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Segal–Bargmann Transform and Paley–Wiener
Theorems on Motion Groups

by

Suparna Sen

Abstract

We study the Segal–Bargmann transform on a motion group Rn n K, where K is a
compact subgroup of SO(n). A characterization of the Poisson integrals associated to
the Laplacian on Rn n K is given. We also establish a Paley–Wiener type theorem using
complexified representations.
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§1. Introduction

The Segal–Bargmann transform, also called the coherent state transform, was
developed independently in the early 1960’s by Segal in the infinite-dimensional
context of scalar quantum field theories and by Bargmann in the finite-dimensional
context of quantum mechanics on Rn. We consider the following equivalent form
of Bargmann’s original result.

A function f ∈ L2(Rn) admits a factorization f(x) = g ∗ pt(x) where g ∈
L2(Rn) and pt(x) = (4πt)−n/2e−|x|

2/(4t) (the heat kernel on Rn) if and only if f
extends as an entire function to Cn and (2πt)−n/2

∫
Cn |f(z)|2e−|y|2/(2t) dx dy <∞

(z = x+ iy). In this case we also have

‖g‖22 =
1

(2πt)n/2

∫
Cn
|f(z)|2e−|y|

2/(2t) dx dy.

The mapping g 7→ g ∗ pt is called the Segal–Bargmann transform and the
above says that the Segal–Bargmann transform is a unitary map from L2(Rn)
onto O(Cn) ∩ L2(Cn, µ), where dµ(z) = (2πt)−n/2e−|y|

2/(2t) dx dy and O(Cn) de-
notes the space of entire functions on Cn.
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In the paper [4], B. C. Hall introduced a generalization of the Segal–Bargmann
transform on a compact Lie group. If K is such a group, this coherent state
transform maps L2(K) isometrically onto the space of holomorphic functions in
L2(G,µt), where G is the complexification of K and µt is an appropriate heat
kernel measure on G. The generalized coherent state transform is defined in terms
of the heat kernel on the compact group K and its analytic continuation to the
complex group G. Similar results have been proved by various authors. See [12],
[6], [5], [8] and [7].

Next, consider the following result on R due to Paley and Wiener. A function
f ∈ L2(R) admits a holomorphic extension to the strip {x+ iy : |y| < t} such that

sup
|y|≤s

∫
R
|f(x+ iy)|2 dx <∞ ∀s < t

if and only if ∫
R
es|ξ||f̃(ξ)|2 dξ <∞ ∀s < t(1.1)

where f̃ denotes the Fourier transform of f.
The condition (1.1) is the same as∫

R
| ˜es∆1/2f(ξ)|2 dξ <∞ ∀s < t

where ∆ is the Laplacian on R. This point of view was explored by R. Goodman
in Theorem 2.1 of [2].

The condition (1.1) is also equivalent to∫
R
|ei(x+iy)ξ|2|f̃(ξ)|2 dξ <∞ ∀|y| < t.

Here ξ 7→ ei(x+iy)ξ may be seen as the complexification of the parameters of the
unitary irreducible representations ξ 7→ eixξ of R. This point of view was also
further developed by R. Goodman (see Theorem 3.1 from [3]). Similar results were
established for the Euclidean motion group M(2) of the plane R2 in [11]. The aim
of this paper is to prove corresponding results in the context of general motion
groups.

The plan of this paper is as follows: In the following section we recall the
representation theory and Plancherel theorem of the motion group M. We also
describe the Laplacian on M. In the next section we prove the unitarity of the
Segal–Bargmann transform on M and we study the generalized Segal–Bargmann
transform, obtaining analogues of Theorems 8 and 10 in [4]. The fourth section is
devoted to a study of Poisson integrals on M via a Gutzmer-type formula on M
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which is proved by using a Gutzmer formula for compact Lie groups established by
Lassalle in 1978 (see [9]). This section is modelled after the work of Goodman [2].
In the final section we prove another characterization of functions extending holo-
morphically to the complexification of M , which is an analogue of Theorem 3.1
of [3].

§2. Preliminaries

Let K be a compact, connected Lie group which acts as a linear group on a finite-
dimensional real vector space V. Let M be the semidirect product of V and K

with the group law

(x1, k1) · (x2, k2) = (x1 + k1x2, k1k2) where x1, x2 ∈ V, k1, k2 ∈ K.

Then M is called the motion group. Since K is compact, there exists a K-invariant
inner product on V . Hence, we can assume that K is a connected subgroup of
SO(n), where n = dimV. When K = {1}, M = V ∼= Rn and if K = SO(n), M is
the Euclidean motion group. Henceforth we shall identify V with Rn and K with
a subgroup of SO(n).

The group M may be identified with a matrix subgroup of GL(n + 1,R) via
the map

(x, k) 7→
(
k x

0 1

)
where x ∈ Rn and k ∈ K ⊆ SO(n).

We normalize the Haar measure dm on M in such a way that dm = dx dk,

where dx = (2π)−n/2 dx1 · · · dxn and dk is the normalized Haar measure on K. Let
H = L2(K) be the Hilbert space of all square integrable functions on K. Denote
by 〈·, ·〉 the Euclidean inner product on Rn. Let V̂ be the dual space of V. Then
we can identify V̂ with Rn so that K acts on V̂ naturally by 〈k · ξ, x〉 = 〈ξ, k−1 ·x〉
where ξ ∈ V̂ , x ∈ V, k ∈ K.

For any ξ ∈ V̂ let Uξ denote the induced representation of M by the unitary
representation x 7→ ei〈ξ,x〉 of V. Then for F ∈ H and (x, k) ∈M,

Uξ(x,k)F (u) = ei〈x,u·ξ〉F (k−1u).

The representation Uξ is not irreducible. Any irreducible unitary representation
of M is, however, contained in Uξ for some ξ ∈ V̂ as an irreducible component.

