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Abstract

We generalize the notion of a Hecke pair of groups to the case of an inclusion of ergodic
discrete measured equivalence relations. A key ingredient in defining this new concept
is a commensurability subrelation introduced and discussed in [3]. As in the group case,
with each such Hecke pair, we associate a von Neumann algebra which we call the Hecke
von Neumann algebra of the pair. It is shown that the Hecke von Neumann algebra thus
defined is realized as one of the relative commutants of the tower of the corresponding
inclusion of factors.
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81. Introduction

This paper is concerned with a certain type of Borel subrelations of general ergodic
discrete measured equivalence relations. In [3], we introduced and investigated a
notion of the commensurability groupoid CG(B) for an inclusion of (separable)
factors B C A which have a common Cartan subalgebra D. Our motivation to
study this new object stems from the work [I3] of Izumi-Longo—Popa, who intro-
duced an extremely important concept of discreteness of an inclusion of factors
N C M, in order to analyze such a situation as would arise when NV is realized
as the fixed-point algebra of a minimal action of a compact group (Kac algebra)
on M. Given an inclusion B C A as stated above, we defined CG(B) to be a set
of partial isometries in A whose initial and final projections both belong to B
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satisfying a certain condition (see Subsection for its precise definition). We

"

proved in [3], among other results, that the inclusion B C CG(B)" is always dis-
crete in the sense of Izumi-Longo—Popa, and that CG(B)" is the largest among
the intermediate subfactors C of B C A such that B C C is discrete.

Furthermore, according to [7], there exist an ergodic discrete measured equiva-
lence relation R on a standard probability space (X, 1) and a 2-cocycle w on R such
that the inclusion D C A is #-isomorphic to W*(X) C W*(R,w), where W*(R,w)
is a sort of matrix algebra over R twisted by w, and W*(X) is the subalgebra of
diagonal matrices. Moreover, thanks to [I], there is an ergodic Borel subrelation S
of R such that B = W*(S,w). Therefore, discreteness of B C A in our setting can
be considered to be a condition for the inclusion of equivalence relations S C R.
By [1] again, the subfactor CG(B)" has the form CG(B)"” = W*(Commg (S), w) for
a (unique) ergodic intermediate Borel subrelation Commg (S) of S C R. The theo-
rem in [3] cited above then tells us that B C A is discrete if and only if Commpg (S)
equals R up to a null set. We call Commp(S) the commensurability subrelation
of § in R. This terminology is borrowed from group theory, as the next example
shows. Suppose that the equivalence relations S C R in question are derived from
outer actions of countable discrete groups H C G on an ergodic equivalence rela-
tion P, ie., S = Hx P and R = G x P (see Section |11| below for details). It is
(implicitly) stated in [I3] that Commg (S) in this case is equal to Commeg(H) X P,
where Commg(H) :={g € G:[H: HNgHg '] < oo, [H: HNg 'Hg] < cc}.
The subgroup Commg(H) is often called the commensurability subgroup of H
in G. So discreteness of B C A in this example is equivalent to Commeg(H) be-
ing equal to G, in which case H is said to be almost normal in G, or (G, H) is
called a Hecke pair. Suggested by this example, we generally say that an inclu-
sion of ergodic discrete measure equivalence relations S C R is a Hecke pair if
Commpg (S) = R. It is well-known that the notion of a Hecke pair with the Hecke
algebra of groups is extremely important in the theory of modular forms (see [17]
for example). This notion has also attracted a lot of attention of operator alge-
braists since the pioneering work [4] of Bost and Connes on Hecke C*-algebras.
Hence we strongly believe that Hecke pairs of equivalence relations equally deserve
a serious investigation. This is the topic we treat in the present article.

The organization of this paper is as follows.

Section [2] is devoted to preparations. We briefly recall the definitions of von
Neumann algebras associated with discrete equivalence relations on standard mea-
sure spaces, the basic extension of an inclusion of factors and commensurability
subrelations.

In Section starting from an inclusion of ergodic equivalence relations
S C R on a measure space X, we identify the basic extension A; of the inclu-
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sion B := W*(S,w) C A := W*(R,w) with the von Neumann algebra of the
skew-product equivalence relation I, x R derived from an index cocycle of S C R.
Then we realize, through this identification, the relative commutant A; N B’ as
the functions on I x X with a certain property (Theorem [3.2)). From Section 3 up
to Section [8] we devote ourselves to studying in detail the relative commutants
A; N B and AN A’ in the tower of factors B C A C A; C As. The reason for this
investigation is based upon a general philosophy that these relative commutants
are in some sense “dual objects” to each other. In fact it will be shown in Sec-
tion [8] as a consequence of analysis made in the preceding sections that if (R,S)
is a Hecke pair in our sense, then one can construct a unitary, which we call the
Fourier transform, between the Hilbert spaces on which A; N B and A, N A" act
standardly (Theorems and . This result is a generalization of the Fourier
transform on discrete groups.

In Section @ we construct, from a given Hecke pair (R,S), a von Neumann
algebra H*(R,S), which we term the Hecke von Neumann algebra associated
with (R,S). The construction is a natural generalization of that of a Hecke C*-
algebra.

In Section[I0] we show that if (R, S) is a Hecke pair, then the relative commu-
tant Ao N A’ considered above is *-isomorphic to the Hecke von Neumann algebra
H*(R,S). This would mean that our definitions of a Hecke pair and a Hecke von
Neumann algebra are right ones (Theorem .

In Section [11] we discuss a relation between Hecke pairs of groups and those of
equivalence relations. We show that every von Neumann algebra of a group Hecke
pair can be obtained as H*(R,S) for a suitable pair (R,S).

Section [T2] exhibits a few examples of Hecke pairs of equivalence relations.

§2. Preliminaries

In this section, we introduce symbols that will be repeatedly used in the whole
of this paper. We also collect basic facts about discrete measured equivalence
relations and Jones’ basic extension of an inclusion of factors, which are necessary
for our later discussion. The readers are referred to [3], [6], [7], [8], [I3] regarding
these topics.

We assume that all von Neumann algebras in this paper have separable pre-
duals. For a (separable) Hilbert space H, we let B(H) denote the algebra of all
bounded operators on H.

For a faithful normal semifinite weight ¢ on a von Neumann algebra M, we
set

ng:={z e M:p(a"z) <oo}, my:=njng, m=myN M.
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More generally, for an operator valued weight 7' ([9], [10], [I8]) from a von Neu-
mann algebra M to a von Neumann subalgebra N, we set

npi={x €M :T(z*r) € Ny}, mp:=njnp, mjf:=mgyNM,.

The Hilbert space obtained from ¢ by the GNS-construction will be denoted by Hy,
and we let Ay : ny — Hy stand for the natural injection.

§2.1. Discrete measured equivalence relations

Throughout this paper, we fix a discrete measured equivalence relation R on a
standard probability space (X, B, ) in which p is quasi-invariant for R. We denote
by v the (o-finite) measure on R given by

v(E):= /X lr~t({z}) N E|du(x) (E a Borel subset of R),

where r : R — X is the projection onto the first coordinate, and |S| in general
stands for the cardinality of a (countable) set S. The Radon-Nikodym derivative
associated with this measured equivalence relation will be denoted by 4.

We also fix a (normalized) Borel 2-cocycle w from R into the one-dimensional
torus T in what follows. We then write W*(R,w) for the von Neumann algebra on
the Hilbert space L?(R,v) obtained by the Feldman-Moore construction from R
and w. Briefly, the construction is as follows. We first define the subspace 2(; of
L?(R,v) by

A :={€ € L*(R,v) : £ is 6-bounded and ||€]|; < oo}.

See [I1I] and [23] for the definition and properties of 2; and for the terminology
used above. We then introduce a product and an involution on 2; as follows:

(f*9)@.2) =) flz,9)g(y. 2)w(@.y,2),  f(a,2) = 0(x,2) " f(z,2),

y~z

where the sum is over all y equivalent to x. By the same argument as in [I1] and
[23], one can show that 2 is a left Hilbert algebra (in fact, a Tomita algebra)
in L?(R,v). The left von Neumann algebra of 2 is denoted by W*(R,w). The
modular operator A the modular conjugation J are given by

AL :=0¢,  {JEH(my) =6(x,y) ey, x)  (E€Ap).

The left multiplication by f € 2; will be denoted by L¥(f): L¥(f)¢ := f = &.
Remark that every element a € W*(R,w) can in fact be written as a = L¥(f) for
some f € L?(R,v). Moreover, for each a; := L*(f;) € W*(R,w) (i = 1,2), we have
ar = L°(f") and ayay = L (f1 * f2). The abelian von Neumann algebra L (X, 1)
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is embedded into W*(R,w) through the representation f € L (X, u) — for. We
will always identify L>°(X, u) with its image D under this representation. This
algebra D is called a Cartan subalgebra of W*(R,w).

If D designates the diagonal subset {(x,z) : * € X} of R, then xp € L?(R,v)
is a cyclic and separating unit vector for W*(R,w). Here xg in general stands
for the characteristic function of a set E. We will often simply write &, for this
vector. Denote by 6 the faithful vector state on W*(R,w) determined by &p; we
will always identify Hy with L?(R,v).

We define [R]. to be the set of all bimeasurable nonsingular transforma-
tions p from a Borel subset Dom(p) of X onto a Borel subset Im(p) of X satisfying
(z,p(z)) € R for pra.e.xz € Dom(p). For any p € [R]., set T'(p) := {(x, p(x)) :
x € Dom(p)}. Then, for each measurable function g on X of absolute value one,
L¥(67Y2(g o r)xr(,-1)) is a partial isometry in W*(R,w) whose initial and final
projections are respectively Xpom(p) and X1m(p)- We denote such partial isometries
in W*(R,w) by GN (D).

For a Borel 1-cocycle ¢ from R into a (second countable) locally compact
group K, the essential range of c¢ is the smallest closed subset o(c) of K such that
¢ Y(o(c)) has complement of measure zero. The asymptotic range r*(c) of ¢ is
by definition ({o(cp) : B (C X) Borel and u(B) > 0}, where cp stands for the
restriction of ¢ to the reduction Rp := {(z,y) € R: z,y € B}.

Assume now that R is ergodic. Let S be a Borel subrelation of R. By [§], we
may choose a countable family {1; };c; of Borel maps from X into itself such that
(i) (z,9i(x)) € Rforalli € I and pra.e. x € X; (ii) for p-a.e.x € X, {S(i(2)) bier
is a partition of R(z), where R(z) :={y € X : (z,y) € R}. The family {¢;}icr is
called choice functions for S C R. Once the choice functions {1, };c; are fixed, we
can define the index cocycle o : R — X(I) of the pair S C R, where 3(I) denotes
the full permutation group on I, by the following rule:

o(r,y)(i) =j & (Yi(y),¥;(z)) €S.
§2.2. Basic extension

Let B C A be an inclusion of factors with a faithful normal conditional expec-
tation Ep. (In the situation considered in the following sections, such an expec-
tation always exists and is unique.) Fix a faithful normal state ¢9 on B and set
¢ = ¢o o Ep. Then the equation egAy(a) := Ay(Ep(a)) defines a projection
ep € B(H,) onto [Ag(B)], where [S] is in general the closed subspace spanned by
aset S. We call e the Jones projection of the inclusion B C A. The basic extension
of this inclusion (by Eg) is the factor, denoted by Ay, acting on H,, generated by A
and ep. It is known that Ay = J;,B’Jys, where Jy is the modular conjugation of ¢.
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According to [I4] (see also [13] Section 2]), there exists a faithful normal semifi-
nite operator valued weight EB, called the operator valued weight dual to Ep,
from A; to A. It satisfies EB(eB) = 1 [14, Lemma 3.1], so that AegA C mp .
By [13, Proposition 2.8], the relative commutant A; N B’ admits an important
decomposition into a direct sum

(2.1) AANB' =A®B ®B,dC

of four subalgebras A, By, Bs and C enjoying a certain set of properties. We
refer to this decomposition as the ILP decomposition of A1 N B’. We say (see [13]
Definition 3.7]) that the inclusion B C A is discrete if By = Bs = C = {0} in the
ILP decomposition . Note that B C A is discrete if and only if EB|AIQB/ is
semifinite.

§2.3. The commensurability subrelation

Let us assume that our discrete equivalence relation R is ergodic, and consider
the factor A := W*(R,w) on the Hilbert space L?*(R,v) for some 2-cocycle w.
We also consider an ergodic Borel subrelation S of R and its associated subfactor
B :=W*(S,w) of A. According to [3], the commensurability groupoid CG(B) of B
in A is by definition the set of all partial isometries v € A satisfying the following
two conditions:

e Both v*v and vv* belong to B.

e The projections z, and z,- belong to mg , where, for an element a € A, z,

denotes the projection onto [BaB&] Whicthelongs to A1 N B'.

It is shown in [3, Theorem 7.1] that the inclusion B C A is discrete in the sense ex-
plained in Subsection if and only if the subfactor generated by CG(B) coincides
with A. We denote by Commpg (S) the Borel equivalence subrelation determined,
uniquely up to a v-null set, by the intermediate subfactor CG(B)”, and call it the
commensurability subrelation of S in R. Thus CG(B)"” = W*(Commg(S),w). We
refer the readers to [2] as well for a measure-theoretical approach to this notion of
commensurability.

§3. The relative commutant W*(I ,x R,w?) NIL(B)’

Throughout the rest of this paper, our discrete measured equivalence relation R
on (X, B, u) is assumed to be ergodic, unless otherwise stated. In this section, we
also fix an ergodic Borel subrelation S of R. Choose choice functions {¢;};er for
the pair § C R and consider the associated index cocycle o. Here I = {0,1,..., N}
(N could be o0), and we assume that ¢y = idx.
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We consider the factor A := W*(R,w). Write D for the Cartan subalgebra
of A and Ep for the faithful normal conditional expectation from A to D. Also
inside A, we have the subfactor B := W*(S,w) of A corresponding to S. We have
a (unique) faithful normal #-invariant conditional expectation Ep from A onto B.
As before, let eg be the Jones projection of B C A.

Denote by I,x R the discrete measured equivalence relation on I x X defined
by ((¢,2), (j,y)) € I »x R if and only if (x,y) € R and j = o(y,z)(i). We call this
equivalence relation the skew-product of R by o. Note that the 2-cocycle w on R
can be naturally lifted to one, denoted by w?, on I ,x R.

In [3| Theorem 4.2], it is proven that the von Neumann algebra W* (I, xR, w?)
of the skew-product of R by ¢ is *-isomorphic to the basic extension A; of the
inclusion B C A. As in the proof of [3, Theorem 4.2], define a unitary V, on
2(I)® L*(R) by

{Vost(, (2,9)) == &(o(y, 2) () (z,y))-
Then consider the x-homomorphism II given by
II(a) =V,(1®a)V); (a€A).
If a = L¥(f) € A, then we have

3.1) (@)}, (2, 2) = Y fla,9)E(o(y, 2)(): (v, 2) )z, y, 2)

y~x

for any ¢ € (?(I) ® L*(R). Then W*(I ,x R,w’) is generated by II(A) and
£>*(I) ® C. For any j € I, define a function d; on I by 6;(4) := J; ;. According to
[3, Theorem 4.2], there exists a *-isomorphism ® from A4; onto W*(I ,x R,w?)
satisfying ®(a) =II(a) (for all a € A) and ®(ep) = Jp ® 1.

Before we proceed to the next proposition, note that W*(I ,x R,w?) is con-
tained in B(¢*(I)) ® A. Hence the restriction of idg(s2(1)) @ Ep to W*(I o X R,w?)
makes sense.

Proposition 3.1. The restriction E° := (id ® Ep)|w=(1,xr,we) 15 the unique
faithful normal conditional expectation from W*(I ,x R,w?) onto the Cartan sub-
algebra (>°(I) ® D.

Proof. 1t is obvious that E7|sngp = id.

Let f,g € ;. Note that xpaxp = Ep(a)xp for all a € A. Tt follows that
(1®xp)T(1® xp) = E°(T)(1 ® xp) for any T € W*(I ,x R,w?). For any
£e*(I)® L*(R) and f € Ay, we have
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{(1 @ xp)I(L*(f))(d0 @ DIL*(9))(1 ® xD)E} (4 (z,2))
= 00, {TL(L*(f)) (00 @ DII(L*(9)) (1 © xp)E}(J, (2, 7))
= 00,2 Y fla.9){(d0 ® DILY (9))(1 @ xp)E} (o (y, 2) (5), (y, 7))

y~z

= 6w,z Z 50,a(y,w)(j)f(xa y){H(Lw(g))(l ® XrD)f}(O7 (y’ .I‘))

y~z

=022 > o0 @ 9) (D 9y, w){(1 @ x)EHr(w,4)(0), (w, 2))w(y, w, 2))

Yy~ w~x

= 6m,z Z 50,a(y,x)(j)f(xa y)g(y7 x){(a(x, y)(o)v (ﬂf, .%))

Yy~

= xzz j,o(z,y) (O)f €T, y) (y7x)§(]7 (.T,LL‘))

y~zx

= Z 6a(z,y)(0) (J)f(xa y)g(ya m){(l ® XD)f}(jv (x’ Z))

y~z

So, if we define a bounded function P4 on I x X by

Pfg ]7 Z5a(wy) ) ( Z‘)7

Y~

then we obtain (1® xp)II(LY(f))(6o ® 1)II(L¥(g9))(1® xp) = Pf,¢(1® xp). Hence
E7(I(L*(£)) (60 © DI(L*(9)))(1 © xp) = Pr (1 & xD).

