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Hecke von Neumann Algebra of Ergodic Discrete
Measured Equivalence Relations

by
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Abstract

We generalize the notion of a Hecke pair of groups to the case of an inclusion of ergodic
discrete measured equivalence relations. A key ingredient in defining this new concept
is a commensurability subrelation introduced and discussed in [3]. As in the group case,
with each such Hecke pair, we associate a von Neumann algebra which we call the Hecke
von Neumann algebra of the pair. It is shown that the Hecke von Neumann algebra thus
defined is realized as one of the relative commutants of the tower of the corresponding
inclusion of factors.
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§1. Introduction

This paper is concerned with a certain type of Borel subrelations of general ergodic
discrete measured equivalence relations. In [3], we introduced and investigated a
notion of the commensurability groupoid CG(B) for an inclusion of (separable)
factors B ⊆ A which have a common Cartan subalgebra D. Our motivation to
study this new object stems from the work [13] of Izumi–Longo–Popa, who intro-
duced an extremely important concept of discreteness of an inclusion of factors
N ⊆ M , in order to analyze such a situation as would arise when N is realized
as the fixed-point algebra of a minimal action of a compact group (Kac algebra)
on M . Given an inclusion B ⊆ A as stated above, we defined CG(B) to be a set
of partial isometries in A whose initial and final projections both belong to B
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satisfying a certain condition (see Subsection 2.3 for its precise definition). We
proved in [3], among other results, that the inclusion B ⊆ CG(B)′′ is always dis-
crete in the sense of Izumi–Longo–Popa, and that CG(B)′′ is the largest among
the intermediate subfactors C of B ⊆ A such that B ⊆ C is discrete.

Furthermore, according to [7], there exist an ergodic discrete measured equiva-
lence relationR on a standard probability space (X,µ) and a 2-cocycle ω onR such
that the inclusion D ⊆ A is ∗-isomorphic to W ∗(X) ⊆W ∗(R, ω), where W ∗(R, ω)
is a sort of matrix algebra over R twisted by ω, and W ∗(X) is the subalgebra of
diagonal matrices. Moreover, thanks to [1], there is an ergodic Borel subrelation S
of R such that B = W ∗(S, ω). Therefore, discreteness of B ⊆ A in our setting can
be considered to be a condition for the inclusion of equivalence relations S ⊆ R.
By [1] again, the subfactor CG(B)′′ has the form CG(B)′′ = W ∗(CommR(S), ω) for
a (unique) ergodic intermediate Borel subrelation CommR(S) of S ⊆ R. The theo-
rem in [3] cited above then tells us that B ⊆ A is discrete if and only if CommR(S)
equals R up to a null set. We call CommR(S) the commensurability subrelation
of S in R. This terminology is borrowed from group theory, as the next example
shows. Suppose that the equivalence relations S ⊆ R in question are derived from
outer actions of countable discrete groups H ⊆ G on an ergodic equivalence rela-
tion P, i.e., S = H n P and R = G n P (see Section 11 below for details). It is
(implicitly) stated in [13] that CommR(S) in this case is equal to CommG(H)nP,
where CommG(H) := {g ∈ G : [H : H ∩ gHg−1] < ∞, [H : H ∩ g−1Hg] < ∞}.
The subgroup CommG(H) is often called the commensurability subgroup of H
in G. So discreteness of B ⊆ A in this example is equivalent to CommG(H) be-
ing equal to G, in which case H is said to be almost normal in G, or (G,H) is
called a Hecke pair. Suggested by this example, we generally say that an inclu-
sion of ergodic discrete measure equivalence relations S ⊆ R is a Hecke pair if
CommR(S) = R. It is well-known that the notion of a Hecke pair with the Hecke
algebra of groups is extremely important in the theory of modular forms (see [17]
for example). This notion has also attracted a lot of attention of operator alge-
braists since the pioneering work [4] of Bost and Connes on Hecke C∗-algebras.
Hence we strongly believe that Hecke pairs of equivalence relations equally deserve
a serious investigation. This is the topic we treat in the present article.

The organization of this paper is as follows.
Section 2 is devoted to preparations. We briefly recall the definitions of von

Neumann algebras associated with discrete equivalence relations on standard mea-
sure spaces, the basic extension of an inclusion of factors and commensurability
subrelations.

In Section 3, starting from an inclusion of ergodic equivalence relations
S ⊆ R on a measure space X, we identify the basic extension A1 of the inclu-
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sion B := W ∗(S, ω) ⊆ A := W ∗(R, ω) with the von Neumann algebra of the
skew-product equivalence relation I σ×R derived from an index cocycle of S ⊆ R.
Then we realize, through this identification, the relative commutant A1 ∩ B′ as
the functions on I ×X with a certain property (Theorem 3.2). From Section 3 up
to Section 8, we devote ourselves to studying in detail the relative commutants
A1 ∩B and A2 ∩A′ in the tower of factors B ⊆ A ⊆ A1 ⊆ A2. The reason for this
investigation is based upon a general philosophy that these relative commutants
are in some sense “dual objects” to each other. In fact it will be shown in Sec-
tion 8 as a consequence of analysis made in the preceding sections that if (R,S)
is a Hecke pair in our sense, then one can construct a unitary, which we call the
Fourier transform, between the Hilbert spaces on which A1 ∩ B and A2 ∩ A′ act
standardly (Theorems 8.7 and 8.8). This result is a generalization of the Fourier
transform on discrete groups.

In Section 9, we construct, from a given Hecke pair (R,S), a von Neumann
algebra H∗(R,S), which we term the Hecke von Neumann algebra associated
with (R,S). The construction is a natural generalization of that of a Hecke C∗-
algebra.

In Section 10, we show that if (R,S) is a Hecke pair, then the relative commu-
tant A2 ∩A′ considered above is ∗-isomorphic to the Hecke von Neumann algebra
H∗(R,S). This would mean that our definitions of a Hecke pair and a Hecke von
Neumann algebra are right ones (Theorem 10.2).

In Section 11, we discuss a relation between Hecke pairs of groups and those of
equivalence relations. We show that every von Neumann algebra of a group Hecke
pair can be obtained as H∗(R,S) for a suitable pair (R,S).

Section 12 exhibits a few examples of Hecke pairs of equivalence relations.

§2. Preliminaries

In this section, we introduce symbols that will be repeatedly used in the whole
of this paper. We also collect basic facts about discrete measured equivalence
relations and Jones’ basic extension of an inclusion of factors, which are necessary
for our later discussion. The readers are referred to [3], [6], [7], [8], [13] regarding
these topics.

We assume that all von Neumann algebras in this paper have separable pre-
duals. For a (separable) Hilbert space H, we let B(H) denote the algebra of all
bounded operators on H.

For a faithful normal semifinite weight φ on a von Neumann algebra M , we
set

nφ := {x ∈M : φ(x∗x) <∞}, mφ := n∗φnφ, m+
φ := mφ ∩M+.
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More generally, for an operator valued weight T ([9], [10], [18]) from a von Neu-
mann algebra M to a von Neumann subalgebra N , we set

nT := {x ∈M : T (x∗x) ∈ N+}, mT := n∗TnT , m+
T := mT ∩M+.

The Hilbert space obtained from φ by the GNS-construction will be denoted byHφ,
and we let Λφ : nφ → Hφ stand for the natural injection.

§2.1. Discrete measured equivalence relations

Throughout this paper, we fix a discrete measured equivalence relation R on a
standard probability space (X,B, µ) in which µ is quasi-invariant forR. We denote
by ν the (σ-finite) measure on R given by

ν(E) :=
∫
X

|r−1({x}) ∩ E| dµ(x) (E a Borel subset of R),

where r : R → X is the projection onto the first coordinate, and |S| in general
stands for the cardinality of a (countable) set S. The Radon–Nikodym derivative
associated with this measured equivalence relation will be denoted by δ.

We also fix a (normalized) Borel 2-cocycle ω from R into the one-dimensional
torus T in what follows. We then write W ∗(R, ω) for the von Neumann algebra on
the Hilbert space L2(R, ν) obtained by the Feldman–Moore construction from R
and ω. Briefly, the construction is as follows. We first define the subspace AI of
L2(R, ν) by

AI := {ξ ∈ L2(R, ν) : ξ is δ-bounded and ‖ξ‖I <∞}.

See [11] and [23] for the definition and properties of AI and for the terminology
used above. We then introduce a product and an involution on AI as follows:

(f ∗ g)(x, z) :=
∑
y∼x

f(x, y)g(y, z)ω(x, y, z), f ](x, z) := δ(x, z)−1f(z, x),

where the sum is over all y equivalent to x. By the same argument as in [11] and
[23], one can show that AI is a left Hilbert algebra (in fact, a Tomita algebra)
in L2(R, ν). The left von Neumann algebra of AI is denoted by W ∗(R, ω). The
modular operator ∆ the modular conjugation J are given by

∆ξ := δξ, {Jξ}(x, y) = δ(x, y)−1/2ξ(y, x) (ξ ∈ AI ).

The left multiplication by f ∈ AI will be denoted by Lω(f): Lω(f)ξ := f ∗ ξ.
Remark that every element a ∈W ∗(R, ω) can in fact be written as a = Lω(f) for
some f ∈ L2(R, ν). Moreover, for each ai := Lω(fi) ∈W ∗(R, ω) (i = 1, 2), we have
a∗i = Lω(f ]i ) and a1a2 = Lω(f1 ∗ f2). The abelian von Neumann algebra L∞(X,µ)
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is embedded into W ∗(R, ω) through the representation f ∈ L∞(X,µ) 7→ f ◦ r. We
will always identify L∞(X,µ) with its image D under this representation. This
algebra D is called a Cartan subalgebra of W ∗(R, ω).

If D designates the diagonal subset {(x, x) : x ∈ X} of R, then χD ∈ L2(R, ν)
is a cyclic and separating unit vector for W ∗(R, ω). Here χE in general stands
for the characteristic function of a set E. We will often simply write ξ0 for this
vector. Denote by θ the faithful vector state on W ∗(R, ω) determined by ξ0; we
will always identify Hθ with L2(R, ν).

We define [R]∗ to be the set of all bimeasurable nonsingular transforma-
tions ρ from a Borel subset Dom(ρ) of X onto a Borel subset Im(ρ) of X satisfying
(x, ρ(x)) ∈ R for µ-a.e.x ∈ Dom(ρ). For any ρ ∈ [R]∗, set Γ(ρ) := {(x, ρ(x)) :
x ∈ Dom(ρ)}. Then, for each measurable function g on X of absolute value one,
Lω(δ−1/2(g ◦ r)χΓ(ρ−1)) is a partial isometry in W ∗(R, ω) whose initial and final
projections are respectively χDom(ρ) and χIm(ρ). We denote such partial isometries
in W ∗(R, ω) by GN (D).

For a Borel 1-cocycle c from R into a (second countable) locally compact
group K, the essential range of c is the smallest closed subset σ(c) of K such that
c−1(σ(c)) has complement of measure zero. The asymptotic range r∗(c) of c is
by definition

⋂
{σ(cB) : B (⊆ X) Borel and µ(B) > 0}, where cB stands for the

restriction of c to the reduction RB := {(x, y) ∈ R : x, y ∈ B}.
Assume now that R is ergodic. Let S be a Borel subrelation of R. By [8], we

may choose a countable family {ψi}i∈I of Borel maps from X into itself such that
(i) (x, ψi(x)) ∈ R for all i ∈ I and µ-a.e.x ∈ X; (ii) for µ-a.e.x ∈ X, {S(ψi(x))}i∈I
is a partition of R(x), where R(x) := {y ∈ X : (x, y) ∈ R}. The family {ψi}i∈I is
called choice functions for S ⊆ R. Once the choice functions {ψi}i∈I are fixed, we
can define the index cocycle σ : R → Σ(I) of the pair S ⊆ R, where Σ(I) denotes
the full permutation group on I, by the following rule:

σ(x, y)(i) = j ⇔ (ψi(y), ψj(x)) ∈ S.

§2.2. Basic extension

Let B ⊆ A be an inclusion of factors with a faithful normal conditional expec-
tation EB . (In the situation considered in the following sections, such an expec-
tation always exists and is unique.) Fix a faithful normal state φ0 on B and set
φ := φ0 ◦ EB . Then the equation eBΛφ(a) := Λφ(EB(a)) defines a projection
eB ∈ B(Hφ) onto [Λφ(B)], where [S] is in general the closed subspace spanned by
a set S. We call eB the Jones projection of the inclusion B ⊆ A. The basic extension
of this inclusion (by EB) is the factor, denoted by A1, acting on Hφ generated by A
and eB . It is known that A1 = JφB

′Jφ, where Jφ is the modular conjugation of φ.
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According to [14] (see also [13, Section 2]), there exists a faithful normal semifi-
nite operator valued weight ÊB , called the operator valued weight dual to EB ,
from A1 to A. It satisfies ÊB(eB) = 1 [14, Lemma 3.1], so that AeBA ⊆ mÊB

.
By [13, Proposition 2.8], the relative commutant A1 ∩ B′ admits an important
decomposition into a direct sum

(2.1) A1 ∩B′ = A⊕ B1 ⊕ B2 ⊕ C

of four subalgebras A, B1, B2 and C enjoying a certain set of properties. We
refer to this decomposition as the ILP decomposition of A1 ∩B′. We say (see [13,
Definition 3.7]) that the inclusion B ⊆ A is discrete if B1 = B2 = C = {0} in the
ILP decomposition (2.1). Note that B ⊆ A is discrete if and only if ÊB |A1∩B′ is
semifinite.

§2.3. The commensurability subrelation

Let us assume that our discrete equivalence relation R is ergodic, and consider
the factor A := W ∗(R, ω) on the Hilbert space L2(R, ν) for some 2-cocycle ω.
We also consider an ergodic Borel subrelation S of R and its associated subfactor
B := W ∗(S, ω) of A. According to [3], the commensurability groupoid CG(B) of B
in A is by definition the set of all partial isometries v ∈ A satisfying the following
two conditions:

• Both v∗v and vv∗ belong to B.

• The projections zv and zv∗ belong to m+

ÊB
, where, for an element a ∈ A, za

denotes the projection onto [BaBξ0] which belongs to A1 ∩B′.

It is shown in [3, Theorem 7.1] that the inclusion B ⊆ A is discrete in the sense ex-
plained in Subsection 2.2 if and only if the subfactor generated by CG(B) coincides
with A. We denote by CommR(S) the Borel equivalence subrelation determined,
uniquely up to a ν-null set, by the intermediate subfactor CG(B)′′, and call it the
commensurability subrelation of S in R. Thus CG(B)′′ = W ∗(CommR(S), ω). We
refer the readers to [2] as well for a measure-theoretical approach to this notion of
commensurability.

§3. The relative commutant W ∗(I σ×R, ωσ) ∩Π(B)′

Throughout the rest of this paper, our discrete measured equivalence relation R
on (X, B, µ) is assumed to be ergodic, unless otherwise stated. In this section, we
also fix an ergodic Borel subrelation S of R. Choose choice functions {ψj}j∈I for
the pair S ⊆ R and consider the associated index cocycle σ. Here I = {0, 1, . . . , N}
(N could be ∞), and we assume that ψ0 = idX .
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We consider the factor A := W ∗(R, ω). Write D for the Cartan subalgebra
of A and ED for the faithful normal conditional expectation from A to D. Also
inside A, we have the subfactor B := W ∗(S, ω) of A corresponding to S. We have
a (unique) faithful normal θ-invariant conditional expectation EB from A onto B.
As before, let eB be the Jones projection of B ⊆ A.

Denote by I σ×R the discrete measured equivalence relation on I×X defined
by ((i, x), (j, y)) ∈ I σ×R if and only if (x, y) ∈ R and j = σ(y, x)(i). We call this
equivalence relation the skew-product of R by σ. Note that the 2-cocycle ω on R
can be naturally lifted to one, denoted by ωσ, on I σ×R.

In [3, Theorem 4.2], it is proven that the von Neumann algebra W ∗(Iσ×R, ωσ)
of the skew-product of R by σ is ∗-isomorphic to the basic extension A1 of the
inclusion B ⊆ A. As in the proof of [3, Theorem 4.2], define a unitary Vσ on
`2(I)⊗ L2(R) by

{Vσξ}(j, (x, y)) := ξ(σ(y, x)(j), (x, y)).

Then consider the ∗-homomorphism Π given by

Π(a) := Vσ(1⊗ a)V ∗σ (a ∈ A).

If a = Lω(f) ∈ A, then we have

(3.1) {Π(a)ξ}(j, (x, z)) =
∑
y∼x

f(x, y)ξ(σ(y, x)(j), (y, z))ω(x, y, z)

for any ξ ∈ `2(I) ⊗ L2(R). Then W ∗(I σ× R, ωσ) is generated by Π(A) and
`∞(I)⊗ C. For any j ∈ I, define a function δj on I by δj(i) := δi,j . According to
[3, Theorem 4.2], there exists a ∗-isomorphism Φ from A1 onto W ∗(I σ× R, ωσ)
satisfying Φ(a) = Π(a) (for all a ∈ A) and Φ(eB) = δ0 ⊗ 1.

Before we proceed to the next proposition, note that W ∗(I σ×R, ωσ) is con-
tained in B(`2(I))⊗A. Hence the restriction of idB(`2(I))⊗ED to W ∗(I σ×R, ωσ)
makes sense.

Proposition 3.1. The restriction Eσ := (id ⊗ ED)|W∗(Iσ×R,ωσ) is the unique
faithful normal conditional expectation from W ∗(I σ×R, ωσ) onto the Cartan sub-
algebra `∞(I)⊗D.

Proof. It is obvious that Eσ|`∞(I)⊗D = id.
Let f, g ∈ AI . Note that χDaχD = ED(a)χD for all a ∈ A. It follows that

(1 ⊗ χD)T (1 ⊗ χD) = Eσ(T )(1 ⊗ χD) for any T ∈ W ∗(I σ× R, ωσ). For any
ξ ∈ `2(I)⊗ L2(R) and f ∈ AI , we have
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{(1⊗ χD)Π(Lω(f))(δ0 ⊗ 1)Π(Lω(g))(1⊗ χD)ξ}(j, (x, z))
= δx,z{Π(Lω(f))(δ0 ⊗ 1)Π(Lω(g))(1⊗ χD)ξ}(j, (x, x))

= δx,z
∑
y∼x

f(x, y){(δ0 ⊗ 1)Π(Lω(g))(1⊗ χD)ξ}(σ(y, x)(j), (y, x))

= δx,z
∑
y∼x

δ0,σ(y,x)(j)f(x, y){Π(Lω(g))(1⊗ χD)ξ}(0, (y, x))

= δx,z
∑
y∼x

δ0,σ(y,x)(j)f(x, y)
(∑
w∼x

g(y, w){(1⊗ χD)ξ}(σ(w, y)(0), (w, x))ω(y, w, x)
)

= δx,z
∑
y∼x

δ0,σ(y,x)(j)f(x, y)g(y, x)ξ(σ(x, y)(0), (x, x))

= δx,z
∑
y∼x

δj,σ(x,y)(0)f(x, y)g(y, x)ξ(j, (x, x))

=
∑
y∼x

δσ(x,y)(0)(j)f(x, y)g(y, x){(1⊗ χD)ξ}(j, (x, z)).

So, if we define a bounded function Pf,g on I ×X by

Pf,g(j, x) :=
∑
y∼x

δσ(x,y)(0)(j)f(x, y)g(y, x),

then we obtain (1⊗χD)Π(Lω(f))(δ0⊗1)Π(Lω(g))(1⊗χD) = Pf,g(1⊗χD). Hence

Eσ(Π(Lω(f))(δ0 ⊗ 1)Π(Lω(g)))(1⊗ χD) = Pf,g(1⊗ χD).

Since A′χD = L2(R), we find that Eσ(Π(Lω(f))(δ0 ⊗ 1)Π(Lω(g))) = Pf,g. Hence
the image of the linear span of the set {Π(Lω(f))(δ0 ⊗ 1)Π(Lω(g)) : f, g ∈ AI}
under the map Eσ is contained in `∞(I) ⊗D. Therefore, the range of Eσ equals
`∞(I)⊗D. Since `∞(I)⊗D is maximal abelian, Eσ is the unique faithful normal
conditional expectation from W ∗(I σ×R, ωσ) onto `∞(I)⊗D.

Theorem 3.2. The relative commutant W ∗(I σ×R, ωσ)∩Π(B)′ consists precisely
of all the functions F in the Cartan subalgebra `∞(I)⊗D satisfying

(3.2) F (j, x) = F (σ(y, x)(j), y) (a.e. (x, y) ∈ S, ∀j ∈ I).

Proof. First note that Π(d) = 1⊗ d for all d ∈ D. Hence

W ∗(I σ×R, ωσ) ∩Π(B)′ ⊆ (B(`2(I))⊗A) ∩ (C⊗D)′ = B(`2(I))⊗D.

From this and Proposition 3.1, we have, for any T ∈W ∗(I σ×R, ωσ) ∩Π(B)′,

T = (idB(`2(I)) ⊗ ED)(T ) = Eσ(T ) ∈ `∞(I)⊗D.
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Thus T is the multiplication operator by a function F in `∞(I) ⊗ D. We also
have Π(Lω(f))F = FΠ(Lω(f)) for any f ∈ AI with {(x, y) ∈ R : f(x, y) 6= 0}
⊆ S. But, thanks to (3.1), this identity is easily seen to be equivalent to the
condition (3.2).

We denote by L∞(I ×X)S the set of all functions F in L∞(I ×X) satisfying
(3.2).

