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Uniform Resolvent Estimates for Magnetic
Schrödinger Operators and Smoothing
Effects for Related Evolution Equations

by

Kiyoshi Mochizuki

Abstract

We prove uniform resolvent estimates for the magnetic Schrödinger operator in an exterior
domain under smallness conditions on the magnetic fields and the scalar potential. The
results are then used to obtain smoothing effects for the corresponding Schrödinger and
Klein–Gordon evolution equations.
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§1. Introduction and results

Let Ω be an exterior domain in Rn (n ≥ 3) with star-shaped complement with
respect to the origin 0 and smooth boundary ∂Ω (the case Ω = Rn is not excluded).
In this paper we consider in Ω the magnetic Schrödinger equation

(1) −
n∑
j=1

{∂j + ibj(x)}2u+ c(x)u− κ2u = f(x), x ∈ Ω,

with Dirichlet boundary condition

(2) u(x, κ) = 0, x ∈ ∂Ω.

Here ∂j = ∂/∂xj (j = 1, . . . , n), i =
√
−1, κ ∈ Π± = {κ = σ + iε ∈ C; ±σ > 0,

ε > 0} and f ∈ L2 = L2(Ω); bj(x) are real-valued C1-functions of x ∈ Rn and
c(x) is a real-valued continuous function of x ∈ Rn \ {0}; b(x) = (b1(x), . . . , bn(x))
represents a magnetic potential. Thus the magnetic field is defined by its rotation
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∇×b(x). The external potential c(x) may have a singularity like O(|x|−2) at x = 0.
In this case we assume c(x) > −β/4|x|2, β < (n− 2)2. Throughout this paper, we
further require that max{|∇ × b(x)|, |c(x)|} decays sufficiently fast as |x| → ∞.

Notation. Let a ·b and a×b respectively denote the inner product and the exterior
product of a, b ∈ Rn. More generally, we put

∇ · v(x) = ∂1v1(x) + · · ·+ ∂nvn(x), ∇× v(x) = (∂jvk(x)− ∂kvj(x))1≤j<k≤n

for ∇ = (∂1, . . . , ∂n) and v(x) = (v1(x), . . . , vn(x)). We also put r = |x|, x̃ = x/r

and ∂r = ∂/∂r = x̃ · ∇. The inner product and norm of L2 are denoted by

(f, g) =
∫
f(x)g(x) dx and ‖f‖ =

√
(f, f).

Here
∫
dx indicates integration over the domain Ω. Moreover, for ρ > 0 we put

Ωρ = {x ∈ Ω; |x| < ρ} and Sρ = {x ∈ Ω; |x| = ρ} (Ω = Ω∪ ∂Ω). We are thus able
to consider

∫
Ωρ
dx =

∫ ρ
0

∫
Sσ
dS dσ.

Now, putting ∇b = ∇+ ib(x) and ∆b = ∇b ·∇b, we define in the Hilbert space
L2 the operator L as follows:

(3)

{
Lu = −∆bu+c(x)u for u ∈ D(L),

D(L) = {u ∈ L2∩H2
loc(Ω\{0}); −∆bu+cu ∈ L2, ∇bu ∈ [L2]n, u|∂Ω = 0}.

Here Hj = Hj(Ω) (j = 1, 2, . . . ) is the usual Sobolev space on Ω and H2
loc(Ω\{0})

is the space of H2 functions on each compact subset of Ω \ {0}.
Note that the Hardy inequality is easily modified as

(4)
∫

(n− 2)2

4r2
|u|2 dx ≤

∫
|x̃ · ∇bu|2 dx.

Then, as the Friedrichs extension of a lower semi-bounded symmetric operator
−∆b + c initially defined on C∞0 (Ω \ {0}), L forms a selfadjoint operator in L2

with essential spectrum contained in the half line [0,∞) (see, e.g., Mochizuki [12]
and Kalf et al. [7]). Hence, the resolvent R(κ2) = (L− κ2)−1 of L can be defined
for each κ ∈ Π±.

