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Penalization of a Positively Recurrent Diffusion
by an Exponential Function of its Local Time

by

Christophe Profeta

Abstract

Using Krein’s theory of strings, we penalize here a large class of positively recurrent dif-
fusions by an exponential function of their local time. After a brief study of the processes
so penalized, we show that on this example the principle of penalization can be iterated,
and that the family of probabilities we get forms a group. We conclude by an application
to Bessel processes of dimension δ ∈ ]0, 2[ which are reflected at 1.
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§1. Introduction

1. Let b ∈ ]0,+∞]. We consider a linear regular diffusion X taking values in
I = [0, b), on natural scale, and with 0 an instantaneously reflecting boundary.
Let Px and Ex denote, respectively, the probability measure and the expectation
associated with X when started from x ≥ 0. We assume that X is defined on the
canonical space Ω := C(R+ → R+) (where R+ := [0,+∞[), and we denote by
(Ft, t ≥ 0) its natural filtration, with F∞ :=

∨
t≥0 Ft.

Let us start by giving a definition of penalization (see also Theorem 3.1):

Definition 1.1. Let (Γt, t ≥ 0) be a measurable process taking positive values
and such that 0 < Ex[Γt] < ∞ for every t > 0 and every x ∈ I. We say that the
process (Γt, t ≥ 0) satisfies the penalization principle if there exists a probability
measure Qx defined on (Ω,F∞) such that

∀s > 0, ∀Λs ∈ Fs, lim
t→+∞

Ex[1ΛsΓt]
Ex[Γt]

= Qx(Λs).
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This problem has been thoroughly studied by B. Roynette, P. Vallois and
M. Yor when Px is the Wiener measure (see [RVY06] for a synthesis and further
references). Let (Lt, t ≥ 0) be the local time of X at 0, and (τl, l ≥ 0) the right-
continuous inverse of L:

τl := inf{t ≥ 0; Lt > l}.

Recently, P. Salminen and P. Vallois [SV09] have proved that the penalization prin-
ciple holds when (Γt = h(Lt), t ≥ 0) with h a non-negative and non-increasing func-
tion, under the assumption that the Lévy measure of the subordinator (τl, l ≥ 0) is
subexponential (see Remark 5). Here, we are interested in extending these results
to other diffusions, with weight process (Γt := eαLt , t ≥ 0) for α ∈ R. We will
focus mainly on the positively recurrent case (in Sections 2 to 5), which has not
been studied yet. Other cases will be briefly dealt with in Section 6, where we will
see how, in the null recurrent case, the assumption of subexponentiality appears
naturally.

2. Our approach of penalization with (Γt := eαLt , t ≥ 0) is based on the rate
of decay (or growth) of Ex[eαLt ] as t tends to infinity. But before stating our
main results, we need a few notations. Let m denote the speed measure of X. We
assume that m is strictly positive in the vicinity of 0 and does not have atoms (see
A. N. Borodin and P. Salminen [BS02, Chapter II] for the definition of the main
attributes of a linear diffusion). It is known that X admits a transition density
p(t, x, y) (with respect to m) that is jointly continuous and symmetric in x and y

(see [IM74, Chapter 4, p. 149]). We also introduce its resolvent kernel:

(1.1) Rλ(x, y) =
∫ ∞

0

e−λtp(t, x, y) dt.

Now, let α > 0. We assume that X is a recurrent diffusion reflected on [0, b]
and such that b + m([0, b[) < ∞. This hypothesis implies in particular that X is
positively recurrent. In this case, the equation

(1.2) α+
1

R−r2(0, 0)
= 0

admits a countable number of solutions, they are all real, and we denote by r2 the
one of smallest modulus (see Lemma 2.3). Similarly, we denote by ρ2 the unique
solution in R+ of the equation

(1.3) −α+
1

Rρ2(0, 0)
= 0.

We can now give our first theorem:
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Theorem 1.1. Let α > 0 and let r2, ρ2 be defined by equations (1.2) and (1.3).
Then:

(i) Under Assumption 2.1 we have (see Section 2)

Ex[e−αLt ] ∼
t→+∞

1
r2
R−r2(0, x)

1
∂
∂zRz(0, 0)

∣∣
z=−r2

exp(−r2t).(1.4)

(ii) Under Assumption 3.1 we have (see Subsection 3.5)

Ex[eαLt ] ∼
t→+∞

− 1
ρ2
Rρ2(0, x)

1
∂
∂zRz(0, 0)

∣∣
z=ρ2

exp(ρ2t).(1.5)

This result will enable us to obtain our penalization principle, under the as-
sumption that m(dx) = m(x)dx:

Theorem 1.2. Let α > 0 and let r2, ρ2 be defined by equations (1.2) and (1.3).
For x ∈ [0, b], the processes(

M
(−α)
t := exp(r2t− αLt)

R−r2(0, Xt)
R−r2(0, x)

, t ≥ 0
)

and (
M

(+α)
t := exp(−ρ2t+ αLt)

Rρ2(0, Xt)
Rρ2(0, x)

, t ≥ 0
)

are continuous, strictly positive Px-martingales which converge to 0 as t → +∞.
Moreover, under Assumptions 2.1 and 3.1, the penalization principle holds:

(i) Let s > 0 and x ∈ [0, b]. For all Λs ∈ Fs, we have

lim
t→+∞

Ex[1Λse
±αLt ]

Ex[e±αLt ]
= Ex[1ΛsM

(±α)
s ].

(ii) There exists a family (P(±α)
x )x∈[0,b] of probabilities defined on (Ω,F∞) such

that

P(±α)
x (Λu) = Ex[1ΛuM

(±α)
u ] for all u ≥ 0 and all Λu ∈ Fu.

We now study the law of the coordinate process under P(±α):

Theorem 1.3. Let α > 0, let r2, ρ2 be defined by equations (1.2) and (1.3), and
suppose that Assumptions 2.1 and 3.1 hold. Then:

(i) Under P(±α), the coordinate process X is a diffusion with infinitesimal gen-
erator respectively given by

G(−α)f(x) :=
1

m(x)
f ′′(x) +

2
m(x)R−r2(0, x)

∂R−r2(0, x)
∂x

f ′(x),

G(+α)f(x) :=
1

m(x)
f ′′(x) +

2
m(x)Rρ2(0, x)

∂Rρ2(0, x)
∂x

f ′(x),
(1.6)
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defined on the domain

D(G(±α)) := {f ; G(±α)f ∈ Cb([0, b]), f ′(0+) = f ′(b−) = 0}.

(ii) Under P(±α), the density of the Lévy measure of the subordinator τ is given
by {

n(−α)(u) = er
2un(u),

n(+α)(u) = e−ρ
2un(u),

where n is the density of the Lévy measure of τ under P.

(iii) L∞ =∞ P(±α)-a.s.

We must stress the fact that (iii) is quite surprising. Indeed, in [SV09], the
authors prove that for (a large class of) null recurrent diffusions, the penalization
principle holds with (e−αLt , t ≥ 0) (α > 0), and that the process so penalized is
transient (as expected). As shown by Theorem 1.3 this is no longer the case for a
positively recurrent diffusion (see also Subsection 3.4).

Some other quantities, such as the speed measure or the scale function of the
penalized diffusion, will also be computed during the proof (see Section 3). Note
that the expressions in both cases are very similar, and can be deduced formally
from each other by replacing α by −α (resp. −α by α) and ρ by ir (resp. r by iρ).
A natural idea then is to consider a double penalization: first, we penalize P with
(eαLt , t ≥ 0); second, we penalize P(α) with (eβLt , t ≥ 0). The result is very simple,
and can be summarized by a commutative diagram, as in the following theorem:

Theorem 1.4. Let α, β ∈ R. Suppose that Assumptions 2.1 and 3.1 hold. Then
the following penalization diagram is commutative:

P
(eαLt , t≥0) //

(e(α+β)Lt , t≥0)

$$IIIIIIIIIIIIIIIIIIII P(α)

(eβLt , t≥0)

��
P(α+β) = P(α)(β)

In particular, P(α)(−α) = P.

Note that this theorem bears a strong resemblance to Proposition 3.2 of
[PY81] about conditioned diffusions.

Remark 1. If (Xt, t ≥ 0) is a linear diffusion whose scale function s is a strictly
increasing C1 function such that s(0) = 0, we have, from the occupation time
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formula, L0
t (X) = L0

t (s(X)). Then

Ex[e−αL
0
t (X)] = Es(x)[e−αL

0
t (s(X))] ∼

t→+∞

1
r2
R−r2(0, s(x))

1
∂
∂zRz(0, 0)

∣∣
z=−r2

e−r
2t

and, for Λu ∈ Fu,

P(α,X)
x (Λu) = lim

t→+∞

Ex[1Λue
−αL0

t (X)]
Ex[e−αL0

t (X)]
= lim
t→+∞

Es(x)[1Λue
−αL0

t (s(X))]
Es(x)[e−αL

0
t (s(X))]

= P(α,s(X))
s(x) (Λu).

Therefore, we shall always consider the equivalent probability under which
(Xt, t ≥ 0) is a linear diffusion on natural scale.

3. The remainder of the paper is decomposed into five parts:

• In Section 2, we prove Theorem 1.1, dealing only with the asymptotic of E[e−αLt ]
(α > 0). The proof relies on an analytic continuation of the Laplace transform
of t 7→ E[e−αLt ], and on the residue theorem.

• In Section 3, we prove Theorems 1.2 and 1.3, still in the case of the penalization
by (e−αLt , t ≥ 0). The penalization by (eαLt , t ≥ 0) being very similar, we shall
only give, in Subsection 3.5, a few elements of the proof.

• In Section 4, we prove Theorem 1.4, i.e. the iteration principle.

• In Section 5, we derive explicit formulae when X is a Brownian motion reflected
at 0 and 1, and more generally when X is a Bessel process of dimension δ ∈ ]0, 2[
reflected at 1.

• And finally, in Section 6, we briefly deal with the cases of null recurrent and
transient diffusions.

