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Theorems on Motion Groups
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Abstract

We study the Segal-Bargmann transform on a motion group R" x K, where K is a
compact subgroup of SO(n). A characterization of the Poisson integrals associated to
the Laplacian on R™ x K is given. We also establish a Paley—Wiener type theorem using
complexified representations.
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81. Introduction

The Segal-Bargmann transform, also called the coherent state transform, was
developed independently in the early 1960’s by Segal in the infinite-dimensional
context of scalar quantum field theories and by Bargmann in the finite-dimensional
context of quantum mechanics on R™. We consider the following equivalent form
of Bargmann’s original result.

A function f € L?*(R") admits a factorization f(x) = g * p;(z) where g €
L?(R") and pi(z) = (47rt)_”/2e_‘””‘2/(4t) (the heat kernel on R™) if and only if f
extends as an entire function to C" and (27t)~"/? [, |£(2)[2e= W7/ da dy < 00
(z = x 4+ iy). In this case we also have

1

12
916 = gz [ 1/GIRe/C0 dray,

The mapping g — g *p; is called the Segal-Bargmann transform and the
above says that the Segal-Bargmann transform is a unitary map from L?(R"™)
onto O(C™) N L2(C™, i), where du(z) = (2mt)~"/2e~1v*/2) dz dy and O(C™) de-
notes the space of entire functions on C".
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In the paper [4], B. C. Hall introduced a generalization of the Segal-Bargmann
transform on a compact Lie group. If K is such a group, this coherent state
transform maps L?(K) isometrically onto the space of holomorphic functions in
L?(G, i), where G is the complexification of K and pu; is an appropriate heat
kernel measure on G. The generalized coherent state transform is defined in terms
of the heat kernel on the compact group K and its analytic continuation to the
complex group G. Similar results have been proved by various authors. See [12],
(6], 5], [8] and [7].

Next, consider the following result on R due to Paley and Wiener. A function
f € L?(R) admits a holomorphic extension to the strip {z +iy : |y| < t} such that

Sup/|f(x—|—iy)\2da:<oo Vs <t
R

ly|<s

if and only if
(1.1) / SO de <o Vs<t
R

where fvdenotes the Fourier transform of f.
The condition (1.1]) is the same as

/ lesAY2F(E)2de <00 Vs <t
R

where A is the Laplacian on R. This point of view was explored by R. Goodman
in Theorem 2.1 of [2].
The condition (1.1)) is also equivalent to

/ R TR de < 0o V| < 1.
R

Here £ — e'@+)¢ may be seen as the complexification of the parameters of the
unitary irreducible representations & — e**¢ of R. This point of view was also
further developed by R. Goodman (see Theorem 3.1 from [3]). Similar results were
established for the Euclidean motion group M (2) of the plane R? in [I1]. The aim
of this paper is to prove corresponding results in the context of general motion
groups.

The plan of this paper is as follows: In the following section we recall the
representation theory and Plancherel theorem of the motion group M. We also
describe the Laplacian on M. In the next section we prove the unitarity of the
Segal-Bargmann transform on M and we study the generalized Segal-Bargmann
transform, obtaining analogues of Theorems 8 and 10 in [4]. The fourth section is
devoted to a study of Poisson integrals on M via a Gutzmer-type formula on M
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which is proved by using a Gutzmer formula for compact Lie groups established by
Lassalle in 1978 (see [9]). This section is modelled after the work of Goodman [2].
In the final section we prove another characterization of functions extending holo-
morphically to the complexification of M, which is an analogue of Theorem 3.1
of [3].

82. Preliminaries

Let K be a compact, connected Lie group which acts as a linear group on a finite-
dimensional real vector space V. Let M be the semidirect product of V and K
with the group law

(xl,k'l) . ((EQ, kg) = ($1 + klxg, kle) where x1,To € ‘/, ki,ko € K.

Then M is called the motion group. Since K is compact, there exists a K-invariant
inner product on V. Hence, we can assume that K is a connected subgroup of
SO (n), where n = dim V. When K = {1}, M =V 2 R" and if K = SO(n), M is
the Euclidean motion group. Henceforth we shall identify V' with R™ and K with
a subgroup of SO(n).

