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Abstract

We propose an explicit formula connecting Donaldson invariants and Seiberg–Witten
invariants of a 4-manifold of simple type via Nekrasov’s deformed partition function for
the N = 2 SUSY gauge theory with a single fundamental matter. This formula is derived
from Mochizuki’s formula, which makes sense and was proved when the 4-manifold is
complex projective. Assuming our formula is true for a 4-manifold of simple type, we
prove Witten’s conjecture and sum rules for Seiberg–Witten invariants (superconformal
simple type condition), conjectured by Mariño, Moore and Peradze.
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§1. Introduction

Let X be a smooth, compact, connected, and oriented 4-manifold with b1 = 0 and
b+ ≥ 3 odd. We set

(K2
X) := 2χ(X) + 3σ(X), χh(X) :=

χ(X) + σ(X)
4

.

When X is a complex projective surface, these are the self-intersection of the
canonical bundle and the holomorphic Euler characteristic respectively, and our
notation is consistent.

Let ξ ∈ H2(X,Z), α ∈ H2(X) and p ∈ H0(X) be the point class. In [40]
Witten explained that the generating function Dξ(α) of Donaldson invariants (see
(2.3) for the definition) is related to Seiberg–Witten invariants by

(1.1) Dξ(α) :=
∑
n,k

1
k!

(
Dξ,n(αk) +

1
2
Dξ,n(αkp)

)
= 2(K2

X)−χh(X)+2(−1)χh(X)e(α2)/2
∑

s

SW(s)(−1)(ξ,ξ+c1(s))/2e(c1(s),α),

where ( , ) is the intersection form, (α2) = (α, α), SW(s) is the Seiberg–Witten
invariant of a spinc structure s, and c1(s) = c1(S+) ∈ H2(X,Z) is the first Chern
class of the spinor bundle of s. And X is assumed to be of SW-simple type, i.e.,
c1(s)2 = (K2

X) if SW(s) 6= 0.
Witten’s argument was based on Seiberg–Witten’s ansatz [37] of N = 2 SUSY

gauge theory, which is a physical theory underlying Donaldson invariants [39]. It
was not given in a way which mathematicians can justify, so (1.1) has become
Witten’s conjecture among mathematicians.

Let us explain the main point of Witten’s argument. (See [27, Introduction] for
a more detailed exposition for mathematicians.) Seiberg–Witten’s ansatz roughly
says that the N = 2 SUSY gauge theory is controlled by a family of elliptic curves
(called Seiberg–Witten curves)

y2 = 4x(x2 + ux+ Λ4)

parametrized by u ∈ C. Here Λ is a formal variable used to count the dimension of
instanton moduli spaces in the prepotential of the theory. (In the Donaldson series,
one usually sets Λ = 1.) Witten explained that Dξ(α) is given by an integration
over u ∈ C, and the integrand is supported only at points u = ±2Λ2, where the
corresponding elliptic curve is singular, when b+ ≥ 3. Those points contribute as
given on the right hand side of (1.1).

In mathematics, the Seiberg–Witten curves appear as elliptic curves for the σ-
function in Fintushel–Stern’s blow-up formula [11] for Donaldson invariants, and
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the parameter u corresponds to the point class p. However, no mathematician
succeeded in making Witten’s argument rigorous.

An alternative mathematically rigorous approach was proposed by Pidstrigach
and Tyurin [36], and further pursued by Feehan–Leness [8]. It is based on moduli
spaces of SO(3)-monopoles, which are a higher rank analog of U(1)-monopoles
used to define Seiberg–Witten invariants. In particular, under a certain technical
assumption on a property of SO(3)-monopole moduli spaces, Feehan–Leness [8]
(see also [6, 7], in particular [9, Th. 3.1]) showed that Donaldson invariants have
the form

(1.2) Dξ,n(αkpl) =
∑

s

fk,l(χh(X), (K2
X), s, ξ, α, s0) SW(s),

where the coefficients fk,l are not explicit, but depend only on the χh(X), (K2
X) and

various intersection products among s, ξ, α, s0. Here s0 is an auxiliary spinc struc-
ture needed for SO(3)-monopole moduli spaces. As an application, they proved
Witten’s conjecture for X which satisfies (K2

X) ≥ χh(X)− 3 or is abundant, i.e.,
the orthogonal complement of Seiberg–Witten classes contains a hyperbolic sub-
lattice [9].

For a complex projective surface X, Mochizuki, motivated by [36, 8] (and also
by [4, 14]), proved a formula expressing Donaldson invariants in the form (1.2),
but the coefficients fk,l are given as residue of an explicit C∗-equivariant integral
over the product of Hilbert schemes of points on X (see Theorem 4.1). He obtained
the formula by applying the Atiyah–Bott–Berline–Vergne fixed point formula to
the algebro-geometric counterpart of SO(3)-monopole moduli spaces.

Our first main result (Theorem 4.5) says that Mochizuki’s coefficients are
given by leading terms, denoted by F0, H, A, B, of Nekrasov’s deformed partition
function for the N = 2 SUSY gauge theory with a single fundamental matter,
which is the physics counterpart of the SO(3)-monopole theory. Thus the coeffi-
cients are ‘equivariant SO(3)-monopole invariants for R4’ in some sense.

The proof is almost the same as that of the authors’ wall-crossing formula
for Donaldson invariants with b+ = 1, expressed in terms of Nekrasov’s partition
function for pure gauge theory [15]: By a cobordism argument (due to Ellingsrud–
Göttsche–Lehn [5]), it is enough to show it for toric surfaces. Then the integral
is given as the product of local contributions from torus fixed points of X, and
the local contribution can be considered as the case X = R4. Thus it is, by its
definition, Nekrasov’s partition function.

From this result, we see that Mochizuki’s coefficients depend on the various
data in the same way as those of Feehan–Leness. In particular, they make sense also
for a smooth 4-manifold X. (Here s0 is given by the complex structure.) Hoping
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that Mochizuki’s coefficients are the same as those of Feehan–Leness,1 we propose
a conjecture: our formula remains true for a smooth 4-manifold of SW-simple type
(Conjecture 4.6).

Nekrasov’s partition functions are defined in a mathematically rigorous way
and have explicit combinatorial expressions in terms of Young diagrams [33]. Fur-
thermore, the leading part F0 is given by certain period integrals over Seiberg–
Witten curves [26, 34, 3], H is explicit, and A, B are also given in terms of
Seiberg–Witten curves [27]. The proofs in [26, 27] were given only for the pure
theory, but we extend them for the theory with one matter in this paper using
the theory of perverse coherent sheaves [31]. Thus Mochizuki’s coefficients are now
given by residue of a differential form expressed by Seiberg–Witten curves.

The pole at which we take the residue is at u = ∞. It is a very deep pole,
and a direct computation of the residue looks difficult. Fortunately there is a
hint: a similar problem, for certain limits of Donaldson invariants with b+ = 1,
was analyzed by Göttsche–Zagier [16]. Observing that their differential is defined
on P1, holomorphic outside ∞, ±2Λ2, they showed that it is enough to compute
the residues at poles ±2Λ2 which are simple, and proved an analog of Witten’s
conjecture. Also this picture is close to Witten’s original intuition.2

Let us emphasize that the extension of the differential to P1 is already a
nontrivial assertion. In the original formulation the parameter u was a formal
variable used to introduce a generating function of invariants. Therefore it is, a
priori, defined only in the formal neighborhood of u =∞. The extension is done,
so far, by an explicit formula of the differential. Thus the geometric picture of
moduli spaces becomes obscure at the points ±2Λ2.

