
Publ. RIMS Kyoto Univ. 46 (2010), 755–788
DOI 10.2977/PRIMS/25

Magnetic Pseudodifferential Operators
with Coefficients in C∗-Algebras

by

Max Lein, Marius Măntoiu and Serge Richard

Abstract

In previous articles, a magnetic pseudodifferential calculus and a family of C∗-algebras
associated with twisted dynamical systems were introduced and the connections between
them have been established. We extend this formalism to symbol classes of Hörmander
type with an x-behavior modeled by an abelian C∗-algebra. Some of these classes generate
C∗-algebras associated with the twisted dynamical system. We show the relevance of these
classes to the spectral analysis of pseudodifferential operators with anisotropic symbols
and magnetic fields.
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§1. Introduction

In previous works [13, 25, 27] a twisted form of the usual Weyl calculus and of
the corresponding crossed product C∗-algebras has been introduced. We refer to
[15, 16, 22, 23, 29] for related works. The twisting is defined by a 2-cocycle on the
group Rn with values in the unitary group of a function algebra. The calculus is
meant to model the family of observables of a physical system consisting of a spin-
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less particle moving in the euclidean space Rn under the influence of a variable
magnetic field B. It goes without saying that the standard theory is recovered
for B = 0. The 2-cocycle is defined by fluxes of the magnetic field over simplexes
and it corresponds to a modification of the canonical symplectic structure of the
phase space R2n by a magnetic contribution. Actually the modified symplectic form
defines a new Poisson algebra structure on the smooth classical observables on R2n

and it was shown in [26] that the twisted form of the Weyl calculus constitutes a
strict deformation quantization in the sense of Rieffel [17, 35] of the usual Poisson
algebra.

A basic requirement for a magnetic pseudodifferential theory is gauge covari-
ance. The magnetic field B being a closed 2-form in Rn, it can be generated in
many equivalent ways by derivatives of 1-forms, traditionally named vector poten-
tials. These vector potentials are involved in the process of prescribing operators
(intended to represent quantum observables) to classical functions defined on the
phase space. Different equivalent choices should lead to unitarily equivalent oper-
ators, and this is indeed the case for our formalism (see Section 2.2), in contrast
to previous wrong attempts.

Most often the usual pseudodifferential calculus is studied in the frame-
work of the Hörmander symbol classes Smρ,δ(R2n). The necessary magnetic adap-
tations, nontrivial because of the bad behavior of the derivatives of the mag-
netic flux, were performed in [13]. Among others, the following results were
obtained: good composition properties, asymptotic developments, an extension
of the Calderón–Vaillancourt result on L2-boundedness, self-adjointness of el-
liptic operators on magnetic Sobolev spaces and positivity properties. A short
recall of the magnetic pseudodifferential theory may be found in Sections 2.1
and 2.2.

Besides the order of a pseudodifferential operator defined by a symbol f ,
another useful information is the properties of the coefficients, i.e. the behavior of
the function x 7→ f(x, ξ) at fixed ξ. One possible way to take them into account is
to confine them to some abelian C∗-algebra A of functions on Rn. In the framework
of the standard calculus this was performed in a variety of situations, with a special
emphasis on almost periodic functions, and with various purposes; see for example
[3, 4, 5, 6, 36]. In Section 2 of the present paper, we investigate the corresponding
magnetic case, insisting on composition properties. In this respect, we extend the
results of [13] on magnetic composition of symbols by considering a more refined
and flexible setting. The techniques of oscillatory integrals are again used, but an
improved control on the x-behavior of the symbols is necessary and does not follow
from our previous works. We also use this opportunity to improve some results
of [13] on asymptotic developments.
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As soon as the symbol spaces with coefficients in A are shown to possess good
properties, they can be used to define non-commutative C∗-algebras composed of
distributions in phase space. Such algebras are investigated in Section 3.1. Then a
partial Fourier transformation makes the connection with the approach of [27] re-
called in Section 3.2. In that reference, relying on general constructions of [31, 32],
magnetic C∗-algebras were introduced in relation with twisted C∗-dynamical sys-
tems. These C∗-algebras are called twisted crossed products and can be defined
by a universal property with respect to covariant representations. And once again
the 2-cocycle obtained by the flux of the magnetic field is the main relevant ob-
ject, defining both the twisted action and the algebraico-topological structure of
the non-commutative C∗-algebras. Through various representations, these alge-
bras will become concrete C∗-algebras of magnetic pseudodifferential operators in
natural Hilbert spaces.

Non-commutative C∗-algebras composed of distributions in phase space can
be generated by A-valued symbols of strictly negative orders, as shown in Section
3.1. But having in mind applications to the spectral analysis of unbounded op-
erators, we undertake in Section 3.4 the task to relate positive order symbols to
these algebras. The key ingredient for that purpose is to understand inversion with
respect to the magnetic composition law, or equivalently, to understand inversion
of magnetic pseudodifferential operators. This is the subject of Section 3.3. Among
other things we show that the inverse of a real elliptic symbol of order m > 0 with
coefficients in A is a symbol of order −m, also with coefficients in A. Combined
with results of the previous section, this implies that such a symbol defines an
affiliated observable, meaning that its C0-functional calculus is contained in the
twisted crossed product C∗-algebra. We also deduce that the A-valued symbols
of order 0 form a Ψ∗-algebra, and in particular that this algebra is spectrally
invariant.

These results on inversion rely at a crucial step on a theorem from [14].
This theorem, which characterizes magnetic pseudodifferential operators of suit-
able classes by their behaviors under successive commutators, is an extension of
classical results of Beals and Bony. For the sake of completeness, we give an
independent proof for the affiliation in an Appendix, extending the approach
of [28].

Our main motivation was spectral analysis, and the last section is devoted to
this subject. Even for the simplest magnetic differential operator the determination
of its spectrum involves a rather high degree of complexity. The main reason is
that even though the magnetic field is the relevant physical object, the operators
are defined by a vector potential. Such vector potentials are not unique and one
problem is to show the independence of the result from a particular choice. Another
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difficulty is that usually any vector potential defining a magnetic field will be ill-
behaved compared to the magnetic field itself. For example, bounded magnetic
fields might not admit any bounded vector potential, certain periodic magnetic
fields are only defined by non-periodic vector potentials, etc. And on top of all that,
general pseudodifferential operators with magnetic fields were not even correctly
defined a couple of years ago.

So Section 4 is devoted to spectral theory. We investigate the essential spec-
trum of magnetic pseudodifferential operators affiliated to the non-commutative
algebras mentioned before. The key of this approach is the use of the structure
of twisted crossed products; see [7, 8, 9, 24, 34] for related approaches in the ab-
sence of magnetic field, and also [11, 18] for a description of the essential spectrum
for certain classes of magnetic fields. We will show how to find information on
the essential spectrum in the quasi-orbit structure of the Gelfand spectrum of the
C∗-algebra A.

In particular, this allows us to express in Section 4.2 the essential spectrum of
any elliptic magnetic pseudodifferential operators defined by a symbol of positive
order and with coefficients in A in terms of simpler operators that are defined on
quasi-orbits at infinity. For example, our approach covers generalized Schrödinger
operators of the form h(−i∂ − A) + V , with h a real elliptic symbol of positive
order, and with V and the components of the magnetic field B in some smooth
subalgebra of A. But more generally, our approach works for any operator of
the form f(−i∂ − A,X), once suitably defined, for f a real and elliptic symbol
of positive order with coefficients in A. We stress that there is no condition on
A, only the components of the magnetic fields have to satisfy some smoothness
conditions and have to belong to A. We also emphasize that even in the degenerate
case B = 0, we have not been able to locate in the literature a procedure for the
calculation of the essential spectrum of such general pseudodifferential operators
with coefficients in some abelian C∗-algebra A.

It is rather obvious that the formalism and techniques of this article can
be further developed and extended. More general twisted actions can be taken
into account (cf. [35] for the untwisted case). This would open the way towards
applications to random magnetic operators, which is the topic of a forthcom-
ing article. Our approach might also be relevant for index theory. On the other
hand, the groupoid setting has shown its role in pseudodifferential theory, in C∗-
algebraic spectral analysis and in quantization; we cite for example [17, 20, 21, 30].
Groupoids with 2-cocycles and associated C∗-algebras are available [33], but they
are still largely ignored in connection with applications. Extending the pseudodif-
ferential calculus and the spectral theory to such a framework would be an inter-
esting topic.
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§2. Pseudodifferential theory

§2.1. The magnetic Moyal algebra

We recall the structure and the basic properties of the magnetic Weyl calculus
in a variable magnetic field. The main references are [25] and [13], which contain
further details and technical developments.

Let X := Rn and let us denote by X ∗ the dual space of X ; the duality is given
by X × X ∗ 3 (x, ξ) 7→ x · ξ. The Lebesgue measures on X and X ∗ are normalized
in such a way that the Fourier transform (Ff)(ξ) =

∫
X dx eix·ξf(x) induces a

unitary map from L2(X ) to L2(X ∗). The phase space is Ξ := T ∗X ≡ X ×X ∗ and
the notations X = (x, ξ), Y = (y, η) and Z = (z, ζ) will be systematically used
for its points. If no magnetic field is present, the standard symplectic form on Ξ
is given by

(2.1) σ(X,Y ) ≡ σ((x, ξ), (y, η)) := y · ξ − x · η.

The magnetic field is described by a closed 2-form B on X . In the standard
coordinates system on X it is represented by a function taking real and antisym-
metric matrix values {Bjk}, with j, k ∈ {1, . . . , n}, and satisfying the relation
∂jBkl + ∂kBlj + ∂lBjk = 0. We shall always assume that the components of mag-
netic fields are smooth functions, and additional requirements will be imposed
when needed.

Classically, the effect of B is to change the geometry of phase space, by adding
an extra term to (2.1): σB := σ+π∗B, where π∗ is the pull-back associated to the
cotangent bundle projection π : Ξ→ X . In coordinates one has

(σB)(Z)(X,Y ) = y · ξ − x · η +B(z)(x, y) =
n∑
j=1

(yjξj − xjηj) +
n∑

j,k=1

Bjk(z)xjyk.

Associated with this new symplectic form is the Poisson bracket acting on elements
f, g ∈ C∞(Ξ):

{f, g}B =
n∑
j=1

(∂ξjf∂xjg − ∂ξjg ∂xjf) +
n∑

j,k=1

Bjk ∂ξjf ∂ξkg.