§4. The dual operator valued weight of EB

We retain the notation introduced in the preceding section.
As in Section 4 of [3], we set Rj := {(x, y) ∈ R : σ(x, y)(0) = j} for each

j ∈ I. By a direct computation, we get

{V ∗σ (δ0 ⊗ 1)Vσξ}(j, (x, y)) =

{
ξ(j, (x, y)) if (x, y) ∈ R−1

j ,

0 otherwise.

This clearly implies

(4.1) V ∗σ (δ0 ⊗ 1)Vσ =
∑
j∈I

δj ⊗ χR−1
j
,

where R−1
j := {(x, y) ∈ R : (y, x) ∈ Rj}. Let Tr denote the usual trace on

B(`2(I)), that is, Tr(X) :=
∑
j∈I(Xδj | δj) (X ∈ B(`2(I))+). Then, by (4.1), we

have, for any a ∈ A,

(Tr⊗ idB(L2(R)))(V ∗σ Π(a∗)(δ0 ⊗ 1)Π(a)Vσ)

= (Tr⊗ idB(L2(R)))((1⊗ a∗)V ∗σ (δ0 ⊗ 1)Vσ(1⊗ a))

=
∑
j∈I

a∗(Tr⊗ idB(L2(R)))(δj ⊗ χR−1
j

)a =
∑
j∈I

a∗χR−1
j
a = a∗a.

This shows that V ∗σ Π(a∗)(δ0 ⊗ 1)Π(a)Vσ belongs to m+
Tr⊗id, which in turn implies

that
span{V ∗σ Π(A)(δ0 ⊗ 1)Π(A)Vσ}

is contained in mTr⊗id. By the computation made above, we have

(4.2) (Tr⊗ idB(L2(R)))(span{V ∗σ Π(A)(δ0 ⊗ 1)Π(A)Vσ}) ⊆ A.

Lemma 4.1. For any X ∈W ∗(I σ×R, ωσ)+, (Tr⊗ idB(L2(R)))(V ∗σXVσ) belongs
to the extended positive part Ã+ of A.

Proof. Let X ∈ W ∗(I σ× R, ωσ)+. Since span{V ∗σ Π(A)(δ0 ⊗ 1)Π(A)Vσ} is a σ-
strongly∗ dense two-sided ideal of W ∗(I σ×R, ωσ), it follows from [21, Chapter II,
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Proposition 3.13] that there exists an increasing net {Xλ}λ∈Λ of positive elements
in span{V ∗σ Π(A)(δ0 ⊗ 1)Π(A)Vσ} such that X is the σ-strong limit of {Xλ}. Let
u ∈ A′ be any unitary and ψ ∈ B(L2(R))+

∗ . Then, by (4.2), we have

(Tr⊗ idB(L2(R)))(V ∗σXVσ)(uψu∗) = (Tr⊗ uψu∗)(V ∗σXVσ)

= lim
λ∈Λ

(Tr⊗ uψu∗)(V ∗σXλVσ) = lim
λ∈Λ

(Tr⊗ ψ)(V ∗σXλVσ)

= (Tr⊗ ψ)(V ∗σXVσ) = (Tr⊗ idB(L2(R)))(V ∗σXVσ)(ψ).

Hence (Tr⊗ idB(L2(R)))(V ∗σXVσ) falls in Ã+.

For the next theorem, note that Π((Tr⊗ idB(L2(R)))(V ∗σXVσ)) belongs to the

extended positive part Π̃(A)+ of Π(A) for any X ∈W ∗(I σ×R, ωσ)+.

Theorem 4.2. The map

X ∈W ∗(I σ×R, ωσ)+ 7→ Π((Tr⊗ idB(L2(R)))(V ∗σXVσ))

defines a unique faithful normal semifinite operator valued weight TB from W ∗(Iσ×
R, ωσ) to Π(A) satisfying TB(δ0 ⊗ 1) = 1.

Proof. It is easy to see that TB : W ∗(I σ×R, ωσ)+ → Π̃(A)+ satisfies

TB(X + Y ) = TB(X) + TB(Y ),

TB(cX) = cTB(X) (∀X,Y ∈W ∗(I σ×R, ωσ)+, c ∈ [0,∞)).

Let a ∈ A and X ∈W ∗(I σ×R, ωσ)+. Then

TB(Π(a)∗XΠ(a)) = Π((Tr⊗ idB(L2(R)))(V ∗σ Π(a)∗XΠ(a)Vσ))

= Π((Tr⊗ idB(L2(R)))((1⊗ a∗)V ∗σXVσ(1⊗ a))

= Π(a∗(Tr⊗ idB(L2(R)))(V ∗σXVσ)a) = Π(a)∗TB(X)Π(a).

Thus TB is an operator valued weight from W ∗(I σ×R, ωσ) to Π(A). The faith-
fulness and normality of TB are immediate. Thanks to (4.2), TB is semifinite.

Since (Π(A) ⊆ W ∗(I σ× R, ωσ)) is isomorphic to (A ⊆ A1) through the
isomorphism Φ, we have W ∗(I σ× R, ωσ) ∩ Π(A)′ = C. It then follows from [5,
Proposition 11.1] that any other faithful normal semifinite operator valued weight
from W ∗(I σ×R, ωσ) to Π(A) is proportional to TB . Hence TB is uniquely deter-
mined by the condition TB(δ0 ⊗ 1) = 1.

Remark. Recall the isomorphism Φ : A1 →W ∗(I σ×R, ωσ). The map Φ◦ÊB ◦Φ−1

is also a faithful normal semifinite operator valued weight from W ∗(I σ× R, ωσ)
to Π(A). Since Φ(eB) = δ0 ⊗ 1, the above operator valued weight is exactly TB ,
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due to Theorem 4.2. Hence we shall often call TB the dual operator valued weight
of EB .

Corollary 4.3. The restriction of TB to the relative commutant W ∗(I σ×R, ωσ)
∩Π(B)′ = L∞(I ×X)S is given by

F ∈ (L∞(I ×X)S)+ 7→
(∫

X

∑
j∈I

F (j, x) dm(x)
)
· 1

for any probability measure m on X equivalent to µ.

Proof. Let F ∈ (L∞(I×X)S)+. Then V ∗σ FVσ is the function on I×R that assigns
F (σ(x, y)(j), x) to (j, (x, y)). Thus we have

(Tr⊗ idB(L2(R)))(V ∗σ FVσ) =
∑
j∈I

F (j, ·) ∈ D̃+.

Since F belongs to L∞(I×X)S , the function x ∈ X 7→
∑
j∈I F (j, x) is S-invariant

up to a null set. Because S is ergodic, this function is constant. Hence TB(F ) equals
(
∫
X

∑
j∈I F (j, x) dm(x)) · 1.

§5. The relative commutant (B(`2(I))⊗A) ∩Π(A)′

We shall retain the notation introduced in the previous sections.
Let ÃI be a counterpart of the left Hilbert algebra AI , constructed from

the discrete equivalence relation I σ×R. Denote by Lω1 (F ) the left multiplication
(convolution) of F ∈ ÃI :

{Lω1 (F )ξ}(j, (x, y)) :=
∑
z∼x

F (j, (x, z))ξ(σ(z, x)(j), (z, y))ω(x, z, y) (ξ ∈ L2(I×R)),

where we always think of any F in ÃI as a function on I ×R by identifying each
element ((j, x), (σ(y, x)(j), y)) ∈ I σ×R with (j, (x, y)) ∈ I ×R.

The modular operator of ÃI (= the module of the equivalence relation I σ×R)
is 1⊗ δ, and its modular conjugation J̃ is given by

{J̃ξ}(j, (x, y)) = δ(y, x)1/2ξ(σ(y, x)(j), (y, x)) (ξ ∈ L2(I ×R)).

Our first task is to locate the basic extension of the inclusion Π(A) ⊆
W ∗(I σ×R, ωσ) on the Hilbert space `2(I)⊗ L2(R). It is by definition J̃Π(A)′J̃ .
Observe that

{J̃Vσξ}(j, (x, y)) = δ(y, x)1/2{Vσξ}(σ(y, x)(j), (y, x))

= δ(y, x)1/2ξ(j, (y, x)) = {(J0 ⊗ J)ξ}(j, (x, y)),
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where J0 : `2(I)→ `2(I) is given by {J0f}(j) = f(j). Hence

J̃Π(A)′J̃ = J̃Vσ(B(`2(I))⊗A′)V ∗σ J̃ = (J0 ⊗ J)(B(`2(I))⊗A′)(J0 ⊗ J)

= J0B(`2(I))J0 ⊗ JA′J = B(`2(I))⊗A.

Therefore, the basic extension of the inclusion Π(A) ⊆ W ∗(I σ× R, ωσ) on the
Hilbert space `2(I)⊗ L2(R) is B(`2(I))⊗A.

Our next goal is to locate the relative commutant (B(`2(I)) ⊗ A) ∩ Π(A)′.
Since D ⊆ A and Π(d) = 1⊗ d for any d ∈ D, it follows that

(B(`2(I))⊗A) ∩Π(A)′ ⊆ (B(`2(I))⊗A) ∩ (C⊗D)′

= B(`2(I))⊗ (A ∩D′) = B(`2(I))⊗D.

For each j ∈ I, define operators Sj : `2(I) ⊗ L2(R) → L2(R) and Tj : L2(R) →
`2(I)⊗ L2(R) by

Sj

(∑
i∈I

δi ⊗ ξi
)

:= ξj , Tjξ := δj ⊗ ξ.

For an operator Y ∈ B(`2(I) ⊗ L2(R)), let [Yi,j ]i,j∈I stand for the matrix repre-
sentation of Y , that is, Yi,j := SiY Tj ∈ B(L2(R)).

Let R ∈ (B(`2(I))⊗A)∩Π(A)′. By the above computation, each Ri,j belongs
to D. For any f ∈ AI , a direct calculation shows that

{Π(Lω(f))i,jξ}(x, y) =
∑
z∼x

f(x, z)δσ(z,x)(i),jξ(z, y)ω(x, z, y) (ξ ∈ L2(R)).

Hence

(RΠ(Lω(f)))i,j(x, y) =
∑
z∼x

f(x, z)
(∑
k∈I

Ri,k(x)δj,σ(z,x)(k)

)
ξ(z, y)ω(x, z, y),

(Π(Lω(f))R)i,j(x, y) =
∑
z∼x

f(x, z)
(∑
k∈I

Rk,j(z)δk,σ(z,x)(i)

)
ξ(z, y)ω(x, z, y)

for ξ ∈ L2(R). Since RΠ(Lω(f)) = Π(Lω(f))R, it easily follows that

(5.1) Ri,σ(x,y)(j)(x) = Rσ(y,x)(i),j(y) (a.e. (x, y) ∈ R).

Let us summarize the discussion made so far in the next theorem.

Theorem 5.1. Every element of (B(`2(I))⊗A)∩Π(A)′ is regarded as a bounded
Borel B(`2(I))-valued function R on X that satisfies (5.1), where Ri,j(x) :=
(R(x)δj | δi) for any x ∈ X and i, j ∈ I.
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Remark. Theorem 5.1 may be obtained by an argument slightly different from the
one made above, as we explain below. Note first that, with Rx := {(x, y) ∈ R :
y ∈ R(x)} for any x ∈ X, the map f ∈ AI 7→ Π(Lω(f)) is the “integrated form”
of the groupoid representation Λ of R on the Hilbert bundle {`2(I)⊗ `2(Rx)}x∈X
given by

Λ(x, y) = λσ(x, y)⊗ λω(x, y) ((x, y) ∈ R),

where λσ(x, y) : `2(I) → `2(I) is defined by {λσ(x, y)g}(j) := g(σ(y, x)(j)), and
λω denotes the ω-twisted regular representation of R (cf. [11, Section 3]). If R ∈
(B(`2(I))⊗A)∩Π(A)′, then R is a measurable field of operators {R(x)}x∈X with
R(x) ∈ B(`2(I)⊗ `2(Rx)) satisfying

(5.2) R(x)Λ(x, y) = Λ(x, y)R(y) (a.e. (x, y) ∈ R).

Since R ∈ B(`2(I))⊗D, we may assume from the outset that R(x) has the form
R(x) = R1(x) ⊗ 1 for all x ∈ X, where R1(x) ∈ B(`2(I)). In this case, (5.2) is
equivalent to

(5.3) R1(x)λσ(x, y) = λσ(x, y)R1(y) (a.e. (x, y)).

It is easy to check that the unitary λσ(x, y) ∈ B(`2(I)) has matrix represen-
tation [δi,σ(x,y)(j)]i,j∈I with respect to the orthonormal basis {δj}j∈I . Hence, if
[R1
i,j(x)]i,j∈I is the matrix representation of R1(x) with respect to the same basis,

(5.3) can be written in the form

R1
i,σ(x,y)(j)(x) = R1

σ(y,x)(i),j(y) (a.e. (x, y) ∈ R).

Thus we obtain the assertion of Theorem 5.1.

§6. The isomorphism between A1 ∩B′ and W ∗(I σ ×R, ωσ) ∩Π(B)′

In this section, we examine the restriction of the ∗-isomorphism Φ to A1 ∩B′.

Lemma 6.1. We have

V ∗σ (δj ⊗ 1)Vσ =
∑
k∈I

δk ⊗ χTk,j ,

where Tk,j := {(x, y) ∈ R : σ(x, y)(k) = j}.

Proof. Let Sj : `2(I) ⊗ L2(R) → L2(R) and Tj : L2(R) → `2(I) ⊗ L2(R) be the
operators defined in the preceding section. Then, for any ξ ∈ L2(R), we have
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{SiV ∗σ (δj ⊗ 1)VσTkξ}(x, y) = {V ∗σ (δj ⊗ 1)Vσ(δk ⊗ ξ)}(i, (x, y))

= {(δj ⊗ 1)Vσ(δk ⊗ ξ)}(σ(x, y)(i), (x, y))

= δj(σ(x, y)(i)){Vσ(δk ⊗ ξ)}(σ(x, y)(i), (x, y))

= δj(σ(x, y)(i))δk(i)ξ(x, y) = δi,kχTk,j (x, y)ξ(x, y).

This shows that V ∗σ (δj ⊗ 1)Vσ has matrix representation [δi,kχTk,j ]i,k∈I .

Lemma 6.2. With the notation in Lemma 6.1, we have

TB((δj ⊗ 1)Π(a)(δj′ ⊗ 1)) = Π
(∑
k∈I

χTk,jaχTk,j′

)
for any a ∈ A and j, j′ ∈ I. In particular, if a = Lω(f) for some f ∈ AI , then

TB((δj ⊗ 1)Π(Lω(f))(δj′ ⊗ 1)) = Π(Lω(χTj′,jf)).

Proof. By the proof of [3, Theorem 4.2, Corollary 4.6], we have Φ(δj ⊗ 1) = χRj
and ÊB(χRj ) = 1 for all j ∈ I. Since Φ◦ ÊB ◦Φ−1 = TB , we obtain TB(δj⊗1) = 1
for any j ∈ I. Hence (δj ⊗ 1)Π(a)(δj′ ⊗ 1) belongs to mTB for any a ∈ A and
j, j′ ∈ I. Thanks to Lemma 6.1, we have

(Tr⊗ id)(V ∗σ (δj ⊗ 1)Π(a)(δj′ ⊗ 1)Vσ)

= (Tr⊗ id)(V ∗σ (δj ⊗ 1)Vσ(1⊗ a)V ∗σ (δj′ ⊗ 1)Vσ)

= (Tr⊗ id)
(∑
k∈I

δk ⊗ χTk,jaχTk,j′
)

=
∑
k∈I

χTk,jaχTk,j′ .

Thus we obtain the first asserted identity. If a = Lω(f) for some f ∈ AI , then an
easy computation shows that

∑
k∈I χTk,jL

ω(f)χTk,j′ ξ0 = χTj′,jf , which yields the
second assertion.

Lemma 6.3. We have

(Π(Lω(f))(δj ⊗ g) | δj′ ⊗ h) = (Lω(χTj,j′ f)g | h)

for any f ∈ AI , g, h ∈ L2(R) and j, j′ ∈ I.

Proof. The asserted identity can be easily verified by a straightforward computa-
tion using (3.1).

Lemma 6.4. Let ρ := θ ◦Π−1 ◦ TB. Then the Hilbert space Hρ obtained from the
weight ρ is identified with `2(I)⊗ L2(R) through the unitary U characterized by

(6.1) U Π(Lω(f))Λρ((δj ⊗ 1)Π(Lω(g))) = Π(Lω(f))(δj ⊗ g) (f, g ∈ AI , j ∈ I).



Hecke von Neumann Algebra 621

Proof. By [13, Lemma 2.1] (see the proof of [13, Proposition 2.2] also), the image
Λρ(Π(Lω(AI))(δ0 ⊗ 1)Π(Lω(AI))) is dense in Hρ. In particular, the linear span of
the vectors of the form Λρ(Π(Lω(f))(δj ⊗ 1)Π(Lω(g))) (f, g ∈ AI , j ∈ I) is also
dense in Hρ.

Let fi, gi ∈ AI (i = 1, 2) and j, j′ ∈ I. Then

(Λρ(Π(Lω(f1)(δj ⊗ 1)Π(Lω(f2))) | Λρ(Π(Lω(g1)(δj′ ⊗ 1)Π(Lω(g2))))

= ρ(Π(Lω(g2)∗)(δj′ ⊗ 1)Π(Lω(g]1 ∗ f1))(δj ⊗ 1)Π(Lω(f2)))

= θ(Lω(g2)∗Π−1(TB((δj′ ⊗ 1)Π(Lω(g]1 ∗ f1))(δj ⊗ 1)))Lω(f2))

= θ(Lω(g2)∗Lω(χTj,j′ (g
]
1 ∗ f1))Lω(f2)) (by Lemma 6.2)

= (Lω(χTj,j′ (g
]
1 ∗ f1))f2 | g2)

= (Π(Lω(g]1 ∗ f1))(δj ⊗ f2) | δj′ ⊗ g2) (by Lemma 6.3)

= (Π(Lω(f1))(δj ⊗ f2) | Π(Lω(g1))(δj′ ⊗ g2)).

This implies that there exists a unitary U from Hρ onto `2(I) ⊗ L2(R) with the
desired property.

Proposition 6.5. Let θ1 := θ ◦ ÊB. There exists a unitary U1 from the Hilbert
space Hθ1 obtained from the weight θ1 onto `2(I)⊗ L2(R) such that

(6.2) U1L
ω(f)Λθ1(χRjL

ω(g)) = Π(Lω(f))(δj ⊗ g) (f, g ∈ AI , j ∈ I)

and U1 implements the ∗-isomorphism Φ.

Proof. Let ρ := θ ◦ Π−1 ◦ TB be as before. By the proof of [13, Lemma 2.4], the
∗-isomorphism Φ is implemented by the unitary U : Hθ1 → Hρ characterized by

UΛθ1(aeBb) = Λρ(Π(a)(δ0 ⊗ 1)Π(b)) (a, b ∈ A).

Let {vj,n} and {Xn} be respectively the partial isometries in GN (D) and the
Borel subsets of X that were introduced in the proof of [3, Theorem 4.2]. So we
have

Π(v∗j,n)(δ0 ⊗ 1)Π(vj,n) = δj ⊗ χXn ,
∞∑
n=1

Π(v∗j,n)(δ0 ⊗ 1)Π(vj,n) = δj ⊗ 1.

Thus the sequence {
∑N
n=1 Π(v∗j,n)(δ0 ⊗ 1)Π(vj,n)}∞N=1 converges σ-strongly∗ to

δj ⊗ 1. It follows that {
∑N
n=1 Π(Lω(f))Π(v∗j,n)(δ0 ⊗ 1)Π(vj,n)Π(Lω(g))}∞N=1 con-

verges σ-strongly∗ to Π(Lω(f))(δj ⊗ 1)Π(Lω(g)) for any f, g ∈ AI . Applying
the ∗-isomorphism Φ−1 discussed in Section 3 to the above sequence, we easily
see that the sequence {

∑N
n=1 L

ω(f)v∗j,neBvj,nL
ω(g)}∞N=1 converges σ-strongly∗ to

Lω(f)χRjL
ω(g).
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Fix any f, g ∈ AI . By Lemma 6.4,
N∑
n=1

Λρ(Π(Lω(f))Π(v∗j,n)(δ0 ⊗ 1)Π(vj,n)Π(Lω(g)))

=
N∑
n=1

Λρ(Π(Lω(f))(δj ⊗ χXn)Π(Lω(g)))

=
N∑
n=1

Λρ(Π(Lω(f))(δj ⊗ 1)Π(Lω(χXng))) =
N∑
n=1

U∗Π(Lω(f))(δj ⊗ χXng)

→ U∗Π(Lω(f))(δj ⊗ g) = Λρ(Π(Lω(f))(δj ⊗ 1)Π(Lω(g))) (N → ∞).

Hence {
∑N
n=1 Λθ1(Π(Lω(f))v∗j,neBvj,nL

ω(g))}∞N=1 converges to

U∗U∗Π(Lω(f))(δj ⊗ g) = U∗Λρ(Π(Lω(f))(δj ⊗ 1)Π(Lω(g))).

Since Λθ1 is a σ-strongly∗ closed linear map (see [16, Introduction]),Lω(f)χRjL
ω(g)

belongs to nθ1 and Λθ1(Lω(f)χRjL
ω(g)) = U∗Λρ(Π(Lω(f))(δj ⊗ 1)Π(Lω(g))).

Therefore, if we set U1 := UU : Hθ1 → `2(J)⊗ L2(R), then

U1L
ω(f)Λθ1(χRjL

ω(g)) = Π(Lω(f))(δj ⊗ g) (f, g ∈ AI , j ∈ I)

and U1 implements Φ.