The group M may be identified with a matrix subgroup of GL(n + 1,R) via

= (5 )

where x € R and k € K C SO(n).
We normalize the Haar measure dm on M in such a way that dm = dz dk,

the map

where dz = (27)~™/2 day - - - dz,, and dk is the normalized Haar measure on K. Let
H = L?(K) be the Hilbert space of all square integrable functions on K. Denote
by (-,-) the Euclidean inner product on R™. Let V be the dual space of V. Then
we can identify V with R™ so that K acts on V naturally by (k-&x)y= (& kL)
Wherege‘A/, zeV, ke K.

For any & € V let U denote the induced representation of M by the unitary
representation x — €&#) of V. Then for F € H and (z,k) € M,

U

& F ) = O F(k ).

The representation U¢ is not irreducible. Any irreducible unitary representation
of M is, however, contained in U¢ for some & € V as an irreducible component.
Let K¢ be the isotropy subgroup of £ € ‘7, ie. Ke={ke K :k-&=¢}
Consider o € I/(\g, the unitary dual of K¢. Denote by X, d- and o;; the charac-
ter, degree and matrix coefficients of o respectively. Let R be the right regular
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representation of K. Define

P’ =d, Xo(w)Rydw and PJ =d, Oy (W) Ry dw
K¢ K

where dw is the normalized Haar measure on K. Then P? and PJ are both
orthogonal projections on H. Let H? = P°H and HJ = PJH. The subspaces HJ
are invariant under U¢ for 1 < v < d,, and the representations of M induced on
’HE‘Y under U¢ are equivalent for all 1 < v < d,. We fix one of them and denote it
by U$°. Two representations U¢? and U ¢’ are equivalent if and only if there
exists an element k € K such that £ = k- ¢ and o’ is equivalent to o* where
o (w) = o(kwk™1) for w € Kg.

The Mackey theory [I0] shows that under certain conditions on K (for details
refer to Section 6.6 of [I]), each U% is irreducible and every infinite-dimensional ir-
reducible unitary representation is equivalent to U%? for some £ € R™ and o € I/(\f
Since H=__= H’ and H? = @i‘;l HZ, we have

ocEK¢
Ut = @ d, Ut

061/(\5

For any f € L'(M) define the Fourier transform of f by

fl&o)= [ fm)US” dm.
M

Then the Plancherel formula gives

[ igemam = [ 3 dolFe ol de

GGI/(\E

where || - ||gs is the Hilbert—Schmidt norm of an operator. We will be working with
the generalized Fourier transform defined by

fle) = /Mf(m)Ufn dm.

Then we also have
[ 1 dm = [ ) s de.
M R’n,

Let k and m be the Lie algebras of K and M respectively. Then

K X
= X eR", K €ky.
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Let Ky,...,Ky and Xq,...,X,, be orthonormal bases of k& and R™ respectively.

Define
K, 0 .
for 1 <i< N,
0 0

0 X; .
0 o for N+1<i<N +n.

Then it is easy to see that {Mi,..., My, } forms a basis for m. The Laplacian
Apr = A is defined by
A=—(M}+ -+ M,

A simple computation using the fact that K C SO(n) shows that
A= —Apn — A

where Arn» and Ak are the Laplacians on R™ and K respectively given by Ag» =
X244+ X2and Ax = K2+ ...+ K3,

8§3. Segal-Bargmann transform and its generalization

Since Agrn» and Ag commute, it follows that the heat kernel ¢, associated to A is
given by the product of the heat kernels p; on R™ and ¢; on K. In other words