Let Kξ be the isotropy subgroup of ξ ∈ V̂ , i.e. Kξ = {k ∈ K : k · ξ = ξ}.
Consider σ ∈ K̂ξ, the unitary dual of Kξ. Denote by χσ, dσ and σij the charac-
ter, degree and matrix coefficients of σ respectively. Let R be the right regular



722 S. Sen

representation of K. Define

Pσ = dσ

∫
Kξ

χσ(w)Rw dw and Pσγ = dσ

∫
Kξ

σγγ(w)Rw dw

where dw is the normalized Haar measure on Kξ. Then Pσ and Pσγ are both
orthogonal projections on H. Let Hσ = PσH and Hσγ = Pσγ H. The subspaces Hσγ
are invariant under Uξ for 1 ≤ γ ≤ dσ and the representations of M induced on
Hσγ under Uξ are equivalent for all 1 ≤ γ ≤ dσ. We fix one of them and denote it
by Uξ,σ. Two representations Uξ,σ and Uξ

′,σ′
are equivalent if and only if there

exists an element k ∈ K such that ξ = k · ξ′ and σ′ is equivalent to σk where
σk(w) = σ(kwk−1) for w ∈ Kξ.

The Mackey theory [10] shows that under certain conditions on K (for details
refer to Section 6.6 of [1]), each Uξ,σ is irreducible and every infinite-dimensional ir-
reducible unitary representation is equivalent to Uξ,σ for some ξ ∈ Rn and σ ∈ K̂ξ.

Since H =
⊕

σ∈cKξ Hσ and Hσ =
⊕dσ

γ=1Hσγ , we have

Uξ ∼=
⊕
σ∈cKξ

dσU
ξ,σ.

For any f ∈ L1(M) define the Fourier transform of f by

f̂(ξ, σ) =
∫
M

f(m)Uξ,σm dm.

Then the Plancherel formula gives∫
M

|f(m)|2 dm =
∫

Rn

∑
σ∈cKξ

dσ‖f̂(ξ, σ)‖2HS dξ

where ‖ ·‖HS is the Hilbert–Schmidt norm of an operator. We will be working with
the generalized Fourier transform defined by

f̂(ξ) =
∫
M

f(m)Uξm dm.

Then we also have ∫
M

|f(m)|2 dm =
∫

Rn
‖f̂(ξ)‖2HS dξ.

Let k and m be the Lie algebras of K and M respectively. Then

m =
{(

K X

0 0

)
: X ∈ Rn, K ∈ k

}
.
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Let K1, . . . ,KN and X1, . . . , Xn be orthonormal bases of k and Rn respectively.
Define

Mi =



(
Ki 0

0 0

)
for 1 ≤ i ≤ N,(

0 Xi

0 0

)
for N + 1 ≤ i ≤ N + n.

Then it is easy to see that {M1, . . . ,MN+n} forms a basis for m. The Laplacian
∆M = ∆ is defined by

∆ = −(M2
1 + · · ·+M2

N+n).

A simple computation using the fact that K ⊆ SO(n) shows that

∆ = −∆Rn −∆K

where ∆Rn and ∆K are the Laplacians on Rn and K respectively given by ∆Rn =
X2

1 + · · ·+X2
n and ∆K = K2

1 + · · ·+K2
N .

§3. Segal–Bargmann transform and its generalization

Since ∆Rn and ∆K commute, it follows that the heat kernel ψt associated to ∆ is
given by the product of the heat kernels pt on Rn and qt on K. In other words

ψt(x, k) = pt(x)qt(k) =
1

(4πt)n/2
e−|x|

2/(4t)
∑
π∈ bK

dπe
−λπt/2χπ(k).

Here, for each unitary, irreducible representation π of K, dπ is the degree of π,
λπ is such that π(∆K) = −λπI, and χπ(k) = Tr(π(k)) is the character of π.

Denote by G the complexification of K. Let κt be the fundamental solution
at the identity of the following equation on G:

du

dt
=

1
4

∆Gu

where ∆G is the Laplacian on G (for details see [4]). It should be noted that
κt is the real, positive heat kernel on G which is not the same as the analytic
continuation of qt on K.

Let H(Cn×G) be the Hilbert space of holomorphic functions on Cn×G which
are square integrable with respect to µ⊗ ν(z, g) where

dµ(z) =
1

(2πt)n/2
e−|y|

2/(2t) dx dy on Cn

and
dν(g) =

∫
K

κt(xg) dx on G.

Then we have the following theorem:
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Theorem 3.1. If f ∈ L2(M), then f ∗ ψt extends holomorphically to Cn × G.

Moreover, the map Ct : f 7→ f ∗ψt is a unitary map from L2(M) onto H(Cn×G).

Proof. Let f ∈ L2(M). Expanding f in the K-variable using the Peter–Weyl
theorem we obtain

f(x, k) =
∑
π∈ bK

dπ

dπ∑
i,j=1

fπij(x)φπij(k)

where for each π ∈ K̂, dπ is the degree of π, φπij ’s are the matrix coefficients of π
and fπij(x) =

∫
K
f(x, k)φπij(k) dk. Here, the convergence is understood in the L2-

sense. Moreover, by the universal property of the complexification of a compact
Lie group (see Section 3 of [4]), all the representations of K, and hence all the
matrix entries, extend to G holomorphically.

Since ψt is K-invariant (as a function on Rn) a simple computation shows
that

f ∗ ψt(x, k) =
∑
π∈ bK

dπe
−λπt/2

dπ∑
i,j=1

fπij ∗ pt(x)φπij(k).