Let Z be in A1 ∩B′. By [3, Lemma 4.4], Z is a function in L∞(R) satisfying
Z(x, u) = Z(y, u) and Z(u, x) = Z(u, y) for a.e. (x, y) ∈ S and all u ∼ x. By
Theorem 3.2, Φ(Z) is in L∞(I ×X)S .

Proposition 6.6. With the above notation, we have

Φ(Z)(j, x) = Z(x, ψj(x)) (a.e. (j, x) ∈ I ×X).

Proof. By Proposition 6.5, we get, for any f ∈ AI ,

Φ(Z)(δj ⊗ f) = U1ZU∗1 (δj ⊗ f) = U1Λθ1(ZχRjL
ω(f)).

Now define a Borel function hj on X by hj(x) := Z(x, ψj(x)). Then, since (x, y) ∈
Rj if and only if (ψj(x), y) ∈ S for a.e. (x, y) ∈ R, we have∫

R
|Z(x, y)− hj(x)|χRj (x, y) dν(x, y)

=
∫
R
|Z(x, y)− Z(x, ψj(x))|χS(ψj(x), y) dν(x, y)

=
∫
R
|Z(x, y)− Z(x, y)|χS(ψj(x), y) dν(x, y) = 0.
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Thus ZχRj = hjχRj . So we obtain

Φ(Z)(δj ⊗ f) = U1Λθ1(hjχRjL
ω(f)) = U1Λθ1(χRjL

ω(hjf)) = δj ⊗ hjf.

Since f ∈ AI and j ∈ I are arbitrary, we get the desired identity.

We will return to our discussion of the properties of the map Φ : A1 ∩ B′ →
L∞(I ×X)S examined above in Section 9.2.

§7. The dual operator valued weight of TB

By the result of Section 5, we know that the basic extension of the inclusion
Π(A) ⊆ W ∗(I σ×R, ωσ) is B(`2(I))⊗ A. The goal of this section is to study the
dual operator valued weight T̂B of TB .

As in the previous section, let ρ := θ ◦ Π−1 ◦ TB , which is a faithful normal
semifinite weight on W ∗(I σ×R, ωσ).

Theorem 7.1. The dual operator valued weight T̂B of TB is the unique faithful
normal conditional expectation from B(`2(I))⊗A onto W ∗(I σ×R, ωσ). It satisfies
ρ ◦ T̂B = Tr⊗ θ.

Proof. Put η := Tr⊗ θ. For any j ∈ I, we have

{Vσ(δj ⊗ ξ0)}(i, (x, y)) = δj(σ(y, x)(i))ξ0(x, y) = δi,jξ0(x, y) = (δj ⊗ ξ0)(i, (x, y)).

Thus Vσ(δj ⊗ ξ0) = δj ⊗ ξ0. Since η(S) =
∑
j∈I(S(δj ⊗ ξ0) | δj ⊗ ξ0) for any

S ∈ (B(`2(I))⊗A)+, it follows that η ◦AdV ∗σ = η. Let a ∈ A. Then, by the result
of Section 4 preceding Lemma 4.1, we get

η(Π(a)∗(δ0 ⊗ 1)Π(a)) = η(V ∗σ Π(a)∗(δ0 ⊗ 1)Π(a)Vσ)

= θ((Tr⊗ id)(V ∗σ Π(a)∗(δ0 ⊗ 1)Π(a)Vσ))

= θ(a∗a) = ρ(Π(a)∗(δ0 ⊗ 1)Π(a)) <∞.

This implies that the restriction of η to W ∗(Iσ×R, ωσ) is semifinite. It is clear that
σηt = Ad(1⊗δit). It follows that the restriction of σηt to W ∗(I σ×R, ωσ) equals σρt .
In particular, σηt (W ∗(I σ×R, ωσ)) = W ∗(I σ×R, ωσ) for any t ∈ R. By [20], there
exists a unique faithful normal conditional expectation F from B(`2(I))⊗A onto
W ∗(I σ×R, ωσ) such that η ◦ F = η.

Let ρ0 := η|W∗(Iσ×R,ωσ). By the result of the previous paragraph, ρ0 equals
ρ on the σ-strongly∗ dense subalgebra span{Π(a)∗(δ0⊗ 1)Π(b) : a, b ∈ A} which is
contained in mρ. Moreover, we have

σρ0
t = σηt |W∗(Iσ×R,ωσ) = Ad(1⊗ δit)|W∗(Iσ×R,ωσ) = σρt .

We thus find that ρ = ρ0. Hence ρ ◦ F = η.
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We prove below that F is exactly the dual operator valued weight T̂B of TB .
(Because (B(`2(I))⊗A)∩W ∗(Iσ×R, ωσ)′ = C, it follows from [5, Proposition 11.1]
that T̂B is proportional to F . Hence T̂B is in particular bounded.) Let ζ := θ◦Π−1,
which is a faithful normal state on Π(A). By the result of [5, p. 514], we have

dρ ◦ T̂B
dζ ′

=
dζ ◦ TB ◦ T̂B

dζ ′
= ∆ρ = 1⊗ δ =

d(Tr⊗ θ)
d(tC ⊗ θ′)

,

where ζ ′ is a weight (state) on J̃Π(A)J̃ given by ζ ′(S) := ζ(J̃SJ̃) (S∈(J̃Π(A)J̃)+),
tC is a state on the one-dimensional von Neumann algebra of the scalar multiples
of the identity on `2(I) defined by tC(c · 1`2(I)) = c, and θ′ is a weight on A′

defined by θ′(b) := θ(JbJ) (b ∈ (A′)+). We find from the result of Section 5 that
J̃Π(A)J̃ = C⊗A′ and ζ ′ = tC ⊗ θ′. So we have

dρ ◦ T̂B
d(tC ⊗ θ′)

=
dρ ◦ T̂B
dζ ′

=
d(Tr⊗ θ)
d(tC ⊗ θ′)

.

Hence ρ◦ T̂B = Tr⊗θ. From the previous paragraph, it follows that ρ◦F = ρ◦ T̂B .
By [18], we conclude that F = T̂B .

Remark. Let R̂ := I2 × R, which we consider as the product of the (transitive
and principal) equivalence relation I2 and R. As is well known, the groupoid
von Neumann algebra W ∗(R̂, idI2 × ω) is isomorphic to B(`2(I))⊗ A. The skew-
product relation I σ× R is in this case a Borel subrelation of R̂. Hence there is
a faithful normal conditional expectation from W ∗(R̂, idI2 × ω) = B(`2(I)) ⊗ A
onto W ∗(I σ× R, ωσ) (see [1]). Because (B(`2(I)) ⊗ A) ∩W ∗(I σ× R, ωσ)′ = C,
this expectation is exactly the dual operator valued weight T̂B .

Lemma 7.2. The restriction of T̂B to (B(`2(I)) ⊗ A) ∩ Π(A)′ equals that of the
faithful normal expectation ED̃ from B(`2(J)) ⊗ A onto D̃ := `∞(I) ⊗ D (which
is the Cartan subalgebra for both B(`2(I))⊗A and W ∗(I σ×R, ωσ)).

Proof. Since D̃ is maximal abelian in B(`2(I))⊗A, there is only one faithful normal
expectation from B(`2(I))⊗A onto D̃. It follows that we have Eσ ◦ T̂B = ED̃. Let
S ∈ (B(`2(I)) ⊗ A) ∩ Π(A)′. Then, since Π(A) is a factor, T̂B(S) is of the form
T̂B(S) = c · 1 for some c ∈ C. So we get

ED̃(S) = Eσ(T̂B(S)) = c · 1 = T̂B(S).

This completes the proof.
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Theorem 7.3. The restriction of T̂B to the relative commutant (B(`2(I))⊗A)∩
Π(A)′ is given by

R ∈ (B(`2(I))⊗A) ∩Π(A)′ 7→
(∫

X

Rj,j(x) dm(x)
)
· 1

for any probability measure m on X equivalent to µ, where {Ri,j(x)}i,j∈I, x∈X the
decomposition of R ∈ (B(`2(I))⊗A) ∩Π(A)′ as stated in Theorem 5.1.

Proof. Let R = {Ri,j(x)} be as in the assertion, so it satisfies (5.1). By Lemma 7.2,
T̂B(R) = ED̃(R) is the function given by

x ∈ X 7→ [δi,jRj,j(x)]i,j∈I ∈ `∞(I) ⊆ B(`2(I)).

Now we define a bounded measurable function f on I ×X by f(j, x) := Rj,j(x).
By (5.1), we have f(σ(y, x)(j), y) = f(j, x) for a.e. (j, x). This means that f is
an (I σ×R)-invariant function. Since I σ×R is ergodic, f is constant. Hence we
obtain

T̂B(R) =
(∫

X

Rj,j(x) dm(x)
)
· 1

for any j ∈ I and any probability measure m on X equivalent to µ.

We conclude this section with a result about normality.
For each j ∈ I, define

Cj := {(x, y) ∈ R : ∃z ∈ X, (x, z) ∈ S and (ψj(z), y) ∈ S}.

Remark that Cj is measurable. Indeed, let H be a countable group in the full group
[S] := {ρ ∈ [S]∗ : Dom(ρ) = Im(ρ) = X} such that S = {(x, h(x)) : x ∈ X, h ∈ H}
(cf. [6, Theorem 1]). Then it is easily checked that

Cj =
⋃

h1,h2∈H

Γ(h1 ◦ ψj ◦ h2).

Thus Cj is measurable.
Note that the definition of {Cj} obviously depends on the choice of the choice

functions {ψj}. Clearly, R =
⋃
j∈I Cj up to a null set. It is easily verified that

Rj ⊆ Cj for all j ∈ I.

Lemma 7.4. Each χCj belongs to A1 ∩B′.

Proof. Let (x, y) ∈ S and z ∈ X be such that z ∼ x.
Suppose that (x, z) ∈ Cj . Choose w ∈ X satisfying (x,w) ∈ S and (ψj(w), z)

∈ S. Then (y, w) = (y, x)(x,w) ∈ S. Thus (y, z) ∈ Cj .
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Conversely, suppose that (y, z) ∈ Cj . Choose u ∈ X satisfying (y, u) ∈ S and
(ψj(u), z) ∈ S. Then (x, u) = (x, y)(y, u) ∈ S. So (x, z) ∈ Cj .

By the results of the previous two paragraphs, we obtain χCj (x, z) = χCj (y, z)
whenever (x, y) ∈ S and z ∼ x. Similarly, one can check that χCj (z, x) = χCj (z, y)
whenever (x, y) ∈ S and z ∼ x. By [3, Lemma 4.4], χCj belongs to A1 ∩B′.

Lemma 7.5. Let j ∈ I. The following are equivalent:

(1) χRj = χCj , that is, ν(Cj \ Rj) = 0 ;

(2) the Borel map ψj normalizes S: (ψj(x), ψj(y)) ∈ S for a.e. (x, y) ∈ S.

Proof. (1)⇒(2): By assumption, there exists a µ-conull Borel subset X0 of X
such that r−1(x) ∩ (Cj \ Rj) = ∅ for all x ∈ X0. Put S0 := S ∩ (X0 ×X0). Then
ν(S \ S0) = 0. Let (x, y) ∈ S0. Then (x, ψj(y)) ∈ Cj , because (x, y) ∈ S and
(ψj(y), ψj(y)) ∈ S. Since x ∈ X0 and (x, ψj(y)) ∈ r−1(x) ∩ Cj , it follows that
(x, ψj(y)) ∈ Rj . Thus, (ψj(x), ψj(y)) ∈ S.

(2)⇒(1): Choose a µ-conull Borel subset X1 of X such that (ψj(x), ψj(y)) ∈ S
for all (x, y) ∈ S with x ∈ X1. Put C′j := Cj ∩ (X1 × X). Then ν(Cj \ C′j) = 0.
Let (x, y) ∈ C′j . So (x, z) ∈ S and (ψj(z), y) ∈ S for some z ∈ X. Because
(ψj(x), ψj(z)) ∈ S, one gets (ψj(x), y) ∈ S. This means that (x, y) ∈ Rj . Hence
C′j ⊆ Rj . Therefore, ν(Cj \ Rj) = 0.

Lemma 7.6. If j1, j2 ∈ I satisfy ν(Γ(ψj1) ∩ Cj2) = 0, then ν(Cj1 ∩ Cj2) = 0.

Proof. By assumption, there exists a µ-conull Borel subset X0 of X such that
{(x, ψj1(x)) : x ∈ X0} ⊆ (Cj2)c. Let C1 := {(x, y) ∈ Cj1 : ∃z ∈ X0, (x, z) ∈ S
and (ψj1(z), y) ∈ S}. Then Cj1 \ C1 = {(x, y) ∈ Cj1 : ∃z ∈ Xc

0 , (x, z) ∈ S and
(ψj1(z), y) ∈ S}. If {hn} is a countable family of Borel isomorphisms in [S] with
S =

⋃
n Γ(hn), then we see that r(Cj1 \ C1) =

⋃
n hn(Xc

0). Hence r(Cj1 \ C1) is
ν-null. In particular, ν(Cj1 \ C1) = 0. Hence ν(Cj1 ∩ Cj2) = ν(C1 ∩ Cj2).

Suppose that C1 ∩ Cj2 is non-empty, and take (x, y) ∈ C1 ∩ Cj2 . So (x, z) ∈ S
and (ψj1(z), y) ∈ S for some z ∈ X0. Since (x, z) ∈ S and ψj1(z) ∼ x, we have

χCj2 (x, ψj1(z)) = χCj2 (z, ψj1(z)) = 0 ((z, ψj1(z)) 6∈ Cj2).

This shows that (x, ψj1(z)) 6∈ Cj2 . Since (ψj1(z), y) ∈ S and x ∼ y, we get

χCj2 (x, y) = χCj2 (x, ψj1(z)) = 0.

So (x, y) 6∈ Cj2 , a contradiction. Therefore, C1 ∩ Cj2 = ∅.

Define Pj := Φ(χCj ). So each Pj is a projection in L∞(I ×X)S . From Propo-
sition 6.6 and the fact that Γ(ψj) ⊆ Cj , we have Pj(j, x) = χCj (x, ψj(x)) = 1.
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Lemma 7.7. Let j ∈ I. The following are equivalent:

(1) TB(Pj) = 1;

(2) the map ψj normalizes S.

Proof. By Corollary 4.3, we have

TB(Pj) =
(∫

X

∑
i∈I

χCj (x, ψi(x)) dµ(x)
)
· 1

=
(∫

X

(
χCj (x, ψj(x)) +

∑
i∈I\{j}

χCj (x, ψi(x))
)
dµ(x)

)
· 1

=
(∫

X

(
1 +

∑
i∈I\{j}

χCj (x, ψi(x))
)
dµ(x)

)
· 1

= 1 +
(∫

X

( ∑
i∈I\{j}

χCj (x, ψi(x))
)
dµ(x)

)
· 1

Hence we find that

TB(Pj) = 1 ⇔ χCj (x, ψi(x)) = 0 (∀i ∈ I \ {j} and a.e. x ∈ X)

⇔ ν(Γ(ψi) ∩ Cj) = 0 (∀i ∈ I \ {j})
⇔ ν(Ci ∩ Cj) = 0 (∀i ∈ I \ {j}) (by Lemma 7.6).

(1)⇒(2): Suppose that TB(Pj) = 1. By the result of the previous paragraph,
we have ν(Ci ∩ Cj) = 0 for all i ∈ I \ {j}. In particular, ν(Ri ∩ Cj) = 0, i.e.,
χRiχCj = 0. Since

∑
i∈I χRi = 1, it follows that

χCj =
∑
i∈I

χCjχRi = χCjχRj = χRj .

We now see from Lemma 7.5 that ψj normalizes S.
(2)⇒(1): As in the proof of Lemma 7.5, (2)⇒(1), there is a µ-conull Borel

subset X1 of X such that (ψj(x), ψj(y)) ∈ S for all (x, y) ∈ S with x ∈ X1. Sup-
pose that ν(Ci∩Rj) > 0 for some i ∈ I \{j}. Then the set Ci∩Rj ∩ (X1×X) still
has positive measure. Take any (x, y) in this set. Then there is a z ∈ X such that
(x, z) ∈ S and (ψi(z), y) ∈ S. We also have (ψj(x), y) ∈ S. Thus (ψj(x), ψi(z)) ∈ S.
Meanwhile, since x ∈ X1 and (x, z) ∈ S, we have (ψj(x), ψj(z)) ∈ S. Consequently,
(ψi(z), ψj(z)) ∈ S, which contradicts the fact that {ψi} are choice functions. There-
fore, we must have ν(Ci ∩ Rj) = 0 for all i ∈ I \ {j}. Since Γ(ψj) ⊆ Rj , one has
ν(Γ(ψj) ∩ Ci) = 0. By Lemma 7.6, we get ν(Cj ∩ Ci) = 0. From the result of the
first paragraph, it follows that TB(Pj) = 1.
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§8. Fourier transform

Throughout this section, we assume that the commensurability subrelation
CommR(S) of S in R equals R. Equivalently, we suppose that the irreducible
inclusion B ⊆ A is discrete. Hence the restriction of the operator valued weight
TB to L∞(I×X)S is semifinite. We denote by Ω the faithful normal semifinite trace
on M := L∞(I × X)S induced by the restriction of TB to M . By Corollary 4.3,
we have

Ω(F ) =
∫
X

∑
j∈I

F (j, x) dµ(x) (∀F ∈ (L∞(I ×X)S)+).

In the discussion below, we employ the notation used in Section 5.
Let L := (B(`2(I)) ⊗ A) ∩ Π(B)′. By arguing as in Section 5, we can easily

verify that L consists of all essentially bounded Borel functions S : X → B(`2(I))
such that, with the matrix representation S(x) = [Si,j(x)]i,j∈I (x ∈ X), one has

(8.1) Si,σ(x,y)(j)(x) = Sσ(y,x)(i),j(y) (a.e. (x, y) ∈ S).

Let S = [Si,j(x)] ∈ L and F ∈ nΩ. Then define a Borel function S ∗F on I×X by

(S ∗ F )(j, x) :=
∑
k∈I

Sj,k(x)F (k, x).

Since {F (k, x)}k∈I belongs to `2(I) for a.e.x ∈ X due to the fact that F ∈ nΩ, it
follows that {(S ∗ F )(j, x)}j∈I is a member of `2(I) for a.e.x ∈ X. In particular,
we have S ∗ F ∈ L∞(I ×X). Moreover, for a.e. (x, y) ∈ S,

(S ∗ F )(σ(y, x)(j), y) =
∑
k∈I

Sσ(y,x)(j),k(y)F (k, y) =
∑
k∈I

Sj,σ(x,y)(k)(x)F (k, y)

=
∑
k∈I

Sj,k(x)F (σ(y, x)(k), y) =
∑
k∈I

Sj,k(x)F (k, x)

= (S ∗ F )(j, x).

Thus S ∗ F satisfies (3.2). Hence it belongs to M . In fact, it is in nΩ, because

Ω((S ∗ F )∗(S ∗ F ))1/2

= the `2(I)-norm of the sequence {(S ∗ F )(j, x)}j∈I (for a.e. x ∈ X)

= the `2(I)-norm of the vector S(x){F (j, x)}j∈I ∈ `2(I) (for a.e. x ∈ X)

≤ ‖S‖ ‖{(F (j, x)}j∈I‖`2(I) = ‖S‖ ‖ΛΩ(F )‖ <∞.

This in particular shows that ‖ΛΩ(S ∗ F )‖ ≤ ‖S‖ ‖ΛΩ(F )‖. Therefore, the map

ΛΩ(F ) ∈ HΩ 7→ ΛΩ(S ∗ F ) ∈ HΩ

extends uniquely to a bounded linear operator λ̂(S) on HΩ.
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Proposition 8.1. The map λ̂ : L → B(HΩ) is a surjective unital normal ∗-
representation of L.

Proof. It is easy to verify that λ̂ is a unital ∗-representation that is continuous with
respect to the weak (hence σ-weak) topology. In particular, λ̂(L) is a von Neumann
subalgebra of B(HΩ). Let F1, F2 ∈ nΩ. For each x ∈ X and (i, j) ∈ I × I, define

S0
i,j(x) := F1(i, x)F2(j, x).

Since
∑
i,j∈I |S0

i,j(x)|2 = (
∑
i∈I |F1(i, x)|2)(

∑
j∈I |F2(j, x)|2) < ∞ for a.e.x ∈ X,

the map

g = {g(j)}j∈I ∈ `2(I) 7→
{∑
j∈I

S0
i,j(x)g(j)

}
i∈I
∈ `2(I)

defines a bounded operator S0(x) ∈ B(`2(I)) for a.e.x ∈ X with ‖S0(x)‖ ≤
‖ΛΩ(F1)‖ ‖ΛΩ(F2)‖. Hence the essentially bounded Borel function S0 : x ∈ X 7→
S0(x) ∈ B(`2(I)) belongs to B(`2(I))⊗D. It is easy to see that S0 satisfies (8.1).
So it is in L. It is also easy to check that λ̂(S0) = tΛΩ(F1),ΛΩ(F2), where, in general,
the symbol tξ,η stands for the rank-one operator on a Hilbert space K defined by
tξ,ηζ := (ζ | η)ξ (ξ, η, ζ ∈ K). Since λ̂(L) is a von Neumann algebra, it follows
from the above argument that λ̂(L) contains all the rank-one (hence finite-rank)
operators on HΩ. Therefore, λ̂(L) coincides with B(HΩ).

We denote by Ω̂ the faithful normal state on M̂ := (B(`2(I)) ⊗ A) ∩ Π(A)′

induced by restricting T̂B to (B(`2(I))⊗A) ∩Π(A)′.
We define, for each R = [Ri,j(x)] ∈ M̂ , a function FR on I ×X by

FR(k, x) := Rk,0(x) ((k, x) ∈ I ×X)).

