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Penalization of a Positively Recurrent Diffusion
by an Exponential Function of its Local Time

by

Christophe PROFETA

Abstract

Using Krein’s theory of strings, we penalize here a large class of positively recurrent dif-
fusions by an exponential function of their local time. After a brief study of the processes
so penalized, we show that on this example the principle of penalization can be iterated,
and that the family of probabilities we get forms a group. We conclude by an application
to Bessel processes of dimension § € ]0,2[ which are reflected at 1.
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§1. Introduction

1. Let b € ]0,4+00]. We consider a linear regular diffusion X taking values in
I = [0,b), on natural scale, and with 0 an instantaneously reflecting boundary.
Let P, and E, denote, respectively, the probability measure and the expectation
associated with X when started from x > 0. We assume that X is defined on the
canonical space  := C(Ry — R,) (where Ry := [0,+0o0[), and we denote by
(Fi,t > 0) its natural filtration, with Foo 1=/, Fi-

Let us start by giving a definition of penali;ation (see also Theorem :

Definition 1.1. Let (T';,t > 0) be a measurable process taking positive values
and such that 0 < E,[I;] < oo for every t > 0 and every x € I. We say that the
process (', t > 0) satisfies the penalization principle if there exists a probability
measure Q, defined on (2, Fs,) such that

Vs> 0,VA, € Fs,  lim Ex[1n.I4]
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This problem has been thoroughly studied by B. Roynette, P. Vallois and
M. Yor when P, is the Wiener measure (see [RVY06] for a synthesis and further
references). Let (L, t > 0) be the local time of X at 0, and (7,1 > 0) the right-
continuous inverse of L:
7 :=inf{t > 0; L; > [}.

Recently, P. Salminen and P. Vallois [SV(09] have proved that the penalization prin-
ciple holds when (I'; = h(L;),t > 0) with h a non-negative and non-increasing func-
tion, under the assumption that the Lévy measure of the subordinator (7,1 > 0) is
subexponential (see Remark . Here, we are interested in extending these results
to other diffusions, with weight process (I'y := e*Ft ¢t > 0) for @ € R. We will
focus mainly on the positively recurrent case (in Sections [2] to [5]), which has not
been studied yet. Other cases will be briefly dealt with in Section [6] where we will
see how, in the null recurrent case, the assumption of subexponentiality appears
naturally.

2. Our approach of penalization with (T := e®f¢ ¢ > 0) is based on the rate

@Lt] as t tends to infinity. But before stating our

of decay (or growth) of E.[e
main results, we need a few notations. Let m denote the speed measure of X. We
assume that m is strictly positive in the vicinity of 0 and does not have atoms (see
A. N. Borodin and P. Salminen [BS02, Chapter II] for the definition of the main
attributes of a linear diffusion). It is known that X admits a transition density
p(t,x,y) (with respect to m) that is jointly continuous and symmetric in z and y

(see [IM74, Chapter 4, p. 149]). We also introduce its resolvent kernel:

(1.1) Ry(z,y) = /OOO e Mp(t,z,y) dt.

Now, let o > 0. We assume that X is a recurrent diffusion reflected on [0, ]
and such that b+ m([0,b]) < co. This hypothesis implies in particular that X is
positively recurrent. In this case, the equation

1

admits a countable number of solutions, they are all real, and we denote by 72 the
one of smallest modulus (see Lemma [2.3)). Similarly, we denote by p? the unique
solution in Ry of the equation

(1.3) —a+ = =0.

We can now give our first theorem:
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Theorem 1.1. Let a > 0 and let 2, p? be defined by equations (1.2)) and (1.3)).
Then:

(i) Under Assumption 2.1 we have (see Section2)
1 1

1.4 E. [e—aLt —R_,2(0,z exp(—r2t).
( ) x[e ]t~>+00 r2 2( )%RZ(O’O)L:—N p( )
(ii) Under Assumption we have (see Subsection [3.5))
1 1
(1.5) Egg[eaLt] ~ —R 2(0,1‘)—exp(p2t)'
t——+o0 p2 P %Rz(ov 0)|z:p2

This result will enable us to obtain our penalization principle, under the as-
sumption that m(dx) = m(z)dz:

Theorem 1.2. Let o > 0 and let 12, p* be defined by equations (1.2) and (1.3)).
For x € [0,b], the processes

(=) . aen(r?t — af) B2 (0 Xe) o
(Mt = exp(r°t — aly) R_2(0.2) =

and

(+a) . e M >
(Mt = exp(—p“t + aly) R, (0. 2) ,t>0

are continuous, strictly positive P,-martingales which converge to 0 as t — +o0.
Moreover, under Assumptions[2.1] and [3.1], the penalization principle holds:

(i) Let s >0 and x € [0,b]. For all As € Fs, we have

Ez 1 tal,
lim [La.c }

s L B [1a, MEY).
t—too By [etolt] (Lo, M7

(ii) There exists a family (P&i‘*))me[oyb] of probabilities defined on (2, Foo) such
that
PED(A,) = Ep[1a, MFY]  for allu >0 and all A, € F,.
We now study the law of the coordinate process under P(F®):

Theorem 1.3. Let a > 0, let r2, p? be defined by equations (1.2) and (1.3), and
suppose that Assumptions[2.1] and [3.1] hold. Then:

(i) Under PE) | the coordinate process X is a diffusion with infinitesimal gen-
erator respectively given by

g(—a)f(x) = mzx) f”(x) + m(x)R2 2(0 x) 8R,T823507$) f’(x),
(1.6) ST (0.2
G f(a) 1= 1 (a4 2 O

m(z) m(x)R,2(0,2)  Ox f'(@),
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defined on the domain
D(GEY) = {f; GV f € Cuo([0.0]), f/(07) = /(b7) = 0}

(ii) Under PE) | the density of the Lévy measure of the subordinator T is given
by
n(= (u) = e n(u),
{n(+0‘) (u) = e~ *n(u),
where n is the density of the Lévy measure of T under P.
(iii) Lo = 0o P _g.s.

We must stress the fact that (iii) is quite surprising. Indeed, in [SV09], the
authors prove that for (a large class of) null recurrent diffusions, the penalization
principle holds with (e=*F¢ ¢ > 0) (a > 0), and that the process so penalized is
transient (as expected). As shown by Theorem this is no longer the case for a
positively recurrent diffusion (see also Subsection |3.4)).

Some other quantities, such as the speed measure or the scale function of the
penalized diffusion, will also be computed during the proof (see Section . Note
that the expressions in both cases are very similar, and can be deduced formally
from each other by replacing o by —a (resp. —a by «) and p by ir (resp. r by ip).
A natural idea then is to consider a double penalization: first, we penalize P with
(e“Fr t > 0); second, we penalize P(®) with (e#L¢,t > 0). The result is very simple,
and can be summarized by a commutative diagram, as in the following theorem:

Theorem 1.4. Let o, 3 € R. Suppose that Assumptions and hold. Then
the following penalization diagram is commutative:

(e*Ft,1>0)
P P

(ePFt,1>0)
(e(aJrﬁ)Lt ,t>0)

Pletp) — pe)(8)
In particular, P()(=2) = P,

Note that this theorem bears a strong resemblance to Proposition 3.2 of
[PY81] about conditioned diffusions.

Remark 1. If (X;,t > 0) is a linear diffusion whose scale function s is a strictly
increasing C! function such that s(0) = 0, we have, from the occupation time
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formula, LY(X) = LY(s(X)). Then

1 1 2
Eaj e—aLg(X) — Es - e—aLg(S(X)) ~ 7R—r 0, s(x —r“t
| i e e R o
and, for A, € Fy,
E (1, e—all(X) B, [1s e—old(x)
P;Q,X)(Au) — hm 37[ Aue S ] — lm ( )[ Aue - }
t——+o0o E$[6704Lt (X)] t—+oo Es(w) [e*aLt(S(X))]

a,s(X
=P (M)

Therefore, we shall always consider the equivalent probability under which

(X,t > 0) is a linear diffusion on natural scale.

3. The remainder of the paper is decomposed into five parts:

In Section we prove Theorem dealing only with the asymptotic of E[e~* ]
(o > 0). The proof relies on an analytic continuation of the Laplace transform
of t +— E[e~*%¢], and on the residue theorem.

