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Tempered Fundamental Group and Metric Graph
of a Mumford Curve

by

Emmanuel Lepage

Abstract

The aim of this paper is to give some general results on the tempered fundamental
group of p-adic smooth algebraic varieties (which is a sort of analog of the topological
fundamental group of complex algebraic varieties in the p-adic world). The main result
asserts that one can recover the metric structure of the graph of the stable model of a
Mumford curve from the tempered fundamental group of the curve. We also prove the
birational invariance, invariance under algebraically closed extensions and a Künneth
formula for the tempered fundamental group. We describe the tempered fundamental
group of an abelian variety and link the tempered fundamental group of a curve to the
tempered fundamental group of its Jacobian variety.
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Introduction

This paper is an attempt to give some general results on the tempered fundamental
group of p-adic smooth algebraic varieties.

The tempered fundamental group was introduced in André’s [2, part III] as
a sort of analog of the topological fundamental group of complex algebraic vari-
eties; its profinite completion coincides with Grothendieck’s algebraic fundamental
group, but it has many infinite discrete quotients in general.

Since the analytification (in the sense of Berkovich or of rigid geometry) of
a finite étale covering of a p-adic variety is not necessarily a topological covering,
André had to use a slightly wider notion of covering. He defines tempered cov-
erings, which are étale coverings in the sense of de Jong (that is, locally in the
Berkovich topology, direct sums of finite coverings) such that, after pulling back
by some surjective finite étale covering, they become topological coverings (for the
Berkovich topology). Then the tempered fundamental group is a prodiscrete group
that classifies those tempered coverings. To give a more handy description, if one
has a sequence ((Si, si))i∈N of pointed Galois finite coverings such that the cor-
responding pointed pro-covering of (X,x) is the universal pro-covering of (X,x),
and if (S∞i , s

∞
i ) is a universal topological covering of Si, then the tempered fun-

damental group of X can be seen as πtemp
1 (X,x) = lim←−i Gal(S∞i /X). Therefore,

to understand the tempered fundamental group of a variety, one mainly has to
understand the topological behavior of the finite étale coverings of this variety.

There are many differences between the tempered fundamental group in the
p-adic case and the topological fundamental group in the complex case. First, the
tempered fundamental group is not discrete in general, even not locally compact.
It is also much more difficult to describe explicitly (such a description is avail-
able for elliptic curves, or more generally abelian varieties, as will be shown in
this article). As proved in [16] (and recalled in Section 1.2), the tempered fun-
damental group of a curve depends heavily on the combinatorial structure of its
stable reduction (this suggests a geometric anabelian behavior of the tempered
fundamental group which has no algebraic or complex counterpart). On the other
hand, the tempered fundamental group, like the algebraic fundamental group, is
also defined over non-algebraically closed nonarchimedean fields, and thus it inter-
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acts interestingly with Galois theory (which gives it a number-theoretical interest).
However, in this article, we will only study the geometric tempered fundamental
group.

This paper is divided into two main parts that are independent of each other
and can be read separately:

• In the first one (§2 and §3), we will prove some results on the tempered funda-
mental group which are classical results for the profinite fundamental group or
the topological fundamental group of complex varieties: we will link the abelian-
ized tempered fundamental group of a curve to the tempered fundamental group
of its Jacobian variety and we will prove a Künneth formula for a product of
manifolds.

• In the second one (§4), probably the most interesting, we will show that one
can recover the metric structure of the graph of the stable model of a Mumford
curve (i.e. a curve such that all the normalized irreducible components of the
stable reduction are projective lines) from the tempered fundamental group,
thus illustrating that the tempered fundamental group depends much more on
the variety itself than the profinite or the complex fundamental group does.

After recalling the basic results on the tempered fundamental group given in [2]
(and deducing from them the birational invariance of the tempered fundamental
group in Proposition 1.6), we will recall the results of Mochizuki concerning the
tempered fundamental group of a curve and the stable reduction of this curve:
whereas the profinite fundamental group or the topological fundamental group of
a smooth curve of type (g, n) only depends in the complex case on g and n, the
tempered fundamental group of a curve depends much more on the curve itself.
How much is an unsolved problem, which is the leading thread of the present
paper.

Mochizuki proved in [16] that one can recover from the tempered fundamental
group of a curve the graph of its stable reduction (Theorem 1.7), even in the pro-
(p′) case (we will denote by πtemp

1 (X)(p′) the group classifying the coverings that
become topological after a base change by a finite Galois covering of order prime
to p).

More precisely, the vertices of the graph correspond to the conjugacy classes
of maximal subgroups of πtemp

1 (X)(p′) (called therefore verticial subgroups) and
the edges to classes of nontrivial intersections of verticial subgroups.

We will then study the tempered fundamental group of an abelian variety A in
the geometric case. We will be able to give an explicit description of the tempered
fundamental group, as was already done for elliptic curves in [2, III.2.3.2]. The
point is that finite étale coverings are well understood (they are abelian varieties,
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and are dominated by multiplication by n on A for some n), as also are topological
coverings, thanks to the p-adic uniformization of abelian varieties.

We will deduce from this that πtemp
1 (A) is isomorphic to Ẑ2g−d × Zd (see

Section 2.1), where g is the dimension of A and d is the rank of the topological
fundamental group of A (which is also the dimension of the toric part of the
semistable reduction).

One can then prove that, just as in the profinite case or the topological case,
the abelianized tempered fundamental group of a curveX is canonically isomorphic
to the tempered fundamental group of its Jacobian variety A (Theorem 2.1). The
proof combines the birational morphism Xg/Sg → A, where Sg is the symmetric
group of degree g acting on Xg by permutation of factors, the birational invariance
of the tempered fundamental group, and the Künneth formula that will be proved
in the next part.

For more general cases, one does not have such nice descriptions of the topo-
logical behavior of a smooth variety, not to mention the topological behavior of
all its finite etale coverings. Nevertheless, thanks to de Jong’s alteration results
(see [7] and [8]) and to Berkovich’s work (see [4], recalled in Section 3.1) on the
topological structure of the generic fiber of a polystable formal scheme over the
integer ring of a complete nonarchimedean field, one can prove that some Zariski
open dense subset U of the smooth scheme X is homotopically equivalent to a
certain polysimplicial set given by the combinatorial structure of the special fiber
of some alteration of the variety.

One can then deduce from the results of [4] that for any isometric embedding
of K in an algebraically closed field K ′, |UK′ | → |U | is a homotopy equivalence.
Knowing this, and using a proposition of André which says that U → X induces
an isomorphism on topological groups, we will be able to prove the invariance of
the tempered fundamental group of a smooth scheme under algebraically closed
extensions (Proposition 3.8).

In the same way, if V is a Zariski dense open subset of another smooth scheme
Y satisfying the same properties as U , one can deduce from the results of [4]
that |U × V | → |U | × |V | is a homotopy equivalence. Thanks to this, we will
prove a Künneth formula for the tempered fundamental group of smooth schemes
(Proposition 3.10).

In the last section, we will prove (Theorem 4.13) that, in the case of a Mumford
curve, one may in fact recover the lengths of the edges from πtemp

1 (X) (obviously,
one needs the whole πtemp

1 (X) and not only the pro-(p′) version which only depends
on the pro-(p′) graph of groups of the stable reduction; thus this can only be done
when p 6= 0, in contrast to Mochizuki’s result).
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Questions about the recovery of the length of the edges from fundamental
groups have already been considered by Mochizuki in the profinite absolute situ-
ation over p-adic local fields (see [14, §6] and [15, Th. 2.7]).

We will deduce from Mochizuki’s results about the recovery of the graph of
the stable reduction from the tempered fundamental group that one can decide
from the tempered fundamental group of a curve whether a finite covering is split
over some vertex of the curve (and in a similar way, one can decide whether it is
ramified over some cusp).

Knowing this, we will start by proving this for a punctured projective line
and a punctured elliptic curve, to give an insight into the method in simpler cases,
where the coverings we will use are described explicitly: for a punctured projective

line, we will concentrate on coverings like ( )p
e

: Gm
z 7→zp

e

−−−−→ Gm (in this case one
can easily calculate explicitly the number of preimages of a point of the Berkovich
projective line), and for elliptic curves on coverings obtained by patching together
those types of coverings.

In the more general case of a Mumford curve X = Ω/Γ, we will study coverings
of the topological uniformization Ω that descend to some finite topological covering
of X that behave like ( )p

e

over big affinoids of Ω. More precisely, every covering
of Ω which descends to X (in some nonunique way) is the pullback of ( )p

e

along a
Γ-equivariant invertible section of Ω, and conversely. The equivariance prevents us
from simply considering a homography, but we can consider a section of Ω which
is arbitrarily close, on a given affinoid subset of Ω, to a homography. This will be
enough to ensure that this covering is split over the same vertices of a big affinoid
subset of Ω as the one obtained by pulling back ( )p

e

along the homography.
Using such constructions, one can recover from the tempered fundamental

group the length of any loop of any topological covering of X. In order to get the
whole metric structure of the graph of the stable model of X, we will end this
article by proving a purely combinatorial result that shows that, if one knows the
length of every loop of every covering of a graph whose edges have valency ≥ 3,
one knows the length of every edge (Proposition A.1).

The recovering of the metric graph of the stable model from the tempered
fundamental group can be quite easily extended to the case of punctured Mumford
cases, but the proof does not seem to extend easily to more general curves, as one
cannot find easily coverings of order divisible by p where one can say much about
the graph of the stable reduction.

The proofs here also only consider some very simple coverings (for which we
do not even describe completely the graph of the stable model), and it is hard to
imagine what can be recovered from the whole tempered fundamental group.
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§1. Tempered fundamental group

§1.1. Definition

Let K be a complete nonarchimedean field. Following [1, §4], a K-manifold will
be a connected smooth paracompact strictly K-analytic space in the sense of
Berkovich. For example, if X is a connected smooth algebraic K-variety, Xan is a
K-manifold (and in fact, we will mainly be interested in those spaces). By [4], any
K-manifold is locally contractible (we will explain in more detail the results of [4]
in Section 3.1). In particular, it has a universal covering.

One can associate to any point x of a Berkovich space X a residue field
denoted by H(x): if X is an affinoid space, then x corresponds to a seminorm | |x
of its affinoid algebra A and H(x) is the completion of A/Ker | |x for the norm
induced by | |x; in the general case, the residue field of x in X is just the residue
field of x in any affinoid domain of X that contains x.

A morphism f : S′ → S is said to be an étale covering if S is covered by open
subsets U such that f−1(U) =

∐
Vj and Vj → U is étale finite ([6]).

For example, finite étale coverings, also called algebraic coverings, and cover-
ings in the usual topological sense for the Berkovich topology, also called topological
coverings, are étale coverings.

Then André defines tempered coverings as follows:

Definition 1.1 ([2, Def. 2.1.1]). An étale covering S′ → S is tempered if it is a
quotient of the composition of a topological covering T ′ → T and a finite étale
covering T → S. This is equivalent to saying that it becomes a topological covering
after pullback by some finite étale covering.

We denote by Covtemp(X) (resp. Covalg(X), Covtop(X)) the category of tem-
pered coverings (resp. algebraic coverings, topological coverings) of X (with the
obvious morphisms).

A geometric point of a K-manifold X is a morphism of Berkovich spaces
M(Ω)→ X where Ω is an algebraically closed complete isometric extension of K.

Let x̄ be a geometric point of X. Then one has a functor

Fx̄ : Covtemp(X)→ Set

which maps a covering S → X to the set Sx̄. If x̄ and x̄′ are two geometric points,
then Fx̄ and Fx̄′ are (noncanonically) isomorphic ([6, Prop. 2.9]).

The tempered fundamental group of X based at x̄ is

πtemp
1 (X, x̄) = AutFx̄.
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When X is a smooth algebraic K-variety, Covtemp(Xan) and πtemp
1 (Xan, x̄) will

also be denoted simply by Covtemp(X) and πtemp
1 (X, x̄).

By considering the stabilizers (StabF (S)(s))S∈Covtemp(X), s∈Fx̄(S) as a basis of
open subgroups of πtemp

1 (X, x̄), πtemp
1 (X, x̄) becomes a topological group. It is a

prodiscrete topological group.
When X is algebraic, and K is of characteristic zero and has only countably

many finite extensions in a fixed algebraic closure K, πtemp
1 (X, x̄) has a countable

fundamental system of neighborhoods of 1 and all its discrete quotient groups are
finitely generated ([2, Prop. 2.1.7]).

If x̄ and x̄′ are two geometric points, then Fx̄ and Fx̄′ are (noncanonically)
isomorphic ([6, Prop. 2.9]). Thus, as usual, the tempered fundamental group de-
pends on the basepoint only up to inner automorphism (this topological group,
considered up to conjugation, will sometimes be denoted simply by πtemp

1 (X)).
The full subcategory of tempered coverings S for which Fx̄(S) is finite is

equivalent to Covalg(S), hence

̂πtemp
1 (X, x̄) = πalg

1 (X, x̄)

(where ̂ denotes, here and below, the profinite completion).
For any morphism X → Y , the pullback defines a functor Covtemp(Y ) →

Covtemp(X). If x̄ is a geometric point of X with image ȳ in Y , this gives rise to a
continuous homomorphism

πtemp
1 (X, x̄)→ πtemp

1 (Y, ȳ)

(hence an outer morphism πtemp
1 (X)→ πtemp

1 (Y )).
One has the analog of the usual Galois correspondence:

Theorem 1.2 ([2, Th. 1.4.5]). Fx̄ induces an equivalence of categories between the
category of direct sums of tempered coverings of X and the category πtemp

1 (X, x̄)- Set
of discrete sets endowed with a continuous left action of πtemp

1 (X, x̄).

If S is a finite Galois covering of X, its universal topological covering S∞ is
still Galois and every connected tempered covering is dominated by such a Galois
tempered covering.

If ((Si, s̄i))i∈N is a cofinal projective system (with morphisms fij : Si → Sj
which map s̄i to s̄j for i ≥ j) of geometrically pointed Galois finite étale cover-
ings of (X, x̄), let ((S∞i , s̄

∞
i ))i∈N be the projective system, with morphisms f∞ij

for i ≥ j, of its pointed universal topological coverings. Then Fx̄(S∞i ) =
πtemp

1 (X, x̄)/StabF (S∞i )(s̄∞i ) is naturally a quotient group G of πtemp
1 (X, x̄) for

which s∞i is the neutral element. Moreover G acts by G-automorphisms on
Fx̄(S∞i ) by right translations (and thus on S∞i thanks to the Galois correspon-
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dence (Theorem 1.2)). Thus one gets a morphism πtemp
1 (X, x̄)→ Gal(S∞i /X). As

f∞ij (s∞i ) = s∞j , these morphisms are compatible with

Gal(S∞i /X)→ Gal(S∞j /X).