Since

FR(k, x) = (R(x)δk | δ0),

FR is Borel and bounded, so that it belongs to the Cartan subalgebra `∞(I)⊗D
of W ∗(I σ×R, ωσ).

Lemma 8.2. The operator FR constructed above belongs to M . In particular, it
is in nΩ.

Proof. To show that FR is in M , it suffices to check that it satisfies (3.2). But this
immediately follows from (5.1). Moreover, we have
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Ω((FR)∗FR) = Ω(|FR|2) =
∫
X

∑
k∈I

|FR(k, x)|2 dµ(x) =
∫
X

∑
k∈I

|Rk,0(x)|2 dµ(x)

=
∫
X

∑
k∈I

Rk,0(x)Rk,0 dµ(x) =
∫
X

∑
k∈I

(R∗)0,k(x)Rk,0(x) dµ(x)

=
∫
X

(R∗R)0,0(x) dµ(x) = Ω̂(R∗R) <∞.

Thus FR belongs to nΩ.

Remark. The domain of the map : R ∈ M̂ 7→ FR ∈ M can be extended to L by
the same formula: FS(j, x) = Sj,0(x) (S ∈ L). The computation in the proof of
Lemma 8.2 shows that FS defined this way from S ∈ L still belongs to nΩ, since
x ∈ X 7→ (S∗S)0,0(x) is a constant function due to its S-invariance.

By the computation in the proof of Lemma 8.2, the map

ΛbΩ(R) 7→ ΛΩ(FR) (R ∈ M̂)

extends to an isometry F from HbΩ into HΩ. We call F the Fourier transform
associated with the pair S ⊆ R.

We claim that the map F is in fact unitary. To prove our claim, we will first
show the following:

Lemma 8.3. Let F ∈ nΩ and RFi,j(x) :=F (σ(ψj(x), x)(i), ψj(x)) (i, j∈I, x∈X).
Suppose that

(1) for any g ∈ `2(I), {
∑
j∈I R

F
i,j(x)g(j)}i∈I belongs to `2(I) for a.e. x ∈ X;

(2) the linear map g ∈ `2(I) 7→ {
∑
j∈I R

F
i,j(x)g(j)}i∈I ∈ `2(I) is bounded for

a.e.x ∈ X.

Then RF = [RFi,j(x)]i,j∈I belongs to M̂ and FΛΩ̂(RF ) = ΛΩ(F ).

Proof. By assumption, [RFi,j(x)]i,j∈I defines an element in B(`2(I)) for a.e.x ∈ X.
Since F is Borel, the assignment x ∈ X 7→ [RFi,j(x)]i,j∈I ∈ B(`2(I)) is an essentially
bounded Borel map, so defines an element RF = [RFi,j(x)]i,j∈I in B(`2(I)) ⊗ D.
In order to prove that RF is in M̂ , it suffices to show that RF satisfies (5.1). But
this can be verified by a direct computation which is left to the reader. Finally,
RFj,0(x) = F (σ(x, x)(j), x) = F (j, x). Therefore, FΛΩ̂(RF ) = ΛΩ(F ).

We shall define a partition of unity in M which satisfies the assumptions of
Lemma 8.3.

Thanks to [2, Theorem 3.8], we may choose our choice functions {ψi}i∈I so
that they enjoy the following properties:
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(1) There exist a countable set Λ and natural numbers {nλ}λ∈Λ such that the
index set I is equal to {(λ, n) : λ ∈ Λ, n = 1, . . . , nλ}.

(2) Ind(ψλ,n) = nλ for each (λ, n) ∈ I.

(3) For each λ ∈ Λ and n,m ∈ {1, . . . , nλ}, S(ψλ,n(S(x))) = S(ψλ,m(S(x))) for
a.e. x ∈ X. Moreover, S(ψλ,n(S(x))) is the disjoint union of {S(ψλ,k(x))}nλk=1.

We refer to [2] for the definition and the basic properties of the index Ind(ρ) of a
“nonsingular” map ρ. In what follows, we fix choice functions {ψλ,n} as above.

Let Cj (j ∈ I) be the S-invariant set introduced in Section 7. A direct com-
putation shows that, for a.e. (x, y) ∈ R and (λ, n) ∈ I, (x, y) is in Cλ,n if and
only if y ∈

⋃nλ
m=1 S(ψλ,m(x)). It is easy to check that Cλ,n is equal to Cλ,m up to

a null set. Put Cλ := Cλ,1. We note that {Cλ}λ∈Λ is a measurable partition of R,
because {χCλ}λ∈Λ are the minimal projections in M satisfying

∑
λ∈Λ χCλ = 1 (see

the proof of [2, Theorem 3.8]).
Put Fλ := Φ(χCλ) for each λ ∈ Λ, where Φ is defined in Proposition 6.5. By

Proposition 6.6, Fλ is defined by

Fλ((λ′, n), x) = χCλ(x, ψλ′,n(x)) (((λ′, n), x) ∈ I ×X).

In particular, Fλ belongs to M .

Lemma 8.4. {Fλ}λ∈Λ is the set of minimal projections in M with
∑
λ∈Λ F

λ = 1,
and Ω(Fλ) = nλ for each λ ∈ Λ.

Proof. Since {χCλ}λ∈Λ is the set of minimal projections in M = A1 ∩ B′ with
sum equal to the identity (see [2, Theorem 3.8]), {Fλ}λ∈Λ are in turn the minimal
projections in M with

∑
λ∈Λ F

λ = 1. Moreover, a direct computation shows that

Ω(Fλ) =
∫
X

∑
λ′∈Λ

nλ′∑
n=1

χCλ(x, ψλ′,n(x)) dµ(x)

=
∫
X

nλ∑
n=1

χCλ(x, ψλ,n(x)) dµ(x) = nλ.

Let λ ∈ Λ and i ∈ I. Define a function fλi on X by

fλi (x) :=
∑
j∈I

χCλ(ψi(x), ψj(x)).

Lemma 8.5. There exists a µ-null subset N of X such that fλi (x) = nλ for all
x ∈ N c, λ ∈ Λ and all i ∈ I.
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Proof. By (the proof of) [2, Theorem 3.8] (see part (3) stated above), there exists
a µ-null subset N0 of X such that R(x) =

⊔
i∈I S(ψi(x)) and

(8.2) S(ψλ1,n1(S(x))) =
nλ1⊔
k=1

S(ψλ1,k(x)) for all x ∈ N c
0 and all (λ1, n1) ∈ I.

Here
⊔

stands for disjoint union of sets. Put N :=
⋃
i∈I ψ

−1
i (N0). Let x ∈ N c.

Then we have

(ψi(x), ψj(x)) ∈ Cλ
⇔ ψj(x) ∈ S(ψλ,1(S(ψi(x))))

⇔ ∃k ∈ {1, . . . , nλ}, (ψj(x), ψλ,k(ψi(x))) ∈ S (by (8.2))

⇔ ∃k ∈ {1, . . . , nλ}, j = σ(x, ψi(x))(λ, k).

Thus fλi (x) = nλ for all x ∈ N c, λ ∈ Λ and i ∈ I.

Lemma 8.6. Each Fλ satisfies the two conditions in Lemma 8.3.

Proof. Let fλi (x) be as before, and N be the µ-null set of X as in Lemma 8.5.
Since each χCλ is minimal, for each λ ∈ Λ there exists λ−1 ∈ Λ which satisfies
Cλ−1 = C−1

λ . Now, as in Lemma 8.3, consider {RFλi,j }i,j∈I . Then, for each g ∈ `2(I)
and any x ∈ N c, we have

‖RF
λ

(x)g‖2 =
∑
i∈I

∣∣∣∑
j∈I

RF
λ

i,j (x)g(j)
∣∣∣2 =

∑
i∈I

∣∣∣∑
j∈I

χCλ(ψj(x), ψi(x))g(j)
∣∣∣2

=
∑
i∈I

∣∣∣∑
j∈I

χCλ−1 (ψi(x), ψj(x))g(j)
∣∣∣2

=
∑
i∈I

∣∣∣nλ−1∑
k=1

g(σ(x, ψi(x))(λ−1, k))
∣∣∣2

≤
∑
i∈I

nλ−1

nλ−1∑
k=1

|g(σ(x, ψi(x))(λ−1, k))|2

= nλ−1

∑
j∈I

∑
i∈I
|χCλ(ψj(x), ψi(x))g(j)|2

= nλ−1

∑
j∈I
|g(j)|2

∑
i∈I

χCλ(ψj(x), ψi(x))

= nλ−1

∑
j∈I
|g(j)|2fλj (x) = nλnλ−1‖g‖2.

Therefore we get the conclusion.
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By using the above lemmas, we get the following:

Theorem 8.7. The Fourier transform F is unitary.

Proof. From Lemma 8.4 and the fact that
∑
λ∈Λ F

λ = 1, we find that span{Fλ :
λ ∈ Λ}, the linear span of {Fλ : λ ∈ Λ}, is a σ-strongly∗ dense ∗-subalgebra of M
contained in nΩ. In particular, span{ΛΩ(Fλ) : λ ∈ Λ} is dense in HΩ. Meanwhile,
we know from Lemmas 8.3 and 8.6 that FΛΩ̂(RF

λ

) = ΛΩ(Fλ) for all λ ∈ Λ. It thus
follows that F has dense range. Since F is an isometry, it must be unitary.

Theorem 8.8. The restriction of the normal representation λ̂ to M̂ , still denoted
by λ̂, is implemented by the Fourier transform F , i.e., λ̂(R) = FRF∗ for all
R ∈ M̂ .

Proof. Let R ∈ M̂ be arbitrary and {Fλ}λ∈Λ be as before. Then

FRF∗ΛΩ(Fλ) = FRΛΩ̂(RF
λ

) = FΛΩ̂(RRF
λ

) = ΛΩ(FRR
Fλ

).

By definition, we have

FRR
Fλ

(i, x) = (RRF
λ

)i,0(x) =
∑
j∈I

Ri,j(x)RF
λ

j,0 (x)

=
∑
j∈I

Ri,j(x)Fλ(j, x) = (R ∗ Fλ)(i, x).

Thus FRR
Fλ

= R ∗ Fλ. Hence we get

FRF∗ΛΩ(Fλ) = ΛΩ(R ∗ Fλ) = λ̂(R)ΛΩ(Fλ).

Since the linear span of {ΛΩ(Fλ) : λ ∈ Λ} is dense in HΩ as noted before, we
conclude that λ̂(R) = FRF∗.

Thanks to Theorem 8.8, we will often identify M̂ with the image λ̂(M̂) and
regard M̂ as acting on the Hilbert space HΩ.

§9. Hecke algebras in the setting of measured equivalence relations

As before, let S be a Borel subrelation S of R.

§9.1. A characterization of the index for “nonsingular” maps

In this subsection, we develop the theory of index which is defined in [2].
For each measurable nonsingular map ρ which satisfies µ(Dom(ρ)) > 0 and

Γ(ρ) ⊆ R, we define

ρ−1Sρ := {(x, y) ∈ RDom(ρ) : (ρ(x), ρ(y)) ∈ S}.
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It is easy to check that ρ−1Sρ is a measured equivalence subrelation of RDom(ρ)

and for a.e. x ∈ Dom(ρ),

(9.1) ρ(ρ−1Sρ(x)) = S(ρ(x)) ∩ Im(ρ).

Put Sρ := S ∩ ρ−1Sρ. We shall show that the index of ρ is determined by the
inclusion Sρ ⊆ SDom(ρ).

Proposition 9.1. In the above setting, if S is ergodic, then Ind(ρ)=[SDom(ρ) : Sρ].

Proof. Suppose that [SDom(ρ) : Sρ] = n. By [2, Lemma 3.3], it suffices to show that
there exist a nonnull subset X1 of Dom(ρ) and countable measurable nonsingular
maps {ρk}nk=1 on X1 such that S(ρ(S(x))) is equal to the disjoint union of S(ρk(x))
for all x ∈ X1. By definition, there exist choice functions {ψk}nk=1 for Sρ ⊆ SDom(ρ),
i.e., there exists a µ-conull Borel subset X1 of Dom(ρ) such that SDom(ρ)(x) =⊔n
k=1 Sρ(ψk(x)) for all x ∈ X1. A direct computation shows that for each x ∈ X1,

ρ(SDom(ρ)(x)) = ρ
( n⋃
k=1

(ρ−1Sρ(ψk(x))) ∩ S(ψk(x))
)

=
n⋃
k=1

(S(ρ(ψk(x))) ∩ Im(ρ) ∩ ρ(S(ψk(x))))

⊆
n⋃
k=1

S(ρ(ψk(x))).

On the other hand, since the graph of each ψk is contained in S, it follows that
S(ρ(ψk(x))) ⊆ S(ρ(S(x))) for each x ∈ X1 and k = 1, . . . , n. Hence S(ρ(S(x))) is
the disjoint union of {S(ρ(ψk(x)))}nk=1 for all x ∈ X1, and {ρk := ρ ◦ ψk|X1}nk=1

has the desired properties.

Corollary 9.2. Suppose that S ⊆ R is an inclusion of ergodic discrete measured
equivalence relations. Then the commensurability groupoid CommR(S) is generated
by the countable union of {Γ(ρn)}∞n=1 up to a null set, where each element ρn
belongs to [R]∗ and

[SDom(ρn) : Sρn ] <∞, [SIm(ρn) : Sρ−1
n

] <∞.

Proof. This is a direct consequence of [2, Theorem 3.7] and Proposition 9.1.

Hence our definition of commensurability is a natural generalization of the
definition in group theory.

We note that the index satisfies the following:
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Lemma 9.3. Suppose that P ⊆ S is an inclusion of ergodic equivalence subrela-
tions of R and ρ is in [R]∗. Then

[ρ−1Sρ : ρ−1Pρ] = [SIm(ρ) : PIm(ρ)].

Proof. Suppose that {ψi}i∈I are choice functions for PIm(ρ) ⊆ SIm(ρ). We will show
that {ρ−1ψiρ}i∈I are choice functions for ρ−1Pρ ⊆ ρ−1Sρ. Indeed, there exists a
µ-null subset X0 of Im(ρ) such that SIm(ρ)(x) is equal to the disjoint union of
{PIm(ρ)(ψi(x))}i∈I for each x ∈ Im(ρ) \ X0. Put X1 := ρ−1(X0). Then X1 is a
µ-null subset of Dom(ρ). Moreover, for each x ∈ Dom(ρ) \X1,

SIm(ρ)(ρ(x)) =
⊔
i∈I
PIm(ρ)(ψi(ρ(x))).

By using (9.1), it follows that

ρ−1Sρ(x) = ρ−1(SIm(ρ)(ρ(x)) ∩ Im(ρ)) = ρ−1
(⊔
i∈I
PIm(ρ)(ψi(ρ(x))) ∩ Im(ρ)

)
=
⊔
i∈I

ρ−1Pρ(ρ−1ψiρ(x)).

Hence our claim is proven.

Suppose that S is commensurable in R with a partition {Cλ}λ∈Λ of R as
before. We shall show that there exists a canonical 1-cocycle c on R to the set of
positive rational numbers.

Fix λ ∈ Λ. For λ1, λ2 ∈ Λ, we define a Borel subset Cλ,λ1,λ2 of Cλ by

Cλ,λ1,λ2 := Cλ ∩
⋃
{Γ(ρ2ρ1) : Γ(ρ1) ⊆ Cλ1 , Γ(ρ2) ⊆ Cλ2}.

Put C′λ := Cλ \
⋃
{Cλ,λ1,λ2 : λ1, λ2 ∈ Λ, ν(Cλ,λ1,λ2) = 0}. It is easy to check that

C′λ is conull in Cλ, and
⋃
λ∈Λ C′λ is conull in R.

Now, we define a function c on R by

(9.2) c(x, y) :=

{
nλ−1/nλ, (x, y) ∈ C′λ,
1, otherwise.

It is easy to check that c is measurable. Moreover, we get the following:

Proposition 9.4. The function c is a 1-cocycle on R. Moreover, c does not de-
pend on the choice of {Cλ}λ∈Λ of R up to null sets.

Proof. A direct computation shows that C−1
λ,λ1,λ2

=Cλ−1,λ−1
2 ,λ−1

1
for all λ, λ1, λ2∈Λ,

so c(x, y) = c(y, x)−1 for each (x, y) ∈ R.
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We claim that c(x, y)c(y, z) = c(x, z) if (x, y) ∈ C′λ1
, (y, z) ∈ C′λ2

and (x, z) ∈
C′λ3

. Indeed, since (x, z) ∈ Cλ3,λ1,λ2 ∩ Cλ3 , we get ν(Cλ3,λ1,λ2) > 0. So, by the
definition of Cλ together with the arguments given in [2], there exist ρ1, ρ2 ∈ [R]∗
which satisfy the following:

(1) x ∈ Dom(ρ1), ρ1(x) = y,

(2) y ∈ Dom(ρ2), ρ2(y) = z,

(3) Γ(ρ1) ⊆ C′λ1
, Γ(ρ2) ⊆ C′λ2

. Γ(ρ2ρ1) ⊆ C′λ3
.

It follows that Ind(ρ2ρ1) = nλ3 , Ind(ρ−1
1 ρ−1

2 ) = nλ−1
3

, Ind(ρi) = nλi and Ind(ρ−1
i )

= nλ−1
i

for i = 1, 2. By Proposition 9.1 and Lemma 9.3, we have

[Sρ2ρ1 : Sρ1 ∩ Sρ2ρ1 ] = [S ∩ ρ−1
1 ρ−1

2 Sρ2ρ1 : S ∩ ρ−1
1 Sρ1 ∩ ρ−1

1 ρ−1
2 Sρ2ρ1]

= [ρ2ρ1Sρ−1
1 ρ−1

2 ∩ S : ρ2ρ1Sρ−1
1 ρ−1

2 ∩ ρ2Sρ−1
2 ∩ S]

= [Sρ−1
1 ρ−1

2
: Sρ−1

1 ρ−1
2
∩ Sρ−1

2
],

[SDom(ρ2ρ1) : Sρ1 ∩ Sρ2ρ1 ] = [SDom(ρ2ρ1) : Sρ1 ][Sρ1 : Sρ1 ∩ Sρ2ρ1 ]

= [SDom(ρ1) : Sρ1 ][Sρ1 : Sρ1 ∩ Sρ2ρ1 ]

= nλ1 [S ∩ ρ−1
1 Sρ1 : S ∩ ρ−1

1 Sρ1 ∩ ρ−1
1 ρ−1

2 Sρ2ρ1]

= nλ1 [ρ1Sρ−1
1 ∩ S : ρ1Sρ−1

1 ∩ S ∩ ρ
−1
2 Sρ2]

= nλ1 [Sρ−1
1

: Sρ−1
1
∩ Sρ2 ] =

nλ1

nλ−1
1

[SDom(ρ−1
1 ) : Sρ−1

1
∩ Sρ2 ]

=
nλ1

nλ−1
1

[SDom(ρ2) : Sρ−1
1
∩ Sρ2 ]

=
nλ1nλ2

nλ−1
1

[Sρ2 : Sρ−1
1
∩ Sρ2 ]

=
nλ1nλ2

nλ−1
1

[S ∩ ρ−1
2 Sρ2 : S ∩ ρ1Sρ−1

1 ∩ ρ
−1
2 Sρ2]

=
nλ1nλ2

nλ−1
1

[ρ2Sρ−1
2 ∩ S : ρ2Sρ−1

2 ∩ ρ2ρ1Sρ−1
1 ρ−1

2 ∩ S]

=
nλ1nλ2

nλ−1
1

[Sρ−1
2

: Sρ−1
1 ρ−1

2
∩ Sρ−1

2
].

Hence we conclude that

c(x, z) =
nλ−1

3

nλ3

=
[SDom(ρ−1

1 ρ−1
2 ) : Sρ−1

1 ρ−1
2

]

[SDom(ρ2ρ1) : Sρ2ρ1 ]

=
[SDom(ρ−1

2 ) : Sρ−1
1 ρ−1

2
][Sρ2ρ1 : Sρ1 ∩ Sρ2ρ1 ]

[SDom(ρ2ρ1) : Sρ1 ∩ Sρ2ρ1 ]
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=
nλ−1

1
[SDom(ρ−1

2 ) : Sρ−1
1 ρ−1

2
][Sρ−1

1 ρ−1
2

: Sρ−1
1 ρ−1

2
∩ Sρ−1

2
]

nλ1nλ2 [Sρ−1
2

: Sρ−1
1 ρ−1

2
∩ Sρ−1

2
]

=
nλ−1

1
[SDom(ρ−1

2 ) : Sρ−1
2

]

nλ1nλ2

=
nλ−1

1
nλ−1

2

nλ1nλ2

= c(x, y)c(y, z).

So our claim is proven.
The “moreover” assertion follows from the fact that {Cλ}λ∈Λ is canonically

determined. Indeed, for another partition {Dδ}δ∈∆, by using the proof of [2, Theo-
rem 3.8], there exists a bijective map Π from ∆ to Λ with a ν-null setR1 inR which
satisfies Π(δ−1) = Π(δ)−1 and Dδ \R1 = CΠ(δ) \R1 for each δ ∈ ∆. In particular,
we have nΠ(δ) = nδ and Dδ,δ1,δ2 \R1 = CΠ(δ),Π(δ1),Π(δ2) \R1 for each δ, δ1, δ2 ∈ ∆.
It follows that c(x, y) = nΠ(δ)−1/nΠ(δ) = nδ−1/nδ for each (x, y) ∈ D′δ \ R1.

By definition, Ker(c) coincides with
⋃
{Cλ : nλ = nλ−1} ∪ (R \

⋃
λ∈Λ C′λ). In

particular, this is an intermediate equivalence subrelation forNR(S) ⊆ CommR(S)
up to a null set.