Ui (, k) = pe(2)qe (k) = ;n/zef\xlz/(u) Z dﬁe”’fwxﬂ(k).
(4mt) iR
Here, for each unitary, irreducible representation m of K, d is the degree of 7,
Ar is such that 7(Ag) = —A:I, and x.(k) = Tr(w(k)) is the character of .
Denote by G the complexification of K. Let x; be the fundamental solution
at the identity of the following equation on G:

du 1
E = ZAGU
where Ag is the Laplacian on G (for details see []). It should be noted that
k¢ is the real, positive heat kernel on G which is not the same as the analytic
continuation of ¢; on K.
Let H(C™ x Q) be the Hilbert space of holomorphic functions on C" x G which

are square integrable with respect to u ® v(z,g) where
1

—y|?/ (2t n
Wé lul*/( )dl’dy On(C

du(z) =

and
dl/(g):/ ki(zg)dr on G.
K

Then we have the following theorem:
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Theorem 3.1. If f € L?(M), then f * 1 extends holomorphically to C* x G.
Moreover, the map Cy : f — f*1; is a unitary map from L*(M) onto H(C" x G).

Proof. Let f € L?(M). Expanding f in the K-variable using the Peter—Weyl
theorem we obtain

dr

=2 42

reK  hi=l
where for each T E [A( dﬂ is the degree of 7, ¢7;’s are the matrix coefficients of m
and f fK k:) dk. Here, the convergence is understood in the L?-
sense. Moreover7 by the unlversal property of the complexification of a compact
Lie group (see Section 3 of []), all the representations of K, and hence all the

matrix entries, extend to G holomorphically.
Since vy is K-invariant (as a function on R™) a simple computation shows

that
[, k) = Zd e A t/zz 5 x pe() 97 (F).
rek 1,j=1

It is easily seen that f]; € L?(R") for every 7 € K and 1< 1,7 < dr. Hence

17 * pt extends to a holomorphic function on C" and by the unitarity of the

Segal-Bargmann transform in R™ we have, for z = x + iy € C",

(31) L1tz m Pt dsdy = [ 1@ da.

The analytic continuation of f * ¢, to C™ x G is given by

fx(z,9) = Zd e A t/zz 1 x pe(2)975(9)-

FEK i,7=1

We claim that the above series converges uniformly on compact subsets of
C™ x G so that f*1; extends to a holomorphic function on C" x G. We know from
[4, Section 4, Proposition 1] that the holomorphic extension of the heat kernel ¢;

g) = Z dﬂe_)\Wt/ZXﬂ'(g)-

71'61?

on K is given by

For each g € G, define ¢f (k) = q:(gk). Then ¢/ is a smooth function on K and is
given by

dr
= 3" dee 2 (gk) = 3 dae 23T 47 ()

rek rek ,j=1



SEGAL-BARGMANN TRANSFORM ON MOTION GROUPS 725

Since ¢f is a smooth function on K, we have for each g € G,

(3:2) [ it k= 3 de S oo

rek t,j=1

Let L be a compact set in C™ x G. For (z,g) € L we have

dr
(3.3) 52, 9) <D due 2N fspy(2)] 1675 (9)]-

neK i,j=1

By the Fourier inversion
15+ pi(2) / [ (©em P e i) g

where z = x + iy € C" and fi is the Fourier transform of f7. Hence, if z varies
in a compact subset of C" (namely, the projection of L in (C") we have

—_ 2 .
()] < | guz/R 2V e < O£ o

Using the above in (3.3) and applying the Cauchy—Schwarz inequality we get

dr
[fxbi(z, )| < CL Y de Y (1 f]ll2e %67 (g)]

71'61? 1,7=1
1/2
<cL<Zd Z/ I Fdx) (Zd S Aﬂt|¢z;<g>|2) .
i,j=1 7,j=1
Noting that
1913 = Y ds 2/ 5@ da
ek 1,j=1

and ¢; is a smooth function on G we prove the claim using (3.2)). Applying Theo-
rem 2 in [4] we get

/|f*wt 7g| dV Zd Z|fl]*pt

relR 4,J=1

Integrating the above against u(y)dx dy on C™ and using (3.1) we conclude that
C} is isometric,

/ / 1 * (2 0) P aly) dee dy dr(g) = [1£12
Ccn JG
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To prove that the map C} is surjective it suffices to prove that the range
of Cy is dense in H(C™ x G). For this, consider functions of the form f(x, k) =
hi(z)ha(k) € L?(M) where hy € L?(R™), hy € L?(K). Then a simple computation
shows that

fxt(z,9) = h1 xp(2)ha % qi(g) for (z,9) € C" x G.