In Section [3] we prove Theorems [T.2] and still in the case of the penalization
by (e=@Lt,t > 0). The penalization by (e“%t,t > 0) being very similar, we shall
only give, in Subsection [3.5] a few elements of the proof.

In Section [4 we prove Theorem i.e. the iteration principle.

In Section [5, we derive explicit formulae when X is a Brownian motion reflected
at 0 and 1, and more generally when X is a Bessel process of dimension ¢ € |0, 2]
reflected at 1.

And finally, in Section [} we briefly deal with the cases of null recurrent and
transient diffusions.

§2. Proof of Theorem

Let a > 0. We present the full proof of the penalization by (e~ t > 0). A
short proof of the penalization by (e“t, ¢+ > 0) is given in Subsection Let
us recall that X is a positively recurrent diffusion reflected on [0,b] such that

b+ m([0,b]) < oo. Our approach is based on the study of the Laplace transform

of t — E,[e~*It]. Indeed, this quantity can be expressed explicitly in terms of the

resolvent of X:

Lemma 2.1. We have the identity

(2.1) | e = - 20
0

N ARA(0,0) 1+ m
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Proof. Let A > 0. We have, from the Fubini—Tonelli theorem,

(2.2) / e ME e F ) dt = E, [/ e Memalt dt]
0 0

1 o0
=E, [}\ — % / e Memalt st} after an integration by parts,
0

1 oo
X %/0 E.[e"*"]e ! dl  putting L, = L.

Since X is a Markov process, 7 is a subordinator and the following identities hold:

(2.3) E,[e 0] = and Eo[e "] = exp(—1/Rx(0,0)),

where T := inf{u > 0; X,, = 0} is the first hitting time of 0 by X. By the Markov
property, (2.3) implies in particular that

(2.4) E.[e™*"] = E [e P Eg[e ] = m exp(—1/Rx(0,0)).

Therefore, plugging (2.4) in (2.2), we get

o0
/ e ME, [em L] dt =
0

1

"~ ARA(0,0) 1+ el

1
Y

1

X AR,
1

= 0
Y

We now determine the limit of [ e ME,[e=*F*]dt as A — 0. As shown

by Lemma we have to determine the rate of decay of A — Rx(0,0) and
A= Ry(0,2).

Let us introduce the infinitesimal generator of X:

82

(2.5) g:= Iz

and, for A € C, the two eigenfunctions ®(-, \) and ¥(-, \), satisfying

(2.6) gle(, Nl =Are(, A on 0,8, - JGI(,A)]=AU(,A) on [0,8],
' ®(0,A) =1 and ®’(0,\) = 0, U(0,A) =0 and (0, ) = 1.
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(2.6) can be rewritten equivalently as

B(x, \) = 1+/\/I dy/yq)(s,)\)m(ds) _ 1+)\/z(a:—s)<1>(s,/\)m(ds),
(2.7) 0. 7 0
U(xz, \) =a:+)\/0 dy/0 U(s, \) m(ds) =x+/\/0 (x — s)U(s,\)m(ds),

where z € [0,b]. Both ® and ¥ are entire functions in A, differentiable in x on
[0,b] since m has no atoms, and positive if A is positive. According to [DMTG,
Chapter V, p. 162], the resolvent kernel admits the representation

(28) R)x(‘ra y) = (p(xv )‘)(R)\(Oa O)q)(y7 >‘) - \Il(ya A)) for z < Y.

Lemma 2.2. We have the following asymptotic behaviours:
1

R (0,0) 3o am([0,8])
and
B o[- )
Consequently,
oo_t —aLy ~ m T l_ xx—sms
/0 e ME,[e ] dt ~o ([O,b})( +a> /0 ( ) m(ds).

Proof. Since b+m([0,b]) < oo and X is reflected at b, it is shown in [KK74] p. 34]
that

W (b,N)
(2.9) R»(0,0) = & (b, )
Taking the = derivative of (2.7)) leads to
14+ A [0 (s, \) m(ds) 1 <1>
2.10 R (0,0) = 0 = +ol < A —0).
(2.10) +(0,0) A Jy ®(s, \) m(ds) Am([0, b)) ) )

Then identity (2.8)) implies that

Rx(0,2) (2, \)
@1 250 = 2N - 760
g,y S Ao (2= 5Bl A) mids)

)\m(%o,b]) +o(1/X)

= ®(x,A) — Am([0,0]) (ac + )\/Ox(x —8)U(s, A) m(ds)> (1+4+0(1))
=1+ /\</Ow(:1: — s)m(ds) — xm(][0, b])) + o(N).

A—0
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As a result, using (2.10)), (2.11]) and (2.1]) we get
/ e ME,[e=L dt

0

= % (1_ <1+/\(/Om(x—8) m(ds)—axm([0, bD) +0()‘)> 1+Am([°71b]>+o(>\)>

(03

= % <1— <1+)\(/0I(x—s) m(ds)—azm([0, b})) +o()\)) (1—W+0(A)>>
-~ m([0,5) (z+;)/0w(xs)m(ds). 0

Remark 2. Note that Lemma [2.2| implies that we cannot apply the Tauberian

theorem (see Section @) since the rate of decay of A — [° e ME,[e~*L] dt is not
polynomial. Indeed, we will prove in Theorem that it is in fact exponential.

Our approach now consists in extending to A in the complex plane,
in order to apply the inverse Fourier transform. To this end, we introduce some
notation. We set C* := C\ {0}, N* := N\ {0}, and write R_ (resp. R*) for the
interval |—o0, 0] (resp. ]—00,0[). For a complex z € C, we denote by Re(z) the real
part of z, and by Im(z) its imaginary part. Let us now define

(2.12) L1(z2) = /O " e ool gy,

From Lemma we see that £ is well-defined on {z € C; Re(z) > 0}, and
holomorphic on {z € C; Re(z) > 0}. Let us introduce next

0 if s <—1,
flse)=qs+1 if —1<s<0,
E [e eL:] if s >0,

and

(2.13) Lo(2) = / e " f(t)dt.
R

Obviously

(2.14) Ls(2) Z/O e (1 +t)dt + /OOO e M E e ] dt

1 1-—¢7
=" 2 + L1(2).

Consequently, Lo is once again well-defined on {z € C; Re(z) > 0} and holomor-
phic on {z € C; Re(z) > 0}. According to Lemma f belongs to L*(R), and
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therefore admits a Fourier transform:
(2.15) Flv) = / e F(t)dt = Lo(—iv), € R.
R

Our aim is to prove that fe L'(R). This will permit inverting this transform. Let
us start by rewriting Lo with the help of (2.1)). Using z = A > 0 in (2.14]) gives

1—¢? Ry (0,2 «
Ly(\) = ——5— — A(0,7) —
Let us define
1—€e* R,(0,z) @
2.16 H- = — - .
( ) 2(2) 22 ZR, (07 0) o+ R, (1070)

Lemma 2.3. Hs is a meromorphic function on C, whose poles all belong to the
negative real axis R* . We denote by r? the solution of the equation 1/R_,2(0,0)
+ a =0 of smallest modulus.

Proof. Recall ([KK74, Lemma 2.3, p. 35 and Point 11.8, p. 77]) that A — R»(0,0)
admits a meromorphic extension to C, whose poles (—72),en and zeros (—w?)pen=
are all negative. Then identity implies that A — Rx(0,z) also admits a
meromorphic extension to C, whose poles are (—v2),cy. Furthermore, from the
identity ([KKT74, Lemma 2.2, p. 34])

Im(\) /Ob

we can conclude that Ry(0,0) is real if and only if A is real. But, when A > 0, it
is clear from that Rx(0,0) > 0. Therefore, the equation 1/R,(0,0) + a =0
can only have solutions in R_. Since f; xm(dx) < 400, it is known from [DMT76]
Chapter V.6, p. 182] that

(i) 7% =0,
(i) the zeros (—w?2),en+ and the poles (—72),en are interlaced,
(iii) for A € R, the graph of A — 1/R_,2(0,0) is as in Figure 1.