Our situation is similar to one in [16], but slightly different. The Seiberg–
Witten curve for the theory with a fundamental matter is

y2 = 4x2(x+ u) + 4mΛ3x+ Λ6,

and has one more parameter m, called the mass of the matter field. And in our
formula, thism is chosen so that the above curve is singular. Therefore the family of
curves is different from what Witten used. We have two features of the new family.
First since the curves are singular, the differential is written in terms of elementary
functions, and not modular functions as in [16]. This makes our computation much
easier. Second, more importantly, we get another pole besides ∞, ±2Λ2, which is

1See §4.2 for our heuristic proof of this hope. This paper is motivated by Feehan–Leness’
papers, but the proof is independent.

2G. Moore pointed out to us that the u-plane integrand is a total derivative, at least if we
take a derivative with respect to the metric. See [22, (11.16)].
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called the superconformal point in the physics literature. (In the main text, we
change the variable from u to another variable φ called the contact term.)

The contribution of this point to the gauge theory with one matter was studied
by Mariño, Moore and Peradze [20] at a physical level of rigor. They argued that
the partition function must be regular at the superconformal point and then this
condition leads to sum rules on Seiberg–Witten invariants, i.e., X must satisfy the
following condition.

Definition 1.3 ([20]). Suppose that a 4-manifold X is of SW-simple type. We
say X is of superconformal simple type if (K2

X) ≥ χh(X)− 3 or

(1.4)
∑

s

(−1)(w̃2(X),w̃2(X)+c1(s))/2 SW(s)(c1(s), α)n = 0

for any integral lift w̃2(X) of w2(X) and 0 ≤ n ≤ χh(X)− (K2
X)− 4.

Remark that (K2
X) ≥ χh(X) − 3 is the condition which Feehan–Leness [9]

assumed to prove Witten’s conjecture. It should be remarked that they also proved
that X is of superconformal simple type if X is abundant under the same technical
assumption as before [10, 9].

We analyze the residue of our differential at the superconformal point and
show that 1) the fact that Dξ(α), up to sign, depends only on (ξ mod 2) implies
that X is of superconformal simple type, and 2) the differential is regular at the
superconformal point if X is of superconformal simple type. Thus the residue
vanishes at the superconformal point, and hence we prove Witten’s conjecture for
a 4-manifold X of simple type under Conjecture 4.6, and under no assumption on
the complex projective surface X.

§2. Preliminaries (I): Donaldson and Seiberg–Witten invariants

§2.1. Donaldson invariants

Let y = (2, ξ, n) ∈ Heven(X,Z). We take a Riemannian metric g on X and consider
the moduli space M(y) of irreducible anti-self-dual connections on the adjoint
bundle ad(P ) of a principal U(2)-bundle P with c1(P ) = ξ, c2(P ) = n. For a
generic metric g, this is a manifold of dimension 8n− 2(ξ2)− 6χh(X). A choice of
an orientation of H+, a maximal positive definite subspace of H2(X) with respect
to the intersection pairing, gives an orientation on M(y).

Let P → X × M(y) be a universal PU(2)-bundle and let µ : Hi(X) →
H4−i(M(y)) be the µ-map defined by µ(β) := − 1

4p1(P)/β. Then the Donaldson
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invariant of X is a polynomial on H0(X)⊕H2(X) defined by

(2.1) Dξ,n(αkpl) =
∫
M(y)

µ(α)kµ(p)l,

where p ∈ H0(X) is the point class. This is nonzero only when k + 2l = 4n −
(ξ2) − 3χh(X). As M(y) is not compact, this integral must be justified by using
the Uhlenbeck compactification of M(y). When b+ ≥ 3 as we assumed, the integral
is independent of the choice of the Riemannian metric g. The moduli space does
not change on twisting of P by a line bundle, since the adjoint bundle remains
the same. Only the orientation is different. Thus the integral depends only on
ξ mod 2 ∈ H2(X,Z/2) up to sign.

We consider the generating function

Dξ(exp(αz + px)) =
∑
n,k,l

Dξ,n(αkpl)
zkxl

k! l!
Λ4n−(ξ2)−3χh(X).

Since n can be read off from k, l as above, the variable Λ is redundant, and we
often put Λ = 1, but it is also useful when we will consider the partition function.

Definition 2.2. A 4-manifold X is of KM-simple type if for any ξ and α,

∂2

∂x2
Dξ = 4Λ4Dξ.

For a 4-manifold of KM-simple type, we define

(2.3) Dξ(α) := Dξ

(
exp(α)

(
1 +

1
2
p

))
=
∑
n,k

Dξ,n(αk)
1
k!

+
1
2

∑
n,k

Dξ,n(αkp)
1
k!
.

Kronheimer–Mrowka’s structure theorem [17] says that there is a finite distin-
guished collection of 2-dimensional cohomology classes Ki ∈ H2(X,Z) and nonzero
rational numbers βi such that

Dξ(α) = exp((α2)/2)
∑
i

(−1)(ξ,ξ+Ki)/2βi exp(Ki, α).

Each Ki is an integral lift of the second Stiefel–Whitney class w2(X).

§2.2. Complex projective surfaces

Now suppose X is a complex projective surface. Take an ample line bundle H

and consider the moduli space MH(y) of torsion free H-semistable sheaves E with
c1(E) = ξ, c2(E) = n. Here we assume ξ is of type (1, 1). We take the orientation
on H+ given by c1(H) and the complex orientation on H0,2(X).
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It is known that Donaldson invariants can be defined using MH(y) instead of
M(y) in (2.1) if MH(y) is of expected dimension [18, 23]. We define the µ-map
by using a universal sheaf E instead of P, as µ(β) = (c2(E) − c1(E)2/4)/β. The
orientation we used above differs from the complex orientation by (−1)(ξ,ξ+KX)/2,
where KX is the canonical class.

If MH(y) is not of expected dimension, we consider the blow-up at sufficiently
many points p1, . . . , pN disjoint from cycles representing α, p. Then the moduli
becomes of expected dimension on the blow-up if N is sufficiently large. We then
use the blow-up formula as the definition of the integral over MH(y). See [15, §1.1]
for detail.

Mochizuki defines the invariants by using obstruction theory on the moduli
spaces of pairs of sheaves and their sections with a suitable stability condition.
When the vector y is primitive, the stability is equivalent to the semistability for
MH(y), and Mochizuki’s moduli is a projective bundle overMH(y). If, furthermore,
the moduli space MH(y) is of expected dimension, the virtual fundamental class
coincides with the ordinary one, and hence Mochizuki’s invariants are equal to the
usual Donaldson invariants ([21, Lem. 7.3.5]). In order to prove that his invariant
coincides with the above invariant for any y, one needs to prove the blow-up
formula for Mochizuki’s invariants. It follows a posteriori from our main result
that this is true. It should be possible to give a more direct proof by combining
the theory of perverse coherent sheaves [29, 30, 31] with Mochizuki’s method.