It is a standard fact that C∞(Ξ; R) endowed with {·, ·}B and with pointwise
multiplication is a Poisson algebra, i.e. C∞(Ξ; R) is a real abelian algebra and
{·, ·}B : C∞(Ξ; R) × C∞(Ξ; R) → C∞(Ξ; R) is an antisymmetric bilinear compo-
sition law that satisfies the Jacobi identity and is a derivation with respect to the
usual product.
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In the quantum picture, the magnetic field B comes into play in defining a
new composition law in terms of its fluxes through triangles. For x, y, z ∈ X , let
〈x, y, z〉 denote the triangle in X of vertices x, y and z and set

ΓB(〈x, y, z〉) :=
∫
〈x,y,z〉

B

for the flux of B through this triangle (integration of a 2-form over a 2-simplex).
With this notation, one defines the Moyal product by the formula

(2.2) (f ]B g)(X)

:= 4n
∫

Ξ

dY
∫

Ξ

dZ e−2iσ(Y,Z)e−iΓ
B(〈x−y−z,x+y−z,x−y+z〉)f(X − Y )g(X − Z)

for f, g : Ξ→ C. For B = 0 it coincides with the Weyl composition of symbols in
pseudodifferential theory. The composition law ]B provides an intrinsic algebraic
structure underlying the multiplication of magnetic pseudodifferential operators
that are going to be defined below.

The integrals defining f ]B g are absolutely convergent only for a restricted
class of symbols. In order to deal with more general distributions, an extension by
duality was proposed in [26] under an additional condition on the magnetic field.
So let us assume that the components of the magnetic field are C∞pol(X )-functions,
i.e. they are indefinitely derivable and each derivative is polynomially bounded, and
let S(Ξ) denote the Schwartz space on Ξ. Its dual is denoted by S ′(Ξ). Then S(Ξ)
is stable under ]B , and the product can be extended to maps S(Ξ)×S ′(Ξ)→ S ′(Ξ)
and S ′(Ξ)×S(Ξ)→ S ′(Ξ). Denoting byMB(Ξ) the largest subspace of S ′(Ξ) for
which S(Ξ) ]BMB(Ξ) ⊂ S(Ξ) and MB(Ξ) ]B S(Ξ) ⊂ S(Ξ), it can be shown that
MB(Ξ) is an involutive algebra under ]B and under the involution ]B obtained
by complex conjugation. Note that one also has S ′(Ξ) ]B MB(Ξ) ⊂ S ′(Ξ) and
MB(Ξ) ]B S ′(Ξ) ⊂ S ′(Ξ).

The Moyal algebra MB(Ξ) is quite a large class of distributions, containing
the Fourier transform of all bounded measures on Ξ as well as the class C∞pol,u(Ξ) of
all smooth functions on Ξ having polynomial growth at infinity uniformly in all the
derivatives. In addition, if we assume that all the derivatives of the functions Bjk
are bounded, the Hörmander classes of symbols Smρ,δ(Ξ) are contained in MB(Ξ)
and compose in the usual way under ]B :

(2.3) Sm1
ρ,δ (Ξ) ]B Sm2

ρ,δ (Ξ) ⊂ Sm1+m2
ρ,δ (Ξ)

for m1,m2 ∈ R and 0 ≤ δ < ρ ≤ 1 or ρ = δ = 0. Here we have used the following
standard definition:
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Definition 2.1. The space Smρ,δ(Ξ) of symbols of order m and of type (ρ, δ) is

{f ∈ C∞(Ξ) | ∀α, a ∈ Nn, ∃Cαa <∞ such that

|(∂ax∂αξ f)(x, ξ)| ≤ Cαa〈ξ〉m−ρ|α|+δ|a|, ∀(x, ξ) ∈ Ξ}.

It is well known that Smρ,δ(Ξ) is a Fréchet space under the family of seminorms
{σαam }α,a∈Nn , where σαam : Smρ,δ(Ξ)→ R+ is defined by

σαam (f) := sup
(x,ξ)∈Ξ

〈ξ〉−m+ρ|α|−δ|a| |(∂ax∂αξ f)(x, ξ)|.

Remark 2.2. The product formula (2.3) was proved in [13, Thm. 2.2] under the
assumption 0 ≤ δ < ρ ≤ 1. But the special case ρ = δ = 0 is a consequence of the
statement contained in [14].

§2.2. Magnetic pseudodifferential operators

Being a closed 2-form in X , the magnetic field can be written as B = dA for
some 1-form A called a vector potential. Any equivalent choice A′ = A+ dψ, with
ψ : X → R of suitable smoothness, will give the same magnetic field. It is easy to
see that if B is of class C∞pol(X ), then A can be chosen in the same class, which is
tacitly assumed in what follows. For example, the vector potential in the so-called
“transversal gauge” satisfies this property.

For any vector potential A defining the magnetic field B, and for x, y ∈ X ,
let us write

ΓA([x, y]) :=
∫

[x,y]

A

for the circulation of A along the linear segment [x, y] (integration of a 1-form over
a 1-simplex). We can then define for u : X → C the map

(2.4) [OpA(f)u](x) :=
∫
X

dy
∫
X∗

dη ei(x−y)·ηe−iΓ
A([x,y])f

(
x+y

2 , η
)
u(y).

For A = 0 one recognizes the Weyl quantization, associating to functions or distri-
butions on Ξ linear operators acting on function spaces on X . Suitably interpreted
and by using rather simple duality arguments, OpA defines a representation of the
∗-algebra MB(Ξ) by continuous linear operators S(X )→ S(X ). This means that
OpA(f ]B g) = OpA(f)OpA(g) and OpA(f) = OpA(f)∗ for any f, g ∈ MB(Ξ). In
addition, OpA restricts to an isomorphism between S(Ξ) and B(S ′(X ),S(X )), and
extends to an isomorphism between S ′(Ξ) and B(S(X ),S ′(X )), where B(R, T ) is
the family of all continuous linear operators between the topological vector spaces
R and T .
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An important property of (2.4) is gauge covariance: if A′ = A + dψ defines
the same magnetic field as A, then OpA

′
(f) = eiψ OpA(f)e−iψ. Such a property

would not hold for the wrong quantization, appearing in the literature,

[OpA(f)u](x) :=
∫
X

dy
∫
X∗

dη ei(x−y)·η f
(
x+y

2 , η −A
(
x+y

2

))
u(y).

Another important result is a magnetic version of the Calderón–Vaillancourt
theorem:

Theorem 2.3. Assume that the components of the magnetic field belong to
BC∞(X ), and let f ∈ S0

ρ,ρ(Ξ) for some ρ ∈ [0, 1). Then OpA(f) ∈ B(L2(X ))
and we have the inequality∥∥OpA(f)

∥∥
B(L2(X ))

≤ c(n) sup
|a|≤p(n)

sup
|α|≤p(n)

sup
(x,ξ)∈Ξ

〈ξ〉ρ(|α|−|a|) |∂ax∂αξ f(x, ξ)|,

where c(n) and p(n) are constants depending only on the dimension of the config-
uration space.

§2.3. Symbol spaces with coefficients in A
We first introduce the coefficient C∗-algebra A, which can be thought of as a way
to encode the behavior of the magnetic fields and of the configurational part of
the symbols.

Let A be a unital C∗-subalgebra of BCu(X ), the set of bounded and uniformly
continuous functions on X . Depending on the context, the L∞-norm of this algebra
will be denoted either by ‖ · ‖A or by ‖ · ‖∞. We shall always assume that A is
stable under translations, i.e. θx(ϕ) := ϕ(· + x) ∈ A for all ϕ ∈ A and x ∈ X ,
and sometimes we require that C0(X ) is contained in A. Here, C0(X ) denotes the
algebra of continuous functions on X that vanish at infinity.

The following definition is general and applies to any C∗-algebra A endowed
with an action of X .

Definition 2.4. Let us define A∞ := {ϕ ∈ A | the map X 3 x 7→ θx(ϕ) ∈
A is C∞}. For a ∈ Nn we set

(a) δa : A∞ 3 ϕ 7→ δa(ϕ) := ∂ax(θx(ϕ))|x=0 ∈ A∞,

(b) sa : A∞ 3 ϕ 7→ sa(ϕ) := ‖δa(ϕ)‖A ∈ R+.

It is known thatA∞ is a dense ∗-subalgebra ofA, as well as a Fréchet ∗-algebra
with the family of seminorms {sa | a ∈ Nn}. But our setting is quite special: A
is an abelian C∗-algebra composed of bounded and uniformly continuous complex
functions defined on the group X itself. The easy proof of the next result is left to
the reader.
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Lemma 2.5. A∞ coincides with
{
ϕ ∈ C∞(X ) | ∂aϕ ∈ A, ∀a ∈ Nn

}
. Further-

more, for any a ∈ Nn and ϕ ∈ A∞, one has δa(ϕ) = ∂axϕ.

We now introduce the anisotropic version of the Hörmander classes of symbols
(cf. also [3, 4, 5, 6, 36]). For any f : Ξ→ C and (x, ξ) ∈ Ξ, we will often write f(ξ)
for f(·, ξ) and [f(ξ)](x) for f(x, ξ). In that situation, f will be seen as a function
on X ∗ taking values in some space of functions defined on X .

Definition 2.6. The space Smρ,δ(X ∗;A∞) ofA-anisotropic symbols of order m and
type (ρ, δ) is

{f ∈ C∞(X ∗;A∞) | ∀α, a ∈ Nn, ∃Cαa <∞ such that

sa[(∂αξ f)(ξ)] ≤ Cαa〈ξ〉m−ρ|α|+δ|a|, ∀ξ ∈ X ∗}.

Due to the very specific nature of the C∗-algebra A, we have again some
simplifications:

Lemma 2.7. The following equality holds:

(2.5) Smρ,δ(X ∗;A∞) = {f ∈ Smρ,δ(Ξ) | (∂ax∂αξ f)(ξ) ∈ A, ∀ξ ∈ X ∗ and α, a ∈ Nn}.

Proof. First we notice that the conditions

sa[(∂αξ f)(ξ)] ≤ Cαa〈ξ〉m−ρ|α|+δ|a|, ∀ξ ∈ X ∗,

and ∣∣(∂ax∂αξ f)(x, ξ)
∣∣ ≤ Cαa〈ξ〉m−ρ|α|+δ|a|, ∀(x, ξ) ∈ Ξ,

are identical. On the other hand, by Lemma 2.5,

(∂αξ f)(ξ) ∈ A∞ ⇔ (∂ax∂
α
ξ f)(ξ) ∈ A, ∀a ∈ Nn.

It thus follows that Smρ,δ(X ∗;A∞) is included in the r.h.s. of (2.5), and we are then
left with proving that if f ∈ Smρ,δ(Ξ) and (∂αξ f)(ξ) ∈ A∞ for all α and ξ, then
f ∈ C∞(X ∗;A∞).