It is easily seen that fπij ∈ L2(Rn) for every π ∈ K̂ and 1 ≤ i, j ≤ dπ. Hence
fπij ∗ pt extends to a holomorphic function on Cn and by the unitarity of the
Segal–Bargmann transform in Rn we have, for z = x+ iy ∈ Cn,∫

Cn
|fπij ∗ pt(z)|2µ(y) dx dy =

∫
Rn
|fπij(x)|2 dx.(3.1)

The analytic continuation of f ∗ ψt to Cn ×G is given by

f ∗ ψt(z, g) =
∑
π∈ bK

dπe
−λπt/2

dπ∑
i,j=1

fπij ∗ pt(z)φπij(g).

We claim that the above series converges uniformly on compact subsets of
Cn×G so that f ∗ψt extends to a holomorphic function on Cn×G. We know from
[4, Section 4, Proposition 1] that the holomorphic extension of the heat kernel qt
on K is given by

qt(g) =
∑
π∈ bK

dπe
−λπt/2χπ(g).

For each g ∈ G, define qgt (k) = qt(gk). Then qgt is a smooth function on K and is
given by

qgt (k) =
∑
π∈ bK

dπe
−λπt/2χπ(gk) =

∑
π∈ bK

dπe
−λπt/2

dπ∑
i,j=1

φπij(g)φπji(k).
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Since qgt is a smooth function on K, we have for each g ∈ G,

(3.2)
∫
K

|qgt (k)|2 dk =
∑
π∈ bK

dπe
−λπt

dπ∑
i,j=1

|φπij(g)|2 <∞.

Let L be a compact set in Cn ×G. For (z, g) ∈ L we have

(3.3) |f ∗ ψt(z, g)| ≤
∑
π∈ bK

dπe
−xλπt/2

dπ∑
i,j=1

|fπij ∗ pt(z)| |φπij(g)|.

By the Fourier inversion

fπij ∗ pt(z) =
∫

Rn
f̃πij(ξ)e

−t|ξ|2eiξ·(x+iy) dξ

where z = x + iy ∈ Cn and f̃πij is the Fourier transform of fπij . Hence, if z varies
in a compact subset of Cn (namely, the projection of L in Cn), we have

|fπij ∗ pt(z)| ≤ ‖fπij‖2
∫

Rn
e−2(t|ξ|2+y·ξ) dξ ≤ CL‖fπij‖2.

Using the above in (3.3) and applying the Cauchy–Schwarz inequality we get

|f ∗ ψt(z, g)| ≤ CL
∑
π∈ bK

dπ

dπ∑
i,j=1

‖fπij‖2e−λπt/2|φπij(g)|

≤ CL
(∑
π∈ bK

dπ

dπ∑
i,j=1

∫
Rn
|fπij(x)|2 dx

)1/2(∑
π∈ bK

dπ

dπ∑
i,j=1

e−λπt|φπij(g)|2
)1/2

.

Noting that

‖f‖22 =
∑
π∈ bK

dπ

dπ∑
i,j=1

∫
Rn
|fπij(x)|2 dx

and qt is a smooth function on G we prove the claim using (3.2). Applying Theo-
rem 2 in [4] we get∫

G

|f ∗ ψt(z, g)|2 dν(g) =
∑
π∈ bK

dπ

dπ∑
i,j=1

|fπij ∗ pt(z)|2.

Integrating the above against µ(y) dx dy on Cn and using (3.1) we conclude that
Ct is isometric, ∫

Cn

∫
G

|f ∗ ψt(z, g)|2µ(y) dx dy dν(g) = ‖f‖22.
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To prove that the map Ct is surjective it suffices to prove that the range
of Ct is dense in H(Cn ×G). For this, consider functions of the form f(x, k) =
h1(x)h2(k) ∈ L2(M) where h1 ∈ L2(Rn), h2 ∈ L2(K). Then a simple computation
shows that

f ∗ ψt(z, g) = h1 ∗ pt(z)h2 ∗ qt(g) for (z, g) ∈ Cn ×G.

Suppose F ∈ H(Cn ×G) is such that∫
Cn×G

F (z, g)h1 ∗ pt(z)h2 ∗ qt(g)µ(y) dx dy dν(g) = 0(3.4)

for all h1 ∈ L2(Rn) and h2 ∈ L2(K). From (3.4) we have∫
G

(∫
Cn
F (z, g)h1 ∗ pt(z) dµ(z)

)
h2 ∗ qt(g) dν(g) = 0,

which by Theorem 2 of [4] implies that∫
Cn
F (z, g)h1 ∗ pt(z) dµ(z) = 0.

Finally, an application of the surjectivity of the Segal–Bargmann transform on Rn

shows that F ≡ 0, as desired.

In [4] Brian C. Hall proved the following generalizations of the Segal–Barg-
mann transforms for Rn and compact Lie groups:

Theorem 3.2. (I) Let µ be any measurable function on Rn such that

• µ is strictly positive and locally bounded away from zero,

• for all x ∈ Rn, σ(x) =
∫

Rn e
2x·yµ(y) dy <∞.

Define, for z ∈ Cn ,

ψ(z) =
∫

Rn

eia(y)√
σ(y)

e−iy·z dy,

where a is a real-valued measurable function on Rn. Then the mapping Cψ :
L2(Rn)→ O(Cn) defined by

Cψ(z) =
∫

Rn
f(x)ψ(z − x) dx

is an isometric isomorphism of L2(Rn) onto O(Cn) ∩ L2(Cn, dx µ(y) dy).
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(II) Let K be a compact Lie group and G be its complexification. Let ν be a
measure on G such that

• ν is bi-K-invariant,

• ν is given by a positive density which is locally bounded away from zero,

• for each irreducible representation π of K, analytically continued to G,

δ(π) =
1

dimVπ

∫
G

‖π(g−1)‖2 dν(g) <∞.