The main purpose of this paper is to show the following theorem.

Theorem 1. Let u be the solution of the problem (1), (2).

(i) Assume that

(A1) max{|∇ × b(x)|, |c(x)|} ≤ µ(r) in Ω,

where µ = µ(r) is a smooth function of r > 0 satisfying

(5) µ > 0, µ′ ≤ 0, µ ∈ L1(R+).
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Then∫ {
µ(|∇bu|2 + |κu|2)− µ′n− 1

2r
|u|2
}
dx

≤ 4‖µ‖2L1

∫
µ−1(5|f(x)|2 + 4|max{|∇ × b|, |c|}u|2) dx

for each κ ∈ Π± and f satisfying (1 + µ(r)−1/2)f ∈ L2. Here ‖µ‖L1 =∫∞
0
µ(σ) dσ.

(ii) Assume that

(A2) max{|∇ × b(x)|, |c(x)|} ≤ ε0r−2 in Ω,

where 0 < ε0 < 1/4
√

2. Then∫
1
r2
|u|2 dx ≤ C1

∫
r2|f |2 dx, C1 =

32
(n− 2)2 − 32ε20

,

for each κ ∈ Π± and f satisfying (1 + r)f ∈ L2.

(iii) Assume that

(A3) max{|∇ × b(x)|, |c(x)|} ≤ ε0 min{µ(r), r−2} in Ω.

Then∫ {
µ(|∇bu|2 + |κu|2)− µ′n− 1

2r
|u|2
}
dx ≤ C2

∫
max{µ−1, r2}|f(x)|2 dx,

C2 = 4(5 + 4ε20C1)‖µ‖2L1 ,

for each κ ∈ Π± and f satisfying max{µ(r)−1/2, 1 + r}f ∈ L2.

(i) shows that the multiplication operator
√
µ(r) is locally L-smooth near

κ = ∞. The notion of the smooth perturbation introduced by Kato [8] and the
local smoothness condition were used in Mochizuki [11] for non-small complex
potentials. (ii) shows the L-smoothness of r−1. Note that (ii) and (iii) generalize
the corresponding results of Kato–Yajima [9] (see also Kuroda [10] and Watanabe
[15]), where the operator in question is the Laplace operator in Rn (n ≥ 3). The
Fourier transformation method employed there is not applicable in our case. In
this paper our arguments are based on the partial integration method widely used
to show the principle of limiting absorption. The weight functions introduced in
Mochizuki [12] will play an important role. (i) is a result of precise examination
of previous results (see, e.g., [12]–[14]). On the other hand, to show (ii) and (iii)
it is necessary to introduce yet another identity (see Lemma 3 of §3). The weight
function of [12] is especially effective in this argument.
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Remark 1. Assertion (ii) can be generalized to the potential c(x) = c1(x)+c2(x),
where c1(x) is a small function satisfying (A2), and c2(x) is a bounded nonnegative
function satisfying

c2(x) ≤ Cr−2 for some C > 0.
In this case, to ensure the solvability of an integral equation corresponding to (1),
we further require that 0 is not a resonance of L.

As a corollary of Theorem 1, we are able to obtain space-time weighted esti-
mates (smoothing effects) for the Schrödinger evolution equation

(6) i
∂u

∂t
− Lu = 0, u(0) = f ∈ L2,

and the relativistic Schrödinger evolution equation

(7) i
∂u

∂t
−
√
L+m2 u = 0, u(0) = f ∈ L2,

with m ≥ 0. Note that the smoothing effects for (7) give those for the Klein–
Gordon (m > 0) or the wave equation (m = 0) in the energy space.

Theorem 2. (i) Assume (A2). Then for f ∈ L2 we have∣∣∣∣∫ ±∞
0

‖r−1e−itLf‖2 dt
∣∣∣∣ ≤ 2

√
C1‖f‖2.