We first show that f : X ∗ → A∞ is differentiable, that is, for each a ∈ Nn,

sa
[

1
t
[f(ξ + tej)− f(ξ)]− (∂ξjf)(ξ)

]
t→0−−−→ 0, ∀j = 1, . . . , n,

where e1, . . . , en is the canonical basis in X ∗ ∼= Rn. Indeed, for t > 0 we have
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sup
x∈X

∣∣∣∣1t [(∂axf)(x, ξ + tej)− (∂axf)(x, ξ)]− (∂ax∂ξjf)(x, ξ)
∣∣∣∣

= sup
x∈X

∣∣∣∣1t
∫ t

0

ds
∫ s

0

du (∂ax∂
2
ξjf)(x, ξ + uej)

∣∣∣∣
≤ sup
x∈X

1
t

∫ t

0

ds
∫ s

0

duCa〈ξ + uej〉m−2ρ+δ|a|

≤ C ′a〈ξ〉m−2ρ+δ|a| 1
t

∫ t

0

ds
∫ s

0

du 〈u〉|m−2ρ+δ|a||

≤ C ′′a 〈ξ〉m−2ρ+δ|a| 1
t
(t2 − 0) t→0−−−→ 0,

and similarly for t < 0. We can then apply this procedure to the resulting derivative
∂ξjf ∈ S

m−ρ
ρ,δ (Ξ) and finish the proof by recurrence.

In particular, for A = BCu(X ), it is easy to see that

BCu(X )∞ =
{
ϕ ∈ C∞(X ) | ∂aϕ ∈ BCu(X ), ∀a ∈ Nn

}
=
{
ϕ ∈ C∞(X ) | ∂aϕ ∈ BC(X ), ∀a ∈ Nn

}
=: BC∞(X ).

Then it follows from the previous lemma that

Smρ,δ(X ∗;BCu(X )∞) = Smρ,δ(X ∗;BC∞(X )) = Smρ,δ(Ξ).

Proposition 2.8. (a) Smρ,δ(X ∗;A∞) is a closed subspace of the Fréchet space
Smρ,δ(Ξ).

(b) For any m1,m2 ∈ R, Sm1
ρ,δ (X ∗;A∞) · Sm2

ρ,δ (X ∗;A∞) ⊂ Sm1+m2
ρ,δ (X ∗;A∞),

(c) For any α, a ∈ Nn, ∂ax∂
α
ξ S

m
ρ,δ(X ∗;A∞) ⊂ Sm−ρ|α|+δ|a|ρ,δ (X ∗;A∞).

Proof. (a) We have to show that if fn ∈ Smρ,δ(X ∗;A∞) and f ∈ Smρ,δ(Ξ), and if
σαam (fn − f) → 0 as n → ∞, then (∂ax∂

α
ξ f)(ξ) ∈ A for all α, a, ξ. But since A is

closed, it is enough to show that for any a, α ∈ Nn, the following statement holds:
if gn ∈ Smρ,δ(Ξ) and σαam (gn)→ 0 as n→∞, then ‖(∂ax∂αξ gn)(ξ)‖∞ → 0 as n→∞
for all ξ ∈ X ∗. This follows from the definition of σαam .

Statement (b) follows by applying Lemma 2.7, Leibniz’s rule and the fact that
A is an algebra. Statement (c) is a direct consequence of Lemma 2.7.

§2.4. Symbol composition

In this section we study the product of two symbols under the composition law
]B defined in (2.2). For simplicity, we introduce ωB and ΓB (low indices) by the
relations

ωB(x, y, z) = e−iΓB(x,y,z) := e−iΓ
B(〈x−y−z,x+y−z,x−y+z〉).
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One has explicitly

(2.6) ΓB(x, y, z) =
n∑

j,k=1

yjzk

∫ 2

0

ds
∫ 1

0

dt sBjk(x+ (s− st− 1)y + (st− 1)z)

and (2.2) reads

(2.7) [f ]B g](X) := 4n
∫

Ξ

dY
∫

Ξ

dZ e−2iσ(Y,Z)ωB(x, y, z)f(X − Y )g(X − Z).

We state the main result of this section:

Theorem 2.9. Assume that each component Bjk belongs to A∞. Then, for any
m1,m2 ∈ R and 0 ≤ δ < ρ ≤ 1 or ρ = δ = 0, one has

(2.8) Sm1
ρ,δ (X ∗;A∞) ]B Sm2

ρ,δ (X ∗;A∞) ⊂ Sm1+m2
ρ,δ (X ∗;A∞).

Before proving this theorem, we need a technical lemma.

Lemma 2.10. Assume that each component Bjk belongs to A∞. Then, for all
a, b, c ∈ Nn and all x, y, z ∈ X , one has:

(a) (∂ax∂
b
y∂

c
zΓB)(·, y, z) ∈ A,

(b) (∂ax∂
b
y∂

c
zωB)(·, y, z) ∈ A,

(c) |(∂ax∂by∂czωB)(x, y, z)| ≤ Cabc(〈y〉+ 〈z〉)|a|+|b|+|c|.

Proof. The expressions (∂ax∂
b
y∂

c
zΓB)(·, y, z) can be explicitly calculated by using

(2.6), (a) follows from the completeness of A, and (b) easily follows from (a).
Statement (c) is borrowed from [13].

Proof of Theorem 2.9. Since the components of the magnetic field belong to
BC∞(X ) ⊂ C∞pol(X ), it follows from Lemma 2.7 and [13, Lem. 1.2] that
S
mj
ρ,δ (X ∗;A∞) ⊂ S

mj
ρ,δ (Ξ) ⊂ MB(Ξ) for j ∈ {1, 2}, and thus the ]B-product in

(2.8) is well defined in MB(Ξ), as explained in Section 2.1. Under the additional
hypothesis that Bjk ∈ BC∞(X ), it has even been proved in [13, Thm. 2.2] (see
also Remark 2.2) that the product belongs to Sm1+m2

ρ,δ (Ξ) and can also be defined
by the usual oscillatory integral techniques. Thus, thanks to Lemma 2.7, it only
remains to show that for any α, a ∈ Nn, f ∈ Sm1

ρ,δ (X ∗;A∞) and g ∈ Sm2
ρ,δ (X ∗;A∞),

the expression [∂ax∂
α
ξ (f ]B g)](ξ) belongs to A for all ξ ∈ X ∗.

For that purpose, let α1, α2, a0, a1, a2 ∈ Nn with α1 + α2 = α and a0 +
a1 + a2 = a. We define Fα1a1 := ∂a

1

x ∂
α1

ξ f ∈ Sp1ρ,δ(X ∗;A∞), Gα2a2 := ∂a
2

x ∂
α2

ξ g ∈
Sp2ρ,δ(X ∗;A∞) and Ωa

0

B := ∂a
0

x ωB . Then pj = mj − ρ|αj |+ δ|aj | for j ∈ {1, 2} and

Ωa
0

B satisfies the properties of Lemma 2.10. We have to study the x-behavior of
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the expression

(2.9) [∂ax∂
α
ξ (f ]B g)](x, ξ)

=
∑

a0+a1+a2=a
α1+α2=α

Cα
1α2

a0a1a2

∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ e−2iz·η e2iy·ζ Ωa
0

B (x, y, z)

· Fα1a1(x− y, ξ − η)Gα2a2(x− z, ξ − ζ).

The precise definition of these integrals involves rewriting e−2iz·η e2iy·ζ as

(2.10) 〈y〉−2q〈z〉−2q〈Dζ〉2q〈Dη〉2q〈η〉−2p〈ζ〉−2p〈Dz〉2p〈Dy〉2p(e−2iz·η e2iy·ζ)

where D := 1
2i∂ and p, q ∈ N, and integrating by parts. So the r.h.s. of (2.9)

contains the integrals∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ e−2iz·η e2iy·ζ 〈η〉−2p〈ζ〉−2p

· 〈Dz〉2p〈Dy〉2p{〈y〉−2q〈z〉−2q Ωa
0

B (x, y, z)〈Dζ〉2q〈Dη〉2q

· [Fα1a1(x− y, ξ − η)Gα2a2(x− z, ξ − ζ)]},

which will now be proved to be absolutely convergent for p, q large enough.
For this, one has to estimate

〈η〉−2p〈ζ〉−2p 〈Dz〉2p〈Dy〉2p{〈y〉−2q〈z〉−2q Ωa
0

B (x, y, z)〈Dζ〉2q〈Dη〉2q

· [Fα1a1(x− y, ξ − η)Gα2a2(x− z, ξ − ζ)]}

= 〈η〉−2p〈ζ〉−2p〈z〉−2q〈y〉−2q
∑

|b1|+|b2|+|b3|=2p

|c1|+|c2|+|c3|=2p

|β1|≤q, |β2|≤q

Cc
1c2c3β2

b1b2b3β1 ϕqc1(z)ψqb1(y)

· (∂b
2

y ∂
c2

z Ωa
0

B )(x, y, z) (∂b
3

y ∂
2β1

ξ Fα1a1)(x− y, ξ − η)(∂c
3

z ∂
2β2

ξ Gα2a2)(x− z, ξ − ζ),

where b1, b2, b3, c1, c2, c3, β1, β2 ∈ Nn, and ϕqc1 and ψqb1 are bounded functions
produced by differentiating the factors 〈z〉−2q and 〈y〉−2q, respectively. By using
the estimates obtained in Lemma 2.10 for Ωa

0

B , and the a priori estimates on Fα1a1

and Gα2a2 , the absolute value of the above expression is dominated by

Cpq 〈η〉−2p〈ζ〉−2p〈z〉−2q〈y〉−2q
∑

|b1|+|b2|+|b3|=2p

|c1|+|c2|+|c3|=2p

|β1|≤q, |β2|≤q

(〈y〉+ 〈z〉)|a
0|+|b2|+|c2|

· 〈ξ − η〉p1−2ρ|β1|+δ|b3|〈ξ − ζ〉p2−2ρ|β2|+δ|c3|

≤ Cpq(ξ) 〈η〉−2p(1−δ)+p1 〈ζ〉−2p(1−δ)+p2 〈y〉−2q+|a|+4p 〈z〉−2q+|a|+4p.
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Since 1− δ > 0, the factors involving η and ζ will be integrable for p large enough.
Fixing a suitable p, for an even larger q we also ensure integrability in y and z.

To sum up, [∂ax∂
α
ξ (f ]B g)](x, ξ) is given by an absolutely convergent integral,

the integrand being a function of x which belongs to A for all values of ξ, y, η, z, ζ.
It is easy to conclude, by the Dominated Convergence Theorem, that the map
x 7→ [∂ax∂

α
ξ (f ]B g)](x, ξ) also belongs to A, and this finishes the proof.

§2.5. Asymptotic developments

In this section we simplify and generalize to A-valued symbols the asymptotic
expansion of the magnetic product of two symbols already derived in [13]. We
refer to [22] for parameter-dependent developments.

For any multi-index α ∈ Nm, we use the notation α! = α1! . . . αm!. For brevity
we shall also write a := (a, α) and b := (b, β), with a, b ∈ N2n.