§2. Proof of Theorem 1.1

Let α > 0. We present the full proof of the penalization by (e−αLt , t ≥ 0). A
short proof of the penalization by (eαLt , t ≥ 0) is given in Subsection 3.5. Let
us recall that X is a positively recurrent diffusion reflected on [0, b] such that
b + m([0, b[) < ∞. Our approach is based on the study of the Laplace transform
of t 7→ Ex[e−αLt ]. Indeed, this quantity can be expressed explicitly in terms of the
resolvent of X:

Lemma 2.1. We have the identity

(2.1)
∫ ∞

0

e−λtEx[e−αLt ] dt =
1
λ
− Rλ(0, x)
λRλ(0, 0)

1
1 + 1

αRλ(0,0)

.
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Proof. Let λ > 0. We have, from the Fubini–Tonelli theorem,

(2.2)
∫ ∞

0

e−λtEx[e−αLt ] dt = Ex
[∫ ∞

0

e−λte−αLt dt

]
= Ex

[
1
λ
− α

λ

∫ ∞
0

e−λte−αLt dLt

]
after an integration by parts,

=
1
λ
− α

λ

∫ ∞
0

Ex[e−λτl ]e−αl dl putting Lt = l.

Since X is a Markov process, τ is a subordinator and the following identities hold:

(2.3) Ex[e−λT0 ] =
Rλ(0, x)
Rλ(0, 0)

and E0[e−λτl ] = exp(−l/Rλ(0, 0)),

where T0 := inf{u ≥ 0; Xu = 0} is the first hitting time of 0 by X. By the Markov
property, (2.3) implies in particular that

(2.4) Ex[e−λτl ] = Ex[e−λT0 ]E0[e−λτl ] =
Rλ(0, x)
Rλ(0, 0)

exp(−l/Rλ(0, 0)).

Therefore, plugging (2.4) in (2.2), we get∫ ∞
0

e−λtEx[e−αLt ] dt =
1
λ
− α

λ

Rλ(0, x)
Rλ(0, 0)

∫ ∞
0

exp(−l/Rλ(0, 0)− αl) dl

=
1
λ
− α

λ

Rλ(0, x)
Rλ(0, 0)

1
α+ 1

Rλ(0,0)

=
1
λ
− Rλ(0, x)
λRλ(0, 0)

1
1 + 1

αRλ(0,0)

.

We now determine the limit of
∫∞

0
e−λtEx[e−αLt ] dt as λ → 0. As shown

by Lemma 2.1, we have to determine the rate of decay of λ 7→ Rλ(0, 0) and
λ 7→ Rλ(0, x).

Let us introduce the infinitesimal generator of X:

(2.5) G :=
∂2

∂m∂x
,

and, for λ ∈ C, the two eigenfunctions Φ(·, λ) and Ψ(·, λ), satisfying

(2.6)

{
G[Φ(·, λ)] = λΦ(·, λ) on [0, b],

Φ(0, λ) = 1 and Φ′(0, λ) = 0,
and

{
G[Ψ(·, λ)] = λΨ(·, λ) on [0, b],

Ψ(0, λ) = 0 and Ψ′(0, λ) = 1.
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(2.6) can be rewritten equivalently as

(2.7)


Φ(x, λ) = 1 + λ

∫ x

0

dy

∫ y

0

Φ(s, λ)m(ds) = 1 + λ

∫ x

0

(x− s)Φ(s, λ)m(ds),

Ψ(x, λ) = x+ λ

∫ x

0

dy

∫ y

0

Ψ(s, λ)m(ds) = x+ λ

∫ x

0

(x− s)Ψ(s, λ)m(ds),

where x ∈ [0, b]. Both Φ and Ψ are entire functions in λ, differentiable in x on
[0, b] since m has no atoms, and positive if λ is positive. According to [DM76,
Chapter V, p. 162], the resolvent kernel admits the representation

(2.8) Rλ(x, y) = Φ(x, λ)(Rλ(0, 0)Φ(y, λ)−Ψ(y, λ)) for x ≤ y.

Lemma 2.2. We have the following asymptotic behaviours:

Rλ(0, 0) ∼
λ→0

1
λm([0, b])

and
Rλ(0, x)
Rλ(0, 0)

=
λ→0

1 + λ

(∫ x

0

(x− s)m(ds)− xm([0, b])
)

+ o(λ).

Consequently,∫ ∞
0

e−λtEx[e−αLt ] dt ∼
λ→0

m([0, b])
(
x+

1
α

)
−
∫ x

0

(x− s)m(ds).

Proof. Since b+m([0, b[) <∞ and X is reflected at b, it is shown in [KK74, p. 34]
that

(2.9) Rλ(0, 0) =
Ψ′(b, λ)
Φ′(b, λ)

.

Taking the x derivative of (2.7) leads to

(2.10) Rλ(0, 0) =
1 + λ

∫ b
0

Ψ(s, λ)m(ds)

λ
∫ b

0
Φ(s, λ)m(ds)

=
1

λm([0, b])
+ o

(
1
λ

)
(λ→ 0).

Then identity (2.8) implies that

(2.11)
Rλ(0, x)
Rλ(0, 0)

= Φ(x, λ)− Ψ(x, λ)
Rλ(0, 0)

= Φ(x, λ)−
x+ λ

∫ x
0

(x− s)Ψ(s, λ)m(ds)
1

λm([0,b]) + o(1/λ)

= Φ(x, λ)− λm([0, b])
(
x+ λ

∫ x

0

(x− s)Ψ(s, λ)m(ds)
)

(1 + o(1))

=
λ→0

1 + λ

(∫ x

0

(x− s)m(ds)− xm([0, b])
)

+ o(λ).
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As a result, using (2.10), (2.11) and (2.1) we get∫ ∞
0

e−λtEx[e−αLt ] dt

=
λ→0

1
λ

(
1−
(

1+λ
(∫ x

0

(x−s)m(ds)−xm([0, b])
)

+o(λ)
)

1

1+ λm([0,b])
α +o(λ)

)
=
λ→0

1
λ

(
1−
(

1+λ
(∫ x

0

(x−s)m(ds)−xm([0, b])
)

+o(λ)
)(

1− λm([0, b])
α

+o(λ)
))

∼
λ→0

m([0, b])
(
x+

1
α

)
−
∫ x

0

(x−s)m(ds).

Remark 2. Note that Lemma 2.2 implies that we cannot apply the Tauberian
theorem (see Section 6) since the rate of decay of λ 7→

∫∞
0
e−λtEx[e−αLt ] dt is not

polynomial. Indeed, we will prove in Theorem 1.1 that it is in fact exponential.

Our approach now consists in extending (2.1) to λ in the complex plane,
in order to apply the inverse Fourier transform. To this end, we introduce some
notation. We set C∗ := C \ {0}, N∗ := N \ {0}, and write R− (resp. R∗−) for the
interval ]−∞, 0] (resp. ]−∞, 0[). For a complex z ∈ C, we denote by Re(z) the real
part of z, and by Im(z) its imaginary part. Let us now define

(2.12) L1(z) :=
∫ ∞

0

e−ztEx[e−αLt ] dt.

From Lemma 2.2, we see that L1 is well-defined on {z ∈ C; Re(z) ≥ 0}, and
holomorphic on {z ∈ C; Re(z) > 0}. Let us introduce next

f(s) =


0 if s ≤ −1,

s+ 1 if −1 ≤ s ≤ 0,

Ex[e−αLs ] if s ≥ 0,

and

(2.13) L2(z) :=
∫

R
e−ztf(t) dt.

Obviously

L2(z) =
∫ 0

−1

e−zt(1 + t) dt+
∫ ∞

0

e−ztEx[e−αLt ] dt(2.14)

=−1
z
− 1− ez

z2
+ L1(z).

Consequently, L2 is once again well-defined on {z ∈ C; Re(z) ≥ 0} and holomor-
phic on {z ∈ C; Re(z) > 0}. According to Lemma 2.2, f belongs to L1(R), and
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therefore admits a Fourier transform:

(2.15) f̂(v) :=
∫

R
eivtf(t) dt = L2(−iv), v ∈ R.

Our aim is to prove that f̂ ∈ L1(R). This will permit inverting this transform. Let
us start by rewriting L2 with the help of (2.1). Using z = λ > 0 in (2.14) gives

L2(λ) = −1− eλ

λ2
− Rλ(0, x)
λRλ(0, 0)

α

α+ 1
Rλ(0,0)

.

Let us define

(2.16) H2(z) := −1− ez

z2
− Rz(0, x)
zRz(0, 0)

α

α+ 1
Rz(0,0)

.

Lemma 2.3. H2 is a meromorphic function on C, whose poles all belong to the
negative real axis R∗−. We denote by r2 the solution of the equation 1/R−r2(0, 0)
+ α = 0 of smallest modulus.

Proof. Recall ([KK74, Lemma 2.3, p. 35 and Point 11.8, p. 77]) that λ 7→ Rλ(0, 0)
admits a meromorphic extension to C, whose poles (−γ2

n)n∈N and zeros (−ω2
n)n∈N∗

are all negative. Then identity (2.8) implies that λ 7→ Rλ(0, x) also admits a
meromorphic extension to C, whose poles are (−γ2

n)n∈N. Furthermore, from the
identity ([KK74, Lemma 2.2, p. 34])

Im(λ)
∫ b

0

∣∣∣∣Φ(x, λ)− Ψ(x, λ)
Rλ(0, 0)

∣∣∣∣2m(dx) = Im(Rλ(0, 0))

we can conclude that Rλ(0, 0) is real if and only if λ is real. But, when λ > 0, it
is clear from (1.1) that Rλ(0, 0) > 0. Therefore, the equation 1/Rz(0, 0) + α = 0
can only have solutions in R−. Since

∫ b
0
xm(dx) < +∞, it is known from [DM76,

Chapter V.6, p. 182] that

(i) γ0 = 0,

(ii) the zeros (−ω2
n)n∈N∗ and the poles (−γ2

n)n∈N are interlaced,

(iii) for λ ∈ R, the graph of λ 7→ 1/R−λ2(0, 0) is as in Figure 1.

