioned in [14], and was proved in [6]. A far-
reaching extension of the results of [14], concerning the existence of a strictly
positive isolated eigenvalue of H⊥ of infinite multiplicity, can be found in [26].

Now note that

(2.15) H±0 = H±⊥ ⊗ I‖ + I⊥ ⊗H‖

where I‖ and I⊥ are the identity operators in L2(R) and L2(R2) respectively, and

H‖ := − d2

dx2
3
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is the self-adjoint operator, originally defined on C∞0 (R), and then closed in L2(R).
Since σ(H‖) coincides with [0,∞), and is purely absolutely continuous, while
inf σ(H−⊥ ) = 0, we find that (2.15) combined with, say, the arguments of [2, Sub-
section 8.2.3] implies

Corollary 2.2. Assume that b is an admissible magnetic field. Then the spectrum
σ(H0) coincides with [0,∞), and is purely absolutely continuous.

§2.3. Berezin–Toeplitz operators

Denote by p = p(b) the orthogonal projection onto KerH−⊥ (b) (see (2.10)). It is
well known that p admits a continuous integral kernel Pb(x, y), x, y ∈ R2 (see e.g.
[18, Theorem 2.3]).

Lemma 2.3. Assume that the magnetic field b is admissible. Then

(2.16)
b0
2π
e−2 osc ϕ̃ ≤ Pb(x, x) ≤ b0

2π
e2 osc ϕ̃, x ∈ R2.

Proof. Introduce the functions

(2.17) φk(x) :=

√
b0

2πk!

(
b0
2

)k/2
(x1 + ix2)k e−ϕ0(x), k ∈ Z+, x ∈ R2,

which constitute a basis of KerH−⊥ (b0) = Ker a(b0), orthonormal in L2(R2) (see
e.g. [31]). Let γ : l2(Z+) → l2(Z+) be the operator given in the canonical basis
by the matrix {gjk}∞j,k=0 with gjk :=

∫
R2 e
−2ϕ̃φjφk dx, j, k ∈ Z+. It is easy to see

that γ is self-adjoint, bounded, and

(2.18) inf
y∈R2

e−2ϕ̃(y) ≤ inf σ(γ) ≤ supσ(γ) ≤ sup
y∈R2

e−2ϕ̃(y).

Set ρ := γ−1/2. Let {rjk}∞j,k=0 be the matrix of ρ in the canonical basis of l2(Z+).
Put

ψj(x) := e−ϕ̃(x)
∞∑
k=0

rjkφk(x), x ∈ R2, j ∈ Z+.

Then {ψj}∞j=0 is a basis of Ker a(b), orthonormal in L2(R2), and

(2.19) Pb(x, x) =
∞∑
j=0

|ψj(x)|2 = e−2ϕ̃(x)‖ρφ(x)‖2l2(Z+)

where φ(x) := {φk(x)}∞k=0 ∈ l2(Z+), x ∈ R2 being fixed (see [18, Theorem 2.4]).
Making use of (2.18) and the spectral theorem, we find that (2.19) and the obvious
equality

∑∞
k=0 |φk(x)|2 = b0

2π , valid for each x ∈ R2, imply (2.16).
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The Berezin–Toeplitz operators, necessary for the formulation of our main re-
sults, have the form p(b)Up(b) where U : R2 → R. In Lemma 2.4 below we describe
a class of compact operators of this type (admitting also complex-valued U).

Let X be a separable Hilbert space. In coherence with our previous notations
S1(X) and S2(X), we denote by Sq(X), q ∈ [1,∞), the Schatten–von Neumann
class of compact linear operators T for which the norm ‖T‖q := (Tr |T |q)1/q is
finite.

Lemma 2.4. Let U ∈ Lq(R2), q ∈ [1,∞). Assume that b is an admissible mag-
netic field. Then p(b)Up(b) ∈ Sq(L2(R2)), and

(2.20) ‖p(b)Up(b)‖qq ≤
b0
2π
e2osc ϕ̃‖U‖qLq .

Proof. If U ∈ L∞(R2), then

(2.21) ‖p(b)Up(b)‖ ≤ ‖U‖L∞ .

If U ∈ L1(R2), then by p(b)Up(b) = p(b)|U |1/2eiargU |U |1/2p(b) and (2.16), we have

‖eiargU |U |1/2p(b)‖22 = ‖p(b)|U |1/2‖22 =
∫

R2
Pb(x, x)|U(x)| dx ≤ b0

2π
e2osc ϕ̃‖U‖L1 .

Therefore,

(2.22) ‖p(b)Up(b)‖1 ≤
b0
2π
e2osc ϕ̃‖U‖L1 .

Interpolating between (2.21) and (2.22), we get (2.20).

For further references, introduce the orthogonal projections

P = P (b) := p⊗ I‖, Q = Q(b) := I − P,

acting in L2(R3), and the orthogonal projections

(2.23) P = P(b) :=
(
P 0
0 0

)
, Q = Q(b) := I−P =

(
Q 0
0 I

)
,

acting in L2(R3; C2). Here I and I are the identity operators in L2(R3) and
L2(R3; C2) respectively.
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§3. Main results

§3.1. Statement of the main results

For x = (x1, x2, x3) ∈ R3 we denote by x = (x1, x2) the variables on the plane
perpendicular to the magnetic field. Suppose that the matrix V satisfies

(3.1) vjk ∈ C(R3), |vjk(x)| ≤ C0〈x〉−m⊥〈x3〉−m3 ,

x = (x, x3) ∈ R3, j, k = 1, 2,

with C0 > 0, m⊥ > 2, m3 > 1, and 〈y〉 := (1 + |y|2)1/2, y ∈ Rd, d ≥ 1. Our main
results will be formulated under a more restrictive assumption than (3.1), namely