Then, thanks to [2, Lem. III.2.1.5], we have

Proposition 1.3.
πtemp

1 (X, x̄)→ lim←−Gal(S∞i /X)

is an isomorphism.

On the other hand, we will use the following results by André (they are not
needed for §4):

Proposition 1.4 ([2, Prop. III.1.1.4]). Let S be a manifold, and let Z be a Zariski
closed nowhere dense reduced analytic subset. Then any topological covering of S :=
S \Z extends uniquely to a topological covering of S. Thus πtop

1 (S, s)→ πtop
1 (S, s)

is an isomorphism.

Proposition 1.5 ([2, Th. III.2.1.11, Prop. III.2.1.13]). Assume K is algebraically
closed and of characteristic 0. Let S be a manifold, and let Z be a Zariski closed
nowhere dense reduced analytic subset. Then the functor from tempered coverings
of S to tempered coverings of S = S \ Z is fully faithful. If Z is of codimension
≥ 2, this functor is an equivalence of categories.

Let K be an algebraically closed complete nonarchimedean field of charac-
teristic 0. We will follow the proof of [11, Cor. X.3.4] in the algebraic case to
get the birational invariance of the tempered fundamental group of smooth and
proper K-schemes (see [12, Prop. 2.2.1] for a proof without any assumption on the
characteristic of K).

Let f : X → Y be a dominant rational map between smooth and proper
K-schemes. If f is defined on a Zariski open subset U of X (denote by fU the
morphism U → Y and by iU the immersion U → X) whose complement is of
codimension ≥ 2 in X, one gets a functor from Covtemp(Y ) to Covtemp(U) and
one can compose it with a quasi-inverse of Covtemp(X) → Covtemp(U); one thus
gets a functor f∗(U) : Covtemp(Y ) → Covtemp(X) such that i∗Uf

∗
(U) is isomorphic

to f∗U . If one takes another Zariski open subset U ′ of X with the same properties,
one finds that i∗U∩U ′f

∗
(U) and i∗U∩U ′f

∗
(U ′) are both isomorphic to f∗U∩U ′ , and thus

f∗(U) and f∗(U ′) are isomorphic, since X\U∩U ′ is also of codimension ≥ 2 in X. Thus
one gets an outer homomorphism of topological groups f∗ : πtemp

1 (X)→ πtemp
1 (Y ),

which does not depend on U . In particular if f is a morphism of schemes, one can
choose U = X and thus f∗ is the usual outer morphism πtemp

1 (X)→ πtemp
1 (Y ).
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Let g : Y → Z be another dominant rational map between smooth and proper
K-schemes. It is defined on a Zariski open subset V of Y whose complement is of
codimension ≥ 2 in Y , and gf : X → Z is also a dominant rational map between
smooth and proper schemes, so it is also defined over a Zariski open subset W
of X whose complement is of codimension ≥ 2. Let U0 = U ∩ f−1

U (V ) ∩W (note
that X \ U0 may be of codimension < 2). There are morphisms U0 → V and
V → Z representing f and g such that the composed morphism (gf)U0 : U0 → Z

represents gf . One then sees that i∗U0
f∗(U)g

∗
(V ) and i∗U0

(gf)∗(W ) are both isomorphic
to (gf)∗U0

. Since i∗U0
is fully faithful, f∗(U)g

∗
(V ) and (gf)∗(W ) are isomorphic (and

g∗f∗ = (gf)∗). Thus one gets a functor from the category of smooth and proper
K-schemes with dominant rational maps to the category of groups with outer
homomorphisms.

In particular,

Proposition 1.6. Let X → Y be a birational map between smooth and proper
K-schemes. Then

πtemp
1 (X)→ πtemp

1 (Y )

is an isomorphism.

§1.2. Mochizuki’s results on the pro-(p′) tempered group of a curve

Mochizuki [16] links the tempered fundamental group of an algebraic curve X to
the graph of the stable reduction of X, giving a more combinatorial description
of a pro-(p′) version of the tempered fundamental group. In particular, he proves
that one can recover the graph of the stable reduction of X from πtemp

1 (X, x̄). We
will explain here the main results of [16] (they will only be used in §4).

If one considers the full subcategory Covtemp(X)(p′) of tempered coverings
that become topological after pullback by a finite Galois covering of order prime
to p where p is the residual characteristic of K, one gets in the same fashion a
pro-(p′) version πtemp

1 (X, x̄)(p′) of the tempered fundamental group (see [16, Rem.
3.10.1] in the case of a curve).

Following [15, Appendix], a semigraph G is given by a set V of vertices, a
set E of edges and, for every e ∈ E , a set of cardinality ≤ 2 of branches Be with a
map ζe : Be → V.

We will say that a branch b of e ends at v if ζe(b) = v. We will say that a
semigraph is a graph if for every e ∈ E , e has exactly two branches.

Recall from [16, Def. 2.1] that if one has a semigraph G, the structure of a
semigraph of anabelioids G on this graph corresponds to the following data:

• for each vertex or edge x, a Galois category Gx (also named connected anabelioid
in [16]),
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• for each branch b of an edge e ending at a vertex v, a morphism of anabelioids
(i.e. an exact functor) b∗ : Ge → Gv.

Semigraphs of anabelioids form a 2-category. Recall also that working with Galois
categories is equivalent to working with profinite groups up to inner automorphism.

Recall that if C is a Galois category whose fundamental group is Π, then Ind-C
is equivalent to the topos Π-Set.

A covering S of a semigraph G of anabelioids consists of:

• for every vertex v of G, an object Sv of Ind-Gv,
• for every edge e with branches b1 and b2 ending at v1 and v2, an isomorphism
φe between b1∗Sv1 and b2∗Sv2 .

One has a natural notion of a morphism of such coverings, so that one gets a
category Bcov(G). Mochizuki also defines a 2-functor from the category of coverings
of G to the 2-category of semigraphs of anabelioids above G.

An object of Bcov(G) is finite if each Sv is in Gv, topological if for each v, Sv
is a constant object of Ind-Gv, and tempered if it becomes topological after pulling
back along some finite covering. The full subcategory of tempered (resp. finite,
topological) coverings is then denoted by Btemp(G) (resp. Balg(G), Btop(G)).

If G is connected, Balg(G) is a Galois category whose fundamental group is
denoted by πalg

1 (G).
If v is a vertex of G and F is an exact and conservative functor Gv → Set (such

a functor is called a fundamental functor in [11, Section 5]; it extends to a point of
Ind-Gv, also denoted by F ), one can define a functor F(v,F ) : Bcov(G)→ Set which
maps S to F (Sv) (if one changes the base point (v, F ), one gets an isomorphic
functor). Let F temp

(v,F ) be its restriction to Btemp(G). Then one defines

πtemp
1 (G, (v, F )) := Aut(F temp

(v,F )).

Let us illustrate these definitions by associating to a curve a semigraph of
anabelioids.

Let us assume that K is discretely valued, and let K be the completion of
an algebraic closure of K. Let (X,D) be a smooth n-pointed hyperbolic curve of
type g over K, let X = X \ D, let (X ,D) be a semistable model over OK , and
let X = X \ D. The semigraph of Xs is defined as follows: the vertices are the
irreducible components of Xs, the edges are the nodes and the marked points.
A node e has two branches that end at the irreducible components that contain e;
a marked point e has only one branch that ends at the irreducible component
containing the marked point.
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When X is the stable model of X, this semigraph will be denoted by Gc
X

(or Gc when there is no risk of confusion).
One can endow the semigraph Gc with the structure of a “semigraph of an-

abelioids” Gc. Indeed for a vertex vi corresponding to an irreducible component
Ci of Xs, let Ci be the closure of Ci in Xs, let C

′
i be the normalization of Ci and

let Ui be the open subset of C
′
i which is the complement of the marked points and

of the preimages of the double points of Xs (the points of C
′
i−Ui thus correspond

exactly to branches ending at vi). Then the group Π(vi) is the tame fundamen-

tal group πt
1(Ui) of Ui in C

′
i. The group of an edge is Ẑ(1)

(p′)
= lim←−(n,p)=1

µn

(' Ẑ(p′)) (as usual, the superscript (p′) indicates the pro-prime-to-p maximal quo-
tient), which is canonically isomorphic to the monodromy subgroup in πt

1(Ui) of
a point in C

′
i − Ui. The morphism corresponding to a branch is the embedding

of the monodromy group of the corresponding point of C
′
i − Ui (which is defined

up to conjugation), whereas, for an edge with two branches, one identifies the two

Ẑ(1)
(p′)

by x 7→ x−1.
If G(p′) denotes the semigraph of anabelioids obtained from G by replacing

each profinite group by its pro-(p′) completion, and if πtemp
1 (XK)(p′) is the pro-

(p′) version of the tempered fundamental group of XK , then

πtemp
1 (Gc,(p

′)
X ) = πtemp

1 (XK)(p′) ([16,Ex. 3.10]).

Assume now that K is a discretely valued field of characteristic 0 and of
residual characteristic p > 0. Mochizuki then shows:

Theorem 1.7 ([16, Cor. 3.11]). If Xα and Xβ are two curves, then every iso-
morphism γ : πtemp

1 (Xα,K) ' πtemp
1 (Xβ,K) determines, functorially in γ up to

2-isomorphism, an isomorphism of semigraphs of anabelioids γ′ : GcXα ' GcXβ .

More precisely, the following induced diagram of topological groups is com-
mutative:

πtemp
1 (Gc,(p

′)
Xα

)
πtemp

1 (γ′(p
′)) // πtemp

1 (Gc,(p
′)

Xβ
)

πtemp
1 (Xα,K)(p′) γ(p′)

// πtemp
1 (Xβ,K)(p′)

The vertices of the graph then correspond to the conjugacy classes of maximal
compact subgroups of πtemp

1 (X)(p′) (therefore called the verticial subgroups of
πtemp

1 (X)(p′)), and the edges to the conjugacy classes of nontrivial intersections of
verticial subgroups ([16, Th. 3.7]).
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§2. Abelianized tempered fundamental group of a curve

Here we study the tempered fundamental group of an abelian variety and the
abelianized tempered fundamental group of a curve.

We first prove that if A is an abelian variety over an algebraically closed
complete nonarchimedean field of characteristic 0, then the tempered fundamental
group is abelian and fits in a split exact sequence

0→ T → πtemp
1 (A)→ πtop

1 (A)→ 0

where T is profinite (and more precisely isomorphic to Ẑn for some n).
Next we will prove that (as in the case of algebraic fundamental groups or

complex topological fundamental groups) if C is a curve and A its Jacobian variety,
the natural morphism πtemp

1 (C)ab → πtemp
1 (A) is an isomorphism.

§2.1. Tempered fundamental group of an abelian variety

Let K be an algebraically closed complete nonarchimedean field of characteristic 0.
Let A be an abelian variety over K, and let g be its dimension.

Recall the basics of p-adic uniformization of abelian varieties. By [10], there
is a commutative algebraic group G (more precisely a semiabelian variety) and
a surjective analytic morphism u : Gan → Aan which is the universal topological
covering of A and keru is a discrete free abelian group Λ of rank d. Moreover, we
know that (A(n) → A)n∈N (N being ordered by divisibility), with A(n) a copy of
A and A(n) → A multiplication by n, is a cofinal family of finite Galois coverings
of A (by [11, lecture XI]).

Let G(n) be the universal topological covering of A(n) (which is isomorphic to
G since A(n) is isomorphic to A); one has

πtemp
1 (A) = lim←−

n

Gal(G(n)/A).

Recall that a topological group is said to be residually finite if the intersection of
all open subgroups of finite index is {1}. Since πtop

1 (A(n)) = πtop
1 (A) = Λ ' Zd

is residually finite and is a subgroup of finite index of Gal(G(n)/A), Gal(G(n)/A)
is residually finite for every n, so πtemp

1 (A) is also residually finite as a projective
limit of residually finite groups. Thus πtemp

1 (A) → πalg
1 (A) is injective and, since

πalg
1 (A) is abelian, πtemp

1 (A) is also an abelian group.
If n |m, one has the following commutative diagram:

0 // Gal(G(m)/G)

��

// Gal(G(m)/A)

��

// Gal(G/A) = Λ // 0

0 // Gal(G(n)/G) // Gal(G(n)/A) // Gal(G/A) = Λ // 0
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Let us write T (G) = lim←−Gal(G(n)/G). This is a profinite abelian group, so it
splits (canonically) as the product of its pro-p-Sylow subgroups Tl(G). By taking
the projective limit in the previous commutative diagram, one gets the following
exact sequence (it is right exact because the Gal(G(n)/G) are finite):

0→ T (G)→ πtemp
1 (A)→ Λ→ 0,

with πtemp
1 (A) abelian. Thus it is an exact sequence of abelian groups. But Λ is

a free abelian group, so the exact sequence splits. One thus gets a noncanonical
isomorphism

πtemp
1 (A) ' Λ× T (G).

By taking the pro-l completion of the isomorphism above, one gets

Z2g
l ' π

alg
1 (A)l ' ̂πtemp

1 (A)
l

' Zdl × Tl(G),

and so Tl(G) ' Z2g−d
l . We finally obtain a noncanonical isomorphism

πtemp
1 (A) ' Zd × Ẑ2g−d.

§2.2. Jacobian variety and (πtemp
1 )ab of a curve

If G is a topological prodiscrete group with a countable basis of neighborhoods
of 1, then Gab is the topological group G/D(G) (where D(G) is the closure of the
derived subgroup of G); it is also a prodiscrete group and G→ Gab makes Gab-Set
a full subcategory of G-Set.

Let K be a complete discrete valuation field of characteristic 0, K̄ the com-
pletion of its algebraic closure. Let C be a curve over K and let A be the Jacobian
variety of CK̄ . Let P be a closed point of CK̄ . Consider the morphism CK̄ → A

that maps x to the divisor [x]− [P ]. One gets a homomorphism πtemp
1 (CK̄ , P )→

πtemp
1 (A, 0) that factorizes through πtemp

1 (CK̄ , P )ab since πtemp
1 (A, 0) is abelian.

Theorem 2.1. The morphism πtemp
1 (CK̄ , P )ab → πtemp

1 (A, 0) is an isomorphism.