Define

τ(g) =
∑
π∈ bK

dπ√
δ(π)

Tr(π(g−1)Uπ)

where g ∈ G and Uπ’s are arbitrary unitary matrices. Then the mapping

Cτf(g) =
∫
K

f(k)τ(k−1g) dk

is an isometric isomorphism of L2(K) onto O(G) ∩ L2(G, dν(w)).

A similar result holds for M . Let µ be any real-valued K-invariant function
on Rn that satisfies the conditions of Theorem 3.2(I). Define, for z ∈ Cn,

ψ(z) =
∫

Rn

eia(y)√
σ(y)

e−iy·z dy

where a is a real valued measurable K-invariant function on Rn. Next, let ν, δ
and τ be as in Theorem 3.2(II). Also define φ(z, g) = ψ(z)τ(g) for z ∈ Cn, g ∈ G.
It is easy to see that φ(z, w) is a holomorphic function on Cn ×G. Then it is easy
to prove the following analogue of Theorem 3.2 for M.

Theorem 3.3. The mapping

Cφf(z, g) =
∫
M

f(ξ, k)φ((ξ, k)−1(z, g)) dξ dk

is an isometric isomorphism of L2(M) onto

O(Cn ×G) ∩ L2(Cn ×G,µ(y) dx dy dν(g)).

§4. Gutzmer’s formula and Poisson integrals

In this section we first briefly recall Gutzmer’s formula on compact, connected Lie
groups given by Lassalle in [9]. Let k and g be the Lie algebras of a compact,
connected Lie group K and its complexification G. Then we can write g = k + p
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where p = ik and any element g ∈ G can be written in the form g = k exp iH for
some k ∈ K and H ∈ k. If h is a maximal abelian subalgebra of k and a = ih then
every element of p is conjugate under K to an element of a. Thus each g ∈ G can
be written (non-uniquely) in the form g = k1 exp(iH)k2 for k1, k2 ∈ K and H ∈ h.
If k1 exp(iH1)k′1 = k2 exp(iH2)k′2, then there exists w ∈ W, the Weyl group with
respect to h, such that H1 = w ·H2 where · denotes the action of the Weyl group
on h. Since K is compact, there exists an AdK-invariant inner product on k, and
hence on g. Let | · | denote the norm with respect to that inner product. Then we
have the following Gutzmer formula by Lassalle.

Theorem 4.1. Let f be holomorphic in K exp(iΩr)K ⊆ G where Ωr = {H ∈ k :
|H| < r}. Then∫

K

∫
K

|f(k1 exp(iH)k2)|2 dk1 dk2 =
∑
π∈ bK
‖f̂(π)‖2HSχπ(exp 2iH)

where H ∈ Ωr and f̂(π) is the operator-valued Fourier transform of f at π defined
by f̂(π) =

∫
K
f(k)π(k−1) dk.

For the proof see [9]. We prove a Gutzmer-type result on M using Lassalle’s
theorem above. Define Ωt,r = {(z, g) ∈ Cn × G : |Im z| < t, |H| < r where
g = k1 exp(iH)k2, k1, k2 ∈ K, H ∈ h}. Notice that the domain Ωt,r is well defined
since | · | is invariant under the Weyl group action.

Lemma 4.2. Let f ∈ L2(M) extend holomorphically to the domain Ωt,r and

sup
{|y|<s, |H|<q}

∫
Rn

∫
K

∫
K

|f(x+ iy, k1 exp(iH)k2)|2 dk1 dk2 dx <∞

for all s < t and q < r. Then∫
Rn

∫
K

∫
K

|f(x+ iy, k1 exp(iH)k2)|2 dk1 dk2 dx

=
∑
π∈ bK

dπ

dπ∑
i,j=1

(∫
Rn
|f̃πij(ξ)|

2e−2ξ·y dξ

)
χπ(exp 2iH)

provided |y| < t and |H| < r. Conversely, if

sup
{|y|<s, |H|<q}

∑
π∈ bK

dπ

dπ∑
i,j=1

(∫
Rn
|f̃πij(ξ)|

2e−2ξ·y dξ

)
χπ(exp 2iH) <∞
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for all s < t and q < r then f extends holomorphically to the domain Ωt,r and

sup
{|y|<s, |H|<q}

∫
Rn

∫
K

∫
K

|f(x+ iy, k1 exp(iH)k2)|2 dk1 dk2 dx <∞

for all s < t and q < r.

Proof. Notice that fπij(x) =
∫
K
f(x, k)φπij(k) dk. It follows that fπij has a holomor-

phic extension to {z ∈ Cn : |Im z| < t} and

sup
|y|<s

∫
Rn
|fπij(x+ iy)|2 dx <∞ ∀s < t.

Consequently,∫
Rn
|fπij(x+ iy)|2 dx =

∫
Rn
|f̃πij(ξ)|

2e−2ξ·y dξ for |y| < s and all s < t.

Now, for each fixed z ∈ Cn with |Im z| < s the function g 7→ f(z, g) is holomorphic
in the domain {g ∈ G : |H| < r where g = k1 exp(iH)k2, k1, k2 ∈ K, H ∈ h} for
all s < t and q < r and so admits a holomorphic Fourier series (as in [4])

f(z, g) =
∑
π∈ bK

dπ

dπ∑
i,j=1

aπij(z)φ
π
ij(g).

It follows that aπij(z) = fπij(z) for every π ∈ K̂ and 1 ≤ i, j ≤ dπ. Hence by using
Theorem 4.1 we have, for (z, g) ∈ Ωt,r,∫

K

∫
K

|f(x+ iy, k1 exp(iH)k2)|2 dk1 dk2 =
∑
π∈ bK
‖f̂z(π)‖2HSχπ(exp 2iH)

=
∑
π∈ bK

dπ∑
i,j=1

|fπij(z)|2χπ(exp 2iH)

where fz(g) = f(z, g). Integrating over Rn we get∫
Rn

∫
K

∫
K

|f(x+ iy, k1 exp (iH)k2)|2 dk1 dk2 dx

=
∑
π∈ bK

dπ∑
i,j=1

∫
Rn
|fπij(x+ iy)|2 dxχπ(exp 2iH)

=
∑
π∈ bK

dπ

dπ∑
i,j=1

(∫
Rn
|f̃πij(ξ)|

2e−2ξ·y dξ

)
χπ(exp 2iH).
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Hence the first part of the lemma is proved. The converse can also be proved
similarly.