(3.2) vjk ∈ C(R3), |vjk(x)| ≤ C0〈x〉−m, x ∈ R3, j, k = 1, 2,

with m > 3. Note that (3.2) implies (3.1) with any m3 ∈ (0,m) and m⊥ = m−m3.
In what follows we will assume that the perturbation of the operator H0 is of

definite sign. For notational convenience, we will suppose that

(3.3) V (x) ≥ 0, x ∈ R3,

and will consider the operators H0 + V or H0 − V .
Assume that (3.1) with m⊥ > 2, m3 > 1 and (3.3) hold true. Set

(3.4) W (x) :=
∫

R
v11(x, x3) dx3, x ∈ R2.

If, moreover, V satisfies (3.2), then

(3.5) 0 ≤W (x) ≤ C ′0〈x〉−m+1, x ∈ R2,

where C ′0 = C0

∫
R〈x〉

−m dx. For E > 0 introduce the operator

(3.6) ω(E) :=
1

2
√
E
p(b)Wp(b).

Evidently, ω(E) is self-adjoint and nonnegative in L2(R2). If b is an admissible
magnetic field, E > 0, and V satisfies (3.1) with m⊥ > 2 and m3 > 1, then
Lemma 2.4 with U = W implies ω(E) ∈ S1.

Let T = T ∗. Denote by Pδ(T ) the spectral projection of T associated with
the Borel set δ ⊂ R. Suppose that T is compact and put

n±(s;T ) := rank P(s,∞)(±T ), s > 0.

Our first theorem concerns the asymptotic behavior of the SSF ξ(E;H,H0) as the
energy approaches the origin from below.
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Theorem 3.1. Let (3.2) with m > 3 and (3.3) hold true. Assume that b is an
admissible magnetic field. Then for each ε ∈ (0, 1) we have

−n+((1− ε);ω(E)) +O(1) ≤ ξ(−E;H0 − V,H0)(3.7)

≤ −n+((1 + ε);ω(E)) +O(1), E ↓ 0.

Remark. By (1.6), if (3.3) holds true, then ξ(−E;H0 +V,H0) = 0 for each E > 0.

Suppose again that the potential V satisfies (3.1) with m⊥ > 2, m3 > 1, and
(3.3). For E > 0 define the matrix-valued function

(3.8) WE(x) :=
(
w11(x) w12(x)
w21(x) w22(x)

)
, x ∈ R2,

where

w11(x) :=
∫

R
v11(x, x3) cos2 (

√
Ex3) dx3,

w22(x) :=
∫

R
v11(x, x3) sin2 (

√
Ex3) dx3,

w12(x) = w21(x) :=
∫

R
v11(x, x3) cos (

√
Ex3) sin (

√
Ex3) dx3.

Set

(3.9) Ω(E) :=
1

2
√
E
p(b)WEp(b).

Evidently, Ω(E) is self-adjoint in L2(R2; C2), and Ω(E) ≥ 0. Since ω(E) ∈ S1, it
is easy to check that Ω(E) ∈ S1 as well.

Our second theorem concerns the asymptotic behavior of the SSF ξ(E;H,H0)
as the energy approaches zero from above.

Theorem 3.2. Let (3.2) with m > 3 and (3.3) hold true. Assume that b is an
admissible magnetic field. Then for each ε ∈ (0, 1) we have

(3.10) ± 1
π

Tr arctan((1± ε)−1Ω(E)) +O(1)

≤ ξ(E;H0 ± V,H0) ≤ ± 1
π

Tr arctan((1∓ ε)−1Ω(E)) +O(1), E ↓ 0.

Remark. The privileged role of the entry v11 of the matrix V which occurs in
the operators ω(E) and Ω(E), is determined by our assumption that b0 > 0, and
hence, the kernel of H⊥ consists of elements with spin-up polarization (see (2.11)).
In particular, we have

P(b)VP(b) =
(
P (b)v11P (b) 0

0 0

)
.
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The proofs of Theorems 3.1 and 3.2 can be found in Section 4. In the following
subsection we will describe explicitly the asymptotics of ξ(−E;H0 − V,H0) and
ξ(E;H0 ± V H0) as E ↓ 0, under generic assumptions about the behavior of W (x)
as |x| → ∞.

§3.2. Corollaries

By (3.7) and (3.10), we can reduce the analysis of the behavior as E → 0 of
ξ(E;H0 ± V,H0) to the investigation of the eigenvalue asymptotics of compact
Berezin–Toeplitz operators p(b)Up(b), discussed in the following three lemmas.

The first one treats the case where the decay of U at infinity is power-like.
It involves the concept of an integrated density of states (IDS) for the operator
H−⊥ (b). Let χQ be the characteristic function of the square Q ⊂ R2, and let |Q|
denote its area. We recall that the nonincreasing function %b : R→ [0,∞) is called
an IDS for the operator H−⊥ (b) if it satisfies

(3.11) %b(E) = lim
|Q|→∞

|Q|−1 Tr(χQP(−∞,E)(H−⊥ (b))χQ)

at its continuity points E ∈ R (see e.g. [20, 13]). If b = b0, i.e. if b̃ = 0, we have

(3.12) %b0(E) =
b0
2π

∞∑
q=0

Θ(E − 2b0q), E ∈ R,

where

Θ(t) =

{
0 if t < 0,
1 if t > 0,

is the Heaviside function.