U(z,\) |?
~ RA(0,0)

D(x, \) m(dx) = Im(R(0,0))

In particular, the equation 1/Ry(0,0) + a = 0 admits a unique solution A\ = —r2

whose modulus is strictly smaller than w?. Thus the function z+— a/(a+1/R.(0,0))
is meromorphic on C with all poles belonging to the negative real axis. Finally, it
is clear that the part z — —(1 — e*)/z? is holomorphic on C* and that 0 is not a
pole of Hy (from Lemma, so we conclude that Hs is a meromorphic function

on C whose only pole in {z € C; Re(z) > —w?} is —r?. O



690 C. PROFETA

71

—wa1 —Wii =7 1 W1 “2

Fig. 1: Graph of A — 1/R_,2(0,0)

Remark 3. An analytic continuation argument implies that the equality Lao(z) =
H(2) holds for all z € {z € C; Re(z) > 0}. In particular, from (2.15)), we have

~

f(v) = Lao(—iv) = Hy(—iv) (v €R).

We now add the following technical assumption, which will ensure that f is
in LY(R):

Assumption 2.1. We assume that there are 3 > 0 and ¢ € |r?, w}[ such that, for
z € {z € C; —c < Re(z) <0},

1
Rz 070 = O — .
( )\z\~+oo <zl‘3>

This assumption is for instance satisfied by the Brownian motion reflected in
[0, 0], and more generally by Bessel processes of dimension 0 € ]0, 2[ reflected at b
(see Section . It comes in useful in the following lemma:

Lemma 2.4. Let us assume that Assumption [2.1] holds. Then:

(i) For all a € [0,c] \ r?, the function v — Hs(—a + iv) is integrable on R, and
tends to 0 when v — Fo0.

(ii) Hy is bounded on the domains {z € C; —¢ < Re(z) < 0, Im(z) > 1} and
{z € C; —¢ <Re(z) <0, Im(z) < —1}.
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Proof. (i) First, it is clear from Lemma that, in the domain {z € C; —¢ <
Re(z) < 0}, Hs is a meromorphic function whose only pole is —r2. Therefore, for
a € [0,c] \ 2, the function v — Ha(—a+ iv) is continuous on R, and we only have
to check its integrability in the vicinity of +00. We have

. R_a+1iv(0,) «
(2.17) Hy(—a+iv) = — -
R_4+4iv(0,0) (—a +iv) (a + 71%7@;”(070))
B 1 _ efaJri'u
(—a+iv)?
————

integrable at +oo

On the one hand, using the first identity in ([2.3]), we have

R_4yiv(0,2) (a—iv)T, T,
2.18 ———————=| = |[E, [e'*T"H0]| < EpletO .
(2.18) e Q) — g, e < Byfe ™ < o
On the other hand, thanks to Assumption 2.1
(2.19) —* _ Boasn(0,0) ( a )
(—a + Z’U) (Oé + m) (7(1 + Z'U) 1+ aR—a—&-iv(Oa O)

1
0 ()

Gathering (2.18]) and (2.19)), we obtain

Rfa+iv(07 LE) « 1
(2.20) . _ 0 |
R—a-‘riv (O, 0) (—a + “}) (Oé + m) v—+too |U‘1+6

Consequently, (2.17) and (2.20) imply that v — Hs(—a + iv) belongs to L(R).
(ii) More generally, (2.20) can be written, for z € {z € C; —¢ < Re(z) < 0},
as

R.(0,x) e ( 1 )
2.21 = O|———).
( ) RZ(O, 0) Z(O[ + m) |z|—+o00 |Z|1+B

We only prove that Hs is bounded on {z € C; —c¢ < Re(z) < 0, Im(z) > 1}.
The same pattern of proof applies for the other case. Let € > 0. From ,
there exists M > 0 such that, for all z € {z € C; —¢ < Re(z) < 0} satisfying
|z| > Im(z) > M, we have

|Ha(2)| < e.
Therefore Hj is bounded on the domain {z € C;—c < Re(z) < 0, M < Im(z)}.

But, since H is continuous, it is also bounded on the compact domain {z € C;
—c < Re(z) <0,1<Im(z) < M}. This ends the proof of Lemma O
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In particular, for a = 0, we infer that fe L'(R). We can therefore apply the
inverse Fourier transform to get

1 1

(2.22) flt) = %/Re*i”tf(v) dv = o Re*i”tHg(—iv) dv.

To obtain an equivalent to f(t) when ¢ tends to infinity, we consider the
integration contour Ap = ALUAZ% UAY UAY of Figure 2, on which we will apply
the residue theorem to the meromorphic function z — e'* Ha(2).

A% R
A%
Ag
fwfl —c| —p2 0
—R
Af

Fig. 2: Integration contour

Lemma 2.5. Lett > 0 be fired and 1? < ¢ < wi.
(i) We have

(2.23) ?{ e"*Hy(2) dz —— 2imf(t) + / e'*Hy(2) dz,
Ag A3,

R—+o00

where A3 is the azis —c + iR.

(ii) There is a constant K (x) independent of t such that

/ e Hy(z)dz
A

3
oo

(2.24) < K(z)e .

Proof. We study each side of the rectangle separately:
1) We parametrize AL with z = iv, —R < v < R. Then, from (2.22)),

(2.25) /A

R
e*Hy(z)dz = z/ e Hy (iv) dv
5 -R
R .
= z/ e " Hy(—iv) dv —— 2im f(t).
R R—+00



PENALIZATION OF A RECURRENT DIFFUSION 693

2) Let {z = —a+iR; 0 < a < ¢} be a parametrization of A%. Then

A

According to Lemma the function z + Hy(z) is bounded on {z € C; —¢ <
Re(z) <0, Im(z) > 1}, and limp—, 400 H2(—a + iR) = 0. Then we can apply the
dominated convergence theorem to obtain

e*Hy(2)dz = / ! TR ) (—a + iR) da.
0

2
R

2.26 li "*Hy(z)dz = 0.
( ) R—l}foo A% € 2(2) o
3) We parametrize A% with 2 = —a — iR, 0 < a < c¢. The proof on this

segment is the same as the one on A%, so we get

(2.27) lim e"*Hy(2)dz = 0.
R—+o00 A‘}a

4) As for A%, we use z = —c —iv, —R < v < R, to obtain

= <e “K(x),

/ e T Hy (—¢ —dv)idv
R

/ e Hy(z)dz
A

3
R

where K (z) = [ |Hz(—c+ iv)| dv. From Lemma K () is finite. This shows
(2.24). Moreover,

(2.28) lim e*Hy(z)dz = / e'*Hy(z) dz.
R—+o00 A:lsq A

3
It is then clear that (2.23)) is a direct consequence of (2.25)—(2.28]). O

Proof of Theorem[1.1] From (2.16)), we have

R.(0,x) @
tzH — tz z ’ _ Ltz
¢ Hy(2) © zR,(0,0) o + B00) (1070) ¢ T2

The only pole of z — e'*Hy(2) inside the contour Ag is —r2, and it is a simple
one. The part e'*(1 — €*)/2? has no contribution since it is holomorphic at —r2.
Consequently, the residue of e?* Hy(z) at —r? reduces to

R_,2(0,x) !
Res(e'* Hy(2), —12) = : exp(—r?t)
rR_2(0,0) £ (e + zioy) |
1 1
=—R_,2(0,z exp(—7r2t).
R )ﬁRZ(O,O)\Z:_rz xp(—r°t)
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Applying the residue theorem and (2.23)) leads to

2im 1
2im f(t +/ e Hy(2)dz = =—~R_,2(0,z exp(—r2t).
(t) At (2) 2 ( )%32(070)!22_7,2 (=r7t)
Since ¢ > r, using (2.24)) we get
1 1
t)=Eyle ] ~ ZR_,2(0,z exp(—r2t),
() [ ]tﬁ+oo r2 +( )%RZ(O,O)L:ﬂz P )
which ends the proof of Theorem O

§3. Proofs of Theorems and

As in the previous section, we shall only deal with the case of the penalization
by (e=*Ft,t > 0). Some comments about the case (e*t,t > 0) will be given in
Subsection We assume from now on that m is absolutely continuous with
respect to the Lebesgue measure: m(dz) = m(z)dx.

83.1. A preliminary lemma

Lemma 3.1. Let a > 0, and 12 be the unique solution in |0,w?| of the equation
a+1/R_,2(0,0) =0. Then, for z € [0,b], the process

_ R_,2(0,X})
MY = M al) 2 >0
( ' (it = al) B0 0 2
is a continuous, strictly positive P, -martingale which converges to 0 as t — +o0.

Proof. 1) Relation (2.8) implies that

RA(0 U(z, A
A( 71:) :(b(x’A)_ (x’ ) .