Theorem 2.11. Assume that the each component Bjk belongs to A∞ and let
m1,m2 ∈ R and ρ ∈ (0, 1]. Then for any f ∈ Sm1

ρ,0 (X ∗;A∞), g ∈ Sm2
ρ,0 (X ∗;A∞)

and N ∈ N∗ one has

f ]B g =
N−1∑
l=0

hl +RN

with
hl =

∑
a,b,α,β∈Nn
a≤β, b≤α
|α|+|β|=l

ha,b ∈ Sm1+m2−ρl
ρ,0 (X ∗;A∞)

and

ha,b(x, ξ) = Cab[(∂β−ay ∂α−bz ωB)(x, 0, 0)][(∂ax∂
α
ξ f)(x, ξ)][(∂bx∂

β
ξ g)(x, ξ)],

and the constants are given by

Cab =
(
i

2

)l (−1)|a|+|b|+|β|

a!b!(α− b)!(β − a)!
.

The remainder term RN belongs to Sm1+m2−ρN
ρ,0 (X ∗;A∞).

Remark 2.12. If B = 0, which implies ωB = 1, one has ha,b 6= 0 only if a = β

and b = α; by setting â for (α, a), one has ha,â = (−1)|α|

a! ( i2 )|a|∂af∂âg.

Before proving the theorem, we list the first two terms in the development:

h0 = fg, h1 =
i

2
{f, g} =

i

2

n∑
j=1

(∂xjf ∂ξjg − ∂ξjf ∂xjg).
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Proof of Theorem 2.11. In the formula (2.7) we shall use the Taylor series

(f ⊗ g)(X − Y,X − Z) =
∑

|(a,b)|<N

(−1)|(a,b)|

(a, b)!
(Y, Z)(a,b)[∂(a,b)(f ⊗ g)](X,X)

+ rf,g(X,Y, Z),

where the remainder rf,g will be specified later. It follows that

f ]B g =
∑

|(a,b)|<N

ha,b +RN

with

ha,b(X) =
(−1)|(a,b)|

(a, b)!
[∂(a,b)(f ⊗ g)](X,X)

· 4n
∫

Ξ

dY
∫

Ξ

dZ (Y,Z)(a,b)e−2iσ(Y,Z) ωB(x, y, z).

In other words, one has

ha,b =
(−1)|a|+|b|+|α|+|β|

a!b!α!β!
[∂ax∂

α
ξ f ][∂bx∂

β
ξ g]Ωa,b,

with Ωa,b(x) given by

4n
∫
X

dy
∫
X

dz yazbωB(x, y, z)
[ ∫
X∗

dη e−2iz·ηηα
][∫

X∗
dζ e2iy·ζζβ

]
=

(−i)|α|i|β|

2|α|+|β|
∂βy ∂

α
z

{
yazbωB(x, y, z)

}
|y=z=0.

The following factor vanishes unless b ≤ α and a ≤ β:

∂βy ∂
α
z {yazbωB(x, y, z)}|y=z=0 =

α!β!
(α− b)!(β − a)!

(∂β−ay ∂α−bz ωB)(x, 0, 0) .

So, restricting to the case b ≤ α and a ≤ β, we can write

ha,b(x, ξ) =
(−1)|a|+|b| i|α|(−i)|β|

a!b!(α− b)!(β − a)!

(
1
2

)|α|+|β|
[(∂β−ay ∂α−bz ωB)(x, 0, 0)]

· [(∂ax∂αξ f)(x, ξ)][(∂bx∂
β
ξ g)(x, ξ)].

By Proposition 2.8 and Lemma 2.10, one finally obtains

ha,b ∈ Sm1+m2−ρ(|α|+|β|)
ρ,0 (X ∗;A∞).
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We now treat the remainder RN (X) given by

4n
∫

Ξ

dY
∫

Ξ

dZe−2iσ(Y,Z)ωB(x, y, z)
∑

|(a,b)|=N

(Y, Z)(a,b)

(a, b)!

·N
∫ 1

0

dτ(1− τ)N−1[∂(a,b)(f ⊗ g)](X − τY,X − τZ)

=
∑

|a|+|b|+|α|+|β|=N

4nN
a!b!α!β!

·
∫ 1

0

dτ (1− τ)N−1

∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ ωB(x, y, z)

· yazbηαζβe−2iσ(Y,Z)[∂ax∂
α
ξ f ](x− τy, ξ − τη)[∂bx∂

β
ξ g](x− τz, ξ − τz).

In order to show that this term belongs to Sm1+m2−ρN
ρ,0 (X ∗;A∞), we take into

account

yazbηαζβe−2iσ(Y,Z) =
1

(2i)|a|(−2i)|α|(−2i)|b|(2i)|β|
∂aζ ∂

α
z ∂

b
η∂

β
y e
−2iσ(Y,Z),

and insert it into RN (X), which can then be rewritten as∑
|a|+|b|+|α|+|β|=N

4nN(−1)|a|+|β|

a!b!α!β!(2i)N

·
∫ 1

0

dτ (1− τ)N−1

∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ e−2iσ(Y,Z)φτa,b(X,Y, Z)

with

φτa,b(X,Y, Z)

:= ∂aζ ∂
α
z ∂

b
η∂

β
y

[
ωB(x, y, z)[∂ax∂

α
ξ f ](x− τy, ξ − τη)[∂bx∂

β
ξ g](x− τz, ξ − τζ)

]
=
∑
α′≤α

∑
β′≤β

(
α

α′

)(
β

β′

)
[∂α−α

′

z ∂β−β
′

y ωB ](x, y, z)

· ∂β
′

y ∂
b
η[(∂ax∂

α
ξ f)(x− τy, ξ − τη)] ∂α

′

z ∂
a
ζ [(∂bx∂

β
ξ g)(x− τz, ξ − τζ)]

=
∑
α′≤α

∑
β′≤β

(
α

α′

)(
β

β′

)
(−τ)|b|+|a|+|β

′|+|α′|[∂α−α
′

z ∂β−β
′

y ωB ](x, y, z)

· [∂a+β′

x ∂α+b
ξ f ](x− τy, ξ − τη)[∂b+α

′

x ∂a+β
ξ g](x− τz, ξ − τζ).

So we have

(2.11) RN (X) =
∑

a,b,α,β,α′,β′

α′≤α, β′≤β
|a|+|b|+|α|+|β|=N

∫ 1

0

dτ polα
′,β′

a,b (τ)Iα
′,β′

τ,a,b (X),
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where polα
′,β′

a,b : [0, 1]→ C are polynomials and

Iα
′,β′

τ,a,b (X) :=
∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ e−2iσ(Y,Z)[∂α−α
′

z ∂β−β
′

y ωB ](x, y, z)

· [∂a+β′

x ∂α+b
ξ f ](x− τy, ξ − τη)[∂b+α

′

x ∂a+β
ξ g](x− τz, ξ − τζ).

Retaining only its essential features, we shall rewrite this last expression as

Iτ (X) :=
∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ e−2iσ(Y,Z)

· ΣB(x, y, z)F (x− τy, ξ − τη)G(x− τz, ξ − τζ).

In order to show that RN belongs to Sm1+m2−ρN
ρ,0 (Ξ), let us calculate ∂dx∂

δ
ξIτ .

Actually, by using (2.10), the oscillatory integral definition of the expression
[∂dx∂

δ
ξIτ ](X) is∑

d0+d1+d2=d
δ1+δ2=δ

Cδ
1δ2

d0d1d2

∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ e−2iσ(Y,Z)Lτ,δ
1,δ2

p,q,d0,d1,d2(X,Y, Z),

where, for suitable integers p, q, the expression Lτ,δ
1,δ2

p,q,d0,d1,d2(X,Y, Z) is given by

〈η〉−2p〈ζ〉−2p〈Dy〉2p〈Dz〉2p
[
〈y〉−2q〈z〉−2q[∂d

0

x ΣB ](x, y, z)

· 〈Dη〉2q〈Dζ〉2q[∂d
1

x ∂
δ1

ξ F ](x− τy, ξ − τη)[∂d
2

x ∂
δ2

ξ G](x− τz, ξ − τζ)
]

= 〈η〉−2p〈ζ〉−2p〈y〉−2q〈z〉−2q
∑

|b1|+|b2|+|b3|=2p

|c1|+|c2|+|c3|=2p

|q1|≤q, |q2|≤q

Cq
1q2c1c2c3

b1b2b3 ϕqc1(z)ψqb1(y)

· [∂d
0

x ∂
b2

y ∂
c2

z ΣB ](x, y, z)(−τ)2|q1|+2|q2|+|b3|+|c3|

· [∂d
1+b3

x ∂δ
1+2q1

ξ F ](x− τy, ξ − τη)[∂d
2+c3

x ∂δ
2+2q2

ξ G](x− τz, ξ − τζ),

where ϕqc1 and ψqb1 are bounded functions produced by differentiating the factors
〈z〉−2q and 〈y〉−2q, respectively. By taking the explicit form of ΣB , F,G and Lemma
2.10 into account, one has

|Lτ,δ
1,δ2

p,q,d0,d1,d2(X,Y, Z)|

≤ Cδ
1δ2

pqd0d1d2〈η〉−2p〈ζ〉−2p〈y〉−2q〈z〉−2q (〈y〉+ 〈z〉)|d|+|α|+|β|+4p

· 〈ξ − τη〉m1−ρ(|α|+|b|+|δ1|+2|q1|)〈ξ − τζ〉m2−ρ(|a|+|β|+|δ2|+2|q2|)

≤ Dδ1δ2

pqd0d1d2〈y〉−2q+N+4p+|d|〈z〉−2q+N+4p+|d|〈ξ〉m1+m2−ρ(N+|δ|)

· 〈η〉−2p+|m1−ρ(|α|+|b|+|δ1|)|〈ζ〉−2p+|m2−ρ(|a|+|β|+|δ2|)|.
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Then it only remains to insert this estimate into the expression of RN given in
(2.11), and to observe that by choosing p large enough, one gets absolute integra-
bility in η and ζ. A subsequent choice of q also ensures integrability in y and z.
The behavior in ξ is finally the one expected for ∂dx∂

δ
ξRN .

Thus, we have shown so far that RN belongs to Sm1+m2−ρN
ρ,0 (Ξ). By taking

then Theorem 2.9 and the properties of hl into account, one has

[∂dx∂
δ
ξRN ](·, ξ) = ∂dx∂

δ
ξ

[
f ]B g −

N−1∑
l=0

hl

]
(·, ξ) ∈ A

for any ξ ∈ X ∗. It finally follows from Lemma 2.7 that RN belongs to
Sm1+m2−ρN
ρ,0 (X ∗;A∞).

§3. C∗-algebras

§3.1. C∗-algebras generated by symbols

We continue to assume that all components of the magnetic field belong to A∞

and let H := L2(X ). As already mentioned, we choose a vector potential A that
belongs to C∞pol(X ) and thus the map OpA extends to a linear topological iso-
morphism S ′(Ξ) → B(S(X ),S ′(X )). Since B(H) is continuously embedded in
B(S(X ),S ′(X )), one can define

AB(Ξ) := (OpA)−1[B(H)].