In particular, the equation 1/Rλ(0, 0) + α = 0 admits a unique solution λ = −r2

whose modulus is strictly smaller than ω2
1 . Thus the function z 7→α/(α+1/Rz(0, 0))

is meromorphic on C with all poles belonging to the negative real axis. Finally, it
is clear that the part z 7→ −(1− ez)/z2 is holomorphic on C∗ and that 0 is not a
pole of H2 (from Lemma 2.2), so we conclude that H2 is a meromorphic function
on C whose only pole in {z ∈ C; Re(z) > −ω2

1} is −r2.
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6

-γ0 = 0
r−r ω1

γ1

−α

−γ1

−ω2 −ω1 ω2

Fig. 1: Graph of λ 7→ 1/R−λ2(0, 0)

Remark 3. An analytic continuation argument implies that the equality L2(z) =
H2(z) holds for all z ∈ {z ∈ C; Re(z) ≥ 0}. In particular, from (2.15), we have

f̂(v) = L2(−iv) = H2(−iv) (v ∈ R).

We now add the following technical assumption, which will ensure that f̂ is
in L1(R):

Assumption 2.1. We assume that there are β > 0 and c ∈ ]r2, ω2
1 [ such that, for

z ∈ {z ∈ C; −c ≤ Re(z) ≤ 0},

Rz(0, 0) =
|z|→+∞

O
(

1
|z|β

)
.

This assumption is for instance satisfied by the Brownian motion reflected in
[0, b], and more generally by Bessel processes of dimension δ ∈ ]0, 2[ reflected at b
(see Section 5). It comes in useful in the following lemma:

Lemma 2.4. Let us assume that Assumption 2.1 holds. Then:

(i) For all a ∈ [0, c] \ r2, the function v 7→ H2(−a + iv) is integrable on R, and
tends to 0 when v → ±∞.

(ii) H2 is bounded on the domains {z ∈ C; −c ≤ Re(z) ≤ 0, Im(z) ≥ 1} and
{z ∈ C; −c ≤ Re(z) ≤ 0, Im(z) ≤ −1}.
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Proof. (i) First, it is clear from Lemma 2.3 that, in the domain {z ∈ C; −c ≤
Re(z) ≤ 0}, H2 is a meromorphic function whose only pole is −r2. Therefore, for
a ∈ [0, c] \ r2, the function v 7→ H2(−a+ iv) is continuous on R, and we only have
to check its integrability in the vicinity of ±∞. We have

H2(−a+ iv) = − R−a+iv(0, x)
R−a+iv(0, 0)

α

(−a+ iv)
(
α+ 1

R−a+iv(0,0)

)(2.17)

− 1− e−a+iv

(−a+ iv)2︸ ︷︷ ︸
integrable at ±∞

.

On the one hand, using the first identity in (2.3), we have

(2.18)
∣∣∣∣R−a+iv(0, x)
R−a+iv(0, 0)

∣∣∣∣ = |Ex[e(a−iv)T0 ]| ≤ Eb[ecT0 ] <∞.

On the other hand, thanks to Assumption 2.1,

α

(−a+ iv)
(
α+ 1

R−a+iv(0,0)

) =
R−a+iv(0, 0)

(−a+ iv)

(
α

1 + αR−a+iv(0, 0)

)
(2.19)

=
v→±∞

O
(

1
|v|1+β

)
.

Gathering (2.18) and (2.19), we obtain

(2.20)
R−a+iv(0, x)
R−a+iv(0, 0)

α

(−a+ iv)
(
α+ 1

R−a+iv(0,0)

) =
v→±∞

O
(

1
|v|1+β

)
.

Consequently, (2.17) and (2.20) imply that v 7→ H2(−a+ iv) belongs to L1(R).
(ii) More generally, (2.20) can be written, for z ∈ {z ∈ C; −c ≤ Re(z) ≤ 0},

as

(2.21)
Rz(0, x)
Rz(0, 0)

α

z
(
α+ 1

Rz(0,0)

) =
|z|→+∞

O
(

1
|z|1+β

)
.

We only prove that H2 is bounded on {z ∈ C; −c ≤ Re(z) ≤ 0, Im(z) ≥ 1}.
The same pattern of proof applies for the other case. Let ε > 0. From (2.21),
there exists M > 0 such that, for all z ∈ {z ∈ C; −c ≤ Re(z) ≤ 0} satisfying
|z| ≥ Im(z) ≥M , we have

|H2(z)| < ε.

Therefore H2 is bounded on the domain {z ∈ C;−c ≤ Re(z) ≤ 0, M ≤ Im(z)}.
But, since H2 is continuous, it is also bounded on the compact domain {z ∈ C;
−c ≤ Re(z) ≤ 0, 1 ≤ Im(z) ≤M}. This ends the proof of Lemma 2.4.
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In particular, for a = 0, we infer that f̂ ∈ L1(R). We can therefore apply the
inverse Fourier transform to get

(2.22) f(t) =
1

2π

∫
R
e−ivtf̂(v) dv =

1
2π

∫
R
e−ivtH2(−iv) dv.

To obtain an equivalent to f(t) when t tends to infinity, we consider the
integration contour ∆R = ∆1

R∪∆2
R∪∆3

R∪∆4
R of Figure 2, on which we will apply

the residue theorem to the meromorphic function z 7→ etzH2(z).

6

-
0

R

∆1
R

−R

∆2
R

∆3
R

∆4
R

−ω2
1 −c −r2

�

?

?

-

6

6

Fig. 2: Integration contour

Lemma 2.5. Let t > 0 be fixed and r2 < c < ω2
1.

(i) We have ∮
∆R

etzH2(z) dz −−−−−→
R→+∞

2iπf(t) +
∫

∆3
∞

etzH2(z) dz,(2.23)

where ∆3
∞ is the axis −c+ iR.

(ii) There is a constant K(x) independent of t such that∣∣∣∣∫
∆3
∞

etzH2(z) dz
∣∣∣∣ ≤ K(x)e−ct.(2.24)

Proof. We study each side of the rectangle separately:
1) We parametrize ∆1

R with z = iv, −R ≤ v ≤ R. Then, from (2.22),∫
∆1
R

etzH2(z) dz = i

∫ R

−R
eitvH2(iv) dv(2.25)

= i

∫ R

−R
e−itvH2(−iv) dv −−−−−→

R→+∞
2iπf(t).
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2) Let {z = −a+ iR; 0 ≤ a ≤ c} be a parametrization of ∆2
R. Then∫

∆2
R

etzH2(z) dz =
∫ c

0

et(−a+iR)H2(−a+ iR) da.

According to Lemma 2.4, the function z 7→ H2(z) is bounded on {z ∈ C; −c ≤
Re(z) ≤ 0, Im(z) ≥ 1}, and limR→+∞H2(−a + iR) = 0. Then we can apply the
dominated convergence theorem to obtain

(2.26) lim
R→+∞

∫
∆2
R

etzH2(z) dz = 0.

3) We parametrize ∆4
R with z = −a − iR, 0 ≤ a ≤ c. The proof on this

segment is the same as the one on ∆2
R, so we get

(2.27) lim
R→+∞

∫
∆4
R

etzH2(z) dz = 0.

4) As for ∆3
R, we use z = −c− iv, −R ≤ v ≤ R, to obtain∣∣∣∣∫

∆3
R

etzH2(z) dz
∣∣∣∣ =

∣∣∣∣∫ −R
R

e−ct−ivtH2(−c− iv)i dv
∣∣∣∣ ≤ e−ctK(x),

where K(x) =
∫∞
−∞ |H2(−c+ iv)| dv. From Lemma 2.4, K(x) is finite. This shows

(2.24). Moreover,

(2.28) lim
R→+∞

∫
∆3
R

etzH2(z) dz =
∫

∆3
∞

etzH2(z) dz.

It is then clear that (2.23) is a direct consequence of (2.25)–(2.28).

Proof of Theorem 1.1. From (2.16), we have

etzH2(z) = −etz Rz(0, x)
zRz(0, 0)

α

α+ 1
Rz(0,0)

− etz 1− ez

z2
.

The only pole of z 7→ etzH2(z) inside the contour ∆R is −r2, and it is a simple
one. The part etz(1 − ez)/z2 has no contribution since it is holomorphic at −r2.
Consequently, the residue of etzH2(z) at −r2 reduces to

Res(etzH2(z),−r2) =
R−r2(0, x)
r2R−r2(0, 0)

α
∂
∂z

(
α+ 1

Rz(0,0)

)∣∣
z=−r2

exp(−r2t)

=
1
r2
R−r2(0, x)

1
∂
∂zRz(0, 0)|z=−r2

exp(−r2t).
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Applying the residue theorem and (2.23) leads to

2iπf(t) +
∫

∆3
∞

etzH2(z) dz =
2iπ
r2

R−r2(0, x)
1

∂
∂zRz(0, 0)

∣∣
z=−r2

exp(−r2t).

Since c > r, using (2.24) we get

f(t) = Ex[e−αLt ] ∼
t→+∞

1
r2
R−r2(0, x)

1
∂
∂zRz(0, 0)

∣∣
z=−r2

exp(−r2t),

which ends the proof of Theorem 1.1.

§3. Proofs of Theorems 1.2 and 1.3

As in the previous section, we shall only deal with the case of the penalization
by (e−αLt , t ≥ 0). Some comments about the case (eαLt , t ≥ 0) will be given in
Subsection 3.5. We assume from now on that m is absolutely continuous with
respect to the Lebesgue measure: m(dx) = m(x)dx.

§3.1. A preliminary lemma

Lemma 3.1. Let α > 0, and r2 be the unique solution in ]0, ω2
1 [ of the equation

α+ 1/R−r2(0, 0) = 0. Then, for x ∈ [0, b], the process(
M

(−α)
t := exp(r2t− αLt)

R−r2(0, Xt)
R−r2(0, x)

, t ≥ 0
)

is a continuous, strictly positive Px-martingale which converges to 0 as t→ +∞.

Proof. 1) Relation (2.8) implies that

Rλ(0, x)
Rλ(0, 0)

= Φ(x, λ)− Ψ(x, λ)
Rλ(0, 0)

.

We have noticed in the proof of Lemma 2.3 that z 7→ 1/Rz(0, 0) is holomorphic on
the domain {z ∈ C; Re(z) > −ω2

1}. An analytic continuation argument applied to
the first identity in (2.3) leads to

(3.1) Ex[er
2T0 ] =

R−r2(0, x)
R−r2(0, 0)

<∞.