§2.3. Seiberg–Witten invariants

Let s be a spinc structure and let c1(s) = c1(S+) ∈ H2(X) be the first Chern class
of its spinor bundle.

Let N(s) be the moduli space of the solutions of monopole equations. This
is a compact manifold (more precisely, after a perturbation) of dimension d(s) :=
(c1(s)2 − (KX)2)/4. It has the orientation induced from that of H+ as in the case
of Donaldson invariants. Let Q be the S1-bundle associated with the evaluation
homomorphism from the gauge group at a point in X, and c1(Q) be its first Chern
class. The Seiberg–Witten invariant of s is defined as

SW(s) :=
∫
N(s)

c1(s)d(s)/2

This is independent of the choice of g and the perturbation.
We call s (or c1(s)) a Seiberg–Witten class if SW(s) 6= 0. It is known that

there are only finitely many Seiberg–Witten classes.

Definition 2.4. A 4-manifold X is of SW-simple type if SW(s) is zero for all s

with d(s) > 0.
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For c ∈ H2(X; Z) which is a lift of w2(X), we define

SW(c) =
∑

c1(s)=c

SW(s).

When X is a complex projective surface, it is known that all Seiberg–Witten
classes are of type (1, 1). The moduli space N(s) is identified with the moduli
space of pairs of a holomorphic line bundle and its section. It is an unperturbed
moduli space, and does not have the expected dimension d(s) in general, but can
be equipped with an obstruction theory to define the invariants [13]. It is also
known that X is of SW-simple type.

We will not use so much results on Seiberg–Witten invariants, except the most
basic one:

SW(−s) = (−1)χh(X) SW(s),

where −s is the complex conjugate of the spinc structure s. (See, e.g., [24,
Cor. 6.8.4].)

§2.4. Witten’s conjecture

Witten’s conjecture states that if X is of SW-simple type, it is also of KM-simple
type and βi, Ki are determined by Seiberg–Witten invariants. See (1.1) in Intro-
duction.

Example 2.5. Let X be a K3 surface. The Donaldson series is known [35]:

Dξ(α) = (−1)(ξ,ξ)/2 exp((α2)/2).

The only Seiberg–Witten class is c1(s) = 0 and SW(s) = 1.

Example 2.6. Let X be a quintic surface in P3. The Donaldson series was given
in [17, Example 2]:

D0(α) = 8 exp((α2)/2) sinh(KX , α),

DKX (α) = −8 exp((α2)/2) cosh(KX , α).

We have χh = 5, (K2
X) = 5. The Seiberg–Witten classes are ±KX , and SW(−KX)

= 1, SW(KX) = (−1)χh = −1 by [24, Prop. 7.3.1].

Example 2.7. Let X be an elliptic surface X without multiple fibers such that
H1(X,OX) = 0. Let f be the class of a fiber. We have KX = OX(df) with
χh(X) = d + 2 and (K2

X) = 0. The Donaldson series is given by Fintushel–
Stern [12]:

D0(α) = exp((α2)/2) sinhχh(X)−2(f, α).
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The Seiberg–Witten invariants were computed by Friedman–Morgan [13]:

SW((2p− d)f) = (−1)p
(
d

p

)
for p = 0, . . . , d, SW(c) = 0 for other c.

§2.5. Superconformal simple type

Let us briefly study the superconformal simple type condition (Definition 1.3) in
this subsection. More examples can be found in [20].

If we take another integral lift w̃′2(X) of w2(X) in (1.4), we have

(−1)(w̃′2(X),w̃′2(X)+c1(s))/2 = (−1)(w̃2(X),w̃2(X)+c1(s))/2(−1)((w̃′2(X)−w̃2(X))/2)2 .

Therefore it is enough to assume (1.4) for some integral lift w̃2(X) of w2(X). We
will consider the case when X is a complex projective surface, and take KX as a
lift.

If X is a minimal surface of general type, we have the Noether inequality
(K2

X)/2 + 2 ≥ χh(X)− 1. Together with (K2
X) ≥ 1, it implies (K2

X) ≥ χh(X)− 3.
Thus X is of superconformal simple type by definition ([20, §7.1]). In fact, it is
known that the Seiberg–Witten classes are ±KX , and SW(−KX) = 1, SW(KX) =
(−1)χh(X) (see, e.g., [24]). Therefore we cannot have a nontrivial identity like (1.4).

We consider

SW(α) :=
∑

s

(−1)(KX ,KX+c1(s))/2 SW(s) exp (c1(s), α).

The condition (1.4) is equivalent to SW(α) having zero of order≥ χh(X)−(K2
X)−3

at α = 0. We have
SW(−α) = (−1)χh(X)−(K2

X)SW(α)

as SW(−c) = (−1)χh(X) SW(c). Therefore SW is an even (resp. odd) function if
χh(X) − (K2

X) is even (resp. odd). Therefore the order of zero is automatically
≥ χh(X)− (K2

X)− 2 under the above condition.

Example 2.8 ([20, §7.2]). Let X be an elliptic surface without multiple fibers
such that H1(X,OX) = 0. Let f be the class of a fiber. Then KX = OX(df) with
χh(X) = d+2. We have (K2

X) = 0. The Seiberg–Witten invariants were computed
by Friedman–Morgan [13] as in Example 2.7. Therefore

SW(α) = (−2)χh(X)−2 sinhχh(X)−2(f, α).

This has zero of order χh(X)− 2 at α = 0. Hence X is of superconformal simple
type. This example can be generalized to the case of elliptic surfaces with multiple
fibers.
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Example 2.9 ([20, §7.3]). Consider a one-point blow-up X̂ → X. Let C be the
exceptional divisor. We have (K2bX) = (K2

X) − 1 and χh(X̂) = χh(X). Let us add

the subscript X and X̂ to the Seiberg–Witten invariants SW (and SW) in order
to clarify which surface we consider. Then we have SW bX(c ± C) = SWX(c) for
c ∈ H2(X) and the other SW bX(c+ nC) vanish. Therefore

SW bX(α+ zC) = −2SWX(α) sinh(z).

Thus SWX(α) has a zero of order ≥ χh(X) − (K2
X) − 3 at α = 0 if and only if

SW bX has a zero of order ≥ χh(X)− (K2
X)− 2 = χh(X̂)− (K2bX)− 3 at (α, z) = 0.

Thus X is of superconformal simple type if and only if so is X̂.

From these two examples and the classification of complex surfaces, we con-
clude that all complex projective surfaces with pg > 0, b1 = 0 are of superconformal
simple type. (See [20, §7.3].)

§3. Preliminaries (II): Instanton counting

§3.1. Framed moduli spaces of torsion free sheaves

We briefly recall the framed moduli spaces of torsion free sheaves on P2. See [25,
Chap. 2] and [27, §3] for more detail.

Let `∞ be the line at infinity of P2. A framed sheaf (E,ϕ) on P2 is a pair
consisting of

• a coherent sheaf E, which is locally free in a neighborhood of `∞, and

• an isomorphism ϕ : E|`∞ → O⊕r`∞ , where r is the rank of E.

Let M(r, n) be the moduli space of framed sheaves (E,ϕ) of rank r and c2(E) = n.
This is a nonsingular quasi-projective variety of dimension 2rn. It has an ADHM
type description.