It is obviously a vector subspace of S ′(Ξ) which only depends on the magnetic field
(by gauge covariance). On convenient subsets, for example on AB(Ξ) ∩MB(Ξ),
the transported product from B(H) coincides with ]B , and the adjoint in B(H)
corresponds to the involution ]B . Endowed with the transported norm ‖f‖B ≡
‖f‖AB(Ξ) := ‖OpA(f)‖B(H), AB(Ξ) is a C∗-algebra.

With these notations and due to the inclusion Smρ,δ(Ξ) ⊂ Smδ,δ(Ξ) for δ < ρ,
Theorem 2.3 can be rephrased as follows:

Proposition 3.1. For any 0 ≤ δ ≤ ρ ≤ 1 with δ 6= 1, the following continuous
embedding holds:

S0
ρ,δ(Ξ) ↪→ AB(Ξ).

We shall now define two A-depending C∗-subalgebras of AB(Ξ).

Definition 3.2. We write

(a) BB
A for the C∗-subalgebra of AB(Ξ) generated by

S(X ∗;A∞) ≡ S−∞(X ∗;A∞) :=
⋂
m∈R

Smρ,δ(X ∗;A∞);

(b) MB
A for the C∗-subalgebra of AB(Ξ) generated by S0

0,0(X ∗;A∞).
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It is easily observed that S(X ∗;A∞) is indeed independent of ρ and δ. Part of
our interest in the algebra BB

A is due to the following proposition and its corollary.
We first recall that

S−0
ρ,δ(X

∗;A∞) :=
⋃
m<0

Smρ,δ(X ∗;A∞).

Proposition 3.3. For every 0 ≤ δ ≤ ρ ≤ 1 with δ 6= 1, the space S−0
ρ,δ(X ∗;A∞)

is contained in BB
A .

Proof. We adapt the proof of Proposition 1.1.11 in [12] to show that any f ∈
S−0
ρ,δ(X ∗;A∞) is the limit of a sequence {fε}0≤ε≤1 ∈ S(X ∗;A∞) in the topology

of S0
ρ,δ(X ∗;A∞) (see also [10, Sec. 1] for more details). This and Proposition 3.1

will imply the result.
Let f ∈ Smρ,δ(X ∗;A∞) for some m < 0, 0 ≤ δ ≤ ρ ≤ 1, δ 6= 1, and let

χ ∈ S(X ∗) with χ(0) = 1. We set fε(x, ξ) := χ(εξ)f(x, ξ) for 0 ≤ ε ≤ 1. By
using Proposition 2.8(b), one has fε ∈ S(X ∗;A∞) for all ε > 0, and {fε}0≤ε≤1 is
a bounded subset of Smρ,δ(X ∗;A∞). Finally, one easily concludes that fε converges
to f as ε→ 0 in the topology of S0

ρ,δ(X ∗;A∞).

Remark 3.4. With the same proof one shows the density of S(X ∗;A∞) in
Smρ,δ(X ∗;A∞) with respect to the topology of Sm

′

ρ,δ(X ∗;A∞) for arbitrary m′ > m.

Corollary 3.5. The C∗-algebra MB
A is contained in the multiplier algebra

M(BB
A ) of BB

A .

Proof. This follows from the fact that S(X ∗;A∞) is a two-sided ideal in
S0

0,0(X ∗;A∞) with respect to ]B , from the definition of BB
A and MB

A , and from a
density argument.

Let us observe that BB
C = C0(X ∗) and MB

C = BCu(X ∗), while M(BB
C ) =

BC(X ∗); so, in the corollary, the inclusion could be strict.

§3.2. Magnetic twisted crossed products

In the previous section we introduced some C∗-algebras through a representation
that was constructed with a vector potential A. However, all these algebras did
not depend on the choice of a particular A. Starting from a magnetic twisted
C∗-dynamical system, we shall now recall the constructions of magnetic twisted
C∗-algebras [27] and relate them to the previous algebras. These are particular
instances of twisted C∗-algebras extensively studied in [31] and [32] (see also ref-
erences therein).

We recall that Gelfand theory describes completely the structure of abelian
C∗-algebras. The Gelfand spectrum SA of A is the family of all characters of A (a
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character is just a morphism κ : A → C). With the topology of simple convergence
SA is a locally compact space, which is compact exactly when A is unital.

Since A ⊂ BC(X ), there exists a continuous surjection ιA : β(X ) → SA,
where β(X ) is the Stone–Čech compactification of the locally compact space X .
By restriction, we get a continuous mapping with dense image (also denoted by
ιA : X → SA). This one is injective exactly when C0(X ) ⊂ A, in which case
SA is a compactification of X . The isomorphism between A and C(SA) can be
precisely expressed as follows: ϕ : X → C belongs to A if and only if there is a
(necessarily unique) ϕ̃ ∈ C(SA) such that ϕ = ϕ̃◦ ιA. We shall extend the notation
to functions depending on extra variables. For example, if f : Ξ = X ×X ∗ → C is
some convenient function, we define f̃ : SA × X ∗ → C by the property f(x, ξ) =
f̃(ιA(x), ξ) for all (x, ξ) ∈ Ξ.

Let us finally mention that the map θ : X × X → X , θ(x, y) := x + y,
extends to a continuous map θ : SA × X → SA, because A was assumed to be
stable under translations. We also use the notations θ(κ, y) = θy(κ) = θκ(y) for
(κ, y) ∈ SA × X and get a topological dynamical system (SA, θ,X ) with compact
space SA. Obviously one has ιA ◦ θy = θy ◦ ιA for any y ∈ X .

Now assume that the components Bjk of the magnetic field belong to A. We
define for each x, y, z ∈ X the expression

ωB(x; y, z) := e−iΓ
B(〈x,x+y,x+y+z〉).

For fixed x and y, the function ωB(·;x, y) ≡ ωB(x, y) belongs to the unitary group
U(A) of A. Moreover, the mapping X ×X 3 (x, y) 7→ ωB(x, y) ∈ U(A) is a strictly
continuous and normalized 2-cocycle on X , i.e. for all x, y, z ∈ X the following
relations hold:

ωB(x+ y, z)ωB(x, y) = θx[ωB(y, z)]ωB(x, y + z), ωB(x, 0) = ωB(0, x) = 1.

The quadruplet (A, θ, ωB ,X ) is a particular case of a twisted C∗-dynamical system
(A, θ, ω,X ). In the general case X is a locally compact group, A is a C∗-algebra,
θ is a continuous morphism from X to the group of automorphisms of A, and ω is
a strictly continuous 2-cocycle with values in the unitary group of the multiplier
algebra of A. We refer to [27, Def. 2.1] for more explanations.

Let L1(X ;A) be the set of Bochner integrable functions on X with values
in A, with the L1-norm ‖F‖1 :=

∫
X dx ‖F (x)‖A. For any F,G ∈ L1(X ;A) and

x ∈ X , we define the product

(F �B G)(x) :=
∫
X

dy θ(y−x)/2[F (y)]θy/2[G(x− y)]θ−x/2[ωB(y, x− y)]
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and the involution
F �

B

(x) := F (−x).

Definition 3.6. The enveloping C∗-algebra of L1(X ;A) is called the twisted
crossed product and is denoted by AoωB

θ X , or simply by CBA .

The C∗-algebras CBA and BB
A are related by the partial Fourier transform

[F(F )](ξ, x) :=
∫
X

dy eiy·ξF (y, x).

Theorem 3.7. The partial Fourier transform F : S ′(X × X ) → S ′(X ∗ × X )
restricts to a C∗-isomorphism F : CBA → BB

A .

Proof. The partial Fourier transform F is an isomorphism from S(X ;A∞) to
S(X ∗;A∞) which intertwines the products and the involutions:

F(F ) ]B F(G) = F[F �B G], (F(F ))]
B

= F(F �
B

).

The statement then follows from the density of S(X ∗;A∞) in BB
A , and from the

density of S(X ;A∞) in L1(X ;A), and hence also in CBA .

Remark 3.8. In Definition 3.2, the algebra BB
A was introduced as a closure of a

set of smooth elements, but it can easily be guessed that non-smooth elements also
belong to BB

A . Indeed, by [28, Lemma A.4] for any m < 0 the set F−1[Sm1 (X ∗;A)]
is contained in L1(X ;A), which implies that Sm1 (X ∗;A) ⊂ BB

A . Here we have used
the notation Sm1 (X ∗;A) for the set of all functions f : Ξ → C that satisfy: (i)
f(·, ξ) ∈ A for all ξ ∈ X ∗, (ii) f(x, ·) ∈ C∞(X ∗) for all x ∈ X , and (iii) for each
α ∈ Nn one has σα0

m (f) < ∞. Even more simply, one can also observe that the
partial Fourier transforms of elements in L1(X ;A) belong to BB

A , and that these
elements do not necessarily possess any smoothness except continuity.

Remark 3.9. In the same vein, let us mention that a trivial extension of the
same lemma [28, Lem. A.4] to arbitrary δ implies that F−1[S−0

1,δ (X ∗;A∞)] is also
contained in L1(X ;A). But by a remark in [1, p. 17] such an inclusion is no
longer true for ρ 6= 1. It follows that for 0 ≤ δ ≤ ρ < 1 many elements of
F−1[S−0

ρ,δ(X ∗;A∞)] only belong to CBA \ L1(X ;A).

We finally state a result about how the algebra BB
A can be generated from a

simpler set of its elements. It is an adaptation of [27, Prop. 2.6].

Proposition 3.10. The norm closure in AB(Ξ) of the subspaces generated either
by {a ]B b | a ∈ A, b ∈ S(X ∗)} or by {b ]B a | b ∈ A, a ∈ S(X ∗)} are equal and
coincide with the C∗-algebra BB

A .
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We now recall the definition of a covariant representation of a magnetic C∗-
dynamical system. We denote by U(H) the group of unitary operators in the
Hilbert space H.

Definition 3.11. Given a magnetic C∗-dynamical system (A, θ, ωB ,X ) we define
a covariant representation (H, r, T ) to be a Hilbert spaceH together with two maps
r : A → B(H) and T : X → U(H) satisfying

(a) r is a non-degenerate representation,

(b) T is strongly continuous and T (x)T (y) = r[ωB(x, y)]T (x+y) for all x, y ∈ X ,

(c) T (x)r(ϕ)T (x)∗ = r[θx(ϕ)] for all x ∈ X and ϕ ∈ A.

Lemma 3.12. If (H, r, T ) is a covariant representation of the magnetic C∗-dy-
namical system (A, θ, ωB ,X ), then RepTr defined on L1(X ;A) by

RepTr (F ) :=
∫
X

dx r[θx/2(F (x))]T (x)

extends to a representation of CBA = AoωB

θ X .