(ii) Assume (A3). Then for f ∈ L2 we have∣∣∣∣∫ ±∞
0

‖min{
√
µ(r), r−1}e−it

√
L+m2

f‖2 dt
∣∣∣∣ ≤ 4

√
m2C1 + C2‖f‖2.

(iii) Assume that b(x) ≡ 0 and c(x) ≡ 0. Then L reduces to the usual Laplacian

L0 = −∆, D(L0) = H2 ∩H1
0 .

In this case, we have∣∣∣∣∫ ±∞
0

‖
√
µ(r)e−it

√
L0f‖2 dt

∣∣∣∣ ≤ 8
√

5‖µ‖L1‖f‖2.

Similar results have been obtained by many authors in connection with local
smoothing properties (see, e.g., Ben Artzi–Klainerman [1], Yajima [16], Cuccagna–
Schirmer [2], D’Ancona–Fanelli [3], Erdogan–Goldberg–Schlag [4] and Georgiev–
Stefanov–Tarulli [5]). Note that these works are restricted to the initial value
problem and the vector potential b(x) itself is required to be small and to decay
sufficiently fast. No such requirement is imposed in our case. The decay conditions
similar to (A1) on the magnetic field∇×b(x) have been used in Ikebe–Uchiyama [6]
to show growth estimates of generalized eigenfunctions corresponding to each pos-
itive spectrum.
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As for the Schrödinger equation (6), we can have the following more general
results.

Theorem 3. (i) Assume (A2). Then for h(t) satisfying r−1h(t) ∈ L2(R×Ω) we
have ∣∣∣∣∫ ±∞

0

∥∥∥∥r−1

∫ t

0

e−i(t−τ)Lh(τ) dτ
∥∥∥∥2

dt

∣∣∣∣ ≤ C1

∣∣∣∣∫ ±∞
0

‖rh(t)‖2 dt
∣∣∣∣.

(ii) Assume (A3). Then for h(t) satisfying max{
√
µ(r)

−1
, r}h(t) ∈ L2(R×Ω) we

have∣∣∣∣∫ ±∞
0

∥∥∥∥min{
√
µ(r), r−1}

∫ t

0

∇be−i(t−τ)Lh(τ) dτ
∥∥∥∥2

dt

∣∣∣∣
≤ max{C1, C2}

∣∣∣∣∫ ±∞
0

‖max{
√
µ(r)

−1
, r}h(t)‖2 dt

∣∣∣∣.
The rest of the paper will be organized as follows. In the next section we

prepare two identities related to the solution of (1), (2). They are used in §3 to
prove Theorem 1. Finally, Theorems 2 and 3 are proved in §4 based on Theorem 1.

§2. Functional identities for solutions

In this section we prepare two functional identities related to the solution of
(1), (2).

We first multiply both sides of (1) by −iκu to obtain

(8) ∇ · {(∇bu)iκu} − iκ{|∇bu|2 + c(x)|u|2 − κ2|u|2} = −f iκu.

Integrating the real part of this equation over Ωρ (ρ > 0), by using the boundary
condition (2) we obtain

Re
∫

Ωρ

∇ · {(∇bu)iκu} dx = Re
∫
Sρ

(x̃ · ∇bu)iκu dS

=
1
2

∫
Sρ

{−|∇bu− iκx̃u|2 + |∇bu|2 + |κu|2} dS,

and it follows that

1
2

∫
Sρ

{−|∇bu− iκu|2 + |∇bu|2 + |κu|2} dS

+ Imκ

∫
Ωρ

(|∇bu|2 + c|u|2 + |κu|2) dx = −Re
∫

Ωρ

f iκu dx.
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The following proposition is a direct consequence of this identity multiplied
by µ(ρ) and integrated over (0,∞).