This implies that M (−α) is continuous and strictly positive. We now assume that
x = 0 to simplify the notations. According to [RW00, Chapter V, Theorem 47.1,
p. 277], there exists a Brownian motion (Bt, t ≥ 0) reflected at 0 and b such that

Xt = Bγt (t ≥ 0),

where:
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• (Lzt (B), z ∈ [0, b], t ≥ 0) is the local time at z of the process (Bt, t ≥ 0),

• At =
∫ b

0
Lzt (B)m(dz) is a continuous additive functional,

• γt = inf{u ≥ 0; Au > t} is the right-continuous inverse of A.

Note that Lzt (X) = Lzγt(B). Here, since we have assumed that m has a density, we
have, from the occupation time formula,

(3.2) At =
∫ b

0

Lzt (B)m(z) dz =
1
2

∫ t

0

m(Bs) ds.

As a result, A is continuous and strictly increasing, so that γ is also continuous,
strictly increasing, and Aγt = γAt = t.

2) Let us apply Itô’s formula. In the following, all the derivatives are taken
with respect to the first variable, for example Φ′(x, λ) := ∂Φ

∂x (x, λ). We have

er
2At−αLt(B)

(
R−r2(0, Bt)
R−r2(0, 0)

)
= er

2At−αLt(B)

(
Φ(Bt,−r2)− Ψ(Bt,−r2)

R−r2(0, 0)

)
= 1 +

∫ t

0

er
2As−αLs(B)

(
Φ′(Bs,−r2)− Ψ′(Bs,−r2)

R−r2(0, 0)

)
dBs

+
1
2

∫ t

0

er
2As−αLs(B)

(
Φ′′(Bs,−r2)− Ψ′′(Bs,−r2)

R−r2(0, 0)

)
ds

+ r2

∫ t

0

er
2As−αLs(B)

(
Φ(Bs,−r2)− Ψ(Bs,−r2)

R−r2(0, 0)

)
dAs

− α
∫ t

0

er
2As−αLs(B) dLs(B).

We then replace t by γt and make the time change s = γu, following Proposition
1.5, p. 181, from D. Revuz and M. Yor [RY99]. This entails

M
(−α)
t = 1 +

∫ t

0

er
2u−αLu(X)

(
Φ′(Xu,−r2)− Ψ′(Xu,−r2)

R−r2(0, 0)

)
dXu(3.3)

− r2

2

∫ t

0

er
2u−αLu(X)

(
Φ(Xu,−r2)− Ψ(Xu,−r2)

R−r2(0, 0)

)
m(Xu) dγu(3.4)

+ r2

∫ t

0

er
2u−αLu(X)

(
Φ(Xu,−r2)− Ψ(Xu,−r2)

R−r2(0, 0)

)
du(3.5)

− α
∫ t

0

er
2u−αLu(X) dLu(X),(3.6)

where, in (3.4), we have used the fact that Φ and Ψ are eigenfunctions of the
operator G (cf. (2.6)). Then differentiating the equality Aγt = t, we get from (3.2)

dγu =
2

m(Xu)
du.
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As a result, the terms related to du ((3.4) and (3.5)) cancel. Let us now examine
the coefficients with respect to dLt(X) and dLbt(X). Since B can be written as
β + L0(B) − Lb(B) where β is a standard Brownian motion, we have, by time
change,

X = βγ + L0(X)− Lb(X),

where βγ is an (Fγt)-local martingale.

(i) From (2.6), Φ′(0,−r2) = 0 and Ψ′(0,−r2) = 1. Then (3.3) and (3.6) give

−
(

1
R−r2(0, 0)

+ α

)
dL0

s(X) = 0 by definition of r (cf. (1.2)).

(ii) (3.3) gives(
Φ′(b,−r2)− Ψ′(b,−r2)

R−r2(0, 0)

)
dLbs(X) = 0 by definition of R−r2(0, 0) (cf. (2.9)).

Finally, (3.3) reduces to

M
(−α)
t = 1 +

∫ t

0

er
2u−αLu

(
Φ′(Xu,−r2)− Ψ′(Xu,−r2)

R−r2(0, 0)

)
dβγu .

This implies that M (−α) is a continuous local martingale. But, from (3.1), we have

M
(−α)
t = er

2t−αLtR−r2(0, Xt)
R−r2(0, 0)

≤ er
2tEXt [er

2T0 ]

≤ er
2tEb[er

2T0 ] since x 7→ Ex[er
2T0 ] is clearly increasing.

As a result, M (−α) is a positive P-martingale, and therefore converges almost
surely.

3) Using (3.1), let us write

M
(−α)
t = er

2t−αLtR−r2(0, Xt)
R−r2(0, 0)

(3.7)

≤ exp
(
−αLt

(
1− r2t

αLt

))
Eb[er

2T0 ].

From an ergodic theorem (see [IM74, Chapter 6, p. 229]), we know that

(3.8)
Lt
t
−−−−→
t→+∞

1
m([0, b])

a.s.

Let us apply Jensen’s inequality with the convex functions x 7→ xk (k ∈ N):

(3.9)
(r2E0[τl])k

k!
≤ E0[(r2τl)k]

k!
(l > 0).



Penalization of a Recurrent Diffusion 697

With k = 2, it is clear from the equality case in the Cauchy–Schwarz inequality
that

(r2E0[τl])2 < E0[(r2τl)2].

Therefore, summing (3.9) with respect to k, we obtain

(3.10) exp(E0[r2τl]) < E0[exp(r2τl)],

and this inequality is strict. Now, it is known from [BS02, p. 22] that

(3.11) E0[τl] = m([0, b])l.

Hence, plugging (3.11) and (2.3) (with λ = −r2) in (3.10), we get

er
2m([0,b])l < e−l/R−r2 (0,0) ⇔ −r2R−r2(0, 0)m([0, b]) < 1,

since R−r2(0, 0) = −1/α < 0. Consequently, using (3.8) and (1.2), we obtain

(3.12) lim
t→+∞

(
1− r2t

αLt

)
= 1− r2m([0, b])

α
= 1 + r2R−r2(0, 0)m([0, b]) > 0 a.s.

Finally, letting t→ +∞ in (3.7) and using (3.12) ends the proof of Lemma 3.1.

§3.2. Proof of Theorem 1.2

We will use the following general penalization principle (see [RVY06]):

Theorem 3.1. Let (Γt, t ≥ 0) be a stochastic process satisfying, for every t ≥ 0,
0 < E[Γt] < +∞. Suppose that, for any s ≥ 0,

lim
t→+∞

E[Γt | Fs]
E[Γt]

=: Ms

exists a.s., and

E[Ms] = 1.

Then:

(i) For any s ≥ 0 and Λs ∈ Fs,

lim
t→+∞

E[1ΛsΓt]
E[Γt]

= E[Ms1Λs ].

(ii) There exists a probability measure Q on (Ω,F∞) such that for any s > 0,

Q(Λs) = E[Ms1Λs ].
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In our framework, we have, for s < t, by the Markov property and Theorem
1.1,

Ex[e−αLt |Fs]
Ex[e−αLt ]

=
e−αLsEXs

[
e−αLt−s

]
Ex[e−αLt ]

−−−−→
t→+∞

exp(r2s− αLs)
R−r2(0, Xs)
R−r2(0, x)

= M (−α)
s .

Note that from Lemma 3.1, M (−α) is a martingale such that Ex[M (−α)
s ] = 1. This

proves Theorem 1.2.

§3.3. Proof of Theorem 1.3

Proof of Theorem 1.3(i). 1) We start by proving that the coordinate process X is
still a Markov process under P(−α)

x . Let Λs ∈ Fs, and f be a Borel function with
compact support. We have, for s ≤ t,

E(−α)
x [f(Xt+s)1Λs ] = Ex[M (−α)

t+s f(Xt+s)1Λs ]

= Ex
[
exp(r2(t+ s)− αLt+s)

R−r2(0, Xt+s)
R−r2(0, x)

f(Xt+s)1Λs

]
= Ex

[
er

2(t+s)

R−r2(0, x)
Ex[e−αLt+sR−r2(0, Xt+s)f(Xt+s) | Fs]1Λs

]
= Ex

[
er

2(t+s)−αLs

R−r2(0, x)
Ex[e−αLt◦θsR−r2(0, Xt ◦ θs)f(Xt ◦ θs) | Fs]1Λs

]
= Ex

[
er

2(t+s)−αLs

R−r2(0, x)
EXs [e−αLtR−r2(0, Xt)f(Xt)]1Λs

]
= Ex

[
er

2s−αLsR−r2(0, Xs)
R−r2(0, x)

E(−α)
Xs

[f(Xt)]1Λs

]
= E(−α)

x [E(−α)
Xs

[f(Xt)]1Λs ].

Therefore, we obtain

E(−α)
x [f(Xt+s) | Fs] = E(−α)

Xs
[f(Xt)] .

This proves that X is Markov under P(−α)
x .

2) Let us calculate its infinitesimal generator. Let f be a bounded function
defined on R+, and of class C2. Then

1
t
E(−α)
x [f(Xt)− f(x)] =

1
t
Ex
[
(f(Xt)− f(x))

R−r2(0, Xt)
R−r2(0, x)

er
2t−αLt

]
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=
1
t

1
R−r2(0, x)

(
Ex[(f(Xt)R−r2(0, Xt)− f(x)R−r2(0, x))er

2t−αLt ]

− f(x)Ex[(R−r2(0, Xt)−R−r2(0, x))er
2t−αLt ]

)
−−−−→
t→+∞

1
R−r2(0, x)

(G(R−r2(0, ·)f)(x)− f(x)G(R−r2(0, ·)))

=
1

R−r2(0, x)
G(R−r2(0, ·)f)(x) + r2f(x),

since x 7→ R−r2(0, x) is an eigenfunction of the operator G associated to the
eigenvalue −r2. Using the definition of G (cf. (2.5)), we finally get

(3.13) G(−α)f(x) =
1

m(x)
f ′′(x) +

2
m(x)R−r2(0, x)

∂R−r2(0, x)
∂x

f ′(x).

3) Let us determine the domain of G(−α). Applying [RY99, Exercise 3.20,
p. 311] to the expression (3.13), we see that the scale function of X under P(−α)

equals

(3.14) s(−α)(x) =
∫ x

0

(
R−r2(0, 0)
R−r2(0, y)

)2

dy =
∫ x

0

dy

(Ey[er2T0 ])2
,

and the speed measure m(−α) is

(3.15) m(−α)(x) =
(
R−r2(0, x)
R−r2(0, 0)

)2

m(x) = (Ex[er
2T0 ])2m(x).