One can recover the covariant representation from RepTr . Actually, there is
a one-to-one correspondence between covariant representations of a twisted C∗-
dynamical system and non-degenerate representations of the twisted crossed prod-
uct, which preserves unitary equivalence, irreducibility and direct sums.

By composing with the partial Fourier transformation, one gets the most
general representations of the pseudodifferential C∗-algebra BB

A , denoted by

OpTr : BB
A → B(H), OpTr (f) := RepTr [F−1(f)].

Given any continuous vector potential A we construct a representation of CBA in
H = L2(X ). For any u ∈ H and x, y ∈ X , we define the magnetic translations

[TA(y)u](x) := λA(x; y)u(x+ y) = e−iΓ
A([x,x+y])u(x+ y).

Let us also set r(ϕ) := ϕ(Q) for any ϕ ∈ A, where ϕ(Q) denotes an operator of
multiplication in H. Then the triple (H, r, TA) is a covariant representation of the
magnetic C∗-dynamical system (see [27, Sec. 4] for details). The corresponding
representation RepT

A

r of the algebra CBA , denoted by RepA, is explicitly given for
any F ∈ L1(X ;A) and any u ∈ H by

(3.1) [RepA(F )u](x) =
∫
X

dy λA(x; y − x)F ( 1
2 (x+ y); y − x)u(y).

This representation is called the Schrödinger representation of CBA associated with
the vector potential A. It is proved in [27, Prop. 2.17] that this representation is
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faithful. We recall that the choice of another vector potential generating the same
magnetic field would lead to a unitarily equivalent representation of CBA in B(H).
By comparing (2.4) and (3.1), one sees that OpA ≡ OpT

A

r and RepA are connected
by the partial Fourier transform: OpA(f) = RepA[F−1(f)] for suitable f .

§3.3. Inversion

The following approach is mainly inspired by a similar construction in [14, Sec. 7.1].
It also relies on some basic results on Ψ∗-algebras that we borrow from [19, Sec. 2]
(see also [20] and references therein).

Let C be a C∗-algebra with unit 1, and let S be a ∗-subalgebra of C with 1 ∈ S.
S is called spectrally invariant if S∩C−1 = S−1, where S−1, resp. C−1, denotes the
set of invertible elements in S, resp. C. Furthermore, S is called a Ψ∗-algebra if it is
spectrally invariant and endowed with a Fréchet topology such that the embedding
S ↪→ C is continuous. It is shown in [19, Cor. 2.5] that a closed ∗-subalgebra of
a Ψ∗-algebra (also containing 1), endowed with the restricted topology, is also a
Ψ∗-algebra.

It has been proved in [14] that for ρ ∈ [0, 1], S0
ρ,0(Ξ) is a Ψ∗-algebra in AB(Ξ).

Then, since S0
ρ,0(X ∗;A∞) is a closed ∗-subalgebra of S0

ρ,0(Ξ) by our Lemma 2.8(a)
and Theorem 2.9, it follows that S0

ρ,0(X ∗;A∞) is a Ψ∗-algebra in AB(Ξ). In partic-
ular, if f ∈ S0

ρ,0(X ∗;A∞) has an inverse in AB(Ξ) with respect to ]B , denoted by
f (−1)B , then this inverse belongs to S0

ρ,0(X ∗;A∞). As by-products of the theory
of Ψ∗-algebras, one can state

Proposition 3.13. S0
ρ,0(X ∗;A∞) is a Ψ∗-algebra, it is stable under the holomor-

phic functional calculus, [S0
ρ,0(X ∗;A∞)](−1)B is open and the map

[S0
ρ,0(X ∗;A∞)](−1)B 3 f 7→ f (−1)B ∈ S0

ρ,0(X ∗;A∞)

is continuous.

In order to state the next lemma some notations are needed. For m > 0, λ > 0
and ξ ∈ X ∗, set

pm,λ(ξ) := 〈ξ〉m + λ.

The map pm,λ is clearly an element of Sm1,0(X ∗;A∞), and its pointwise inverse an
element of S−m1,0 (X ∗;A∞). It has been proved in [28, Thm. 1.8] that for λ large
enough, pm,λ is invertible with respect to the composition law ]B and that its
inverse p

(−1)B
m,λ belongs to BB

A . So for any m > 0 we can fix λ = λ(m) such that
pm,λ(m) is invertible. Then, for arbitrary m ∈ R, we set

rm :=

{
pm,λ(m) for m > 0,
p

(−1)B
|m|,λ(|m|) for m < 0,
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and r0 := 1. The relation r
(−1)B
m = r−m clearly holds for all m ∈ R. Let us show

another important property of rm.

Lemma 3.14. For any m ∈ R, one has rm ∈ Sm1,0(X ∗;A∞).

Proof. For m ≥ 0, the statement is trivial from the definition of rm. But for m < 0
the function rm will also depend on the variable x, so one has to take the proof
of [28, Thm. 1.8] into account. Indeed, it has been shown there that for λ large
enough, p := p|m|,λ(|m|) is invertible with respect to the composition law ]B , and
that its inverse is given by the formula

(3.2) p(−1)B = p−1 ]B (p ]B p−1)(−1)B ,

where p−1 is the inverse of p with respect to pointwise multiplication, and λ

has been chosen such that (p ]B p−1)(−1)B is well defined and belongs to AB(Ξ).
Furthermore, since p−1 belongs to S−m1,0 (X ∗;A∞), the product p ]B p−1 belongs
to S0

1,0(X ∗;A∞). It then follows that the inverse of p ]B p−1 also belongs to
S0

1,0(X ∗;A∞) by the Ψ∗-property of S0
1,0(X ∗;A∞). One concludes by observ-

ing that the r.h.s. of (3.2) belongs to S−m1,0 (X ∗;A∞), and corresponds to rm for
m < 0.

Proposition 3.15. Let m > 0, ρ ∈ [0, 1] and f ∈ Smρ,0(X ∗;A∞). If f is invertible
in MB(Ξ) and rm ]B f (−1)B ∈ AB(Ξ), then f (−1)B belongs to S−mρ,0 (X ∗;A∞).

Proof. Let us first observe that

f ]B r−m ∈ Smρ,0(X ∗;A∞) ]B S−m1,0 (X ∗;A∞) ⊂ S0
ρ,0(X ∗;A∞).

This element is invertible in AB(Ξ) since its inverse (f ]B r−m)(−1)B is equal to
rm]

Bf (−1)B , which belongs to AB(Ξ). By the Ψ∗-property of S0
ρ,0(X ∗;A∞), it then

follows that (f ]B r−m)(−1)B belongs to S0
ρ,0(X ∗;A∞), and so does rm ]B f (−1)B .

Consequently, one has

f (−1)B = r−m ]
B [rm ]B f (−1)B ] ∈ S−mρ,0 (X ∗;A∞)]BS0

ρ,0(X ∗;A∞) ⊂ S−mρ,0 (X ∗;A∞).

In order to verify the hypotheses of the above proposition, a condition of
ellipticity is usually needed.

Definition 3.16. A symbol f ∈ Smρ,δ(X ∗;A∞) is called elliptic if there exist
R,C > 0 such that

|f(x, ξ)| ≥ C〈ξ〉m for all x ∈ X and |ξ| > R.

We are now in a position to state and prove our main theorem on inversion
(see also the Appendix):
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Theorem 3.17. Let m > 0, ρ ∈ [0, 1] and f be a real-valued elliptic element of
Smρ,0(X ∗;A∞). Then for any z ∈ C \ R the function f − z is invertible in MB(Ξ)
and its inverse (f − z)(−1)B belongs to S−mρ,0 (X ∗;A∞).

Proof. It has been proved in [13, Thm. 4.1] that OpA(f) defines a self-adjoint
operator in H := L2(X ) for any vector potential A whose components belong to
C∞pol(X ). In particular, z does not belong to the spectrum of OpA(f), which is
independent of A by gauge covariance, and OpA(f)− z = OpA(f − z) is invertible.
Its inverse belongs to B(H), which means that (f − z)(−1)B exists in MB(Ξ) and
belongs to AB(Ξ). Moreover, Theorem 4.1 of [13] also implies OpA[(f−z)]B r

(−1)B
m ]

is a bijection on H, and thus rm ]
B (f−z)(−1)B = [(f−z) ]B r

(−1)B
m ](−1)B ∈ AB(Ξ).

One finally concludes by taking Proposition 3.15 into account.

§3.4. Affiliation

We start by recalling the meaning of affiliation, borrowed from [1]. We shall then
prove that some of the classes of symbols introduced in Section 2 define observables
affiliated to BB

A .

Definition 3.18. An observable affiliated to a C∗-algebra C is a morphism Φ :
C0(R)→ C.

For example, if H is a Hilbert space and C is a C∗-subalgebra of B(H), then
a self-adjoint operator H in H defines an observable ΦH affiliated to C if and
only if ΦH(η) := η(H) belongs to C for all η ∈ C0(R). A sufficient condition is
that (H − z)−1 ∈ C for some z ∈ C with Im z 6= 0. Thus an observable affiliated
to a C∗-algebra is the abstract version of the functional calculus of a self-adjoint
operator.

The next result is a rather simple corollary of our previous results. We call it
a theorem to stress its importance in our subsequent spectral results.

Theorem 3.19. For m > 0 and ρ ∈ [0, 1], any real-valued elliptic element f ∈
Smρ,0(X ∗;A∞) defines an observable affiliated to the C∗-algebra BB

A .

Proof. For z ∈ C\R, let us set rz := (f−z)−1. We also define Φ(rz) := (f−z)(−1)B .
We first prove that the family {Φ(rz) | z ∈ C \ R} satisfies the resolvent equation.
Indeed, for any z, z′ ∈ C \ R, one has

(f − z) ]B Φ(rz) = 1 and (f − z′) ]B Φ(rz′) = 1.

By subtraction, one obtains (f − z) ]B [Φ(rz) − Φ(rz′)] + (z′ − z)Φ(rz′) = 0. By
multiplication on the left with Φ(rz) and using associativity, one then gets the
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resolvent equation

Φ(rz)− Φ(rz′) = (z− z′)Φ(rz) ]B Φ(rz′).

We have thus obtained a map C \ R 3 z 7→ Φ(rz) ∈ S−mρ,0 (X ∗;A∞) ⊂ BB
A ,

where Theorem 3.17 and Proposition 3.3 have been taken into account. Further-
more, the relation Φ(rz)]

B

= Φ(rz) clearly holds. A general argument presented in
[1, p. 364] allows one now to extend the map Φ in a unique way to a C∗-algebra
morphism C0(R)→ BB

A .