We note that if S ⊆ R comes from the crossed product of outer actions
H ⊆ G on an equivalence subrelation P such that H is commensurable in G, then
c is defined by

c(x, gy) =
[H : H ∩ gHg−1]
[H : H ∩ g−1Hg]

((x, y) ∈ P).

So the 1-cocycle c is a natural generalization of the group homomorphism canon-
ically associated with a Hecke pair of groups (cf. [4, Proposition 4], [15, Proposi-
tion 3.6], [22, Proposition 2.2]).

§9.2. Hecke pairs of measured equivalence relations

In Section 6, we studied the restriction of the ∗-isomorphism Φ to the relative
commutant A1 ∩B′. Our immediate purpose in this subsection is to show that

(i) this restricted ∗-isomorphism Φ|A1∩B′ can be constructed directly from the
“groupoid” information on the pair (R,S) only, without passing to the basic
construction or the factor W ∗(I σ×R, ωσ);

(ii) discreteness of the inclusion W ∗(S, ω) ⊆ W ∗(R, ω), or equivalently, equality
CommR(S) = R can be rephrased from the viewpoint stated above (Proposi-
tion 9.6).

For a not necessarily ergodic R and a Borel subrelation S of R, we denote by
L∞(S\R/S) the set of all functions Z ∈ L∞(R, ν) satisfying

Z(x, z) = Z(y, z), Z(z, x) = Z(z, y) for a.e. (x, y) ∈ S and all z ∈ R(x).
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Since L∞(S\R/S) = L∞(R, ν) ∩W ∗(S)′, L∞(S\R/S) is a von Neumann sub-
algebra of L∞(R, ν). Every element in L∞(S\R/S) is said to be a two-sided S-
invariant function.

From now on, we assume as before that R is ergodic. We then choose choice
functions {ψi}i∈I for the pair S ⊆ R and consider the associated index cocycle σ.
Here I = {0, 1, . . . , N} (N could be ∞), and we assume that ψ0 = idX .

We consider the set of all functions F in L∞(I ×X,µc × µ) satisfying

(9.3) F (i, x) = F (σ(y, x)(i), y) for a.e. (x, y) ∈ S and all i ∈ I,

where µc is the counting measure on I. We note that this is nothing butL∞(I×X)S ,
defined in Section 3. Because L∞(I ×X)S is realized as the “commuting algebra”
in `∞(I)⊗D with respect to a certain groupoid representation of S on the Hilbert
bundle {`2(I)⊗ `2(Rx)}x∈X , it is a von Neumann algebra.

For any Z ∈ L∞(S\R/S), define a Borel function Φ(Z) in L∞(I ×X) by

Φ(Z)(i, x) := Z(x, ψi(x)) ((i, x) ∈ I ×X).

Notice that the map Φ is nothing but the ∗-isomorphism discussed in Sections 3
and 6. Moreover, we have the following:

Proposition 9.5. The map Φ defined above is a ∗-isomorphism from L∞(S\R/S)
ontoL∞(I×X)S . In particular, the von Neumann algebraic structure ofL∞(I×X)S

does not depend on the choice of choice functions {ψi}i∈I .

Proof. It is easy to see that Φ is an injective ∗-homomorphism into L∞(I ×X).
Let Z ∈ L∞(S\R/S). So there exists a ν-null set N in S such that

Z(x, z) = Z(y, z), Z(z, x) = Z(z, y) for all (x, y) ∈ S \ N and all z ∈ R(x).

Fix any i ∈ I. For each j ∈ I, put Sj := {(x, y) ∈ S : σ(x, y)(i) = j}.
Since Sj = ((ψj × ψi)|S))−1(S), Sj is Borel for all j ∈ I. By the nonsingular-
ity of ψi’s, all the subsets ((ψj × ψi)|Sj ))−1(N ) (i, j ∈ I) are ν-null, so that
N̄ :=

⋃
i,j∈I((ψj × ψi)|Sj ))−1(N ) is also ν-null. Then we clearly have

(ψi(x), ψσ(y,x)(i)(y)) ∈ S \ N for all (x, y) ∈ S \ N̄ and all i ∈ I.

Hence, for any (x, y) ∈ S \ N̄ and any i ∈ I,

Φ(Z)(σ(y, x)(i), y) = Z(y, ψσ(y,x)(i)(y))

= Z(y, ψi(x)) (as (ψi(x), ψσ(y,x)(i)(y)) ∈ S \ N )
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= Z(x, ψi(x)) (as (x, y) ∈ S \ N )

= Φ(Z)(i, x).

Thus Φ(Z) belongs to L∞(I ×X)S .
To show the surjectivity of Φ, take an arbitrary F ∈ L∞(I×X)S . Then there

is a ν-null subset N1 of S such that

F (i, x) = F (σ(y, x)(i), y) for all (x, y) ∈ S \ N1 and all i ∈ I.

It follows that there exists a µ-null subset N1 of X such that r−1(x) ∩N1 = ∅ for
all x ∈ N c

1 . Here, we may and do assume that N1 is R-invariant.
On the other hand, there is a µ-null subset N2 of X such that R(x) =⊔

i∈I S(ψi(x)) for all x ∈ N c
2 . Once again, we may assume that N2 is R-invariant.

Put N0 := N1 ∪N2 and R0 := R∩ (N c
0 ×N c

0 ). Clearly, R \R0 is ν-null. We then
define a Borel function Z0 ∈ L∞(R, ν) by

Z0(x, y) :=

{
F (i, x) if (x, y) ∈ R0 and y ∈ S(ψi(x)),

0 if (x, y) ∈ R \ R0.

Let (x, y) ∈ S \ (R \ R0) = S ∩ R0 and z ∈ R(x). There is a unique i ∈ I such
that z ∈ S(ψi(x)). Then

Z0(x, z) = F (i, x) = F (σ(y, x)(i), y) (as (x, y) ∈ S \ N1).

Note that (y, z) too belongs to R0. Since (ψσ(y,x)(i)(y), ψi(x)) ∈ S, it follows
that (z, ψσ(y,x)(i)(y)) ∈ S. So, by definition, Z0(y, z) = F (σ(y, x)(i), y). Hence
Z0(x, z) = Z0(y, z). Meanwhile, because (z, x) ∈ R0, there exists a unique j ∈ I
such that x ∈ S(ψj(z)). Thus Z0(z, x) = F (j, z). Since (x, y) ∈ S, we have y ∈
S(ψj(z)), which implies Z0(z, y) = F (j, z). So Z0(z, x) = Z0(z, y). Therefore,
Z0 ∈ L∞(S\R/S). By the definition of Z0, if x ∈ N c

0 , then, for any i ∈ I,

Φ(Z0)(i, x) = Z0(x, ψi(x)) = F (i, x).

This shows that Φ(Z0) = F .

We have the normal embedding of L∞(X,µ) into L∞(R, ν) via the mapping
f ∈ L∞(X,µ) 7→ f◦r ∈ L∞(R, ν). We will freely identify L∞(X,µ) with the image
under this embedding and simply write f for f ◦r. If L∞(X,µ)S is the algebra of all
S-invariant functions f ∈ L∞(X,µ) (i.e., f(x) = f(y) for a.e. (x, y) ∈ S), then it
is clearly contained in L∞(S\R/S) and we have Φ(L∞(X,µ)S) = C⊗L∞(X,µ)S .

We denote by τ0 the faithful normal semifinite trace on `∞(I) given by
τ0(f) :=

∑
i∈I f(i) for any f ∈ `∞(I)+. Then τ0 ⊗ idL∞(X,µ) is a faithful nor-

mal semifinite operator valued weight from L∞(I × X) onto the von Neumann
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subalgebra C ⊗ L∞(X,µ) ∼= L∞(X,µ). If F ∈ (L∞(I × X)S)+, then we have
(τ0 ⊗ idL∞(X,µ))(F )(x) =

∑
i∈I F (i, x). Thus, for a.e. (x, y) ∈ S,

(τ0 ⊗ idL∞(X,µ))(F )(y) =
∑
i∈I

F (i, y) =
∑
i∈I

F (σ(y, x)(i), y)

=
∑
i∈I

F (i, x) = (τ0 ⊗ idL∞(X,µ))(F )(x).

This means that (τ0 ⊗ idL∞(X,µ))(F ) belongs to the extended positive part of
L∞(X,µ)S . Therefore, the restriction TS of τ0 ⊗ idL∞(X,µ) to L∞(I × X)S is a
faithful normal operator valued weight onto L∞(X,µ)S .

From this point on, we assume that the subrelation S is also ergodic. So
we have L∞(X,µ)S = C. Hence TS is regarded as a faithful normal weight on
L∞(I ×X)S , to be denoted by Ω in what follows. Therefore, Ω is given by

(9.4) Ω(F ) =
∫
X

∑
i∈I

F (i, x) dm(x) (∀F ∈ (L∞(I ×X)S)+)

for any probability measure m on X equivalent to µ.
On the other hand, for each ρ ∈ [R]∗ which satisfies µ(Dom(ρ)) > 0, we define

a nonzero projection Zρ in L∞(R, ν) by

Zρ(x, y) =

{
1, y ∈ S(ρ(S(x))),

0, otherwise.

It is easy to check that Zρ ∈ L∞(S\R/S). Moreover, by the definition of the index,

Ω(Φ(Zρ)) = Ind(ρ).

So we have the following:

Proposition 9.6. The following are equivalent:

(1) The commensurability groupoid CommR(S) equals R up to a ν-null set.

(2) The weight Ω is semifinite.

Proof. (1)⇒(2): Set Cλ,n := {(x, y) ∈ R : ∃z ∈ X, (x, z) ∈ S and (ψλ,n(z), y)
∈ S} as before. As noted previously, Cλ,n is equal to Cλ,m up to a null set. We
also define Cλ := Cλ,1. By definition, each χCλ belongs to L∞(S\R/S). We note
that {Cλ}λ∈Λ is a measurable partition of R up to a null set, because it satisfies∑
λ∈Λ χCλ = 1 (see the proof of [2, Theorem 3.8]). Thus {Fλ := Φ(χCλ)}λ∈Λ in
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turn is the set of projections in L∞(I ×X)S satisfying
∑
λ∈Λ F

λ = 1. Moreover,

Ω(Fλ) =
∫
X

∑
λ′∈Λ

nλ′∑
n=1

χCλ(x, ψλ′,n(x)) dµ(x) =
∫
X

nλ∑
n=1

χCλ(x, ψλ,n(x)) dµ(x) = nλ

<∞.

It follows that the trace Ω is semifinite.
(2)⇒(1): Suppose that CommR(S) is not ν-conull in R. Then there exists

ρ ∈ [R]∗ such that Ind(ρ|E) is equal to ∞ for each nonnull subset E of Dom(ρ).
Fix a nonzero projection Z ≤ Zρ in L∞(S\R/S). By the definition of Zρ, there

exist θ1, θ2 ∈ [S]∗ such that µ(Dom(θ2)) > 0, Dom(θ1) ⊆ Im(ρ), Im(ρ2) ⊆ Dom(ρ)
and χΓ(θ1◦ρ◦θ2) is dominated by Z. Since Z ∈ L∞(S\R/S), we get χρ|Im(θ2)

≤ Z

and Zρ|Im(θ2)
≤ Z. It follows that

Ω(Z) ≥ Ω(Zρ|Im(θ2)
) = Ind(ρ|Im(θ2)) =∞.

Hence Ω is not semifinite.

In what follows, we assume that CommR(S) equals R up to a ν-null set. Let
us refer to this situation by saying that (R,S) is a Hecke pair. We fix the choice
functions {ψλ,n}(λ,n)∈I for S ⊆ R introduced in Section 8. We also retain the
symbols Cλ, Fλ used there. By (the proof of) Proposition 9.6, we know that Ω is
semifinite, and that the projections Fλ (λ ∈ Λ) all belong to nΩ.

Fix any λ ∈ Λ. Suppose that there exists a ρ ∈ [R]∗ such that 0 6= χΓ(ρ) ≤ χCλ .
Without any loss of generality, we may and do assume that Γ(ρ) ⊆ Cλ = Cλ,1.
Hence ρ(x) ∈ S(ψλ,1(S(x))) for all x ∈ Dom(ρ). Choose a countable set {hn}n∈S
in [S] so that S = {(x, hn(x)) : x ∈ X, n ∈ S}. For a pair (n,m) ∈ S × S, define a
Borel map ϕn,m : Dom(ρ)→ X by ϕn,m(x) := hm(ψλ,1(hn(x))). We also define a
Borel subset An,m of Dom(ρ) by An,m := {x ∈ Dom(ρ) : ϕn,m(x) = ρ(x)}. Since
ρ(x) ∈ S(ψλ,1(S(x))) for all x ∈ Dom(ρ), we have

⋃
(n,m)An,m = Dom(ρ). Choose

a pair (n0,m0) such that µ(An0,m0) > 0 and put A := An0,m0 , B := hn0(A). By
[2, Theorem 3.8(3)], there exists a µ-null set N of X such that S(ψλ,1|B(S(x))) =
S(ψλ,1(S(x))) for all x ∈ N c. Let (x, y) ∈ Cλ,1 ∩ (N c × N c). So there is a
z ∈ X such that (x, z) ∈ S and (ψλ,1(z), y) ∈ S. Since y ∈ S(ψλ,1(S(x))) =
S(ψλ,1|B(S(x))), there is a b ∈ B such that (x, b) ∈ S and (ψλ,1(b), y) ∈ S. With
a := h−1

n0
(b) ∈ Dom(ρ), we have hm0(ψλ,1(hn0(a))) = ϕn0,m0(a) = ρ(a). Thus

(x, a) = (x, b)(b, a) ∈ S and (ρ(a), y) = (ρ(a), ψλ,1(b))(ψλ,1(b), y) ∈ S. Hence (x, y)
belongs to the Borel set

Eρ := {(u, v) ∈ R : ∃w ∈ Dom(ρ), (u,w) ∈ S and (ρ(w), v) ∈ S},
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which is clearly a two-sided S-invariant set. This in turn implies that χCλ ≤ χEρ
as functions in L∞(S\R/S). The discussion in this paragraph immediately shows
that the projection χCλ is minimal in L∞(S\R/S) for each λ ∈ Λ. Therefore
the abelian von Neumann algebra L∞(S\R/S) (or, equivalently, L∞(I × X)S)
is atomic and generated by the minimal projections {χCλ}λ∈Λ (resp. {Fλ}λ∈Λ),
when (R,S) is a Hecke pair.

Lemma 9.7. The map Ξ : I ×X → Λ defined by

Ξ((λ, n), x) := λ ((λ, n) ∈ I, x ∈ X)

is an S-factor map.

Proof. It is clear that Ξ is Borel. Let f ∈ `∞(Λ) and (x, y) ∈ S. Put (λ′, n′) :=
σ(y, x)(λ, n). Then (ψλ′,n′(y), ψλ,n(x)) ∈ S. By definition, (x, ψλ,n(x)) ∈ Cλ and
(y, ψλ′,n′(y)) ∈ Cλ′ . We also have

(x, ψλ,n(x)) = (x, y)(y, ψλ′,n′(y))(ψλ′,n′(y), ψλ,n(x)).

Since both (x, y) and (ψλ′,n′(y), ψλ,n(x)) belong to S, it follows that λ′ = λ. So
Ξ(σ(y, x)(λ, n), z) = λ for any z ∈ X. Hence

f ◦ Ξ(σ(y, x)(λ, n), y) = f(λ) = f ◦ Ξ((λ, n), x).

This shows that f ◦ Ξ is S-invariant.
Conversely, suppose that F is a bounded S-invariant Borel function on I×X.

Since L∞(I × X)S is generated by the minimal projections {Fλ}λ∈Λ, F has the
form F =

∑
λ∈Λ cλF

λ for some cλ ∈ C (λ ∈ Λ), where the sum is meant in the
strong operator topology. Put f(λ) := cλ, which is a bounded function on Λ. Then,
for any (λ, n) ∈ I,

F ((λ, n), x) = cλ = f(λ) = f ◦ Ξ((λ, n), x).

Hence F = f ◦ Ξ. This completes the proof.

Thanks to Lemma 9.7, the factor map Ξ induces a ∗-isomorphism Ξ∗ from
`∞(Λ) onto L∞(I × X)S given by Ξ∗(f) := f ◦ Ξ, where f ∈ `∞(Λ). Note that
Ξ∗(δλ) = Fλ for all λ ∈ Λ. For any f ∈ `∞(Λ)+, with F = Ξ∗(f), we then have

Ω(F ) =
∫
X

∑
(λ,n)∈I

F ((λ, n), x) dµ(x) =
∫
X

∑
(λ,n)∈I

f ◦ Ξ((λ, n), x) dµ(x)(9.5)

=
∑
λ∈Λ

f(λ)nλ.
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For any F ∈ L∞(I ×X)S , define a Borel function F ] on I ×X by

(9.6) F ](i, x) := F (σ(ψi(x), x)(0), ψi(x)) ((i, x) ∈ I ×X).

It is obvious that F ] ∈ L∞(I×X). By definition, there exists a µ-null subset N0 of
X such that, setting S0 := S ∩(N c

0 ×N c
0 ), we have F (σ(y, x)(i), y) = F (i, x) for all

(x, y) ∈ S0 and all i ∈ I. Put N :=
⋃
i,j∈I ψ

−1
j (ψ−1

i (N0)), which is again a µ-null
set. Set S1 := S ∩ (N c ×N c). Let (x, y) ∈ S1. We have (ψσ(y,x)(i)(y), ψi(x)) ∈ S0.
Hence

F ](σ(y, x)(i), y) = F (σ(ψσ(y,x)(i)(y), y)(0), ψσ(y,x)(i)(y))

= F (σ(ψσ(y,x)(i)(y), ψi(x))(σ(ψi(x), x)(σ(x, y)(0))), ψσ(y,x)(i)(y))

= F (σ(ψσ(y,x)(i)(y), ψi(x))(σ(ψi(x), x)(0)), ψσ(y,x)(i)(y))

= F (σ(ψi(x), x)(0), ψi(x)) = F ](i, x).

It follows that F ] too belongs to L∞(I ×X)S . Moreover,

(F ])](i, x) = F ](σ(ψi(x), x)(0), ψi(x))

= F (σ(ψσ(ψi(x),x)(0)(ψi(x)), ψi(x))(0), ψσ(ψi(x),x)(0)(ψi(x)))

= F (σ(ψσ(ψi(x),x)(0)(ψi(x)), x)(σ(x, ψi(x))(0)), ψσ(ψi(x),x)(0)(ψi(x)))

= F (σ(x, ψi(x))(0), x) (as (ψσ(ψi(x),x)(0)(ψi(x)), x) ∈ S0)

= F (i, x).

Thus (F ])] = F . Clearly, the mapping F 7→ F ] is conjugate-linear.

Lemma 9.8. For any Z ∈ L∞(S\R/S), define Z∨ ∈ L∞(S\R/S) by Z∨(x, y) :=
Z(y, x). Then Φ(Z

∨
) = Φ(Z)] for all Z ∈ L∞(S\R/S). In particular, (Fλ)] =

Fλ
−1

for all λ ∈ Λ.

Proof. Let Z ∈ L∞(S\R/S). There exists a µ-null subset N1 of X such that

Z(x, z) = Z(y, z),

Z(z, x) = Z(z, y) for all (x, y) ∈ S0 := S ∩ (N c
1 ×N c

1 ) and all z ∈ R(x).

Put N1 :=
⋃
i,j∈I ψ

−1
j (ψ−1

i (N1)). Let x ∈ N c
1 and i ∈ I. Then

Φ(Z
∨

)(i, x) = Z(ψi(x), x)

= Z(ψi(x), ψσ(ψi(x),x)(0)(ψi(x)) (as (x, ψσ(ψi(x),x)(0)(ψi(x))) ∈ S0)

= Φ(Z)(σ(ψi(x), x)(0), ψi(x))

= Φ(Z)](i, x).

Thus Φ(Z
∨

) = Φ(Z)]. For the last assertion, just notice that (χCλ)∨ = χCλ−1 .
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Lemma 9.9. Let f ∈ `∞(Λ)+ and F = Ξ∗(f). Then

Ω(F ]) =
∑
λ∈Λ

f(λ−1)nλ.

Proof. Let (λ, n) ∈ I and x ∈ X. Put (λ′, n′) := σ(ψλ,n(x), x)(0). Then we
have (ψλ′,n′(ψλ,n(x)), x) ∈ S. But this means that (ψλ,n(x), x) is in Cλ′ . Since
(x, ψλ,n(x)) ∈ Cλ, it follows that λ′ = λ−1. Hence Ξ(σ(ψλ,n(x), x)(0), z) = λ−1 for
any z ∈ X. Thus,

F ]((λ, n), x) = Ξ∗(f)(σ(ψλ,n(x), x)(0), ψλ,n(x)) = f ◦ Ξ(σ(ψλ,n(x), x)(0), ψλ,n(x))

= f(λ−1).

The assertion of the lemma now follows from (9.5).

We denote by I(R,S) the set of all functions F in L∞(I × X)S satisfying,
with F = Ξ∗(f),

‖F‖1,` :=
∑
λ∈Λ

|f(λ)|nλ <∞ and ‖F‖1,r :=
∑
λ∈Λ

|f(λ−1)|nλ <∞.