Then, for z ∈ ]0, b[, since 1 ≤ Ex[er
2T0 ] ≤ Eb[er

2T0 ], it is clear that
∫ z

0

(∫ z

y

(Ex[er
2T0 ])2m(x) dx

)
dy

(Ey[er2T0 ])2
≤ bm([0, b])(Eb[er

2T0 ])2 <∞,∫ z

0

(∫ z

y

dx

(Ex[er2T0 ])2

)
Ey([er

2T0 ])2m(y) dy ≤ bm([0, b])(Eb[er
2T0 ])2 <∞,

which means that 0 is a non-singular boundary (see [BS02, p. 14]). Since m(−α)

admits a density, we have m(−α)({0}) = 0 and 0 is a reflecting boundary. The
same is true for the endpoint b, and

D(G(−α)) := {f : G(−α)f ∈ Cb([0, b]), f ′(0+) = f ′(b−) = 0}.

Proof of Theorem 1.3(ii). Let us introduce the density n of the Lévy measure of τ
under P. Since τ is a subordinator, it is known, using (2.3), that

(3.16)
1

Rλ(0, 0)
=
∫ ∞

0

(1− e−λu)n(u) du.
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To obtain the Lévy measure of τ under P(−α), we start by computing its Laplace
transform. Since under Px,

M (−α)
τl

=
R−r2(0, 0)
R−r2(0, x)

exp(r2τl − αl),

Doob’s Optional Stopping Theorem gives, for λ ≥ 0,

(3.17) E(−α)
x [e−λτl1{τl≤t}] = e−αl

R−r2(0, 0)
R−r2(0, x)

Ex[e−(λ−r2)τl1{τl≤t}].

Then, letting t→ +∞ in (3.17) and applying the monotone convergence theorem,
we get

(3.18) E(−α)
x [e−λτl ] =

R−r2(0, 0)
R−r2(0, x)

e−αlEx[e−(λ−r2)τl ]

=
R−r2(0, 0)
R−r2(0, x)

Rλ−r2(0, x)
Rλ−r2(0, 0)

e−l(α+1/Rλ−r2 (0,0)) (from (2.4)).

Now, formula (3.16) yields

α+
1

Rλ−r2(0, 0)
= α+

∫ ∞
0

(1− e−(λ−r2)u)n(u) du

= α+
∫ ∞

0

(1− er
2u)n(u)du+

∫ ∞
0

(er
2u − e−(λ−r2)u)n(u) du

= α+
1

R−r2(0, 0)
+
∫ ∞

0

(1− e−λu)er
2un(u) du

=
∫ ∞

0

(1− e−λu)er
2un(u) du since α+

1
R−r2(0, 0)

= 0,

which shows (ii).

Proof of Theorem 1.3(iii). To evaluate P(−α)
x (Lt ≥ l), we rewrite (3.18) with λ = 0:

P(−α)
x (Lt ≥ l) = P(−α)

x (τl ≤ t)

= e−αl
R−r2(0, 0)
R−r2(0, x)

Ex[er
2τl1{τl≤t}]

−−−−→
t→+∞

R−r2(0, 0)
R−r2(0, x)

R−r2(0, x)
R−r2(0, 0)

exp
(
−l
(
α+

1
R−r2(0, 0)

))
= 1,

using (2.4). As a result, we have P(−α)
x (L∞ =∞) = 1.

§3.4. A few remarks about the penalization by (e−αLt , t ≥ 0)

1) To see how the local time at 0 has been reduced, remark that since X is a
positively recurrent diffusion on [0, b], X converges in distribution to a random
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variable X∞ whose density is

x 7→ m(x)
m([0, b])

1[0,b](x)

(see [BS02, p. 35]). The same is true for X(−α): X(−α) converges in distribution
to a random variable X(−α)

∞ whose density is

x 7→ (Ex[er
2T0 ])2m(x)

m(−α)([0, b])
1[0,b](x).

Then, since x 7→ Ex[er
2T0 ] is an increasing function, we have, for ε ≤ b,

P(X(−α)
∞ < ε) =

1
m(−α)([0, b])

∫ ε

0

(Ex[er
2T0 ])2m(x) dx(3.19)

≤ 1
m(−α)([0, b])

(Eε[er
2T0 ])2m([0, ε]).

But, by the first mean integral formula, there is δ ∈ ]0, b[ such that∫ b

0

(Ex[er
2T0 ])2m(x) dx = (Eδ[er

2T0 ])2

∫ b

0

m(x) dx.

This implies

(3.20) m(−α)([0, b]) = (Eδ[er
2T0 ])2m([0, b]).

Therefore, plugging (3.20) in (3.19), we see that, for ε < δ,

P(X(−α)
∞ < ε) ≤ (Eε[er

2T0 ])2

(Eδ[er2T0 ])2

m([0, ε])
m([0, b])

=
(

Eε[er
2T0 ]

Eδ[er2T0 ]

)2

P(X∞ < ε) < P(X∞ < ε).

Heuristically, this means that the penalized diffusion spends less time in the vicin-
ity of 0 than the original one.

2) For this class of diffusions, the penalization by a decreasing exponential function
is not sufficient to make the local time at 0 finite. A quite natural idea is to let r
tend to ω1 (i.e. α to +∞). In this case, for x 6= 0, identity (1.4) has to be replaced
by

Px(Lt = 0) = Px(T0 > t) ∼
t→+∞

− 1
ω2

1

Ψ(x,−ω2
1)

1
∂
∂zRz(0, 0)

∣∣
z=−ω2

1

exp(−ω2
1t).

The penalization by (1{T0>t}, t ≥ 0) then yields the martingale

M (−∞)
s = exp(−ω2

1s)
Ψ(Xs,−ω2

1)
Ψ(x,−ω2

1)
1{T0>s},
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and we have actually P(−∞)
x (L∞ = 0) = 1. This time, the penalization is too

strong. An intermediate case would probably be given by a penalization with
(1{Lt<l}, t ≥ 0) for l ∈ ]0,+∞[, but we have not been able to settle it yet.

§3.5. Short proof of the penalization by (eαLt , t ≥ 0)

Let us mention first that, formally, the formulae of the penalization with (eαLt ,
t ≥ 0) can be deduced from the ones with (e−αLt , t ≥ 0) on replacing −α by α

and r by iρ. In this case, Assumption 2.1 has to be replaced by

Assumption 3.1. We assume that for every d > 0, there is β > 0 such that, for
z ∈ {z ∈ C; 0 ≤ Re(z) ≤ d},

Rz(0, 0) =
|z|→+∞

O
(

1
|z|β

)
.

The line of the proof in this case is very close to the one given in the previous
sections. However we must take care of integrability problems. First, for λ ∈ R+,
λ 7→ Rλ(0, 0) =

∫∞
0
e−λtp(t, 0, 0) dt is a continuous and strictly decreasing func-

tion, which tends to +∞ at 0 according to Lemma 2.2, and to 0 at +∞ by the
monotone convergence theorem. It is thus a bijection from R∗+ to R∗+, and the
equation 1/Rλ2(0, 0) = α admits a unique positive solution, which we denote by ρ.

Next, note that, by Jensen’s inequality,

(−ρ2E0[τl])k

k!
≤ E0[(−ρ2τl)k]

k!
(l > 0, k ∈ N),

and following the same sequence of identities as in (3.9)–(3.12) gives

ρ2Rρ2(0, 0)m([0, b]) > 1,

since Rρ2(0, 0) = 1/α > 0, and

(3.21) lim
t→+∞

(
1− ρ2t

αLt

)
= 1−ρ

2m([0, b])
α

= 1−ρ2Rρ2(0, 0)m([0, b]) < 0 P-a.s.

Note that (3.21) and the fact that λ 7→ λRρ2(0, 0)m([0, b]) is an increasing function
of λ imply that, for λ > ρ2,

−λt+ αLt = αLt

(
1− λt

αLt

)
∼

t→+∞
αLt(1− λRρ2(0, 0)m([0, b])) −−−−→

t→+∞
−∞.

Let λ > ρ2. Consequently,∫ ∞
0

e−λteαLt dt=− 1
λ

[e−λteαLt ]+∞0 +
α

λ

∫ ∞
0

e−λteαLt dLt

=
1
λ

+
α

λ

∫ ∞
0

e−λτleαl dl.
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Integrating this identity with respect to dPx on Ω, and applying the Fubini–Tonelli
theorem, leads to∫ ∞

0

e−λtEx[eαLt ] dt=
1
λ

+
α

λ

∫ ∞
0

Ex[e−λτl ]eαl dl

=
1
λ

+
α

λ

Rλ(0, x)
Rλ(0, 0)

∫ ∞
0

e(−1/Rλ(0,0)+α)l dl (<∞)

=
1
λ

+
Rλ(0, x)
λRλ(0, 0)

α
1

Rλ(0,0) − α
.

We deduce in particular that for all t ≥ 0, Ex[eαLt ] < ∞ a.s. Now, to mimic the
proof of Theorem 1.1, we have to overcome the problem that t 7→ E[eαLt ] is no
longer integrable on R+. We choose a real d > ρ, and we study the asymptotics of
the function t 7→ e−d

2tE[eαLt ] (which now belongs to L1(R+)). This amounts to
translating the Laplace transform towards the negative reals:∫ ∞

0

e−λte−d
2tEx[eαLt ] dt =

1
λ+ d2

+
Rλ+d2(0, x)

(λ+ d2)Rλ+d2(0, 0)
α

1
Rλ+d2 (0,0) − α

.

We then apply the residue theorem around the pole λ = −(d2−ρ2) < 0 and notice
that the artificial weight e−d

2t cancels in the final equivalent.

§4. Proof of Theorem 1.4

Let α, β > 0, and let r2 be defined by (1.2). In this section, we shall only make the
proof of the penalization of the measure P(−α) by (e±βLt , t ≥ 0). From Theorem
1.3, under P(−α)

x , the coordinate process (Xt, t ≥ 0) is still a positively recurrent
diffusion reflected on [0, b]. We still write P(−α)

x for the equivalent probability under
which (Xt, t ≥ 0) is on natural scale.

Hence, Theorem 1.2 applies and we can perform the penalization of P(−α)
x by

(e±βLt , t ≥ 0).