Let M0(r, n) be the corresponding Uhlenbeck partial compactification. There
is a projective morphism π : M(r, n) → M0(r, n). This is a crepant resolution of
M0(r, n).

Let C∗ × C∗ act on P2 by [z0 : z1 : z2] 7→ [z0 : t1z1 : t2z2], where the line
`∞ at infinity is z0 = 0. Let T be the maximal torus of SLr(C) consisting of the
diagonal matrices and let T̃ = C∗ × C∗ × T . It acts on M(r, n) as follows: the
first factor C∗ × C∗ acts by pull-backs of sheaves E, and T acts by the change
of the framing ϕ. It also acts on M0(r, n) and π is equivariant. We consider the
equivariant homology groups H eT

∗ (M(r, n)) and H
eT
∗ (M0(r, n)). Let [M(r, n)] and

[M0(r, n)] be the fundamental classes.
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The fixed points M(r, n) eT are parametrized by r-tuples of Young diagrams
~Y = (Y1, . . . , Yr). Each Yα corresponds to a monomial ideal Iα of the polynomial
ring C[x, y], and gives a framed rank 1 sheaf. The direct sum I1 ⊕ · · · ⊕ Ir is a
torus fixed point. The equivariant Euler class Eu(T~YM(r, n)) of the tangent space
of M(r, n) at ~Y is given by a certain combinatorial formula (see [27, §§3,4]). Its
explicit form is used only implicitly in this paper when we quote Maple calcula-
tions. On the other hand, M0(r, n) has a unique fixed point: the rank r trivial
sheaf together with a singularity concentrated at the origin.

Let ε1, ε2, a1, . . . , ar (with a1 + · · · + ar = 0) be the coordinates of the Lie
algebra of T̃ . We also use the notation ~a = (a1, . . . , ar). The equivariant coho-
mology H∗eT (pt) of a single point is naturally identified with the polynomial ring

S(T̃ ) := C[ε1, ε2, a2, . . . , ar]. Let S(T̃ ) be its quotient field. The localization theo-
rem for the equivariant homology group says that the push-forward homomorphism
ι0∗ of the inclusion M0(r, n) eT → M0(r, n) induces an isomorphism of equivariant
homology groups after tensoring by S(T ). Since M0(r, n) eT is a single point, as we
remarked above, we have

ι0∗ : H eT
∗ (M0(r, n) eT )⊗S(T ) S(T ) = S(T )

∼=−→ H
eT
∗ (M0(r, n))⊗S(T ) S(T ).

Let ι−1
0∗ be the inverse of ι0∗.
We also have an isomorphism

ι∗ : H eT
∗ (M(r, n) eT )⊗S(T ) S(T ) = S(T )⊕#{~Y } ∼=−→ H

eT
∗ (M(r, n))⊗S(T ) S(T ),

where ι : M(r, n) eT → M(r, n). By the functoriality of push-forward homomor-
phisms, we have

(3.1)
∑
~Y

ι−1
∗ = ι−1

0∗ ◦ π∗,

where
∑

~Y is the map S(T )⊕#{~Y } → S(T ) defined by taking the sum of compo-
nents.

Since M(r, n) is smooth, ι−1
∗ is given by

ι∗(•)
Eu(T~YM(r, n))

,

where ι∗ is the pull-back homomorphism of equivariant cohomology groups, con-
sidered as a map between equivariant homology groups via Poincaré duality.

Nekrasov’s deformed partition function for pure gauge theory is defined as
the generating function of ι−1

0∗ π∗[M(r, n)], where we let n vary. By the discussion
above, it is the generating function of 1/Eu(T~YM(r, n)) for all ~Y . It was introduced
in [33] and studied in [34, 26, 27].
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§3.2. The partition function for the theory with fundamental matters

We need a variant of the partition function. It is called the partition function for
the theory with fundamental matters in the physics literature.

Over the moduli space M(r, n), we have a natural vector bundle V, whose
fiber at (E,ϕ) is H1(E(−`∞)). It has rank n. If E denotes the universal sheaf on
P2×M(r, n), we have V = R1q2∗(E⊗q∗1(O(−`∞))), where q1, q2 are the projections
from P2 ×M(r, n) to the first and second factors respectively.

In fact, a computation shows that it is more natural to replace H1(E(−`∞))
by the L2-kernel of the Dirac operator DA : E ⊗ S− → E ⊗ S+, where A is the
instanton corresponding to E (assuming it is locally free). This is simply given by
tensoring the half canonical bundle K1/2

C2 of C2, i.e. a trivial line bundle with weight
e−(ε1+ε2)/2. This makes sense even if E is not locally free, so we can consider it
as a definition of the kernel of the Dirac operator. Thus we consider R1q2∗(E ⊗
q∗1(O(−`∞)⊗K1/2

C2 )). As K1/2
C2 is a trivial bundle, this factors as V ⊗K1/2

C2 .
For a positive integer Nf , we consider a vector space M = CNf , called the

flavor space. The group GL(M) naturally acts on M . Let TM be the diagonal
subgroup. Let ~m = (m1, . . . ,mNf ) denote an element in LieTM . We consider the
equivariant class Eu(V ⊗K1/2

C2 ⊗M) ∩ [M(r, n)]. This has the degree (or virtual
dimension) (2r−Nf )n. The theory is called conformal when Nf = 2r and asymp-
totically free when Nf < 2r. We assume Nf < 2r hereafter. We set γ := 2r −Nf .

We define the instanton part of the partition function by

(3.2) Z inst(ε1, ε2,~a, ~m; Λ) =
∞∑
n=0

Λγnι−1
0∗ π∗

(
Eu(V ⊗K1/2

C2 ⊗M) ∩ [M(r, n)]
)
,

where Λ is a formal variable.
Using (3.1) we can replace ι−1

0∗ π∗ by
∑

~Y ι
−1
∗ . Then we get

(3.3) Z inst(ε1, ε2,~a, ~m; Λ) =
∞∑
n=0

∑
|~Y |=n

Λγ|~Y |Eu(V|~Y ⊗K
1/2
C2 ⊗M)

Eu(T~YM(r, n))
,

where V|~Y is the fiber of V at the fixed point ~Y , and |~Y | is the sum of the numbers
of boxes in the Young diagrams Yα. The right hand side has a combinatorial
expression, which we do not present since we use it only implicitly.

It is known that

(1) ε1ε2 logZ inst(ε1, ε2,~a, ~m; Λ) is regular at ε1, ε2 = 0, and hence has the expan-
sion

(3.4) F inst
0 (~a, ~m; Λ) + (ε1 + ε2)H inst(~a, ~m; Λ)

+ ε1ε2A
inst(~a, ~m; Λ) +

ε2
1 + ε2

2

3
Binst(~a, ~m; Λ) + · · · .



Donaldson = Seiberg–Witten 319

(2) The leading term F inst
0 (~a, ~m; Λ) is the instanton part of the Seiberg–Witten

prepotential.