Since A’xp = L?(R), we find that E7(II(L*(f))(do ® 1)II(L*(g))) = Pf,4. Hence
the image of the linear span of the set {II(L¥(f))(do ® 1)II(L¥(g)) : f,g9 € A}
under the map E° is contained in ¢>°(I) ® D. Therefore, the range of E? equals
¢>*(I)® D. Since £>°(I) ® D is maximal abelian, E? is the unique faithful normal
conditional expectation from W*(I ,x R,w?) onto ¢>°(I) ® D. O

Theorem 3.2. The relative commutant W*(I ,x R, w?)NII(B)’ consists precisely
of all the functions F in the Cartan subalgebra £>°(I) ® D satisfying

(3-2) F@,x) = Flo(y,z)(5),y) (a-e (z,y) €S,Vjel).
Proof. First note that II(d) =1 ® d for all d € D. Hence

W*(I ox R,w’)NII(B) C (B({*(I)) ® A)N(C® D) = B(H*(I)) ® D.
From this and Proposition we have, for any T € W*(I ,x R,w?) NII(B)’,

T = (idB(gz([)) (9 ED)(T) = EU(T) S EOO(I) ® D.
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Thus T is the multiplication operator by a function F in ¢*°(I) ® D. We also
have II(L¥ (f))F = FII(L“(f)) for any f € Ay with {(z,y) € R : f(z,y) # 0}
C S. But, thanks to (3.1), this identity is easily seen to be equivalent to the

condition ({3.2)). O

We denote by L>(I x X)¢ the set of all functions F in L> (I x X) satisfying

B2).

84. The dual operator valued weight of Ep

We retain the notation introduced in the preceding section.
As in Section 4 of [3], we set R; = {(z,y) € R : o(z,y)(0) = j} for each
j € I. By a direct computation, we get
£, (zy) if (z,y) € Ry,
0 otherwise.

(V2 (00 @ DVo€) (G (.1) = {

This clearly implies
(4.1) Vio@ 1)V = 8, ® xp-1,
jel !
where ’Rj_l = {(z,y) € R : (y,x) € R;}. Let Tr denote the usual trace on
B(£*(I)), that is, Tr(X) := 3, (X5 | §;) (X € B(£*(I))+). Then, by [@.1), we
have, for any a € A,
(Tr @ idp(r2(ry)) (V7 IH(a") (60 @ 1)IL(a)Vs)
= (TI‘ ® idB(L2(R)))((1 24 CL*)V;(50 X 1)Vn—(1 X a))

= Z a*(Tr @ idg(r2(r))) (05 @ XR;l)a = Za*Xijla =a*a.
jE€I jel
This shows that V;TI(a*)(do ® 1)II(a)V, belongs to mf, .., which in turn implies
that
span{VII(A)(d ® 1)II(A)V,}

is contained in mrygiq. By the computation made above, we have
(4.2) (TI‘ ® idB(Lz(R)))(Span{V:H(A)(% ® 1)H(A)Vg}) C A.

Lemma 4.1. For any X € W*(I o x R,w?)4, (Tr @ idpr2(r))) (VX Vs) belongs
to the extended positive part Ay of A.

Proof. Let X € W*(I ,x R,w”)4. Since span{VII(A)(d ® 1)II(A)V,} is a o-
strongly* dense two-sided ideal of W*(I ,x R,w?), it follows from [21] Chapter II,
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Proposition 3.13] that there exists an increasing net {X}xea of positive elements
in span{V_II(A) (0o ® 1)II(A)V, } such that X is the o-strong limit of {X,}. Let
u € A’ be any unitary and ¢ € B(L?(R))}. Then, by (4.2)), we have

(Tr® idB(L2(R)))(V;XVO')(uwu*) = (Tr @ uu*)(V;XV,)
= /l\len}\ (Tr @ upu*) (Vi X\V,) = /l\lg{l\ (Tr @ ) (VZIXA\Vy)
= (TI' (9 w)(V:XVg) = (TI' 024 ldB(L2(R)))(V;XVU)('¢J)
Hence (Tr @ idp(z2(r))) (VX V,) falls in A O

For the next theorem, note that IT((Tr ® idp(r2(r)))(Vy X V,)) belongs to the
extended positive part II(A); of II(A) for any X € W*(I ,x R,w?)+.

Theorem 4.2. The map
X € W (I ox Ryw)s = T(Tr @ idppary) ) (V2 X V)

defines a unique faithful normal semifinite operator valued weight Ty from W* (I 5 x
R,w?) to TI(A) satisfying Tp(do ® 1) = 1.

Proof. Tt is easy to see that T : W*(I ,x R,w” )y — II(A), satisfies

Tp(X +Y)=Tp(X)+Tp(Y),
Ty(eX) = cTp(X)  (VX,Y € WH(I ox R,w),, ¢ € [0,00)).

Let a € Aand X € W*(I ,x R,w”)+. Then

T ((a) XTI(a)) = TI(Tr & idp 12y (V2 TH(@)* XTI(@)V,)
= H((TI‘ ® idB(L"’(R)))((l X a*)V;XVU(l ® a))
=(a"(Tr ® idp2(r))) (Vs X Vo)a) = H(a) Tp(X)II(a).

Thus T is an operator valued weight from W*(I ,x R,w?) to II(A). The faith-
fulness and normality of T are immediate. Thanks to , T is semifinite.
Since (II(4) € W*(I ,x R,w?)) is isomorphic to (A C A;) through the
isomorphism ®, we have W*(I ,x R,w?) NII(A) = C. It then follows from [5]
Proposition 11.1] that any other faithful normal semifinite operator valued weight
from W*(I ,x R,w?) to II(A) is proportional to Tz. Hence T is uniquely deter-
mined by the condition Tp(dy ® 1) = 1. O

Remark. Recall the isomorphism @ : Ay — W*(I,xR,w?). The map fboEBoil_l
is also a faithful normal semifinite operator valued weight from W*(I ,x R,w?)
to II(A). Since ®(ep) = dp ® 1, the above operator valued weight is exactly T,
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due to Theorem [1.2] Hence we shall often call T the dual operator valued weight
of EB.

Corollary 4.3. The restriction of Tp to the relative commutant W*(I ,x R,w?)
NI(B) = L>(I x X)® is given by

Fe (L®(IxX)%), — (/X > F(jx) dm(x)> 1

jel
for any probability measure m on X equivalent to .

Proof. Let F € (L*°(I x X)%),. Then V*FV, is the function on I x R that assigns
F(o(z,y)(j),z) to (j,(z,y)). Thus we have
(Tr @ idp2(r)) (Vo FVo) = F(j, ) € Dy.
jeI
Since F belongs to L>(I x X)®, the function z € X > jer F(j, x) is S-invariant
up to a null set. Because S is ergodic, this function is constant. Hence Tz (F) equals

(fx Eje[ F(j,z)dm(z)) - 1. O

§5. The relative commutant (B(¢*(I)) @ A) NII(A)

We shall retain the notation introduced in the previous sections.

Let 2A; be a counterpart of the left Hilbert algebra %A, constructed from
the discrete equivalence relation I ,x R. Denote by LY (F') the left multiplication
(convolution) of F € 2;:

{LY (F)& U (,9) = > F(j, (2, 2))6(0(2,2)(7), (2,9))w(x, 2,9) (€ € L*(IxR)),

zZ~T

where we always think of any F' in 2; as a function on I x R by identifying each
element ((4,2), (c(y,z)(j),y)) € I o x R with (j, (z,y)) € I x R.

The modular operator of 2; (= the module of the equivalence relation I, xR)
is 1 ® 4, and its modular conjugation J is given by

{JE1(, (2,y) = 6y, 2) *E(0 (y, 2) (7). (y,2)) (€ € L*(I x R)).

Our first task is to locate the basic extension of the inclusion II(A) C
W*(I 4% R,w”) on the Hilbert space ¢2(I) ® L*(R). It is by definition JII(A)".J.
Observe that

{IV-E3(4, (,y))

)2V, (o (y, 2)(j), (y,2))

( (
V235, (y, 2)) = {(Jo ® J)EM, (1)),

=i(y,x
=6(y, @
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where Jy : £2(I) — ¢%(I) is given by {Jof}(j) = f(j). Hence

JI(A) J = JVy(B(*(I)) @ AT = (Jo @ J)(BUI) @ A)(J @ J)
= JoB(P2(I))Jo @ JA'J = B(£*(I)) ® A.
Therefore, the basic extension of the inclusion II(A) € W*(I ,x R,w’) on the
Hilbert space ¢2(I) @ L*(R) is B(¢*(I)) ® A.
Our next goal is to locate the relative commutant (B(¢*(I)) @ A) NII(A).
Since D C A and II(d) = 1 ® d for any d € D, it follows that

(B(P2(I)) ® A) NII(A) C (B(f*(I)) @ A)N(C® D)’
B(F*(I))® (AnD') = B({*(I)) ® D.

For each j € I, define operators S; : £2(I) ® L*(R) — L*(R) and T} : L*(R) —
(1) ® L2(R) by

Sj(z&'@fi) =&, T;6:=0;®¢
iel

For an operator Y € B(¢*(I) ® L*(R)), let [Y; j]i jer stand for the matrix repre-
sentation of Y, that is, Y; ; := S;YT; € B(L*(R)).

Let R € (B(¢*(I))® A)NII(A)'". By the above computation, each R; ; belongs
to D. For any f € 2, a direct calculation shows that

(T2 ()ig€H @, y) = Y F(@,2)00(0)0) 5 () (@, 2,y) (€ € LA(R)).
Hence

(RH(LM( ’Lj :C y Zf 1’ z (Z Rzk Jo(z,x)(k))g(zay)w(wvZay)v

z~T kel

(H<Lw(f) ,J $ y Zf z,z (Z Rk,j 61@0 ZI)(Z))f(z,y)w(x,z,y)

ZT kel

for ¢ € L2(R). Since RI(L*(f)) = II(L¥(f))R, it easily follows that
(51) Ri,o’(m,y)(j)(x) = Rd(y,ac)(i),j (y) (a"e' (Ll?, y) € R)
Let us summarize the discussion made so far in the next theorem.

Theorem 5.1. Every element of (B(¢*(I)) @ A)NII(A)" is regarded as a bounded
Borel B((*(I))-valued function R on X that satisfies (5.1), where R;;(z) :=
(R(x)d; | 6;) for any x € X andi,j € I.
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Remark. Theorem [5.I]may be obtained by an argument slightly different from the
one made above, as we explain below. Note first that, with R* := {(z,y) € R :
y € R(x)} for any x € X, the map f € ; — II(L¥(f)) is the “integrated form”
of the groupoid representation A of R on the Hilbert bundle {£?(I) ® (*(R*)},ex
given by
A(z,y) = X7 (z,y) @ X (2, y)  ((z,9) €R),

where \7(x,y) : £2(I) — (2(I) is defined by {\(z,v)g}(5) := g(o(y,z)(j)), and
A“ denotes the w-twisted regular representation of R (cf. [I1l Section 3]). If R €
(B(£*(I)) ® A)NTI(A), then R is a measurable field of operators { R(x)}.cx with
R(z) € B(?(I) ® £2(R")) satisfying

(5.2) R(z)A(z,y) = Alz,y)R(y) (ae.(z,y) €R).

Since R € B(*(I)) ® D, we may assume from the outset that R(z) has the form
R(z) = RY(z) ® 1 for all z € X, where R'(z) € B(¢*(I)). In this case, (5.2) is
equivalent to

(5:3) R (@)X (2,y) = A7 (2, y)R'(y)  (ae. (2,9)).

It is easy to check that the unitary A\’ (z,y) € B({*(I)) has matrix represen-
tation [0; 4(z,y)(j)lijer With respect to the orthonormal basis {d;};e;. Hence, if
[R} ;(x)]ijer is the matrix representation of R'(x) with respect to the same basis,
can be written in the form

R} o)) (®) = Bogyaye ;) (ae (@) €R).

Thus we obtain the assertion of Theorem [5.1]

§6. The isomorphism between A; N B’ and W*(I, x R,w?) NII(B)’

In this section, we examine the restriction of the *-isomorphism ® to A; N B’.

Lemma 6.1. We have

Vi@V =)Y 6k®x1,
kel
where Ty, j == {(z,y) € R:o(z,y)(k) = j}.

Proof. Let S; : (*(I) ® L*(R) — L*(R) and T; : L*(R) — ¢*>(I) ® L*(R) be the
operators defined in the preceding section. Then, for any ¢ € L?(R), we have
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{8V (6; @ DVoTié}(w,y) = {V5 (6; @ 1)V6 0k @ )} (i, (2, 9))
={(0; @ DV (6 ® ) }o(z,y)(@), (z,y))
= 0;(0(@,y)(I){Ve(r @ )} o (z,y) (i), (z,y))
= d;(o(2,y)(0))0k (1)&(x, y) = dikxT , (2, Y)E(@, Y).
This shows that V*(§; ® 1)V, has matrix representation [0; xXx7;, ;]iker- O

Lemma 6.2. With the notation in Lemmal[6.1], we have

Tp((6; @ D)6y @ 1) = 13 x7 ax7, )
kel

for any a € A and j,j' € I. In particular, if a = L¥(f) for some f € U;, then
Tp((6; © DINLY(f))(0; @ 1)) = I(L¥ (xz;, , f))-

Pmoé By the proof of [3, Theorem 4.2, gorollary 4.6], we have ®(6; ® 1) = xr,
and Ep(xr,) = 1forall j € I. Since o Ego®~! = Tz, we obtain Tp(d; ®1) =1
for any j € I. Hence (6; ® 1)II(a)(d;7 ® 1) belongs to myp, for any a € A and
j,4" € I. Thanks to Lemma we have

(Tr @id)(V* (6, ® DII(a)(5; @ 1)Vy)
= (Tr @ id)(VZ(8; ® )V (1 @ a)VE (6, @ 1)Vy)

= (Tr®id) (Z Ok ® XTk,,jaXTk,jJ =Y X7,0X7, -
kel kel

Thus we obtain the first asserted identity. If @ = L¥(f) for some f € 2, then an
easy computation shows that >, .y x7, ;L“(f)x7, o = X7, , f, which yields the
second assertion. O

Lemma 6.3. We have
(IL(L¥ ()6 ® g) | 65 @ k) = (L(xT, ,, f)g | h)
for any f €A1, g,h € L*(R) and j,j' € I.

Proof. The asserted identity can be easily verified by a straightforward computa-

tion using (3.1)). O

Lemma 6.4. Let p:=60oIl~!' oTg. Then the Hilbert space H, obtained from the
weight p is identified with ¢2(I) @ L*(R) through the unitary U characterized by

(6.1)  UTI(L*(f))A,((6; @ DII(L¥(g))) = (L= ())(6©@9)  (frg €@, jeT).
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Proof. By [13, Lemma 2.1] (see the proof of [13, Proposition 2.2] also), the image
AL (IT(L* (1)) (60 @ D)II(L* (A1))) is dense in H,. In particular, the linear span of
the vectors of the form A,(II(L¥(f))(6; ® DII(L“(g))) (f,g € ™Ay, j € I) is also
dense in H,.

Let f;,g9; € Ay (i =1,2) and 4,5’ € I. Then

92) T (T((6 ® DI(LY (gf * 1)) (5; @ 1)) L°(f2))
L¥(g2)"L*(x7, , (¢} * f1))L*(f2))  (by Lemma[6:2)

L®(xT, . (g% = f)) f2 | 92)

T(L* (g5 * /1))(0; @ f2) | 65 @ g2)  (by Lemma[6.3)

= (I(L¥(f1))(0; ® f2) [ II(L*¥(91)) (65 ® g2)).

This implies that there exists a unitary ¢ from H, onto ¢*(I) @ L*(R) with the
desired property. O

(
(

Proposition 6.5. Let 6§, := 0o Ep. There exists a unitary Uy from the Hilbert
space Hy, obtained from the weight 61 onto (*>(I) @ L*(R) such that

(6.2) UL (f) Ao, (xr, L7 (g)) = I(L*(f))(0; @ g)  (frg €, j€T)
and Uy implements the x-isomorphism ®.