Suppose F' € H(C™ x G) is such that

(3.4) /c ; F(z,9)h1 * pt(2)ha * q:(9)u(y) dz dy dv(g) = 0

for all hy € L*(R"™) and hy € L?*(K). From (3.4) we have

/G</ - (Z’”’WWC’M(Z>>’W%<9>dv(9) 0,

which by Theorem 2 of [4] implies that

/n F(z,9)h1 *xpi(2) du(z) = 0.

Finally, an application of the surjectivity of the Segal-Bargmann transform on R"
shows that F' = 0, as desired. O

In [4] Brian C. Hall proved the following generalizations of the Segal-Barg-
mann transforms for R” and compact Lie groups:

Theorem 3.2. (I) Let u be any measurable function on R™ such that

o 1 is strictly positive and locally bounded away from zero,

o forallz € R", o(x) = [p. e**Yu(y)dy < co.

Define, for z € C™ |

etaly)
v = [ ey,
n\o(y)

where a is a real-valued measurable function on R™. Then the mapping Cy :
L?(R™) — O(C™) defined by
Cy(2) = A f@)p(z —x)de

is an isometric isomorphism of L*(R™) onto O(C™) N L*(C", dx p(y) dy).
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(IT) Let K be a compact Lie group and G be its complexification. Let v be a
measure on G such that

e v is bi-K-invariant,
e v is given by a positive density which is locally bounded away from zero,

e for each irreducible representation m of K, analytically continued to G,

! /G (g™ Y)2 dv(g) < oo.

0™ = Gmv

Define

d
T(9) = ———=Tr(n(g~")Ux)
7T€I? 6(7T)

where g € G and U, ’s are arbitrary unitary matrices. Then the mapping
Cot(9) = [ Ty g)ak
K

is an isometric isomorphism of L?*(K) onto O(G) N L*(G, dv(w)).

A similar result holds for M. Let p be any real-valued K-invariant function
on R"™ that satisfies the conditions of Theorem I). Define, for z € C”,

B eta(y) iy
IZ)(Z) - /n \/@6 dy

where a is a real valued measurable K-invariant function on R". Next, let v, ¢
and 7 be as in Theorem [3.2(II). Also define ¢(z, g) = 1(z)7(g) for z € C", g € G.
It is easy to see that ¢(z,w) is a holomorphic function on C™ x G. Then it is easy
to prove the following analogue of Theorem for M.

Theorem 3.3. The mapping
Cof(er) = [ SRR (219)) de

is an isometric isomorphism of L*(M) onto

O(C" x G)N LA(C" x G, u(y) dz dy dv(g)).

84. Gutzmer’s formula and Poisson integrals

In this section we first briefly recall Gutzmer’s formula on compact, connected Lie
groups given by Lassalle in [9]. Let k& and g be the Lie algebras of a compact,
connected Lie group K and its complexification G. Then we can write g = k +p
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where p = ik and any element g € G can be written in the form g = kexpiH for
some k € K and H € k. If h is a maximal abelian subalgebra of k£ and a = ih then
every element of p is conjugate under K to an element of a. Thus each g € G can
be written (non-uniquely) in the form g = ky exp(iH ks for k1, k2 € K and H € h.
If k1 exp(iH1)k] = ko exp(iHz)k, then there exists w € W, the Weyl group with
respect to h, such that H; = w - Hy where - denotes the action of the Weyl group
on h. Since K is compact, there exists an Ad K-invariant inner product on k, and
hence on g. Let |- | denote the norm with respect to that inner product. Then we
have the following Gutzmer formula by Lassalle.

Theorem 4.1. Let f be holomorphic in K exp(iQ,)K C G where Q, = {H € k :
|H| < r}. Then

[ [ 1tk explit k) b ke = 3 1) s (exo2i)

WGIA(

o~

where H € Q. and () is the operator-valued Fourier transform of f at w defined
by f(r) = [i fk)m(k™) dk.