Proposition 1. Let u ∈ D(L) satisfy (1), (2) with κ ∈ Π± and f ∈ L2. Then
for µ satisfying (5) we have

1
2

∫
µ
{
−|∇bu− iκx̃u|2 + |∇bu|2 + |κu|2

}
dx

+ Imκ

∫ ∞
0

µ(ρ) dρ
∫

Ωρ

(|∇bu|2 + c|u|2 + |κu|2) dx

= −Re
∫ ∞

0

µ(ρ) dρ
∫

Ωρ

f iκu dx.

Next, we put v = e−iκrr(n−1)/2u, g = e−iκrr(n−1)/2f and rewrite (1) as
follows:

(9) −∇b · ∇bv +
(
−2iκ+

n− 1
r

)
x̃ · ∇bv +

(
(n− 1)(n− 3)

4r2
+ c

)
v = g.

Let ϕ = ϕ(r) be a positive increasing function of r > 0 such that

(10) ϕ(r) = O(r) and
ϕ′(r)
ϕ(r)

≤ 1
r
,

and let φ = φ(r) = e−2 Imκrr−n+1ϕ(r). We multiply both sides of (9) by φ x̃ · ∇bv
to obtain

− Re∇ · {(φ∇bv)x̃ · ∇bv}+ φ′|x̃ · ∇bv|2 +
φ

r
(|∇bv|2 − |x̃ · ∇bv|2)

+
1
2
∇ · (φx̃|∇bv|2)−

(
φ′

2
+ φ

n− 1
2r

)
|∇bv|2

− Reφ{(x̃×∇bv) · (∇× ib)v}+ φ

(
2 Imκ+

n− 1
r

)
|x̃ · ∇bv|2

+ Reφ
(

(n− 1)(n− 3)
4r2

+ c

)
vx̃ · ∇bv = Re{φgx̃ · ∇bv}.

We integrate this over Ωρ. Then noting

φ′(r) = φ(r)
(
−2 Imκ− n− 1

r
+
ϕ′

ϕ

)
and

Reφ
(n− 1)(n− 3)

4r2
v x̃ · ∇bv =

1
2
∇ ·
{
φx̃

(n− 1)(n− 3)
4r2

|v|2
}

+ φ

(
Imκ− ϕ′

2ϕ

)
(n− 1)(n− 3)

4r2
|v|2 + φ

(n− 1)(n− 3)
4r3

|v|2,

we obtain the following proposition.
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Proposition 2. Let v satisfy (9) with boundary condition v|∂Ω = 0. Then∫
Sρ

φ

{
−|x̃ · ∇bv|2 +

1
2
|∇bv|2 +

1
2

(n− 1)(n− 3)
4r2

|v|2
}
dS

+
∫
∂Ω∩{|x|<ρ}

φ

{
−(ν · ∇bv)(x̃ · ∇bv) +

1
2

(ν · x̃)|∇bv|2
}
dS

+
∫

Ωρ

φ

{(
1
r
− ϕ′

ϕ

)(
|∇bv|2 − |x̃ · ∇bv|2 +

(n− 1)(n− 3)
4r2

|v|2
)

+
(

Imκ+
ϕ′

2ϕ

)(
|∇bv|2 +

(n− 1)(n− 3)
4r2

|v|2
)

+ Re[−(x̃×∇bv) · (∇× ib)v + cvx̃ · ∇bv]
}
dx = Re

∫
Ωρ

φgx̃ · ∇bv dx.

where ν = ν(x) is the outer unit normal to the boundary ∂Ω.

§3. Proof of Theorem 1

We shall show Theorem 1 by a series of lemmas.

Lemma 1. Assume c(x) ≥ −(n− 2)2/4r2. Then for µ satisfying (5) we have

1
2

∫ {
µ Imκ

1
r
|u|2 − µ′n− 1

2r
|u|2 + µ(|∇bu|2 + |κu|2)

}
dx

≤ 1
2

∫
µ

(
|θ|2 +

(n− 1)(n− 3)
4r2

|u|2
)
dx+ ‖µ‖L1

∫
|f(x)| |iκu| dx,

where

θ = ∇bu+ x̃

(
n− 1

2r
− iκ

)
u.