Proof. Let p := o Il"! o T be as before. By the proof of [[3, Lemma 2.4], the
*-isomorphism @ is implemented by the unitary U : Hg, — H, characterized by

UAg, (aepb) = A, (I(a) (6o @ 1)II(D))  (a,b e A).

Let {v;»} and {X,,} be respectively the partial isometries in GN' (D) and the
Borel subsets of X that were introduced in the proof of [3] Theorem 4.2]. So we
have

I(v},) (0 ® DI(v;0) =0 @ xx,, > H(},)(0 @ DI(v;,) = 6; @ 1.
n=1

Thus the sequence {Zf:;l (v} ,,) (00 ® DII(vjn)}37-; converges o-strongly”™ to
d; ® 1. It follows that {ZT]:/:I I(L* (f)I(v,,) (00 @ DIT(v;,0) (L (g)) } =y con-
verges o-strongly* to II(L¥(f))(d; ® 1)II(L¥(g)) for any f,g € ;. Applying
the *-isomorphism ®~! discussed in Section [3| to the above sequence, we easily
see that the sequence {25:1 L(f)vnepvinl®(9)} 3=, converges o-strongly” to
Le(f)xw, L*(g)-
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Fix any f,g € 2;. By Lemma [6.4]

N
> A (II(LE ()II(V],) (G0 ® 1)II(v;,)II(L (g)))

n=1

2

= > A (II(L*(£)) (65 @ xx,)T(L(9)))

n=1
N

= ZAp(H(L“(f»(CSj ® DI(L®(xx,9)) Zu (L (£))(6; ® Xx,.9)
S U ()06 © 9) = A (TI(L#(£))(6; © DI(L#(9))) (N = o0).
Hence {Zf:[:l Ag, (IL(L¥ (f))v} eBvinL®(g))} =, converges to
UUTI(L* (f))(65 ® g) = U A, (TI(L2(f)) (6; @ DII(L*(9)))-

Since Ay, is a o-strongly* closed linear map (see [16} Introduction]), L*(f)x=, L (9)
belongs to ng, and Ag, (L*(f)xwr,L“(g9)) = U*A,(I(L¥(f))(0; ® II(L“(g)))-
Therefore, if we set Uy :==UU : Hyp, — £*>(J) @ L?*(R), then

)

ULLE (f) Ao, (xr, L7 (g)) = I(L*(f))(0; @ 9)  (f,9 €A, jeT)
and U; implements . O

Let Z be in Ay N B’. By [3l Lemma 4.4], Z is a function in L*°(R) satisfying
Z(z,u) = Z(y,u) and Z(u,z) = Z(u,y) for a.e.(x,y) € S and all u ~ x. By
Theorem ®(Z)is in L=(I x X)S.

Proposition 6.6. With the above notation, we have
(2)(G,x) = Z(w,1(x))  (ae (j,z) € I x X).
Proof. By Proposition we get, for any f € 2y,
(2)(0; ® f) =t ZUi (6; @ f) = Ur Ao, (Zxr, L (f))-

Now define a Borel function h; on X by hj(z) := Z(x,v;(x)). Then, since (z,y) €
R; if and only if (¢;(x),y) € S for a.e. (z,y) € R, we have

/ 1Z(2,y) — h(@)|xr, (. ) dv(z, )
- / \Z(,) — 22, 5(2))xs (65 (), ) dv(z. )
= [ 12.9) = 29 xs (s (e). ) dvtay) = .
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Thus Zxwr; = hjXxRr,- So we obtain
®(Z2)(6; ® f) =UrAg, (hjxr,L*(f)) = UrNg, (Xr, L7 (h; f)) = 0; @ h; f.
Since f € A; and j € I are arbitrary, we get the desired identity. O

We will return to our discussion of the properties of the map ® : A; N B’ —
L>=(I x X)® examined above in Section 9.2.

87. The dual operator valued weight of Tz

By the result of Section [5] we know that the basic extension of the inclusion
(A) CW*(I ,x R,w?) is B(f2(I)) ® A. The goal of this section is to study the
dual operator valued weight fB of Tg.

As in the previous section, let p := # o II"! o Tz, which is a faithful normal

semifinite weight on W*(I ,x R,w?).

Theorem 7.1. The dual operator valued weight Tx of Tp is the unique faithful
normal conditional expectation from B(£2(I))® A onto W*(I ,x R,w). It satisfies
polp=Tr® 0.

Proof. Put n:=Tr® 6. For any j € I, we have
{Vo (85 ®0)}(i, (2, y)) = 6;(a(y, 2)(2))o (2, y) = &;560(x, y) = (6; ® &0) (4, (@, y)).

Thus V,(0; ® &) = d; @ &. Since 1(S) = 37,,(S(d; ® &) | d; @ &) for any
S e (B(2(I))® A)y, it follows that no AdV} = 1. Let a € A. Then, by the result
of Section [4] preceding Lemma [4.1] we get

n(I(a)" (9o @ DIl(a)) = n(V;T(a)"(do @ 1)I(a) V)
=0((Tr @ id)(V, II(a)* (dp ® 1)II(a)Vy))
=0(a"a) = p(II(a)* (6o @ 1)II(a)) < oco.
This implies that the restriction of n to W*(I,xR,w?) is semifinite. It is clear that
o) = Ad(1®4§%). It follows that the restriction of oy to W*(I ,x R,w?) equals o} .
In particular, o (W*(I ,x R,w?)) = W*(I ,x R,w) for any ¢t € R. By [20], there
exists a unique faithful normal conditional expectation F from B(¢?(I)) ® A onto
W*(I ,x R,w?) such that no F = 1.
Let po := nlw+(1, xR .we)- By the result of the previous paragraph, py equals
p on the o-strongly* dense subalgebra span{II(a)*(do ® 1)II() : a,b € A} which is
contained in m,. Moreover, we have

ol = o lw (1, xRwr) = Ad(1 @ 6") W+ (1, xR,wr) = OF -

We thus find that p = pg. Hence po F = 1.
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We prove below that F' is exactly the dual operator valued weight fB of Ts.
(Because (B(£*(I))@ A)NW*(I,xR,w)" = C, it follows from [5, Proposition 11.1]
that Tz is proportional to F'. Hence T'g is in particular bounded.) Let ¢ := foll~ 1,
which is a faithful normal state on II(A). By the result of [5, p. 514], we have

dpofB dCoTBofB

o - e=lers

where ¢’ is a weight (state) on JII(A)J given by ¢'(S) := ((JSJ) (Se (JI(A)J),),
tc is a state on the one-dimensional von Neumann algebra of the scalar multiples
of the identity on ¢2(I) defined by tc(c - 12¢s)) = ¢, and 6 is a weight on A’
defined by €'(b) := 6(JbJ) (b€ (A)+). We find from the result of Section [5| that
JI(A)J =C® A" and ¢’ = tc ®0'. So we have

dpoTp  dpoTp  d(Tr® 6)

ditc®0)  d¢  dtc®)’

Hence pOfB = Tr®46. From the previous paragraph, it follows that po F' = pOfB.
By [18], we conclude that F' = T's. O

Remark. Let R := I? x R, which we consider as the product of the (transitive
and principal) equivalence relation I? and R. As is well known, the groupoid
von Neumann algebra W*(R,id;2 X w) is isomorphic to B(¢2(I)) ® A. The skew-
product relation I ,x R is in this case a Borel subrelation of R. Hence there is
a faithful normal conditional expectation from W*(R,id;> x w) = B((2(I)) ® A
onto W*(I ,x R,w?) (see [1]). Because (B(¢*(I)) ® A) N W*(I ,x R,w°)" = C,
this expectation is exactly the dual operator valued weight T B.

Lemma 7.2. The restriction of Tg to (B(£2(I)) ® A)NTI(A)" equals that of the
faithful normal expectation Ep from B(£2(J)) @ A onto D := (1) ® D (which
is the Cartan subalgebra for both B(¢*(I)) @ A and W*(I ,x R,w?)).

Proof. Since D is maximal abelian in B(£?(I))® A, there is only one faithful normal
expectation from B(£2(I)) ® A onto D. It follows that we have E o Tp = Ej. Let
S € (B(2(I)) ® A) NII(A)’. Then, since II(A) is a factor, T(S) is of the form
ZA“B(S) = c- 1 for some c € C. So we get

Ep(S) = E(Tp(S)) = -1 =Tp(S).

This completes the proof. O
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Theorem 7.3. The restriction of Tz to the relative commutant (B(£2(I)) @ A) N
II(A)" is given by

R e (B(A(1)) ® A)NII(A) (/X R; j(z) dm(x)) -1

for any probability measure m on X equivalent to pu, where {R; ;(x)}i jer, zex the
decomposition of R € (B((?(I)) ® A) NII(A)" as stated in Theorem [5.1]

Proof. Let R = {R; j(x)} be as in the assertion, so it satisfies (5.1)). By Lemma
Tg(R) = Ej(R) is the function given by

x€ X — [0i;R;;(x)ijer € (°(I) € B(()).

Now we define a bounded measurable function f on I x X by f(j,z) := R; ;(z).

By (5.1), we have f(o(y,x)(4),y) = f(j,z) for a.e.(j,z). This means that f is
an (I ,x R)-invariant function. Since I ,x R is ergodic, f is constant. Hence we

obtain
To(r) = ([ Rys()dma)) 1
X
for any j € I and any probability measure m on X equivalent to u. O

We conclude this section with a result about normality.
For each j € I, define

Ci={(z,y) e R:3z € X, (x,2) € S and (¢;(2),y) € S}.

Remark that C; is measurable. Indeed, let H be a countable group in the full group
[S] :={p € [S]« : Dom(p) = Im(p) = X} such that S = {(z,h(x)) :x € X, h € H}
(cf. [6, Theorem 1]). Then it is easily checked that

C; = U ['(hy 09 0 hy).

hi,ho€H

Thus C; is measurable.

Note that the definition of {C;} obviously depends on the choice of the choice
functions {v;}. Clearly, R = Ujel C; up to a null set. It is easily verified that
R; C€Cjforall jel.

Lemma 7.4. Each xc; belongs to Ay N B’.

Proof. Let (x,y) € S and z € X be such that z ~ z.
Suppose that (z,z) € C;. Choose w € X satisfying (z,w) € S and (¢;(w), 2)
€ S. Then (y,w) = (y,z)(z,w) € S. Thus (y, z) € C;.
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Conversely, suppose that (y,z) € C;. Choose u € X satisfying (y,u) € S and
(¢(u),z) € S. Then (z,u) = (z,y)(y,u) € S. So (x,2) € C,.

By the results of the previous two paragraphs, we obtain x¢, (z, z) = xc;, (¥, 2)
whenever (z,y) € S and z ~ . Similarly, one can check that xc,(z,2) = xc, (2, %)
whenever (z,y) € S and z ~ 2. By [3, Lemma 4.4], x¢, belongs to A; N B'. O

Lemma 7.5. Let j € I. The following are equivalent:

(1) xr, = Xc,, that is, v(C; \ Rj) = 0;
(2) the Borel map ¥; normalizes S: (v;(x),4;(y)) € S for a.e.(z,y) € S.

Proof. (1)=(2): By assumption, there exists a p-conull Borel subset Xy of X
such that r~!(x) N (C; \ R;) = 0 for all z € X,. Put Sy := SN (Xp x Xo). Then
v(S§\ So) = 0. Let (z,y) € Sp. Then (z,v;(y)) € Cj, because (z,y) € S and
(¥;(y),¥;(y)) € S. Since x € Xy and (z,v¢;(y)) € r~'(z) NCj, it follows that
(,9;(y)) € R;. Thus, (¥;(x),¥;(y)) € S.

(2)=(1): Choose a p-conull Borel subset X7 of X such that (¢;(z),%;(y)) € S
for all (z,y) € § with z € X;. Put C} := C; N (X1 x X). Then v(C; \ C}) = 0.
Let (z,y) € Cj. So (z,2) € S and (Y;(2),y) € S for some 2z € X. Because
(j(x),¥;(2)) € S, one gets (¥;(z),y) € S. This means that (z,y) € R;. Hence
C; C R;. Therefore, v(C; \ R;) = 0. O

Lemma 7.6. If ji,j2 € I satisfy v(I'(¢;,) NCj,) =0, then v(Cj, NCj,) = 0.

Proof. By assumption, there exists a p-conull Borel subset Xg of X such that
{(z,¢j,(z)) : x € Xo} C (Cj,)° Let C1 := {(z,y) € Cj, : Iz € Xy, (z,2) € S
and (¢, (2),y) € S}. Then C;, \ C1 = {(z,y) € Cj, : 3z € X§, (z,2) € S and
(¢, (2),y) € S}. If {h,} is a countable family of Borel isomorphisms in [S] with
S = U, T'(hyn), then we see that r(Cj, \ C1) = U,, hn(X§). Hence r(Cj, \ C1) is
v-null. In particular, v(C;, \ C1) = 0. Hence v(C;, NC;,) = v(C1 NCj,).

Suppose that C; N Cj, is non-empty, and take (z,y) € C1 NCj,. So (x,2) € S
and (¢, (2),y) € S for some z € Xj. Since (z,z) € S and ¥, (2) ~ z, we have

xe;, (7,95, (2)) = xc;, (2,905, (2) =0 (2,94, (2)) € Cj,)-
This shows that (z,;,(2)) € Cj,. Since (¢, (2),y) € S and x ~ y, we get
XCj, (.’b, y) = XCj, ((E, l/fjl (Z)) = 0.
So (z,y) & Cj,, a contradiction. Therefore, C; N C;, = 0. O

Define P; := ®(x¢,). So each P; is a projection in L>°(I x X)°. From Propo-
sition and the fact that I'(1;) C C;, we have P;(j,z) = xc, (=, v;(x)) = 1.
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Lemma 7.7. Let j € I. The following are equivalent:

(1) Tp(Pj) = 1;
(2) the map v; normalizes S.

Proof. By Corollary [£:3] we have

77 = ( [ Se e vi(o

icl

_ ( /X (xe, (w5 + 3 xe, (o 44(2)) du(a)

iel\{j}

—14 ([ (X vt auto)

ieI\{j}
Hence we find that

Jauta) ) -1

iel\{j}

(/X(l Y xe (@) du(x)) 1

).1

).1
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(1)=(2): Suppose that Tr(P;) = 1. By the result of the previous paragraph,
we have v(C; NC;) = 0 for all ¢ € I\ {j}. In particular, »(R; NC;) = 0, ie,
XRr;Xc; = 0. Since Y., xr, = 1, it follows that

Xe, = ) Xe,XR: = XC, XR, = XR,-

iel

We now see from Lemma @ that 1; normalizes S.

(2)=-(1): As in the proof of Lemma (2)=(1), there is a p-conull Borel
subset X7 of X such that (¢;(x),¢,(y)) € S for all (z,y) € S with € X;. Sup-
pose that v(C; NR;) > 0 for some i € I\ {j}. Then the set C; "R, N (X7 x X) still
has positive measure. Take any (z,y) in this set. Then there is a z € X such that
(x,2) € Sand (¥;(2),y) € S. We also have (¢,(x),y) € S. Thus (¢;(z),¢i(z)) € S.
Meanwhile, since z € X7 and (x, z) € S, we have (¢;(z),9,(z)) € S. Consequently,
(¥i(2),9,(2)) € S, which contradicts the fact that {t;} are choice functions. There-
fore, we must have v(C; NR;) = 0 for all 4 € I\ {;j}. Since I'(¢);) C R;, one has
v(I'(¢;) NC;) = 0. By Lemma we get v(C; NC;) = 0. From the result of the

first paragraph, it follows that Tg(P;) =

1.

O
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88. Fourier transform

Throughout this section, we assume that the commensurability subrelation
Commg (S) of § in R equals R. Equivalently, we suppose that the irreducible
inclusion B C A is discrete. Hence the restriction of the operator valued weight
Tg to L= (I x X)S is semifinite. We denote by Q2 the faithful normal semifinite trace
on M = L*(I x X)® induced by the restriction of T to M. By Corollary
we have
UF) = [ S FGa)dule)  (VF € (L1 x X)),
X jer

In the discussion below, we employ the notation used in Section

Let L := (B({*(I)) ® A) N 1I(B)'. By arguing as in Section [5, we can easily
verify that L consists of all essentially bounded Borel functions S : X — B(¢?(I))
such that, with the matrix representation S(z) = [S; ;(2)]i jer (z € X), one has

(81) Si,a(r,y)(j) (.’17) = Sa(y,x)(i),j (y> (a'e' (SC, y) € S)
Let S = [S;;(z)] € L and F € ng. Then define a Borel function S* F on I x X by
(S« F) (o) = 3 Sin(@)F (k).
kel

Since {F(k,z)}rer belongs to £2(I) for a.e.z € X due to the fact that F € nq, it
follows that {(S * F)(j,z)};er is a member of £%(I) for a.e.z € X. In particular,
we have S« F € L*°(I x X). Moreover, for a.e. (z,y) € S,

(S F)(o(y,2)1)9) = Y Sot) (e WFEY) = Sj oy o) (@) F(k,y)

kel kel
=Y Sik(@)F(o(y,x)(k),y) =D Sjx(z)F(k,x)
kel kel
=(Sx*F)(j,x).