Lemma 3.3 ([30, Proposition 3.5]). Let U ∈ C1(R2) satisfy

0 ≤ U(x) ≤ C1〈x〉−α, |∇U(x)| ≤ C1〈x〉−α−1, x ∈ R2,

for α > 0 and C1 > 0. Assume, moreover, that:

• U(x) = u0(x/|x|)|x|−α(1 + o(1)) as |x| → ∞, where u0 is a continuous function
on S1 which does not vanish identically;

• b is an admissible magnetic field;

• there exists an IDS %b for the operator H−⊥ (b).

Then

n+(s; p(b)Up(b)) =
b0
2π
|{x ∈ R2 | U(x) > s}|(1 + o(1))(3.13)

= Ψα(s;u0, b0)(1 + o(1)), s ↓ 0,
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where, as above, | · | denotes the Lebesgue measure, and

(3.14) Ψα(s) = Ψα(s;u0, b0) := s−2/α b0
4π

∫
S1
u0(θ)2/αdθ, s > 0.

Remarks. (i) In [30, Proposition 3.5] we considered only the example of almost
periodic admissible magnetic fields, and proved explicitly the existence of the IDS
for the operator H−⊥ (b). In Lemma 3.3 above the existence of the IDS is just a
hypothesis. For this reason we summarize here the main ingredients of the proof
of [30, Proposition 3.5] which do not concern the existence of the IDS:

• Applying variational and commutator techniques developed, in particular, in
[12, 21], we show that for each E ∈ (0, C),

(3.15) n+(s; p(b)Up(b)) = n−(s/E;U1/2(H−⊥ − E)−1U1/2)(1 + o(1)), s ↓ 0.

• Using the Birman–Schwinger principle, as well as the methods of [1, 23, 19]
concerning the strong-electric-field asymptotics of the discrete spectrum of the
operator H−⊥ (b) + gU lying in the gap (0, C) of σ(H−⊥ (b)), we obtain

(3.16) lim
g→∞

g−2/αn−(g−1;U1/2(H−⊥ − E)−1U1/2)

=
∫ E

−∞

∣∣{x ∈ R2 | u0(x/|x|)|x|−α > E − t}
∣∣ d%b(t)

= E−2/αJ (b)
2

∫
S1
u0(θ)2/α dθ, E ∈ (0, C),

where J (b) is the jump of the IDS %b at the origin.

• We check that the family H−⊥ (b0 + sb̃), s ∈ [0, 1], is continuous in the norm
resolvent sense, and, utilizing a gap-labelling theorem due to J. Bellissard [5,
Proposition 4.2.5], we find that the jump J(b0 + sb̃) is independent of s ∈ [0, 1].
In particular, (3.12) implies

(3.17) J (b) = J (b0) =
b0
2π
.

Putting together (3.15)–(3.17), we obtain (3.13). As a by-product of (3.11) with
any E ∈ (0, C), and (3.17), we obtain the formula

lim
|Q|→∞

|Q|−1

∫
Q

Pb(x, x) dx =
b0
2π
,

valid if b is an admissible magnetic field, and there exists an IDS %b for the operator
H−⊥ (b).

(ii) In the case b = b0 (i.e. b̃ = 0) a variant of Lemma 3.3 was proved in [29]
with the help of pseudo-differential techniques. In the case of general admissible
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backgrounds b̃, the methods of [29] are not directly applicable: due to the factor
exp(−ϕ̃) whose derivatives generically do not decay at infinity, we do not obtain
suitable symbols of pseudo-differential operators.

The following two lemmas concern respectively the cases where U decays expo-
nentially at infinity, or has a compact support. First note that, by [30, Proposition
3.2], we have

n+(exp(2 osc ϕ̃)s; p(b0)Up(b0)) ≤ n+(s; p(b)Up(b))(3.18)

≤ n+(exp (−2 osc ϕ̃)s; p(b0)Up(b0)),

provided that s > 0, U : R2 → [0,∞), and the operator U(−∆ + 1)−1 is compact
in L2(R2).

Combining (3.18) with the results of [31, Proposition 3.1 with q = 0] and of
[31, Proposition 3.2], we obtain

Lemma 3.4. Let 0 ≤ U ∈ L∞(R2). Assume that

lnU(x) = −η|x|2β(1 + o(1)), |x| → ∞,

for some β, η ∈ (0,∞). Let b be an admissible magnetic field. Then

n+(s; p(b)Up(b)) = Φβ(s)(1 + o(1)), s ↓ 0,

where

Φβ(s) = Φβ(s; η, b0)(3.19)

:=



b0
2η1/β

|ln s|1/β if 0 < β < 1,

1
ln (1 + 2η/b0)

|ln s| if β = 1,

β

β − 1
(ln |ln s|)−1|ln s| if 1 < β <∞,

s ∈ (0, e−1).

Similarly, the combination of (3.18) with [31, Proposition 3.2 with q = 0] and
[31, Proposition 3.2] implies

Lemma 3.5. Let 0 ≤ U ∈ L∞(R2). Assume that the support of U is compact,
and that there exists a constant C > 0 such that U ≥ C on an open nonempty
subset of R2. Let b be an admissible magnetic field. Then

n+(s; p(b)Up(b)) = Φ∞(s)(1 + o(1)), s ↓ 0,

where

(3.20) Φ∞(s) := (ln |ln s|)−1|ln s|, s ∈ (0, e−1).
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Employing now Lemma 3.3, 3.4, or 3.5, we find that (3.7) immediately entails

Corollary 3.6. Let (3.2) with m > 3 and (3.3) hold true.