Proof. We have a morphism Cg
K̄
→ A which maps (x1, . . . , xg) to the divisor

[x1] + · · ·+ [xg]− g[P ] of CK̄ . This morphism is invariant under the action of Sg

on Cg
K̄

and thus factorizes through a morphism C
(g)

K̄
:= Cg

K̄
/Sg → A. Recall that

this is a birational morphism and that C(g)

K̄
is smooth over K̄ (see [13, Th. 5.1(a),

Prop. 3.2]).
We thus get a sequence of morphisms

CK̄ → Cg
K̄
→ C

(g)

K̄
→ A,

where the left morphism maps x to (x, P, . . . , P ) and the composed morphism
maps x to [x]− [P ].
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Since C
(g)

K̄
→ A is a birational morphism of proper smooth K̄-varieties,

πtemp
1 (C(g)

K̄
, (P, . . . , P )) → πtemp

1 (A, 0) is an isomorphism according to Propo-

sition 1.6. Thus πtemp
1 (C(g)

K̄
, (P . . . , P )) is abelian and residually finite, and

πtemp
1 (CK̄ , P )→ πtemp

1 (C(g)

K̄
, (P, . . . , P )) factorizes through φ : πtemp

1 (CK̄ , P )ab →
πtemp

1 (C(g)

K̄
, (P, . . . , P )).

As πtemp
1 (CK̄ , P )ab is a projective limit of abelian groups of finite type (and

thus residually finite groups), it must be residually finite too. The commutative
diagram

πtemp
1 (CK̄ , P )ab

φ //

��

πtemp
1 (C(g)

K̄
, (P, . . . , P ))

��

πalg
1 (CK̄ , P )ab ' // πalg

1 (C(g)

K̄
, (P, . . . , P ))

whose vertical arrows are injective, shows that φ is injective.
Since C

(g)

K̄
= Cg

K̄
/Sg, one may also put an orbifold structure on C

(g)

K̄
in

the sense of [2, §III.4] such that Cg
K̄
→ C

(g)

K̄
is an orbifold uniformization (then

πorb
1 (C(g)

K
) denotes the corresponding extension of Sg by πtemp

1 (Cg
K

), as in [2, Prop.
III.4.5.8]). One then has the following commutative diagram whose row is exact:

1 // πtemp
1 (Cg

K̄
, (P, . . . , P )) i //

α

$$IIIIIIIIIIIIIIIIIIIIIIIII
πorb

1 (C(g)

K̄
, (P, . . . , P )) //

π1

��

Sg
// 1

πorb
1 (C(g)

K̄
, (P, . . . , P ))ab

π2

��
πtemp

1 (C(g)

K̄
, (P, . . . , P ))

The morphisms i, π1 and π2 are open, thus α = π2π1i is open: Imα is an open
subgroup of πtemp

1 (C(g)

K̄
, (P, . . . , P )).

If Imα is a strict subgroup, πtemp
1 (C(g)

K̄
, (P, . . . , P ))/ Imα is a nontrivial

abelian group of finite type and thus has a nontrivial finite quotient, which
corresponds to an open subgroup of finite index of πtemp

1 (C(g)

K̄
, (P, . . . , P ))

which contains Imα. But the profinite completion α̂ : πalg
1 (Cg

K̄
, (P, . . . , P )) →

πalg
1 (C(g)

K̄
, (P, . . . , P )) of α is surjective (since πalg

1 (CK̄)→ πalg
1 (C(g)

K̄
), which factor-

izes through α̂, is surjective), and thus one gets a contradiction: α is also surjective.
Let us now consider the homomorphism

δ : πtemp
1 (CK̄ , P )→ πtemp

1 (Cg
K̄
, (P, . . . , P ))
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induced by the morphism CK̄ → Cg
K̄

that maps x to (x, P, . . . , P ). By identifying

πtemp
1 (Cg

K̄
, (P, . . . , P )) and πtemp

1 (CK̄ , (P, . . . , P ))g

thanks to Proposition 3.10 that we will prove in the next section, δ may
be identified to πtemp

1 (CK̄ , P ) → πtemp
1 (CK̄ , P )g : g 7→ (g, 1, . . . , 1). Thus

πtemp
1 (Cg

K̄
, (P, . . . , P )) is generated by the family (σ◦δ(πtemp

1 (CK̄ , P )))σ∈Sg
. Since

α is invariant under Sg, α ◦ δ is surjective, so

πtemp
1 (CK̄ , P )ab → πtemp

1 (C(g)

K̄
, (P, . . . , P ))

is also surjective, thus it is bijective.
If U is an open subgroup of πtemp

1 (CK̄ , P ), the group generated by σ(δ(U)) is
an open subgroup of πtemp

1 (Cg
K̄
, (P, . . . , P )), thus, as α is open and Sg-invariant,

α ◦ δ is open, thus πtemp
1 (CK̄ , P )ab → πtemp

1 (C(g)

K̄
, (P, . . . , P )) is also open, so it is

an isomorphism.

§3. Alterations and tempered fundamental group

In this section we will describe two applications of de Jong’s alteration theorems to
the tempered fundamental group. Indeed, Berkovich already showed in [4, §9] how
these theorems help to build a skeleton, which is homeomorphic to the geometric
realization of a polysimplicial set, onto which a Zariski open subset of the variety
retracts.

Relying on the results of Berkovich, we will prove in characteristic zero that
the tempered fundamental group of a smooth algebraic variety is invariant under
base change of algebraically closed complete fields, and that the tempered funda-
mental group of the product of two smooth varieties (over an algebraically closed
base field) is canonically isomorphic to the product of the tempered fundamental
groups of the factors.

§3.1. Preliminaries about the skeleton of a Berkovich space

In this subsection, we recall the description of the topology of manifolds with nice
enough reduction (for example, semistable) given by Berkovich in [4] and [5]. We
also recall how to use de Jong’s alteration theorems to get information on the
topology of any manifold.

Let K be a complete nonarchimedean field and let OK be its ring of integers.
If X is a locally finitely presented formal scheme over OK , Xη will denote the
generic fiber of X in the sense of Berkovich ([3, Section 1]).

Recall the definition of a polystable morphism of formal schemes:
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Definition 3.1 ([4, Def. 1.2], [5, Section 4.1]). Let φ : Y→ X be a locally finitely
presented morphism of formal schemes over OK .

(i) φ is said to be strictly polystable if, for every point y ∈ Y, there exists an
open affine neighborhood X′ = Spf(A) of φ(y) and an open neighborhood
Y′ ⊂ φ−1(X′) of y such that the induced morphism Y′ → X′ goes through
an étale morphism Y′ → Spf(B0)×X′ · · · ×X′ Spf(Bp) where each Bi is of the
form A{T0, . . . , Tni}/(T0 · · ·Tni − ai) with ai ∈ A and ni ≥ 0. It is said to be
nondegenerate if one can choose X′, Y′ and (Bi, ai) such that {x ∈ (Spf(A))η |
ai(x) = 0} is nowhere dense.

(ii) φ is said to be polystable if there exists a surjective étale morphism Y′ → Y

such that Y′ → X is strictly polystable. It is said to be nondegenerate if one
can choose Y′ such that Y′ → X is nondegenerate.

If S is a locally finitely presented formal scheme over OK , then a (nonde-
generate) polystable fibration of length l over S is a sequence of (nondegenerate)
polystable morphisms X = (Xl → · · · → X1 → S).

Then K-Pstf ét
l will denote the category of polystable fibrations of length l

over OK , where a morphism X → Y is a collection of étale morphisms
(Xi → Yi)1≤i≤l which satisfies natural commutation assumptions.

Pstf ét
l will denote the category of couples (X,K1) where K1 is a complete

non-archimedean field and X is a polystable fibration over OK1 , and a morphism
(X,K1)→ (Y,K2) is a couple (φ, ψ) where φ is an isometric extension K2 → K1

and ψ is a morphism X→ Y⊗OK2
OK1 in K1-Pstf ét

l .
Berkovich defines polysimplicial sets in [4, Section 3] as follows. For an in-

teger n, denote [n] = {0, 1, . . . , n}. For a tuple n = (n0, . . . , np) with either
p = n0 = 0 or ni ≥ 1 for all i, let [n] denote the set [n0] × · · · × [np] and w(n)
denote the number p. Berkovich defines a category Λ whose objects are [n] and
morphisms are maps [m]→ [n] associated with triples (J, f, α), where:

• J is a subset of [w(m)] assumed to be empty if [m] = [0],

• f is an injective map J → [w(n)],

• α is a collection {αl}0≤l≤p, where αl is an injective map [mf−1(l)] → [nl] if
l ∈ Im(f), and a map [0]→ [nl] otherwise.

The map γ : [m] → [n] associated with (J, f, α) takes j = (j0, . . . , jw(m)) ∈ [m]
to i = (i0, . . . , iw(n)) with il = αl(jf−1(l)) for l ∈ Im(f), and il = αl(0) otherwise.
Then a polysimplicial set is a functor Λop → Set; they form a category denoted
by Λ◦ Set.

Let ∆ be the strict simplicial category of integers with increasing maps. One
has a functor from the category of strict simplicial sets to the category of polysim-
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plicial sets by extending to ∆◦ Set→ Λ◦ Set the functor ∆→ Λ that maps [n] to
itself, in such a way that it commutes with direct limits.

Berkovich then considers a functor Σ : Λ → Ke to the category of Kelley
spaces, i.e. topological spaces X such that a subset of X is closed whenever its
intersection with any compact subset of X is closed. This functor takes [n] to
Σn = {(uil)0≤i≤p,0≤l≤ni ∈ [0, 1][n] |∑l uil = 1}, and takes a map γ associated to
(J, f, α) to Σ(γ) that maps u = (ujk) to u′ = (u′il) defined as follows: if [m] 6= [0]
and i /∈ Im(f), or [m] = [0], then u′il = 1 for l = αi(0) and u′il = 0 otherwise;
if [m] 6= [0] and i ∈ Im(f), then u′il = uf−1(i),α−1

i (l) for l ∈ Im(αi) and u′il = 0
otherwise. This induces a functor, the geometric realization, | | : Λ◦ Set→ Ke (by
extending Σ in such a way that it commutes with direct limits).

Berkovich attaches to a polystable fibration X = (Xl → Xl−1 → · · · →
Spf(OK)) a polysimplicial set Cl(Xs) (which only depends on the special fiber)
and a subset of the generic fiber Xl,η of Xl, the skeleton S(X) of X, which is canon-
ically homeomorphic to |Cl(Xs)| (see [4, Th. 8.2]), and such that Xl,η retracts by
a proper strong deformation onto S(X).

In fact, when X is nondegenerate—for example generically smooth (we will
only use the results of Berkovich for such polystable fibrations)—the skeleton of
X depends only on Xl according to [5, Prop. 4.3.1(ii)]; such a formal scheme that
fits into a polystable fibration will be called a pluristable morphism, and we will
denote by S(Xl) this skeleton.

In this case, [5, Prop. 4.3.1(ii)] gives a description of S(Xl), which is inde-
pendent of the retraction. For any x, y ∈ Xl,η, we write x � y if for every étale
morphism X′ → Xl and any x′ over x, there exists y′ over y such that for any
f ∈ O(X′η), |f(x′)| ≤ |f(y′)| (� is a partial order on Xl,η). Then S(Xl) is just the
set of maximal points of Xl,η for �.

We will not give the construction of Cl(Xs) in full detail, as we will not need
it. Rather, let us give some examples of polystable fibrations of length l = 1 ([4,
Section 3]).

If X is just Spf(B0)×Spf OK · · ·×Spf OK Spf(Bp+1) where each Bi is of the form
OK{T0, . . . , Tni}/(T0 · · ·Tni − ai) with ai ∈ OK , |ai| < 1 for i ≤ p and |ap+1| = 1,
then C1(X→ Spf(OK)) is just [n] with n = (n0, . . . , np).

If X is a semistable formal scheme over Spf(OK), then C1(X → Spf(OK)) is
a strict simplicial set.

For example, if X is a semistable model of a complete curve (which is clearly
polystable over OK), the polysimplicial set defined by Berkovich is just the graph
of the stable reduction defined in the previous section (a graph can be considered
as a simplicial set of dimension 1, and thus as a polysimplicial set).
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If (X ,D) is a semistable model of a curve (not necessarily complete), the
graph of (X ) is the semigraph of X = X \ D in which one deletes all the edges
with only one branch. The retraction of (X η)an to the geometric realization of this
graph restricts to a retraction of (Xη)an thanks to [4, Cor. 8.4].

The retraction to S(X) commutes with étale morphisms:

Theorem 3.2 ([4, Th. 8.1]). One can construct, for every polystable fibration X =

(Xl
fl−1→ · · · f1→ X1 → Spf(OK)), a proper strong deformation retraction Φl :

Xl,η × [0, l]→ Xl,η of Xl,η onto the skeleton S(X) of X such that:

(i) S(X) =
⋃
x∈S(Xl−1) S(Xl,x) (set-theoretic disjoint union), where Xl−1 =

(Xl−1 → · · · → Spf(OK));

(ii) if φ : Y→ X is a morphism of fibrations in Pstf ét
l , one has

φl,η(Φl(y, t)) = Φl(φl,η(y), t)

for every y ∈ Yl,η and t ∈ [0, l].

We will simply write xt for Φl(x, t). We will now assume for simplicity that
K is algebraically closed. Berkovich deduces from (ii) the following corollary:

Corollary 3.3 ([4, Cor. 8.5]). Let X be a polystable fibration over OK with a nor-
mal generic fiber Xl,η. Suppose we are given an action of a finite group G on X

over OK and a G-invariant Zariski open dense subset U of Xl,η. Then there is
a strong deformation retraction of the Berkovich space G \ U to a closed subset
homeomorphic to G \ |Cl(X)|.

More precisely, in this corollary, the closed subset in question is the image of
S(X) (which is G-equivariant and contained in U) under U → G \ U .

Theorem 3.2 also implies that the skeleton is functorial with respect to pluri-
stable morphisms:

Proposition 3.4 ([5, Prop. 4.3.2(i)]). If φ : X→ Y is a pluristable morphism be-
tween nondegenerate pluristable formal schemes over OK , then φη(S(X)) ⊂ S(Y).

In fact, more precisely, from the construction of S, S(Y) =
⋃
x∈S(X) S(Yx).

Recall also that if the residue field k of K is algebraically closed, then the polysim-
plicial complex of a polystable fibration commutes with base change:

Proposition 3.5 ([4, Prop. 6.10]). If X is a polystable fibration over OK , then for
any isometric extension K → K ′, C((X⊗OK′)s)→ C(Xs) is an isomorphism.