Thus S = F satisfies (3.2). Hence it belongs to M. In fact, it is in ng, because

Q((S * F)*(S * F))*/?
= the ¢*(I)-norm of the sequence {(S * F)(j,z)}jer (for a.e. x € X)
= the £*(I)-norm of the vector S(x){F(j,z)}jer € €*(I) (for a.e. z € X)
< ISTHKEG: ) erlleey = ISTHAF)] < oo
This in particular shows that ||Aq(S * F)|| < ||S||||Aq(F)]||. Therefore, the map
Aq(F) € Hg— Aq(S+F) € Hg

extends uniquely to a bounded linear operator A(S) on Hg.
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Proposition 8.1. The map \ : L — B(Hg) is a surjective unital normal *-
representation of L.

Proof. It is easy to verify that M is a unital x-representation that is continuous with
respect to the weak (hence o-weak) topology. In particular, A(L) is a von Neumann
subalgebra of B(Hq). Let Fy, F5 € ng. For each z € X and (i,5) € I x I, define

ng(m) = F1(i,2)Fs(j, ).

Since >, jc; 15202 = (Cier |F1(i,x)|2)(zjel |Fy(j,7)|?) < oo for ae.x € X,
the map

9={o0)hier € O = {800} € W)

” iel
jerl

defines a bounded operator S°(x) € B(¢*(I)) for a.e.z € X with ||S%(x)| <
|Aq(F1)| [|[Aq(F2)||. Hence the essentially bounded Borel function S° : z € X
SO(x) € B(¢3(I)) belongs to B({3(I)) ® D. It is easy to see that S” satisfies (8.1)).
So it is in L. It is also easy to check that 5\(50) = tag(F1),Aa(Fy), Where, in general,
the symbol t¢ , stands for the rank-one operator on a Hilbert space K defined by
tenC == (C | n)¢ (&, ¢ € K). Since ML) is a von Neumann algebra, it follows
from the above argument that A(L) contains all the rank-one (hence finite-rank)
operators on Hq. Therefore, A(L) coincides with B(Hg). O

We denote by € the faithful normal state on M = (B((*(I)) @ A) N TI(A)
induced by restricting T to (B(¢*(I)) ® A) NTI(A)'.
We define, for each R = [R; j(x)] € M, a function F® on I x X by

FE(k,z) == Ro(x) ((k,x) €I x X)).
Since
FE(k,x) = (R(x)dy, | &),

FT is Borel and bounded, so that it belongs to the Cartan subalgebra £>°(I) ® D
of W*(I ,x R,w?).

Lemma 8.2. The operator F® constructed above belongs to M. In particular, it
18 1N ng.

Proof. To show that F isin M, it suffices to check that it satisfies (3.2). But this
immediately follows from (|5.1). Moreover, we have
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PP =P = [ 1Pt R dute) = [ 3 Ruo@)P duto)

kel kel
/ZRkO ) R0 dp( /Z Jo,x () Ri,o(2) dp()
X ker kel
_ / (R*R)oo(x) du(z) = O(R*R) < oo,
X
Thus F'® belongs to ngq. O

Remark. The domain of the map : R € M +— FE € M can be extended to L by
the same formula: F*(j,x) = Sjo(x) (S € L). The computation in the proof of
Lemma shows that F'° defined this way from S € L still belongs to ng, since
x € X — (8*S)o,0(x) is a constant function due to its S-invariance.

By the computation in the proof of Lemma [8.2] the map
Ag(R) — Ao(FT)  (Re M)

extends to an isometry F from Hg into Hgo. We call F the Fourier transform
associated with the pair S C R.

We claim that the map F is in fact unitary. To prove our claim, we will first
show the following;:

Lemma 8.3. Let F € ng and RF( ) =F(o(;(z),2)(4),v¥;(x)) (i,jel, z€X).
Suppose that

(1) for any g € £2(I), {Xjer Rfj(x)g(j)}ig belongs to (2(I) for a.e. v € X;
(2) the linear map g € (*(I) {2 er R{(x)g(j)}ier € 2(I) is bounded for
aex€X.

Then R = [Rf ()]s jer belongs to M and FAy(RF) = Aq(F).

Proof. By assumption, [Rfj (z)]i jer defines an element in B(¢%(1)) for a.e.z € X.
Since F is Borel, the assignment 2 € X — [Rf;(2)]: jer € B(£*(I)) is an essentially
bounded Borel map, so defines an element R* = [Rf(z)]; jer in B((*(I)) ® D.
In order to prove that RF is in M , it suffices to show that R satisfies . But
this can be verified by a direct computation which is left to the reader. Finally,

REy(x) = F(o(x,x)(j), #) = F(j, ). Therefore, FAg(RF) = Aq(F). O

We shall define a partition of unity in M which satisfies the assumptions of
Lemma [8.3]

Thanks to [2 Theorem 3.8], we may choose our choice functions {;};cr so
that they enjoy the following properties:
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(1) There exist a countable set A and natural numbers {ny}rca such that the
index set I is equal to {(A\,n) : A€ A, n=1,...,ny}.

(2) Ind(¢yn) = ny for each (A, n) € 1.

(3) For each A € A and n,m € {1,...,n:}, S(Wrn(S(x))) = S(Wam(S(x))) for
a.e. © € X. Moreover, S(¢x »n(S(x))) is the disjoint union of {S (¢ x(x))};2;.

We refer to [2] for the definition and the basic properties of the index Ind(p) of a
“nonsingular” map p. In what follows, we fix choice functions {1 ,,} as above.

Let C; (j € I) be the S-invariant set introduced in Section |7} A direct com-
putation shows that, for a.e. (z,y) € R and (\,n) € I, (x,y) is in Cy,, if and
only if y € U, S(¥am(z)). It is easy to check that Cy,, is equal to Cy , up to
a null set. Put Cy := Cy 1. We note that {Cy}rca is a measurable partition of R,
because {Xc, }rca are the minimal projections in M satisfying >, 5 Xc, = 1 (see
the proof of [2, Theorem 3.8]).

Put F* := ®(x¢,) for each A\ € A, where ® is defined in Proposition By
Proposition F* is defined by

FA(X,n),2) = xe, (@, 9na(2)) (N, n),2) € I x X).
In particular, F* belongs to M.

Lemma 8.4. {F*},cy is the set of minimal projections in M with >,y F* =1,
and Q(F*) = ny for each \ € A.

Proof. Since {xc, }rea is the set of minimal projections in M = A; N B’ with
sum equal to the identity (see [2, Theorem 3.8]), {F*},ca are in turn the minimal
projections in M with >, \ F A = 1. Moreover, a direct computation shows that

N/

QFY) = [ D3 xeu (@ va (@) du(z)

X NeAn=1

= [ 3 et @) dita) = oo O

n=1

Let A € A and i € I. Define a function f on X by

@) =" xey (Wilx), 5 ().

jel

Lemma 8.5. There exists a u-null subset N of X such that f(x) = ny for all
reN°, NeANandalliel.
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Proof. By (the proof of) [2, Theorem 3.8] (see part (3) stated above), there exists
a p-null subset Ny of X such that R(x) = | |;c; S(¥i(v)) and

(W

(8.2) SWr,m (S(x))) = |_| S(¥a k(x)) for all x € N§ and all (A,nq) € I.
k=1

Here | | stands for disjoint union of sets. Put N := (J;¢; ;7 (Ny). Let « € Ne.
Then we have

(Yi(z),¥;(z)) € Cx
& Yj(x) € S(haa(S(i(2))))
< dke {1’ s 7n>\}7 (¢J($)7¢/\,k(¢z($))) €S (by )
& The (L., m, j = ol ei(@) (A B).
Thus f}(z) =ny forallz € N°, A\ € A and i € I. O
Lemma 8.6. Each F* satisfies the two conditions in Lemma .

Proof. Let f2(x) be as before, and N be the p-null set of X as in Lemma
Since each xc, is minimal, for each A\ € A there exists A™! € A which satisfies
Cy-1 =C; " Now, as in Lemma consider {Rf; }ijer. Then, for each g € ¢%(1)
and any = € N¢, we have

1B @l = 330 RE @G| = 3|3 xea (s ). ()|
iel jel iel jel
= [ v, () )|
iel jeI
=YY st w@ )|
i€l k=1
<Smer Y lglole i) A )P
el k=1
=Ny ZZ IXex (05 (), () g(5)?
=N -1 Z |g(j)|2 ZXC/\ (%(3«")7 wl(x))
jeI iel
= nao1 319G PF (@) = nana- ]
JeI

Therefore we get the conclusion. O
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By using the above lemmas, we get the following:
Theorem 8.7. The Fourier transform F is unitary.

Proof. From Lemma (8.4 and the fact that >°,., F* =1, we find that span{F* :
A € A}, the linear span of {F* : A € A}, is a o-strongly* dense *-subalgebra of M
contained in ng. In particular, span{Aq(F*) : A € A} is dense in Hg. Meanwhile,
we know from Lemmasandthat FAg (RFA) = Aq(F?) for all A € A. Tt thus
follows that F has dense range. Since F is an isometry, it must be unitary. O

Theorem 8.8. The restriction of the normal representation A to ]\//.7, still denoted
by 5\, is implemented by the Fourier transform F, i.e., X(R) = FRF* for all
Re M.

Proof. Let R € M be arbitrary and {F*},ca be as before. Then
A A FA
FRF*Aq(F*) = FRAG(RT") = FAG(RRT") = Ag(FFR ).

By definition, we have

FRR™ (i, 2) = (RRF )i () = 3 Rij () REg ()
Jjel
= 3" Ry (@) FAGre) = (R« FY)(i,2).
jel

Thus FRRFA = R * . Hence we get
FRF*Aq(F) = Aq(R + F) = A(R)Aq(F™).

Since the linear span of {Ag(F?) : A € A} is dense in Hg as noted before, we
conclude that A\(R) = FRF*. O

Thanks to Theorem we will often identify M with the image 5\(]\//.7 ) and
regard M as acting on the Hilbert space Hg,.

89. Hecke algebras in the setting of measured equivalence relations

As before, let S be a Borel subrelation S of R.

89.1. A characterization of the index for “nonsingular” maps

In this subsection, we develop the theory of index which is defined in [2].
For each measurable nonsingular map p which satisfies u(Dom(p)) > 0 and
I'(p) € R, we define

p_lsp = {(Z‘,y) € 7?’Dom(p) : (p(m)’p<y)) € S}
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It is easy to check that p~'Sp is a measured equivalence subrelation of Rbom(p)
and for a.e. z € Dom(p),

(9.1) plp~'Sp(x)) = S(p(x)) NIm(p).

Put S, := SN p~'Sp. We shall show that the index of p is determined by the
inclusion S, C Spom(p)-

Proposition 9.1. In the above setting, if S is ergodic, then Ind(p) = [Spom(p) : Spl-

Proof. Suppose that [Spom(,) : Sp] = n. By [2, Lemma 3.3], it suffices to show that
there exist a nonnull subset X; of Dom(p) and countable measurable nonsingular
maps {pr}}_, on Xy such that S(p(S(z))) is equal to the disjoint union of S(px(z))
for all 2 € X;. By definition, there exist choice functions {1 }7_; for S, € Spom(p)s
i.e., there exists a p-conull Borel subset X; of Dom(p) such that Spom(,)(z) =
Llr_y Sp(¢x(x)) for all z € X;. A direct computation shows that for each z € Xj,

PSpom(e) (2)) = p( | (77 Sp(x(2))) N S(win()) )

—

I
Cﬁyr

(S(p(¥r(2))) NIm(p) N p(S(r(2))))

k

1

N
s

S(p(¥r(2)))-

k=1

On the other hand, since the graph of each vy is contained in S, it follows that
S(p(r(x))) € S(p(S(x))) for each z € Xy and k =1,...,n. Hence S(p(S(x))) is
the disjoint union of {S(p(v¥r(x)))}r_, for all x € Xy, and {pr := p o Yi|x, }1_,
has the desired properties. O

Corollary 9.2. Suppose that S C R is an inclusion of ergodic discrete measured
equivalence relations. Then the commensurability groupoid Commp (S) is generated
by the countable union of {T'(pn)}S2, up to a null set, where each element py,
belongs to [R]. and

[SDom(pn) : Sﬂn} < 00, [Slm(pn) : Spgl] < Q.
Proof. This is a direct consequence of [2, Theorem 3.7] and Proposition O

Hence our definition of commensurability is a natural generalization of the
definition in group theory.
We note that the index satisfies the following:
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Lemma 9.3. Suppose that P C S is an inclusion of ergodic equivalence subrela-
tions of R and p is in [R].. Then

(0™ Sp: p~'Ppl = [Stm(p) : Pim(p))-

Proof. Suppose that {1;};cr are choice functions for Py, (,) € Sim(,). We will show
that {p~11;p}icr are choice functions for p=1Pp C p~1Sp. Indeed, there exists a
p-null subset Xo of Im(p) such that Spy(,(x) is equal to the disjoint union of
{Pim(p)(¥i(x)) }ier for each z € Im(p) \ Xo. Put X; := p~!(Xo). Then X is a
p-null subset of Dom(p). Moreover, for each € Dom(p) \ X1,

Stm(p) (P(@)) = || Py (Wi(p()))-
icl

By using (9.1)), it follows that

p18p(@) = ™ St (p(@)) 1 T(9)) = (L] Py (1(p()) N Tan )

el
=| |7 Pplp™ bip(x)).
el

Hence our claim is proven. O

Suppose that S is commensurable in R with a partition {C)}aca of R as
before. We shall show that there exists a canonical 1-cocycle ¢ on R to the set of
positive rational numbers.

Fix A € A. For A1, Ay € A, we define a Borel subset Cy x;.», of Cx by

Connre = CA N {T(p2p1) : T(p1) € Ca,, T(p2) € Ca, )

Put C§ := Cx \ U{Cax1 2, : A1y A2 € A, v(Caxyn,) = 0} It is easy to check that
C) is conull in Cy, and (Jy¢, Cj is conull in R.
Now, we define a function ¢ on R by

(9.2) o(z,y) = {",\1/7% (z,y) € C},

1, otherwise.
It is easy to check that c¢ is measurable. Moreover, we get the following:

Proposition 9.4. The function c is a 1-cocycle on R. Moreover, ¢ does not de-
pend on the choice of {Cx}rea of R up to null sets.

Proof. A direct computation shows that C;ih/\g :CA,17)\;1,/\;1 for all A, A1, Ao €A,
so c(x,y) = c(y,z)~! for each (x,y) € R.
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We claim that c(x,y)c(y, z) = c(z,2) if (2,y) € C}, (y,2) € C), and (z,2) €
C\,- Indeed, since (z,2) € Cx;a;0, N Chy, We get v(Cxya,,0,) > 0. So, by the
definition of Cy together with the arguments given in [2], there exist p1, p2 € [R]«
which satisfy the following:

(1) € Dom(py), p1(x) = v,
(2) y € Dom(pa), p2(y) = 2,
(3) T(p1) €C4,, T(p2) CC4,- T(p2p1) €C4,.

It follows that Ind(p2p1) = na,, Ind(p; pyt) = ny-1, Ind(p;) = ny, and Ind(p; ')
= n,-1 for i =1,2. By Proposition @ and Lemma@ we have

[Spap1 : Spr N Spopi] = Sﬁpl Py SP2/)1 SNpy 'Spi mP1 P2 50201]

[
= [p2m 8Pt p NS papiSpy oyt N paSpyt NS
= [Spr1051 1 5o NS,

[SDom(pzpl) Spl][Spl 1 Spy mszm]

= [SDom(pl Spl][Sﬂl Sm N SPQPI]

nx (SN Py S SN py Spy Ny oy ' Spapa]
i mSpr NS piSprt NS N py LS

nx,
= nAl[Spfl . Spl—l ﬂsz} = ﬁ[SDom(pfl) : Spl—l ﬂSPQ}
AT

[SDom(prl) : Spl N SﬂzPJ

n)
= n/\;1 [SDOm(pQ) : Spl—l n sz]
— nAlnAQ .
= e [Sp, .Spl—l nsS,,]
= P2 (e LS py S N puSprt M py ' Spe)
Ty -1
A1
T, ) _ _ 1
= ﬁ[msﬁ’z "NS:paSpyt N peprSpy eyt NS
Ay

USSRION
#[S 1:S 1 NS 71].
ny -1 P2 P1 P2 P2

1

Hence we conclude that
n)\;1 _ [SDOm(pl_lpz_l) :Spl—lpz—l]
LW [SDom(P2P1) : SP2P1]
_ [Sp 2 S 1 [Spapr  Spy N Spap,]

om(p; ") " ©pi'p;
[SDom(pQ;n) : Spl N SP2P1]

c(z,z) =
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_ Mt Spome) * Sprtpg lSpr 151 # Sortpt NS,
N, M, [Sp;1 : Spl—lpgl ﬂsz—l]
n —1[8 1, : S —1} Ny—1My -1
AL Dom(p; ) Pa AN
= = = c(z,y)e(y, 2).
n)\ln)\Q n)\ln)\z

So our claim is proven.