(i) Assume that the hypotheses of Lemma 3.3 hold with U = W and α = m− 1.
Then

(3.21) ξ(−E;H0 − V,H0) = − b0
2π
|{x ∈ R2 |W (x) > 2

√
E}|(1 + o(1))

= −Ψm−1(2
√
E;u0, b0)(1 + o(1)), E ↓ 0,

the function Ψα being defined in (3.14).

(ii) Assume that the hypotheses of Lemma 3.4 hold with U = W . Then

ξ(−E;H0 − V,H0) = −Φβ(2
√
E; η, b0)(1 + o(1)), E ↓ 0, β ∈ (0,∞),

the function Φβ being defined in (3.19).

(iii) Assume that the hypotheses of Lemma 3.5 hold with U = W . Then

ξ(−E;H0 − V,H0) = −Φ∞(2
√
E)(1 + o(1)), E ↓ 0,

the function Φ∞ being defined in (3.20).

Remark. By (1.6), the results of Corollary 3.6, as well those of Theorem 3.1, con-
cern the asymptotic distribution near the origin of the (negative) discrete spectrum
of the operator H0 − V . Results related to Corollary 3.6(i), concerning perturba-
tions V of power-like decay, can be found in [21] where, similarly to the present
article, magnetic fields B = (0, 0, b) of constant direction are considered. More-
over, in [21], the perturbation V is not obliged to be asymptotically homogeneous,
the decay rate m is allowed to be any positive number, and two distinct types
of asymptotic formulae concerning the case m ∈ (0, 2) and m ∈ (2,∞) are de-
duced, the latter being similar to (3.21). On the other hand, in [21] the function
b is assumed to be positive, its derivative is supposed to decay at infinity, and
the perturbation V is scalar. Results which extend Lemma 3.5, and are related to
Corollary 3.6(iii), are contained in [16].

Next, the combination of Theorem 3.2 with Lemmas 3.3–3.5 yields

Corollary 3.7. (i) Let (3.2) with m > 3 and (3.3) hold true. Assume that the
hypotheses of Lemma 3.3 are fulfilled for U = W and α = m− 1. Then

ξ(E;H0 ± V,H0) = ± b0
2π2

∫
R2

arctan((2
√
E)−1W (x)) dx (1 + o(1))

= ± 1
2 cos (π/(m− 1))

Ψm−1(2
√
E;u0, b0)(1 + o(1)), E ↓ 0.
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(ii) Let (3.2) with m > 3 and (3.3) hold true. Suppose in addition that V satisfies
(3.1) for some m⊥ > 2 and m3 > 2. Finally, assume that the hypotheses of
Lemma 3.4 are fulfilled for U = W . Then

ξ(E;H0 ± V,H0) = ±1
2

Φβ(2
√
E; η, b0)(1 + o(1)), E ↓ 0, β ∈ (0,∞).

(iii) Let the assumptions of (ii) be fulfilled, except that the hypotheses of Lemma
3.4 are replaced by those of Lemma 3.5. Then

ξ(E;H0 ± V,H0) = ±1
2

Φ∞(2
√
E)(1 + o(1)), E ↓ 0.

The main ingredient of the proof of Corollary 3.7 is the estimate

(3.22) Tr arctan(s−1Ω(E)) = Tr arctan(s−1Ω̃(E))(1 + o(1)), E ↓ 0, s > 0,

where

Ω̃(E) :=
1

2
√
E
p(b)

(
W 0
0 0

)
p(b), E > 0,

W being defined in (3.4). Estimate (3.22) is obtained by using the Lifshits–Krein
trace formula (1.5) with f(E) = arctanE, E ∈ R. Since the argument of the proof
of Corollary 3.7 is completely analogous to the one of [15, Corollary 3.2], we omit
the details.

Remark. By (1.7), Corollary 3.7 as well as Theorem 3.2 concern the low-energy
asymptotics of the scattering phase arg detS(H0 ± V,H0).

Putting together the results of Corollaries 3.6 and 3.7 for negative perturba-
tions, we obtain

Corollary 3.8. Under the assumptions of Corollary 3.7(i) we have

(3.23) lim
E↓0

ξ(E;H0 − V,H0)
ξ(−E;H0 − V,H0)

=
1

2 cos(π/(m− 1))
, m > 3,

while under the assumptions of Corollary 3.7(ii)–(iii) we have

(3.24) lim
E↓0

ξ(E;H0 − V,H0)
ξ(−E;H0 − V,H0)

=
1
2
.

Remark. Formulae (3.23)–(3.24) could be interpreted as generalized Levinson for-
mulae. We recall that the classical Levinson formula relates the (finite) limiting
values as E ↑ 0 and E ↓ 0 of the SSF ξ(E;−∆ +V ;−∆) where ∆ is the Laplacian
in Rd, d ≥ 1, and V : Rd → R is a scalar potential which decays fast enough at
infinity (see the original work [24] or the survey article [32]).
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§4. Auxiliary results

§4.1. A representation of the SSF

In this subsection we introduce a suitable representation of the SSF
ξ(E;H0±V,H0), E ∈ (−∞, C)\{0}, based on a general abstract result of A. Push-
nitski [27].

Assume that V satisfies (3.3) and (3.1). Set

(4.1) L(x) = {`jk(x)}2j,k=1 := V (x)1/2, x ∈ R3.