For the proof see [9]. We prove a Gutzmer-type result on M using Lassalle’s
theorem above. Define Q;, = {(z,9) € C" x G : |Imz| < t, |H| < r where
g =kiexp(iH)ks, k1,ks € K, H € h}. Notice that the domain €2 ,- is well defined
since | - | is invariant under the Weyl group action.

Lemma 4.2. Let f € L*(M) extend holomorphically to the domain Q¢ , and

sup ///|f(x—|—iy,klexp(iH)k2)|2dk1dkgdm<oo
{lyl<s, |H|<q} JR™ /K JK

forall s <t and g < r. Then

///|f($+iy7k1eXp(iH)k2)|2dk:1dedaz
nJKJK

de

DD (/R FH©)Pe dé)xﬂ(exp%H)

reR 6=l
provided ly| <t and |H| < r. Conversely, if

dr

sup Ny de Y ( /R ) ()P d£> X (exp2iH) < 00

{lyl<s, [H|<q} |
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for all s <t and g < r then f extends holomorphically to the domain Q,, and

///If (x + iy, ky exp(iH )ko)|? dky dko dz < oo

{\y|<g IH\<q}

foralls <t and g <r.

Proof. Notice that = [ f(x,k) )#F; (k) dk. 1t follows that f7 has a holomor-
phic extension to {z E (C" :|Imz| < t} and

sup/\ F(x+iy)Pde <oo Vs <t

lyl<s

Consequently,

/ |f; (x+zy)|2 dx */ |}T£(€)|2672£'y d¢  for lyl <s andall s <t.
Rn,

Now, for each fixed z € C™ with |Im z| < s the function g — f(z, ¢) is holomorphic
in the domain {g € G : |[H| < r where g = ky exp(iH ks, k1,k2 € K, H € h} for
all s <t and ¢ < r and so admits a holomorphic Fourier series (as in [4])

= dn Z (2)67(9)-

rek ,j=1

It follows that af;(2) = f75(z) for every 7 € K and 1 < i,j < dy. Hence by using
Theoremwe have, for (z,g) € Q4 ,

//|fx+zy,k1exp(sz2)|2dk1dkzg ST () B (exp 2 )

rek
3 S e i)
reR Hi=1

where f.(g) = f(z, g). Integrating over R we get

///\f(x+iy,k1eXp(iH)k2)|2dk1dedx
nJKJK

= Z Z/ |f55(z + iy)|? da xx (exp 2iH)

rek hi=1

Yy ([ 1F@e v ae )olexp it

reK  Hi=l
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Hence the first part of the lemma is proved. The converse can also be proved
similarly. O

Recall that the Laplacian A on M is given by A = —Agn — Ag. If f € L2(M)
it is easy to see that

dr

Ty = e D (R T @ o)
TeK

ij=1
We have the following (almost) characterization of the Poisson integrals. Let €2 ,

denote the domain defined prior to Lemma {4.2

Theorem 4.3. Let f € L?(M). Then there exists a constant N such that g =

e_tAl/zf extends to a holomorphic function on the domain Qt/ﬂ,t\/i/N and

sup ///\g(x+iy,klexp(iH)k2)|2dk1dkgda:<oo.
{lyl<t/v2,|H|<tv2/N} /R JK JK

Conversely, there exists a fixed constant C such that whenever g is a holomorphic
Junction on 4 54/ and

Sup ///\g(x+iy,k1exp(iH)k2)|2d]g1dkzdx<OO
{lyl<s, |H|<2s/C} JR" JK JK

for s < t, then for all s <t there exists f € L?>(M) such that e_SAl/2f =g

Proof. We know that if f € L?(M) then

dr
glak) = fla k) = Y de Y ( /R ) e—“52“")1/2}7’;(5)4%5) 5 (k).

rek b=l

Also,

dﬂ- — 2 1/2
ge k)= de 3 gh(@)on (k) with g (€) = [T (&)e AT,

rek b=l

From Lemmas 6 and 7 of [4] we know that there exist constants a, M such that
Ar > a|pf? and |xx(expiY)| < dreMY1IH where p is the highest weight of 7.
Hence we have