The “moreover” assertion follows from the fact that {C)}rea is canonically
determined. Indeed, for another partition {Ds}seca, by using the proof of [2, Theo-
rem 3.8], there exists a bijective map II from A to A with a v-null set R; in R which
satisfies II(6 ') = II(6) ™! and D5 \ R1 = Cry(s) \ R1 for each § € A. In particular,
we have ns) = Ns and 'D5751752 \Rl = CH(&),H(él),H(éz) \'Rl for each 9,071,0 € A.
It follows that c(x,y) = n(s)-1/nu(s) = ns—1/ns for each (z,y) € Dy \ Ry. O

By definition, Ker(c) coincides with [J{Cx : nx = ny-1} U (R \ Uyca C3)- In
particular, this is an intermediate equivalence subrelation for Nz (§) € Commg (S)
up to a null set.

We note that if S € R comes from the crossed product of outer actions
H C G on an equivalence subrelation P such that H is commensurable in G, then
c is defined by
[H:HnNgHg™Y
[H:HnNng 'Hyg|

So the 1-cocycle c¢ is a natural generalization of the group homomorphism canon-

c(z, gy) = ((z,y) € P).

ically associated with a Hecke pair of groups (cf. [, Proposition 4], [15], Proposi-
tion 3.6], [22, Proposition 2.2]).

89.2. Hecke pairs of measured equivalence relations

In Section [0} we studied the restriction of the s-isomorphism @ to the relative
commutant A; N B’. Our immediate purpose in this subsection is to show that

(i) this restricted #-isomorphism ®|4,np can be constructed directly from the
“groupoid” information on the pair (R, S) only, without passing to the basic
construction or the factor W*(I ,x R,w?);

(ii) discreteness of the inclusion W*(S,w) C W*(R,w), or equivalently, equality
Commpg (S) = R can be rephrased from the viewpoint stated above (Proposi-

tion .

For a not necessarily ergodic R and a Borel subrelation S of R, we denote by
L>*(S\R/S) the set of all functions Z € L*°(R,v) satisfying

Z(x,2) =Z(y,2), Z(z,x2)=2Z(z,y) forae. (x,y)€ S andall z€ R(x).
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Since L*(S\R/S) = L*(R,v) N W*(S)’, L>*(S\R/S) is a von Neumann sub-
algebra of L>®(R,v). Every element in L*°(S\R/S) is said to be a two-sided S-
invariant function.

From now on, we assume as before that R is ergodic. We then choose choice
functions {t; }ier for the pair S C R and consider the associated index cocycle o.
Here I = {0,1,...,N} (N could be c0), and we assume that 1y = idx.

We consider the set of all functions F in L>®(I X X, u. X ) satisfying

(9.3) F(i,x) = F(o(y,x)(i),y) forae.(z,y) €S andallicl,

where p,. is the counting measure on 7. We note that this is nothing but L> (I x X)S,
defined in Section [3| Because L>(I x X)¥ is realized as the “commuting algebra”
in £*°(I) ® D with respect to a certain groupoid representation of S on the Hilbert
bundle {£?(I) ® (2(R®)}sex, it is a von Neumann algebra.

For any Z € L*(S\R/S), define a Borel function ®(Z) in L>(I x X) by

O(2)(i,x) := Z(x,¥;i(x))  ((i,2) € I x X).

Notice that the map ® is nothing but the *-isomorphism discussed in Sections
and [6] Moreover, we have the following:

Proposition 9.5. The map ® defined above is a x-isomorphism from L (S\R/S)
onto L>=(Ix X)S. In particular, the von Neumann algebraic structure of L> (I x X)®
does not depend on the choice of choice functions {1; }icr.

Proof. 1t is easy to see that ® is an injective x-homomorphism into L>°(I x X).
Let Z € L>*(S8\R/S). So there exists a v-null set A/ in S such that

Z(x,2) = Z(y,2), Z(z,x)=Z(z,y) forall (z,y)€ S\ N and all z € R(z).

Fix any ¢ € I. For each j € I, put S; = {(z,y) € S : o(z,y)(i) = j}.
Since S; = ((¥; x ¥3)|s))"*(S), S; is Borel for all j € I. By the nonsingular-
ity of ¢;’s, all the subsets ((¢; x ;)]s,)) '(N) (i,j € I) are v-null, so that
N = Ui jer (5 % ¥i)]s,;)) 1 (NV) is also v-null. Then we clearly have

(Vi (%), Yo(y2) i) (¥) € S\N  for all (z,y) € S\N and all i€ I.
Hence, for any (x,y) € S\ N and any i € I,

(I)(Z) (U(y’ I) (Z)’ y) = Z(ya 77[}0'(1/,11)(1) (y))
= Z(y7 wz(x)) (as (¢Z('r>7 wa(y,m)(i) (y)) €S \N)
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Z(z,¢i(z)) (as (z,y) €S\ N)
= o(2)(i, ).

Thus ®(Z) belongs to L= (I x X)S.
To show the surjectivity of ®, take an arbitrary F' € L>(I x X)S. Then there
is a v-null subset N; of S such that

F(i,z) = F(o(y,z)(i),y) forall (z,y) € S\ N; and all i € I.

It follows that there exists a p-null subset Ny of X such that r~!(z) NN = () for
all x € NY. Here, we may and do assume that N; is R-invariant.

On the other hand, there is a p-null subset Ny of X such that R(x) =
Llic; S(¥i(x)) for all x € N§. Once again, we may assume that N is R-invariant.
Put Np := Ny U N3 and Rp := RN (N§ x N§). Clearly, R \ Ro is v-null. We then
define a Borel function Zy € L*(R,v) by

F(i,z) if (z,y) € Rp and y € S(¢;(x)),

Zo(w,y) = {o if (z,9) € R\ Ro.

Let (z,y) € S\ (R\Ro) = SNRp and z € R(x). There is a unique ¢ € I such
that z € S(¢;(x)). Then

Zo(x,z) = F(’L,JJ) = F(a(y,x)(z),y) (as (x,y) € S\Nl)

Note that (y,z) too belongs to Rg. Since (Vo (y,2)(i)(¥),¥i(z)) € S, it follows
that (z,%s(y,2)0)(¥)) € S. So, by definition, Zy(y,z) = F(o(y,x)(i),y). Hence
Zo(x, z) = Zy(y, z). Meanwhile, because (z,z) € Rg, there exists a unique j € T
such that z € S(¢;(2)). Thus Zy(z,z) = F(j, 2). Since (z,y) € S, we have y €
S(v;(2)), which implies Zy(z,y) = F(j,2). So Zo(z,z) = Zy(z,y). Therefore,
Zy € L*®(S\R/S). By the definition of Zy, if x € N§, then, for any i € I,

(Zo) (i x) = Zo(x, Yi(x)) = F(i, x).
This shows that ®(Zy) = F. O

We have the normal embedding of L (X, 1) into L (R, v) via the mapping
feL®(X,u)— for € L®(R,v). We will freely identify L°°(X, ) with the image
under this embedding and simply write f for for. If L°(X, 1) is the algebra of all
S-invariant functions f € L (X, u) (ie., f(x) = f(y) for a.e.(z,y) € S), then it
is clearly contained in L>(S\R/S) and we have ®(L> (X, 1)%) = C® L>=(X, n)*.

We denote by 79 the faithful normal semifinite trace on £°°(I) given by
10(f) == Y ;e f(@) for any f € £°°(I);. Then 79 ® idpe(x ) is a faithful nor-
mal semifinite operator valued weight from L°°(I x X) onto the von Neumann
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subalgebra C ® L>®(X,pu) = L¥(X,p). If F € (L>(I x X)S),, then we have
(10 ®idpee(x,))(F)(x) = > ;c; F (i, ). Thus, for a.e. (x,y) € S,

(10 ® id oo (x,)) (F)(y) = Y Fliyy) = Y Floly,z)(i),y)

iel el
= F(i,z) = (10 @ idpee (x,) (F)(2).
i€l

This means that (70 ® idpe(x,,))(F) belongs to the extended positive part of
L>°(X, p)S. Therefore, the restriction Ts of 79 ® idpe(x ) to LI x X)% is a
faithful normal operator valued weight onto L>(X, )S.

From this point on, we assume that the subrelation S is also ergodic. So
we have L>(X,p)° = C. Hence Ts is regarded as a faithful normal weight on
L>(I x X)%, to be denoted by Q in what follows. Therefore,  is given by

(9.4) Q(F) :/ ZF(i,x) dm(z) (VF € (L®(I x X)%)4)
X jer

for any probability measure m on X equivalent to p.
On the other hand, for each p € [R]. which satisfies u(Dom(p)) > 0, we define
a nonzero projection Z, in L>(R,v) by

L yeS(p(S(x))),
0, otherwise.

Zp(xvy) = {
It is easy to check that Z, € L>°(S\R/S). Moreover, by the definition of the index,
A®(Z,)) = Ind(p).
So we have the following:

Proposition 9.6. The following are equivalent:

(1) The commensurability groupoid Commz (S) equals R up to a v-null set.
(2) The weight 2 is semifinite.

Proof. (1)=(2): Set Cxp = {(z,y) € R : 3z € X, (x,2) € S and (¥rn(2),y)
€ S} as before. As noted previously, Cy,, is equal to Cx ., up to a null set. We
also define Cy := Cy 1. By definition, each x¢, belongs to L*°(S\R/S). We note
that {Cx}xea is a measurable partition of R up to a null set, because it satisfies
> yea Xen = 1 (see the proof of [2 Theorem 3.8]). Thus {F* := ®(xc,)}aea in



HECKE VON NEUMANN ALGEBRA 641

turn is the set of projections in L (I x X) satisfying >_,., F* = 1. Moreover,

QFY) = XAZAZXcA(:m/w,n(x))du(x)Z/XZXCA(x,w,n(I))du(w)=m
'eAn=1 n=1
< 0.

It follows that the trace € is semifinite.
(2)=-(1): Suppose that Commp(S) is not v-conull in R. Then there exists
p € [R]. such that Ind(p|g) is equal to oo for each nonnull subset E of Dom(p).
Fix a nonzero projection Z < Z, in L>(S\R/S). By the definition of Z,, there
exist 01,02 € [S].« such that p(Dom(6z)) > 0, Dom(6;) C Im(p), Im(p2) € Dom(p)
and Xr(6,0p0,) 18 dominated by Z. Since Z € L*(S\R/S), we get Xplm(oy) < Z

and Zp\1m<92) < Z. It follows that
Q(Z) 2 Q(Zp|1m(32)) = Ind(phm(@z)) = Q.
Hence € is not semifinite. O

In what follows, we assume that Commg (S) equals R up to a v-null set. Let
us refer to this situation by saying that (R,S) is a Hecke pair. We fix the choice
functions {¥xn}xn)er for S € R introduced in Section [8f We also retain the
symbols Cy, F* used there. By (the proof of) Proposition [9.6, we know that € is
semifinite, and that the projections F* (A € A) all belong to ng,.

Fix any A € A. Suppose that there exists a p € [R]. such that 0 # xr(,) < xc,-
Without any loss of generality, we may and do assume that I'(p) C Cy = Cy 1.
Hence p(z) € S(¢x,1(S(x))) for all x € Dom(p). Choose a countable set {hy, }nes
in [S] so that S = {(z, hn(z)) : v € X, n € S}. For a pair (n,m) € S x S, define a
Borel map ¢, m : Dom(p) — X by @nm(x) := hm(¥a,1(hn(z))). We also define a
Borel subset A, ,, of Dom(p) by A, m = {z € Dom(p) : ¢nm(x) = p(z)}. Since
p(x) € S(r1(S(2))) for all z € Dom(p), we have J,, ,,) An,m = Dom(p). Choose
a pair (ng, mo) such that p(An, m,) > 0 and put A := Ay my, B = hyy(A). By
[2, Theorem 3.8(3)], there exists a p-null set N of X such that S(¢x1]|(S(2))) =
S(¥r1(S(z))) for all x € N° Let (z,y) € Cx1 N (N° x N. So there is a
z € X such that (z,2) € S and (¢¥r1(2),y) € S. Since y € S(¢Y»1(S(x))) =
S(¥x1|B(S(x))), there is a b € B such that (x,b) € S and (¥a,1(b),y) € S. With
a := h,}(b) € Dom(p), we have hp,(¥x1(hn(a))) = ©nemo(a) = pla). Thus
(z,a) = (,b)(b,a) € S and (p(a), y) = (p(a),¥r1(0))(¥r1(b),y) € S. Hence (z,y)
belongs to the Borel set

&, = {(u,v) € R: 3w € Dom(p), (u,w) € S and (p(w),v) € S},



642 H. Ao1r AND T. YAMANOUCHI

which is clearly a two-sided S-invariant set. This in turn implies that xc, < xe,
as functions in L (S\R/S). The discussion in this paragraph immediately shows
that the projection yc¢, is minimal in L>*(S\R/S) for each A € A. Therefore
the abelian von Neumann algebra L>®(S\R/S) (or, equivalently, L>°(I x X))
is atomic and generated by the minimal projections {xc, }rea (resp. {F*}xea),
when (R, S) is a Hecke pair.

Lemma 9.7. The map Z:1 x X — A defined by
E(\n),z):=X ((\n)el, zeX)
is an S-factor map.

Proof. 1t is clear that Z is Borel. Let f € ¢°°(A) and (z,y) € S. Put (X, n/) :=
o(y,z)(A,n). Then (Y o (y), Yan(z)) € S. By definition, (x, ¥ n(x)) € Cx and
(Y, ¥r . (y)) € Cxr. We also have

(‘T7 w)\,n(‘r)) = (‘T7 y) (y7 "/J/\’,n’ (y))(w/\’,n’ (y)7 ¢A,n(x))

Since both (z,y) and (¥ o (y),¥an(z)) belong to S, it follows that X' = A. So
E(o(y,x)(A\,n),z) = X for any z € X. Hence

fo E(U(y’x)()‘vn)7y) = f()‘) =fo E(()\,n),x)

This shows that f o = is S-invariant.

Conversely, suppose that F is a bounded S-invariant Borel function on I x X.
Since L>®°(I x X)% is generated by the minimal projections {F*}xca, F has the
form F' =3 ., exF?* for some ¢y € C (X € A), where the sum is meant in the
strong operator topology. Put f(\) := ¢y, which is a bounded function on A. Then,
for any (\,n) € I,

F((An),x) =cx = f(A) = foE((A,n),z).
Hence F' = f o Z. This completes the proof. O

Thanks to Lemma [0.7] the factor map = induces a s-isomorphism Z* from
¢>°(A) onto L>®(I x X)S given by Z*(f) := f o Z, where f € £>*(A). Note that
E*(6,) = F* for all A € A. For any f € (*°(A), with F = =*(f), we then have
©05) A= [ 3 FOwodu@ = [ 3 Fos(Om.o)du)

X (anyer X (A n)er

=Y f(M)na

AEA
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For any F € L>(I x X)S, define a Borel function F* on I x X by

(9.6) F¥(i,z) = F(o(4i(2), 2)(0), i(x))  ((i,2) € I x X).

It is obvious that F* € L>°(I x X). By definition, there exists a y-null subset Ny of
X such that, setting S := SN(N§ x N§), we have F(o(y,z)(i),y) = F(i,z) for all
(z,y) € Soand all i € I. Put N :=J, ;; w;l(wfl(No)), which is again a p-null
set. Set S; := SN (N x N¢). Let (z,y) € S1. We have (Yy(y,2)(:)(¥), %i()) € So.
Hence

Fio(y,2)(i),y) = F(0 (o (g () ), 9)(0), ory.0) (1) ()
= F(0(Vo(y,2)0) (), ¥i(@)) (0 (i(x), ) (0 (2, ¥)(0))); Yo (y,0)(i) ()
= F(0 (Yo (y,2) (1) () ¥i(2)) (0 (i (2),2)(0)), Yo (y.2) (i) (¥))
= F(o(¢i(2),2)(0), ¢i(x)) = F*(i, ).