Recall that the Laplacian ∆ on M is given by ∆ = −∆Rn −∆K . If f ∈ L2(M)
it is easy to see that

e−t∆
1/2
f(x, k) =

∑
π∈ bK

dπ

dπ∑
i,j=1

(∫
Rn
e−t(|ξ|

2+λπ)1/2 f̃πij(ξ)e
iξ·x dξ

)
φπij(k).

We have the following (almost) characterization of the Poisson integrals. Let Ωt,r
denote the domain defined prior to Lemma 4.2.

Theorem 4.3. Let f ∈ L2(M). Then there exists a constant N such that g =
e−t∆

1/2
f extends to a holomorphic function on the domain Ωt/√2,t

√
2/N and

sup
{|y|<t/

√
2, |H|≤t

√
2/N}

∫
Rn

∫
K

∫
K

|g(x+ iy, k1 exp(iH)k2)|2 dk1 dk2 dx <∞.

Conversely, there exists a fixed constant C such that whenever g is a holomorphic
function on Ωt,2t/C and

sup
{|y|<s, |H|<2s/C}

∫
Rn

∫
K

∫
K

|g(x+ iy, k1 exp(iH)k2)|2 dk1 dk2 dx <∞

for s < t, then for all s < t there exists f ∈ L2(M) such that e−s∆
1/2
f = g.

Proof. We know that if f ∈ L2(M) then

g(x, k) = e−t∆
1/2
f(x, k) =

∑
π∈ bK

dπ

dπ∑
i,j=1

(∫
Rn
e−t(|ξ|

2+λπ)1/2 f̃πij(ξ)e
iξ·x dξ

)
φπij(k).

Also,

g(x, k) =
∑
π∈ bK

dπ

dπ∑
i,j=1

gπij(x)φπij(k) with g̃πij(ξ) = f̃πij(ξ)e
−t(|ξ|2+λπ)1/2 .

From Lemmas 6 and 7 of [4] we know that there exist constants a, M such that
λπ ≥ a|µ|2 and |χπ(exp iY )| ≤ dπe

M |Y | |µ| where µ is the highest weight of π.
Hence we have

|χπ(exp 2iH)| ≤ dπe2M |H| |µ| ≤ dπeN |H|
√
λπ

where N = 2M/
√
a. If s ≤ t

√
2/N it is easy to show that

sup
{ξ∈Rn, λπ≥0}

e−2t(|ξ|2+λπ)1/2e2|ξ| |y|eN |
√
λπ|s ≤ C <∞ for |y| ≤ t/

√
2.
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It follows that

sup
{|y|<t/

√
2, |H|≤t

√
2/N}

∑
π∈ bK

dπ

dπ∑
i,j=1

(∫
Rn
|g̃πij(ξ)|

2e−2ξ·y dξ

)
eN
√
λπ|H| <∞.

So we have

sup
{|y|<t/

√
2, |H|≤t

√
2/N}

∑
π∈ bK

dπ

dπ∑
i,j=1

(∫
Rn
|g̃πij(ξ)|

2e−2ξ·y dξ

)
χπ(exp 2iH) <∞.

Hence by Lemma 4.2 we have proved the first part of the theorem.
To prove the converse, we first show that there exist constants A,C such that∫

|H|=r
χπ(exp 2iH) dσr(H) ≥ dπAeCr

√
λπ(4.1)

where dσr(H) is the normalized surface measure on the sphere {H ∈ h : |H| = r}
⊆ Rm where m = dimh. If H ∈ a, then there exists a non-singular matrix Q and
pure-imaginary-valued linear forms ν1, . . . , νdπ on a such that

Qπ(H)Q−1 = diag(ν1(H), . . . , νdπ (H))

where diag(a1, . . . , ak) denotes the k × k diagonal matrix with diagonal entries
a1, . . . , ak. Now, ν(H) = i〈ν,H〉 where ν is a weight of π. Then

exp(2iQπ(H)Q−1) = Q exp(2iπ(H))Q−1 = diag(e2iν1(H), . . . , e2iνdπ (H)).

Hence

χπ(exp 2iH) = Tr(Q exp(2iπ(H))Q−1)

= e−2〈ν1,H〉 + · · ·+ e−2〈νdπ ,H〉 ≥ e−2〈µ,H〉

where µ is the highest weight corresponding to π. Integrating the above over
|H| = r we get∫

|H|=r
χπ(exp 2iH) dσr(H)≥

∫
|H|=r

e−2〈µ,H〉 dσr(H)

=
Jm/2−1(2ir|µ|)
(2ir|µ|)m/2−1

≥ Ber|µ|

where Jm/2−1 is the Bessel function of orderm/2− 1. By Weyl’s dimension formula
we know that dπ can be written as a polynomial in µ and λπ ≈ |µ|2. Hence∫

|H|=r
χπ(exp 2iH) dσr(H) ≥ AdπeCr

√
λπ
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for some C. Consider the domain Ωt,2t/C for that C. Let g be a holomorphic
function on Ωt,2t/C and

sup
{|y|<s, |H|<2s/C}

∫
Rn

∫
K

∫
K

|g(x+ iy, k1 exp(iH)k2)|2 dk1 dk2 dx <∞

for s < t. By Lemma 4.2 we have

sup
{|y|<s, |H|<2s/C}

∑
π∈ bK

dπ

dπ∑
i,j=1

(∫
Rn
|g̃πij(ξ)|

2e−2ξ·y dξ

)
χπ(exp 2iH) <∞

for all s < t. Integrating the above over |H| = r = 2s/C and |y| = s < t we obtain

∑
π∈ bK

dπ

dπ∑
i,j=1

(∫
Rn
|g̃πij(ξ)|

2 Jn/2−1(2is|ξ|)
(2is|ξ|)n/2−1

dξ

)∫
|H|=r

χπ(exp 2iH) dσr(H) <∞.