IXx(exp 2iH)| < dpe2MHNIEl < g NIV
where N = 2M/\/a. If s < t\/2/N it is easy to show that

sup e 2LUEP 202 21el Iyl  NIvAxls <C<oo for|yl <t/V2.
{¢€R™, A\, >0}
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It follows that

w3 Z( [T @ g ) N < o

{lyl<t/v2,|HIStV2/N}Y "5 ij=1

So we have

sup > dn Z( / l97;() _2€'yd€>xw(exp2iH)<OO

{lyl<t/V2,|H|<tV2/N} _f ij=1

Hence by Lemma we have proved the first part of the theorem.
To prove the converse, we first show that there exist constants A, C such that

(4.1) / Xr(exp 2iH) doy(H) > d AeC™V
|H|=r

where do,(H) is the normalized surface measure on the sphere {H € h: |H| =1}
C R™ where m = dim h. If H € g, then there exists a non-singular matrix ¢ and

pure-imaginary-valued linear forms v1,...,v4_ on g such that
Qn(H)Q ™! = diag(v1(H),...,vq, (H))
where diag(ay,...,ax) denotes the k x k diagonal matrix with diagonal entries

ai,...,ax. Now, v(H) = i(v, H) where v is a weight of w. Then

exp(2iQn(H)Q ™) = Qexp(2ir(H))Q ™" = diag(e2™ 1) .. e2ivax (i),
Hence

X (exp 2iH) =Tr(Q exp(2i7r(H))Q*1)
— ¢~ 2(v1,H) R e~ 2WVar . H) > e~ 2w H)

where p is the highest weight corresponding to m. Integrating the above over
|H| = r we get

/ X (exp2iH) do.(H) 2/ e 2mH) do (H)
|H|=r

|H|=r
_ Jiny2—1(2ir|p]) > Berlul
(2ir|p)m/2=t =
where J,,, /51 is the Bessel function of order m/2 — 1. By Weyl’s dimension formula
we know that d, can be written as a polynomial in p and A, =~ |u|?. Hence

/ Xr(exp2iH) do,(H) > AdeC™V >~
|H|=r
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for some C. Consider the domain ); 5;/c for that C. Let g be a holomorphic
function on €2 3¢/ and

sup / / / \g(z + iy, k1 exp(iH)k2)|? dky dko dz < oo
{lyl<s, |H\<25/C} "

for s < t. By Lemma [4.2] we have
sup tn 3 ([ WP at )xa(expint) < oc
{lyl<s, |m|<2s/C} * Z UZI R
for all s < t. Integrating the above over |H| =r = 2s/C and |y| = s < ¢ we obtain

2 Jn/2-1(2i5[€]) 0 2H) do .
2 Z(/ O Ggyrr ) [, el do D) <

i,j=1

Jn2-1(2is
Noting that M ~ €23l for large |¢] and using (4.1) we obtain
(2is|g[)m/2

> dn Z/ (©)]2e® 812V ¢ < 00 for 5 < t.

rek i,5=1

This surely implies that
> d. Z / 7€) U0 g < 0o for s < t.
rek i,j=1
Defining :’;(5) = %(§)€S(|5|2+>\")1/2 we obtain
S S WAL ACET Y
reR ,j=1

and g = e_SAl/zf. O

85. Complexified representations and Paley—Wiener type theorems

Recall the representations U¢ and the generalized Fourier transform f({ ) from the

&= [ s dm.