It follows that F* too belongs to L>°(I x X)S. Moreover,
(F#)2 (i) = FA(o (i), 2)(0), (=

)

)5 i(2))(0), Yo (3, (2),2) (0) (Vi (7))

)s ) (0 (2, 9i(2))(0)); Vo (y; (2),2) (0) (Vi (7))
as (Vo (v (x),2)(0) (Vi (7)), ) € So)

Q
—~ —~
=
X
&

1?

R
—~~
§
—~
8

~ =

Thus (F*)* = F. Clearly, the mapping F — F* is conjugate-linear.
Lemma 9.8. For any Z € L=(S\R/S), define Z¥V € L>*(S\R/S) by Z" (z,y) :=

Z(y,x). Then @(7\/) = ®(2)* for all Z € L=¥(S\R/S). In particular, (F*)* =
FA' for all X € A.

E=S

Proof. Let Z € L*(S\R/S). There exists a p-null subset Ny of X such that
Z(w,2) = Z(y, 2),
Z(z,x) = Z(z,y) forall (z,y) € Sp:=8N (N7 x Nf) and all z € R(z).
Put Ny ==, je; 95 (1 H(N1)). Let 2 € Nf and i € I. Then

w,
Vi

o(Z")(, (
(
)
(2)
(

) =7 m),x)
L), Yo (i (2),2)(0) (Vi(T) (a8 (T, Vo (; (2).2) (0) (Yi(2))) € So)
(o(i(),)(0),i(z))

Fi,2).

i,z
Thus @(7\/) = ®(Z)*. For the last assertion, just notice that (xc,)" = xe,_,. O

N

(
(

Il
BB N

Z
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Lemma 9.9. Let f € {>*°(A)y and F = E*(f). Then

Ff =3 J(1)na

AEA

Proof. Let (A\,n) € I and € X. Put (N,n') := o(¢¥xn(z),2)(0). Then we
have (Y n/(Yan(x)),x) € S. But this means that (¢ ,(z),z) is in Cy. Since
(z,9%xn(z)) € Cy, it follows that A = A~1. Hence Z(0(¢x n (), 2)(0),2) = A~ for
any z € X. Thus,

F¥((\n),2) = E*(f)(0(an (), 2)(0), ¥rn(2)) = f 0 E(0(rn (), 2)(0), r,n(2))

=,
The assertion of the lemma now follows from ({9.5)). O

We denote by Z(R,S) the set of all functions F in L>=(I x X)° satisfying,
with F = Z*(f),

IFlle =Y [f(\)nx < oo and | = [f(A)Ina < oo

AEA AEA

We simply write Z for Z(R,S) if there is no danger of confusion. By and
Lemma Z(R,S) consists of the functions F' € L (I x X)S with Q(|F|) < oo
and Q(|F¥|) < oo. It is then easy to see that Z(R,S) is a subspace of L>(I x X)S
which is closed under the f-operation. Since Z*(3y) = F* for any A € A, the linear
span Ty := Zo(R,S) of {F* : X\ € A} is contained in Z(R,S). Because Zy(R,S) is
o-strongly* dense in L= (I x X)°, sois Z(R,S). If F € ng and Z*(f) = F, then,

by (9.5)),
[AaE)* =" 1)

AEA
From this, we see that Z(R,S) C nq. Since Zyp(R,S) is a o-strongly* dense *-
subalgebra contained in ng, it follows that Aq(Zp(R,S)) is dense in the GNS
Hilbert space Hg. In particular, Aq(Z(R,S)) is total in Hg,.
Let F; and F5 be in Z. Define a Borel function F} * F5 on I x X by

(9.7) (Fux Fy)(i,x) =Y Fi(of »x)(0),¥;(2)) F2 (4, ).
Jjel

We will show that this defines a product on Z(R,S) which makes it a f-algebra.
We first note that there exists a p-null subset Ny of X such that

Fk(O'(y,JC)(’L)7y) = Fk(lax)
for all (z,y) € So:=SN (NS x N§), i€l and k=1,2.
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Put Ny =, s, 95 (1 1 (No)) and Sy := SN (N x Nf). Let (2,y) € Sy. Then,
for any 7 € I, we get

(F1* F2)(o( = Fi(o( (o(y, 2)(2),¥;(y) F2 (4, v)
jel
=> Fi(of )(i), 45 () F2(4,v)
jel

= ZFl wa(y T) y) 33‘)(7,), wa(y,z)(j)(y))F2(a(y7x)(j)vy) (as I= O-(ywx)(l))

jeI

=Y F1(0(@otyar) ®) 2) (D), boryar) ) Fali z)  (as (z,y) € 1)

JjeI

= ZFl '(/Jcr(y z) ( ) %( ))(0(1/13(55)»&5)(@)),¢a(y,z)(])(y))F2(J7 LU)

jel

=Y Fi(of )(0), (@) Fa(d, ) (as (Yo(y.e)() (¥), ¥5(2)) € So)

JjeI
= (Fl * FQ)(Z,.’L‘)

This shows that F; x Fy is S-invariant. Moreover,

|(F1 o Fo)((A ’ > Fi(o(@am (@), 2)(\n), ¥, m, (1) Fa((Ar, m1), )
(A1, n1)€I
< Z |F1 qszl ny ) )(/\ 77,) 1/»\1 nl( ))HFQ(()‘lanl)ax”
(A1,n1)el
<Fille Y 1F((A1,m),2)|
(M,n1)€eT
=Fillee Y. [1f2(M)]  (where E*(f2) = F3)
(M,n1)€ET
= [|F1l[oo | F2ll1e-

It follows that I} * Fy € L>=(I x X)S. Furthermore, we have
(F§ « F{)(i,2) = Y Fi(o( (@), s (@) FY (j, ) =
JEI

Z Fo(0 (Yo (2),2) ) (15 ()5 5 (2))(0), Yo (4 (),2) (i) (5 (2))) F1 (0 (35 (), 2)(0), 45 (2)).

jel

Since

(Vo (v, (2),2)5) (V5 (%)), 15 (2)) (0)
= 0(Vo(y; (2),2) (1) (¥ (7)), Yi(x)) (0 (i (), 95 (2))(0)),
(Vo (y; (x),2)(5) (V5 (%)), ¥i(x)) € So,
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we get

(F + Fi)(i,2) = Y Fa(o( (2))(0), i) F1(o (4 (x), £)(0), 15 (x))-

jel

If k = o(yi(x),v;(x))(0), then (Y (¢i(x)),¥j(x)) € So, so that

Fi(o (i (), 2)(0), ¥5(x)) = Fr(o(y;(x), Yr(vi(2)) (o (Yr(i(2)), ©)(0)), ¢5(x))
= Fi(o (¢ (vi(2)), 2)(0), Pr(¢i(2)))-

Together with the fact that {o(v;(z),¢,(x))(0) : j € I} = I, it follows that

> (ol (2))(0), i () F1 (o (¢;(2), 2)(0), ¥ (x))

jerl

= Bk, ¢u(@)) Fi (0 (¥r(¢s(2)), ©)(0), ¥r(vs(2)))

=Y FuloWn(i(@)), i) (0 (i), 2)(0)), (i (@) Fa (k. i ()

Hence we have shown that (I} * Fy)f = F2ti * Flti In fact, F} x Fy lies in Z(R,S).
To prove this, we compute

Q(|Fy * Fy)) /Z|F1*F2 (i, )| dp(z)

i€l

/ZZ‘Fl o(;(x), ) (@), ¥ ()| F2(4, z)| dp(x)

i€l jel

= [ S (E IR, @.a)0. 05w Pl ) du(o)

jel el

= [ FullvellFllre < oo
From this, we have
(P # F2)*)) = QFS % Ff) < | Pullu | Fella < oe.
Thus Fy * F3 belongs to Z(R, S).

Definition 9.10. Let F; and F5 be in Z. We call F; x Fy the convolution of F}
and F5.
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Next we check that the convolution is associative. So take arbitrary Fi, F,
F;5 in Z(R,S). As before, we choose a p-null subset Ny of X such that

Fk(U(y,I)(Z),y) = Fk(lvx)
for all (z,y) € So:=SN (NS x N§), i€l and k=1,2,3.
Put Ny =, ;e 95 ' (@ ' (No)) and Sy := 8N (Nf x NY). Then, for any z € Nf

and ¢ € I, we have

((Fy * Fo) * Fy) (i, ) = (Fy % Fo) (o (n (@), 2) (), ¢ () F (k, )

kel

=D > Fi(o((n(@), 2)(0), ¥, (Vr (@) Fa (G, ¢ () Fs (k, ).

kel jel
Since

o (Vi (P (x)), 2)(1) = o (¥ (Vr(2)), Yo (e 2))G) () (0 (Vo (@ (2))G) (2), ) (7)),
(V5 (V(2))s Yo (2 (2)) ) (T)) € So,

one has

Fi(o(;(r(2)), 2) (@), 5 (Yr(2)))
= F1(0(Vo (e, (2))(5) () ©) (1), Yo (@ pn () () (T))-

So

((F1 = F2) = F3) (i, z)
= ZZFI '(/}0(93 Y (x) )(J)( ) )( )awa(x,wk(w))(j)<x))F2(j7 2/)k($))F3(k,{E)

kel jel

Because {o(z,9r(x))(j) : 7 € I} = I, we continue the above computation as
follows:

((F1* Fy) * F3)(i,x)

=>> Fi(o( ) (@), e () Fa o (Yr(x), ©) (€), Yr () F3(k, )
kel (el

= 3 Filo (), )0, ve@) (X Fato )(€), r (@) Pk, 2))
el kel

=> Fi(of )(@), Vo)) (Fo % F3) (€, ) = (Fy * (Fp x F3)) (i, 7).
Lel

Thus the convolution is associative.
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Finally, the function F?, i.e., F°(i,x) = d¢ ;, is the identity of Z(R, S). Indeed,
for any F' € Z(R,S), we have

(FO *F)(Z,$) = ZFO(U(%(@’l’)(l),%(z))F(J’ I‘)

jel
= G000 @) F U x) =Y 8 F(j,x) = F(i,).
Jjel jelI

One can also easily show that F x FO = F.
Therefore, we have proven that

Theorem 9.11. Z(R,S) is a unital involutive algebra over C with product x and
involution §.

Let A\, Ao € A. Then
(FM s F22)((\,n),z) = Z F2 (o (Par (), 2) (N, 1), o e (1)) FA2 (N, 1), ).
(\,n)el
As usual, take a p-null subset Ny of X such that

Xcy, (2:7) = xey, (2,y)  for all (z,y) € So := SN (N5 x Ng) and all z € R(z).

Put Ny :=U; jes 1#]71(1/);1(N0)). By (the proof of) [2 Theorem 3.8], there exists a
p-null subset Ny of X such that, for any z € N§ and (A2, k), (¥x, 5(2), ¥an(z)) €
Cy, if and only if ¥y ,(z) € |_|"*1 S(¥x,.0(¥ry.k(x)). Now set N3 := Ny U Ny and
S1:= SN (N§ x NS). Then, for any « € N§ and ¢ € I, we have

FAl (0'(1/)/\’771' (l‘), JT)()\, ﬂ), w)\/,n’ (.23))

= XCAl (w)\’,n’ (1’), wo(wk/vn/(x),x)(k,n) (wk’,n/(x)))

= XCA1 (w)\’,n’ (1’), w)\,n(x)) (aS (wo(wyvn/(a:),x)(k,n) (wk’,n/(x))v wA,n (x)) € SO)
Thus

(F)\l * F/\z)(()" n),x) = Z XCxy (Ve (), 1/})\,n(x))F)\2(()‘/v n'),x)

(\.n)el

n)\z

—E:XCA1 (Urek(2), Vrn(@)) (a8 E¥(8r,) = F2).

We will show that F*1 x F*2 € Ty(R,S). For this, we define a subset K))\‘;)\
of X by

ny Mxg

K3y = U ((rsks x ¥30) 090) 7 (Cr,),

k=1 ko=1
where go : X — X x X is defined by go(x) := (x,2). We claim that Ki;’)\ is
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measurable. Indeed, since {1; };cs are choice functions, v; is a measurable map for
each ¢ € I. So, for each ¢,j € I,

(i x ) ©.90)~H(C)
is a measurable subset of X. Hence our claim is proven.

We claim that Ki‘; y is an S-invariant set up to a null set. Indeed, by [2]
Section 3, Remark (1)], there exists a p-null subset Ny, » of X such that, for
each (z,y) € SN (NS, y x N5, ), k2 € {1,...,nx, 1,k € {1,...,ny}, there exist
me € {1,...,nx,} and m € {1,...,nx} which satisty (¥x,.ms(¥); ¥rs ks () € S
and (Yam(y), ¥ak(x)) € S. In particular, if (¢x, k, (), ¥rk(x)) € Cy,, then

(1/}/\2,"12 (y)7 wk,m(y))
= (wz\z,mz (y)7 ’(/}Amkz (x))(wAmkz (!)3), %\,k(fﬂ))(w/\,k@% ’(/}A,m(y)) € C/\l

This means that if = € Ki‘;)\ N NS, s then S(z) NN, | C K/’\\;)\. So our claim is
proven. Since S is ergodic, we conclude that K /’\\21 » is either null or conull in X for
each A € A.

We next claim that there exist a finite subset Ay of A and a measurable nonnull
subset E of X such that Ki;,x is contained in E° for all A € (A\ Ag). Indeed, put
EVM = {@ € X 1 (2,90 0y (Yrg k2 (%)) € Cao} for each Ag € A, k1 € {1,...,mx,}
and ko € {1,...,n,}. Since Cy, is measurable and = — (x,¥x, k (Vs k,(2))) is
a measurable map from X to R up to a null set, E’;;’k"‘ is a measurable subset
of X. Since {Cx,}roea is a countable measurable partition of R up to a null set,
{Efékz} A€ 1S a measurable partition of X up to a null set. In particular, for any
(k1, k2) and each measurable nonnull subset E of X, there exists Ag € A such that
EN E’;;’kz is a nonnull measurable subset of X. By using induction, there exists
{ Mk ko thr ks © A such that ﬂzkil Z;il Efilkiz is a nonnull measurable subset
of X. Put E == ('L M2, Ext™ and Ao i= (A, 2 k1 € {1 oma }oke €
{1,...,nx,}}. By construction, |A0| < my,ny,. In particular, Ag is a finite subset
of A Moreover, since £ C Ekl’ki for each k1 € {1,...,nx, } k2 € {1,...,nx, },
(2, ¥xq by (¥rs,k, (2))) belongs to C,\k &, foreachz € B and ki e {1,. n,\l}, ko €
{1,...,n),}. By (8.1), together with the equivalent conditions dlsplayed in the
proof of Lemma we have S(¥x, b (Vas.k, (7)) C U,:k1 2 S(xg, gy.k(T)) for
each x € F and k1 € {1,...,ny, }, k2 € {1,...,n),}. Since {S(¢;(x))}icr are
mutually disjoint, it follows that if A & Ag, then for each k € {1,...,ny}, we have

e (’D D tfsml k(@) C (D D S (V2 1 (1))))
ki=1ks=1 k=1 k1=1ks=1

and K))\‘l1 5 € E¢. So our claim is proven.



650 H. Ao1r AND T. YAMANOUCHI

By using the above results, we conclude that K ;\; y ds null if A € A\ Ag.
We claim that the support of F* % FA2 is contained in {(\, k) : A € Ay, k €
{1,...,na}} X X up to a null set. Indeed, put N := Uy c\a, K))\‘;X. Since A\ Ag
is a countable set and K;;)\ is a p-null set for each A € A\ Ag, N is a p-null
subset of X. In particular, I x N is null in I x X. On the other hand, suppose
that (A\,n),z) € {(\ k) : A € A\ Ao,k € {1,...,na}} x N¢ Since A € A\ Ay,
z belongs to N = (Uyca\a, K;\‘;/\)c C (K?\;A)c By the definition of Ki\;,w we
have (¥x, x(x), ¥ k() € Cx, for each k € {1,...,ny,}. It follows that

n>\2

(FM s« F2) (A n),2) = Y Xy, k(@) an(x)) =0.
k=1

So the support of F* % F*2 is contained in
{IN{E): xe AN Ag, ke {l,...,nx}}) X N U (I x (N€)9)
={{Nk): A€ Ay, ke{l,...,nx}}) x N YU x N)

and our claim is proven. Therefore, there exists {cx}rea, such that FA1 « FA2 =
Yonen, xF?. Since Ag is finite, we conclude that F* x F** € Zy(R,S). Thus we
have shown

Proposition 9.12. Zy(R,S) is a unital involutive subalgebra of Z(R,S).