Proof. Note that

µ|∇bu− iκx̃u|2 = −∇ ·
{
x̃µ
n− 1

2r
|u|2
}

+ µ

(
|θ|2 +

(n− 1)(n− 3)
4r2

|u|2
)

+ µ′
n− 1

2r
|u|2 − µ Imκ

n− 1
r
|u|2

and

|∇bu|2 + c|u|2 ≥ |x̃ · ∇bu|2 −
(n− 2)2

4r2
|u|2

=
∣∣∣∣x̃ · ∇bu+

n− 2
2r

u

∣∣∣∣2 −∇ · (x̃n− 2
2r
|u|2
)
.
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in Proposition 1. Then since

lim inf
ρ→∞

∫
Sρ

µ
n− 1

2r
|u|2 dS = 0,

we have

− 1
2

∫
µ|∇bu− iκx̃u|2 dx+ Imκ

∫ ∞
0

µ(ρ) dρ
∫

Ωρ

(|∇bu|2 + c|u|2) dx

≥ − 1
2

∫ {
µ

(
|θ|2 +

(n− 1)(n− 3)
4r2

|u|2
)

+ µ′
n− 1

2r
|u|2 − µ Imκ

n− 1
r
|u|2
}
dx

+ Imκ

∫ ∞
0

µ(ρ) dρ
∫

Ωρ

−∇ ·
(
x̃
n− 2

2r
|u|2
)
dx

= − 1
2

∫ {
µ

(
|θ|2 +

(n− 1)(n− 3)
4r2

|u|2
)

+ µ′
n− 1

2r
|u|2 − µ Imκ

1
r
|u|2
}
dx,

and the desired inequality.

Lemma 2. For ϕ(r) satisfying (10) we have

1
4

∫
ϕ

(
Imκ+

ϕ′

2ϕ

)(
|θ|2 +

(n− 1)(n− 3)
4r2

|u|2
)
dx

≤
∫
ϕ2

ϕ′
(|f |2 + |max{|∇ × b|, |c|}u|2) dx.

Proof. In the identity of Proposition 2, the Dirichlet condition (2) implies that
τ · ∇v = 0 for any tangential vector τ to the boundary. On the other hand, since
the starshapedness of the boundary implies ν · x̃ ≤ 0, it follows that∫
∂Ω

φ

{
−(ν ·∇bv)(x̃ ·∇bv)+

1
2

(ν · x̃)|∇bv|2
}
dS = −1

2

∫
∂Ω

φ(ν · x̃)|ν ·∇bv|2 dS ≥ 0.

Moreover, since 1/r ≥ ϕ′/ϕ, |∇bv| ≥ |x̃ · ∇bv|, n ≥ 3 and∣∣−(x̃×∇bv) · (∇× ib)v + cvx̃ · ∇bv
∣∣ ≤ |max{|∇ × b|, |c|}v| |∇bv|,

it follows that∫
Ωρ

φ

(
Imκ+

ϕ′

2ϕ

)(
|∇bv|2 +

(n− 1)(n− 3)
4r2

|v|2
)
dx

≤
∫

Ωρ

φ(|g|+ |max{|∇ × b|, |c|}v|)|∇bv| dx+
1
2

∫
Sρ

φ|x̃ · ∇bv|2 dS.