Then for E < 0 we have

L(H0 − E)−1/2 ∈ S∞(L2(R2; C2)),(4.2)

L(H0 − E)−1 ∈ S2(L2(R2; C2)).(4.3)

For z ∈ C+ := {ζ ∈ C | Im ζ > 0}, set T (z) := L(H0 − z)−1L. By [7] (see also [27,
Lemma 4.1]), for almost every E ∈ R the operator-norm limit

(4.4) T (E + i0) := n-lim
δ↓0

T (E + iδ)

exists, and

(4.5) ImT (E + i0) ∈ S1.

For trivial reasons the limit in (4.4) exists and (4.5) holds for each E < 0 =
inf σ(H0). In Corollary 4.5 below we show that this is also true for each E ∈ (0, C).
Hence, by [27, Lemma 2.1], the quantity

(4.6) ξ̃(E;H0 ± V,H0)

= ±
∫

R
n∓(1; ReT (E + i0) + t ImT (E + i0)) dµ(t), E ∈ (−∞, C) \ {0},

with
dµ(t) :=

dt

π(1 + t2)
,

is well defined. Arguing as in the proof of [12, Proposition 2.5] (see also [11, Propo-
sition 2.1]), and bearing in mind Proposition 4.2, Corollary 4.3, and Proposition
4.4 below, we easily prove the following

Proposition 4.1. Assume that V satisfies (3.1) with m⊥ > 2, m3 > 1, and (3.3).
Suppose that b is an admissible magnetic filed. Then ξ̃(·;H0 ± V,H0) is bounded
on every compact subset of (−∞, C) \ {0}, and is continuous on (−∞, C) \ ({0} ∪
σpp(H ± V )).
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Since V satisfies (3.1) with m⊥ > 2, m3 > 1, relation (1.3) holds true and the
SSF ξ(E;H0 ± V,H0) is well defined for almost every E ∈ R. On the other hand,
by [27, Theorem 1.2] we have

ξ(E;H0 ± V,H0) = ξ̃(E;H0 ± V,H0)

for almost every E ∈ R. In this article we identify ξ(E;H0 ± V,H0) with ξ̃(E;
H0 ± V,H0) for E ∈ (−∞, C) \ {0}.

Remark. The representation of the SSF described above admits a generalization
to non-sign-definite perturbations V (see [17, 28]). This generalization is based on
the concept of the index of orthogonal projections (see [4]).

We formulate our main results and their corollaries for the case of perturba-
tions of constant sign because certain key auxiliary facts are known to be true only
in this case.

§4.2. Estimates of sandwiched resolvents

For z ∈ C+ define the operator R(z) := (−d2/ dx2
3 − z)−1, bounded in L2(R).

The operator R(z) admits the integral kernel Rz(x3 − x′3) where Rz(x) =
iei
√
z|x|/(2

√
z), x ∈ R, and the branch of

√
z is chosen so that Im

√
z > 0.

For z ∈ C+ introduce the operators

(4.7) T<(z) := LP(H0 − z)−1L, T>(z) := LQ(H0 − z)−1L,

bounded in L2(R3; C2) (see (2.23) for the definition of the orthogonal projections
P and Q). Then we have T<(z) = L((p⊗R(z))⊕ 0)L.

For E ∈ R, E 6= 0, define R(E) to be the operator with the integral kernel
RE(x3 − x′3) where

(4.8) RE(x) := lim
δ↓0
RE+iδ(x) =


e−
√
−E|x|

2
√
−E

if E < 0,

iei
√
E|x|

2
√
E

if E > 0,

x ∈ R.

For E ∈ R, E 6= 0, set

T<(E) := L((p⊗R(E))⊕ 0)L.

Proposition 4.2. Let (3.1) with m⊥ > 2, m3 > 1 and (3.3) hold true. Then the
operator-valued function C+\{0} 3 z 7→ T<(z) ∈ S1 is well defined and continuous.
Moreover,

(4.9) ‖T<(E)‖1 ≤ C1(1 + E
1/4
+ )|E|−1/2, E ∈ R \ {0},

with C1 independent of E.
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Proof. The operator T<(z) admits the representation

(4.10) T<(z) = M((G⊗ J(z))⊕ 0)M, z ∈ C+ \ {0},

where M : L2(R3; C2) → L2(R3; C2) is multiplication by the matrix-valued func-
tion

(4.11) M(x, x3) := 〈x〉m⊥/2〈x3〉m3/2L(x, x3), (x, x3) ∈ R3;

the operator G := 〈x〉−m⊥/2p 〈x〉−m⊥/2 acts in L2(R2), while

J(z) := 〈x3〉−m3/2R(z)〈x3〉−m3/2

acts in L2(R). Evidently,

(4.12) ‖T<(z)‖1 ≤ ‖M‖2‖G‖1‖J(z)‖1, z ∈ C+ \ {0}.

By (3.1), the operator M is bounded. Further, ‖G‖1 = ‖pUp‖1 with U(x) =
〈x〉−m⊥ , x ∈ R2. As m⊥ > 2 we have U ∈ L1(R2), and Lemma 2.4 implies G ∈ S1.
Moreover, M and G are independent of z. By [12, Subsection 4.1] the operator-
valued function C+ \ {0} 3 z 7→ J(z) ∈ S1 is well defined and continuous, and
admits the estimate

(4.13) ‖J(E)‖1 ≤ C ′1(1 + E
1/4
+ )|E|−1/2, E ∈ R \ {0},

with C ′1 independent of E. Now the claim of the lemma follows from (4.10)–
(4.13).

For further reference we state the following obvious

Corollary 4.3. Let V satisfy the assumptions of Proposition 4.2. Let E ∈ R,
E 6= 0. Then ImT<(E) ≥ 0. Moreover, if E < 0, then ImT<(E) = 0.