R (0,0) R (0,0)
We have noticed in the proof of Lemma [2.3]that z — 1/R.(0,0) is holomorphic on
the domain {z € C; Re(z) > —w?}. An analytic continuation argument applied to
the first identity in (2.3 leads to

2 R_ 2(0 Ji)

3.1 Eyfe” 7] = == < 0.
( ) [e ] R_TZ (0, 0) o0
This implies that M(~) is continuous and strictly positive. We now assume that
x = 0 to simplify the notations. According to [RW00, Chapter V, Theorem 47.1,
p. 277], there exists a Brownian motion (B;,t > 0) reflected at 0 and b such that

X, =B, (t>0),

where:
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e (L7(B),z € [0,b],t > 0) is the local time at z of the process (B, t > 0),
o A= f(f L?(B)m(dz) is a continuous additive functional,
o v, =inf{u > 0; A, > t} is the right-continuous inverse of A.

Note that Li(X) = L3, (B). Here, since we have assumed that m has a density, we
have, from the occupation time formula,

b ¢
(3.2) Atz/o Lf(B)m(z)dz:%/o m(By) ds.

As a result, A is continuous and strictly increasing, so that ~ is also continuous,
strictly increasing, and A,, = v4, = t.
2) Let us apply Ito’s formula. In the following, all the derivatives are taken

with respect to the first variable, for example ®'(z, \) := g—f(o:, A). We have

2
erzAt—aLAB)(Rr?(O’Bt)) ) (@(Bt,—ﬁ) _ 2B, ) ))

X R_,2(0,0)
P /Ot AL (B) ((I)’(BS,—V’2) - m> a5
L2 /Ot 2 As—aL.(B) <cI>(Bs, —r?) - M) a4

t
— a/ e’ As—aLs(B) dLs(B).
0

We then replace ¢t by ~; and make the time change s = 7, following Proposition
1.5, p. 181, from D. Revuz and M. Yor [RY99]. This entails

_ t (X, — 2
(33) MV =1+ / erumelu(X) (<I>'(Xm—7“2)— m) X,
0

R_,2(0,0)
R L U(X,,—1?)
34 - — rru—elu(X)(§(X,, —r?) — - L\ m(X,) dva
(3.4) S (¥ 1) = ot ()
t 2
2 r2u—aL,(X) d(X.  — AN \II(XU7_T ) d
(3.5) +7r /0 e ( (X, —17) 7R_T2(O,O) m
t
(3.6) —a / erumelu(X) g (X),
0

where, in (3.4), we have used the fact that ® and ¥ are eigenfunctions of the
operator G (cf. (2.6))). Then differentiating the equality A, = t, we get from (3.2))
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As a result, the terms related to du ((3-4) and (3.5)) cancel. Let us now examine
the coefficients with respect to dL;(X) and dL?(X). Since B can be written as
B+ L°(B) — L*(B) where 8 is a standard Brownian motion, we have, by time
change,

X = 8, + L(X) - L'(X),

where (3, is an (F,,)-local martingale.

(i) From ({2.6), ®'(0, —r?) = 0 and ¥’(0, —7?) = 1. Then (3.3)) and (3.6) give

- (Rl(OO) + a) dLY(X) =0 by definition of r (cf. (T.2)).
(ii) (3.3) gives
’ 2 \Il/(b> _TQ) b 43
O'(b, —r*) — T (0.0) dL?(X)=0 by definition of R_,2(0,0) (cf. (2.9)).

Finally, (3.3 reduces to

o b (X, —r?
M = 1+/o e (QI(X“’_T%_ R( 2(0 0))> e

This implies that M (%) is a continuous local martingale. But, from (3.1), we have
_ —or, B_2(0, Xy)
M( a) _ r2t—alL, r )
t € R_,2(0,0)
S €T2tEXt [eT'zTo]

2 2 2
<e" 'Eyle” ] since x — E,[e” 1] is clearly increasing.

As a result, M=% is a positive P-martingale, and therefore converges almost
surely.

3) Using (3.1)), let us write
r2t—al; R*TQ (07 Xt)
R_,2(0,0)

’t
<exp (—aLt (1 - ciL))Eb [eTQTU].
t

From an ergodic theorem (see [IM74, Chapter 6, p. 229]), we know that

Lt 1

(3.7) MY =e

Let us apply Jensen’s inequality with the convex functions x — x* (k € N):

(r®Eo[n])* < Eo[(r®m)¥]

(39) k! - k!

(I>0).
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With k£ = 2, it is clear from the equality case in the Cauchy—Schwarz inequality
that

(r*Eo[n])? < Eo[(r?m)?].
Therefore, summing (3.9) with respect to k, we obtain

(3.10) exp(Eo[r?7]) < Eolexp(r?n)],
and this inequality is strict. Now, it is known from p. 22] that
(3.11) Eo[r] = m([0,b])!.
Hence, plugging and (with A = —?) in , we get
e O < o~UR_2(00) o 2R 5(0,0)m([0,0]) < 1,

since R_,2(0,0) = —1/a < 0. Consequently, using (3.8) and (1.2), we obtain

. r2t r2m([0, b]) 9

Finally, letting ¢t — +o0 in (3.7 and using (3.12)) ends the proof of Lemma O

§3.2. Proof of Theorem
We will use the following general penalization principle (see [RVY00]):

Theorem 3.1. Let (I'y,t > 0) be a stochastic process satisfying, for every t > 0,
0 < E[I'y] < +o00. Suppose that, for any s > 0,

im ———= =: M,
t—+oo  E[I]
exists a.s., and
E[M] = 1.
Then:
(i) For any s >0 and As € Fy,
E[1,. T
lim el = E[M,1,,].

t—too R[]
(ii) There exists a probability measure Q on (2, Foo) such that for any s > 0,

Q(AS) = ]E[MSIAJ-
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In our framework, we have, for s < t, by the Markov property and Theorem

L1

Egle=*lt|F,] e *<Ex, [e’aLf*S]

E,[e—L+] E,[e—aLt]
R_,2(0,X,) _
R 24 _ i\ s) (=)
P exp(r®s — aLy) R_(0.2) M=,

Note that from Lemma M%) is a martingale such that E, [Ms(_a)} = 1. This
proves Theorem (1.2 O

§3.3. Proof of Theorem

Proof of Theorem ( 1). 1) We start by proving that the coordinate process X is
still a Markov process under Pgﬁa). Let Ay € Fs, and f be a Borel function with
compact support. We have, for s < ¢,

EC O (Xors)1a.] = Bal MG f(Xit0)1a,]
[ R_,2(0, Xy
~ B fexplr?(t +9) - Lo O X) p |
r 6r2(t+s)
_R,Tz (0, LL‘)
'erz(t—i-s)—ozLS
= ]Ez 7Eax [e—aLtOOS R—r2 (07 Xt o eb)f(Xt © 9-5) | ‘7:3]1/\5:|

Eule="+ B_ (0, Xe ) f(Xers) | fsms}

L R_Tz (0, IE)
r er’z(t—i-s)—ozLS L

ey
. e R0, X (X |
-67'2s—aL5 R_,» (0, XS)
i R_,2(0,x)
= ECOES V(X))

E&f)[f(Xt)]lAs]

Therefore, we obtain
EC) [f(Xers) | Fi] = B [F(X0)].

This proves that X is Markov under IP’SE_O‘).
2) Let us calculate its infinitesimal generator. Let f be a bounded function
defined on R, and of class C2. Then

R—Tz (0’ Xt) 6r2t7aLt

PECOF() - F@)] = B (70 - IR v
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. 1 1
oy o
_ f(il?)]Ez[(R_Tz (O, Xt) —R_,» (0’ x))eﬁtfaLt])

(g(R—T2 (07 )f)(l') - f(iU)g(R_rz (07 )))

(Ba[(F(X)R 2 (0, X;) = f(2) Ry (0,2))e” = M]

1
t—to0 R_,2(0,2)
1

— . 2

- R_7-2 (O, I) g(‘Rf""2 (07 )f)(‘r) + r f(‘r)7
since © — R_,2(0,z) is an eigenfunction of the operator G associated to the
eigenvalue —r2. Using the definition of G (cf. (2.5)), we finally get

1 2 OR_,2(0,2) .,

(3.13) GCU@) = SO e e @

m(z)

3) Let us determine the domain of G(~®). Applying [RY99, Exercise 3.20,
p. 311] to the expression (3.13), we see that the scale function of X under P(~®)
equals

(8.14) ) = / (W)d‘” - / (Ey[ﬁ%w’

and the speed measure m(~®) is

2
(3.15) m) (z) = (m) m(z) = (Eale™ ™)) ?m(a).