In order to use the previous description of the Berkovich space of a scheme
with a model over OK which admits a polystable fibration for understanding the
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topology of a smooth scheme over K, we will need de Jong’s result about the
existence of alterations by such pluristable schemes over OK .

More precisely we will use the following consequence of de Jong’s theory given
by Berkovich (as we will work over valuation fields of characteristic 0, we give here
only a version restricted to this case):

Lemma 3.6 ([4, Lem. 9.2]). Assume K has characteristic 0, and let X be an in-
tegral scheme proper flat and of finite presentation over OK , with an irreducible
generic fiber of dimension l. Then there are:

(a) a polystable fibration X ′ = (X ′l → · · · → X ′0 = SpecOK), where every mor-
phism is projective of relative dimension 1 with smooth geometrically irre-
ducible generic fibers,

(b) an action of a finite group G on X ′ over OK ,

(c) a dominant G-equivariant morphism φ : X ′l → X over OK ,

such that the generic fiber is generically étale with Galois group G.

§3.2. Invariance of πtemp
1 under change of algebraically closed fields

Let X be a smooth connected algebraic variety over an algebraically closed com-
plete nonarchimedean field K of characteristic 0. Let K ′/K be an isometric ex-
tension of complete valued fields.

Lemma 3.7. The functor Covtop(X) → Covtop(XK′) is an equivalence of cate-
gories. Thus, if x′ is a geometric point of XK′ with image x in X, then

πtop
1 (XK′ , x

′)→ πtop
1 (X,x)

is an isomorphism.

Proof. Let us embed X in an integral scheme X which is proper, of finite pre-
sentation and flat over OK . Then by Lemma 3.6 there is a generically smooth
polystable fibration X ′ over OK endowed with an action of a group G such that
(X ′, G) is a Galois alteration of X.

Let U be a dense Zariski open subset of X included in X such that U ′ → U is
finite (where U ′ is the pullback of U in X ′). Then G\S(X ′s) is a strong deformation
retract of Uan by Corollary 3.3. Moreover X ′OK′ is a polystable fibration endowed
with an action of G, and X ′OK′ is also a Galois alteration of XK′ , finite over UK′ .
Thus, as in the previous case, Uan

K′ retracts to the closed subset G\S(X ′K′) and the
natural morphism Uan

K′ → Uan maps S(X ′K′) to S(X ′). But C(X ′K′,s)→ C(X ′s) is
an isomorphism according to Proposition 3.5. The morphism Uan

K′ → Uan is thus
a homotopy equivalence.
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One has the following 2-commutative diagram:

Covtop(UK′) Covtop(U)oo

Covtop(XK′)

OO

Covtop(X)

OO

oo

The vertical arrows are equivalences by Proposition 1.4, and the top arrow is also
an equivalence by what has just been shown. Thus πtop

1 (XK′ , x
′) → πtop

1 (X,x) is
an isomorphism.

Let us assume now that K ′ is also algebraically closed.

Proposition 3.8. If x′ is a geometric point of XK′ with image x in X, then the
morphism πtemp

1 (XK′ , x
′)→ πtemp

1 (X,x) is an isomorphism.

Proof. Let us consider a countable cofinal projective system of geometrically
pointed (the points being defined in a large enough valuation field Ω) Galois cover-
ings (Xi, xi)i∈N of X. Then (Xi,K′ , x

′
i)i∈N, where x′i is some point of Xi,K′ over xi,

is also a cofinal projective system of Galois covering of XK′ by [11, lecture XIII].
If X∞i is the universal topological covering of Xi then X∞i,K′ := (X∞i )K′ is

the universal topological covering of Xi,K′ by Lemma 3.7.
Since Gal(X∞i,K′/XK′) = Gal(X∞i /X), by taking the projective limit over

i ∈ N, one gets the desired result.

§3.3. Products and tempered fundamental group

Let X,Y be smooth connected algebraic varieties over an algebraically closed com-
plete nonarchimedean field K of characteristic 0.

Lemma 3.9. If x and y are geometric points of X and Y (with values in the same
field), then

πtop
1 (X × Y, (x, y))→ πtop

1 (X,x)× πtop
1 (Y, y)

is an isomorphism.

Proof. Let X (resp. Y ) be a scheme which is proper, of finite presentation and
flat over OK , in which X (resp. Y ) is embedded as an open subvariety, and let
(X ′, G) → X (resp. (Y ′, H) → Y ) be a Galois alteration such that X ′ → OK
(resp. Y ′ → OK) is pluristable. Let also U ⊂ X (resp. V ⊂ Y ) be a dense Zariski
open embedding such that U ′ → U (resp. V ′ → V ) is finite.

Since the fact that πtop
1 (X ×Y, (x, y))→ πtop

1 (X,x)×πtop
1 (Y, y) is an isomor-

phism does not depend on x and y, one can assume that x ∈ U and y ∈ V .
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Then, as in the proof of Lemma 3.7, G \ S(X ′) (resp. H \ S(Y ′)) is a strong
deformation retract of Uan (resp. V an).

One gets the same results for X × Y , that is, X ′ × Y ′ → X × Y is a Galois
alteration of group G×H, and U × V retracts to (G×H) \ S(X ′ × Y ′). But the
pluristable maps X ′ × Y ′ → X ′ and X ′ × Y ′ → Y ′ send S(X ′ × Y ′) into S(X ′)
and S(Y ′) respectively. This yields a map f : S(X ′×Y ′)→ S(X ′)×S(Y ′) (which
is compatible with the action of G×H). But as

S(X ′ × Y ′) =
⋃

x∈S(X′)

S((X ′ × Y ′)x) =
⋃

x∈S(X′)

S(Y ′ ⊗H(x))

and since S(Y ′ ⊗ H(x)) → S(Y ′) is a homeomorphism by Proposition 3.5, f is
bijective, hence a homeomorphism since S(X ′ × Y ′) is compact.

Thus (G ×H) \ S(X ′ × Y ′) → G \ S(X ′) ×H \ S(Y ′) is a homeomorphism.
Therefore (U × V )an → Uan × V an is a homotopy equivalence (the product on
the right is the product of topological spaces) and thus πtop

1 (U × V, (x, y)) →
πtop

1 (U, x)× πtop
1 (V, y) is an isomorphism.

By applying Proposition 1.4 to U ⊂ X, V ⊂ Y and U ×V ⊂ X×Y , one finds
that

πtop
1 (X × Y, (x, y))→ πtop

1 (X,x)× πtop
1 (Y, y)

is an isomorphism.

Proposition 3.10. If x and y are geometric points of X and Y (with values in
the same field), then

πtemp
1 (X × Y, (x, y))→ πtemp

1 (X,x)× πtemp
1 (Y, y)

is an isomorphism.

Proof. Let (Xi, xi)i and (Yj , yj)j be countable cofinal projective systems of con-
nected geometrically pointed Galois coverings of X and Y . Then by [11, lecture
XIII], (Xi×Yj , (xi, yj))(i,j) is a cofinal projective system of connected Galois cov-
erings of X × Y . By Lemma 3.9, (Xi × Yj)∞ = X∞i × Y∞j and

Gal((Xi × Yj)∞/(X × Y )) = Gal(X∞i /X)×Gal(Y∞j /Y ).

Thus, by taking the projective limit over (i, j) in the previous isomorphism, one
gets the desired result.

§4. Metric structure of the graph of the stable model of a curve

The main goal of this section is to prove that the metric structure on the graph of
the stable model of a Mumford curve (or equivalently, the graph structure of the
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skeleton of the curve considered as a Berkovich space, cf. 3.1) can be recovered
from the tempered fundamental group of this curve.

We will only consider the case of mixed characteristic (in the case of equal
characteristic 0, this is surely false, as the whole tempered fundamental group can
be recovered only from the graph of groups associated with the stable reduction
of the curve according to [16, Ex. 3.10]).

Definition 4.1. A metric structure on a graph G is a function

d : {edges of G} → R>0.

For any e, d(e) is called the length of the edge e with respect to the metric struc-
ture d. A graph endowed with a metric structure is called a metric graph.

For a curve X over an algebraically closed complete nonarchimedean field
K with a semistable model X , let e be an edge of the graph of this semistable
reduction (that is, a node of Xs). Then, locally for the étale topology at this node,
X is étale over OK [X0, X1]/(X0X1 − a), with a ∈ OK . According to [17, Cor.
2.2.18], |a| does not depend on any choice. Then we set

d(e) = − logp(|a|),

which defines a natural metric structure on the graph of the stable reduction of X.
For example, if X is the stable model of P1 \ {0, 1,∞, λ} with |λ| < 1, then

the graph of X has a single edge of length − logp(|λ|).
We already know, from Theorem 1.7, that one can recover the graph of the

stable model from the tempered fundamental group. In fact we will deduce from
Mochizuki’s study that one can decide, for every finite index open subgroup of the
tempered fundamental group and every vertex of the skeleton of the curve, whether
the corresponding covering of the curve is split over this vertex (an étale covering
X ′ → X of manifolds is said to be split over a point x ∈ X if H(x)→ H(x′) is an
isomorphism for every x′ ∈ X ′ over x; a covering X ′ → X of order n is split over
x if and only if the fiber of x has cardinality n, which amounts to the fact that
locally in a neighborhood of x, X ′ → X pulls back to a topological covering [2,
III.1.2.1]).

This suggests asking whether finite étale coverings of a Mumford curve are
split over vertex points. Studying simple coverings may be enough to see that the
metric structure of the skeleton must play a role in the structure of the tempered
fundamental group.

Let us begin with an elementary situation.
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Lemma 4.2. The covering Gm
z 7→zp

h

−−−−→ Gm is split over a Berkovich point B(1, r)
corresponding to the ball of center 1 and radius r with r < 1 if and only if r <
p−h−1/(p−1).

More precisely, B(1, r) has pi preimages if:

• i = 0 and r ∈ ]p−p/(p−1), 1];

• 1 ≤ i ≤ h− 1 and r ∈ ]p−i−p/(p−1), p−i−1/(p−1)];

• i = h and r ∈ [0, p−h−1/(p−1)].

Proof. Let g : z 7→ zp, and let us calculate g(B(z1, r)) with |z1| = 1 and r < 1. Let
fz1 : z 7→ (z + z1)p − zp1 =

∑p
i=1 aiz

i with |ap| = 1 and |ai| = p−1 if 1 ≤ i ≤ p− 1.
Then g(B(z1, r)) = B(zp1 , r

′) with

r′ = max
|z|<r

|f(z)| = max |ai|ri = max{rp, rp−1} =

{
rp−1 if r ≤ p−1/(p−1),

rp if r ≥ p−1/(p−1).

Moreover let z0 be of norm 1, let z1/p
0 be a pth root of z0, and let r′ < 1. Then

|zp1 − z0| =
∏
ζ∈µp |z1 − ζz1/p

0 | ≤ r′ implies that there exists ζ0 ∈ µp such that

|z1 − ζ0z1/p
0 | ≤ r′1/p (i.e. B(z1, r

′1/p) = B(z1/p
0 , r′1/p)).

Suppose now |ζ − ζ ′| = p−1/(p−1). Since |ζ − ζ0| = p−1/(p−1) if ζ ∈ µp \ {ζ0},
one has |z1 − z

1/p
0 ζ| = p−1/(p−1) if ζ ∈ µp \ {ζ0} and thus |z1 − z

1/p
0 ζ0| =

|zp1 − z0|/
∏
ζ∈µp\{ζ0} |z1 − z1/p

0 ζ| ≤ pr′ (i.e. B(h′, pr′) = B(ζ0z
1/p
0 , pr′)). Thus

g−1(B(z0, r
′)) =

{
{B(ζz1/p

0 , pr′)}ζ∈µp if r′ ≤ p−p/(p−1),

{B(ζz1/p
0 , r′1/p)}ζ∈µp if r′ ≥ p−p/(p−1).

Since |ζ − ζ ′| = p−1/(p−1) if ζ 6= ζ ′ ∈ µp, one finds that g−1(B(z0, r
′)) has a single

element if r′ ≥ p−p/(p−1) and p elements otherwise. Thus one gets the desired
result when h = 1.

In the general case, one uses induction on h by decomposing z 7→ zp
h

into
z 7→ zp

h−1 7→ zp
h

.

We will first study two examples where one can use Lemma 4.2 in a direct
way:

• a punctured line (Theorem 4.6),

• a punctured elliptic curve, for which we will cut and paste the kind of coverings
considered in Lemma 4.2 (Theorem 4.7).

No direct reference to the proofs of these examples will be made in the proof of the
general case of Mumford curves, so the reader can skip the examples if he prefers
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(the case of punctured lines and elliptic curves can also be recovered from the case
of proper hyperbolic Mumford curve).

For the more general case of a Mumford curve X, we will also study the
structure of Z/phZ-torsors. The theory of theta functions as can be found in [19]
and [18] tells us that the pullback of such a torsor to the universal topological

covering Ω is in fact the pullback of Gm
z 7→zp

h

−−−−→ Gm along some theta function
Ω→ Gm, which in turn corresponds to some equivariant current over the tree T(Ω)
of Ω. Therefore, we will begin our study by proving that if two currents coincide
over a sufficiently large part of T(Ω), then the quotient of the two associated
invertible functions is nearly constant over some smaller part of T(Ω) and thus
the two corresponding Z/phZ-torsors are split over the same vertices in this part
of T(Ω). Thus, we will consider some currents which, over some “large” part of Ω,
coincide with the one corresponding to a homography invertible over Ω and which
is equivariant under some subgroup of finite index of Gal(Ω/X). Then we consider
the corresponding Z/phZ-torsor over some finite étale covering of X which will

behave like Gm
z 7→zp

h

−−−−→ Gm over some part of T(Ω).
We will deduce from this that the length of every loop of every finite topo-

logical covering of the graph of the stable model of X can be recovered from the
tempered fundamental group. A final combinatorial consideration will give us what
we wanted.

§4.1. Preliminaries

The recovering of the graph of the stable reduction from the tempered fundamental
group is functorial with respect to (p′)-finite coverings, in the sense that one can
recover the morphism of graphs induced by the covering from the morphism of
the tempered fundamental groups. A general finite covering does not induce an
actual morphism of graphs. However, as we prove here, one can still recover some
combinatorial data from the morphism of the tempered fundamental groups.

Let K be a complete dicrete valuation field of characteristic 0, OK its inte-
ger ring, k its residue field, assumed of characteristic p > 0, and let K be the
completion of the algebraic closure of K (with integer ring OK).

From now on, we assume that we have chosen a compatible system of roots
of 1 in K, so that we may identify µn and Z/nZ. Thus we will often talk of
Z/nZ-torsors over a curve over K when we should better talk of µn-torsors.