Noting that
Jn/2−1(2is|ξ|)
(2is|ξ|)n/2−1

∼ e2s|ξ| for large |ξ| and using (4.1) we obtain

∑
π∈ bK

dπ

dπ∑
i,j=1

∫
Rn
|g̃πij(ξ)|

2e2s|ξ|e2s
√
λπ dξ <∞ for s < t.

This surely implies that

∑
π∈ bK

dπ

dπ∑
i,j=1

∫
Rn
|g̃πij(ξ)|

2e2s(|ξ|2+λπ)1/2 dξ <∞ for s < t.

Defining f̃πij(ξ) = g̃πij(ξ)e
s(|ξ|2+λπ)1/2 we obtain

f(x, k) =
∑
π∈ bK

dπ

dπ∑
i,j=1

fπij(x)φπij(k) ∈ L2(M)

and g = e−s∆
1/2
f.

§5. Complexified representations and Paley–Wiener type theorems

Recall the representations Uξ and the generalized Fourier transform f̂(ξ) from the
introduction where

f̂(ξ) =
∫
M

f(m)Uξm dm.

For (x, k) ∈M and matrix coefficients φπij of π we have

(Uξ(x,k)φ
π
ij)(u) = ei〈x,u·ξ〉φπij(k

−1u).
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This action of Uξ(x,k) on φπij can clearly be analytically continued to Cn × G and
we obtain

(Uξ(z,g)φ
π
ij)(u) = ei〈x,u·ξ〉e−〈y,u·ξ〉φπij(e

−iHk−1u)

where (z, g) ∈ Cn ×G and z = x+ iy ∈ Cn and g = keiH ∈ G.
We also note that the action of K ⊆ SO(n) on Rn naturally extends to an

action of G ⊆ SO(n,C) on Cn. Then we have the following theorem:

Theorem 5.1. Let f ∈ L2(M). Then f extends holomorphically to Cn ×G with∫
|y|=r

∫
K

∫
Rn
|f(e−iH(x+ iy), e−iHk)|2 dx dk dµr(y) <∞

for all H ∈ k (where µr is the normalized surface area measure on the sphere
{|y| = r} ⊆ Rn) iff ∫

Rn

∫
|y|=r

‖Uξ(z,g)f̂(ξ)‖2HS dµr(y) dξ <∞

where z = x+ iy ∈ Cn and g = keiH ∈ G. In this case we also have∫
Rn

∫
|y|=r

‖Uξ(z,g)f̂(ξ)‖2HS dµr(y) dξ

=
∫
|y|=r

∫
K

∫
Rn
|f(e−iH(x+ iy), e−iHk)|2 dx dk dµr(y).

We know that any f ∈ L2(M) can be expanded in the K variable using the
Peter–Weyl theorem to obtain

f(x, k) =
∑
π∈ bK

dπ

dπ∑
i,j=1

fπij(x)φπij(k)(5.1)

where for each π ∈ K̂, dπ is the degree of π, φπij ’s are the matrix coefficients of π
and fπij(x) =

∫
K
f(x, k)φπij(k) dk.

Now, for F ∈ L2(Rn), consider the decomposition of the function k 7→ F (k ·x)
in terms of the irreducible unitary representations of K given by

F (k · x) =
∑
λ∈ bK

dλ

dλ∑
l,m=1

F lmλ (x)φλlm(k)

where F lmλ (x) =
∫
K
F (k · x)φλlm(k) dk. Putting k = e, the identity element of K,

we obtain

F (x) =
∑
λ∈ bK

dλ

dλ∑
l=1

F llλ (x).
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Then it is easy to see that for u ∈ K,

F llλ (u · x) =
dλ∑
m=1

F lmλ (x)φλlm(u).(5.2)

It also follows that the Euclidean Fourier transform F̃ lmλ of F lmλ satisfies

F̃ llλ (u · x) =
dλ∑
m=1

φλlm(u)F̃ lmλ (x) ∀u ∈ K.(5.3)

From the above and the fact that fπij ∈ L2(Rn) for every π ∈ K̂ and 1 ≤ i, j ≤ dπ
it follows that any f ∈ L2(M) can be written as

f(x, k) =
∑
π∈ bK

dπ
∑
λ∈ bK

dλ

dπ∑
i,j=1

dλ∑
l=1

(fπij)
ll
λ(x)φπij(k).

We need the following lemma to prove Theorem 5.1:

Lemma 5.2. For fixed π, λ ∈ K̂, the conclusion of the theorem is true for func-
tions of the form

f(x, k) =
dπ∑
i,j=1

dλ∑
l=1

f llij(x)φπij(k)

where for simplicity we write (fπij)
ll
λ as f llij .

Proof. For ξ ∈ Rn, u ∈ K, γ ∈ K̂ and 1 ≤ p, q ≤ dγ we have

(f̂(ξ)φγpq)(u) =
∫

Rn

∫
K

dπ∑
i,j=1

dλ∑
l=1

f llij(x)φπij(k)ei〈x,u·ξ〉φγpq(k−1u) dk dx

=
dπ∑
i,j=1

dλ∑
l=1

f̃ llij(u · ξ)
dγ∑
t=1

φγqt(u
−1)〈φπij , φ

γ
tp〉L2(K)

=
δγπ
dπ

dπ∑
i=1

dλ∑
l,m=1

f̃ lmip (ξ)φλlm(u)φπqi(u
−1)

by (5.3) and Schur’s orthogonality relations where δγπ is the Kronecker delta in
the sense of equivalence of unitary representations. Then we have(

Uξ
(x+iy,keiH)

f̂(ξ)φγpq
)
(u)

=
δγπ
dπ

ei〈x+iy,u·ξ〉
dπ∑
i=1

dλ∑
l,m=1

f̃ lmip (ξ)φλlm(e−iHk−1u)φπqi(u
−1keiH).