Then, for z € 0, b[, since 1 < ]Em[eT2T°] < Eb[erzTO], it is clear that

/Oz </Z(Ez[er2T°])2m(x) dx) UEy[;gTO])Q < b ([0, 8]) (Es[e""T])? < oo,

Y

/OZ (/y @Eﬁ[ecif%w)Ey([eﬁT”])Qm(y) dy < bm([0, b)) (ol T])? < oo,

which means that 0 is a non-singular boundary (see [BS02, p. 14]). Since m(~®)
admits a density, we have m(=®({0}) = 0 and 0 is a reflecting boundary. The
same is true for the endpoint b, and

D(G) == {f: G f € y([0,8), £/(07) = f'(b7) = 0}.

Proof of Theorem ( i1). Let us introduce the density n of the Lévy measure of 7
under P. Since 7 is a subordinator, it is known, using (2.3)), that

1

(3.16) 7r(0.0) = /000(1 — e MYn(u) du.
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To obtain the Lévy measure of 7 under P(~—®), we start by computing its Laplace
transform. Since under P,,

o R_,2(0,0) 9
M7('z ) = R,T2 (0,1’) exp(r T — Oél),
Doob’s Optional Stopping Theorem gives, for A > 0,
—a)t AT g R—2(0,0) C(—r2)r
(3.17) ]E:(v )[e A ll{ngt}] =e almEz[e (A=r?) Ll{ngt}]~

Then, letting ¢ — 400 in ((3.17) and applying the monotone convergence theorem,
we get

(3.18) E{ e =

; g)\—ﬂ(o,$)e—l(a+1/RA7T2(O,0)) (from (24)).

Now, formula (3.16)) yields

1 > 2
a+————=a-+ 1— e A=) () du
R)\_TZ(O,O) /O ( ) ( )

=a+ / (1- er%)n(u)du + / (6T2“ - 67()\77‘2)“)71(70 du
0 0

1 o0 5
= - - 1— —Au\ r u
a+ R_,2(0.0) +/0 (1—e"")e" “n(u)du
~ 1
:A (1 — efAu)eTQun(u) du since a + m = O,

which shows (ii).
Proof of Theorem(iii). To evaluate PE{O‘)(Lt > 1), we rewrite 1) with A = 0:
POzl = PUY(n<i)

R_,2(0,z) °
R_2(0.0) R_2(0.2) VO
<ol —
oo R_2(0,2) R_2(0,0) " R—,2(0,0)
= 17
using 1) As a result, we have ]P’([O‘)(Loo =o00) = 1. O

§3.4. A few remarks about the penalization by (e~ %t t > 0)

1) To see how the local time at 0 has been reduced, remark that since X is a
positively recurrent diffusion on [0,b], X converges in distribution to a random
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variable X, whose density is
m(x)
——1
o )

(see [BSO2, p. 35]). The same is true for X(~®): X (=) converges in distribution
to a random variable XC(XT @) whose density is

(Eo[e""™])?m(z)

T e (0,0)

Lio,7(2)-
. 27 . . . .
Then, since x +— E,[e” T‘J] is an increasing function, we have, for € < b,

1 [0,5]) / (B[ T n(z) de

m(—a)( ’ 0

: m(—wl([t)za})<Ee[e’"2T“]>2m<[07s]).

But, by the first mean integral formula, there is § € ]0, b[ such that

t[mwmwmmm: e To]) /m

(3.19) P(X5Y <e)=

This implies
(3.20) m=((0,8]) = (Esle” ™])*m([0,b]).
Therefore, plugging (3.20) in (3.19]), we see that, for € < 4,

o (E[e"™))2 m((0,€])
PXL™ <9) < (Gl m(0.)

)?
_ (Bl ™)
(IE(;[e’"zTo]) P( X <€) < P(Xs < €).

Heuristically, this means that the penalized diffusion spends less time in the vicin-
ity of 0 than the original one.

2) For this class of diffusions, the penalization by a decreasing exponential function
is not sufficient to make the local time at O finite. A quite natural idea is to let r
tend to wy (i.e. @ to +00). In this case, for x # 0, identity (1.4) has to be replaced
by

1 1
Po(Ly =0)=P,(Tp > t) ~ ——U(z,—wi)

2
exp(—wit).
totoo W2 2 R.(0,0)] p(-wit)

— 2
Z——U.)l

The penalization by (1{7,4,t > 0) then yields the martingale

U(X,, —w?)

M) = eXp(—W%S)ml{TON},

S
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and we have actually Pé_oo)(Loo = 0) = 1. This time, the penalization is too
strong. An intermediate case would probably be given by a penalization with
(14z,<13,t > 0) for [ € ]0, 4-o0[, but we have not been able to settle it yet.

§3.5. Short proof of the penalization by (e“%t t > 0)

Let us mention first that, formally, the formulae of the penalization with (e®%t,

t > 0) can be deduced from the ones with (e~ ¢ > 0) on replacing —a by «
and r by ip. In this case, Assumption [2.I] has to be replaced by

Assumption 3.1. We assume that for every d > 0, there is 8 > 0 such that, for
z € {z € C; 0 < Re(z) <d},

1
Rz070 = O — .
( Mﬂ~+w> (zW)

The line of the proof in this case is very close to the one given in the previous
sections. However we must take care of integrability problems. First, for A € R,
A — Ry(0,0) = fooo e p(t,0,0) dt is a continuous and strictly decreasing func-
tion, which tends to +o00 at 0 according to Lemma and to 0 at +o00 by the
monotone convergence theorem. It is thus a bijection from R} to R%, and the
equation 1/Ry2(0,0) = « admits a unique positive solution, which we denote by p.

Next, note that, by Jensen’s inequality,

(=p?Eo[n])* _ Eol(—p*n)"]
k! - k!
and following the same sequence of identities as in 7 gives

(1>0,keN),

p>R,2(0,0)m([0,0]) > 1,
since R,2(0,0) = 1/a > 0, and

2 2
im (1o — g em0B)
(3.21) tll+moo (1 aLt) =1 o =1-p°R,2(0,0)m([0,0]) <0 P-as.

Note that (3.21) and the fact that A — AR,2(0,0)m([0,b]) is an increasing function
of X imply that, for A > p?,

M+ al; =al, (1 - At) ~ ali(l = AR, (0,0)m([0,b])) ——— —oo.

OéLt t—+o00 t—+oco

Let A > p?. Consequently,

oo 1 o o0
/ e—)xteoth dt = _X[e—)\teaLt](-)ﬁ-oo 4+ = / e—kteoth st
0 0
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Integrating this identity with respect to dP, on 2, and applying the Fubini-Tonelli
theorem, leads to

oo 1 >
/ e ME, [e*l] dt = <~ + g/ Eq[e™"]e* di
0 A A
1 aR\(0,x) /°° (—1/Rx(0,0)+a)!
— -4 A )T ]
N TARN0.0) Sy € =
AT ARN(0,0) g — o

We deduce in particular that for all t > 0, E,[e**] < oo a.s. Now, to mimic the
proof of Theorem 1.1} we have to overcome the problem that t +— E[e*Lt] is no
longer integrable on R. We choose a real d > p, and we study the asymptotics of
the function ¢ — e*d%E[eo‘Lf] (which now belongs to L'(R,)). This amounts to
translating the Laplace transform towards the negative reals:

Nt alL 1 Ryi42(0, ) a
e~ MeT VR [e“ ] dt = .
/0 Atd? (A4 d?)Ryya2(0,0) m -«
We then apply the residue theorem around the pole A = —(d? — p?) < 0 and notice
that the artificial weight e~4°t cancels in the final equivalent. O

§4. Proof of Theorem

Let o, 8 > 0, and let 2 be defined by . In this section, we shall only make the
proof of the penalization of the measure P(—®) by (e*fL+ ¢ > 0). From Theorem
under nga), the coordinate process (Xy,t > 0) is still a positively recurrent
diffusion reflected on [0, b]. We still write PS for the equivalent probability under
which (X¢,¢ > 0) is on natural scale.