Let X1,K , X2,K be smooth hyperbolic curves of type (g, n) over K. Let φ be
an isomorphism πtemp

1 (X1,K) ' πtemp
1 (X2,K).

Let H1 be an open subgroup of finite index in πtemp
1 (X1,K) and let H2 :=

φ(H1).
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For i = 1, 2, we will write Πi := πtemp
1 (Xi,K) to simplify notation. Let

Yi,K → Xi,K be the connected finite étale covering of Xi,K corresponding to Hi.
Let Xi and Yi be the stable models of Xi,K and Yi,K , and ψi : Yi → Xi the
unique morphism extending Yi,K → Xi,K . Furthermore, Xi and Y i will denote
the semistable compactfications of Xi and Yi.

By Theorem 1.7, φ induces an isomorphism Gc1 ' Gc2 between the semigraphs
of anabelioids of X1 and X2. Likewise, H1 ' H2 induces an isomorphism Hc1 → Hc2
between the semigraphs of anabelioids of Y1 and Y2.

We are now interested in reconstructing from πtemp
1 (Yi,K) → πtemp

1 (Xi,K)
what data can be recovered of the preimage of the cusps and vertices of the skeleton
of Xi,K .

Lemma 4.3. Let x1 be a cusp of X1,s, and x2 the cusp of X2,s corresponding to
x1 via Gc

1 ' Gc
2. Let x′i be the corresponding cusp of the generic fiber Xi,η. Then

ψ−1
1,η(x′1) and ψ−1

2,η(x′2) have the same number of elements.

Proof. Let yi be a cusp of Yi,s (corresponding to a cusp y′i of Yi,η) and let zi be
its image in Xi,s (corresponding to a cusp z′i of Xi,η). Assume that y1 and y2

correspond to each other under Gc
1 ' Gc

2.
Let H(p′)

i (resp. Π(p′)
i ) be the inverse limit of the discrete quotients of Hi (resp.

Πi) that are extensions of a (p′)-finite group by a torsionfree group. Thus H(p′)
i '

πtemp
1 (Yi,K)(p′) and Π(p′)

i ' πtemp
1 (Xi,K)(p′). Moreover, φ induces isomorphisms

Π(p′)
1 ' Π(p′)

2 and H
(p′)
1 ' H(p′)

2 .
Let Ii ⊂ H

(p′)
i be an inertia group of yi. The image of Ii in Π(p′)

i is an open
subgroup (and thus it is nontrivial) of an inertia group of zi. Since the intersection
of inertia groups of two different cusps is {1}, the image of Ii is not contained in
any other inertia group of a cusp of Xi,s, thus zi is characterized by the morphism
Hi → Πi as being the only cusp of Xi,s such that inertia groups of yi map by
Hi → Πi to inertia groups of zi. Since Π1 → Π2 (resp. H1 ' H2) sends the inertia
groups of a cusp of X1,s (resp. Y1,s) to inertia groups of the corresponding cusp
of X2,s (resp. Y2,s), z2 is the cusp corresponding to z1 by H1 → H2. Thus the
following diagram commutes:

cusps of Y1,s ' cusps of Y2,s

↓ ↓
cusps of X1,s ' cusps of X2,s

This gives the result.

In particular, the morphism Y1,η → X1,η is ramified at x′1 if and only if
Y2,η → X2,η is ramified at x′2.
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Lemma 4.4. Let X̃i,η be a Zariski open subset of Xi,η containing Xi,η. As-
sume that the cusps of X̃1,η correspond to the cusps of X̃2,η under the bijec-
tion cusps(X1,η) ' cusps(X2,η). Then φ induces an isomorphism πtemp

1 (X̃1,η) →
πtemp

1 (X̃2,η).

Proof. Let S∞i be the universal topological covering of a Galois finite covering Si
of Xi,η. Then the corresponding discrete quotient of Πi is an extension Gi of a free
group by a finite quotient G1,i of Πi, which corresponds to the finite covering Si
of Xi,η.

On the other hand, if G′i is a quotient of Πi (corresponding to a tempered
covering S′′i ) such that G′i is an extension of a free group by a finite quotient
G′1,i (which corresponds to a finite covering S′i), then S′′i → S′i is a topological
covering ([2, Th. III.2.1.9.a]).

Then, by Proposition 1.3, πtemp
1 (X̃i,η) = lim←−j Πi/Hi,j , where (Πi/Hi,j)j are

the discrete quotients of πtemp
1 (Xi,η) which are extensions of a free group by a

finite quotient of πtemp
1 (Xi,η) corresponding to a finite covering which is unramified

above X̃i,η. By Lemma 4.3 the family (H2,j)j is just (φ(H1,j))j). This gives the
desired isomorphism.

Lemma 4.5. Let x1 be the generic point of an irreducible component of X1,s,
and x2 the generic point of the corresponding irreducible component of X2,s under
Gc

1 ' Gc
2. Let x′i be the corresponding point of the skeleton of the generic fiber Xi,η.

Then ψ−1
1,η(x′1) and ψ−1

2,η(x′2) have the same number of elements.

Proof. If Xi,0 is an irreducible component of Xi,s, let Yi,0 be an irreducible com-
ponent of Yi,s which maps surjectively to Xi,0. Then the morphism between the
components of the graphs of groups Π(p′)

Yi,0
→ Π(p′)

Xi,0
is open (in particular, its image

is noncommutative) since it embeds in the commutative diagram

Gal
(
K(Yi,0)/K(Yi,0)

)

����

� � // Gal
(
K(Xi,0)/K(Xi,0)

)

����

Π(p′)
Yi,0

// Π(p′)
Xi,0

where the upper arrow is an open embedding and the vertical arrows are projec-
tions.

Since Π(p′)
Xi,0
→ Π(p′)

i (defined up to conjugation) is injective, the image of Π(p′)
Yi,0

in Π(p′)
i (defined up to conjugation) is noncommutative, and thus Π(p′)

Xi,0
is the only

verticial subgroup of Π(p′)
i which contains the image of Π(p′)

Yi,0
.
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Moreover, if Yi,0 is an irreducible component of Yi,s which does not map
surjectively onto an irreducible component of Xi,s, the image of Π(p′)

Yi,0
in Π(p′)

i is
commutative, so the embedding Hi → Πi decides which components of Yi,s map
surjectively onto which components of Xi,s.

In particular, if x1 and x2 are generic points of connected components of Xi,s

corresponding to each other, the number of preimages of xi under Yi,s → Xi,s is
independent of i.

Let us now write π for the continuous map from the generic analytic fiber to
the special fiber. Then xi = π(x′i) is the generic point of an irreducible component
of Xη, every preimage yi of xi under ψi is a generic point of an irreducible compo-
nent of Yη, and π−1(yi) is reduced to a single element by [4, Cor. 1.7], which must
map to x′i because π−1(xi) = {x′i} by [4, Cor. 1.7]. Thus ψ−1

i,η (x′i) is in natural
bijection with ψ−1

i (xi).

§4.2. Case of P1 \ {z1, . . . , zn}
Let i = 1 or 2. Let zi,1, . . . , zi,n ∈ Qnr

p , with n ≥ 4, where Qnr
p denotes a maximal

unramified extension of Qp. Write Xi = P1 \ {zi,1, . . . , zi,n}. Let Πi = πtemp
1 (P1 \

{zi,1, . . . , zi,n}). We already know that an isomorphism φ : Π1 ' Π2 induces an iso-
morphism between the semigraphs of the stable reductions of P1 \{z1,1, . . . , z1,n}.
After reordering the z2,j , we may assume that this morphism of semigraphs iden-
tifies the inertia subgroup (defined up to conjugation) of the cusp z1,j with the
inertia subgroup of the cusp z2,j .

Theorem 4.6. The isomorphism of graphs thus defined by φ between the skeletons
of (P1\{z1,1, . . . , z1,n})an and (P1\{z2,1, . . . , z2,n})an preserves the lengths of edges
(i.e. it induces an isomorphism of metric graphs).

Equivalently, for every (j1, j2, j3, j4), one gets the equality of cross-ratios’
norms:

|(z1,j1 , z1,j2 , z1,j3 , z1,j4)| = |(z2,j1 , z2,j2 , z2,j3 , z2,j4)|.
In fact, we will be able to prove this result without assuming zi,1, . . . , zi,n ∈ Qnr

p

after studying the case of an elliptic curve (this will give the result for p 6= 2) and
without any assumption after studying the case of a Mumford curve.

Proof of Theorem 4.6. By Lemma 4.4, one can assume that n = 4. One can
also assume that the cusps are 0, 1,∞ and λi (since the length is invariant under
automorphisms of P1). Moreover, we may assume that Xi does not have good
reduction (in which case there is nothing to prove), and thus vp(λi − 1) > 0 (it is
an integer since λ ∈ Qnr

p ) after permuting 0, 1 and ∞ by another automorphism
of P1. We now have to prove that vp(λ1 − 1) = vp(λ2 − 1).
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Assume, ab absurdo, that vp(λ1 − 1) < vp(λ2 − 1). Let h := vp(λ2 − 1)− 1 ≥
vp(λ1 − 1) and let Hi be the subgroup of Πi of index ph corresponding to the
unique connected covering Yi → Xi of degree ph unramified outside 0 and∞ (this
is the morphism z 7→ zp

h

from P1 to P1). One has φ(H1) = H2 by Lemma 4.3.
But, according to Lemma 4.2, B(1, r) (the point of the Berkovich space

of P1 corresponding to the ball of radius r and center 1) has ph−1 preimages
if p−(h+1/(p−1)) ≤ r < p−(h−1+1/(p−1)) and has ph preimages if r < p−(h+1/(p−1)).

Thus if p 6= 2, B(1, |λ1 − 1|) has ph−1 preimages in Y1 and B(1, |λ2 − 1|) has
ph preimages in Y2, which contradicts Lemma 4.5.

In the case p = 2 and h ≥ 2, B(1, |λ1 − 1|) has 2h−2 preimages in Y1 and
B(1, |λ2 − 1|) has 2h−1 preimages in Y2, which contradicts Lemma 4.5.

If h = 1, and therefore v2(λ1) = 1 and v2(λ2) = 2, the semigraph of the
reduction of Y1 → X1 is (we marked the different cusps of Y1, and

√
λi is a square

root of λi):
∞ √

λ1

•

tttttttt −
√
λ1

• •

xxxxxxxx

HHHHHHHH

•
MMMMMMMM 1

0 −1
The semigraph of the stable reduction of Y2 is

∞ √
λ2

−
√
λ2

• •

������������
ppppppp

OOOOOOOOO

===========

1

0 −1

They are not isomorphic, and thus one also gets a contradiction.

§4.3. Case of a punctured elliptic curve

Let i = 1 or 2. Let Xi be two punctured Tate curves C∗p/q
Z
i − {1} with qi ∈ Qp

and |qi| < 1. Let Πi = πtemp
1 (Xi) and let φ : Π1 ' Π2 be an isomorphism.

Theorem 4.7. |q1| = |q2|.
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The main idea of the proof will be to consider a Z/pZ-torsor of the universal
topological covering P1 \ {0,∞} of the elliptic curve which is ramified at only
two cusps (and which is not ramified at 0 and ∞). As the covering becomes split
near 0 and ∞, one can patch parts of this covering to make it periodic (thus it
will descent to a Z/pZ-torsor of a finite topological covering). We will then use
Lemma 4.2 as in the case of a punctured curve.

To verify that the torsors we have just constructed must (almost) correspond
to each other by φ, we will have to study the Fp-vector space of torsors of the
elliptic curve ramified at only two points; this is a 3-dimensional vector space.
A basis will be obtained by considering a topological covering, the torsor we have
just constructed and another one which we will construct in a similar way. To give
a better description in terms of currents (which will not be used in the proof), if
the torsor we constructed corresponds to a current following a path linking the
two cusps, the other torsor will correspond to a current linking the cusp following
the other path linking the two cusps.

We do not have to assume qi ∈ Qnr
p as in the case of a punctured line, because,

by taking an unramified covering of the elliptic curve, we get as much vertices on
the skeleton of the curve as we want.

Proof of Theorem 4.7. Let us choose integers n, l and m such that:

• n is prime to p and n ≥ vp(q2)vp(q1)(p− 1)
|vp(q2)− vp(q1)|p ,

• l ≥ 1 +
2np

(p− 1)vp(qi)
,

• m ≥ 2l/n.

Let H0,i = [Πi,Πi]Πn
i be the preimage in Πi of the image under multiplication by

n in the abelianized group of Πi. Then φ induces an isomorphism H0,1 → H0,2.
The covering Y0,i of Xi corresponding to Hi is the multiplication Xi

×n−−→ Xi by n
on the elliptic curve Xi.

Let now H1,i be the subgroup of H0,i corresponding to the unique connected
topological covering Y1,i of degree n of Y0,i. Then Y1,i ' C∗p/q

mZ−{qa/nζb}(a,b)∈Z2

where q1/n is an n-th root of q and ζ is an n-th root of 1. The semigraph of the
stable reduction of Y1,i has mn vertices joined in a circle (the distance of two such
successive vertices is vp(qi)/n), and n cusps end at each vertex.

The map φ induces an isomorphism H1,1 ' H1,2 which itself induces an
isomorphism between the semigraphs of the stable reduction of Y1,i. Let us number
from 0 to mn−1 the vertices of the graphs by following the circle compatibly with
the isomorphism induced by φ (let us write xi,0, . . . , xi,mn−1 for the corresponding
vertices of the skeleton of Y1,i).
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Let z1,0 and z1,l be two cusps of Y1,1 ending at the vertices of the graph
numbered 0 and l respectively. Let z2,0 and z2,l be the corresponding cusps of Y1,2.

Let us now focus on Zp-torsors over Y 1,i which are unramified outside zi,0
and zi,l. They are the elements of an Fp-vector space Vi of dimension 3.

Recall that we chose m,n and l so that

l − 1
n

vp(qi) >
2p
p− 1

and
mn− l
n

vp(qi) >
l

n
vp(qi).

We will now describe a basis of this Fp-vector space.
Let Si be the universal topological covering of Y 1,i; we identify it with P1 \

{0,∞} ⊂ P1. Let si,0 and si,l be the unique preimages in Si of zi,0 and zi,l
of norm 1 and |q|l/mn and let U1,i ⊂ Si be the open annulus {|qi|(l−mn)/2n >

|z| > |qi|(l+mn)/2n} and U2,i ⊂ Si the open annulus {|qi|l/np−p/(p−1) > |z| >
|qi|mpp/(p−1)}. Maps from U1,i and from U2,i to Y 1,i are still open embeddings
which, together, cover Y 1,i.