Proposition 4.4. Let V satisfy the assumptions of Proposition 4.2. Then the
function C \ [C,∞) 3 z 7→ T>(z) ∈ S2 is well defined and analytic. Moreover, for
E ∈ (−∞, C) we have

(4.14) T>(E) = T>(E)∗,

and

(4.15) ‖T>(E)‖2 ≤ C2

(
1 +

(E + 1)+
C − E

)
,

with C2 independent of E.
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Proof. We have

T>(z) = L((Q(H−0 − z)−1)⊕ (H+
0 − z)−1)L, z ∈ C \ [C,∞).

The function C \ [C,∞) 3 z 7→ T>(z) ∈ B (the class of bounded linear operators)
is well defined and analytic, and (4.14) holds true for E ∈ (−∞, C), just because
C\ [C,∞) is included in the resolvent sets of the operator H−0 defined on QD(H−0 ),
and of the operator H+

0 defined on D(H+
0 ). Further, set

F (x, x3) = 〈x〉−m⊥/2〈x3〉−m3/2, (x, x3) ∈ R3.

Note that L = FM , the matrix M being defined in (4.11). Then we have

(4.16) ‖T>(z)‖22 ≤ ‖L‖2
(
‖Q(H−0 − z)−1F‖22 + ‖(H+

0 − z)−1F‖22
)
‖M‖2.

Applying the spectral theorem for bounded functions of self-adjoint operators, the
resolvent identity, and the diamagnetic inequality for Hilbert–Schmidt operators,
we get

‖Q(H−0 − z)−1F‖2 ≤ C(z)‖(H−0 + 1)−1F‖2(4.17)

≤ C(z)‖1 + (H−0 + 1)−1b‖ ‖((i∇+ A)2 + 1)−1F‖2
≤ C(z)‖1 + (H−0 + 1)−1b‖ ‖(−∆ + 1)−1F‖2

where

C(z) := sup
s∈[C,∞)

∣∣∣∣s+ 1
s− z

∣∣∣∣, z ∈ C \ [C,∞).

Similarly,

(4.18) ‖(H+
0 − z)−1F‖2 ≤ C(z)‖1− (H+

0 + 1)−1b‖ ‖(−∆ + 1)−1F‖2.

Since ‖(−∆ + 1)−1F‖2 < ∞, we find that (4.16)–(4.18) imply that T>(z) ∈ S2 if
z ∈ C \ [C,∞), and that (4.15) holds true.

The analyticity of T>(z) in S2 follows from an appropriate estimate of the
Hilbert–Schmidt norm of the derivative dT>(z)/dz.

Propositions 4.2 and 4.4 immediately entail

Corollary 4.5. Let V satisfy the assumptions of Proposition 4.2. Then for E =
(−∞, C) \ {0} the operator-norm limit (4.4) exists, and

(4.19) T (E + i0) = T<(E) + T>(E).

Moreover,

ReT (E + i0) = ReT<(E) + T>(E),(4.20)

ImT (E + i0) = ImT<(E).(4.21)
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§5. Proofs of the main results

§5.1. A preliminary estimate

This subsection contains a preliminary estimate (see (5.2) below) which will be
used in the proofs of Theorems 3.1–3.2.

The following lemma contains a suitable version of the Weyl inequalities for
the eigenvalues of compact operators.

Lemma 5.1 ([9, Chapter I, Eq. (1.32)]). Let T ∗j , j = 1, 2, be compact self-adjoint
operators acting in the same Hilbert space. Then

(5.1) n±(s1 + s2;T1 + T2) ≤ n±(s1;T1) + n±(s2;T2)

for every s1 > 0 and s2 > 0.

Proposition 5.2. Let (3.1) with m > 3 and (3.3) hold true. Let E =
(−∞, C) \ {0}. Then the asymptotic estimates

(5.2)
∫

R
n±(1 + ε; ReT<(E) + t ImT<(E)) dµ(t) +O(1)

≤
∫

R
n±(1; ReT (E + i0) + t ImT (E + i0)) dµ(t)

≤
∫

R
n±(1− ε; ReT<(E) + t ImT<(E)) dµ(t) +O(1)

hold as E → 0 for each ε ∈ (0, 1).

Proof. By (4.20) and (4.21), and the Weyl inequalities (5.1), we have

(5.3)
∫

R
n±(1 + ε; ReT<(E) + t ImT<(E)) dµ(t)− n∓(ε;T>(E))

≤
∫

R
n±(1; ReT (E + i0) + t ImT (E + i0)) dµ(t)

≤
∫

R
n±(1− ε; ReT<(E) + t ImT<(E)) dµ(t) + n±(ε;T>(E)).

Evidently, n±(ε;T>(E)) ≤ ε−2‖T>(E)‖22, which combined with (4.15) yields

(5.4) n±(ε;T>(E)) = O(1), E → 0.

Now (5.2) follows from (5.3) and (5.4).
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§5.2. Proof of Theorem 3.1

Throughout the subsection we assume the hypotheses of Theorem 3.1. By Corollary
4.3 we have Im T<(−E) = 0, and hence ReT<(−E) = T<(−E) if E > 0. Therefore,

(5.5)
∫

R
n+(s; ReT<(−E) + t ImT<(−E)) dµ(t)

= n+(s;T<(−E)), E > 0, s > 0.

For E > 0 define O(E) : L2(R3; C2) → L2(R3; C2) as the operator with matrix-
valued integral kernel

1
2
√
E
`j1(x, x3) Pb(x, x′)`1k(x′, x′3), j, k = 1, 2, (x, x3), (x′, x′3) ∈ R3.