Hence, Theorem applies and we can perform the penalization of P;*“) by
(etPEe 1 > 0).
§4.1. Penalization of ]P’;ifa) by (e Pt t > 0)
Denoting by M(=®)(=8) the ]P’gc_o‘)—martingale given by
RCY0, x
<Mt(_a)(_6) = exp(o?t — ﬁLt)i_(iZ)( t)’ t= 0>
R (0, z)

where R(-®) is the resolvent kernel of X under P(-® and o2 is the solution of
smallest modulus of the equation
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1

4.1 _—
(4.1) ﬂ+RSﬂQ®

207

there exists a family (Pé_a)(_ﬁ ))ze[o,b] of probabilities defined on (2, Fo,) such
that

PCOEA(A,) = B[, MEYEA] for every u > 0 and every A, € F,,.
But, for A > 0,

]E(x_a) [e—/\To 1{T0§t}] _ Em [e—/\To ]-{Togt}Mt(_a)} _ Ez [e_ATO]-{Togt}Mj(*;a)]

_ R_,2(0,0)

B R_rz (0, $)

from Doob’s optional stopping theorem. Then, letting ¢ tend to +o00 on both sides,
and applying the monotone convergence theorem, we obtain, from (2.3),

2
Eo[e” 7T 7 <]

42) R (0, 2) _ R_j2(0,0) Ry p2(0,2)
Rg\ia) (O, O) R—r2 (07 1‘) Rk—r2 (Oa O)

Therefore,

R,Tz (0,,%) R_(02+T2)(0,Xt)

MO8 2t — BL
A exp(o ﬁ t)R—(a'2+T2)(O’ $) R—'r‘2 (07Xt)

(t>0),

and, for A; € Fy, we have
(4.3)
P () = B 1, explo®s - L)

R_,2(0,x) R_(524,2)(0,X;)
R,(02+T2)(O,x) R_,2(0, X5) :|
R—(o2+r2)(07Xs)
R—(02+r2)(05z) :|

=E, [1,\5 exp((0? +1r%)s + (=8 — a)Ly)
Now, the comparison of (2.3 and (3.18) gives

—Q) [ —AT -« !
Eé )[e A = eXp(—l/Rg\ )(0,0)) = eXp<_l<a+ W)),
which yields
1 1
(4.4) oo T R2(0,0)
Rg\—oz) (O7 0) R)\frz (07 0)

Therefore, setting £2 := 02+ 12, the equation (4.1)) satisfied by o? can be rewritten
as

(4.5) Brat——q
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and €2 is the smallest solution of (£.5). Indeed, otherwise, there would exist u?
such that u? < 02 + 7% and 8+ a + 1/R_,2(0,0) = 0. But, from (4.4)), this would
imply that 8 + 1/R(_‘(33_T2)(0,0) = 0, which contradicts the fact that o2 is the
smallest solution of this equation (i.e. (4.1)). (Note that u? — 72 must be positive,
since A — R, (0,0) takes positive values on [0, +oo]). Finally, from (4.3),

R,gz (0, XS)
R_&z (0, IL')
- Ez[lA.;Ms(iaiﬁ)] = ]P):(;aiﬁ)(Asy

ng—a)(—ﬁ) (AS) =E, 1As exp(§28 + (_6 - a)Ls)

84.2. Penalization of ]P’EC_O‘) by (e#Lt,t > 0)

Now, if we penalize nga) by (ePE¢ t > 0), we obtain the family (IP&*”('G’))IGM
of probabilities defined on (2, Fs) by

PP (A,) = B9 [14, MUY for every w > 0 and every A, € F,
where M(=*)(P) is the ]P’g([o‘)—martingale given by

- RS0, X))
MWD = exp(—it + BL) e (t>0)
RS9(0,2)
with n? the unique solution of the equation I/R;;a)(0,0) = (. From |i
ME9B) can be rewritten as

R_,2(0,2) Ry (0, X+) (t > 0)

M@ _ —n?t L
t eXp( n +6 t)Rng_r2(0,fE) R—Tz(ont) B

and, for A; € F, we have

R,2_,2(0, X,
Pa(n_a)(ﬁ)(AS) = E;—Oz) |:1As exp(—n23 + BLs) fioy,2) z o )]

RnQ_,,,z (0, x) R_.,»2 (0, Xs)
Ry2_2(0, XS)}

=E, [1AS exp((i* = 1)s + (8 — @) Ls) 5 — 2(0,7)

From (4.5)), n*> — r? is a solution of the equation

1
Bt -0
a=f+ Ry2,2(0,0)

Thus, if 3 > «, then n? —r? = ¢ > 0 is the unique solution of & — 8+ 1/R¢2(0,0)
=0, and
R (0, Xy)

PCOB(A,) =E, |1 2 —a)L)—=—220| = pF=)(4A,).
> (As) A, exp(Cs + (B — @) Ls) Re(0,2) a0 (As)
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On the other hand, if 3 < «, the same proof shows that n? — r?> = —(? < 0 is the
smallest solution of & — f + 1/R_2(0,0) = 0 and

R_(0,Xy)
PCoB)(A,) =E, |1 —¢2 — )Ly plA-a) (A,
The other cases can be dealt with in the same way. O

§5. Application to Bessel processes of dimension ¢ € |0, 2] reflected at 1

85.1. The general case
Let Y be a Bessel process of index v = §/2 — 1 € |—1,0] reflected at 1. Then
Y ) is a positively recurrent diffusion, with infinitesimal generator
g(y):1ﬁ+2y+1 0
Yo 20y 2y Oy
Its speed measure and scale function are given by

y21/+1

my (dy) = B dy and 5y(y):y_2”.

We define (X; := S(Yt('/)),t > 0). Then X is a diffusion on natural scale. Its
infinitesimal generator G is given, for f a bounded function defined on R, and of
class C2, by

Gf(w) = 2221 ().
Thus, its speed measure equals m(dz) = (2V )~ tz=271/¥dz. We now determine
the two eigenfunctions ® and ¥ solving (2.6} . Let us introduce

2/2)1/+2k
— L(k+1)T (k+v+1)

z € C\]—00,0],

the modified Bessel function of the first kind, and

" I,V(Z) - IV(Z)
2 sin(vm)

the MacDonald function. It is known (see N. N. Lebedev [Leb72] Chapter 5.7,
p. 110]) that these two functions generate the set of solutions of the linear differ-

1 2
w4+ = — (1+V2>u:0.
x x

It is then not too difficult to verify that

T = ﬁfy(\/ﬁx_l/gu) and z+— \/EKV(\/ﬁx—l/%)

K,(z) = , 2z€C\]-0,0[, v ¢Z,

ential equation
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generate the set of eigenfunctions of G associated with the eigenvalue A. The bound-
ary conditions (2.6) yield next

CBY 23 = (=) T+ EL (VB )
and
(5.2) U(x,\) = <\/227)‘>V1“(1 _ U)\/ﬂy(\/ﬁx—uz,,)
2v \/ﬁ ’ —1/2v
+ w(2> VIEK, (V2 e~ /%),

Hence, we deduce from (2.9) with b = 1 that

U/(1,A)

(1, 2)

T(1+v)\ 2 F(l+v) 1, ,(V2)) )

We also introduce, for v € |—1, 0[, the Bessel function of the first kind, which
is defined on C by

(53)  R(0,0):=

o (=DF(z/2)v 2R
Tul2) = kZ:O T+ DI(k+v+1)

Then, for z € C such that —7/2 < arg(z) < m, we have
J(2) = e V™2, (i2)

(see N. N. Lebedev [Leb72, pp. 109 and 113]).
With this notation, we can now state the following version of Theorem [I.1

Theorem 5.1. Let Y*) be a Bessel process of index v € ]—1,0[ reflected at 1,
(X = (Yt(l’))_m’,t >0) and a > 0.