Segal–Bargmann Transform on Motion Groups 735

Hence

‖Uξ
(x+iy,keiH)

f̂(ξ)‖2HS

=
1
dπ

dπ∑
p,q=1

∫
K

e−2〈y,u·ξ〉
∣∣∣ dπ∑
i=1

dλ∑
l,m=1

f̃ lmip (ξ)φλlm(e−iHk−1u)φπqi(u
−1keiH)

∣∣∣2 du.
Integrating the above over |y| = r, we obtain

(5.4)
∫
|y|=r

‖Uξ
(x+iy,keiH)

f̂(ξ)‖2HS dµr(y)

=
1
dπ

Jn/2−1(2ir|ξ|)
(2ir|ξ|)n/2−1

×
dπ∑

p,q=1

∫
K

∣∣∣ dπ∑
i=1

dλ∑
l,m=1

f̃ lmip (ξ)φλlm(e−iHu)φπqi(u
−1eiH)

∣∣∣2 du
where Jn/2−1 is the Bessel function of order n/2 − 1 and µr is the normalized
surface area measure on the sphere {|y| = r} ⊆ Rn.

Let Hπ be the Hilbert space on which π(k) acts for every k ∈ K, and
e1, . . . , edπ be a basis of Hπ. Then, for any ci, 1 ≤ i ≤ dπ,

dπ∑
q=1

∣∣∣ dπ∑
i=1

ciφ
π
qi(u

−1eiH)
∣∣∣2 =

dπ∑
q=1

dπ∑
i=1

ciφ
π
qi(u

−1eiH)
dπ∑
a=1

caφπqa(u−1eiH)

=
dπ∑

i,a=1

cica

dπ∑
q=1

〈π(u−1eiH)ei, eq〉〈eq, π(u−1eiH)ea〉

=
dπ∑

i,a=1

cica〈π(u−1)π(eiH)ei, π(u−1)π(eiH)ea〉

=
dπ∑
q=1

∣∣∣ dπ∑
i=1

ciφ
π
qi(e

iH)
∣∣∣2,

since π is a unitary representation of K. So, we have

dπ∑
q=1

∣∣∣ dπ∑
i=1

dλ∑
l,m=1

f̃ lmip (ξ)φλlm(e−iHu)φπqi(u
−1eiH)

∣∣∣2
=

dπ∑
q=1

∣∣∣ dπ∑
i=1

dλ∑
l,m=1

f̃ lmip (ξ)φλlm(e−iHu)φπqi(e
iH)
∣∣∣2.
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Hence from (5.4) we get

∫
|y|=r

‖Uξ
(x+iy,keiH)

f̂(ξ)‖2HS dµr(y)

=
1
dπ

Jn/2−1(2ir|ξ|)
(2ir|ξ|)n/2−1

dπ∑
p,q=1

∫
K

∣∣∣ dπ∑
i=1

dλ∑
l,m,k=1

f̃ lmip (ξ)φλlk(e−iH)φλkm(u)φπqi(e
iH)
∣∣∣2 du

=
1

dπdλ

Jn/2−1(2ir|ξ|)
(2ir|ξ|)n/2−1

dπ∑
p,q=1

dλ∑
m,k=1

∣∣∣ dπ∑
i=1

dλ∑
l=1

f̃ lmip (ξ)φλlk(e−iH)φπqi(e
iH)
∣∣∣2,

by Schur’s orthogonality relations. The above can also be written as

(5.5)
∫
|y|=r

‖Uξ
(x+iy,keiH)

f̂(ξ)‖2HS dµr(y)

=
1

dπdλ

∫
|y|=r

e−2〈y,ξ〉 dµr(y)
dπ∑

p,q=1

dλ∑
m,k=1

∣∣∣ dπ∑
i=1

dλ∑
l=1

f̃ lmip (ξ)φλlk(e−iH)φπqi(e
iH)
∣∣∣2.

We have obtained an expression for the left hand side of the desired formula.
Now, looking at the right hand side, we have

f(u−1 · x, u−1k−1) =
dπ∑
i,j=1

dλ∑
l,m=1

f lmij (x)φλlm(u−1)φπji(ku).

So, if f is holomorphic on Cn ×G, for z = x+ iy we get

f(e−iHu−1 · z, e−iHu−1k−1) =
dπ∑

i,j,q=1

dλ∑
l,m=1

f lmij (z)φλlm(e−iHu−1)φπjq(k)φπqi(ue
iH).