§4. Spectral analysis

§4.1. Preliminaries

Recall that A is a C∗-subalgebra of BCu(X ) which is invariant under translations.
Such an algebra is called admissible. It is also unital, but most of the constructions
do not require this. For any ϕ ∈ A we systematically denote by ϕ̃ the unique
element of C(SA) satisfying ϕ = ϕ̃ ◦ ιA. In fact, ϕ̃ corresponds to the image of ϕ
under the Gelfand isomorphism GA : A → C(SA).

A basic fact is that A comes together with a family of short exact sequences

(4.1) 0→ AQ → A πQ−→ AQ → 0

indexed by QA, the set of all quasi-orbits of the topological dynamical space
(SA, θ,X ). We recall that a quasi-orbit is the closure of an orbit, and let us now
explain the meaning of (4.1).

For Q ∈ QA we say that the element κ ∈ SA generates Q if the orbit of κ is
dense in Q. In general not all the elements of Q generate it. There is a canonical
epimorphism pQ : C(SA)→ C(Q), coming from the inclusion of the closed set Q in
SA. On the other hand, if κ generates Q, we set Aκ := {ϕκ := ϕ̃ ◦ θκ | ϕ̃ ∈ C(Q)}.
It is clear that Aκ is an admissible C∗-algebra isomorphic to C(Q). Indeed, by
taking into account the surjectivity of the morphism pQ and the continuity of
translations in A ⊂ BCu(X ), one easily sees that ϕκ : X → C belongs to BCu(X ).
Furthermore, the induced action of X on ϕκ coincides with the natural action
of X on BCu(X ). Thus, we get an epimorphism πκ : A → Aκ by setting πκ :=
θκ ◦ pQ ◦ GA. We note that in general Aκ has no reason to be contained in A.

It is clear that the kernel of this epimorphism is AQ = {ϕ ∈ A | ϕ̃|Q = 0}.
Furthermore, if κ and κ′ generate the same quasi-orbit Q, the algebras Aκ and Aκ′
are isomorphic. So by a slight abuse of notation, we call them generically AQ, and
denote the corresponding morphism by πQ. This finishes our explanation of (4.1).

We now recall some more definitions in relation to spectral analysis in a C∗-
algebraic framework (cf. [1]). Let Φ be an observable affiliated to a C∗-algebra C



780 M. Lein, M. Măntoiu and S. Richard

and let K be an ideal of C. Then the K-essential spectrum of Φ is

σK(Φ) := {λ ∈ R | if η ∈ C0(R) and η(λ) 6= 0, then Φ(η) 6∈ K}.

If π denotes the canonical morphism C → C/K, then π[Φ] : C0(R) → C/K given
by (π[Φ])(η) := π[Φ(η)] is an observable affiliated to the quotient algebra, and
one has σK(Φ) = σ{0}(π[Φ]) ≡ σ(π[Φ]). Assume now that C is a C∗-subalgebra of
B(H) for some Hilbert space H and that C contains the ideal K(H) of compact
operators on H. Furthermore, let H be a self-adjoint operator in H affiliated to C.
Then σK(H)(ΦH) is equal to the essential spectrum σess(H) of H. Here we shall be
mainly interested in the usual spectrum and in the essential spectrum. The need
for the K-essential spectrum with K different from {0} or K(H) is relevant in the
context of Remark 4.5 below.

§4.2. The essential spectrum of anisotropic magnetic operators

We again consider the magnetic twisted C∗-dynamical system (A, θ, ωB ,X ) and
explain how to calculate the essential spectrum of any observable affiliated to the
twisted crossed product algebra CBA . Then, by using the results of the previous
sections, we particularize to the case of magnetic pseudodifferential operators and
prove our main result concerning their essential spectrum. For simplicity, in this
section we omit the subscript B on the 2-cocycle ωB .

We now follow the strategy of [24, 28] (see also references therein). We are
going to assume that A contains C0(X ), so SA is a compact space and X can be
identified with a dense open subset of SA. Since the group law θ : X × X → X
extends to a continuous map θ : X × SA → SA, the complement FA of X in SA is
closed and invariant; it is the space of a compact topological dynamical system. For
any quasi-orbit Q, the algebra AQ is clearly an invariant ideal of A. The abelian
twisted dynamical system (AQ, θ, ω,X ) obtained by replacing A with AQ and
performing suitable restrictions is well defined. Furthermore, the twisted crossed
product AQoω

θ X may be identified with an ideal of Aoω
θ X [32, Prop. 2.2].

In order to have an explicit description of the quotient, let us first note that
A/AQ is canonically isomorphic to the unital C∗-algebra C(Q) of all continuous
functions on Q. The natural action of X on ϕ̃ ∈ C(Q) is given by (θxϕ̃)(κ) =
ϕ̃ (θx[κ]) for each x ∈ X and κ ∈ Q. Now, the restriction of ω to Q gives rise to a
2-cocycle ωQ : X ×X → U(C(Q)) precisely defined by ωQ(x, y) := pQ[GA(ω(x, y))]
for each x, y ∈ X . Thus (C(Q), θ, ωQ,X ) is a well-defined abelian twisted C∗-
dynamical system. Moreover, the quotient A oω

θ X/AQoω
θ X may be identified

with the corresponding twisted crossed product C(Q)oωQ
θ X . This follows from

[32, Prop. 2.2] if A is separable. For the non-separable case, just perform obvious
modifications in the proof of [8, Th. 2.10] to accommodate the 2-cocycle. Finally,
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by taking the isomorphisms πQ introduced in Section 4.1 into account, the algebra
C(Q)oωQ

θ X is isomorphic to AQoωQ
θ X , and the canonical morphism ΠQ : Aoω

θ X →
AQoωQ

θ X is defined on any F ∈ L1(X ;A) by (ΠQ[F ])(x) = πQ(F (x)) for all x ∈ X .
Let us now consider Q ⊂ QA such that the elements Q of Q define a covering

of FA. At the algebraic level, the covering requirement reads
⋂
Q∈QAQ = C0(X ).

This immediately implies the equality⋂
Q∈Q

AQ oω
θ X = C0(X ) oω

θ X .

By putting all these together one obtains (cf. also [24, Prop. 1.5]):

Proposition 4.1. Let Q ⊂ QA define a covering of FA by quasi-orbits.

(a) There exists an injective morphism Aoω
θ X/C0(X )oω

θ X ↪→
∏
Q∈QAQoωQ

θ X .

(b) If Φ is an observable affiliated to Aoω
θ X and K := C0(X ) oω

θ X , then

(4.2) σK(Φ) =
⋃
Q∈Q

σ(ΠQ[Φ]).

We now introduce a represented version of this proposition in the Hilbert space
H := L2(X ). We recall that for any continuous vector potential A, a representa-
tion RepA of A oω

θ X has been introduced in (3.1), and that this representation
is irreducible and faithful [27, Prop. 2.17]. Furthermore, it is proved there that
RepA(C0(X ) oω

θ X ) is equal to K(H). If Φ is an observable affiliated to Aoω
θ X,

then the l.h.s. term of (4.2) is equal to σess(RepA(Φ)), and it does not depend on
the choice of A.

We are now in a position to prove a concrete result for the calculation of
the essential spectrum of any magnetic pseudodifferential operator. It consists
essentially in an application of Proposition 4.1 together with a partial Fourier
transformation. It also relies on the affiliation result obtained in Theorem 3.19.
The components of the magnetic field BQ are defined by πQ(Bjk).

Theorem 4.2. Let m > 0, ρ ∈ [0, 1] and let Q ⊂ QA define a covering of FA.
Then, for any real-valued elliptic element f of Smρ,0(X ∗;A∞), one has

σess[OpA(f)] =
⋃
Q∈Q

σ[OpAQ(fQ)],

where A and AQ are continuous vector potentials for B and BQ, and fQ ∈
Smρ,0(X ∗;AQ) is the image of f through πQ.

Proof. Let us first observe that the morphism

F(L1(X;A)) 3 g 7→ F(ΠQ[F−1(g)]) ∈ F[L1(X;C(Q))]
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extends to a surjective morphism Π̃Q : BB
A → B

BQ
AQ . The equality (4.2) can then

be rewritten in this framework, and for any observable f affiliated to BB
A ,

σK(f) =
⋃
Q∈Q

σ(Π̃Q[f ]),

where K is now the ideal of BB
A given by the image of C0(X ) oω

θ X under the
map F. The result now follows from the crucial observation that Π̃Q[f ] is equal to
fQ and by considering faithful representations of BB

A through OpA and of B
BQ
AQ

through OpAQ .

Remark 4.3. Combining our approach with techniques from [1, 7, 8], one could
extend the result above to more singular symbols f . We shall not do this; our main
goal was to cover functions f which have no specific dependence on the variable
in Ξ (as f(x, ξ) = h(ξ) + V (x) for instance) in a pseudodifferential setting.

Remark 4.4. To have a good understanding of (4.2), one needs admissible alge-
bras A for which the space QA is explicit enough. Many examples are scattered
through [1, 2, 7, 9, 8, 24, 28, 34] and we will not reconsider this topic here.

Remark 4.5. Non-propagation results easily follow from this algebraic frame-
work. They have been explicitly exhibited in the non-magnetic case in [2] and in
the magnetic case in [28]. In these references, the authors were mainly concerned
with generalized Schrödinger operators and their results were stated for these op-
erators. But the proof relies only on the C∗-algebraic framework, and the results
extend mutatis mutandis to the classes of symbols introduced in the present paper.
For brevity, we do not present these propagation estimates here, but statements
and proofs can easily be mimicked from these references.

Appendix: An independent proof for the affiliation

In this Appendix, we give a second proof of Theorem 3.19, independent of the
results contained in [14].

Let us consider m > 0, ρ ∈ (0, 1] and a real-valued elliptic element f of
Smρ,0(X ∗;A∞). For some z ∈ C, we are first going to show that (f−z)(−1)B belongs
to BB

A by writing down a series for the inverse (f − z)(−1)B of the form

(f − z)(−1)B = (f − z)−1 ]B
∞∑
k=0

[1− (f − z) ]B (f − z)−1]k]
B

,

with (f − z)−1 the pointwise inverse of f − z. Notice that (f − z)−1 belongs to
S−mρ,0 (X ∗;A∞) ⊂ BB

A by ellipticity, and that gk]
B

denotes the kth power of g with
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respect to ]B . By the asymptotic development, one knows that the remainder
Rz := (f − z) ]B (f − z)−1 − 1 belongs to S−ρρ,0(X ∗;A∞) ⊂ BB

A . However, an
additional argument is needed to show that the ‖ · ‖B-norm of Rz is subunitary
for suitable z, ensuring the convergence of the Neumann series.