For the pure theory (i.e., Nf = 0) these were proved by the second and
third-named authors [26], Nekrasov–Okounkov [34], and Braverman–Etingof [3]
independently. The proof in [34] works also for theories with matters. See [34,
§7.1]. We also need to know the next three terms H, A, B. These were computed
in [27] for the pure theory. The corresponding results for our case r = 2, Nf = 1
along the argument in [26, 27] will be explained below (§6). We need to use the
theory which we have developed in [29, 30, 31]. In particular, we have H inst ≡ 0,
which means that the partition function is ‘topological’: H inst is coupled with
ε1 + ε2 = −c1(KC2), which depends on the complex structure, but it vanishes.

Since we will only consider the case r = 2, Nf = 1, we denote a2, m1 simply
by a, m respectively. In application to Mochizuki’s formula below, we need to
specialize a = m. This is well-defined: Setting a = m means that we restrict the
acting group from T̃ × TM to a smaller subgroup. But the smaller subgroup still
has the same fixed points (as TM acts trivially), and the fixed point formula can
be specialized.

In view of Conjecture 4.6 below, it is desirable to have a direct definition
of the partition function in terms of the Uhlenbeck compactification M0(r, n),
not appealing to the algebro-geometric object M(r, n). Since V is not a pull-back
from M0(r, n), this is a nontrivial problem. If we consider M0(r, n) as an affine
algebraic variety, then π∗(Eu(V ⊗K1/2

C2 ⊗M) ∩ [M(r, n)]) is a limit of the formal
T̃ × TM -character of the space of sections of certain virtual sheaves on M0(r, n)
as in [26, §4]. It should be possible to replace this virtual sheaf by a complex of
vector bundles.

§4. Mochizuki’s formula and the partition function

As we mentioned in the Introduction, we will use Mochizuki’s formula relating
Donaldson invariants and Seiberg–Witten invariants. Before stating his formula,
let us briefly explain the idea behind its proof. The reader can safely jump to §4.1
if he/she accepts Mochizuki’s formula. But the authors encourage the reader to
learn Mochizuki’s beautiful ideas. Of course he/she should read the book [21] for
more detail.

When X is a complex projective surface, Mochizuki first developed the ob-
struction theory for moduli spaces of pairs of sheaves and sections and related
spaces. Then he obtained a general machinery to write down the difference of in-
variants for two moduli spaces defined with different stability conditions. A point is
to introduce a C∗-equivariant obstruction theory on the ‘master space’ containing
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two moduli spaces as C∗-fixed point loci. He integrated the class exp(µ(αz+px))∪a
over the master space, where a is the generator of the equivariant cohomology
group H∗C∗(pt) of a single point. Since the integral vanishes at the nonequivariant
limit a = 0, the sum of the residues of the fixed point loci contributions is zero by
the Atiyah–Bott–Berline–Vergne fixed point formula. This gives the difference of
the invariants as the sum of the residues of ‘exceptional’ fixed points loci contribu-
tions. The exceptional fixed points are products of lower rank sheaves and pairs.
Up to this point, the framework is essentially the same as the SO(3)-monopole
cobordism program, except for a systematic use of obstruction theory. But a cru-
cial difference is that Mochizuki’s obstruction theory enables him to treat moduli
spaces as if they were smooth. In particular, his ‘residues’ are given explicitly in
terms of equivariant Euler classes of virtual normal bundles.

He applied this theory to the case of moduli spaces of rank 2 pairs. When a
stability condition is suitably chosen, moduli spaces of pairs are projective bun-
dles over moduli of genuine sheaves, thus the invariants are reduced to Donald-
son invariants. On the other hand, for another stability condition, moduli spaces
become empty sets. The difference of the invariants, which is just Donaldson in-
variants, is given by the sum of the residues of equivariant integrals over other
‘exceptional’ fixed point loci, which are moduli spaces of pairs of rank 1 sheaves
with sections of one factor. These exceptional contributions can be identified with
the product of the Seiberg–Witten invariant and an equivariant integral over the
product X [n1] × X [n2] of Hilbert schemes of points in X. This is because rank 1
sheaves are just ideal sheaves twisted by line bundles. The class Q appearing in
the formula below is the equivariant Euler class of the normal bundle mentioned
above.

§4.1. Mochizuki’s formula

Let y = (2, ξ, n), α, p, z, x be as in the definition of Donaldson invariants (§2.1).
Suppose that we have decompositions ξ = ξ1 + ξ2 and n − (ξ1, ξ2) = n1 + n2.
We denote by eξi the holomorphic line bundle whose first Chern class is ξi. Let
Ii (resp. OZi) denote the universal ideal sheaf (resp. subscheme) over X ×X [ni].
Their pull-backs to X × X [n1] × X [n2] are denoted by the same notation. Let
q2 : X ×X [n1] ×X [n2] → X [n1] ×X [n2] be the projection.

Let C∗ act trivially on X [n1]×X [n2] and consider the equivariant cohomology
group H∗C∗(X

[n1] × X [n2]) ∼= H∗(X [n1] × X [n2])[a], where a is the variable for
H∗C∗(pt), i.e., H∗C∗(pt) = C[a]. We consider the following equivariant cohomology
classes on X [n1] ×X [n2]:

P (I1e
ξ1−a ⊕ I2e

ξ2+a) := exp(− ch2(I1e
ξ1−a−ξ/2 ⊕ I2e

ξ2+a−ξ/2)/(αz + px)),



Donaldson = Seiberg–Witten 321

Q(I1e
ξ1−a ⊕ I2e

ξ2+a)

:= Eu(−Ext∗q2(I1e
ξ1−a, I2e

ξ2+a)) Eu(−Ext∗q2(I2e
ξ2+a, I1e

ξ1−a)),

where Ext∗q2 is the alternating sum Ext0
q2 −Ext1

q2 + Ext2
q2 , and Ext•q2 is the derived

functor of the composite q2∗ ◦ Hom.
Roughly speaking, Q is the equivariant Euler class of the virtual normal

bundle of X [n1] ×X [n2] in MH(y). Here one should consider that the embedding
is given by (I1, I2) 7→ eξ1I1 ⊕ eξ2I2. And P is the restriction of the integrand ap-
pearing in Donaldson invariants. But the precise formulation requires the master
space, and is omitted in this paper.

Note that Q is invertible in H∗(X [n1] × X [n2])[a, a−1] as it has the form
Q(I1e

ξ1−a ⊕ I2e
ξ2+a) = aN + (lower degree in a) for some N . We consider the

following class in H∗(X [n1] ×X [n2])[a, a−1]:

Ψ̃(ξ1, ξ2, n1, n2; a)

:=
P (I1e

ξ1−a ⊕ I2e
ξ2+a)

Q(I1eξ1−a ⊕ I2eξ2+a)
Eu(H∗((O/I1)eξ1)) Eu(H∗((O/I2)eξ2+2a))

(2a)n1+n2−pg
,

where H∗(O/Ii) is the alternating sum of the higher direct image sheaves
R•q2∗(O/Ii). This is the same as Mochizuki’s Ψ ([21, §1.4.2]), except that we
do not take the residue with respect to a. Therefore we add tildes in the notation.

We set

Ã(ξ1, y; a) = 21−χ(y)
∑

n1+n2=n−(ξ1,ξ2)

∫
X[n1]×X[n2]

Ψ̃(ξ1, ξ2, n1, n2; a),

where χ(y) is the Euler characteristic of the class y. By Riemann–Roch, we have

χ(y) =
(ξ, ξ −KX)

2
+ 2χh(X)− n.