Let T1,i be the restriction to U1,i of the ramified (only over si,0 and si,l)
covering P1 → P1 : z 7→ si,0z

p + si,l/(zp + 1), which is Galois with Galois group
isomorphic to Z/pZ, and choose such an isomorphism to get a Z/pZ-torsor. Let T2,i

be the trivial Z/pZ-torsor over U2,i and let T3,i = T1,i q T2,i → U3,i = U1,i qU2,i.
Over U1,i ×Y 1,i

U2,i (which has two connected components), T1,i is trivial.
Choosing a trivialization, one may now descend T3,i → U3,i to a Z/pZ-torsor
Ti → Y 1,i, which is only ramified over zi,0 and zi,l.

According to Lemma 4.2, Ti → Y 1,i is split over xj (with j ∈ [0,mn − 1]) if
and only if |qi|j/n ∈ [|qi|mpp/(p−1), |qi|l/np−p/(p−1)], i.e.

j ∈ I1,i :=
[
l +

np

vp(qi)(p− 1)
,mn− np

vp(qi)(p− 1)

]
.

There is such an integer thanks to the assumption about l,m and n because

lg(I1,i) = mn− l − 2
np

vp(qi)(p− 1)
≥ 1

(where lg denotes the length of an interval).
Likewise, let s′i,l be a preimage of zi,l of norm |q|(l−mn)/n, let U ′1,i be the

annulus {|qi|(l−2mn)/2n > |z| > |qi|l/2n}, and U ′2,i the annulus {p−p/(p−1) > |z| >
|qi|(mn−l)/npp/(p−1)}. These are open subsets of Y 1,i and cover it.

Let T ′1,i be a Z/pZ-torsor over U ′1 obtained as the restriction of a Z/pZ-torsor
over P1 ramified only above zi,0 and z′i,l. It is trivial over U ′1,i ∩ U ′2,i, and, by
choosing such a trivialization, one gets by descent a Z/pZ-torsor T ′i over Y 1,i,
ramified only over zi,0 and zi,l.
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The covering Ti → Y 1,i is split over xj (with j ∈ [0,mn − 1]) if and only if
|qi|j/n ∈ [|qi|j/npp/(p−1), p−p/(p−1)], i.e.

j ∈ I2,i :=
[

np

vp(qi)(p− 1)
, l − np

vp(qi)(p− 1)

]
.

There is such an integer thanks to the assumption about l,m and n because

lg(I2,i) = l − 2
np

vp(qi)(p− 1)
≥ 1.

Let finally T ′′i be the essentially unique connected topological covering of
degree p of Y i and let us choose an isomorphism from Z/pZ onto its Galois group
so that it becomes a Z/pZ-torsor. Let us then show that Ti, T ′i , and T ′′i constitute
a basis of Vi.

Let i be an integer in I1,i. As I1,i ∩ I2,i = ∅ and as T ′′ is everywhere split,
if aTi + bT ′i + cT ′′i (the linear combination is in the sense of the structure of the
vector space Vi) is split over xj , then c = 0. By the same argument with I2,i, if
aTi + bT ′i + cT ′′i = 0, one gets b = 0, but as Ti is not trivial, one indeed finds that
Ti, T

′
i and T ′′i constitute a basis of Vi.
Assume now ab absurdo that |q1| > |q2|; then I1,1 ⊂ I1,2. Let T0,2 = aT2 +

bT ′2 + cT ′′2 be the image of T1 under (φ−1)∗ : V1 → V2 (indeed, φ induces such a
(φ−1)∗ according to Lemma 4.3).

Let j ∈ I1,1. Then T1 is split over x1,j , so, according to Section 4.5, T0,2 is
split over x2,j , and thus c = 0. Thus, T0,2 is split over every xj if b = 0 or exactly
over the xj with j ∈ I1,2 otherwise.

Yet, according to Section 4.5, T0,2 must be split exactly over the x2,j such
that T1 is split over x1,j , i.e. j ∈ I1,1.

Thus, one cannot be in the case b = 0 and I1,2 and I1,1 must contain exactly
the same integers.

But this cannot be if n ≥ vp(q2)vp(q1)(p−1)
(vp(q2)−vp(q1))p , because

lg(I1,2)− lg(I1,1) = 2
np

vp(q1)(p− 1)
− 2

np

vp(q2)(p− 1)
≥ 2.

Remark. Assume p 6= 2. Let {zi,1, . . . , zi,4} be four elements of Qp, and let φ be
an isomorphism between the πtemp

1 (P1\{zi,1, . . . , zi,4}), which identifies z1,j to z2,j

by the identification of the cusps of the graphs of the stable reduction (we assume
that the curves have bad reduction, and that the length of the edge of the graph
is li). Let Ei be the unique Z/2Z-covering of P1 ramified over {zi,1, . . . , zi,4} and
only over those points (the subgroups of index 2 corresponding to Ei thus map to
one another). Ei is a Tate curve with |qi| = 2li. By Theorem 4.7, |q1| = |q2| so l1 =
l2, which again proves Theorem 4.6 without assuming that the points are in Qnr

p .
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If p = 2 and li > 4, then Ei is also a Tate curve, |qi| = 2li−8 and the previous
argument works as well.

§4.4. Case of a Mumford curve

4.4.1. Reminder on Mumford curves and currents. Let X be a Mumford
curve of genus g ≥ 2 over K, let Ω ⊂ P1 be its universal topological covering, and
Γ = Gal(Ω/X), so that X = Ω/Γ. Let O(Ω) be the ring of analytic functions on Ω.
Let Φ be the retraction of Ω, as a Berkovich space, onto its skeleton T = T(Ω).
The graph of the stable reduction of X is G = T/Γ.

For z, z′ ∈ Ω, set

d(z, z′) = sup
x1,x2∈P1\Ω

∣∣∣∣vp
(
z′ − x1

z − x1

z − x2

z′ − x2

)∣∣∣∣,

which is invariant under homographies stabilizing Ω. Moreover d(z, z′) depends
only on Φ(z) and Φ(z′), and it is nothing other than the distance between Φ(z)
and Φ(z′) for the usual metric structure on the tree of Ω (that we will also denote
by d, so that d(z, z′) = d(Φ(z),Φ(z′))).

If z ∈ Ω and λ > 0, let Uz,λ denote {z ∈ Ω | d(z, z′) ≤ λ}. It is an affinoid
subspace of Ω.

Let L = P1 \ Ω, a compact subset of P1. In [9, 1.8.9], Fresnel and van der
Put define a measure on a profinite topological space Z (i.e. a totally disconnected
compact topological space) to be a function

µ : {compact open subsets of Z} → Z

such that µ(U1 ∪U2) + µ(U1 ∩U2) = µ(U1) + µ(U2) for any compact open subsets
U1, U2 of Z and µ(∅) = 0. The group of measures on Z such that µ(Z) = 0 is then
denoted by M0(Z).

One can then associate to f ∈ O(Ω)∗ a measure µf on L. Following [9], we
define a hole of an affinoid subspace U of P1 to be any connected component of
the complement of this affinoid; we denote by t(U) the set of all holes.

One gets the following exact sequence of groups ([9, Prop. 1.8.9]):

1→ K
∗ → O(Ω)∗ →M0(L)→ 0.

More precisely, according to [9, 1.8.10, Ex. β], if a, b ∈ L and f : z 7→ z−a
z−b , then

µf = δa − δb where δx is the Dirac probability measure with support at x (i.e.
δx(U) = 1 if x ∈ U and δx(U) = 0 if x /∈ U).

For a general f ∈ O(Ω)∗ and µ = µf , µ is a weak limit of a sequence of
Z-linear combinations (µk)k∈N of Dirac measures. If µk =

∑
ni(k)δai(k), let fk =
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∏
(1−ai(k)/z)ni(k). Then µfk = µk, and (fk) tends uniformly on every affinoid to

an invertible function g. Then µg = µ and thus g = λf with λ ∈ K∗.
If G0 is a locally finite graph and A is an abelian group, a current on G0 with

coefficients in A is a function C : {oriented edges of G0} → A such that:

• C(e) = −C(e′) if e and e′ are the same edge but with reversed orientation;

• if v is a vertex of G0,
∑
e ending at v C(e) = 0.

The group of currents on G0 with coefficients in A will be denoted C(G0, A). We
will simply write C(G0) for C(G0,Z).

According to [19, Prop. 1.1], one also has the following exact sequence:

1→ K
∗ → O(Ω)∗ → C(T)→ 0

which together with the previous one gives an isomorphism M0(L)→ C(T).
One can describe this isomorphism in the following way. Let µ ∈ M0(L) and

let C be the image of µ under this isomorphism. If e is an oriented edge of T, then
Φ−1(T \ e) has two connected components, and Φ−1(e) ∩ L = ∅, so one gets a
partition of L into two open subsets L1(e) at the beginning of e and L2(e) at the
end of e (for µ ∈M0(L) one has µ(L1(e)) = −µ(L2(e)). Then C(e) = µ(L2(e)).

More generally, if K is a finite connected subgraph of T (containing at least
one edge), then Φ−1(K) is an affinoid contained in Ω. There is a natural bijection
between t(Φ−1(K)) and the set of edges of T \ K that have one end in K. If
µ ∈ M0(L) and C ∈ t(Φ−1(K)), and e is the corresponding oriented edge of
T \K starting in K, then C ∩ L = L2(e) and thus C(e) = µ(C ∩ L). In particular
µ(C ∩ L) = 0 for every C ∈ t(Φ−1(K)) if and only if C(e) = 0 for every edge of
T \K having an end in K, if and only if C is zero on the star of K (the star of K
is by definition the set of edges of T having at least one end point in K).

Let Θ denote the group of theta functions of X, that is, the group of f ∈ O(Ω)∗

such that for every γ ∈ Γ, z 7→ f(γz)/f(z) is a constant function (this means that
the corresponding current is Γ-equivariant). Then one has the exact sequence

1→ K
∗ → Θ→ C(G)→ 0

and thus Θ/K
∗

is a free Z-module of rank g. One deduces from [18, Th. 2.1] the
following:

Proposition 4.8. For every n ≥ 2 and every Z/nZ-torsor Y over X, there exists
an element θ in Θ, unique modulo K

∗
Θn, such that Y ×X Ω = Ω[f ]/(fn = θ)

where Ω[f ]/(fn = θ) denotes the pullback of the Z/nZ-torsor Gm
z 7→zn−−−−→ Gm

along Ω θ→ Gm. Conversely, for every θ in Θ, there exists a Z/nZ-torsor Y over
X such that Y ×X Ω = Ω[f ]/(fn = θ).
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Proof. Following the notation of [18, Section 2], let Ω∗ be a connected component
of Y ×X Ω.

Suppose first that Y ×XΩ is connected, so that Ω∗ = Y ×XΩ. Then, according
to [18, Prop. 2.1] there is a unique lattice T in (Θ/K

∗
)⊗Q containing Θ/K

∗
such

that, as an X-covering, Ω∗ = Ω(T ) := Ω×(SpecK[Θ/K
∗
])an (SpecK[T ])an (where the

morphism Ω→ (SpecK[Θ/K
∗
])an is given by some retraction of Θ→ Θ/K

∗
; Ω(T )

does not depend on the choice of such a retraction). Then T/(Θ/K
∗
) is isomorphic

to Z/nZ, and choosing a generator f̄ of T/(Θ/K
∗
) amounts to choosing a Z/nZ-

torsor structure on Ω∗.
If one takes f̄ i (with i ∈ (Z/nZ)∗) as another generator, the corresponding

torsor is i · Ω∗ (for the Z/nZ-module structure on the set of Z/nZ-torsors). Thus
by changing the generator, one can get all the different Z/nZ-torsor structures on
the covering Ω∗ of Ω.

If f̄ is the generator corresponding to the Z/nZ-torsor structure on Y ×X Ω,
then θ is any lifting of f̄n ∈ Tn/(Θ/K∗)n.

In the general case, Ω∗ acquires the structure of a Z/mZ-torsor over Ω
with m |n, and as before one can find a unique θ0 modulo K

∗
Θm such that

Ω∗ = Ω[f ]/(fm = θ0). Then Y ×X Ω = IndZ/nZ
Z/mZΩ∗, and thus Y ×X Ω =

Ω[f ]/(fn = θ
m/n
0 ), and θ = θ

m/n
0 .

The second statement comes from the fact that if Ω∗ is a connected component
of Ω[f ]/(fn = θ), Gal(Ω∗/X) is (noncanonically) isomorphic to the direct product
of Gal(Ω∗/Ω) and Γ (according to [18, Section 2, intro.]). Thus Ω∗ can descend
(noncanonically) to X by considering Y0 = Ω∗/N where N is some complement
of Gal(Ω∗/Ω) and Gal(Ω∗/X) (and thus Ω[f ]/(fn = θ) by taking a direct sum of
Y0’s).

Remark. One could also show the same by considering J̃ = Hom(Θ/K
∗
,Gm)→

J where J is the Jacobian variety of X and J̃ is its universal topological covering,
and by showing that πalg

1 (J̃) is a direct summand of πalg
1 (J).

4.4.2. Preliminary results on ramifications of torsors corresponding to
currents. One can associate to a current on G a Z/nZ-torsor on Ω. Here we study
how the torsor associated to a current splits.

Recall that Uz,λ is the affinoid subset {z′ | d(z, z′) ≤ λ} of Ω.

Proposition 4.9. Let z ∈ Ω and λ > 0. Let f ∈ O(Ω)∗ be such that f(z) = 1.
Let µ be the measure on L corresponding to f and assume µ(C ∩L) = 0 for every
hole C of Uz,λ. Then |f(z′)− 1| ≤ pd(z,z′)−λ for all z′ ∈ Uz,λ.
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Proof. To simplify, assume z = ∞. According to [9, 1.8.10, Ex. β] and [9, Prop.
1.8.9(i)], f = lim fk uniformly on every affinoid of Ω (in particular over Uz,λ) where
fk is of the form

fk(z′) =
sk∏

i=1

(
1− xi,k

z′

)ni,k
.

Then the measure on L corresponding to fk is µk =
∑
i ni,kδxi,k and µk tends

weakly to µ.
For k large enough, µk(C∩L) = 0 for every hole C of Uz,λ and |f(z′)−fk(z′)| ≤

p− λ for every z′ ∈ Uz,λ. We thus only have to prove the result for fk which is a
product of functions such as

g : z′ 7→ z′′ =
(

1− x1

z′

)(
1− x2

z′

)−1

=
z′ − x1

z′ − x2

with x1 and x2 in the same hole C of Uz,λ. We thus only have to prove the result
for g, which is easily seen.