If we let ρ→∞, then ϕ(r) = O(r) leads to

lim inf
ρ→∞

∫
Sρ

φ|x̃ · ∇bv|2 dS = lim inf
ρ→∞

∫
Sρ

ϕ|x̃ · θ|2 dS = 0,

and we obtain the inequality of the lemma.
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Proof of Theorem 1(i). We combine Lemmas 1 and 2 with ϕ(r) =
∫ r

0
µ(σ) dσ. It

is obvious that this ϕ satisfies (10). Then since ϕ(r) ≤ ‖µ‖L1 , it follows that

1
2

∫ {
−µ′n− 1

2r
|u|2 + µ

(
|∇bu|2 + |κu|2

)}
dx

≤ 4‖µ‖2L1

∫
µ−1(|f |2 + |max{|∇ × b|, |c|}u|2) dx+ ‖µ‖L1

∫
|f | |iκu| dx.

Thus, noting

‖µ‖L1

∫
|f | |iκu| dx ≤ ‖µ‖2L1

∫
µ−1|f |2 dx+

1
4

∫
µ|κu|2 dx,

we deduce the desired inequality.

To complete the proof of (ii) and (iii), we need one more lemma.

Lemma 3. We have∫
(2 Imκ r + 1)

1
4r2
|u|2 dx ≤

∫
(2 Imκ r + 1)|x̃ · θ|2 dx.

Proof. We put ψ = e− Imκ r(2 Imκ r + 1)1/2. Then we have

(2 Imκ r + 1)|x̃ · θ|2 = r−n+1ψ2|x̃ · ∇bv|2.

Note that

ψ2|x̃ · ∇bv|2 = |x̃ · ∇b(ψv)− ψ′v|2 =
∣∣∣∣{x̃ · ∇b(ψv)− ψ′

2
v − ξv

}
− ψ′

2
v + ξv

∣∣∣∣2
=
∣∣∣∣x̃ · ∇b(ψv)− ψ′

2
v − ξv

∣∣∣∣2 − ∂r{( ψ′2ψ
− ξ

ψ

)
|ψv|2

}
+
(
ψ′′ψ − ψ′2

2
− ξ′ψ + ξψ′

)
|v|2 + 2

(
ψ′2

4
− ξ2

)
|v|2 +

∣∣∣∣ψ′2 v − ξv
∣∣∣∣2

=
∣∣∣∣x̃ · ∇b(ψv)− ψ′

2
v − ξv

∣∣∣∣2 − ∂r{( ψ′2ψ
− ξ

ψ

)
|ψv|2

}
+

1
2

(
1
2
ψ′2 + ψ′′ψ − 2ξ′ψ − 2ξ2

)
|v|2,

where ξ = ξ(r) is another weight function given later. By definition we have

ψ′ = ψ
−2(Imκ)2r

2 Imκ r + 1
< 0, ψ′′ψ = ψ′2 +

1
r(2 Imκ r + 1)

ψ′ψ.

Then since

1
2
ψ′2 + ψ′′ψ =

3
2
ψ′2 +

{
1

r(2 Imκ r + 1)
− 1
r

}
ψ′ψ +

1
r
ψ′ψ ≥ 1

r
ψ′ψ,
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we can now choose ξ = ψ/2r to obtain

1
2
ψ′2 + ψ′′ψ − 2ξ′ψ − 2ξ2 ≥ 1

r
ψ′ψ − 2ξ′ψ − 2ξ2 =

1
2r2

ψ2,

and it follows that

r−n+1ψ2|x̃ · ∇bv|2 ≥ ∇ ·
{
x̃

(
− ψ

′

2ψ
+

1
2r

)
r−n+1|ψv|2

}
+
ψ2

4r2
r−n+1|v|2.

Integrate both sides over Ωρ. Then since∫
Sρ

(
− ψ

′

2ψ
+

1
2r

)
r−n+1|ψv|2 dS = O(ρ)

∫
Sρ

|u|2 dS,

letting ρ→∞, we deduce the inequality of the lemma.

Proof of Theorem 1(ii). We choose ϕ = r in Lemma 2. Then noting (A2), we have∫
(2 Imκ r + 1)|θ|2 dx ≤ 8

∫
(r2|f |2 + ε20r

−2|u|2) dx.