Theorem 4.1 ([21, Th. 1.4.6]). Assume that χ(y) > 0, (ξ,H)/2 > (KX , H) and
(ξ,H) > (c1(s) +KX , H) for any Seiberg–Witten class s. Then

(4.2)
1
2

∫
MH(y)

exp(µ(αz + px)) =
∑
ξ1

SW(ξ̃1) Res
a=∞

Ã(ξ1, y; a) da,

where ξ̃1 := 2ξ1 −KX .

Let us give several remarks.

Remarks 4.3. (1) The left hand side is Mochizuki’s definition of the invariant
using the obstruction theory. It is equal to the usual Donaldson invariant if y is
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primitive and MH(y) is of expected dimension. This is not an essential assumption,
as we explained in §2.2.

(2) Mochizuki took the residue at a = 0, instead of a = ∞. But ours is just
the negative of Mochizuki’s, as Ã(ξ1, y; a) is in C[a, a−1].

(3) The factor 1/2 on the left hand side comes from Mochizuki’s convention.
He considered integration over the moduli space of oriented sheaves. There is a
natural étale proper morphism from the oriented moduli space to the usual one of
degree (rank)−1 = 1/2.

(4) The assumption is satisfied if we replace y by yekH for sufficiently large k.
But it is not clear, a priori, that the right hand side is independent of k. This will
become important for our later analysis of the residue of Ã.

(5) Mochizuki denoted the usual Seiberg–Witten invariant by S̃W and set
SW(ξ1) = S̃W(2ξ1 − KX). We keep SW for the notation of the usual Seiberg–
Witten invariant. On the other hand, the Seiberg–Witten class 2ξ1 − KX will
naturally appear in Witten’s formula (1.1). Therefore we have denoted it by ξ̃1.
Thus our SW(ξ̃1) is Mochizuki’s SW(ξ1).

(6) Since the expected dimension dimMH(y) is 4n− (ξ2)− 3χh(X), we have

(4.4) 4χ(y) = ((ξ −KX)2)− (K2
X)− dimMH(y) + 5χh(X).

§4.2. Formula in terms of the partition function

Now we prove our first main result. Recall y = (2, ξ, n). Let us introduce the
generating function of the Ã(ξ1, y; a):

B(ξ1, ξ; a) :=
∑
n

Λ4n−(ξ2)−3χh(X)Ã(ξ1, (2, ξ, n); a).

Theorem 4.5. We have

B(ξ1, ξ; a)da=
da

a
(−1)(ξ,ξ+KX)/2+(KX ,KX+ξ̃1)/2+χh(X)2−2χh(X)−(ξ−KX−ξ̃1,ξ−KX)/2

×
(

2a
Λ

)((ξ−KX)2)+(K2
X)+3χh(X)−2(ξ−KX ,ξ̃1)

exp(−(ξ −KX − ξ̃1, α)az − a2x)

× exp
[

1
3
∂F inst

0

∂ log Λ
x+

(
1
8
∂2F inst

0

∂a2
+

1
4
∂2F inst

0

∂a∂m
+

1
8
∂2F inst

0

∂m2

)
((ξ −KX)2)

− 1
4

(
∂2F inst

0

∂a∂m
+
∂2F inst

0

∂a2

)
(ξ −KX , ξ̃1)

+
1
6

(
∂2F inst

0

∂a∂ log Λ
+

∂2F inst
0

∂m∂ log Λ

)
(ξ −KX , α)z − 1

6
∂2F inst

0

∂a∂ log Λ
(ξ̃1, α)z

+
1
18

∂2F inst
0

(∂ log Λ)2
(α2)z2+χh(X)(12Ainst−8Binst)+(K2

X)
(
Binst−Ainst+

1
8
∂2F inst

0

∂a2

)]
,
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where ξ̃1 = 2ξ1 − KX as above, and the derivatives of F inst
0 , Ainst and Binst are

evaluated at (a,m,Λ) = (a, a,Λ4/3a−1/3).

Observe that our formula does not depend on the complex structure ofX when
we consider the canonical class KX as a choice of a spinc structure. Therefore, the
above expression makes sense for a smooth 4-manifold X. Further observe that KX

appears in the above expression only as either (K2
X) or the combination ξ −KX ,

except in the sign factor. If we ignore the sign, the Donaldson invariants depend
only on (ξ mod 2), so we can consider ξ −KX as auxiliary cohomology class. The
only requirement is that it is equal to (ξ mod 2) + w2(X) in H2(X,Z/2).

Therefore we pose the following:

Conjecture 4.6. Mochizuki’s result (Theorem 4.1) holds for a smooth 4-manifold
X with b1 = 0, b+ ≥ 3 odd, up to sign, if we replace Ã(ξ1, y; a) by coefficients of
B(ξ1, ξ; a) in Theorem 4.5.

We have the conditions (ξ,H)/2 > (KX , H), (ξ,H) > (c1(s)+KX , H), which
we do not know how to interpret for a smooth 4-manifold X. Therefore we just
ignore this condition and conjecture that Mochizuki’s result holds without it.

This conjecture is compatible with Feehan–Leness’ result (1.2). Our formula
in Theorem 4.5 involves only the intersection pairings among ξ̃1, ξ −KX and α.
Their formula involves an auxiliary cohomology class, denoted by Λ in [9, Th. 3.1],
and equal to Λ = c1(s0) + ξ for a chosen spinc structure s0. We take the canonical
spinc structure of the complex surface X as s0, so their Λ should be identified
with our ξ −KX . In fact, Λ satisfies the same condition which we have assumed
for ξ − KX . It is required to satisfy the same condition as χ(y) > 0 thanks to
(4.4) (written as ‘I(Λ) > δ’ [9]). We also remark that the exponent ((ξ−KX)2) +
(K2

X) + 3χh(X) − 2(ξ −KX , ξ̃1) of 2a/Λ is equal to −r(Λ, c1(s)) in [7, (1.12)] if
we take Λ = ξ −KX , s = ξ̃1 and replace (K2

X) by (c1(s)2).
Thus our conjecture follows immediately if the coefficients fk,l appearing in

Feehan–Leness’ formula (1.2) are the same as ours. This does not directly fol-
low from Feehan–Leness’ statement itself, as Seiberg–Witten invariants satisfy
nontrivial relations, namely superconformal simple type conditions, therefore the
coefficients are not uniquely determined.

The authors’ heuristic proof is the following: there is a morphism from Mochi-
zuki’s master space to the moduli space of SO(3)-monopole whenX is complex pro-
jective. Then by the functoriality of push-forward homomorphisms as used in (3.1),
the contributions of Seiberg–Witten invariants are the same for Mochizuki’s and
Feehan–Leness’ formulas. Since Feehan–Leness’ formula is universal, it is enough
to calculate them for complex projective X, and our calculation gives the answer.
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This proof works only for X of simple type and for which there is a complex
projective surface X0 with χ(X) = χ(X0), σ(X) = σ(X0). To generalize it to
hypothetical X of non-simple type, we need to connect Feehan–Leness’ coefficients
with Nekrasov’s partition function more directly.

Proof of Theorem 4.5. The proof is similar to that of the wall-crossing formula
for b+ = 1 in [15]. When the argument is really the same, we just refer to the
corresponding argument there.