Proposition 5.3. For each ε ∈ (0, 1) and s > 0 we have

n+((1 + ε)s;O(E)) +O(1) ≤ n+(s;T<(−E))(5.6)

≤ n+((1− ε)s;O(E)) +O(1), E ↓ 0.

Proof. Fix s > 0 and ε ∈ (0, 1). By the Weyl inequalities (5.1),

n+((1 + ε)s;O(E))− n−(εs;T<(−E)−O(E))

≤ n+(s;T<(−E)) ≤ n+((1− ε)s;O(E)) + n+(εs;T<(−E)−O(E)).

In order to get (5.6), it suffices to show that there exists a compact operator T̃
such that

(5.7) n-lim
E↓0

(T<(−E)−O(E)) = T̃ .

Pick m′ ∈ (3,m) and note that

T<(−E)−O(E) = M̃m,m′((G̃m−m′ ⊗ J̃m′(E))⊕ 0)M̃m,m′

where M̃m,m′ is multiplication by the bounded matrix-valued function

〈x〉(m−m
′)/2〈x3〉m

′/2L(x, x3), (x, x3) ∈ R3,

G̃m−m′ : L2(R2)→ L2(R2) is the operator with integral kernel

〈x〉−(m−m′)/2Pb(x, x′)〈x′〉−(m−m′)/2, x, x′ ∈ R2,

and J̃m′(E), E > 0, is the operator with integral kernel

− 1
2
√
E
〈x3〉−m

′/2(1− e−
√
E|x3−x′3|)〈x′3〉−m

′/2, x3, x
′
3 ∈ R.
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Set

(5.8) T̃ = M̃m,m′((G̃m−m′ ⊗ J̃m′(0))⊕ 0)M̃m,m′

where J̃m′(0) : L2(R)→ L2(R) is the operator with integral kernel

−1
2
〈x3〉−m

′/2|x3 − x′3|〈x′3〉−m
′/2, x3, x

′
3 ∈ R.

Note that T̃ admits a matrix-valued integral kernel

(5.9) −1
2
`j1(x, x3)|x3 − x′3|Pb(x, x′)`1k(x′, x′3), j, k = 1, 2, (x, x3), (x′, x′3) ∈ R3.

Since m −m′ > 0, the operator G̃m−m′ is compact by Lemma 2.4. Since m′ > 3
we have J̃m′(E) ∈ S2 for E ≥ 0. Bearing in mind that M̃m,m′ is bounded, we find
that the operator T̃ is compact. Finally, limE↓0 ‖J̃m′(E) − J̃m′(0)‖2 = 0, which
easily implies (5.7).

Proposition 5.4. For each E > 0 and s > 0 we have

(5.10) n+(s;O(E)) = n+(s;ω(E)),

the operator ω(E) being defined in (3.6).

Proof. Define the operator K : L2(R3; C2)→ L2(R2) by

(Ku)(x) :=
∑
k=1,2

∫
R2

∫
R
Pb(x, x′)`1k(x′, x′3)uk(x′, x′3) dx′3 dx

′, x ∈ R2,

where u = (u1
u2

) ∈ L2(R3; C2). We have

O(E) =
1

2
√
E
K∗K, ω(E) =

1
2
√
E
KK∗.

Since n+(s;K∗K) = n+(s;KK∗) for each s > 0, we get (5.10).

Putting together (4.6), (5.2), (5.5), (5.6), and (5.10), we get (3.7), which
concludes the proof of Theorem 3.1.

§5.3. Proof of Theorem 3.2

Throughout this subsection we assume the hypotheses of Theorem 3.2.

Proposition 5.5. For each s > 0 we have

(5.11) n±(s; ReT<(E)) = O(1), E ↓ 0.
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Proof. The operator ReT<(E) admits the matrix-valued integral kernel

− `j1(x, x3)
sin (
√
E|x3 − x′3|)
2
√
E

Pb(x, x′)`1k(x′, x′3),

j, k = 1, 2, (x, x3), (x′, x′3) ∈ R3.

Arguing as in the proof of Proposition 5.3, we find that n-limE↓0 ReT<(E) = T̃

(see (5.8)–(5.9)), which implies (5.11).

Making use of Propositions 5.2 and 5.5 and Corollary 4.3, as well as of the
Weyl inequalities (5.1) and the evident identities∫

R
n±(s; tT ) dµ(t) =

1
π

Tr arctan(s−1T ), s > 0,

with T = T ∗ ≥ 0, T ∈ S1, we obtain the following

Corollary 5.6. For each ε ∈ (0, 1) and s > 0 we have

(5.12)
1
π

Tr arctan((s(1 + ε))−1 ImT<(E)) +O(1)

≤
∫

R
n±(s; ReT<(E) + t ImT<(E)) dµ(t)

≤ 1
π

Tr arctan((s(1− ε))−1 ImT<(E)) +O(1), E ↓ 0.

Proposition 5.7. For each E > 0 and s > 0 we have

(5.13) n+(s; ImT<(E)) = n+(s; Ω(E)),

the operator Ω(E) being defined in (3.9). Consequently,

(5.14) Tr arctan(s−1 ImT<(E)) = Tr arctan(s−1Ω(E)), E > 0, s > 0.

Proof. The operator ImT<(E) admits the matrix-valued integral kernel

`j1(x, x3)
cos (
√
E(x3 − x′3))
2
√
E

Pb(x, x′)`1k(x′, x′3),

j, k = 1, 2, (x, x3), (x′, x′3) ∈ R3.