We simply write I for I(R,S) if there is no danger of confusion. By (9.5) and
Lemma 9.9, I(R,S) consists of the functions F ∈ L∞(I ×X)S with Ω(|F |) <∞
and Ω(|F ]|) <∞. It is then easy to see that I(R,S) is a subspace of L∞(I ×X)S

which is closed under the ]-operation. Since Ξ∗(δλ) = Fλ for any λ ∈ Λ, the linear
span I0 := I0(R,S) of {Fλ : λ ∈ Λ} is contained in I(R,S). Because I0(R,S) is
σ-strongly∗ dense in L∞(I ×X)S , so is I(R,S). If F ∈ nΩ and Ξ∗(f) = F , then,
by (9.5),

‖ΛΩ(F )‖2 =
∑
λ∈Λ

|f(λ)|2nλ.

From this, we see that I(R,S) ⊆ nΩ. Since I0(R,S) is a σ-strongly∗ dense ∗-
subalgebra contained in nΩ, it follows that ΛΩ(I0(R,S)) is dense in the GNS
Hilbert space HΩ. In particular, ΛΩ(I(R,S)) is total in HΩ.

Let F1 and F2 be in I. Define a Borel function F1 ∗ F2 on I ×X by

(9.7) (F1 ∗ F2)(i, x) :=
∑
j∈I

F1(σ(ψj(x), x)(i), ψj(x))F2(j, x).

We will show that this defines a product on I(R,S) which makes it a ]-algebra.
We first note that there exists a µ-null subset N0 of X such that

Fk(σ(y, x)(i), y) = Fk(i, x)

for all (x, y) ∈ S0 := S ∩ (N c
0 ×N c

0 ), i ∈ I and k = 1, 2.
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Put N1 :=
⋃
i,j∈I ψ

−1
j (ψ−1

i (N0)) and S1 := S ∩ (N c
1 ×N c

1 ). Let (x, y) ∈ S1. Then,
for any i ∈ I, we get

(F1 ∗ F2)(σ(y, x)(i), y) =
∑
j∈I

F1(σ(ψj(y), y)(σ(y, x)(i)), ψj(y))F2(j, y)

=
∑
j∈I

F1(σ(ψj(y), x)(i), ψj(y))F2(j, y)

=
∑
j∈I

F1(σ(ψσ(y,x)(j)(y), x)(i), ψσ(y,x)(j)(y))F2(σ(y, x)(j), y) (as I = σ(y, x)(I))

=
∑
j∈I

F1(σ(ψσ(y,x)(j)(y), x)(i), ψσ(y,x)(j)(y))F2(j, x) (as (x, y) ∈ S1)

=
∑
j∈I

F1(σ(ψσ(y,x))(j)(y), ψj(x))(σ(ψj(x), x)(i)), ψσ(y,x)(j)(y))F2(j, x)

=
∑
j∈I

F1(σ(ψj(x), x)(i), ψj(x))F2(j, x) (as (ψσ(y,x)(j)(y), ψj(x)) ∈ S0)

= (F1 ∗ F2)(i, x).

This shows that F1 ∗ F2 is S-invariant. Moreover,

|(F1 ∗F2)((λ, n), x)| =
∣∣∣ ∑
(λ1,n1)∈I

F1(σ(ψλ1,n1(x), x)(λ, n), ψλ1,n1(x))F2((λ1, n1), x)
∣∣∣

≤
∑

(λ1,n1)∈I

|F1(σ(ψλ1,n1(x), x)(λ, n), ψλ1,n1(x))| |F2((λ1, n1), x)|

≤ ‖F1‖∞
∑

(λ1,n1)∈I

|F2((λ1, n1), x)|

= ‖F1‖∞
∑

(λ1,n1)∈I

|f2(λ1)| (where Ξ∗(f2) = F2)

= ‖F1‖∞‖F2‖1,`.

It follows that F1 ∗ F2 ∈ L∞(I ×X)S . Furthermore, we have

(F ]2 ∗ F
]
1)(i, x) =

∑
j∈I

F ]2(σ(ψj(x), x)(i), ψj(x))F ]1(j, x) =

∑
j∈I

F2(σ(ψσ(ψj(x),x)(i)(ψj(x)), ψj(x))(0), ψσ(ψj(x),x)(i)(ψj(x)))F1(σ(ψj(x), x)(0), ψj(x)).

Since

σ(ψσ(ψj(x),x)(i)(ψj(x)), ψj(x))(0)

= σ(ψσ(ψj(x),x)(i)(ψj(x)), ψi(x))(σ(ψi(x), ψj(x))(0)),

(ψσ(ψj(x),x)(i)(ψj(x)), ψi(x)) ∈ S0,
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we get

(F ]2 ∗ F
]
1)(i, x) =

∑
j∈I

F2(σ(ψi(x), ψj(x))(0), ψi(x))F1(σ(ψj(x), x)(0), ψj(x)).

If k = σ(ψi(x), ψj(x))(0), then (ψk(ψi(x)), ψj(x)) ∈ S0, so that

F1(σ(ψj(x), x)(0), ψj(x)) = F1(σ(ψj(x), ψk(ψi(x))(σ(ψk(ψi(x)), x)(0)), ψj(x))

= F1(σ(ψk(ψi(x)), x)(0), ψk(ψi(x))).

Together with the fact that {σ(ψi(x), ψj(x))(0) : j ∈ I} = I, it follows that∑
j∈I

F2(σ(ψi(x), ψj(x))(0), ψi(x))F1(σ(ψj(x), x)(0), ψj(x))

=
∑
k∈I

F2(k, ψi(x))F1(σ(ψk(ψi(x)), x)(0), ψk(ψi(x)))

=
∑
k∈I

F1(σ(ψk(ψi(x)), ψi(x))(σ(ψi(x), x)(0)), ψk(ψi(x)))F2(k, ψi(x))

= (F1 ∗ F2)(σ(ψi(x), x)(0), ψi(x))

= (F1 ∗ F2)](i, x).

Hence we have shown that (F1 ∗ F2)] = F ]2 ∗ F
]
1 . In fact, F1 ∗ F2 lies in I(R,S).

To prove this, we compute

Ω(|F1 ∗ F2|) =
∫
X

∑
i∈I
|(F1 ∗ F2)(i, x)| dµ(x)

≤
∫
X

∑
i∈I

∑
j∈I
|F1(σ(ψj(x), x)(i), ψj(x))||F2(j, x)| dµ(x)

=
∫
X

∑
j∈I

(∑
i∈I
|F1(σ(ψj(x), x)(i), ψj(x))|

)
|F2(j, x)| dµ(x)

= ‖F1‖1,`‖F2‖1,` <∞.

From this, we have

Ω(|(F1 ∗ F2)]|) = Ω(|F ]2 ∗ F
]
1 |) ≤ ‖F1‖1,r‖F2‖1,r <∞.

Thus F1 ∗ F2 belongs to I(R,S).

Definition 9.10. Let F1 and F2 be in I. We call F1 ∗ F2 the convolution of F1

and F2.
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Next we check that the convolution is associative. So take arbitrary F1, F2,
F3 in I(R,S). As before, we choose a µ-null subset N0 of X such that

Fk(σ(y, x)(i), y) = Fk(i, x)

for all (x, y) ∈ S0 := S ∩ (N c
0 ×N c

0 ), i ∈ I and k = 1, 2, 3.

Put N1 :=
⋃
i,j∈I ψ

−1
j (ψ−1

i (N0)) and S1 := S ∩ (N c
1 ×N c

1 ). Then, for any x ∈ N c
1

and i ∈ I, we have

((F1 ∗ F2) ∗ F3)(i, x) =
∑
k∈I

(F1 ∗ F2)(σ(ψk(x), x)(i), ψk(x))F3(k, x)

=
∑
k∈I

∑
j∈I

F1(σ(ψj(ψk(x)), x)(i), ψj(ψk(x)))F2(j, ψk(x))F3(k, x).

Since

σ(ψj(ψk(x)), x)(i) = σ(ψj(ψk(x)), ψσ(x,ψk(x))(j)(x))(σ(ψσ(x,ψk(x))(j)(x), x)(i)),

(ψj(ψk(x)), ψσ(x,ψk(x))(j)(x)) ∈ S0,

one has

F1(σ(ψj(ψk(x)), x)(i), ψj(ψk(x)))

= F1(σ(ψσ(x,ψk(x))(j)(x), x)(i), ψσ(x,ψk(x))(j)(x)).

So

((F1 ∗ F2) ∗ F3)(i, x)

=
∑
k∈I

∑
j∈I

F1(σ(ψσ(x,ψk(x))(j)(x), x)(i), ψσ(x,ψk(x))(j)(x))F2(j, ψk(x))F3(k, x).

Because {σ(x, ψk(x))(j) : j ∈ I} = I, we continue the above computation as
follows:

((F1 ∗ F2) ∗ F3)(i, x)

=
∑
k∈I

∑
`∈I

F1(σ(ψ`(x), x)(i), ψ`(x))F2(σ(ψk(x), x)(`), ψk(x))F3(k, x)

=
∑
`∈I

F1(σ(ψ`(x), x)(i), ψ`(x))
(∑
k∈I

F2(σ(ψk(x), x)(`), ψk(x))F3(k, x)
)

=
∑
`∈I

F1(σ(ψ`(x), x)(i), ψ`(x))(F2 ∗ F3)(`, x) = (F1 ∗ (F2 ∗ F3))(i, x).

Thus the convolution is associative.
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Finally, the function F 0, i.e., F 0(i, x) = δ0,i, is the identity of I(R,S). Indeed,
for any F ∈ I(R,S), we have

(F 0 ∗ F )(i, x) =
∑
j∈I

F 0(σ(ψj(x), x)(i), ψj(x))F (j, x)

=
∑
j∈I

δ0,σ(ψj(x),x)(i)F (j, x) =
∑
j∈I

δi,jF (j, x) = F (i, x).

One can also easily show that F ∗ F 0 = F .
Therefore, we have proven that

Theorem 9.11. I(R,S) is a unital involutive algebra over C with product ∗ and
involution ].

Let λ1, λ2 ∈ Λ. Then

(Fλ1 ∗Fλ2)((λ, n), x) =
∑

(λ′,n′)∈I

Fλ1(σ(ψλ′,n′(x), x)(λ, n), ψλ′,n′(x))Fλ2((λ′, n′), x).

As usual, take a µ-null subset N0 of X such that

χCλ1
(z, x) = χCλ1

(z, y) for all (x, y) ∈ S0 := S ∩ (N c
0 ×N c

0 ) and all z ∈ R(x).

Put N1 :=
⋃
i,j∈I ψ

−1
j (ψ−1

i (N0)). By (the proof of) [2, Theorem 3.8], there exists a
µ-null subset N2 of X such that, for any x ∈ N c

2 and (λ2, k), (ψλ2,k(x), ψλ,n(x)) ∈
Cλ1 if and only if ψλ,n(x) ∈

⊔nλ1
`=1 S(ψλ1,`(ψλ2,k(x)). Now set N3 := N1 ∪ N2 and

S1 := S ∩ (N c
3 ×N c

3 ). Then, for any x ∈ N c
3 and i ∈ I, we have

Fλ1(σ(ψλ′,n′(x), x)(λ, n), ψλ′,n′(x))

= χCλ1
(ψλ′,n′(x), ψσ(ψλ′,n′ (x),x)(λ,n)(ψλ′,n′(x)))

= χCλ1
(ψλ′,n′(x), ψλ,n(x)) (as (ψσ(ψλ′,n′ (x),x)(λ,n)(ψλ′,n′(x)), ψλ,n(x)) ∈ S0).

Thus

(Fλ1 ∗ Fλ2)((λ, n), x) =
∑

(λ′,n′)∈I

χCλ1
(ψλ′,n′(x), ψλ,n(x))Fλ2((λ′, n′), x)

=
nλ2∑
k=1

χCλ1
(ψλ2,k(x), ψλ,n(x)) (as Ξ∗(δλ2) = Fλ2).

We will show that Fλ1 ∗ Fλ2 ∈ I0(R,S). For this, we define a subset Kλ1
λ2,λ

of X by

Kλ1
λ2,λ

=
nλ⋃
k=1

nλ2⋃
k2=1

((ψλ2,k2 × ψλ,k) ◦ g0)−1(Cλ1),

where g0 : X → X × X is defined by g0(x) := (x, x). We claim that Kλ1
λ2,λ

is



Hecke von Neumann Algebra 649

measurable. Indeed, since {ψi}i∈I are choice functions, ψi is a measurable map for
each i ∈ I. So, for each i, j ∈ I,

((ψi × ψj) ◦ g0)−1(Cλ)

is a measurable subset of X. Hence our claim is proven.
We claim that Kλ1

λ2,λ
is an S-invariant set up to a null set. Indeed, by [2,

Section 3, Remark (1)], there exists a µ-null subset Nλ2,λ of X such that, for
each (x, y) ∈ S ∩ (N c

λ2,λ
× N c

λ2,λ
), k2 ∈ {1, . . . , nλ2}, k ∈ {1, . . . , nλ}, there exist

m2 ∈ {1, . . . , nλ2} and m ∈ {1, . . . , nλ} which satisfy (ψλ2,m2(y), ψλ2,k2(x)) ∈ S
and (ψλ,m(y), ψλ,k(x)) ∈ S. In particular, if (ψλ2,k2(x), ψλ,k(x)) ∈ Cλ1 , then

(ψλ2,m2(y), ψλ,m(y))

= (ψλ2,m2(y), ψλ2,k2(x))(ψλ2,k2(x), ψλ,k(x))(ψλ,k(x), ψλ,m(y)) ∈ Cλ1

This means that if x ∈ Kλ1
λ2,λ
∩N c

λ2,λ
, then S(x) ∩N c

λ2,λ
⊆ Kλ1

λ2,λ
. So our claim is

proven. Since S is ergodic, we conclude that Kλ1
λ2,λ

is either null or conull in X for
each λ ∈ Λ.

We next claim that there exist a finite subset Λ0 of Λ and a measurable nonnull
subset E of X such that Kλ1

λ2,λ
is contained in Ec for all λ ∈ (Λ \Λ0). Indeed, put

Ek1,k2
λ0

:= {x ∈ X : (x, ψλ1,k1(ψλ2,k2(x))) ∈ Cλ0} for each λ0 ∈ Λ, k1 ∈ {1, . . . , nλ1}
and k2 ∈ {1, . . . , nλ2}. Since Cλ0 is measurable and x 7→ (x, ψλ1,k1(ψλ2,k2(x))) is
a measurable map from X to R up to a null set, Ek1,k2

λ0
is a measurable subset

of X. Since {Cλ0}λ0∈Λ is a countable measurable partition of R up to a null set,
{Ek1,k2

λ0
}λ0∈Λ is a measurable partition of X up to a null set. In particular, for any

(k1, k2) and each measurable nonnull subset E of X, there exists λ0 ∈ Λ such that
E ∩ Ek1,k2

λ0
is a nonnull measurable subset of X. By using induction, there exists

{λk1,k2}k1,k2 ⊆ Λ such that
⋂nλ1
k1=1

⋂nλ2
k2=1E

k1,k2
λk1,k2

is a nonnull measurable subset

of X. Put E :=
⋂nλ1
k1=1

⋂nλ2
k2=1E

k1,k2
λk1,k2

and Λ0 := {λk1,k2 : k1 ∈ {1, . . . , nλ1}, k2 ∈
{1, . . . , nλ2}}. By construction, |Λ0| ≤ nλ1nλ2 . In particular, Λ0 is a finite subset
of Λ. Moreover, since E ⊆ Ek1,k2

λk1,k2
for each k1 ∈ {1, . . . , nλ1}, k2 ∈ {1, . . . , nλ2},

(x, ψλ1,k1(ψλ2,k2(x))) belongs to Cλk1,k2
for each x ∈ E and k1 ∈ {1, . . . , nλ1}, k2 ∈

{1, . . . , nλ2}. By (8.1), together with the equivalent conditions displayed in the
proof of Lemma 8.5, we have S(ψλ1,k1(ψλ2,k2(x))) ⊆

⋃nλk1,k2
k=1 S(ψλk1,k2 ,k

(x)) for
each x ∈ E and k1 ∈ {1, . . . , nλ1}, k2 ∈ {1, . . . , nλ2}. Since {S(ψi(x))}i∈I are
mutually disjoint, it follows that if λ 6∈ Λ0, then for each k ∈ {1, . . . , nλ}, we have

ψλ,k(x) ∈
( nλ1⋃
k1=1

nλ2⋃
k2=1

nλk1,k2⋃
k=1

S(ψλk1,k2 ,k
(x))

)c
⊆
( nλ1⋃
k1=1

nλ2⋃
k2=1

S(ψλ1,k1(ψλ2,k2(x)))
)c
,

and Kλ1
λ1,λ
⊆ Ec. So our claim is proven.
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By using the above results, we conclude that Kλ1
λ2,λ

is null if λ ∈ Λ \ Λ0.
We claim that the support of Fλ1 ∗ Fλ2 is contained in {(λ, k) : λ ∈ Λ0, k ∈
{1, . . . , nλ}}×X up to a null set. Indeed, put N :=

⋃
λ′∈Λ\Λ0

Kλ1
λ2,λ′

. Since Λ \Λ0

is a countable set and Kλ1
λ2,λ

is a µ-null set for each λ ∈ Λ \ Λ0, N is a µ-null
subset of X. In particular, I × N is null in I × X. On the other hand, suppose
that ((λ, n), x) ∈ {(λ, k) : λ ∈ Λ \ Λ0, k ∈ {1, . . . , nλ}} × N c. Since λ ∈ Λ \ Λ0,
x belongs to N c = (

⋃
λ∈Λ\Λ0

Kλ1
λ2,λ

)c ⊆ (Kλ1
λ2,λ

)c. By the definition of Kλ1
λ2,λ

, we
have (ψλ1,k(x), ψλ,k(x)) 6∈ Cλ2 for each k ∈ {1, . . . , nλ2}. It follows that

(Fλ1 ∗ Fλ2)((λ, n), x) =
nλ2∑
k=1

χCλ1
(ψλ2,k(x), ψλ,n(x)) = 0.

So the support of Fλ1 ∗ Fλ2 is contained in

{(I \ {(λ, k) : λ ∈ Λ \ Λ0, k ∈ {1, . . . , nλ}})×N c} ∪ (I × (N c)c)

= {{(λ, k) : λ ∈ Λ0, k ∈ {1, . . . , nλ}})×N c} ∪ (I ×N)

and our claim is proven. Therefore, there exists {cλ}λ∈Λ0 such that Fλ1 ∗ Fλ2 =∑
λ∈Λ0

cλF
λ. Since Λ0 is finite, we conclude that Fλ1 ∗ Fλ2 ∈ I0(R,S). Thus we

have shown

Proposition 9.12. I0(R,S) is a unital involutive subalgebra of I(R,S).

Definition 9.13. We call I0(R,S) the algebraic Hecke algebra associated with
the Hecke pair (R,S).

§9.3. Hecke von Neumann algebras

Our next objective is to represent the involutive algebra I(R,S) on the GNS
Hilbert space HΩ. For this, we begin with the following lemma.

Lemma 9.14. Let F be in I(R,S). Then, for a.e.x ∈ X and all i ∈ I, we have∑
j∈I

F (σ(ψj(x), x)(i), ψj(x)) =
∑
λ∈Λ

f(λ−1)nλ,

where Ξ∗(f) = F .

Proof. There exists a µ-null subset N0 of X such that

F ](σ(y, x)(i), y) = F ](i, x) for all (x, y) ∈ S0 := S ∩ (N c
0 ×N c

0 ) and all i ∈ I.

Put N1 :=
⋃
i,j∈I ψ

−1
j (ψ−1

i (N0)) and S1 := S ∩ (N c
1 ×N c

1 ). Then, for any x ∈ N c
1

and i ∈ I, we have
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j∈I

F (σ(ψj(x), x)(i), ψj(x)) =
∑
j∈I

(F ])](σ(ψj(x), x)(i), ψj(x))

=
∑
j∈I

F ](σ(ψσ(ψj(x),x)(i)(ψj(x)), ψj(x))(0), ψσ(ψj(x),x)(i)(ψj(x)))

=
∑
j∈I

F ](σ(ψi(x), ψj(x))(0), ψi(x)) (as (ψσ(ψj(x),x)(i)(ψj(x)), ψi(x)) ∈ S0)

=
∑
j∈I

F ](σ(ψi(x), x)(j), ψi(x))

=
∑
j∈I

F ](j, ψi(x)) (as {σ(ψi(x), x)(j) : j ∈ I} = I)

=
∑

(λ,n)∈I

F ]((λ, n), ψi(x)).

By the proof of Lemma 9.9, we see that F ]((λ, n), ψi(x))=f(λ−1) when Ξ∗(f)=F .
Therefore, we obtain our assertion.

In the preceding subsection we defined the convolution only for the elements
in I(R,S). We now extend it to the convolution of an element in I(R,S) and an
element in nΩ in the obvious way.

Lemma 9.15. Let F be in I(R,S) and F1 be in nΩ. Then both F ∗F1 and F1 ∗F
belong to nΩ and satisfy

‖F ∗ F1‖2 ≤ (‖F‖1,`‖F‖1,r)1/2‖F1‖2, ‖F1 ∗ F‖2 ≤ ‖F‖1,`‖F1‖2.

Proof. By Lemma 9.14, for a.e.x ∈ X and all i ∈ I,

|(F ∗ F1)(i, x)| ≤
∑
j∈I
|F (σ(ψj(x), x)(i), ψj(x))| |F1(j, x)|

≤ ‖F1‖∞
∑
j∈I
|F (σ(ψj(x), x)(i), ψj(x))| = ‖F‖1,r‖F1‖∞.

Moreover, for a.e.x ∈ X and any i ∈ I, we get

|(F1 ∗ F )(i, x)| ≤
∑
j∈I
|F1(σ(ψj(x), x)(i), ψj(x))| |F (j, x)|

≤ ‖F1‖∞
∑
j∈I
|F (j, x)| = ‖F‖1,`‖F1‖∞.