Again, by Schur’s orthogonality relations and similar reasoning as before, we have

∫
K

|f(e−iHu−1 · z, e−iHu−1k−1)|2 dk

=
1
dπ

dπ∑
j,q=1

∣∣∣ dπ∑
i=1

dλ∑
l,m=1

f lmij (z)φλlm(e−iHu−1)φπqi(ue
iH)
∣∣∣2

=
1
dπ

dπ∑
j,q=1

∣∣∣ dπ∑
i=1

dλ∑
l,m=1

f lmij (z)φλlm(e−iHu−1)φπqi(e
iH)
∣∣∣2.
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Hence, by the invariance of Haar measure, we have

∫
Rn

∫
K

∫
K

|f(e−iHu−1 · z, e−iHu−1k−1)|2 dk du dx

=
1
dπ

dπ∑
j,q=1

∫
Rn

∫
K

∣∣∣ dπ∑
i=1

dλ∑
p,l,m=1

f lmij (z)φλlp(e
−iH)φλpm(u−1)φπqi(e

iH)
∣∣∣2 du dx

=
1

dπdλ

dπ∑
j,q=1

dλ∑
p,m=1

∫
Rn

∣∣∣ dπ∑
i=1

dλ∑
l=1

f lmij (x+ iy)φλlp(e
−iH)φπqi(e

iH)
∣∣∣2 dx

=
1

dπdλ

dπ∑
j,q=1

dλ∑
p,m=1

∫
Rn

∣∣∣ dπ∑
i=1

dλ∑
l=1

f̃ lmij (ξ)φλlp(e
−iH)φπqi(e

iH)
∣∣∣2e−2y·ξ dξ.

Now by the invariance of Lebesgue measure under the K-action on Rn we get

∫
|y|=r

∫
Rn

∫
K

∫
K

|f(e−iHu−1 · z, e−iHu−1k−1)|2 dk du dx dµr(y)

=
∫
|y|=r

∫
Rn

∫
K

|f(e−iH · z, e−iHk)|2 dk dx dµr(y).

Hence the lemma follows from (5.5).

Proof of Theorem 5.1. To prove the theorem, it is enough to prove the orthogo-
nality of the components

fλπ (x, k) =
dπ∑
i,j=1

dλ∑
l=1

f llij(x)φπij(k).

For π, λ, τ, ν ∈ K̂, we have

〈Uξ
(x+iy,keiH)

f̂λπ (ξ), Uξ
(x+iy,keiH)

f̂ντ (ξ)〉HS

=
∑
γ∈ bK

dγ

dγ∑
p,q=1

∫
K

δγπ
dπ

ei〈x+iy,u·ξ〉
dπ∑
i=1

dλ∑
l,m=1

f̃ lmip (ξ)φλlm(e−iHk−1u)φπqi(u
−1keiH)

× δγτ
dτ

ei〈x+iy,u·ξ〉
dτ∑
a=1

dν∑
b,c=1

f̃ bcap(ξ)φνbc(e−iHk−1u)φτqa(u−1keiH) du

= 0 if π � τ.
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Assume π ∼= τ. Then∫
|y|=r
〈Uξ

(x+iy,keiH)
f̂λπ (ξ), Uξ

(x+iy,keiH)
f̂νπ (ξ)〉HS dµr(y)

=
1
dπ

Jn/2−1(2ir|ξ|)
(2ir|ξ|)n/2−1

dπ∑
a,i,p=1

dλ∑
l,m=1

dν∑
b,c=1

f̃ lmip (ξ)f̃ bcap(ξ)

·
∫
K

( dπ∑
q=1

φπqi(u
−1eiH)φπqa(u−1eiH)

)
φλlm(e−iHu)φνbc(e−iHu) du

=
1
dπ

Jn/2−1(2ir|ξ|)
(2ir|ξ|)n/2−1

dπ∑
a,i,p,q=1

dλ∑
l,m=1

dν∑
b,c=1

f̃ lmip (ξ)f̃ bcap(ξ)φ
π
qi(e

iH)φπqa(eiH)

·
dλ∑
j=1

dν∑
k=1

φλlj(e
−iH)φνbk(e−iH)

∫
K

φλjm(u)φνkc(u) du

= 0 if λ � ν.

On the other hand, we have∫
K

fλπ (e−iHu−1 · z, e−iHu−1k−1)fντ (e−iHu−1 · z, e−iHu−1k−1) dk

=
dπ∑

i,j,q=1

dλ∑
l,m=1

dτ∑
a,b,p=1

dν∑
s,t=1

f lmij (z)fstab(z)φ
λ
lm(e−iHu−1)φνst(e−iHu−1)

· φπqi(ueiH)φτpa(ueiH)
∫
K

φπjq(k)φτbp(k) dk

= 0 if π � τ.

Assume π ∼= τ. Then we get∫
K

∫
K

fλπ (e−iHu−1 · z, e−iHu−1k−1)fνπ (e−iHu−1 · z, e−iHu−1k−1) dk du

=
dπ∑

i,a,j=1

dλ∑
l,m=1

dν∑
s,t=1

f lmij (z)fstaj(z)
( dπ∑
q=1

φπqi(e
iH)φτpa(eiH)

)

·
dλ∑
α=1

dν∑
β=1

φλlα(e−iH)φνsβ(e−iH)
∫
K

φλαm(u−1)φνβt(u−1) du

= 0 if λ � ν.

This finishes the proof.
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It is easy to see that∫
Rn
‖Uξ(z,g)f̂(ξ)‖2HS dξ =

∫
Rn

∑
σ∈cKξ

dσ‖Uξ,σ(z,g)f̂(ξ, σ)‖2HS dξ.

Hence we have the following corollary:

Corollary 5.3. For f ∈ L2(M), f extends holomorphically to Cn ×G with∫
|y|=r

∫
K

∫
Rn
|f(e−iH(x+ iy), e−iHk)|2 dx dk dµr(y) <∞

(where µr is the normalized surface area measure on the sphere {|y| = r} ⊆ Rn)
iff ∫

Rn

∑
σ∈cKξ

dσ

∫
|y|=r

‖Uξ,σ(z,g)f̂(ξ, σ)‖2HS dµr(y) dξ <∞

where z = x+ iy ∈ Cn, g ∈ G and we also have∫
Rn

∑
σ∈cKξ

dσ

∫
|y|=r

‖Uξ,σ(z,g)f̂(ξ, σ)‖2HS dµr(y) dξ

=
∫
|y|=r

∫
K

∫
Rn
|f(e−iH(x+ iy), e−iHk)|2 dx dk dµr(y).
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