We denote a in Mochizuki’s Ã by s for a moment.
We first write B as a product of the ‘perturbative term’, i.e., an expression

independent of n1, n2 and the ‘instanton part’, which is 1 if n1 = n2 = 0. For the
term P , we have

P (I1e
ξ1−s⊕I2e

ξ2+s) = exp(−(ξ2−ξ1, α)sz−s2x) exp([c2(I1)+c2(I2)]/(αz+px)).

Thus the perturbative term is exp(−(ξ2− ξ1, α)sz− s2x). For Q, the perturbative
term is

Eu(H∗(OX(ξ1 − ξ2))e−2s) Eu(H∗(OX(ξ2 − ξ1))e2s)

= (−2s)χ(OX(ξ1−ξ2))(2s)χ(OX(ξ2−ξ1))

= (−1)(ξ1−ξ2,ξ1−ξ2−KX)/2+χh(X)(2s)((ξ1−ξ2)2)+2χh(X)

= (−1)(ξ,ξ−KX)/2+(KX ,ξ2)+χh(X)(2s)((ξ1−ξ2)2)+2χh(X).

We also have 21−χ(y)(2s)pg−n1−n2 whose perturbative part is

21−(ξ,ξ−KX)/2−2χh(X)+(ξ1,ξ2)(2s)χh(X)−1.

For the power of Λ, the perturbative part is

Λ4(ξ1,ξ2)−(ξ2)−3χh(X) = Λ−((ξ1−ξ2)2)−3χh(X).

Combining all these terms, we find that the perturbative part of B is

(4.7) (−1)(ξ,ξ−KX)/2+(KX ,ξ2)+χh(X)

× 1
s

(
2s
Λ

)((ξ1−ξ2)2)+3χh(X)

e−(ξ2−ξ1,α)sz−s2x2−2χh(X)−(ξ,ξ−KX)/2+(ξ1,ξ2).

By the argument in [15, §5], it is enough to compute the instanton part for a
toric surface X.

We write χ := χ(X) for brevity. Let p1, . . . , pχ be the torus fixed points,
xi, yi the torus equivariant coordinates at pi, and w(xi), w(yi) the weights of the
torus action. As in [15, §3.2] we apply the Atiyah–Bott–Berline–Vergne fixed point
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formula to Ã(ξ1, y; s). At torus fixed points, the ideal sheaves I1, I2 are the in-
tersection of ideal sheaves supported at pi. Accordingly the cohomology groups in
Q and the matter factor Eu(H∗((O/I1)eξ1)) Eu(H∗((O/I2)eξ2+2s)) decompose as
products of local contributions at pi. As in [15, §3.2] we will identify these local
contributions with factors in the partition function Z inst.

Let us first study how variables appearing in Z inst will be identified with
expressions in the local contribution of Ã at pi. The variables ε1, ε2 in Z inst are
identified with w(xi), w(yi). In order to identify a1, a2, consider the factor Q. In
the definition of the partition function the first Chern class of the universal sheaf
is normalized to be 0 as a1 +a2 = 0. In view of [15, Lemma 3.4], this normalization
must be performed for Q as

Ext∗q2(I1e
ξ1−s, I2e

ξ2+s) = Ext∗q2(I1e
ξ1−s−ξ/2, I2e

ξ2+s−ξ/2).

Thus we get the same expression appearing in P , and we will identify variables as

a1 = −s+ ι∗pi(ξ1 − ξ/2) = −s− ι∗pi(ξ2 − ξ1)/2,

a2 = s+ ι∗pi(ξ2 − ξ/2) = s+ ι∗pi(ξ2 − ξ1)/2

in Z inst and Ã. Here ι∗pi is the pull-back homomorphism associated with the in-
clusion ιpi of the fixed point pi into X.

Accordingly we normalize the matter factor as

Eu(H∗((O/I1)eξ1)) Eu(H∗((O/I2)eξ2+2s))

= Eu(H∗((O/I1)eξ1−s−ξ/2+s+ξ/2)) Eu(H∗((O/I2)eξ2+s−ξ/2+s+ξ/2)).

Recalling that we put K1/2
C2 in the partition function, we identify the variable m

for the matter with s+ ι∗pi(ξ −KX)/2, as ξα − s− ξ/2 is aα for α = 1, 2.
Next we consider the variable Λ. After removing the perturbative part as

above, we consider Λ4(n1+n2) in B. On the other hand, we use Λ3(n1+n2) in the
definition of the partition function. We combine this with sn1+n2 in Ψ̃ , which we
then absorb into the variable Λ in the partition function (3.2). Therefore Λ in (3.2)
will be replaced by Λ4/3s−1/3.

Now we use the argument in [15, §3.2] to write the instanton part of B in
terms of the partition function:

lim
ε1,ε2→0

χ∏
i=1

Z inst

(
w(xi), w(yi), ι∗pi

(
ξ2 − ξ1

2

)
+s, ι∗pi

(
ξ −KX

2

)
+s;

Λ4/3

s1/3
eι
∗
pi

(αz+px3 )

)
.

We need to explain the last expression eι
∗
pi

((αz+px)/3). This comes from
exp([c2(I1) + c2(I2)]/(αz + px)), which is the instanton part of P . We use the
same argument as in [15, Cor. 3.18], which was based on [27, §4.5]. Let us briefly
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recall the point of the argument: We can put more variables ~τ = (τρ)ρ≥1 into the
partition function Z inst as in [15, (1.4)], [27, §4.5]. But we only need τ1 since we
only use ch2 and not higher Chern classes in the Donaldson invariants. Then τ1 can
be absorbed into the variable Λ as ch2 is determined by n of M(r, n). We identify
τ1 = −ι∗pi(αz+px) as in [15]. In fact, the absorption of τ1 into Λ is simpler than in
[27, §4.5], as we do not put the perturbative term in the partition function. We just
need to note that it is a multiplication of eι

∗
pi

((αz+px)/3) instead of eι
∗
pi

((αz+px)/4),
because we use Λγn = Λ3n instead of Λ4n in the definition of the partition function.
The partition function Z inst with the extra variable τ1 does not have the property
that its constant part in Λ is 1. However, by the first displayed formula in [27,
§4.5], when τ1 is absorbed into Λ, Z inst is multiplied by a function independent of
Λ, so that afterwards its constant part in Λ is 1, matching the instanton part of B.