Thus F ∗ F1 and F1 ∗ F belong to L∞(I × X). Both are S-invariant, as can be
checked as in the previous subsection.
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Next we show that F ∗ F1 lies in nΩ. By the Cauchy–Schwarz inequality and
Lemma 9.14, we obtain∫

X

∑
i∈I
|(F ∗ F1)(i, x)|2 dµ(x)

=
∫
X

∑
i∈I

(∑
j∈I
|F (σ(ψj(x), x)(i), ψj(x))| |F1(j, x)|

)2

dµ(x)

≤
∫
X

∑
i∈I

(∑
j∈I
|F (σ(ψj(x), x)(i), ψj(x))|

)
×
(∑
j∈I
|F (σ(ψj(x), x)(i), ψj(x))| |F1(j, x)|2

)
dµ(x)

= ‖F‖1,r
∫
X

∑
i∈I

(∑
j∈I
|F (σ(ψj(x), x)(i), ψj(x))| |F1(j, x)|2

)
dµ(x)

= ‖F‖1,r
∫
X

∑
j∈I

(∑
i∈I
|F (σ(ψj(x), x)(i), ψj(x))|

)
|F1(j, x)|2 dµ(x)

= ‖F‖1,`‖F‖1,r‖F1‖22 <∞.

Thus F ∗ F1 ∈ nΩ and ‖F ∗ F1‖2 ≤ (‖F‖1,`‖F‖1,r)1/2‖F1‖2. We also have∫
X

∑
i∈I
|(F1 ∗ F )(i, x)|2 dµ(x)

=
∫
X

∑
i∈I

(∑
j∈I
|F1(σ(ψj(x), x)(i), ψj(x))| |F (j, x)|

)2

µ(x)

≤
∫
X

∑
i∈I

(∑
j∈I
|F1(σ(ψj(x), x)(i), ψj(x))|2|F (j, x)|

)(∑
j∈I
|F (j, x)|

)
dµ(x)

= ‖F‖1,`
∫
X

∑
i∈I

(∑
j∈I
|F1(σ(ψj(x), x)(i), ψj(x))|2|F (j, x)|

)
dµ(x)

= ‖F‖1,`
∫
X

∑
j∈I

(∑
i∈I
|F1(σ(ψj(x), x)(i), ψj(x))|2

)
|F (j, x)| dµ(x)

= ‖F‖21,`‖F1‖22 <∞.

Thus F1 ∗ F ∈ nΩ and ‖F1 ∗ F‖2 ≤ ‖F‖1,`‖F1‖2.

Thanks to Lemma 9.15, the equations

π0
` (F )ΛΩ(F1) := ΛΩ(F ∗ F1)

π0
r(F )ΛΩ(F1) := ΛΩ(F1 ∗ F )

(F ∈ I(R,S), F1 ∈ nΩ)
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define bounded linear operators π0
` (F ) and π0

r(F ) on the pre-Hilbert space ΛΩ(nΩ).
So π0

` (F ) and π0
r(F ) can be uniquely extended to bounded operators π`(F ) and

πr(F ) on HΩ.

Lemma 9.16. The map π` : I(R,S) → B(HΩ) is an involution-preserving ho-
momorphism from I(R,S) into B(HΩ) satisfying ‖π`(F )‖ ≤ (‖F‖1,`‖F‖1,r)1/2

for all F ∈ I(R,S). On the other hand, the map πr : I(R,S) → B(HΩ) is an
antihomomorphism from I(R,S) into B(HΩ) satisfying ‖πr(F )‖ ≤ ‖F‖1,` for all
F ∈ I(R,S).

Proof. It is obvious that π` and πr are linear.
Since ΛΩ(I(R,S)) is dense in HΩ as noted in the previous subsection, π`(F )

and πr(F ) are completely characterized by the identities

π`(F )ΛΩ(F1) = ΛΩ(F ∗ F1), πr(F )ΛΩ(F1) = ΛΩ(F1 ∗ F ),

where F1 ∈ I(R,S). Hence both π` being multiplicative and πr being antimulti-
plicative follow from the associativity of the convolution.

It remains to show that π`(F ]) = π`(F )∗ for all F ∈ I(R,S). So let F , F1,
F2 be in I(R,S). Fubini’s theorem yields

(π`(F ])ΛΩ(F1) | ΛΩ(F2)) = (ΛΩ(F ] ∗ F1) | ΛΩ(F2)) = Ω(F2(F ] ∗ F1))

=
∫
X

∑
i∈I

(F ] ∗ F1)(i, x)F2(i, x) dµ(x)

=
∫
X

∑
i∈I

(∑
j∈I

F ](σ(ψj(x), x)(i), ψj(x))F1(j, x)
)
F2(i, x) dµ(x)

=
∫
X

∑
i∈I

(∑
j∈I

F (σ(ψσ(ψj(x),x)(i)(ψj(x)), ψj(x))(0), ψσ(ψj(x),x)(i)(ψj(x)))F1(j, x)
)

× F2(i, x) dµ(x)

=
∫
X

∑
j∈I

F1(j, x)

×
(∑
i∈I

F (σ(ψσ(ψj(x),x)(i)(ψj(x)), ψj(x))(0), ψσ(ψj(x),x)(i)(ψj(x)))F2(i, x)
)
dµ(x).

Since (ψσ(ψj(x),x)(i)(ψj(x)), ψi(x)) ∈ S for a.e.x ∈ X, we have

F (σ(ψσ(ψj(x),x)(i)(ψj(x)), ψj(x))(0), ψσ(ψj(x),x)(i)(ψj(x)))

= F (σ(ψi(x), ψj(x))(0), ψi(x)) = F (σ(ψi(x), x)(j), ψi(x))
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for a.e.x ∈ X. Thus

(π`(F ])ΛΩ(F1) | ΛΩ(F2))

=
∫
X

∑
j∈I

F1(j, x)
(∑
i∈I

F (σ(ψi(x), x)(j), ψi(x))F2(i, x)
)
dµ(x)

=
∫
X

∑
j∈I

F1(j, x)(F ∗ F2)(j, x) dµ(x)

= (ΛΩ(F1) | ΛΩ(F ∗ F2)) = (ΛΩ(F1) | π`(F )ΛΩ(F2)).

This proves that π`(F ]) = π`(F )∗.

Let F ∈ I(R,S). We define a Borel function F̃ on I ×X by

F̃ ((λ, n), x) :=
[
nλ−1

nλ

]1/2

F ]((λ, n), x) (((λ, n), x) ∈ I ×X).

So, if Ξ∗(f) = F , then, as in the proof of Lemma 9.9, we get

F̃ ((λ, n), x) =
[
nλ−1

nλ

]1/2

f(λ−1).

Since (‖F‖1,` =)
∑
λ∈Λ |f(λ)|nλ < ∞, there is a positive constant C such that

|f(λ)|nλ ≤ C for all λ ∈ Λ. From this, we obtain

|F̃ ((λ, n), x)| ≤ (|f(λ−1)|nλ−1)1/2|f(λ−1)|1/2 ≤ C1/2‖f‖1/2∞ .

Hence F̃ ∈ L∞(I × X). Since F ] is S-invariant, one has F ](σ(y, x)(λ, n), y) =
F ]((λ, n), x) for a.e. (x, y) ∈ S and all (λ, n) ∈ I. As we showed in the proof
of Lemma 9.7, we have σ(y, x)(λ, n) = (λ,m) for some m = 1, . . . , nλ whenever
(x, y) ∈ S. From this, we see that F̃ is also S-invariant. Thus F̃ ∈ L∞(I ×X)S .
Moreover, we get

Ω(|F̃ |2) =
∑
λ∈Λ

|(Ξ∗)−1(F̃ )(λ)|2nλ =
∑
λ∈Λ

∣∣∣∣[nλ−1

nλ

]1/2

f(λ−1)
∣∣∣∣2nλ

=
∑
λ∈Λ

|f(λ−1)|2nλ−1 =
∑
λ∈Λ

|f(λ)|2nλ = ‖ΛΩ(F )‖22.

Consequently, F̃ ∈ nΩ and ‖ΛΩ(F̃ )‖2 = ‖ΛΩ(F )‖2. It is now easy to see that the
map ΛΩ(F ) 7→ ΛΩ(F̃ ) extends uniquely to a conjugate-linear isometry J on HΩ.
Note that JΛΩ(Fλ) = [nλ/nλ−1 ]1/2ΛΩ(Fλ

−1
) for any λ ∈ Λ, which ensures that J

is indeed unitary and satisfies J2 = 1.
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We introduce a subspace D(∇) of HΩ by

D(∇) :=
{
ξ ∈ HΩ :

∑
λ∈Λ

[
nλ−1

nλ

]2

‖Fλξ‖22 <∞
}
.

Clearly, the vector ΛΩ(Fλ) belongs to D(∇) for all λ ∈ Λ. So D(∇) is dense in HΩ.
Then define a densely defined linear operator ∇ with domain D(∇) by

∇ξ :=
∑
λ∈Λ

nλ−1

nλ
Fλξ (∀ξ ∈ D(∇)).

We have ∇ΛΩ(Fλ) = (nλ−1/nλ)ΛΩ(Fλ) for any λ ∈ Λ.

Lemma 9.17. ∇ is nonsingular, positive and self-adjoint.

Proof. If ∇ξ = 0, then, by definition, Fλξ = 0 for all λ ∈ Λ. This implies ξ = 0,
since

∑
λ∈Λ F

λ = 1. Because all Fλ’s are projections, ∇ is positive. Finally, to
prove that ∇ is self-adjoint, take any ξ ∈ HΩ. Then, since

∑
λ∈Λ F

λ = 1 again, we
get ∑

λ∈Λ

‖Fλξ‖22
(1 + nλ−1/nλ)2

≤
∑
λ∈Λ

‖Fλξ‖22 = ‖ξ‖22 <∞.

Hence
η :=

∑
λ∈Λ

1
1 + nλ−1/nλ

Fλξ

converges in norm in HΩ. We have

Fλη =
1

1 + nλ−1/nλ
Fλξ

for any λ ∈ Λ. So∑
λ∈Λ

[
nλ−1

nλ

]2

‖Fλη‖22 =
∑
λ∈Λ

[
nλ−1

nλ

]2 ‖Fλξ‖22
(1 + nλ−1/nλ)2

≤
∑
λ∈Λ

‖Fλξ‖22 = ‖ξ‖22 <∞.

It follows that η ∈ D(∇). Moreover,

(1 +∇)η = η +
∑
λ∈Λ

nλ−1

nλ
Fλη

=
∑
λ∈Λ

1
1 + nλ−1/nλ

Fλξ +
∑
λ∈Λ

nλ−1

nλ

1
1 + nλ−1/nλ

Fλξ

=
∑
λ∈Λ

Fλξ = ξ.

Therefore, (1 +∇)D(∇) = HΩ. By [19, Lemma 9.5], ∇ is self-adjoint.
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It can be easily checked that, for any Borel function g on the interval [0,∞),
the linear operator g(∇) (i.e., the Borel functional calculus of ∇ under g) is given
by

g(∇) =
∑
λ∈Λ

g(nλ−1/nλ)Fλ,

with
D(g(∇)) =

{
ξ ∈ HΩ :

∑
λ∈Λ

|g(nλ−1/nλ)|2‖Fλξ‖2 <∞
}
.

Lemma 9.18. The densely defined conjugate-linear map S0 : HΩ → HΩ defined
on ΛΩ(I(R,S)) by

S0ΛΩ(F ) := ΛΩ(F ]) (F ∈ I(R,S))

is preclosed. The closure S of S0 has polar decomposition J∇1/2.

Proof. As remarked just before this lemma, we have

D(∇1/2) =
{
ξ ∈ HΩ :

∑
λ∈Λ

nλ−1

nλ
‖Fλξ‖2

}
,

∇1/2ξ =
∑
λ∈Λ

[
nλ−1

nλ

]1/2

Fλξ (∀ξ ∈ D(∇1/2)).

Let F ∈ I(R,S). With Ξ∗(f) = F , we have ΛΩ(F ) =
∑
λ∈Λ f(λ)ΛΩ(Fλ). So

FλΛΩ(F ) = f(λ)ΛΩ(Fλ) for all λ ∈ Λ. From this, we obtain∑
λ∈Λ

nλ−1

nλ
‖FλΛΩ(F )‖2 =

∑
λ∈Λ

nλ−1

nλ
|f(λ)|2nλ =

∑
λ∈Λ

nλ−1 |f(λ)|2 ≤ ‖f‖∞‖F‖1,r

<∞.

Thus ΛΩ(F ) belongs to D(∇1/2), and

∇1/2ΛΩ(F ) =
∑
λ∈Λ

[
nλ−1

nλ

]1/2

f(λ)ΛΩ(Fλ).

This in turn implies

J∇1/2ΛΩ(F ) =
∑
λ∈Λ

[
nλ−1

nλ

]1/2

f(λ) JΛΩ(Fλ)

=
∑
λ∈Λ

[
nλ−1

nλ

]1/2

f(λ)
[
nλ
nλ−1

]1/2

ΛΩ(Fλ
−1

)

=
∑
λ∈Λ

f(λ) ΛΩ(Fλ
−1

) =
∑
λ∈Λ

f(λ−1) ΛΩ(Fλ) = ΛΩ(F ]) = S0ΛΩ(F ).

Therefore, S0 is preclosed, and its closure S satisfies S ⊆ J∇1/2.
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In order to prove that S = J∇1/2, it suffices to show that ΛΩ(I(R,S)) is a
core for ∇1/2. For this purpose, suppose that ξ ∈ D(∇1/2) satisfies

(9.8) (ξ | ΛΩ(Fλ)) + (∇1/2ξ | ∇1/2ΛΩ(Fλ)) = 0

for all λ ∈ Λ. Then

0 = (ξ | ΛΩ(Fλ)) +
(∑
λ1∈Λ

[nλ−1
1

nλ1

]1/2

Fλ1ξ

∣∣∣∣ [nλ−1

nλ

]1/2

ΛΩ(Fλ)
)

= (ξ | ΛΩ(Fλ)) +
nλ−1

nλ
(ξ | ΛΩ(Fλ)).

Thus (ξ | ΛΩ(Fλ)) = 0 for all λ ∈ Λ. Since {ΛΩ(Fλ) : λ ∈ Λ} is total in HΩ, we
have ξ = 0. It follows that the subspace ΛΩ(I0(R,S)) is already a core for∇1/2.

Corollary 9.19. The subspace ΛΩ(I0(R,S)) is a core for ∇r for all r ∈ R. More-
over, ∇rΛΩ(I0(R,S)) = ΛΩ(I0(R,S)) for any r ∈ R.

Proof. Let r ∈ R. We know that

D(∇r) =
{
ξ ∈ HΩ :

∑
λ∈Λ

[
nλ−1

nλ

]2r

‖Fλξ‖2
}
,

∇rξ =
∑
λ∈Λ

[
nλ−1

nλ

]r
Fλξ (∀ξ ∈ D(∇r)).

So it is obvious that ΛΩ(I0(R,S)) ∈ D(∇r). In order to show that ΛΩ(I0(R,S))
is a core for ∇r, suppose that, for a vector ξ ∈ D(∇r), equation (9.8) holds except
that, this time, the power “1/2” in the equation is replaced by r. Then, by exactly
the same argument as in Lemma 9.18, we arrive at the conclusion that ξ = 0.

The last assertion easily follows from the fact that ∇rΛΩ(Fλ) =
[nλ−1/nλ]rΛΩ(Fλ) for any λ ∈ Λ.

Theorem 9.20. Define a product and an involution ] on ΛΩ(I(R,S)) by

ΛΩ(F1)ΛΩ(F2) := ΛΩ(F1 ∗ F2), ΛΩ(F1)] := ΛΩ(F ]1) (F1, F2 ∈ I(R,S)).

Then the subspace A(R,S) := ΛΩ(I(R,S)) with these operations becomes a left
Hilbert algebra in HΩ whose modular operator and modular conjugation are ∇ and
J defined before.

Proof. It is clear that A(R,S) is an involutive algebra over C which is dense in
the Hilbert space HΩ.

For each F ∈ I(R,S), the mapping ΛΩ(F1) 7→ ΛΩ(F )ΛΩ(F1) is bounded, due
to Lemma 9.16.
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By Lemma 9.16 again, we have

(ΛΩ(F )ΛΩ(F1) | ΛΩ(F2)) = (ΛΩ(F1) | ΛΩ(F )]ΛΩ(F2)).

Thanks to Lemma 9.18, the involution ΛΩ(F ) 7→ ΛΩ(F )] is preclosed.
Recall the element F 0 mentioned just before Theorem 9.11. Since ΛΩ(F 0)

is the identity for A(R,S), we see that the linear span (A(R,S))2 of the set
{ΛΩ(F1)ΛΩ(F2) : F1, F2 ∈ I(R,S)} equals A(R,S).

Therefore, A(R,S) is a left Hilbert algebra in HΩ. By Lemma 9.18, the mod-
ular operator and the modular conjugation associated with A(R,S) are ∇ and J,
respectively.

Definition 9.21. We call the left von Neumann algebra of the left Hilbert algebra
A(R,S) the Hecke von Neumann algebra associated with the Hecke pair (R,S),
and denote it by H∗(R,S). Hence

H∗(R,S) = π`(I(R,S))′′ = σ-strong∗ closure of π`(I(R,S)).

Proposition 9.22. The involutive subalgebra A0(R,S) := ΛΩ(I0(R,S)) of
A(R,S) is equivalent to A(R,S) as a left Hilbert algebra, that is, A0(R,S)′′ =
A(R,S)′′. In particular, H∗(R,S) = π`(A0(R,S))′′.

Proof. It suffices to prove that the S-operator of A0(R,S) equals S = J∇1/2. But
this follows from the fact that A0(R,S) is a core for ∇1/2, verified in the proof of
Lemma 9.18.

Lemma 9.23. The left Hilbert algebra A0(R,S) is a core for the operator S∗.
Moreover,

S∗ΛΩ(Fλ) =
nλ
nλ−1

ΛΩ(Fλ
−1

)

for any λ ∈ Λ. In particular, A0(R,S) is invariant under S∗.

Proof. The first assertion follows from Corollary 9.19 and the fact that D(S∗) =
D(∇−1/2). The second follows by a direct computation, using S∗ = J∇−1/2.

By convention, we write η[ for S∗η.

Proposition 9.24. The algebra A0(R,S) is also a right Hilbert algebra with in-
volution [ contained in A(R,S)′, and is equivalent to A(R,S)′ as a right Hilbert
algebra.

Proof. From Lemma 9.16, every element of A0(R,S) is a right bounded vector
with respect to the left Hilbert algebra A(R,S). It also belongs to D(S∗) by
Lemma 9.23. Hence A0(R,S) ⊆ A(R,S)′. Therefore, A0(R,S) is a right Hilbert
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algebra in HΩ. Because A0(R,S) is a core for S∗, it follows that it is equivalent
to A(R,S)′.

Corollary 9.25. Let F 0 ∈ I(R,S) be as before. Then ζ0 := ΛΩ(F 0) is a cyclic
and separating vector for H∗(R,S).

Proof. Since ζ0 is the identity of A0(R,S), it follows from Proposition 9.24 that

HΩ = A0(R,S) = π`(A0(R,S))ζ0 ⊆ H∗(R,S)ζ0,

HΩ = A0(R,S) = πr(A0(R,S))ζ0 ⊆ H∗(R,S)′ζ0.

Hence ζ0 is cyclic for both H∗(R,S) and H∗(R,S)′. Thus we are done.

Corollary 9.26. We have A(R,S)′′ = H∗(R,S)ζ0 and A(R,S)′ = H∗(R,S)′ζ0.

Proof. It is clear that A(R,S) is a left Hilbert subalgebra of the full left Hilbert
algebraH∗(R,S)ζ0. Hence A(R,S)′′ ⊆ (H∗(R,S)ζ0)′′ = H∗(R,S)ζ0. On the other
hand, by Proposition 9.24, ζ0 is the identity for the right Hilbert algebra A(R,S)′.
This implies that A(R,S)′ ⊆ H∗(R,S)′ζ0. Hence,

H∗(R,S)ζ0 = (H∗(R,S)ζ0)′′ = (H∗(R,S)′ζ0)′ ⊆ (A(R,S)′)′ = A(R,S)′′.

Therefore, A(R,S)′′ = H∗(R,S)ζ0.

Corollary 9.27. The faithful normal semifinite weight ϕ0 on H∗(R,S) associated
with the left Hilbert algebra A(R,S) is the normal state ϕ0 given by

ϕ0(T ) = (Tζ0 | ζ0) (∀T ∈ H∗(R,S)).

Proof. This follows from Corollary 9.26.

Remark. It is easy to check that the 1-cocycle c defined by (9.2) is equal to∑
λ∈Λ(nλ−1/nλ)χCλ up to a null set. Hence ∇ is characterized by

∇ξ = Φ(c)ξ (ξ ∈ D(∇)),

where we extend Φ to a map from S-biinvariant functions on R to S-invariant
functions on I ×R.

§10. Relation between H∗(R,S) and M̂

Throughout this section, we assume that (R,S) is a Hecke pair, and retain most
of the notation introduced previously.

Lemma 10.1. Let R = [Ri,j(x)]i,j∈I,x∈X be in M̂ and F1, F2 be in I(R,S). Then
R ∗ (F1 ∗ F2) = (R ∗ F1) ∗ F2 in nΩ.
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Proof. By definition, there exists a µ-null subset N0 of X such that

Ri,σ(x,y)(j)(x) = Rσ(y,x)(i),j(y)

for all (x, y) ∈ R0 := R∩ (N c
0 ×N c

0 ) and all i, j ∈ I.