For that purpose, we recall from Section 3 that ‖Rz‖B ≡ ‖Rz‖AB(Ξ) :=
‖OpA(Rz)‖B(H). Furthermore, from the magnetic Calderón–Vaillancourt theorem
this norm can be estimated from above by expressions of the form

(4.3) sup
(x,ξ)∈Ξ

〈ξ〉ρ(|δ|−|d|) |∂dx∂δξRz(x, ξ)|

for a finite number of multi-indices δ, d ∈ Nn (see Theorem 2.3 for the precise
statement). Thus it remains to study the dependence on z of (4.3). Fortunately,
a similar expression has already been studied in the proof of the asymptotic de-
velopment and we shall rely on some of the expressions derived in the proof of
Theorem 2.11.

Since f is an elliptic symbol of strictly positive order we can fix z ∈ R− with
z ≤ inf f − 1. The pointwise inverse of f − z is thus well defined, and is denoted
by (f − z)−1. We recall from the proof of Theorem 2.11 that

(4.4) Rz(X) =
∑

a,b,α,β,α′,β′

α′≤α, β′≤β
|a|+|b|+|α|+|β|=1

∫ 1

0

dτ polα
′,β′

a,b (τ)Iα
′,β′

τ,z,a,b(X),

where polα
′,β′

a,b : [0, 1]→ C are polynomials and

Iα
′,β′

τ,z,a,b(X)

:=
∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ e−2iσ(Y,Z)[∂α−α
′

z ∂β−β
′

y ωB ](x, y, z)

· [∂a+β′

x ∂α+b
ξ (f − z)](x− τy, ξ − τη)[∂b+α

′

x ∂a+β
ξ (f − z)−1](x− τz, ξ − τζ).

Retaining only its essential features, we shall rewrite this last expression as

Iτ,z(X) :=
∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ e−2iσ(Y,Z)ΣB(x, y, z)

· Fz(x− τy, ξ − τη)Gz(x− τz, ξ − τζ).

In order to obtain estimates for (4.3), let us calculate ∂dx∂
δ
ξIτ,z. Actually, by

using (2.10), the oscillatory integral definition of ∂dx∂
δ
ξIτ,z is



784 M. Lein, M. Măntoiu and S. Richard

[∂dx∂
δ
ξIτ,z](X) =

∑
d0+d1+d2=d
δ1+δ2=δ

Cδ
1δ2

d0d1d2

∫
X

dy
∫
X

dz
∫
X∗

dη
∫
X∗

dζ e−2iσ(Y,Z)

· Lτ,z,δ
1,δ2

p,q,d0,d1,d2(X,Y, Z),

where, for suitable integers p, q, the expression Lτ,z,δ
1,δ2

p,q,d0,d1,d2(X,Y, Z) is given by

〈η〉−2p〈ζ〉−2p〈y〉−2q〈z〉−2q
∑

|b1|+|b2|+|b3|=2p

|c1|+|c2|+|c3|=2p

|q1|≤q, |q2|≤q

Cq
1q2c1c2c3

b1b2b3 ϕqc1(z)ψqb1(y)

· [∂d
0

x ∂
b2

y ∂
c2

z ΣB ](x, y, z)(−τ)2|q1|+2|q2|+|b3|+|c3|

· [∂d
1+b3

x ∂δ
1+2q1

ξ Fz](x− τy, ξ − τη)[∂d
2+c3

x ∂δ
2+2q2

ξ Gz](x− τz, ξ − τζ),

where ϕqc1 and ψqb1 are bounded functions produced by differentiating the factors
〈z〉−2q and 〈y〉−2q, respectively. We now need an explicit dependence on z of the
last two factors.

Let us first recall that Fz = ∂a+β′

x ∂α+b
ξ (f−z), and hence two distinct situations

occur: If a = β′ = α = b = d1 = b3 = δ1 = q1 = 0, then

|[∂d
1+b3

x ∂δ
1+2q1

ξ Fz](x− τy, ξ − τη)| ≡ |f(x− τy, ξ − τη)− z|

and this is the annoying contribution that has to be dealt with separately below.
But if any of the above multi-indices is non-null, then the dependence on z vanishes,
and one has

|[∂d
1+b3

x ∂δ
1+2q1

ξ Fz](x− τy, ξ − τη)| ≤ c〈ξ − τη〉m−ρ(|α|+|b|+|δ
1|+2|q1|)

with c independent of x, y, ξ, η, τ and z.
We now study the dependence on z of |f(x−τz, ξ−τζ)−z|−1. Clearly, if z′ ≤ z,

then |f(x− τz, ξ− τζ)− z′|−1 ≤ |f(x− τz, ξ− τζ)− z|−1, but this trivial estimate
is going to be necessary but not sufficient. Then, by using the ellipticity of f , one
finds that there exist κ, κ1, κ2 ∈ R+, depending only on f , such that for |z| large
enough one has |f(x−τz, ξ−τζ)−z|−1 ≤ κ1〈τζ〉m(κ2〈ξ〉m+|z|−κ)−1. One can then
take into account the inequality κ2〈ξ〉m+ |z|−κ ≥ µ1/µ(νκ2)1/ν(|z|−κ)1/µ〈ξ〉m/ν ,
valid for any µ, ν ≥ 1 with µ−1 + ν−1 = 1, and obtain

|f(x− τz, ξ − τζ)− z|−1 ≤ c(|z| − κ)−1/µ〈ζ〉m〈ξ〉−m/ν

with c dependent only on f, µ and ν.
Now, recall that Gz = ∂b+α

′

x ∂a+β
ξ (f − z)−1. Similarly to Fz two distinct sit-

uations have to be considered: If b = α′ = a = β = d2 = c3 = δ2 = q2 = 0,
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then

|[∂d
2+c3

x ∂δ
2+2q2

ξ Gz](x− τz, ξ − τζ)| ≡ |f(x− τz, ξ − τζ)− z|−1.

But if any of these multi-indices is non-null, then it is not difficult to obtain

(4.5) |[∂d
2+c3

x ∂δ
2+2q2

ξ Gz](x− τz, ξ − τζ)|

≤ d|f(x− τz, ξ − τζ)− z|−2〈ξ − τζ〉m−ρ(|a|+|β|+|δ
2|+2|q2|)

with d independent of x, z, ξ, ζ, τ and z.
So, let us first consider the simple situation, i.e. at least one of the multi-

indices a, β′, α, b, d1, b3, δ1, q1 is non-null. Then, by taking into account the above
estimates, the explicit form of ΣB and Lemma 2.10, one finds that for any τ ∈ [0, 1]
the following inequalities hold:

|Lτ,z,δ
1,δ2

p,q,d0,d1,d2(X,Y, Z)|

≤ Cδ
1δ2

pqd0d1d2〈η〉−2p〈ζ〉−2p〈y〉−2q〈z〉−2q (〈y〉+ 〈z〉)|d|+|α|+|β|+4p

· 〈ξ − τη〉m−ρ(|α|+|b|+|δ
1|+2|q1|)|f(x− τz, ξ − τζ)− z|−1

· 〈ξ − τζ〉−ρ(|a|+|β|+|δ
2|+2|q2|)

≤ Dδ1δ2

pqd0d1d2(|z| − κ)−1/µ〈η〉−2p+|m−ρ(|α|+|b|+|δ1|)|〈ζ〉−2p+m+ρ(|a|+|β|+|δ2|)

· 〈y〉−2q+|α|+|β|+4p+|d|〈z〉−2q+|α|+|β|+4p+|d|〈ξ〉m(1−1/ν)−ρ(1+|δ|),

where the trivial inequality mentioned above has been used once for the first
inequality.

In the critical case, i.e. a = β′ = α = b = d1 = b3 = δ1 = q1 = 0, one has
|β| = 1 because of the definition of Rz given in (4.4). Thus, we are not in the
exceptional case for Gz and (4.5) always holds. So, let us consider the following
inequalities:∣∣∣∣f(x− τy, ξ − τη)− z

f(x− τz, ξ − τζ)− z

∣∣∣∣
≤ 1 +

∣∣∣∣ n∑
j=1

τ(zj − yj)
∫ 1

0
ds [∂xjf ](x− τz + sτ(z − y), ξ − τζ + sτ(ζ − η))

f(x− τz, ξ − τζ)− z

∣∣∣∣
+
∣∣∣∣ n∑
j=1

τ(ζj − ηj)
∫ 1

0
ds [∂ξjf ](x− τz + sτ(z − y), ξ − τζ + sτ(ζ − η))

f(x− τz, ξ − τζ)− z

∣∣∣∣
≤ 1 + c|f(x− τz, ξ − τζ)− z|−1〈y〉〈z〉〈η〉m+1−ρ〈ζ〉m+1−ρ〈ξ〉m

≤ 1 + d〈y〉〈z〉〈η〉m+1−ρ〈ζ〉2m+1−ρ
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with c, d independent of all variables and of z. By using these inequalities one
obtains in the critical case

|Lτ,z,δ
1,δ2

p,q,d0,d1,d2(X,Y, Z)|

≤ Cδ
1δ2

pqd0d1d2〈η〉−2p〈ζ〉−2p〈y〉−2q〈z〉−2q (〈y〉+ 〈z〉)|d|+1+4p

·
∣∣∣∣f(x− τy, ξ − τη)− z

f(x− τz, ξ − τζ)− z

∣∣∣∣|f(x− τz, ξ − τζ)− z|−1〈ξ − τζ〉m−ρ(1+|δ2|+2|q2|)

≤ Dδ1δ2

pqd0d1d2(|z| − κ)−1/µ〈η〉−2p〈ζ〉−2p〈y〉−2q+1+4p+|d|〈z〉−2q+1+4p+|d|

· [1 + d〈y〉〈z〉〈η〉m+1−ρ〈ζ〉2m+1−ρ]〈ζ〉m+|m−ρ(1+|δ|)|〈ξ〉m(1−1/ν)−ρ(1+|δ|).

Then it only remains to insert these estimates for Lτ,z,δ
1,δ2

p,q,d0,d1,d2 into the expression
of Rz, and to observe that by choosing p large enough, one gets absolute integra-
bility in η and ζ. A subsequent choice of q also ensures integrability in y and z.

We are now in a position to obtain estimates for (4.3). By summing the
contributions in the critical case and in the regular one, we obtain

〈ξ〉ρ(|δ|−|d|)|∂dx∂δξRz(x, ξ)| ≤ c(|z| − κ)−1/µ〈ξ〉m(1−1/ν)−ρ(1+|d|)

with c independent of z, x and ξ. Then, by choosing ν close enough to 1 such that
m(1 − 1/ν) − ρ < 0, the expression decreases as |z| increases. Thus, for |z| large
enough, ‖Rz‖B is strictly less than 1 and the Neumann series is then convergent.
It follows that (f − z)(−1)B belongs to BB

A for any z ∈ R− with |z| large enough.
Finally, by an argument similar to the one proposed in the proof of Theorem 1.8
of [28], one can extend this result to any z ∈ C \ R and show that the resolvent
equation is satisfied. Then the general argument already quoted in the proof of
Theorem 3.19 allows us to conclude.
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