For (z,k) € M and matrix coefficients ¢7; of m we have

(U, 1y ®5) (W) = ™40 o7 (k).

introduction where
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This action of U (i,k) on ¢7; can clearly be analytically continued to C" x G' and
we obtain

(U, 075 (u) = 8 e g (e=H =1y
where (2,9) € C" x G and z = 2 + iy € C" and g = ke € G.
We also note that the action of K C SO(n) on R™ naturally extends to an
action of G C SO(n,C) on C™. Then we have the following theorem:

Theorem 5.1. Let f € L?>(M). Then f extends holomorphically to C* x G with

/|y—r /K /n |f(e_iH(x + iy)’ e_in)|2 dx dk dﬂr(y) < o0

for all H € k (where p, is the normalized surface area measure on the sphere

n y z HS T X

where z = x + iy € C" and g = ke € G. In this case we also have

/ / \\Uég)f(g)”%{sdﬂr(y)df
n yl=r
/y—r/ /n I Z?J) - ki)|2dxdk;dur(y)_

We know that any f € L?(M) can be expanded in the K variable using the
Peter—Weyl theorem to obtain

dr

ek =1

where for each T E I? d,r is the degree of 7, ¢];’s are the matrix coefficients of
and f(x) = [ f 7 (k) dk.

NOW for Fe L2 (R"), consider the decomposition of the function k — F(k-x)
in terms of the irreducible unitary representations of K given by

= dy Z )i (k)

reK l,m=1

where FI™(z = [ Flk-x Yo, ( ) dk. Putting k = e, the identity element of K,

we obtain
=2 Z

xeR =1
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Then it is easy to see that for u € K,
(5:2) Z ) iy (10)-

It also follows that the Euclidean Fourier transform E;;"” of F)l\m satisfies
(5.3) F”u x) Z¢lm Flm () VueK.

From the above and the fact that f7; € L*(R™) for every m € Kand1<i,j<d,
it follows that any f € L%(M) can be written as

dr dx
=S d Y S Y U )d (k).
71'61? )\EI? i,j=11=1

We need the following lemma to prove Theorem

Lemma 5.2. For fized w,\ € I?, the conclusion of the theorem is true for func-
tions of the form

dr dx
=Y D fi@egk)

i,j=11=1

where for simplicity we write ( [;)l)f as fjl

Proof. ForfeR”,ueK,ve[A(andlgp,quvwehave

(f(&)pa) (u // ZZ o (k)e! w8 Y (k=1u) dk dx

i,7=11=1
dr dx __ dy
=> ) - Zsﬁ IR INTES
i,j=11=1

Dr S S T wen ()

71-zllm,l

by (5.3)) and Schur’s orthogonality relations where d,. is the Kronecker delta in
the sense of equivalence of unitary representations. Then we have

(U(§z+iy,keif1)f(§)¢7;q) (u)

57T i(x+iy,u & et — %
= <+y,5zz &) dpn (e TR ) o (u™ he'™).

i=11l,m=1
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Hence
IUS 1, W)ﬂ &)llzs

d Z / 2y, u-€)

Integrating the above over |y| = r, we obtain

dr

2
Z Z ) (e H k= ) gi(u_lkzeZH) du.

i=11,m=1

O I s FO s i)
yl=r

i Ty /a1 (2ir(€])
dr (2ir[g)m/2

X Z/‘i Z &) (e Hu) ql(ufleiH)zdu

p,q=1 i=11,m=1

where J,,/5_1 is the Bessel function of order n/2 — 1 and g, is the normalized
surface area measure on the sphere {|y| =r} C R".
Let H, be the Hilbert space on which 7w(k) acts for every k € K, and

€1,...,eq, be a basis of H,. Then, for any ¢;,1 <i < dg,
de  de de dn dn
Z’ZCZQS w L zH ‘ ZZC u! zH)Zaqbga(u,leiH)
g=1 i=1 q=1i=1 a=1
dn dn
= cica Y (mute ey, eq)(eq, m(u e )e,)
i,a=1 q=1
dr

> Y IO o]
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Hence from (5.4]) we get
/| Wiy FO s v
y|=r

1 Ty 1(2ir|€]) ™ - L
N ﬂ— (2ZT|£| n/2 1 pqzl/ ‘;lwglﬁp (blk: H)¢km( ) z( H)‘ du

dr

1 J, (2ir|€]) dr m( i Z
" dydy (2/zj’|§1| n/2-1 > Z ‘szllp )oni (e ) g (e H)

p,q=1m,k=1 i=1 [=1

bl

by Schur’s orthogonality relations. The above can also be written as
(5.5) /w—r 1S, oy e P s i ()