(i) Letr? be the solution of smallest modulus of the equation a+1/R_,2(0,0) = 0.
Then
t—+oo «

E.le X~ exp(—r?t) (W + U(x, —rz))c (o, v, 1)

where
1

C_(OL,V,T) = 2

o (3) ey
o T Tz \2) v

N
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(ii) Let p* be the unique solution in Ry of —a+1/R,2(0,0) = 0. Then
t——+o0

E, 1] ~ exp(p%)(‘b(i;”—w<m,p2>)c+<a,u,r>

where
1

C+<a7V7T) = 02

~% - v (8) o
@ (T(1+v))2 \ 2 15+1(p\/§)

Note that to simplify the presentation, we used the identity , Ry(z,y) =
D(x, A)(RA(0,0)P(y, \) — ¥(y, \)), in the above formulas. Likewise, the computa-
tion of %RZ(O, 0) can be significantly illuminated by using the following identity
for the Wronskian of I, and K,,:

W(IV(Z)7KV(’Z)) = K;(Z)L,(Z) - IL/I(Z)KV(’Z) = _1/Z'

Proof of Theorem[5.1, We only need to check that Assumptions and are
satisfied in this set-up, in order to apply Theorem

Let us denote by (wp)n>1 the zeros of R_»2(0,0), and let ¢,d € R be such
that [c,d] C |—w?,+oc[, and 2z € {z € C; 2 = a + iv, ¢ < a < d}. We are looking
for u € C such that u? = 22 = 2(a+1v). In trigonometrical form, u can be written
as

(5.4) uw=2(a®+v*)*exp (; arg(2(a + w))) .

Now, since |z| = va? +v? and a is bounded in [c,d], |2|] — +oo implies that
v — Fo0.
First, we assume that v tends to +o0o0. Then arg(2(a + iv)) —— 7/2, so

v——+00
from (5.4)) we obtain
u o~ Vu+ivo.
v o0

—+
Therefore, we have

noo = ity (s) (e )

T () 0w

since Kpy1(u)/I41(u) TI——% 0 when |arg(u)| < /2 — ¢ , according to [Leb72]
u|l——+o0

p. 123].
Second, when v — —oo, we can prove similarly that R,(0,0) = O(|v|").
Therefore Assumptions [2.1] and [3.1] hold. O
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Of course, the above proof shows that the penalization Theorems [I.2] and [I.3]
also hold for Bessel processes of index v € ]—1, 0] reflected at 1. We shall not state
them once again since all the terms in this framework have already been computed.
Instead, we will particularize this set-up to consider the fundamental example of
the Brownian motion reflected on [0, 1].

§5.2. Brownian motion reflected on [0, 1]

The resolvent kernel (5.3]) and the eigenfunctions ([5.1)) and (5.2)) of the infinitesimal
generator G reduce significantly when v = —1/2 (i.e. the Brownian motion case).
Indeed, as

2 2 T _
I,l/g(z)zwacosh(z), Il/g(z):\/;smh(z) and K_y5(2) = 2,¢ z

we get, by substituting in (5.1))—(5.3)),
O(z,A) = cosh(V2Az), P(x,\)=

1.
T sinh(V2\z),
1 2onz0 (20)"/(2n)!

Rx(0,0) = VM tanh(VZY) | Sommo AT/ (20t 1)

In this particular setting, we have:

and

Theorem 5.2. Let X be a Brownian motion reflected on [0,1] and « > 0.

(i) Letr be the unique solution in |0,7/(2v/2)[ of the equation o = v/2r tan(v/2r).
Then

Bl ~ exp(—r%) cos(v2r(1 — ) 2a .
t—oo cos(v2r) 2r*+a+a?
(ii) Let p be the unique solution in ]0,+oo| of the equation o = /2ptanh(v/2p).
Then
E,[eo0] ~ exp(pt) cosh(v2p(1 — z)) 2 '
t—too cosh(v2p)  2p* +a—a?

Theorem 5.3. Let X be a Brownian motion reflected on [0,1] and a > 0.

(i) The processes

<Mt(_a) = exp(r?t — aLt)COS(ﬁT(l — Xt)), t> O)

cos(v2r(1 — x))

and

(Mt(a) = exp(—p*t + aLt)COSh(\@'D(l - Xt)), t> O>

cosh(v2p(1 — )

are continuous, strictly positive P, -martingales which converge to 0 ast— +o0.
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(ii) Let s > 0 and z € [0,1]. For every A, € Fs, we have

. Ex[lAseiaLt] _ (£a)

i B gy e

(iii) Let (Péi“))me[o,l] be the family of probabilities defined on (Q, Fso) by
PED(A,) = B [1a, MFY]  for every u > 0 and every A, € F,.

Then, under chia), the coordinate process X is a solution of the stochastic
differential equation

X, =z + By + LY(X) / bEI (X

(fa)

where B is a P -Brownian motion started from 0 and

{b(‘“) () = V2r tan(v2r(1 — ),
b+ () = —v/2ptanh(v/2p(1 — z)).

(iv) Under P&, the density of the Lévy measure of the subordinator T is given

by
n(= a) _220’ e (a2 —r?) u’
n>1
) () =23 a2e (@i,
n>1

where a,, 1= W(Qn —1).

Proof. Ttem (iii) is a direct consequence of (|1.6) and merely relies on an application
of Girsanov’s theorem. Next, to prove (iv), we need to determine the Lévy measure
of 7 under P. We use the expansion

V2Atanh(v2\) = Z % where a, = L(271 -1)

=1 an 2V2
(see for example H. Cartan [Car61l, p. 155]). We then write, from (2.3]),

Eole ] = exp(—1/Rx0.0)) = exp(—1v/2X tanh(V2)))
—en( 2 ) -eo (- (G- )

n>1 n>1
— exp (—21 Z ai/ (efaiu _ ef(aiﬂ)u) du
n>1 0

=exp (—21/ (1—e ) Z afle*“i/“ du).
0

n>1



PENALIZATION OF A RECURRENT DIFFUSION 711

Hence, the density of the Lévy measure of 7 is given by

and (iv) is a direct consequence of Theorem [L.3[ii). O

Remark 4. Let us mention that when X is a reflected Brownian motion on [0, 1],
many equalities in law are known for the subordinator 7. For example, from F. B.
Knight [Kni78, Lemma 2.1, p. 436], we have

) Ti(|B])
(X) = / Lio,1((| B¢) dt
0

1
@ 2/0 nasp(Bl)da  (by the occupation time formula)

1
@ 2 / Zydt  (by the Ray—Knight Theorem),
0

where B is a standard Brownian motion and Z a squared Bessel process of dimen-
sion 0 started from [. Moreover, according to P. Carmona, F. Petit and M. Yor
[CPY0I], we have the equality in law

(d)
(Va2 0 20) = (€51,1 2 0),

where 7 is a Brownian motion independent of 7, and £ is the Lévy process asso-
ciated by Lamperti’s relation with the absolute value of a Cauchy process, whose
generator is

1 cosh(n) ,
L1©) = 1 [ S € ) = £~ 0 €1 ) dn

In fact, a better knowledge of the law of 7; (in particular the asymptotic behavior
of its distribution) would enable us to penalize the Brownian motion reflected on
[0, 1} with (1{Lt§l}at Z 0)

86. Other cases

We have so far studied the penalization of a positively recurrent diffusion reflected
on [0,b] by an exponential function of its local time. We shall now briefly deal
with null recurrent diffusions and transient diffusions. As previously, the following
study will mainly rely on the expressions of the resolvent kernel, as given by
Krein’s theory. See for example [DMT76, Chapter V, p. 162] for an introduction
to the Green function, and its expressions in the different situations we shall deal
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with, or [KK74] for the original point of view of M. G. Krein and I. S. Kac. But,
before starting our discussion related to b and m([0, b[), we mention a Tauberian

theorem for Laplace transforms, which we will use several times (see W. Feller
[Fel71l, Chapter XIIL5, p. 446]):

Theorem 6.1. Letp € ]0,+o0[. If f is a monotone function on an interval of the
form ]zg, +o0o[, then we have the equivalence

(6.1) /OooeAzf(x)dxA:O)\lI)n<i> & f(x)wﬂlooﬁxpfln(x),

where 1 is a slowly varying function (i.e. for allx > 0, n(tx)/n(t) — 1 ast — 400).

We shall give below, in each case, an equivalent at 0 of ([2.1]), and then apply
the Tauberian theorem to get an equivalent of t +— E,[e~*L¢] at +-00. Note that this
was not possible for a positively recurrent diffusion reflected on [0, b], as mentioned

in Remark 2
§6.1. First case: b = 400 and m([0, +o0[) = 400
Theorem 6.2. Let X be a linear diffusion on natural scale, defined on [0, +oo[

and such that m([0,z]) ~ P k(z) with B € ]0,1[ and x a slowly varying

r— 400
function. Then

(6.2) Efe=olt] ~ (x n 1) %7

t—+o00
where 1 is another slowly varying function.