Combining this and Lemma 3, we obtain the inequality of (ii).

Proof of Theorem 1(iii). (A3) and the inequality of (ii) imply that∫
µ−1|max{|∇ × b|, |c|}u|2 dx ≤ ε20

∫
µ−1|min{µ, r−2}u|2 dx ≤ ε20C1

∫
r2|f |2 dx.

Substituting this in the inequality of (i), we obtain the desired inequality.

§4. Proof of Theorems 2 and 3

First we shall summarize abstract results which allow us to employ the resolvent
estimate for a selfadjoint operator to show a space-time weighted estimate for the
associated evolution equation.

Let Λ be a selfadjoint operator in the Hilbert space H, and for z ∈ C \ R let
R(z) be the resolvent of Λ. Suppose that A is a densely defined, closed operator
from H to another Hilbert space H1.

Proposition 3. Assume that there exists C > 0 such that

(11) sup
z/∈R
‖AR(z)A∗f‖H1 <

√
C‖f‖H1
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for f ∈ D(A∗). Then∣∣∣∣∫ ±∞
0

∥∥∥∥∫ t

0

Ae−i(t−τ)ΛA∗h(τ) dτ
∥∥∥∥2

H1

dt

∣∣∣∣ ≤ C∣∣∣∣∫ ±∞
0

‖h(t)‖2H1
dt

∣∣∣∣,(12)

sup
t∈R±

∥∥∥∥∫ t

0

eiτΛA∗h(τ) dτ
∥∥∥∥2

H
≤ 2
√
C

∣∣∣∣∫ ±∞
0

‖h(t)‖2H1
dt

∣∣∣∣(13)

for each h ∈ L2(R;D(A∗)), and

(14)
∣∣∣∣∫ ±∞

0

‖Ae−itΛf‖2H1
dt

∣∣∣∣ ≤ 2
√
C‖f‖2H

for each f ∈ H.

Proof. To show (12) and (13), by the standard approximation procedure, we can
assume h ∈ C∞0 (R;D(A∗)).

We put v(t) =
∫ t

0
e−i(t−τ)ΛA∗h(τ) dτ , and consider its Laplace transform

ṽ(z) = ±
∫ ±∞

0

eiztv(t) dt, ± Im z > 0.

Then since ṽ(z) = −iR(z)A∗h̃(z), it follows from the Plancherel theorem and the
assumption (11) that∣∣∣∣∫ ±∞

0

e∓2εt(Av(t), g(t))H1 dt

∣∣∣∣ =
∣∣∣∣(2π)−1

∫ ∞
−∞

(Aṽ(λ± iε), g̃(λ± iε))H1 dλ

∣∣∣∣
≤ (2π)−1

∫ ∞
−∞
‖AR(λ± iε)A∗h̃(λ± iε)‖H1‖g̃(λ± iε)‖H1 dλ

≤
∣∣∣∣C ∫ ±∞

0

e∓2εt‖h(t)‖2H1
dt

∫ ±∞
0

e∓2εt‖g(t)‖2H1
dt

∣∣∣∣1/2
for any g ∈ C∞0 (R;D(A∗)). Letting ε ↓ 0, we obtain inequality (12).

Next, note that the Fubini theorem implies∥∥∥∥∫ t

0

eiτΛA∗h(τ) dτ
∥∥∥∥2

H1

=
∫ t

0

(∫ s

0

Ae−i(s−τ)ΛA∗h(τ) dτ, h(s)
)
H1

ds

+
∫ t

0

(
h(τ),

∫ τ

0

Ae−i(τ−s)ΛA∗h(s) ds
)
H1

dτ.

This and (12) show that (13) holds.
(14) is the dual assertion of (13).

Proof of Theorem 2(i) and Theorem 3(i). Set Λ = L, H = H1 = L2 and A = r−1

(multiplication operator). Then A∗ = A and R(z) = R(z), and if we let z = κ2,
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then it follows from Theorem 1(ii) that

‖AR(z)A∗f‖ = ‖r−1R(z)A∗f‖ ≤
√
C1‖rA∗f‖ =

√
C1‖f‖.