If x and x′ are two points of the geometric realization |T0| of a tree T0, there
is a smallest connected subset of |T0| containing x and x′. It is denoted [x, x′].

Corollary 4.10. Let z, z′ ∈ Ω. Let f ∈ O(Ω)∗ be such that f(z) = 1. Let U be an
affinoid of Ω such that µ(C∩L) = 0 for every hole C of U . Assume that Uz′′,λ ⊂ U
for all z′′ ∈ Φ−1([Φ(z),Φ(z′)]). Then |f(z′)− 1| ≤ p−λ.

Proof. Let ε > 0. Let (zi)ni=0 be such that z0 = z, zn = z′, Φ(zi) ∈
[Φ(z),Φ(z′)] and d(Φ(zi),Φ(zi+1)) ≤ ε. Then, according to the previous propo-
sition, |f(zi+1)/f(zi)− 1| ≤ pε−λ. Thus |f(z′′)− 1| ≤ sup |f(zi+1)− f(zi)| ≤ pε−λ.
One gets the result by letting ε tend to 0.

Corollary 4.11. Let f be as previously, and U be such that µ(C ∩ L) = 0 for
every hole C of U . Let e be a positive integer. Let λ > e+ 1

p−1 , and let Y → Ω be

the finite covering obtained by pulling back Gm
z 7→zp

e

−−−−→ Gm along f : Ω → Gm.
Let V ⊂ U be such that Uz,λ ⊂ U for all z ∈ V . Then Y is split over V .

Proof. We may assume V is connected, because we only have to prove the result for
every connected component of V . Let z ∈ V . Multiplying f by a constant, which
does not change Y , we may assume that f(z) = 1. From the previous corollary,

f(V ) ⊂ D(1, p−λ). But, according to Lemma 4.2, Gm
z 7→zp

e

−−−−→ Gm is split over
D(1, p−λ), which ends the proof.

Proposition 4.12. Let C be a current on T(Ω) corresponding to an invertible
function f on Ω. Let a be a vertex of T such that the restriction Ca of C to the star
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of a is not zero modulo n. If Y → Ω is the finite covering obtained by pullback of
Gm

z 7→zn−−−−→ Gm along f : Ω → Gm, then Y → Ω is not split over a considered as
a Berkovich point of Ω.

Proof. Y → Ω is split over a if and only if there exists f1 ∈ OΩ,a such that
fn1 = f|OΩ,a . By multiplying f by a constant, we may assume |f |a = 1.

If f1 exists, by looking at the residue field H(a) of H(a), we have f1
n

= f

(where f is the image of f in H(a) ' k(X)). If f1(z) = λ
∏

(z − ai), then f =
λn
∏

(z − ai)n, and so all the poles and zeros are of order a multiple of n, which
ends the proof.

4.4.3. The metric graph of the reduction and the tempered fundamental
group. Let i = 1 or 2. Assume now that X1 and X2 are two Mumford curves
over K, but are pullbacks of curves over K (so that we may use [16, Ex. 3.10]),
and that there is an isomorphism

φ : πtemp
1 (X1) ∼→ πtemp

1 (X2),

which thus induces an isomorphism of graphs

G1
∼→ G2,

hence an isomorphism T(Ω1) ∼→ T(Ω2).

Theorem 4.13. The isomorphism G1 → G2 of graphs is in fact an isomorphism
of metric graphs.

Remark. Suppose X1 and X2 are projective lines minus four points ai, bi, ci, di
with vp(ai, bi, ci, di) = hi > 0 with an isomorphism φ between their tempered
fundamental groups, and let l ≥ 3 be prime to p. One can consider a covering X ′1
of order l of X1 such that the restriction of the map between the stable models
of X ′1 and X1 to each irreducible component of the stable reduction of X1 is
connected but it is split over the double point of the stable reduction of X1. For
example, let f : X1 → Gm map x to x−a1

x−c1
x−b1
x−d1

. Let ā1 (resp. b̄1, c̄1, d̄1) be the
image of a1 (resp. b1, c1, d1) in the stable reduction of X1. One identifies ā1, b̄1, c̄1
and d̄1 with elements of P1

k after choosing an isomorphism of each irreducible
component of the stable reduction with P1

k. One can then choose X ′1 to be the

pullback of Gm
z 7→zl−−−→ Gm along f . Indeed, the induced covering of the irreducible

component of the stable reduction containing ā1 and c̄1 (resp. b̄1 and d̄1) is the

pullback of Gm
z 7→zl−−−→ Gm along z 7→ z−ā1

z−c̄1 (resp. z 7→ z−b̄1
z−d̄1

), and thus is étale
at the node. Let X ′2 be the covering of X2 corresponding to X ′1 under φ; it has
the same properties. Then the compactification X ′i of X ′i is a Mumford curve (the
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corresponding covering of each irreducible component of the stable reduction of
Xi is ramified at only two points, so it is a covering by a projective line) whose
tree has l edges, each of length hi. Lemma 4.4 gives an isomorphism between the
tempered fundamental groups of X ′1 and X ′2. Thus, by Theorem 4.13, h1 = h2,
which ends the proof for punctured lines.

One can in fact do quite the same for more general punctured Mumford curves,
by considering, for an edge e of the graph, a tamely ramified covering by a Mumford
curve such that there is an edge e′ over e which is actually an edge of the graph of
the stable reduction of the compactification of this covering (see [12, Cor. 3.4.7]).

Let us start with a sketch of the proof of Theorem 4.13. Let Φi be the usual
retraction Ωi → |T| where T := T(Ω1) = T(Ω2). Fix two terminal points of T. We
assume that the corresponding points of P1 \ Ωi are 0 and ∞ (and let L̃ be the
path joining them). Choose a finite subtree K0 of T. We will define a Z/phZ-torsor
X̃ ′′1 on Ω1 such that:

(i) it induces by descent a torsor on some finite topological covering of X1;

(ii) its restriction to Φ−1
1 (|K0|) is isomorphic to the restriction of

Gm
z 7→zp

h

−−−−→ Gm;

(iii) the torsor X̃ ′′2 on Ω2 corresponding to X̃ ′′1 under φ is also isomorphic to

Gm
z 7→zp

h

−−−−→ Gm on Φ−1
2 (|K0|) up to a constant in (Z/phZ)∗ (for the Z/phZ-

module structure on the set of Z/phZ-torsors).

By choosing K0 and h large enough and applying Lemmata 4.5 and 4.2, one finds
that the difference between the two distances from a vertex of T to the path
joining 0 and ∞ for the two different metric structures on T is bounded. A purely
combinatorial result (Proposition A.1) will end the proof.

To construct X̃ ′′1 , consider the current on T following the path from 0 to∞ and
make it equivariant for the action of a finite index subgroup Γ′ of Γ = Gal(T/G),
so that the corresponding torsor X̃ ′′1 on Ω1 satisfies (i). We choose Γ′ so that the
current C1 thus defined is equal to C0 on Φ−1

1 (|K′|) for a subgraph K′ of T large
enough compared to K0 (hence (ii) holds).

According to the lemmata of the previous subsection, X̃ ′′1 is isomorphic to

Gm
z 7→zp

h

−−−−→ Gm on Φ−1
1 (|K|) for a subgraph K of K′, but still big enough compared

to K0. Lemmata 4.2 and 4.5 tell us over which vertices of K0, X̃ ′′1 and X̃ ′′2 are split.
In particular, one can choose K and K′ so that X̃ ′′i is split over every vertex of
the boundary of K except those on the path from 0 to ∞. The current C2 is then
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trivial around those points of the boundary, and thus is equal to C0 on K up to a
constant in (Z/phZ)∗. If K was chosen big enough compared to K0, one gets (iii).

L̃

≥ h + 2

≥ h + 2

K0

K

K ′

≥ h + 2

Proof of Theorem 4.13. A loop of a graph is a cyclic sequence of oriented edges of
the graph such that the end of an edge is the beginning of the following edge, and
which never goes through the same vertex or (unoriented) edge twice.

We identify G1 and G2 thanks to the isomorphism induced by φ, and we
simply call this graph G. The two metrics on G will be denoted by d1 and d2. For
i = 1 or 2, the usual retraction Ωi → T will be denoted by Φi.

Let C be a loop of G, and denote by lgi(C) the length of C with respect to
the metric di on G. Let C̃ be the universal covering of C, let C̃ → T be a lifting of
C̃ → G and let z0 be a vertex of T which belongs to C̃. Let us then label (zj)j∈Z
the vertices of C̃ with the same image that z0 has in G. Let L be another loop
(we choose an orientation on it) of G (there must be another loop since g > 1),
let L̃ be a lifting of L to T, let ri = di(L̃, z0) (we may assume, by changing the
numbering of the zj that di(L̃, zn) = ri + n lgi(C) for n ≥ 0) and let z′0 be the
point of L̃ nearest to z0 (this does not depend on i).

For z a vertex of T, let Fz denote the connected component of Ω\{open edges
of L̃} which contains z.

Let h ≥ 1 be an integer. Let K0 be a connected finite subgraph of T containing
z1 (so that Φ−1(|K0|) is compact by properness of Φ). Let K be a connected finite
subgraph of T such that (for i = 1 and i = 2):

• for every z ∈ Φ−1
i (|K0|), Uz,h+2 ⊂ Φ−1

i (|K|);
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• for every vertex z of L̃ ∩ K, {z′ ∈ Fz | di(z′, z) ≤ h + 2} ⊂ Φ−1
i (|K|) (in

particular, if z′ is a vertex of the boundary of K in T which is not one of the
end points of the segment L̃ ∩K, then di(z′, L̃) ≥ h+ 2).

Let K′ be a compact subgraph of T such that, for i = 1, 2, Φ−1
i (|K′|) contains

Uz,h+2 for every z in Φ−1
i (|K|).

Let Γ = Gal(T/G), let H = Stab(L̃) (' Z) and let Γ′ be a subgroup of finite
index of Γ such that, for every g 6= 1 ∈ Γ′, Φ−1

i (|K′|) ∩ g · Φ−1
i (|K′|) = ∅ and for

every g ∈ Γ′ \H, di(g · L̃, L̃) > diami(|K′|).
Such a Γ′ exists. Indeed, A := {g 6= 1 ∈ Γ | Φ−1

i (|K′|) ∩ g · Φ−1
i (|K′|) 6= ∅}

is finite by compactness of Φ−1
i (|K′|). So, as Γ is residually finite, there exists Γ′1

of finite index in Γ which does not intersect A. The set B := {g ∈ Γ/H − H |
di(g · L̃, L̃) ≤ diami(|K′|)} is also finite, and as H ∩ Γ = H where H denotes the
closure of H in the profinite completion of Γ, there exists Γ′2 of finite index in Γ
containing H such that Γ′2 ∩B ·H = ∅. We may then choose Γ′ = Γ′1 ∩ Γ′2.

Let H ′ = H ∩ Γ′. Let X ′i = Ωi/Γ′; it is a finite topological covering of Xi,
and the isomorphism φ : πtemp

1 (X1) ' πtemp
1 (X2) induces an isomorphism φ′ :

πtemp
1 (X ′1) ' πtemp

1 (X ′2).
Let C0 be the current on T with C0(e) = +1 if e is an edge of L̃ (and e has

the same orientation as L̃) and 0 otherwise (except if e is an edge of L̃ with the
opposite orientation, in which case C0(e) = −1); this current is invariant under H.
Let C1 =

∑
g∈Γ′/H′ g · C0. It is a current on T, invariant under Γ′ and which

coincides with C0 on K′.
Let f1 ∈ O(Ω1)∗ be the corresponding invertible function, and let X ′′1 be a

Z/phZ-torsor of X ′1 corresponding to that current, that is, such that its pullback
X̃ ′′1 to Ω1 is isomorphic to Ω1×Gm Gm → Ω1 where the fiber product is taken, on
the left side, along f1 and on the right side along z 7→ zp

h

. Let X ′′2 = φ′∗X ′′1 (do
not forget that X ′′2 has no reason to correspond to the current C1).

Let also f0,i ∈ O(Ωi)∗ be the invertible function corresponding to the current
C0 and let X̃0,i be the corresponding Z/phZ-torsor on Ωi. Recall that, due to
Corollary 4.2, this torsor is split over a point z ∈ T(Ωi) of Ωi if and only if
di(z, L̃) > h+ 1/(p− 1).

According to Corollary 4.11 applied to U = Φ−1(|K′|) and V = Φ−1(|K|), the
torsor X̃ ′′1 − X̃0,1 on Ω1, which corresponds to the current C1 − C0 which is zero
over K′, is split over Φ−1(|K|) since for every z ∈ Φ−1(|K|), Uz,h+2 ∈ Φ−1(|K′|).
Thus, for z ∈ K, X̃ ′′1 is split if and only if X̃0,1 is, if and only if d1(z, L̃) >

h+ 1/(p− 1).
In particular X̃ ′′1 is split over the vertices of the boundary of K which are not

the end points of K ∩ L̃. Thus, according to Lemma 4.5 applied to X ′′1 and X ′′2
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(as Ωi → X ′i is a topological covering, X̃ ′′i → Ωi is split over a point if and only if
X ′′i → X ′i is split over the image of that point), X̃ ′′0,2 is also split over the vertices
of the boundary of K which are not the end points of K ∩ L̃.

Let C2 be a current on T(Ω2) corresponding to the Z/phZ-torsor X̃ ′′2 (the
current corresponding to X̃ ′′2 is well defined only modulo ph). According to Propo-
sition 4.12, the restriction of C2 to the star of a vertex of the boundary of K which
is not an end point of K∩L̃ is zero modulo ph. One deduces from this that, modulo
ph, the restriction of C2 to the star of K must be congruent to the restriction of
aC0 for some integer a. By adding to C2 a current which is a multiple of ph, we
may assume that C2 − aC0 is zero on the star of K (because every current with
boundary on the star of K, that is, that respects Kirchhoff’s law at every vertex
of K but with no condition on the boundary of the star of K, can be extended to
a current on the whole T).

Thus, by applying Corollary 4.11 to U = Φ−1(|K|) and V = Φ−1(|K0|), one
may deduce that X̃ ′′2 −aX̃0,2 is split over |K0|, so if z is a vertex of K0, X̃ ′′2 is split
over z if and only if X̃0,2 is (a is necessarily nonzero modulo ph because X̃ ′′2 cannot
be split over z′0), if and only if d2(z, L̃) > h+ 1

p−1 , according to Lemma 4.2.