Proof. The resolvent kernel takes the form

* dx
R = — —— 400 51 2.7)).
)\(O’O) /O @2({);‘7)\) A—0 (Ublng "

This implies that X is null recurrent (since m([0, +00[) = +00). We have

RA(O, 9:)
R (0,0)

U(x, \)
R (0,0)

14 /\/Om(x — $)®(s, \) m(ds)

=®o(z,\) —

4+ X[ (x—5)¥(s,\) m(ds)
R (0,0) '

Since limy_,0 ARx(0,0) = 1/m([0, +o00[) = 0 (see [BSO2, p. 20]), it follows that

R)\(O,il’) x

1
(6.3) Rx(0,0) RA(0,0) +O<Rx(0,0)>'
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Therefore, plugging (6.3) in (2.1), we obtain the equivalent:

(6.4) / e ME,[e=L) dt
0

Al (- o)) (- s+

z+1/a
3Z0 AR (0,0

Let us now introduce the Lévy measure v of the subordinator 7. The measure
v is absolutely continuous with respect to the Lebesgue measure, with density n
which is the Laplace transform of the Borel measure o associated to m~! (the left
continuous inverse of m) by the Krein correspondence:

(6.5) n(u) = /0 et do(e)

(see S. Kotani and S. Watanabe [KW82] and F. B. Knight [Kni8I]). Then the
following identity holds:

1

(6.6) o /O (1= e=)n(u) du.

Let a > 0. We write

a

/00(1 — e n(u) du= [(e* — 1)v([u, —l—oo[)]+oo + /Oo e M ([u, +00[) du

=(1—e ) ([a,+oo|) + /00 e My ([u, +-00[) du.

a

The two terms being positive, we can deduce, letting a — 0,

1

70’0):/0 e My ([u, +oof) du + ¢,

(6.7) E

where ¢ := limg_.0 av([a, +o0[) < oco. Observe that ¢ = 0. Indeed, otherwise, if

¢ > 0, we would have v([a, +0[) ~ ¢/a and
a—

/ w(du) = [—u(u, )] + / v([u, 1) du
:au([a,l])—i—/ v([u, 1])dum—|—oo

since a — v([a, 1]) would not be integrable at 0. But this contradicts the fact that
v is the Lévy measure of a subordinator, i.e. f0+oo(u A 1)v(du) < oco. Therefore,
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from (6.4) and (6.7) we obtain
oo 1 (e 9]

(6.8) / e ME [em ) dt ~ (m—i—)/ e M ([u, +00[) du,
0 0

A—0 (%

and it remains to find an equivalent of the RHS of . From (6.5)), applying
Fubini’s theorem, we have

/000 e M v([u, +ool) du = /000 e M /:o n(v) dvdu

/Ooo e*“(/:o /OOO ef”gda(g)dv) du
- /OOO e </OOO e da(§)> du = /OOO ‘i"fg),

Recall that z +— m([0, z]) is an increasing function and m([0, z]) ~ /B ().

Then, using Y. Kasahara [Kas76, Lemma 1, p. 73], we have

(6.9) m([0,a]) ~ @YD),

r— 400

where 9 is a slowly varying function. By applying [Kas76, Theorem 2, p. 73], (6.9)
is seen to be equivalent to

(6.10) [T~ ea-pp B (1)

where 9 is a slowing varying function such that (z'=#9(z))~! = 277 9(z) (in the

sense of composition of functions). Finally, setting

re-g);

t):= (B(1 — B))P 1 —==229(1),
) = (31 = B~ =)
and applying the Tauberian Theorem [6.1] we obtain
n(w)
vl +oo), ~ T
and
_ 1\ n(t)
al, ~ i BANYA
(6.11) E.le ]t_}+oo(ac+ a) T

Note that, from , we have also proven that

E.le k] ~ wu([t, +oo[)(x+cly>. O

t——+oo
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Example 1. In the same way as in Section [5| let us consider (X, := (Y;*))=2",
t > 0) where Y(*) is a Bessel process of index v € ]—1, 0[ reflected at 0. The speed
measure of X is given by

m((0,2]) = _21/(11+ V)x_l_l/y’

hence, with the notations of Theorem 8 = —vand k(z) = —1/2v(1 + v)).
Some easy computations then give

Ia) = 75 (z) = <_2y(11+y)>+ and n(z) = k(z) = (-M) -
and, from (53,

1 2v
Efe*] ~ — ).
le ]t—>+oo(x+ a)F(lu)

Note that if v = —1/2 (the Brownian motion case) we get

1 2
Eqle™ ] ot (ac + ) =
— 100 « s

Remark 5. A probability measure p on [0, +o0l is called subezponentialif p(]z, +00|)
> 0 for every z, and

m ,u*2(]l‘,—|—OOD _

a=too p(lw,+oo)
where p*? stands for the convolution of y with itself. (See Sato [Sat99, Chapter 5,
p. 164] for other equivalent conditions when p is the Lévy measure of a subordinator.)
Thus, if we assume that the law of myul,Jroo[ is subexponential (which is in
particular the case if v(]¢, +00]) et t=Pn(t)), this implies (see P. Salminen and
P. Vallois [SV09]) that
Py(Ly <) ~ (x4 v(]t,+oo]).

t——+oo

Therefore, we have directly

1

E, e~ = / P.(e” M > u) du
0
= / P.(e k> emNae™ dl
0
- / P,(L; < )ae™ % dl
0
e 1
—al -
Y v(]t, +oo[)/0 (z+Dae™dl et v(Jt, +o0|) <x + oz)'
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§6.2. Second case: b < 400 and m([0,b]) = +oo

The resolvent kernel takes the form

b
dz
= —_— > f 2.
R)\(O?O) /0 (1)2(17,)\) A0 b (I‘OID )a

which shows in particular that X is transient. Moreover,

R (0, 2) U(xz, \) T
AN Y) g _ A ot
Rn0,0) ~ 2@ N T 20,0020 T o

hence we find the equivalent:

1 X [0

— At alL

E, dt ~ ~(1—-(1-2)—).
/0 ¢ [e ] ,\Ho/\< < b)oﬁ—i)

The Tauberian theorem can be applied, and we finally obtain

ol T\ «
Eale™™], oy 1 (1_b>a+1'
b

§6.3. Third case: b+ m([0,b]) < +o0

In this case, to define the diffusion it is necessary to add a supplementary boundary
condition at b. To this end, let k(dz) = k—loéb(dx) be the killing measure of X (where
dp stands for the Dirac measure at b). If kg = 400, then X is reflected at b; this
was the subject of Sections [2|to [b} Therefore, we assume here that X is elastically
killed at b, i.e. kg < +oo. (Note that ky = 0 means that b is a killing boundary,
i.e. the diffusion, if it hits b, is immediately sent to a cemetary state 9; see [BS02]
p. 16]). In this set-up, to define the resolvent kernel Ry, we must start by extending
® linearly on [b, +00[ by setting

O(z,\) = ®(b,\) + &' (b,\)(x —b) for x >b.

Then the resolvent kernel takes the form

btko gy
R, (0,0) = —— —— b+ k.
)\( ’ ) /0 @2(117)\) A—0 + Ko
This case is thus very similar to the second one, and the diffusion is again transient.
Moreover,
Rx(0,2) i x
RA (0, O) A—0 b =+ ko ’
Consequently,

X «
Eqle @] ~ 1—(1- :
w[e ]t—>+oo ( b+k0>a+b+lkg
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It is then easy to deduce the law of L.:

T T 1 U
T seldw)+ (1- ) e~ ) du
el ”)+< b+ko>b+koeXp< k0+b> B

Example 2. We consider the Brownian motion reflected at 0 and killed at 1 for
which m(dz) = 2dz, b =1 and ko = 0. Here, I = [0, 1] and we obtain

Py(Loo € du) =

«
E.le @] ~ 1—-(1-—
lem™], ~ 1= ( x)aH,

and
P, (Lo € du) = xdg(du) + (1 — x)e™ “du.

Let us remark that, since Lo = L7, a.s., this entails that under Py, Ly, has an
exponential law of parameter 1.
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