Define the operator K : L2(R3; C2)→ L2(R2; C2) by

Ku := v =
(
v1
v2

)
∈ L2(R2; C2), u =

(
u1

u2

)
∈ L2(R3; C2),
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where

v1(x) :=
∑
k=1,2

∫
R2

∫
R
Pb(x, x′) cos(

√
Ex′3)`1k(x′, x′3)uk(x′, x′3) dx′3 dx

′,

v2(x) :=
∑
k=1,2

∫
R2

∫
R
Pb(x, x′) sin(

√
Ex′3)`1k(x′, x′3)uk(x′, x′3) dx′3 dx

′, x ∈ R2.

We have
ImT<(E) =

1
2
√
E
K∗K, Ω(E) =

1
2
√
E
KK∗.

Since n+(s;K∗K) = n+(s;KK∗) for each s > 0, we get (5.13).

Now the combination of (4.6), (5.2), (5.12), and (5.14) yields (3.10).
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[27] A. Pushnitskĭı, A representation for the spectral shift function in the case of perturbations
of fixed sign, Algebra i Analiz 9 (1997), 197–213 (in Russian); English transl.: St. Petersburg
Math. J. 9 (1998), 1181–1194. MR 1610180

[28] , The spectral shift function and the invariance principle, J. Funct. Anal. 183 (2001),
269–320. Zbl 0998.47003 MR 1844210

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1129.35053&format=complete
http://www.ams.org/mathscinet-getitem?mr=2310953
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1163.35446&format=complete
http://www.ams.org/mathscinet-getitem?mr=2456460
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1082.35115&format=complete
http://www.ams.org/mathscinet-getitem?mr=2069004
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0985.35055&format=complete
http://www.ams.org/mathscinet-getitem?mr=1838315
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0489.46055&format=complete
http://www.ams.org/mathscinet-getitem?mr=0583789
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1062.81043&format=complete
http://www.ams.org/mathscinet-getitem?mr=2057679
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1106.81040&format=complete
http://www.ams.org/mathscinet-getitem?mr=2217290
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0964.47013&format=complete
http://www.ams.org/mathscinet-getitem?mr=1785280
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0977.46011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1770752
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0916.47054&format=complete
http://www.ams.org/mathscinet-getitem?mr=1489610
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1029.81027&format=complete
http://www.ams.org/mathscinet-getitem?mr=1869817
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0948.35091&format=complete
http://www.ams.org/mathscinet-getitem?mr=1626727
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0052.12303&format=complete
http://www.ams.org/mathscinet-getitem?mr=0060742
http://www.ams.org/mathscinet-getitem?mr=1421959
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0032.20702&format=complete
http://www.ams.org/mathscinet-getitem?mr=0030080
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0046.21203&format=complete
http://www.ams.org/mathscinet-getitem?mr=0049490
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0922.35141&format=complete
http://www.ams.org/mathscinet-getitem?mr=1437160
http://www.ams.org/mathscinet-getitem?mr=1610180
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0998.47003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1844210


590 G. D. Raikov

[29] G. D. Raikov, Eigenvalue asymptotics for the Schrödinger operator with homogeneous mag-
netic potential and decreasing electric potential. I. Behavior near the essential spectrum tips,
Comm. Partial Differential Equations 15 (1990), 407–434; Zbl 0739.35055 MR 1243533;
Errata, ibid. 18 (1993), 1977–1979. Zbl 0787.35080 MR 1044429

[30] , Spectral asymptotics for the perturbed 2D Pauli operator with oscillating magnetic
fields. I. Non-zero mean value of the magnetic field, Markov Process. Related Fields 9 (2003),
775–794. Zbl 1064.35124 MR 2072255

[31] G. D. Raikov and S. Warzel, Quasi-classical versus non-classical spectral asymptotics for
magnetic Schrödinger operators with decreasing electric potentials, Rev. Math. Phys. 14
(2002), 1051–1072. Zbl 1033.81038 MR 1939760

[32] D. Robert, Semiclassical asymptotics for the spectral shift function, in Differential operators
and spectral theory, Amer. Math. Soc. Transl. (2) 189, Amer. Math. Soc., Providence, RI,
1999, 187–203. Zbl 0922.35108 MR 1730513

[33] D. R. Yafaev, Mathematical scattering theory. General theory, Transl. Math. Monogr. 105,
Amer. Math. Soc., Providence, RI, 1992. Zbl 0761.47001 MR 1180965

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0739.35055&format=complete
http://www.ams.org/mathscinet-getitem?mr=1243533
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0787.35080&format=complete
http://www.ams.org/mathscinet-getitem?mr=1044429
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1064.35124&format=complete
http://www.ams.org/mathscinet-getitem?mr=2072255
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1033.81038&format=complete
http://www.ams.org/mathscinet-getitem?mr=1939760
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0922.35108&format=complete
http://www.ams.org/mathscinet-getitem?mr=1730513
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0761.47001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1180965

	§1. Introduction
	§2. Admissible magnetic fields and effective Hamiltonians
	2.1. Admissible magnetic fields
	2.2. Spectral properties of the operator H0
	2.3. Berezin–Toeplitz operators

	§3. Main results
	3.1. Statement of the main results
	3.2. Corollaries

	§4. Auxiliary results
	4.1. A representation of the SSF
	4.2. Estimates of sandwiched resolvents

	§5. Proofs of the main results 
	5.1. A preliminary estimate
	5.2. Proof of Theorem 3.1
	5.3. Proof of Theorem 3.2

	References