On the other hand, there exists a µ-null subset N1 of X such that∑
i∈I
|Fk(i, x)| = ‖Fk‖1,` for all x ∈ N c

1 , i ∈ I and k = 1, 2.

Put N2 :=
⋃
i∈I ψ

−1
i (N0 ∪N1) and R1 := R ∩ (N2

1 ×N c
2 ). Let i ∈ I and x ∈ N c

2 .
Then

(R ∗ (F1 ∗ F2))(i, x) =
∑
j∈I

Ri,j(x)(F1 ∗ F2)(j, x)

=
∑
j∈I

Ri,j(x)
(∑
k∈I

F1(σ(ψk(x), x)(j), ψk(x))F2(k, x)
)
.

Here we remark that∑
j,k∈I

|Ri,j(x)| |F1(σ(ψk(x), x)(j), ψk(x))| |F2(k, x)|

≤ ‖R‖
∑
k∈I

(∑
j∈I
|F1(σ(ψk(x), x)(j), ψk(x))|

)
|F2(k, x)|

= ‖R‖ ‖F1‖1,`‖F2‖1,` <∞.

Hence, by Fubini’s theorem, we have

(R ∗ (F1 ∗ F2))(i, x) =
∑
k∈I

(∑
j∈I

Ri,j(x)F1(σ(ψk(x), x)(j), ψk(x))
)
F2(k, x)

=
∑
k∈I

(∑
j∈I

Ri,σ(x,ψk(x))(j)(x)F1(j, ψk(x))
)
F2(k, x)

=
∑
k∈I

(∑
j∈I

Rσ(ψk(x),x)(i),j(ψk(x))F1(j, ψk(x))
)
F2(k, x)

=
∑
k∈I

(R ∗ F1)(σ(ψk(x), x)(i), ψk(x))F2(k, x)

= ((R ∗ F1) ∗ F2)(i, x).

Theorem 10.2. The Hecke von Neumann algebra H∗(R,S) exactly equals λ̂(M̂).
Therefore, M̂ is ∗-isomorphic to H∗(R,S).
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Proof. Let λ ∈ Λ. As in the proof of Lemma 8.6, consider the “matrix” Rλ :=
[Rλi,j(x)]i,j∈I, x∈X in M̂ given by

Rλi,j(x) = Fλ(σ(ψj(x), x)(i), ψj(x)) (i, j ∈ I, x ∈ X).

Then, for any F ∈ I(R,S), with the notation of Section 7, we have

(Rλ ∗ F )(i, x) =
∑
j∈I

Rλi,j(x)F (j, x) =
∑
j∈I

Fλ(σ(ψj(x), x)(i), ψj(x))F (j, x)

= (Fλ ∗ F )(i, x).

Thus Rλ ∗ F = Fλ ∗ F . From this, we obtain

λ̂(Rλ)ΛΩ(F ) = ΛΩ(Rλ ∗ F ) = ΩΩ(Fλ ∗ F ) = π`(Fλ)ΛΩ(F ).

Hence λ̂(Rλ) = π`(Fλ) for any λ ∈ Λ. It follows that π`(I0(R,S)) is contained
in λ̂(M̂). Since H∗(R,S) = π`(I0(R,S))′′ by Proposition 9.22, we conclude that
H∗(R,S) ⊆ λ̂(M̂).

To prove the reverse inclusion, let us take any R ∈ M̂ . Then, by Lemma 10.1,
for any F1, F2 ∈ I0(R,S) we obtain

λ̂(R)πr(F1)ΛΩ(F2) = λ̂(R)ΛΩ(F2 ∗ F1) = ΛΩ(R ∗ (F2 ∗ F1)) = ΛΩ((R ∗ F2) ∗ F1)

= πr(F1)ΛΩ(R ∗ F2) = πr(F1)λ̂(R)ΛΩ(F2).

So λ̂(R)πr(F1) = πr(F1)λ̂(R) for all F1 ∈ I0(R,S). Hence, by Proposition 9.24,

λ̂(R) ∈ πr(I0(R,S))′ = (H∗(R,S)′)′ = H∗(R,S).

Therefore, λ̂(M̂) ⊆ H∗(R,S).

There is a notion of normality of a Borel subrelation of a discrete equivalence
relation (see [8]). Normality of ergodic subrelations is studied intensively also in [3].
It is shown in [3] that S being normal in R implies that (R,S) is a Hecke pair.

Corollary 10.3. Suppose that S is normal in R. Then the Hecke von Neumann
algebra H∗(R,S) is ∗-isomorphic to the group von Neumann algebra of the count-
able discrete group Γ := R/S (see [8], [3] for the definition of the group R/S).

Proof. By [3], there is a minimal coaction α of Γ on W ∗(R) such that the fixed-
point algebra W ∗(R)α of α is equal to W ∗(S). It is well-known that, in this case, M̂
is ∗-isomorphic to the group von Neumann algebra W ∗(Γ) of Γ. By Theorem 10.2,
H∗(R,S) is ∗-isomorphic to W ∗(Γ).
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Remark. In the above setting, it is easy to check that M is ∗-isomorphic to L∞(Γ),
and the map F defined in Section 8 is given by ΛbΩ(λΓ(γ)) 7→ ΛΩ(δγ) for each γ ∈ Γ,
where λΓ is the left regular representation of Γ on L2(Γ). This fact justifies our
“Fourier transform” terminology for F .

§11. Relation to Hecke pairs of groups

In this section, we discuss Hecke von Neumann algebras in the case where our er-
godic discrete measured equivalence relations S ⊆ R are derived from the “group-
subgroup” setting, whose meaning is explained in detail below.

As before, we start with an ergodic discrete measured equivalence relation R
on a standard Borel probability space (X, B, µ) and an ergodic Borel subrelation S
of R. We also retain most of the notation introduced previously.

Suppose that there exist a Borel subrelation P contained in S, a countable
discrete group G in the normalizer group N [P] of the full group [P] and a subgroup
H of G such that

(1) G ∩ [P] = {e}, i.e., the action of G on P is outer;

(2) (S ⊆ R) = (H n P ⊆ Gn P);

(3) (G,H) is a Hecke pair of groups, i.e., G = {g ∈ G : [H : H ∩ g−1Hg] <∞};
(4) the intermediate subrelation Pg := (H∩g−1Hg)nP is ergodic for each g ∈ G.

Thus we have

S = {(x, y) ∈ X ×X : ∃h ∈ H, (x, h(y)) ∈ P},
R = {(x, y) ∈ X ×X : ∃g ∈ G, (x, g(y)) ∈ P}.

In this setting, it is known (see [13, Example 3.5(i)] and [3, Section 9]) that (R,S)
is a Hecke pair.

Let {tq}q∈H\G ⊆ G be a set of representatives of the right coset space H\G
with tH = e. We also let {qλ ∈ H\G : λ ∈ H\G/H} be a complete set of
representatives of the double coset space Λ := H\G/H satisfying qH = H ∈ H\G.
We simply write tλ for tqλ for each λ ∈ Λ = H\G/H.

For any g ∈ G, put L(g) := [H : H ∩ g−1Hg]. Because (G,H) is a Hecke pair,
L(g) is finite for all g ∈ G. Note that the function L : G → N is two-sided H-
invariant, so it may be viewed as a function on H\G/H. By definition, we find that,
for any λ ∈ Λ = H\G/H, L(tλ) equals |Hqλ\H|, where Hqλ is the stabilizer group
at the point qλ under the H-action (q, h) ∈ H\G×H 7→ q·h ∈ H\G. For any λ ∈ Λ,
we choose a set {h(λ)

i : 1 ≤ i ≤ L(tλ)} ⊆ H of representatives of the quotient space
Hqλ\H. Then, by construction, the points qλh

(λ)
i (λ ∈ H\G/H, 1 ≤ i ≤ L(tλ))

are all distinct and H\G = {qλh(λ)
i : λ ∈ H\G/H, 1 ≤ i ≤ L(tλ)}.
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For each q ∈ H\G, set ψq := tq. We see that {ψq}q∈H\G is a set of choice
functions for S ⊆ R. According to the description H\G = {qλh(λ)

i : λ ∈ Λ, 1 ≤
i ≤ L(tλ)} stated in the previous paragraph, the choice functions {ψq} can be
relabeled in the form {ψλ,n : λ ∈ Λ, n = 1, . . . , nλ}, where ψλ,n := tλh

(λ)
n and

nλ := L(tλ). These are exactly Aoi’s choice functions for S ⊆ R (see [2]). Hence
the factor map Ξ is a map from H\G×X onto Λ = H\G/H.

By outerness of the action of G, we may and do assume that, for each
(x, y) ∈ R, the mapping σ(x, y) : H\G → H\G is the right translation q ∈
H\G 7→ qg ∈ H\G by g ∈ G, where g is determined by the condition (g(x), y) ∈ P.
In particular, P is included in Ker(σ). From this and the ergodicity of Pg, it follows
that each F ∈ L∞((H\G)×X)S depends only on the first variable, so that there
exists a unique function f ∈ `∞(H\G) such that F (q, x) = f(q) for a.e.x ∈ X and
all q ∈ H\G. Moreover, S-invariance of F entails that f is H-invariant. Thus f
is regarded as an element of `∞(H\G/H). With the notation introduced before,
we have Ξ∗(f) = F . We shall freely identify functions on H\G with those on G

which are right H-invariant, and functions on H\G/H with those on G which are
H-biinvariant.

The faithful normal semifinite weight Ω on L∞((H\G)×X)S = `∞(H\G/H)
is given by

Ω(f) =
∑

q∈H\G

f(q) =
∑
λ∈Λ

f(λ)nλ

for any f ∈ L∞((H\G)×X)S+ = `∞(H\G/H)+. We have

nΩ =
{
f ∈ `∞(H\G/H) :

∑
q∈H\G

|f(q)|2 =
∑
λ∈Λ

|f(λ)|2nλ <∞
}
,

I(R,S) =
{
f ∈ `∞(H\G/H) :

∑
λ∈Λ

|f(λ)|nλ <∞,
∑
λ∈Λ

|f(λ−1)|nλ <∞
}
,

I0(R,S) = {f ∈ `∞(H\G/H) : f has finite support}.

Let f1, f2 ∈ I(R,S). Since σ(ψq(x), x)(q) = qt−1
q in our setting, the convolu-

tion f1 ∗ f2 in I(R,S) is given by

(11.1) (f1 ∗ f2)(q) =
∑

p∈H\G

f1(qt−1
p )f2(p).

As a function on G, this is the same as

(11.2) (f1 ∗ f2)(g) =
∑

p∈H\G

f1(gt−1
p )f2(tp) (g ∈ G).

So I0(R,S) is exactly the Hecke algebra associated with the Hecke pair (G,H)
in the theory of automorphic forms. Because σ(ψq(x), x)(H) = Ht−1

q , the involu-
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tion f ] in I(R,S) is given by

f ]1(q) = f1(t−1
q )

or, equivalently, f ]1(g) = f1(g−1) for any g ∈ G.
Now take any f ∈ I(R,S) and any ξ ∈ `2(H\G). As in (11.2), define a

function f ∗ ξ on G by

(11.3) (f ∗ ξ)(g) =
∑

q∈H\G

f(gt−1
q )ξ(tq) (g ∈ G).

It turns out that f∗ξ belongs to `2(H\G). There exists a number Cf > 0 depending
upon f such that ‖f ∗ ξ‖2 ≤ Cf‖ξ‖2. It follows that, for each f ∈ I(R,S), the
equation

L(f)ξ := f ∗ ξ (∀ξ ∈ `2(H\G))

defines a bounded operator L(f) on `2(H\G) satisfying ‖L(f)‖ ≤ Cf . It is known
that L : I(R,S) → B(`2(H\G)) is an involution-preserving representation. Fol-
lowing the terminology in [22], we say that L(I0(R,S))′′ is the von Neumann
algebra of the Hecke pair (G,H), and denote it by L(G,H).

Let ρH\G be the unitary representation of G on `2(H\G) defined by

{ρH\G(g)ξ}(q) := ξ(qg) (g ∈ G, q ∈ H\G, ξ ∈ `2(H\G)).

Then ρH\G(G)′ = L(G,H) (cf. [22]). Let η0 ∈ `2(H\G) be the characteristic
function of the singleton {H}, i.e., η0 = δH . It is easy to see that η0 is a cyclic
vector for ρH\G(G)′′. Hence η0 is a separating vector for L(G,H). We consider the
faithful normal state ω0 on L(G,H) given by

ω0(T ) := (Tη0 | η0) (T ∈ L(G,H)).

Let {L(G,H), πω0 , H0} be the GNS representation obtained from the state ω0.
Note that L(I0(R,S)) is a σ-strongly∗ dense unital ∗-subalgebra of L(G,H) which
is globally invariant under the modular automorphism group of ω0 (cf. [22]). It is
easy to check that Λω0(L(I0(R,S))) is dense in H0. Now define a linear operator U0

from Λω0(L(I0(R,S))) into HΩ by

U0Λω0(L(f)) := ΛΩ(f) (f ∈ I0(R,S)).

Since

(Λω0(L(f1)) | Λω0(L(f2))) = (L(f1)η0 | L(f2)η0) =
∑

q∈H\G

f1(q)f2(q)

= (ΛΩ(f1) | ΛΩ(f2)),
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U0 is an isometry with dense range in HΩ. Therefore, U0 can be uniquely extended
to a unitary U from H0 onto HΩ. By definition, it is easy to see that we have
Uπω0(L(f)) = π`(f)U for all f ∈ I0(R,S). It follows that Uπω0(L(G,H))U∗ =
H∗(R,S). Therefore, L(G,H) is ∗-isomorphic to our Hecke von Neumann algebra
H∗(R,S).

Note that, in the situation considered above, there exists a Borel 1-cocycle c
from R into G such that (i) Ker(c) := {(x, y) ∈ R : c(x, y) = e} equals P;
(ii) S is equal to the subrelation c−1(H). This can be verified from the discussions
in [8] or [3]. Hence we may more generally begin with a Borel 1-cocycle c from the
ergodic discrete measured equivalence relation R into a countable discrete group G
such that the asymptotic range of c equals G. Moreover, assume that there exists
a subgroup H of G such that (i) (G,H) is a Hecke pair; (ii) S = c−1(H); (iii)
Pg := c−1(H ∩ g−1Hg) is ergodic for each g ∈ G. By [8], it is possible to choose
choice functions {ξg}g∈G for Ker(c) ⊆ R so that

• ξg ∈ N [Ker(c)] for all g ∈ G with ξe = id;

• Ker(c)(ξs(ξt(x))) = Ker(c)(ξst(x)) for a.e.x ∈ X;

• c(y, x) = g when y ∈ Ker(c)(ξg(x));

• σ0(y, x)(s) = sg−1 for any s ∈ G when y ∈ Ker(c)(ξg(x)), where σ0 is the index
cocycle associated with {ξg}.

As before, let {tq}q∈H\G ⊆ G be a set of representatives of the right coset space
H\G with tH = e. Then it is easy to check that {ψq := ξtq}q∈H\G is a set of
choice functions for S ⊆ R. Denote by σ the index cocycle determined by these
choice functions. If q, q′ ∈ H\G satisfies σ(x, y)(q) = q′ for some (x, y) ∈ R, then
(ψq′(x), ψq(y)) ∈ Ker(c), so we get

e = c(ψq′(x), x)c(x, y)c(y, ψq(y)) = tq′c(x, y)(tq)−1.

This means that q′ = qc(y, x). Thus

(11.4) σ(x, y)(q) = qc(y, x).

Suppose that F is in L∞((H\G)×X)S . From the ergodicity of Ptq and (11.4), there
exists a unique f ∈ `∞(H\G) such that F (q, x) = f(q) for a.e.x ∈ X. By ergodicity
of S, f must be H-invariant, so f ∈ `∞(H\G/H). Hence L∞((H\G)×X)S can be
identified with `∞(H\G/H). Under this identification, the restriction of the dual
operator valued weight TB to L∞((H\G)×X)S is given by

f ∈ `∞(H\G/H)+ 7→
∑

λ∈H\G/H

f(λ)nλ.
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This is semifinite, because (G,H) is a Hecke pair. Therefore, it follows from [3] that
the commensurability subrelation CommR(S) coincides with R up to a null set. So
(R,S) too is a Hecke pair. From this point on, by more or less the same arguments
as in the previous paragraph, one can show that the Hecke von Neumann algebra
H∗(R,S) associated with (R,S) is ∗-isomorphic to that of (G,H).

§12. Examples

In this section, we give some examples of Hecke von Neumann algebras.

(1) We first treat an inclusion of ergodic discrete equivalence relations S ⊆ R
of finite index. By [3], (R,S) is a Hecke pair. Moreover, by [12], there exists a
canonical system {P, H ⊆ G, β} for S ⊆ R, where β is an outer action of a finite
group G on P and H is a subgroup of G such that H contains no nontrivial
normal subgroup of G. So the Hecke von Neumann algebra H∗(R,S) is equal to
the algebraic Hecke algebra which comes from (G,H).

(2) We shall next show that, for each Hecke pair (G,H), there exists a Hecke
pair (R,S) whose Hecke von Neumann algebra comes from (G,H). Indeed, by
using the same arguments as in [3, Section 9(2)], we can construct an inclusion of
ergodic free group actions (Z ⊆ Z×H ⊆ Z×G) on (X,µ) :=

⊗
n∈Z(Ω, ν), where

(Ω, ν) :=
⊗

g∈G(Ωg, νg), Ωg = {0, 1}, νG({0}) = νg({1}) = 1/2 and Z and G act as
the Bernoulli shifts. Put (P ⊆ S ⊆ R) = (RZ ⊆ RZ×H ⊆ RZ×G). By construction,
these equivalence relations are ergodic. We define a 1-cocycle c from R onto G by
c(x, (n, g)x) := g (x ∈ X, (n, g) ∈ Z × G). It is easy to check that (P ⊆ S ⊆ R)
is equal to (Ker(c) ⊆ c−1(H) ⊆ c−1(G)). So, by using the same arguments in
the previous section, we conclude that the Hecke von Neumann algebra H∗(R,S)
comes from the Hecke pair (G,H).

Acknowledgements

The authors are grateful to the referee for his/her careful reading and helpful
suggestions to improve their earlier manuscript.

This research was partially supported by Grant-in-Aid for Scientific Research
(KAKENHI), 19740090 and 19540206.

References

[1] H. Aoi, A construction of equivalence subrelations for intermediate subalgebras, J. Math.
Soc. Japan 55 (2003), 713–725. Zbl 1033.46046 MR 1978219

[2] , A remark on the commensurability for inclusions of ergodic measured equivalence
relations, Hokkaido Math. J. 37 (2008), 545–560. Zbl 1151.37006 MR 2441937

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1033.46046&format=complete
http://www.ams.org/mathscinet-getitem?mr=1978219
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1151.37006&format=complete
http://www.ams.org/mathscinet-getitem?mr=2441937


Hecke von Neumann Algebra 667

[3] H. Aoi and T. Yamanouchi, On the normalizing groupoids and the commensurability
groupoids for inclusions of factors associated to ergodic equivalence relations-subrelations,
J. Funct. Anal. 240 (2006), 297–333. Zbl 1122.28012 MR 2261685

[4] J.-B. Bost and A. Connes, Hecke algebras, type III factors and phase transitions with spon-
taneous symmetry breaking in number theory, Selecta Math. (N.S.) 1 (1995), 411–457.
Zbl 0842.46040 MR 1366621

[5] M. Enock and R. Nest, Irreducible inclusions of factors, multiplicative unitaries, and Kac
algebras, J. Funct. Anal. 137 (1996), 466–543. Zbl 0847.22003 MR 1387518

[6] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann
algebras, I, Trans. Amer. Math. Soc. 234 (1977), 289–324. Zbl 0369.22009 MR 0578656

[7] , Ergodic equivalence relations, cohomology and von Neumann algebras, II, Trans.
Amer. Math. Soc. 234 (1977), 325–359. Zbl 0369.22010 MR 0578730

[8] J. Feldman, C. E. Sutherland and R. J. Zimmer, Subrelations of ergodic equivalence rela-
tions, Ergodic Theory Dynam. Systems 9 (1989), 239–269. Zbl 0654.22003 MR 0578730

[9] U. Haagerup, Operator valued weights in von Neumann algebras, I, J. Funct. Anal. 32
(1979), 175–206. Zbl 0426.46046 MR 0534673

[10] , Operator valued weights in von Neumann algebras, II, J. Funct. Anal. 33 (1979),
339–361. Zbl 0426.46047 MR 0549119

[11] P. Hahn, The regular representations of measure groupoids, Trans. Amer. Math. Soc. 242
(1978), 35–72. Zbl 0356.46055 MR 0496797

[12] T. Hamachi, Canonical subrelations of ergodic equivalence relations-subrelations, J. Oper-
ator Theory 43 (2000), 3–34. Zbl 0990.37001 MR 1740892

[13] M. Izumi, R. Longo and S. Popa, A Galois correspondence for compact groups of automor-
phisms of von Neumann algebras with a generalization to Kac algebras, J. Funct. Anal. 155
(1998), 25–63. Zbl 0915.46051 MR 1622812

[14] H. Kosaki, Extension of Jones’ theory on index to arbitrary factors, J. Funct. Anal. 66
(1986), 123–140. Zbl 0607.46034 MR 0829381

[15] A. Krieg, Hecke algebras, Mem. Amer. Math. Soc. 87 (1990), no. 435. Zbl 0706.11029
MR 1027069

[16] J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebraic
setting, Math. Scand. 92 (2003), 68–92. Zbl 1034.46067 MR 1951446

[17] T. Miyake, Modular forms, Springer, Berlin, 1989. Zbl 0701.11014 MR 2194815
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