§4.1. Penalization of P(−α)
x by (e−βLt , t ≥ 0)

Denoting by M (−α)(−β) the P(−α)
x -martingale given by(

M
(−α)(−β)
t := exp(σ2t− βLt)

R
(−α)
−σ2 (0, Xt)

R
(−α)
−σ2 (0, x)

, t ≥ 0
)

where R(−α) is the resolvent kernel of X under P(−α) and σ2 is the solution of
smallest modulus of the equation
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(4.1) β +
1

R
(−α)
−σ2 (0, 0)

= 0,

there exists a family (P(−α)(−β)
x )x∈[0,b] of probabilities defined on (Ω,F∞) such

that

P(−α)(−β)
x (Λu) = E(−α)

x [1ΛuM
(−α)(−β)
u ] for every u ≥ 0 and every Λu ∈ Fu.

But, for λ ≥ 0,

E(−α)
x [e−λT01{T0≤t}] = Ex[e−λT01{T0≤t}M

(−α)
t ] = Ex[e−λT01{T0≤t}M

(−α)
T0

]

=
R−r2(0, 0)
R−r2(0, x)

Ex[e−(λ−r2)T01{T0≤t}]

from Doob’s optional stopping theorem. Then, letting t tend to +∞ on both sides,
and applying the monotone convergence theorem, we obtain, from (2.3),

(4.2)
R

(−α)
λ (0, x)

R
(−α)
λ (0, 0)

=
R−r2(0, 0)
R−r2(0, x)

Rλ−r2(0, x)
Rλ−r2(0, 0)

.

Therefore,

M
(−α)(−β)
t = exp(σ2t− βLt)

R−r2(0, x)
R−(σ2+r2)(0, x)

R−(σ2+r2)(0, Xt)
R−r2(0, Xt)

(t ≥ 0),

and, for Λs ∈ Fs, we have

P(−α)(−β)
x (Λs) = E(−α)

x

[
1Λs exp(σ2s− βLs)

R−r2(0, x)
R−(σ2+r2)(0, x)

R−(σ2+r2)(0, Xs)
R−r2(0, Xs)

](4.3)

= Ex
[
1Λs exp((σ2 + r2)s+ (−β − α)Ls)

R−(σ2+r2)(0, Xs)
R−(σ2+r2)(0, x)

]
.

Now, the comparison of (2.3) and (3.18) gives

E(−α)
0 [e−λτl ] = exp(−l/R(−α)

λ (0, 0)) = exp
(
−l
(
α+

1
Rλ−r2(0, 0)

))
,

which yields

(4.4)
1

R
(−α)
λ (0, 0)

= α+
1

Rλ−r2(0, 0)
.

Therefore, setting ξ2 := σ2 +r2, the equation (4.1) satisfied by σ2 can be rewritten
as

(4.5) β + α+
1

R−ξ2(0, 0)
= 0,
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and ξ2 is the smallest solution of (4.5). Indeed, otherwise, there would exist u2

such that u2 < σ2 + r2 and β + α+ 1/R−u2(0, 0) = 0. But, from (4.4), this would
imply that β + 1/R(−α)

−(u2−r2)(0, 0) = 0, which contradicts the fact that σ2 is the
smallest solution of this equation (i.e. (4.1)). (Note that u2 − r2 must be positive,
since λ 7→ Rλ(0, 0) takes positive values on [0,+∞[). Finally, from (4.3),

P(−α)(−β)
x (Λs) = Ex

[
1Λs exp(ξ2s+ (−β − α)Ls)

R−ξ2(0, Xs)
R−ξ2(0, x)

]
= Ex[1ΛsM

(−α−β)
s ] = P(−α−β)

x (Λs).

§4.2. Penalization of P(−α)
x by (eβLt , t ≥ 0)

Now, if we penalize P(−α)
x by (eβLt , t ≥ 0), we obtain the family (P(−α)(β)

x )x∈[0,b]

of probabilities defined on (Ω,F∞) by

P(−α)(β)
x (Λu) = E(−α)

x [1ΛuM
(−α)(β)
u ] for every u ≥ 0 and every Λu ∈ Fu,

where M (−α)(β) is the P(−α)
x -martingale given by

M
(−α)(β)
t := exp(−η2t+ βLt)

R
(−α)
η2 (0, Xt)

R
(−α)
η2 (0, x)

(t ≥ 0)

with η2 the unique solution of the equation 1/R(−α)
η2 (0, 0) = β. From (4.2),

M (−α)(β) can be rewritten as

M
(−α)(β)
t = exp(−η2t+ βLt)

R−r2(0, x)
Rη2−r2(0, x)

Rη2−r2(0, Xt)
R−r2(0, Xt)

(t ≥ 0)

and, for Λs ∈ Fs, we have

P(−α)(β)
x (Λs) = E(−α)

x

[
1Λs exp(−η2s+ βLs)

R−r2(0, x)
Rη2−r2(0, x)

Rη2−r2(0, Xs)
R−r2(0, Xs)

]
= Ex

[
1Λs exp((η2 − r2)s+ (β − α)Ls)

Rη2−r2(0, Xs)
Rη2−r2(0, x)

]
.

From (4.5), η2 − r2 is a solution of the equation

α− β +
1

Rη2−r2(0, 0)
= 0.

Thus, if β ≥ α, then η2− r2 = ζ2 ≥ 0 is the unique solution of α−β+ 1/Rζ2(0, 0)
= 0, and

P(−α)(β)
x (Λs) = Ex

[
1Λs exp(ζ2s+ (β − α)Ls)

Rζ2(0, Xs)
Rζ2(0, x)

]
= P(β−α)

x (Λs).
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On the other hand, if β ≤ α, the same proof shows that η2 − r2 = −ζ2 ≤ 0 is the
smallest solution of α− β + 1/R−ζ2(0, 0) = 0 and

P(−α)(β)
x (Λs) = Ex

[
1Λs exp(−ζ2s+ (β − α)Ls)

R−ζ2(0, Xs)
R−ζ2(0, x)

]
= P(β−α)

x (Λs).

The other cases can be dealt with in the same way.

§5. Application to Bessel processes of dimension δ ∈ ]0, 2[ reflected at 1

§5.1. The general case

Let Y (ν) be a Bessel process of index ν = δ/2 − 1 ∈ ]−1, 0[ reflected at 1. Then
Y (ν) is a positively recurrent diffusion, with infinitesimal generator

G(ν)
Y =

1
2
∂2

∂y2
+

2ν + 1
2y

∂

∂y
.

Its speed measure and scale function are given by

mY (dy) =
y2ν+1

|ν|
dy and sY (y) = y−2ν .

We define (Xt := s(Y (ν)
t ), t ≥ 0). Then X is a diffusion on natural scale. Its

infinitesimal generator G is given, for f a bounded function defined on R+ and of
class C2, by

Gf(x) = 2ν2x2+1/νf ′′(x).

Thus, its speed measure equals m(dx) = (2ν2)−1x−2−1/νdx. We now determine
the two eigenfunctions Φ and Ψ solving (2.6). Let us introduce

Iν(z) :=
∞∑
k=0

(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)
, z ∈ C \ ]−∞, 0[,

the modified Bessel function of the first kind, and

Kν(z) :=
π

2
I−ν(z)− Iν(z)

sin(νπ)
, z ∈ C \ ]−∞, 0[, ν /∈ Z,

the MacDonald function. It is known (see N. N. Lebedev [Leb72, Chapter 5.7,
p. 110]) that these two functions generate the set of solutions of the linear differ-
ential equation

u′′ +
1
x
u′ −

(
1 +

ν2

x2

)
u = 0.

It is then not too difficult to verify that

x 7→
√
xIν(
√

2λx−1/2ν) and x 7→
√
xKν(

√
2λx−1/2ν)
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generate the set of eigenfunctions of G associated with the eigenvalue λ. The bound-
ary conditions (2.6) yield next

(5.1) Φ(x, λ) =
(

2√
2λ

)ν
Γ(1 + ν)

√
xIν(
√

2λx−1/2ν)

and

Ψ(x, λ) =
(√

2λ
2

)ν
Γ(1− ν)

√
xIν(
√

2λx−1/2ν)(5.2)

+
2ν

Γ(1 + ν)

(√
2λ
2

)ν√
xKν(

√
2λx−1/2ν).

Hence, we deduce from (2.9) with b = 1 that

Rλ(0, 0) :=
Ψ′(1, λ)
Φ′(1, λ)

(5.3)

=
−ν

Γ(1 + ν)

(√
2λ
2

)2ν(
Γ(−ν) +

2
Γ(1 + ν)

Kν+1(
√

2λ)
Iν+1(

√
2λ)

)
.

We also introduce, for ν ∈ ]−1, 0[, the Bessel function of the first kind, which
is defined on C by

Jν(z) :=
∞∑
k=0

(−1)k(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)
.

Then, for z ∈ C such that −π/2 < arg(z) < π, we have

Jν(z) := e−νπi/2Iν(iz)

(see N. N. Lebedev [Leb72, pp. 109 and 113]).
With this notation, we can now state the following version of Theorem 1.1:

Theorem 5.1. Let Y (ν) be a Bessel process of index ν ∈ ]−1, 0[ reflected at 1,
(X := (Y (ν)

t )−2ν , t ≥ 0) and α > 0.

(i) Let r2 be the solution of smallest modulus of the equation α+1/R−r2(0, 0) = 0.
Then

Ex[e−αLt(X)] ∼
t→+∞

exp(−r2t)
(

Φ(x,−r2)
α

+ Ψ(x,−r2)
)
c−(α, ν, r)

where

c−(α, ν, r) =
1

− ν
α −

ν
(Γ(1+ν))2

(
r2

2

)ν 1
J2
ν+1(r

√
2)

.
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(ii) Let ρ2 be the unique solution in R+ of −α+ 1/Rρ2(0, 0) = 0. Then

Ex[eαLt(X)] ∼
t→+∞

exp(ρ2t)
(

Φ(x, ρ2)
α

−Ψ(x, ρ2)
)
c+(α, ν, r)

where
c+(α, ν, r) =

1

− ν
α −

ν
(Γ(1+ν))2

(
ρ2

2

)ν 1
I2ν+1(ρ

√
2)

.