Definition 9.13. We call Zy(R,S) the algebraic Hecke algebra associated with
the Hecke pair (R,S).

89.3. Hecke von Neumann algebras

Our next objective is to represent the involutive algebra Z(R,S) on the GNS
Hilbert space Hg. For this, we begin with the following lemma.

Lemma 9.14. Let F be in Z(R,S). Then, for a.e.x € X and all i € I, we have

> F(o((@),2) (i), d(x) = Y FAna,

jer AeA

where Z2*(f) = F.
Proof. There exists a p-null subset Ny of X such that
F¥(o(y,z)(i),y) = F*(i,z) for all (x,y) € Sp:=SN (NS x N§) and all i € I.

Put Ny := U, o, ¢; ' (¢ (Vo)) and 8y := 8 N (Nf x NY). Then, for any z € Nf
and i € I, we have
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;F 2)(i), () = ;w”%wj(x),x)(z'),qu(x»
] —EE;F“ (Vo3 (2),2)0) (Zm( ) 5 (@))(0), Yoy () i) (¥ (2)))
= é;Fﬁ<a(wi(x>,wj(x>><0), Vi) (88 (o, (.00 (¥ (2)), ¥i()) € So)
= ]%;Fﬁ )(4), ¥i(@))
=ZIFﬁ(aw<x)) (as {o(Wi(),2)(j) : j € I} = 1)
(Amn)el

By the proof of Lemma we see that F*((\,n),v;(z))=f(A~!) when Z*(f)=F.
Therefore, we obtain our assertion. O

In the preceding subsection we defined the convolution only for the elements
in Z(R,S). We now extend it to the convolution of an element in Z(R,S) and an
element in ng in the obvious way.

Lemma 9.15. Let F be in Z(R,S) and Fy be in ng. Then both F x Fy and Fy x F
belong to ng and satisfy

| £ % Fil2 < ( Y22, ||[Fr % Flla <

2-

Proof. By Lemmal9.14] for a.e.xz € X and all i € I,
(F+ Fy) (i, 2)] < > [F(o(w;(x), 2)(0), 5 ()| [FL(, )]
Jjel

< Filloo ) 1F (0 (5 (), 2)(0), ()| = |

jeI

||OO‘

Moreover, for a.e.z € X and any ¢ € I, we get
(Fy# F) (i, )| < Y [Fu(o (v (@), 2)(0), ()| | F (4, 7))
JjeI
< Filloo D 1F Gy @) = [1F |1l Fi loo-
jelI

Thus F « Fy and Fy * F belong to L>(I x X). Both are S-invariant, as can be
checked as in the previous subsection.
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Next we show that F' x F} lies in ng. By the Cauchy—Schwarz inequality and
Lemma [9.14] we obtain

[ X1 )P aute)

i€l

= /XZ(ZIF(o(wj<x>,w><i>,wj<x>>| FiG2)) dp(a)

iel jel
< [ (X 1P, 000,050
X iel jel
< (D2 IF (oW (@), ) i),y @) G ) ) dia)
1l [ (S 1P ), 2)0), 05| PG 2)?) du(o)
X iel jel
1Pl [ S IF (), 2) 0, 5] ) P ) due)
X jer ierl
= IF el Pl 2] < oo.

Thus F * Fy € ng and ||[F * Fi|la < (|F |1/ Fll1.-) "2 || F1 2. We also have

| Sl PP duto)

i€l

= /XZ(ZIFl(a(@bj(x),x)(i),wj(x))||F(j,x)|)gu(x)

iel jeI

< [ Z (XAt @20, 6,@)PIRG)) (X162 dita)

i€l jeI el

=171 [ S (X 1Rt @), )0, )1 G )] ) due
X el jel

- HFHl,e/ Z(Z|F1(U(¢j($)7x)(i),wj(a:))|2>|F(j’x)|dﬂ(x)
X jer ier
= [|F|I} (I F1]l3 < o

Thus Fy * F € ng and ||[Fy * Fll2 < [|F||1,¢]| F1||2- O
Thanks to Lemma, the equations

T (F)Aa(F1) := Ao(F * F)

(F)Aq(Fy) == Aq(F, * F) (F € Z(R,S), Fi € ng)
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define bounded linear operators 7§ (F') and 72(F') on the pre-Hilbert space Aq(ng).
So 7Y(F) and 72(F) can be uniquely extended to bounded operators m,(F) and
7 (F) on Hgq.

Lemma 9.16. The map 7y : IZ(R,S) — B(Hgq) is an involution-preserving ho-
momorphism from T(R,S) into B(Hgq) satisfying ||m¢(F)|| < (|| F||1.el|F|l1.-)*?
for all F € Z(R,S). On the other hand, the map w, : Z(R,S) — B(Hgq) is an
antihomomorphism from Z(R,S) into B(Hgq) satisfying ||m-(F)| < ||F
FeI(R,S).

1,¢ for all

Proof. It is obvious that 7, and 7, are linear.
Since Aq(Z(R,S)) is dense in Hq as noted in the previous subsection, my(F)
and 7, (F) are completely characterized by the identities

Wg(F)AQ(Fl) = AQ(F* Fl), '/TT(F)AQ(Fl) = AQ(Fl * F),

where Fy € Z(R,S). Hence both 7y being multiplicative and 7, being antimulti-
plicative follow from the associativity of the convolution.

It remains to show that 7, (F*) = m,(F)* for all F € Z(R,S). So let F, F,
F5 be in Z(R,S). Fubini’s theorem yields

(me(FHA(FY) | Aa(F2)) = (Aa(F* + Fy) | Aq(F»)) = Q(F5(F* « 1))
= /XZ(Fﬁ « F1) (i, 2) Fa (i, ) dp(x)

i€l

- /X Z(Z Fu(g(wj(x),f)(i)vQ/Jj(x))Fl(j,x))mdu(x)

i€l eI

= /X > (Z F(0(Yo(y; ()20 (¥5(2)), 5 (2))(0), Yo (4 (2).2) (1) (V5 (%)) F1 (7, »T))

iel jeI

X Fy(i,x) du(x)

= /XZFl(j,m)

jer

% (D2 Fo Wity @m0 5@ 05 @DO), Yoty (ar.000 (05 @) P26, 2) ) ().

iel
Since (Vo (y, (a),) i) (V5 (2)), Yi(x)) € S for a.e.z € X, we have

F(0(Yo(y;(2),2)() (05 () 95 (2))(0), Yo (4 (2),2) (i) (5 (2)))
= F(o(i(z),¥;(2))(0),¥i(z)) = F(o(¥i(x), 2)(4), i(x))
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for a.e.x € X. Thus
(me(F)Aa(F1) | Aa(F2)
= [ ¥ A6 (E Pl @20 i) duta)

JjeI i€l

= [ E RGP o) duta)

jeI
= (Ma(F1) [ Aa(F * F2)) = (Aa(F1) | me(F)Aa(F2)).

This proves that m,(F*) = m,(F)*. O
Let F' € Z(R,S). We define a Borel function F on I x X by

Ty—1

) 1/2
F((A\n),x):= [ } Fi(\n),z)  ((\n),z) €T x X).

LON

So, if Z*(f) = F, then, as in the proof of Lemma we get

n

F((\n),2) = [”A‘l]l/zmw.

Since ([|[Fll1,e =) Y sea [f(A)|na < oo, there is a positive constant C' such that
[f(A)|nyx < C for all A € A. From this, we obtain

[E((An),2)] < (IFADla-) 2T < CV2)1 12,

Hence F € L°°(I x X). Since F! is S-invariant, one has F¥(o(y,z)(\,n),y) =
F¥((\,n),z) for a.e.(v,y) € S and all (\,n) € I. As we showed in the proof
of Lemma we have o(y,z)(A\,n) = (A,m) for some m = 1,...,n, whenever
(z,y) € S. From this, we see that F is also S-invariant. Thus F' € L=(I x X)S.
Moreover, we get

) ) s 11/2 2
QA = 1) HWEn = S| |22 7] o
AEA AEA
= SISO = X S0P = [Aa(F) 13
AEA AEA

Consequently, F' € ng and ||Aq(F)|l2 = ||Aq(F)]|J2. It is now easy to see that the
map Aq(F) — Ag(F) extends uniquely to a conjugate-linear isometry J on Hg.
Note that JAq(F*) = [nx/ny-1]"2Aq(F* ") for any A € A, which ensures that J
is indeed unitary and satisfies J? = 1.
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We introduce a subspace ©(V) of Hq by

D(V) = {s €Ha: Y [”;:rnmn% < oo}.

A€A

Clearly, the vector Aq(F*) belongs to D (V) for all A € A. So D(V) is dense in Hg.
Then define a densely defined linear operator V with domain ©(V) by

vE=Y ”2; FX¢ (V€ € D(V)).

AEA
We have VAq(F) = (ny-1/nx)Aq(F?) for any A € A.
Lemma 9.17. V is nonsingular, positive and self-adjoint.

Proof. If V€ = 0, then, by definition, FA¢ = 0 for all A € A. This implies £ = 0,
since )y F* = 1. Because all F'*’s are projections, V is positive. Finally, to
prove that V is self-adjoint, take any £ € Hq. Then, since ) ., F* =1 again, we
get

FAell?
> et < S el = el < o

5 =
e (L /ma)? = £
Hence 1
A
n=) ——F°¢
g\ 1 +TL)\71/’/7,)\
converges in norm in Hg. We have
A — ;ka
1+ mny-1/nx

for any A € A. So

nx-1 ? X112 na-1 ? [ F2EN13 A
S = 2 et < 3 i = et <

A€A AEA AEA

It follows that n € D(V). Moreover,

Ny —
(1+V)77:77+Z AR
hea ™

1 /\ Ny—-1 1 A
I+ F7¢
T R T T

=) Fé=¢

AEA

Therefore, (1+ V)9 (V) = Hq. By [19] Lemma 9.5], V is self-adjoint. O
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It can be easily checked that, for any Borel function g on the interval [0, c0),

the linear operator g(V) (i.e., the Borel functional calculus of V under g) is given
by
9(V) =Y glny-1/ny)F?,

AEA
with

D(g(V) = {€ € Ho: D lglmams /) PIFAE[? < oo}

AEA

Lemma 9.18. The densely defined conjugate-linear map Sy : Ho — Hq defined
on Aa(Z(R,S)) by

SoAa(F) := Ao(F*)  (F € I(R,S))
is preclosed. The closure S of So has polar decomposition JV'/2.
Proof. As remarked just before this lemma, we have

AEA
1/2
V2= [”A] FX (V¢ eD(V'?).
healt ™

Let F € Z(R,S). With Z*(f) = F, we have Aq(F) = Y o5 f(AM)AQ(F?). So
FM\q(F) = f(A)Aq(F?) for all A € A. From this, we obtain

> PP ()P = D 2O Pra = Y maa lF P < Il F

AEA AEA AEA

< 00.

Thus Aq(F) belongs to ®(V/2), and

ny-1 1/2
V2Aq(F) = Z{ A } FVAQ(FM).

n
AEA A

This in turn implies

heal ™A A=t
= 3" F) Aa(FN ) = 3T FOT) Aa(FY) = Aa(FF) = Soha(F).
AEA AEA

Therefore, Sy is preclosed, and its closure S satisfies S C JV/2.
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In order to prove that S = JV'/2 it suffices to show that Aq(Z(R,S)) is a
core for V'/2. For this purpose, suppose that & € D(V'/?) satisfies

(9.8) (& | Aa(F) + (VY2€ | VI/2Aq(FY)) = 0
for all A € A. Then

0= (€| Aa(FN) + (Z [n/\ll] 1/2FA1§ ‘ [n’\_lr/zAQ(F’\o

A1EA e "
= (€] Aa(FN) + (€ | Aa(FY)).

Thus (€ | Ag(F*)) = 0 for all A € A. Since {Aq(F?) : A € A} is total in Hq, we
have ¢ = 0. Tt follows that the subspace Aq(Zy(R,S)) is already a core for V/2. [

Corollary 9.19. The subspace Aq(Zo(R,S)) is a core for V" for allr € R. More-
over, V" Aq(Zo(R,S)) = Aa(Zo(R,S)) for any r € R.

Proof. Let r € R. We know that

o) = fecm: [0 ypgr),

AEA

ve=Y {”A‘} FAe (Ve e D(VT)).
heal ™

So it is obvious that Aq(Zp(R,S)) € D(V"). In order to show that Aq(Zp(R,S))
is a core for V", suppose that, for a vector £ € D(V"), equation holds except
that, this time, the power “1/2” in the equation is replaced by r. Then, by exactly
the same argument as in Lemma we arrive at the conclusion that & = 0.

The last assertion easily follows from the fact that V7"Aq(F?) =
[na-1/nA]"Aq(F?) for any A € A. O

Theorem 9.20. Define a product and an involution § on Aq(Z(R,S)) by
AQ(Fl)AQ(FQ) = AQ(Fl*FQ), AQ(F‘l)Ti = AQ(Flﬁ) (Fl,FQ EI(R,S))

Then the subspace A(R,S) := Aq(Z(R,S)) with these operations becomes a left
Hilbert algebra in Hq whose modular operator and modular conjugation are V and
J defined before.

Proof. Tt is clear that 2A(R,S) is an involutive algebra over C which is dense in
the Hilbert space Hgq.

For each F' € Z(R,S), the mapping Aq(F1) — Aq(F)Aq(F}) is bounded, due
to Lemma [0.161
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By Lemma [9.16] again, we have
(Aa(F)Aa(F1) | Aa(Fp)) = (Aa(F1) | Aa(F)FAq(Fy)).

Thanks to Lemma the involution Aq(F) +— Aq(F)* is preclosed.

Recall the element FY mentioned just before Theorem Since Aq(FY)
is the identity for 2A(R,S), we see that the linear span (A(R,S))? of the set
{A(F1)Aq(Fy) : F1, F5 € I(R,S)} equals A(R,S).

Therefore, A(R, S) is a left Hilbert algebra in Hg. By Lemma[9.18] the mod-
ular operator and the modular conjugation associated with 2(R,S) are V and J,
respectively. O

Definition 9.21. We call the left von Neumann algebra of the left Hilbert algebra
A(R,S) the Hecke von Neuwmann algebra associated with the Hecke pair (R,S),
and denote it by H*(R,S). Hence

H*(R,S) = m(Z(R,S8))" = o-strong® closure of m(Z(R,S)).

Proposition 9.22. The involutive subalgebra Ao(R,S) = Aq(Zo(R,S)) of
AR, S) is equivalent to A(R,S) as a left Hilbert algebra, that is, Ap(R,S)" =
AR, S)". In particular, H*(R,S) = m¢(Ao(R,S))".

Proof. Tt suffices to prove that the S-operator of 2y(R,S) equals S = IV'/2. But
this follows from the fact that (R, S) is a core for V/2, verified in the proof of
Lemma [0.18 O]

Lemma 9.23. The left Hilbert algebra Ao(R,S) is a core for the operator S*.

Moreover,
o

S*Ag(F) = Ag(F*)

ny-1
for any X € A. In particular, Ao(R,S) is invariant under S*.

Proof. The first assertion follows from Corollary and the fact that ©(S*) =
D(V~1/2). The second follows by a direct computation, using $* = JV~-1/2. [

By convention, we write 1” for S*7.

Proposition 9.24. The algebra Ao(R,S) is also a right Hilbert algebra with in-
volution b contained in A(R,S)’, and is equivalent to A(R,S)’ as a right Hilbert
algebra.

Proof. From Lemma every element of Ay(R,S) is a right bounded vector
with respect to the left Hilbert algebra A(R,S). It also belongs to D(S*) by
Lemma Hence 2p(R,S) C A(R,S)’. Therefore, Ay(R,S) is a right Hilbert
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algebra in Hq. Because 2y(R,S) is a core for S*, it follows that it is equivalent
to A(R,S)". O

Corollary 9.25. Let F° € I(R,S) be as before. Then (o := Aq(F°) is a cyclic
and separating vector for H*(R,S).

Proof. Since (y is the identity of (R, S), it follows from Proposition that

Ho =2(R,S) = m(As(R, S))Co € H*(R,S)Cos
HQ = QLO(R7S) = WT(Qlo(R7$))<O g H*(R,S)/CQ

Hence ¢y is cyclic for both H*(R,S) and H*(R,S)’. Thus we are done. O
Corollary 9.26. We have A(R,S)"” = H*(R,S)¢ and A(R,S) = H*(R,S) ¢.