= dldk/l e~ 2(v:€) dﬂ zﬂ: Z ‘ZWZ (blk —zH)¢;ri(ez'H>
" vi=r =1

p,q=1m,k=1 i=1

2

We have obtained an expression for the left hand side of the desired formula.
Now, looking at the right hand side, we have

dr
fu™ zu R = Y Z ) Sy (w1 )97 (k).
i,j=11,m=1
So, if f is holomorphic on C™ x G, for z = = + iy we get
f(eszufl . 27671Hu71k, Z Z ¢lm 71H )d)jq(k) eri(uezH).
1,7,q=11,m=1

Again, by Schur’s orthogonality relations and similar reasoning as before, we have

/ |f(€7iH’LL71 . Z7efiHu71kfl)|2 dk
K
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Hence, by the invariance of Haar measure, we have

///|f(e_iHu_1-z,e_iHu_lk_l)Pdkdudx
nJK

. 2
()0 (e )b (u o (e )| duda

pm

dr A . 2
™z + iy ¢lp( H)qbgi(ezH)’ dx
7,q=1pm=1 z 11l=1
dr d,r ' , 9
D 3 / S s M| e de.
_7 q=1pm=1 =1 =1

Now by the invariance of Lebesgue measure under the K-action on R" we get

S L e s e P kw0
ly|=r JR® JK JK
[ L e s s
y:r n

Hence the lemma follows from ([5.5)). O

Proof of Theorem[5.11 To prove the theorem, it is enough to prove the orthogo-
nality of the components

Pk =35 S MwaEm

1,7=11=1

For m, A\, 7,v € I?, we have
3 3) 3 v
<U(x+1y keiH)fA (5) U(x_Hy keiH) f (€)>

Z Z / Iy z<w+zyu§ Z"r Z ¢lm 72Hk U) ql( 71k€iH)

NveR pa=l i=1 Lm=1
P dr d,
T i H 1 —1 i H
5 T i cilatiy,u-g) Z Z d)bc e tH[— )qsga(u ket )du
a=1b,c=1

=0 ifnrz&r
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Assume 7™ =2 7. Then

/| ey PO Uy FE s )
y=r

_ 1 Jnjpa (2ir|&]) dr du

T d, (2ir|€]) n/2 1 Z Z Z

a,i,p=11,m=1b,c=1
[ (z¢ w5, () ) 0 (e )0, (e ) du
dr

1 Jnja-1(2irf€]) & T (H\T T (oiH
T dy (2ir]é])n2 Z Z Z €)0gi(e")dga (e ™)

a,i,p,q=11,m=1b,c=1

dx dy

S b M [ 6w

j=1k=1
=0 ifAZvw

On the other hand, we have

/ ffr‘(efiHufl - 2, efiHuflkfl)fTV(e*iHufl sz, e Hy=1k=1) dk
K

_ S S S S T e e

%,7,q=11,m=1a,b,p=1 s,t=1

. (ue ) (el / o7, (KB (8)
=0 ifwr&r

Assume 7 = 7. Then we get

/ / e My = g e Hy T T fr(e—iHy =1 . 2 e~ iHy~1k=1) dk du
K JK

-3 Y S e (Z¢ ™)

i,a,j=11,m=1s,t=1

Zi:qbla 7ZH (by _ZH / d)am 71 ¢ﬁt( _1) u

a=1p3=1
=0 ifXZwv

This finishes the proof.
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It is easy to see that

|0 s de = [ 57 dalUE Fle.ollis .

ceKe

Hence we have the following corollary:

Corollary 5.3. For f € L3(M), f extends holomorphically to C* x G with

/|y—r /K /n |f(e_iH(x +1y), e_in)|2 dx dk dpir (y) < o0

(where p,. is the normalized surface area measure on the sphere {|y| = r} C R")

iff

03 do [0 Fleo) s duntv) d < oo
" el lyl=r
o 3

where z = x + iy € C"*, g € G and we also have

[ d /| I 6 s de )
.

- /y_T |1 ) daddi (),

ek
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