Note that to simplify the presentation, we used the identity (2.8), Rλ(x, y) =
Φ(x, λ)(Rλ(0, 0)Φ(y, λ)−Ψ(y, λ)), in the above formulas. Likewise, the computa-
tion of ∂

∂zRz(0, 0) can be significantly illuminated by using the following identity
for the Wronskian of Iν and Kν :

W (Iν(z),Kν(z)) := K ′ν(z)Iν(z)− I ′ν(z)Kν(z) = −1/z.

Proof of Theorem 5.1. We only need to check that Assumptions 2.1 and 3.1 are
satisfied in this set-up, in order to apply Theorem 1.1.

Let us denote by (ωn)n≥1 the zeros of R−λ2(0, 0), and let c, d ∈ R be such
that [c, d] ⊂ ]−ω2

1 ,+∞[, and z ∈ {z ∈ C; z = a + iv, c ≤ a ≤ d}. We are looking
for u ∈ C such that u2 = 2z = 2(a+ iv). In trigonometrical form, u can be written
as

(5.4) u =
√

2(a2 + v2)1/4 exp
(
i

2
arg(2(a+ iv))

)
.

Now, since |z| =
√
a2 + v2 and a is bounded in [c, d], |z| → +∞ implies that

v → ±∞.
First, we assume that v tends to +∞. Then arg(2(a + iv)) −−−−−→

v→+∞
π/2, so

from (5.4) we obtain
u ∼
v→+∞

√
v + i

√
v.

Therefore, we have

Rz(0, 0) =
−ν

Γ(1 + ν)

(
u

2

)2ν(
Γ(−ν) +

2
Γ(1 + ν)

Kν+1(u)
Iν+1(u)

)
∼

v→+∞

−νΓ(−ν)
Γ(1 + ν)

(√
v + i

√
v

2

)2ν

= O(vν)

since Kν+1(u)/Iν+1(u) −−−−−−→
|u|→+∞

0 when |arg(u)| < π/2− ε , according to [Leb72,

p. 123].
Second, when v → −∞, we can prove similarly that Rz(0, 0) = O(|v|ν).

Therefore Assumptions 2.1 and 3.1 hold.
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Of course, the above proof shows that the penalization Theorems 1.2 and 1.3
also hold for Bessel processes of index ν ∈ ]−1, 0[ reflected at 1. We shall not state
them once again since all the terms in this framework have already been computed.
Instead, we will particularize this set-up to consider the fundamental example of
the Brownian motion reflected on [0, 1].

§5.2. Brownian motion reflected on [0, 1]

The resolvent kernel (5.3) and the eigenfunctions (5.1) and (5.2) of the infinitesimal
generator G reduce significantly when ν = −1/2 (i.e. the Brownian motion case).
Indeed, as

I−1/2(z) =

√
2
πz

cosh(z), I1/2(z) =

√
2
πz

sinh(z) and K−1/2(z) =
√

π

2z
e−z,

we get, by substituting in (5.1)–(5.3),

Φ(x, λ) = cosh(
√

2λx), Ψ(x, λ) =
1√
2λ

sinh(
√

2λx),

and

Rλ(0, 0) =
1√

2λ tanh(
√

2λ)
=

∑
n≥0 (2λ)n/(2n)!∑

n≥0 (2λ)n+1/(2n+ 1)!
.

In this particular setting, we have:

Theorem 5.2. Let X be a Brownian motion reflected on [0, 1] and α > 0.

(i) Let r be the unique solution in ]0, π/(2
√

2)[ of the equation α =
√

2r tan(
√

2r).
Then

Ex[e−αLt ] ∼
t→+∞

exp(−r2t)
cos(
√

2r(1− x))
cos(
√

2r)
2α

2r2 + α+ α2
.

(ii) Let ρ be the unique solution in ]0,+∞[ of the equation α =
√

2ρ tanh(
√

2ρ).
Then

Ex[eαLt ] ∼
t→+∞

exp(ρ2t)
cosh(

√
2ρ(1− x))

cosh(
√

2ρ)
2α

2ρ2 + α− α2
.

Theorem 5.3. Let X be a Brownian motion reflected on [0, 1] and α > 0.

(i) The processes(
M

(−α)
t := exp(r2t− αLt)

cos(
√

2r(1−Xt))
cos(
√

2r(1− x))
, t ≥ 0

)
and (

M
(α)
t := exp(−ρ2t+ αLt)

cosh(
√

2ρ(1−Xt))
cosh(

√
2ρ(1− x))

, t ≥ 0
)

are continuous, strictly positive Px-martingales which converge to 0 as t→+∞.
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(ii) Let s > 0 and x ∈ [0, 1]. For every Λs ∈ Fs, we have

lim
t→+∞

Ex[1Λse
±αLt ]

Ex[e±αLt ]
= Ex[1ΛsM

(±α)
s ].

(iii) Let (P(±α)
x )x∈[0,1] be the family of probabilities defined on (Ω,F∞) by

P(±α)
x (Λu) = Ex[1ΛuM

(±α)
u ] for every u ≥ 0 and every Λu ∈ Fu.

Then, under P(±α)
x , the coordinate process X is a solution of the stochastic

differential equation

Xt = x+ B̃t + L0
t (X)− L1

t (X) +
∫ t

0

b(±α)(Xs) ds

where B̃ is a P(±α)
x -Brownian motion started from 0 and{

b(−α)(x) =
√

2r tan(
√

2r(1− x)),

b(+α)(x) = −
√

2ρ tanh(
√

2ρ(1− x)).

(iv) Under P(±α), the density of the Lévy measure of the subordinator τ is given
by 

n(−α)(u) = 2
∑
n≥1

a2
ne
−(a2

n−r
2)u,

n(+α)(u) = 2
∑
n≥1

a2
ne
−(a2

n+ρ2)u,

where an := π
2
√

2
(2n− 1).

Proof. Item (iii) is a direct consequence of (1.6) and merely relies on an application
of Girsanov’s theorem. Next, to prove (iv), we need to determine the Lévy measure
of τ under P. We use the expansion

√
2λ tanh(

√
2λ) =

∑
n≥1

2λ
a2
n + λ

where an =
π

2
√

2
(2n− 1)

(see for example H. Cartan [Car61, p. 155]). We then write, from (2.3),

E0[e−λτl ] = exp(−l/Rλ(0,0)) = exp(−l
√

2λ tanh(
√

2λ))

= exp
(
−2l

∑
n≥1

λ

a2
n + λ

)
= exp

(
−2l

∑
n≥1

a2
n

(
1
a2
n

− 1
a2
n + λ

))

= exp
(
−2l

∑
n≥1

a2
n

∫ ∞
0

(e−a
2
nu − e−(a2

n+λ)u) du
)

= exp
(
−2l

∫ ∞
0

(1− e−λu)
∑
n≥1

a2
ne
−a2

nu du

)
.
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Hence, the density of the Lévy measure of τ is given by

n(u) = 2
∑
n≥1

a2
ne
−a2

nu,

and (iv) is a direct consequence of Theorem 1.3(ii).

Remark 4. Let us mention that when X is a reflected Brownian motion on [0, 1],
many equalities in law are known for the subordinator τ . For example, from F. B.
Knight [Kni78, Lemma 2.1, p. 436], we have

τl(X)
(d)
=
∫ τl(|B|)

0

1]0,1[(|Bt|) dt

(d)
= 2

∫ 1

0

Laτl(|B|)(|B|) da (by the occupation time formula)

(d)
= 2

∫ 1

0

Zt dt (by the Ray–Knight Theorem),

where B is a standard Brownian motion and Z a squared Bessel process of dimen-
sion 0 started from l. Moreover, according to P. Carmona, F. Petit and M. Yor
[CPY01], we have the equality in law

(γπ2
4 τl

, l ≥ 0)
(d)
= (ξπ

2 l
, l ≥ 0),

where γ is a Brownian motion independent of τ , and ξ is the Lévy process asso-
ciated by Lamperti’s relation with the absolute value of a Cauchy process, whose
generator is

Lξf(ξ) =
1
π

∫
R

cosh(η)
(sinh(η))2

(f(ξ + η)− f(ξ)− ηf ′(ξ)1{|η|≤1}) dη.

In fact, a better knowledge of the law of τl (in particular the asymptotic behavior
of its distribution) would enable us to penalize the Brownian motion reflected on
[0, 1] with (1{Lt≤l}, t ≥ 0).

§6. Other cases

We have so far studied the penalization of a positively recurrent diffusion reflected
on [0, b] by an exponential function of its local time. We shall now briefly deal
with null recurrent diffusions and transient diffusions. As previously, the following
study will mainly rely on the expressions of the resolvent kernel, as given by
Krein’s theory. See for example [DM76, Chapter V, p. 162] for an introduction
to the Green function, and its expressions in the different situations we shall deal
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with, or [KK74] for the original point of view of M. G. Krein and I. S. Kac. But,
before starting our discussion related to b and m([0, b[), we mention a Tauberian
theorem for Laplace transforms, which we will use several times (see W. Feller
[Fel71, Chapter XIII.5, p. 446]):

Theorem 6.1. Let p ∈ ]0,+∞[. If f is a monotone function on an interval of the
form ]x0,+∞[, then we have the equivalence

(6.1)
∫ ∞

0

e−λxf(x) dx ∼
λ→0

1
λp
η

(
1
λ

)
⇔ f(x) ∼

x→+∞

1
Γ(p)

xp−1η(x),

where η is a slowly varying function (i.e. for all x > 0, η(tx)/η(t)→ 1 as t→ +∞).

We shall give below, in each case, an equivalent at 0 of (2.1), and then apply
the Tauberian theorem to get an equivalent of t 7→ Ex[e−αLt ] at +∞. Note that this
was not possible for a positively recurrent diffusion reflected on [0, b], as mentioned
in Remark 2.

§6.1. First case: b = +∞ and m([0,+∞[) = +∞

Theorem 6.2. Let X be a linear diffusion on natural scale, defined on [0,+∞[
and such that m([0, x]) ∼

x→+∞
x1/β−1κ(x) with β ∈ ]0, 1[ and κ a slowly varying

function. Then

(6.2) Ex[e−αLt ] ∼
t→+∞

(
x+

1
α

)
η(t)
tβ

,

where η is another slowly varying function.

Proof. The resolvent kernel takes the form

Rλ(0, 0) =
∫ ∞

0

dx

Φ2(x, λ)
−−−→
λ→0

+∞ (using (2.7)).