Proof. Tt is clear that 2A(R,S) is a left Hilbert subalgebra of the full left Hilbert
algebra H*(R, S)(o. Hence A(R, S)” C (H*(R,S)¢n)” = H*(R,S)¢p. On the other
hand, by Proposition[9.24] {, is the identity for the right Hilbert algebra %(R,S)’.
This implies that A(R,S)’ € H*(R,S)'¢o. Hence,

H* (R, 8)Go = (H*(R,8)¢)" = (H*(R,S)'¢)" € (UR,S)) = AR, S)".
Therefore, A(R,S)"” = H*(R,S)o. O

Corollary 9.27. The faithful normal semifinite weight o on H*(R,S) associated
with the left Hilbert algebra A(R,S) is the normal state vy given by

eo(T) = (T¢o | o) (VT € H*(R,S)).
Proof. This follows from Corollary [9.26] 0

Remark. It is easy to check that the 1l-cocycle ¢ defined by (9.2)) is equal to
Y rea(na-1/nx)xe, up to a null set. Hence V is characterized by

VE=2(c)s  (£€D(V)),

where we extend ® to a map from S-biinvariant functions on R to S-invariant
functions on I x R.

§10. Relation between H*(R,S) and M

Throughout this section, we assume that (R, S) is a Hecke pair, and retain most
of the notation introduced previously.

Lemma 10.1. Let R = [R; j(x)]i jer,zex be in M and Fy, F5 be inZ(R,S). Then
Rx (Fyx Fy) = (R« Fy) % Fy in ng.
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Proof. By definition, there exists a p-null subset Ny of X such that
Rio(e.)(5)(¥) = Bo(y,2)(),5(Y)
for all (z,y) € Ro:= RN (N5 x N§) and all 4,5 € I.
On the other hand, there exists a p-null subset Ny of X such that

> |Fp(i, )| = ||Fillie  forallw € N, i€ T and k=1,2.
i€l

Put Ny = U;c; ¥; ' (No U Ny) and Ry := RN (NE x N§). Let i € I and = € NS§.
Then

(I{*(fﬁ=kﬁ§ EE:}LJ lq,*fa)( )
Jjel
= Ris @) (D Filo(nla), 2)(5), (@) Falk, 2)).
jeI kel

Here we remark that

Y |Rij @) [Fu(o(nla), 2)(5), du(@))] | Fa(k, )]

7,kel
< IRI Y (X IR o ete), 2) (), ()] ) [l )]
kel jel
= ||RH ||F1||1,£||F2||1,e < 0.

Hence, by Fubini’s theorem, we have

(B (P B)(i2) = 3 (3 Rig(@)Fa(o (o (@),2)(3), ¥u(2)) ) Falh, )

kel jel

= Z(Z Ri o (@ api(2)) () (@) F1(J, wk(x)))F2(k7 )

kel jel

=>. (Z Ro (o (2),2) (1), (Y (2)) F1(F, wk(x)))Fg(k, )

kel jel
=Y (Rx Fy)(o(vk(2), ) (i), Yr()) Fa(k, )

kel
= ((Rx Fy) * Fy) (i, x). O

Theorem 10.2. The Hecke von Neumann algebra H*(R,S) exactly equals 5\(]/\4\)
Therefore, M is x-isomorphic to H*(R,S).
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Proof. Let A € A. As in the proof of Lemma 8.6, consider the “matrix” R* :=
[Rf:j(x)]ing,xex in M given by
R ;(x) = FMNo(¥;(x),2)(i),¢5(x)) (4,5 € [,z € X).
Then, for any F' € Z(R,S), with the notation of Section 7, we have
(R + F)(i,x) = Y R} () F(j,x) = Y FNo(v(x),2)(i), ¢ (x)) F(j, x)
jerI jer
= (F*« F)(i,z).

Thus R* « F = F* % F. From this, we obtain
MBMAQ(F) = Ag(R* « F) = Qq(F*  F) = m(F)Ag(F).

Hence A(R) = m(F*) for any A € A. It follows that m,(Zo(R,S)) is contained
in 5\(]/\/[\) Since H*(R.,S) = m(Zo(R,S))” by Proposition [9.22 we conclude that
H*(R,S) C A(M).

To prove the reverse inclusion, let us take any R € M. Then, by Lemmam,
for any Fy, F» € Zy(R,S) we obtain

MR)m (F1)Aq(Fy) = MR)Aq(Fy + Fi) = Aq(R (Fy x Fy)) = Aq((Rx Fy) x Fy)
T (F1)Aq(R * Fy) = . (FL)MR)Aq(Fy).

So M(R)m,(Fy) = 7 (F1)A(R) for all Fy € Zy(R,S). Hence, by Proposition
A(R) € m(Zo(R, 8))' = (H'(R,8)) = H'(R, S).
Therefore, 5\(]\/4\) CH*(R,S). O

There is a notion of normality of a Borel subrelation of a discrete equivalence
relation (see [§]). Normality of ergodic subrelations is studied intensively also in [3].
It is shown in [3] that S being normal in R implies that (R,S) is a Hecke pair.

Corollary 10.3. Suppose that S is normal in R. Then the Hecke von Neumann
algebra H*(R,S) is x-isomorphic to the group von Neumann algebra of the count-
able discrete group I' := R /S (see [§], [3] for the definition of the group R/S).

Proof. By [3], there is a minimal coaction o of I' on W*(R) such that the fixed-
point algebra W*(R)* of « is equal to W*(S). It is well-known that, in this case, M
is *-isomorphic to the group von Neumann algebra W*(I") of I". By Theorem m
H*(R,S) is x-isomorphic to W*(T'). O
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Remark. In the above setting, it is easy to check that M is x-isomorphic to L>(T"),
and the map F defined in Sectionis given by Ag(Ar(v)) — Aq(d) foreachy € T,
where Ar is the left regular representation of I' on L?(T). This fact justifies our
“Fourier transform” terminology for F.

811. Relation to Hecke pairs of groups

In this section, we discuss Hecke von Neumann algebras in the case where our er-
godic discrete measured equivalence relations S C R are derived from the “group-
subgroup” setting, whose meaning is explained in detail below.

As before, we start with an ergodic discrete measured equivalence relation R
on a standard Borel probability space (X, 9B, 1) and an ergodic Borel subrelation S
of R. We also retain most of the notation introduced previously.

Suppose that there exist a Borel subrelation P contained in S, a countable
discrete group G in the normalizer group N[P] of the full group [P] and a subgroup
H of G such that

(1) GN[P] ={e}, i.e., the action of G on P is outer;

(2) (SCR)=(HXxPCGXP);

(3) (G, H) is a Hecke pair of groups, i.e., G ={g € G:[H: HNg 'Hg] < x};
(4) the intermediate subrelation P, := (HNg~'Hg) x P is ergodic for each g € G.

Thus we have

S={(r,y) e X x X:3h € H, (z,h(y)) € P},
R={(z,y) e X x X :3g €qG, (x,9(y)) € P}.

In this setting, it is known (see [13, Example 3.5(i)] and [3| Section 9]) that (R,S)
is a Hecke pair.

Let {tq}qema € G be a set of representatives of the right coset space H\G
with ty = e. We also let {gn € H\G : A € H\G/H} be a complete set of
representatives of the double coset space A := H\G/H satisfying qg = H € H\G.
We simply write ¢ for t,, for each A € A = H\G/H.

For any g € G, put L(g) := [H : HN g~ 'Hg]. Because (G, H) is a Hecke pair,
L(g) is finite for all ¢ € G. Note that the function L : G — N is two-sided H-
invariant, so it may be viewed as a function on H\G/H. By definition, we find that,
for any A € A = H\G/H, L(t)) equals |[H,, \H|, where H,, is the stabilizer group
at the point ¢y under the H-action (q,h) € H\GxH — ¢-h € H\G. For any A € A,
we choose a set {hl(-A) :1 <i< L(tx)} C H of representatives of the quotient space
H, \H. Then, by construction, the points qxhg)‘) (M e H\G/H, 1 < i < L(ty))
are all distinct and H\G = {q,\hl(-A) A€ H\G/H,1<1i<L(t\)}.
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For each ¢ € H\G, set 1, := t,. We see that {{},em\¢ is a set of choice
functions for S € R. According to the description H\G = {q,\hg/\) AeENTL
i < L(tx)} stated in the previous paragraph, the choice functions {14} can be
relabeled in the form {¢x, : A € A, n = 1,...,n,\}, where ¢y, = t,\hsf\) and
ny := L(ty). These are exactly Aoi’s choice functions for S C R (see [2]). Hence
the factor map Z is a map from H\G x X onto A = H\G/H.

By outerness of the action of G, we may and do assume that, for each
(z,y) € R, the mapping o(x,y) : H\G — H\G is the right translation ¢ €
H\G +— qg € H\G by g € G, where g is determined by the condition (g(z),y) € P.
In particular, P is included in Ker(o). From this and the ergodicity of Py, it follows
that each F' € L>((H\G) x X)® depends only on the first variable, so that there
exists a unique function f € (*°(H\G) such that F'(¢,x) = f(q) for a.e.z € X and
all ¢ € H\G. Moreover, S-invariance of F' entails that f is H-invariant. Thus f
is regarded as an element of (*°(H\G/H). With the notation introduced before,
we have =*(f) = F. We shall freely identify functions on H\G with those on G
which are right H-invariant, and functions on H\G/H with those on G which are
H-biinvariant.

The faithful normal semifinite weight Q on L= ((H\G) x X)S = (> (H\G/H)
is given by

AN =Y. fl@)=D FN)n
q€H\G AEA
for any f € L>°((H\G) x X)§ = (>°(H\G/H ). We have

no = {1 € (H\G/H): Y 1f@FF = 3 1F()Pnx < oo,

qEH\G AEA
I(R,8) = {f € (*(H\G/H) : Y |F(W)lna < 00, Y [F(AH)lma < o0 .
AEA AEA

Io(R,S) = {f € (>°(H\G/H) : f has finite support}.

Let f1, f2 € Z(R,S). Since o(4(x),z)(q) = qtq’l in our setting, the convolu-
tion f1 * fo in Z(R,S) is given by
(11.1) (fi* f2)(q) = Z filat,h) f2(p).

pEH\G
As a function on G, this is the same as
(11.2) (i f)g) = > AlgtyVfalts) (9€G).
pEH\G

So Zp(R,S) is exactly the Hecke algebra associated with the Hecke pair (G, H)
in the theory of automorphic forms. Because o (¢q(x),z)(H) = Ht, ', the involu-
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tion f*in Z(R,S) is given by

IHOENACE
or, equivalently, ff( )= fi(g~1) for any g € G.

Now take any f € Z(R,S) and any £ € ¢*(H\G). As in (11.2)), define a
function f * & on G by

(11.3) (f) = Y [flgt; ety (9€@).

geEH\G

It turns out that fx+£ belongs to /2(H\G). There exists a number C'y > 0 depending
upon f such that ||f % £|ls < Cf|€]l2. It follows that, for each f € Z(R,S), the
equation
L(E=rE (v € P(H\G))
defines a bounded operator £(f) on ¢?(H\G) satisfying || £(f)|| < Cy. It is known
that £ : Z(R,S) — B({*(H\Q)) is an involution-preserving representation. Fol-
lowing the terminology in [22], we say that £(Zp(R,S))” is the von Neumann
algebra of the Hecke pair (G, H), and denote it by L(G, H).
Let pg ¢ be the unitary representation of G on ¢*(H\G) defined by

{pmc(9)&}Hq) :==&(ag) (g€ G, g€ H\G, £ € P(H\G)).

Then pp\a(G)' = L(G,H) (cf. [22]). Let ny € (*(H\G) be the characteristic
function of the singleton {H}, i.e., 79 = dg. It is easy to see that 1y is a cyclic
vector for pi(G)”. Hence 1q is a separating vector for L(G, H). We consider the
faithful normal state wy on L(G, H) given by

wo(T) := (T | o) (T € L(G, H)).

Let {L(G,H),my,, Ho} be the GNS representation obtained from the state wy.
Note that L(Zy(R,S)) is a o-strongly* dense unital x-subalgebra of L(G, H) which
is globally invariant under the modular automorphism group of wq (cf. [22]). It is
easy to check that A, (L(Zo(R,S))) is dense in Hy. Now define a linear operator Uy
from Ay, (L(Zo(R,S))) into Hg by

UoAuwo (L£(f)) == Aa(f) (f € Zo(R,S)).
Since

(Ao (L)) | Ay (£(F2))) = (Lm0 | L(f2)mo) = Y f1(a)f2(a)

qgeEH\G

= (Aa(f1) | Aa(f2)),



HECKE VON NEUMANN ALGEBRA 665

Up is an isometry with dense range in Hq. Therefore, Uy can be uniquely extended
to a unitary U from Hy onto Hq. By definition, it is easy to see that we have
Unwo (L(f)) = me(f)U for all f € To(R,S). It follows that Um,, (L(G, H))U* =
H*(R,S). Therefore, L(G, H) is *-isomorphic to our Hecke von Neumann algebra
H*(R,S).

Note that, in the situation considered above, there exists a Borel 1-cocycle ¢
from R into G such that (i) Ker(c) := {(z,y) € R : ¢(x,y) = e} equals P;
(ii) S is equal to the subrelation ¢~ (H). This can be verified from the discussions
in [§] or [3]. Hence we may more generally begin with a Borel 1-cocycle ¢ from the
ergodic discrete measured equivalence relation R into a countable discrete group G
such that the asymptotic range of ¢ equals G. Moreover, assume that there exists
a subgroup H of G such that (i) (G, H) is a Hecke pair; (ii) S = ¢ }(H); (iii)
Py :=c Y(HNg 'Hyg) is ergodic for each g € G. By [8], it is possible to choose
choice functions {{,}4eq for Ker(c) € R so that

&, € N[Ker(c)] for all g € G with £ = id;

Ker(c)(&s(&:(x))) = Ker(e)(€se(x)) for ae.x € X

c(y, ) = g when y € Ker(c)(§y(2));

oo(y,z)(s) = sg~! for any s € G when y € Ker(c)(§,(x)), where oq is the index
cocycle associated with {&,}.

As before, let {ts}sem\e¢ € G be a set of representatives of the right coset space
H\G with tg = e. Then it is easy to check that {1, := &, }qem\c is a set of
choice functions for § C R. Denote by o the index cocycle determined by these
choice functions. If q,¢' € H\G satisfies o(z,y)(¢) = ¢’ for some (z,y) € R, then

(Vg (x),14(y)) € Ker(c), so we get
e = c(vg (), x)c(z,y)c(y, Y(y) = tec(z,y)(ty) "

This means that ¢’ = ge(y, z). Thus

(11.4) o(z,y)(q) = qe(y, ©).

Suppose that F is in L>((H\G)x X)®. From the ergodicity of P, and (11.4), there
exists a unique f € ¢*°(H\G) such that F(q,z) = f(q) for a.e.x € X. By ergodicity
of S, f must be H-invariant, so f € £>*(H\G/H). Hence L>((H\G) x X)S can be
identified with ¢>°(H\G/H). Under this identification, the restriction of the dual
operator valued weight T to L= ((H\G) x X) is given by

fe>(H\G/H); — Z F(N)ny.

AeH\G/H
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This is semifinite, because (G, H) is a Hecke pair. Therefore, it follows from [3] that
the commensurability subrelation Commpg (S) coincides with R up to a null set. So
(R,S) too is a Hecke pair. From this point on, by more or less the same arguments
as in the previous paragraph, one can show that the Hecke von Neumann algebra
H*(R,S) associated with (R, S) is x-isomorphic to that of (G, H).

§12. Examples
In this section, we give some examples of Hecke von Neumann algebras.

(1) We first treat an inclusion of ergodic discrete equivalence relations S C R
of finite index. By [3], (R,S) is a Hecke pair. Moreover, by [12], there exists a
canonical system {P,H C G, 3} for S C R, where [ is an outer action of a finite
group G on P and H is a subgroup of G such that H contains no nontrivial
normal subgroup of G. So the Hecke von Neumann algebra H*(R,S) is equal to
the algebraic Hecke algebra which comes from (G, H).

(2) We shall next show that, for each Hecke pair (G, H), there exists a Hecke
pair (R,S) whose Hecke von Neumann algebra comes from (G, H). Indeed, by
using the same arguments as in [3, Section 9(2)], we can construct an inclusion of
ergodic free group actions (Z CZ x H CZ x G) on (X, i) := @,,cz(Q,v), where
Q1) = Qe (g vg), Qg = {0, 1}, va({0}) = v4({1}) = 1/2 and Z and G act as
the Bernoulli shifts. Put (P C S CR) = (Rz € Rzxu € Rzxa). By construction,
these equivalence relations are ergodic. We define a 1-cocycle ¢ from R onto G by
c(z,(n,g)r) =g (x € X,(n,g) € Z x G). It is easy to check that (P C S C R)
is equal to (Ker(c) C ¢ Y(H) C ¢ }(G)). So, by using the same arguments in
the previous section, we conclude that the Hecke von Neumann algebra H*(R,S)
comes from the Hecke pair (G, H).
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