Therefore, d2(z, L̃) > h+ 1
p−1 if and only if d1(z, L̃) > h+ 1

p−1 for every vertex
z ∈ K0. As one may choose K0 as large as one wants, one may deduce that for
every z of T, d1(z, L̃) > h + 1

p−1 if and only if d2(z, L̃) > h + 1
p−1 , and this for

every integer h ≥ 1. Thus

max
(

1,
⌈
d2(z, L̃)− 1

p− 1

⌉)
= max

(
1,
⌈
d1(z, L̃)− 1

p− 1

⌉)
.

By applying it to (zj)j≥0, one gets that for every j ≥ 0,

max
(

1,
⌈
j lg1(C) + r1 −

1
p− 1

⌉)
= max

(
1,
⌈
j lg2(C) + r2 −

1
p− 1

⌉)
.

Hence for every loop C of G (and of every topological covering of G),

lg1(C) = lg2(C).

One concludes the proof with the help of Proposition A.1.

Appendix A. A combinatorial result

To end the proof of Theorem 4.13, we need to prove that one can recover from the
length of all the loops of every finite covering of G the length of every edge of G. We
thus have to prove a general result on graphs with every edge of valency at least 3.

To prove this, we will work by induction on the number of edges of the graph.
However, by removing an edge of our graph, one does not in general get a graph
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with every edge of valency at least three, and we may have to concatenate two
edges or remove another edge to apply our induction assumption (but there will
only be a few edges whose length cannot be recovered directly by the induction
assumption). To exhibit enough loops that go through some edges whose length
we do not know yet from the induction assumption, we will have to distinguish
many cases depending on the number of connected components of the subgraph
of all the edges whose length is already known.

Proposition A.1. Let G be a finite graph with every vertex of valency is at least 3.
Let f : {edges of G} → R be any function. Denote also by f the induced function
on the set of edges of a (topological) covering of G. For any loop C of a covering
of G, set

f(C) =
∑

x∈{edges of C}

f(x).

If f(C) = 0 for every loop C of every covering of G, then f = 0.

Proof. Remark that if G is a finite graph with every vertex of valency at least 3
and if H is a connected subgraph such that the number of half-edges of G \ H
which end in H is less than 3, then H is not a tree (if H is a tree with at least
one edge, then it has at least two vertices of valency 1, and thus one already has
four half-edges of G \H which must end in one of those two vertices; if H is only
a vertex, this is equally obvious).

We will proceed by induction on the number of edges of G. Thus let (G, f)
be a graph with n ≥ 1 edges and a function f on the set of edges of G which
satisfy the hypotheses of the proposition, and assume the proposition is true if G
has fewer than n edges. We may assume G is connected (otherwise we apply the
induction hypothesis to the connected components).

Let e be an edge of G, and start from

Case 1: the two end points of e are different. Let (m,n) be the valencies of the
end points of e in G \ {e}. By our assumption about G, we have m,n ≥ 2.

(a) If m ≥ 3 and n ≥ 3, then G′ = G \ {e} still has the valency of every vertex at
least 3, thus one may apply our induction hypothesis to G′ and to f to deduce
that f(x) = 0 for every edge of G other than e.

i. If G′ is connected, then one may find a loop C of G that goes through e,
and then f(e) = f(C) = 0, which implies the result.

ii. If G′ has two connected components A and B (they cannot be trees ac-
cording to the remark at the beginning of the proof), one may consider
two coverings A′ and B′ of A and B respectively, both of order 2, that one
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patches together into a covering G′ of G of order 2. Then there exists a loop
C of G′ passing through the two edges over e. Hence 2f(e) = f(C) = 0,
which gives the desired result.

(b) If m ≥ 3 and n = 2 (or the other way round), then let a and b be the two
edges starting at the second end point of e (if a and b are in fact the two half-
edges of a single edge, then the graph has the same structure as in case 2(c).i
below; thus we will assume here that a and b are two different edges). Let G′

be the graph obtained from G by removing e and concatenating a and b into
a single edge that we denote a+ b (and we will define f(a+ b) = f(a) + f(b)).
Then (G′, f) satisfies the required conditions (because every covering of G′

extends to a covering of G; thus every loop C of a covering of G′ is also a
loop of a covering of G, hence f(C) = 0) and so f(x) = 0 for every edge of G
other than a, b and e. Depending on the number of connected components of
G′′ = G \ {a, b, e}, we distinguish several cases:

i. If G′′ has only one connected component, then one may contract G′′ to
a point to get a graph G1 with three edges (indeed, every loop C1 of G1

may be lifted to a loop C of G as G′′ is connected, and f(C1) = f(C)
since f = 0 over G′′), and thus f(a) + f(b) = 0, f(a) + f(e) = 0 and
f(b) + f(e) = 0, which gives the desired result.

A

a

b

e

a

b

e

ii. If G′′ has two connected components A and B as in the picture (now a, b
and e play the same role and the proof is the same if they are exchanged),
then we start by considering a connected covering G1 of order 2 of G
whose restrictions A′ and B′ to A and to B are connected (there exists
such a covering as A and B cannot be trees according to the remark at the
beginning of the proof). Then one may contract A′ and B′ to a graph G2.
One gets f(b) + f(e) = 0, 2f(a) + 2f(b) = 0, 2f(a) + 2f(e) = 0, which
implies what we wanted.

iii. If G′′ has three connected components A, B and C, then we start by
considering a connected covering G1 of order 2 of G whose restrictions A′,
B′ and C ′ to A, B and C are connected; then one may contract them. One
may deduce that 2f(a) + 2f(b) = 0, 2f(b) + 2f(e) = 0, 2f(e) + 2f(a) = 0,
which implies the result.
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A Ba

b

e

A′ B′

b1

b2
e1

e2

a1

a2

b1

e1 2a

b2

e2

Aa

b

e

B

C

A′

B′

C ′

a1

a2

b1

e1

b2

e2

2a

2b

2e

(c) If m = n = 2, then let a, b be the two (half-)edges ending at one end point of e,
and c, d the (half-)edges ending at the other end point of e. Let G′ be the graph
obtained from G by removing e and concatenating a and b into a+b, and c and
d into c+d. If one defines f(a+b) = f(a)+f(b) and f(c+d) = f(c)+f(d), then
(G′, f) satisfies the assumptions of the proposition, and so, by the induction
hypothesis, f(x) = 0 for every edge x of G other than a, b, c, d and e. Let
G′′ = G \ {a, b, c, d, e}. Depending on the number of connected components
of G′′, we distinguish several cases:

i. If G′′ has two connected components, A containing one end point of a
and of b, and B containing one end point of c and of d (if (a, b) or (c, d)
are the two half-edges of a single edge, the graph has the same structure
as in case 2(c).ii.B below; if (a, b) and (c, d) both make single edges, then
the structure is the one of the degenerate case of 2(c).ii), then start by
considering a connected covering G1 of order 2 of G whose restrictions A′

and B′ to A and B are connected, and then contract A′ and B′. One finds,
for example, that f(c) + f(d), f(a) + f(b), 2(f(a) + f(e) + f(d)), 2(f(a) +
f(e) + f(c), and 2(f(b) + f(e) + f(d)) are zero, which implies the result.

A B
a

b
e

c

d
A′ B′

ii. If G′′ has two connected components, A containing an end point of a and
c, and B containing an end point of b and d, then consider as usual a
connected covering G1 of order 2 of G whose restrictions A′ and B′ to
A and B are connected, and contract A′ and B′. One gets for example
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f(a)+f(b)+f(c)+f(d) = 2(f(a)+f(e)+f(d)) = 2(f(b)+f(e)+f(c)) =
2(f(a) + f(c)) = f(b) + f(c) + f(e) = 0, which implies the result.

A B

a b

c d

e A′ B′

If (a, c) (or symmetrically (b, d)) are the two half-edges of a single edge a,
consider a connected covering G1 of order 2 of G such that its restrictions
B′ to B and (a∪ e)′ to a∪ e are connected. One gets f(a) + f(b) + f(c) =
f(e) + f(b) + f(c) = 2(f(a) + f(e)) = f(a) + f(e) + 2f(b) = 0, which
implies the result.

B

b

c

ea B′

If (a, c) and (b, d) degenerate into two edges, then G only has two vertices
and three arrows joining them, and the result is obvious.

iii. If G′′ has two connected components, A containing an end point of a, b
and of c, and B containing an end point of d, then we start by considering
a connected covering G1 of order 2 such that its restriction B′ to B is con-
nected, the restriction to A is disconnected but the restriction to A∪a∪ b
is connected. Now, one sees that f(a)+f(b) = f(b)+f(c)+f(e) = f(a)+
f(c)+f(e) = f(a)+f(b)+2(f(c)+f(d)) = f(a)+f(b)+2(f(e)+f(d)) = 0,
which implies the result.

A B

a

b

c

e

d

iv. If G′′ has three connected components, A containing an end point of a,
B containing an end point of b, and C containing an end point of c and
of d, then consider as usual a connected covering G1 of order 2 of G whose
restrictions A′, B′ and C ′ to A, B and C are connected, and contract
A′, B′ and C ′. One gets for example f(c) + f(d) = 2(f(a) + f(b)) =
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2(f(a)+f(e)+f(c)) = 2(f(b)+f(e)+f(c)) = 2f(a)+2f(e)+f(c)+f(d)
= 0, which implies the result.

A

B

C
a

b
e

c

d

A′

B′
C ′

If (c, d) degenerates to a single edge c, the graph has the same structure
as in case 2(c).ii.A.

v. If G′′ has three connected components, A containing an end point of a,
B containing an end point of c, and C containing an end point of b and d,
then consider a connected covering G1 of order 2 of G whose restrictions
A′, B′ and C ′ to A, B and C are connected, and contract A′, B′ and C ′.
One gets for example f(b) + f(d) + f(e) = f(b) + f(d) + f(e) + 2f(a) =
2(f(a) + f(b)) = 2(f(d) + f(c)) = 2(f(c) + f(e) + f(a)) = 0.

A B

C

a

b
e

c

d

A′ B′

C ′

If (b, d) degenerates to a single edge b, consider a covering G1 of order 2
of G whose restrictions to A, B and b ∩ e are connected, and contract A′

andB′. One gets 2f(a)+f(e)+f(b) = 2(f(b)+f(e)) = 2f(c)+f(b)+f(e) =
2(f(a) + f(b) + f(c)) = 0.

A

B

a

c

eb

vi. If G′′ has four connected components, A containing an end point of a,
B containing an end point of c, C containing an end point of b, and D

containing an end point of d, then consider a connected covering G1 of
order 2 of G whose restrictions A′, B′, C ′ and D′ to A, B, C and D are
connected, and contract A′, B′, C ′ and D′. One finds for example that
2(f(b) + f(d) + f(e)) = f(b) + f(d) + f(e) + 2f(a) = f(b) + f(d) + f(e) +
2f(c) = 2(f(b) + f(a)) = 2(f(c) + f(d)) = 0.
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A C

B D

a

b
e

c

d

A′ C ′

B′ D′

vii. If G′′ has a single connected component A, then contract it. One gets
f(a) + f(b) = f(c) + f(d) = f(a) + f(c) + f(e) = f(b) + f(c) + f(e) =
f(a) + f(d) + f(e) = 0, which implies the result.

A

a
b

e

c d

Case 2: the two end points of e are the same vertex; let m be its valency in G\{e}.
One has m ≥ 1.

(a) Assume m ≥ 3. Then G \ {e} satisfies the assumptions of the proposition and
thus by induction hypothesis f(x) = 0 for every edge of G other than e, and
as e is already a loop, f(e) = 0 too.

(b) Assume m = 2, and let a and b be the two edges ending at the end point of e (if
a and b are in fact only the two half-edges of a single edge, G is only the wedge
of two loops, and the result is obvious). Let G′ be the graph obtained from G
by removing e and by concatenating a and b into an edge a + b, and define
f(a + b) = f(a) + f(b). Then G′ satisfies the assumptions of the proposition
and thus, by induction hypothesis, f(x) = 0 for every edge x other than e, a
or b. Depending on the number of connected components of G′′ = G\{a, b, e},
we distinguish the following cases:

i. If G′′ has a single connected component A, then consider a covering G1 of
order 2 of G whose restrictions to A and e are connected, and contract A′;
this yields a graph G2. One gets 2f(a) + f(e) = 2f(b) + f(e) = 2f(e) = 0,
which implies the result.

A
a

b

e
A′

ii. If G′′ has two connected components, A containing the end point of a, and
B containing the end point of b, consider a covering G1 of order 2 of G whose
restrictions A′ and B′ to A and B are connected and whose restriction to
e is connected too, and contract A′ and B′ to get a graph G2. One finds
that 2f(a) + f(e) = 2f(b) + f(e) = 2f(e) = 0, which implies the result.
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A

B
a

b

e

A′

B′

(c) Assume m = 1, and let a be the edge ending at the end point of e. Let n be
the valency of the other end point of a. One must have n ≥ 2.

i. Assume n ≥ 3. Then G′ = G \ {a, e} satisfies the assumptions of the
proposition, so, by induction hypothesis, f = 0 over G′. Consider now a
covering G1 of order 2 of G whose restrictions to G′ and to e are connected,
and contract the preimage of G′. One gets 2f(e) = 2f(a) +f(e) = 0, which
implies the result.

A a
e
A′

ii. Assume n ≥ 2, and let c and d be those two edges (if they are only the
two half-edges of a single edge, G is made of two loops joined by an edge;
one shows the result for this particular graph by considering the covering
of order 2 whose restrictions to the loops are connected). Let G′′ be the
graph obtained from G′ by concatenating c and d into c + d and define
f(c+ d) = f(c) + f(d). As G′′ satisfies the assumptions of the proposition,
f(x) = 0 for every edge x of G other than a, e, c and d (and, in fact,
f(e) = 0 too). Let G′′′ = G \ {a, c, d, e}, and distinguish the following cases
depending on the number of connected components of G′′′:

A. If G′′′ has two connected components, C containing the end point of c
and D containing the end point of d, consider a covering G1 of G whose
restrictions C ′, D′ and e′ to C, D and e are connected, and contract C ′,
D′ and e′. One gets 2f(a) + 2f(c) = 2f(a) + 2f(d) = 2f(c) + 2f(d) = 0,
which implies the result.

C

D
c

d

a
e

C ′

D′
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B. If G′′′ has a single connected component A, consider a covering G1 of
G whose restrictions A′ and e′ to A and e are connected, and contract
A′ and e′. One gets 2f(a) + 2f(c) = 2f(a) + 2f(d) = 2f(c) + 2f(d) = 0,
which implies the result.

A
c

d

a
e
A′
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