Thus, the estimates (12) and (14) can be written as∣∣∣∣∫ ±∞
0

∥∥∥∥r−1

∫ t

0

e−i(t−τ)Lh(τ) dτ
∥∥∥∥2

dt

∣∣∣∣ ≤ C1

∣∣∣∣∫ ±∞
0

‖rh(t)‖2 dt
∣∣∣∣,∣∣∣∣∫ ±∞

0

‖r−1e−itLf‖2 dt
∣∣∣∣ ≤ 2

√
C1‖f‖2,

as desired.

Proof of Theorem 3(ii). Put A = min{
√
µ(r), r−1}. Then by Theorem 1(iii) we

have
‖A∇bR(λ± iε)A∗h̃(λ± iε)‖ ≤

√
C2‖h̃(λ± iε)‖.

Thus, we can use the argument proving (12) to obtain the desired conclusion.

To show Theorem 2(ii) we consider the Klein–Gordon equation

i∂tu = Λu, u(t) = {w(t), ∂tw(t)}, Λ =

(
0 i

−i(L+m2) 0

)
,

in the energy space H = H1
b × L2, where H1

b is the completion of C∞0 (Ω) in the
norm

‖f1‖2H1
b

=
∫
{|∇bf1|2 + (c(x) +m2)|f1|2} dx.

Then Λ with domain

D(Λ) = {f1 ∈ H1
b ; ∆bf1 ∈ L2} × {f2 ∈ H1

b ∩ L2}

forms a selfadjoint operator in H, and its resolvent is given by

R(z) = (L+m2 − z2)−1

(
z i

−i(L+m2) z

)
.

Let A : H → H1 = L2 be defined by

Af = min{
√
µ(r), r−1}

√
L+m2 f1 for f = {f1, f2} ∈ H.

Then the adjoint operator A∗ is given by

A∗g = {
√
L+m2

−1
min{

√
µ(r), r−1}g, 0} for g ∈ L2.

Proof of Theorem 2(ii) and (iii). By definition

(15) AR(z)A∗g = min{
√
µ(r), r−1}z(L+m2 − z2)−1 min{

√
µ(r), r−1}g
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for g ∈ D(A∗). Then since∫
|min{

√
µ(r), r−1}z(L+m2 − z2)−1f |2 dx

≤ m2

∫
r−2|(L+m2 − z2)−1f |2 dx+

∫
µ| −m2 + z2| |(L+m2 − z2)−1f |2 dx,

using Theorem 1(ii) and (iii), we obtain

‖AR(z)A∗g‖ ≤
√
m2C1 + C2‖g‖.

We now return to Proposition 3. Then (14) shows that∣∣∣∣∫ ±∞
0

‖Ae−itΛf‖2 dt
∣∣∣∣ =

∣∣∣∣∫ ±∞
0

‖min{
√
µ(r), r−1}

√
L+m2 w(t)‖2 dt

∣∣∣∣
≤ 2
√
m2C1 + C2‖f‖2H.

Since
w(t) = cos(t

√
L+m2)f1 +

√
L+m2

−1
sin(t

√
L+m2)f2,

this inequality implies (ii).
To show (iii) we have only to use Theorem 1(i) with b and c identically equal

to 0. In fact, let Λ0 represent the operator Λ with L = L0 and m = 0, and let
R0(z) be its resolvent. Then choosing

A0f =
√
µ(r)

√
L0f1,

we have corresponding to (15)

A0R0(z)A∗0g =
√
µ(r)z(L0 − z2)−1

√
µ(r)g,

and hence
‖A0R0(z)A∗0g‖ ≤ 2

√
5‖µ‖L1‖g‖.

Thus, following the above argument leads us to the conclusion.
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