This implies that X is null recurrent (since m([0,+∞[) = +∞). We have

Rλ(0, x)
Rλ(0, 0)

= Φ(x, λ)− Ψ(x, λ)
Rλ(0, 0)

= 1 + λ

∫ x

0

(x− s)Φ(s, λ)m(ds)−
x+ λ

∫ x
0

(x− s)Ψ(s, λ)m(ds)
Rλ(0, 0)

.

Since limλ→0 λRλ(0, 0) = 1/m([0,+∞[) = 0 (see [BS02, p. 20]), it follows that

(6.3)
Rλ(0, x)
Rλ(0, 0)

= 1− x

Rλ(0, 0)
+ o

(
1

Rλ(0, 0)

)
.
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Therefore, plugging (6.3) in (2.1), we obtain the equivalent:

(6.4)
∫ ∞

0

e−λtEx[e−αLt ] dt

=
1
λ

[
1−

(
1− x

Rλ(0, 0)
+ o

(
1

Rλ(0, 0)

))(
1− 1

αRλ(0, 0)
+ o

(
1

Rλ(0, 0)

))]
∼
λ→0

x+ 1/α
λRλ(0, 0)

.

Let us now introduce the Lévy measure ν of the subordinator τ . The measure
ν is absolutely continuous with respect to the Lebesgue measure, with density n

which is the Laplace transform of the Borel measure σ associated to m−1 (the left
continuous inverse of m) by the Krein correspondence:

(6.5) n(u) =
∫ ∞

0

e−ξuξ dσ(ξ)

(see S. Kotani and S. Watanabe [KW82] and F. B. Knight [Kni81]). Then the
following identity holds:

(6.6)
1

Rλ(0, 0)
=
∫ ∞

0

(1− e−λu)n(u) du.

Let a > 0. We write∫ ∞
a

(1− e−λu)n(u) du=
[
(e−λu − 1)ν([u,+∞[)

]+∞
a

+
∫ ∞
a

λe−λuν([u,+∞[) du

= (1− e−λa)ν([a,+∞[) +
∫ ∞
a

λe−λuν([u,+∞[) du.

The two terms being positive, we can deduce, letting a→ 0,

(6.7)
1

λRλ(0, 0)
=
∫ ∞

0

e−λuν([u,+∞[) du+ c,

where c := lima→0 aν([a,+∞[) < ∞. Observe that c = 0. Indeed, otherwise, if
c > 0, we would have ν([a,+∞[) ∼

a→0
c/a and

∫ 1

a

u ν(du) = [−uν([u, 1])]1a +
∫ 1

a

ν([u, 1]) du

= aν([a, 1]) +
∫ 1

a

ν([u, 1]) du −−−→
a→0

+∞

since a 7→ ν([a, 1]) would not be integrable at 0. But this contradicts the fact that
ν is the Lévy measure of a subordinator, i.e.

∫ +∞
0

(u ∧ 1) ν(du) < ∞. Therefore,
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from (6.4) and (6.7) we obtain

(6.8)
∫ ∞

0

e−λtEx[e−αLt ] dt ∼
λ→0

(
x+

1
α

)∫ ∞
0

e−λuν([u,+∞[) du,

and it remains to find an equivalent of the RHS of (6.8). From (6.5), applying
Fubini’s theorem, we have∫ ∞

0

e−λuν([u,+∞[) du =
∫ ∞

0

e−λu
∫ ∞
u

n(v) dv du

=
∫ ∞

0

e−λu
(∫ ∞

u

∫ ∞
0

e−ξvξ dσ(ξ) dv
)
du

=
∫ ∞

0

e−λu
(∫ ∞

0

e−ξu dσ(ξ)
)
du =

∫ ∞
0

dσ(ξ)
λ+ ξ

.

Recall that x 7→ m([0, x]) is an increasing function and m([0, x]) ∼
x→+∞

x1/β−1κ(x).

Then, using Y. Kasahara [Kas76, Lemma 1, p. 73], we have

(6.9) m−1([0, x]) ∼
x→+∞

x1/(1−β)−1ϑ(x),

where ϑ is a slowly varying function. By applying [Kas76, Theorem 2, p. 73], (6.9)
is seen to be equivalent to

(6.10)
∫ ∞

0

dσ(ξ)
λ+ ξ

∼
λ→0

(β(1− β))β−1 Γ(2− β)
Γ(β)

λ−βϑ̃

(
1
λ

)
where ϑ̃ is a slowing varying function such that (x1−βϑ̃(x))−1 = x

1
1−β ϑ(x) (in the

sense of composition of functions). Finally, setting

η(t) := (β(1− β))β−1 Γ(2− β)
Γ(β)

ϑ̃(t),

and applying the Tauberian Theorem 6.1, we obtain

ν([u,+∞[) ∼
u→+∞

η(u)
uβ

and

(6.11) Ex[e−αLt ] ∼
t→+∞

(
x+

1
α

)
η(t)
tβ

.

Note that, from (6.8), we have also proven that

Ex[e−αLt ] ∼
t→+∞

ν([t,+∞[)
(
x+

1
α

)
.
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Example 1. In the same way as in Section 5, let us consider (Xt := (Y (ν)
t )−2ν ,

t ≥ 0) where Y (ν) is a Bessel process of index ν ∈ ]−1, 0[ reflected at 0. The speed
measure of X is given by

m([0, x]) = − 1
2ν(1 + ν)

x−1−1/ν ,

hence, with the notations of Theorem 6.2, β = −ν and κ(x) = −1/(2ν(1 + ν)).
Some easy computations then give

ϑ(x) = κ
ν

1+ν (x) =
(
− 1

2ν(1 + ν)

) ν
1+ν

and η(x) = κ−ν(x) =
(
− 1

2ν(1 + ν)

)−ν
,

and, from (6.2),

Ex[e−αLt ] ∼
t→+∞

(
x+

1
α

)
2ν

Γ(1− ν)
tν .

Note that if ν = −1/2 (the Brownian motion case) we get

Ex[e−αLt ] ∼
t→+∞

(
x+

1
α

)√
2
πt
.

Remark 5. A probability measureµ on [0,+∞[ is called subexponential ifµ(]x,+∞[)
> 0 for every x, and

lim
x→+∞

µ∗2(]x,+∞[)
µ(]x,+∞[)

= 2,

where µ∗2 stands for the convolution of µ with itself. (See Sato [Sat99, Chapter 5,
p. 164] for other equivalent conditions whenµ is the Lévy measure of a subordinator.)
Thus, if we assume that the law of 1

ν(]1,+∞[)ν|]1,+∞[ is subexponential (which is in
particular the case if ν(]t,+∞[) ∼

t→+∞
t−βη(t)), this implies (see P. Salminen and

P. Vallois [SV09]) that

Px(Lt < l) ∼
t→+∞

(x+ l)ν(]t,+∞[).

Therefore, we have directly

Ex[e−αLt ] =
∫ 1

0

Px(e−αLt > u) du

=
∫ ∞

0

Px(e−αLt > e−αl)αe−αl dl

=
∫ ∞

0

Px(Lt < l)αe−αl dl

∼
t→+∞

ν(]t,+∞[)
∫ ∞

0

(x+ l)αe−αl dl ∼
t→+∞

ν(]t,+∞[)
(
x+

1
α

)
.



716 C. Profeta

§6.2. Second case: b < +∞ and m([0, b[) = +∞

The resolvent kernel takes the form

Rλ(0, 0) =
∫ b

0

dx

Φ2(x, λ)
−−−→
λ→0

b (from (2.7)),

which shows in particular that X is transient. Moreover,

Rλ(0, x)
Rλ(0, 0)

= Φ(x, λ)− Ψ(x, λ)
Rλ(0, 0)

∼
λ→0

1− x

b
,

hence we find the equivalent:∫ ∞
0

e−λtEx[e−αLt ] dt ∼
λ→0

1
λ

(
1−

(
1− x

b

)
α

α+ 1
b

)
.

The Tauberian theorem can be applied, and we finally obtain

Ex[e−αLt ] ∼
t→+∞

1−
(

1− x

b

)
α

α+ 1
b

.

§6.3. Third case: b+m([0, b[) < +∞

In this case, to define the diffusion it is necessary to add a supplementary boundary
condition at b. To this end, let k(dx) = 1

k0
δb(dx) be the killing measure of X (where

δb stands for the Dirac measure at b). If k0 = +∞, then X is reflected at b; this
was the subject of Sections 2 to 5. Therefore, we assume here that X is elastically
killed at b, i.e. k0 < +∞. (Note that k0 = 0 means that b is a killing boundary,
i.e. the diffusion, if it hits b, is immediately sent to a cemetary state ∂; see [BS02,
p. 16]). In this set-up, to define the resolvent kernel Rλ, we must start by extending
Φ linearly on [b,+∞[ by setting

Φ(x, λ) := Φ(b, λ) + Φ′(b, λ)(x− b) for x ≥ b.

Then the resolvent kernel takes the form

Rλ(0, 0) =
∫ b+k0

0

dx

Φ2(x, λ)
−−−→
λ→0

b+ k0.

This case is thus very similar to the second one, and the diffusion is again transient.
Moreover,

Rλ(0, x)
Rλ(0, 0)

∼
λ→0

1− x

b+ k0
.

Consequently,

Ex[e−αLt ] ∼
t→+∞

1−
(

1− x

b+ k0

)
α

α+ 1
b+k0

.
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It is then easy to deduce the law of L∞:

Px(L∞ ∈ du) =
x

b+ k0
δ0(du) +

(
1− x

b+ k0

)
1

b+ k0
exp
(
− u

k0 + b

)
du.

Example 2. We consider the Brownian motion reflected at 0 and killed at 1 for
which m(dx) = 2dx, b = 1 and k0 = 0. Here, I = [0, 1[ and we obtain

Ex[e−αLt ] ∼
t→+∞

1− (1− x)
α

α+ 1
,

and
Px(L∞ ∈ du) = xδ0(du) + (1− x)e−udu.

Let us remark that, since L∞ = LT1 a.s., this entails that under P0, LT1 has an
exponential law of parameter 1.
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processes, Birkhäuser Boston, Boston, MA, 2001, 41–55. Zbl 0979.60038 MR 1833691
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