We now use the expansion (3.4) together with H inst = 0. As in [15, proof of
Th. 4.2], we have

χ∏
i=1

Z inst

(
w(xi), w(yi), i∗pi

(
ξ2−ξ1

2

)
+s, i∗pi

(
ξ−KX

2

)
+s; Λ

(
Λ
s

)1/3

ei
∗
pi

((αz+px)/3)

)
= exp

[∑
i

1
w(xi)w(yi)

(
F inst

0 +
∂F inst

0

∂a
i∗pi

(
ξ2 − ξ1

2

)
+
∂F inst

0

∂m
i∗pi

(
ξ −KX

2

)

+
∂F inst

0

∂ log Λ
i∗pi

(
αz + px

3

)
+

1
2
∂2F inst

0

∂a2
i∗pi

(
ξ2 − ξ1

2

)2

+
∂2F inst

0

∂a∂m
i∗pi

(
ξ2 − ξ1

2

)
i∗pi

(
ξ −KX

2

)
+

1
2
∂2F inst

0

∂m2
i∗pi

(
ξ −KX

2

)2

+
∂2F inst

0

∂a∂ log Λ
i∗pi

(
ξ2 − ξ1

2

)
i∗pi

(
αz + px

3

)
+

∂2F inst
0

∂m∂ log Λ
i∗pi

(
ξ −KX

2

)
i∗pi

(
αz + px

3

)
+

1
2
∂2F inst

0

∂ log Λ2
i∗pi

(
αz + px

3

)2

+w(xi)w(yi)Ainst +
w(xi)2 +w(yi)2

3
Binst

)]
+O(ε1, ε2)

= exp
[

1
3
∂F inst

0

∂ log Λ
x+

1
8
∂2F inst

0

∂a2
((ξ2 − ξ1)2) +

1
4
∂2F inst

0

∂a∂m
(ξ2 − ξ1, ξ −KX)

+
1
8
∂2F inst

0

∂m2
((ξ −KX)2) +

1
6
∂2F inst

0

∂a∂ log Λ
(ξ2 − ξ1, α)z +

1
6

∂2F inst
0

∂m∂ log Λ
(ξ −KX , α)z

+
1
18

∂2F inst
0

∂ log Λ2
(α2)z2 + χ(X)Ainst + σ(X)Binst

]
+O(ε1, ε2),

where we evaluate the derivatives of F inst
0 , Ainst, Binst at a2 = a = s, m = s,

Λ = Λ4/3/s1/3. We now safely change s back to a.
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We use χ(X) = 12χh(X) − (KX)2, σ(X) = (K2
X) − 8χh(X), ξ = ξ1 + ξ2,

ξ̃1 = 2ξ1 − KX and (ξ̃2
1) = (K2

X) to get the assertion, where the last equality is
nothing but the SW-simple type condition.

§5. Blow-up formula for the partition function

We start to analyze the partition function in this section. Our technique is the
same as in [26, 27, 28]: we study the blow-up formula of the partition function.

§5.1. Partition function on the blow-up

Let p : P̂2 → P2 be the blow-up of P2 at the origin [1 : 0 : 0]. Let C = p−1([1 :
0 : 0]) be the exceptional divisor. Let M̂(r, k, n) be the moduli space of framed
sheaves (E,Φ) on P̂2 with rank r, c1(E) = kC, (c2(E)−(r−1)c1(E)2/(2r), [P̂2]) =
n, where the framing is defined on p−1(`∞). (See [26, §3] or [27, §3.2].) This is
nonsingular quasi-projective of dimension 2rn. We normalize as 0 ≤ k < r. This is
always possible by twisting by a power of O(C). There is a projective morphism
π̂ : M̂(r, k, n)→M0(r, n− k(r − k)/(2r)).

We pull-back the C∗×C∗-action on P2 to P̂2. Then we have an action of T̃ on
M̂(r, k, n) as in the case of M(r, n). The action is lifted to the universal sheaf E
on P̂2 × M̂(r, k, n). The morphism π̂ is T̃ -equivariant.

We define µ(C) as appeared in the definition of Donaldson’s invariants:

µ(C) =
(
c2(E)− r − 1

2r
c1(E)2

)/
[C] ∈ H2eT (M̂(r, k, n)).

Over M̂(r, k, n) we have two natural vector bundles, which correspond to V:

V0 := R1q2∗(E ⊗ q∗1O(−`∞)), V1 := R1q2∗(E ⊗ q∗1O(C − `∞)).

These are vector bundles of rank n+ k2/(2r)− k/2 and n+ k2/(2r) + k/2 respec-
tively thanks to the vanishing of other higher direct image sheaves, and play a
fundamental role in the ADHM type description of M̂(r, k, n) (see, e.g., [29]).

Therefore we have two possible choices of matters on blow-up. Here we take
V0 since the V1 version can be reduced to the V0 one after twisting by the line
bundle O(C). We define the partition function (or rather the correlation function
since we put the operator µ(C)) as in (3.2) by

Ẑ inst
c1=kC(ε1, ε2,~a, ~m; t; Λ)

:= ΛNfk(r−k)/(2r)
∞∑
n=0

Λγnι−1
0∗ π̂∗

(
etµ(C) ∩ Eu(V0 ⊗ p∗(K1/2

C2 )⊗M) ∩ [M̂(r, k, n)]
)
.
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Here p∗(K1/2
C2 ) is the trivial line bundle with weight e−(ε1+ε2)/2. It looks a little

artificial, but is necessary as in the case of C2. The square root K1/2bC2 does not

make sense since Ĉ2 is not spin.
As in the case of the original partition function Z inst(ε1, ε2,~a, ~m; Λ), this one

also has a combinatorial expression like (3.3). We do not write it down here, we
only explain the parameter set for the fixed points. Similar to the case of M(r, n) eT ,
it is the set of triples (~k, ~Y 1, ~Y 2) of an r-tuple of integers ~k = (k1, . . . , kr) and the
pair of r-tuples of Young diagrams ~Y 1 = (Y 1

1 , . . . , Y
1
r ), ~Y 2 = (Y 2

1 , . . . , Y
2
r ). The

corresponding framed sheaf is I1(k1C)⊕ · · · ⊕ Ir(krC), where Iα is an ideal sheaf
fixed by the C∗ × C∗-action. The blow-up Ĉ2 has two fixed points p1, p2, and Iα
is given by two monomial ideals with respect to toric coordinates at p1 and p2. In
this way, Iα is parametrized by a pair of Young diagrams (Y 1

α , Y
2
α ).

From this combinatorial description of the fixed point set, we can write down
the correlation function Ẑ inst

c1=kC as sum over the lattice for {~k} of products of two
Z inst’s for p1, p2, and contribution from line bundles O(kαC). We postpone to
write down the explicit formula until we introduce the perturbative term in the
next subsection.

§5.2. Perturbative term

The partition function defined above does not behave well in many aspects. It is
more natural to add what is called the perturbative term, which is an explicit func-
tion. We recall its definition in this subsection. We return back to arbitrary r, Nf .

Let γε1,ε2(x; Λ) be the function used to define the perturbative part of the
partition function in [27, §E]:

γε1,ε2(x; Λ) =
1

ε1ε2

{
−1

2
x2 log

(
x

Λ

)
+

3
4
x2

}
+
ε1 + ε2

2ε1ε2

{
−x log

(
x

Λ

)
+ x

}
(5.1)

− ε2
1 + ε2

2 + 3ε1ε2

12ε1ε2
log
(
x

Λ

)
+
∞∑
n=3

(n− 3)!cn(−x)2−n,

where cn is defined by

1
(1− e−ε1t)(1− e−ε2t)

=
∞∑
n=0

cnt
n−2.

If we consider the equivariant cohomology group H∗T 2(C2) of C2 with respect
to the two-dimensional torus action, we have

cn =
∫

C2
Toddn(C2),
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where Toddn is the degree n part of the Todd genus, and
∫

C2 is defined by the
localization formula applied to C2: ι∗0(•)/Eu(T0C2). Here 0 is the unique fixed
point and ι0 is the inclusion {0} → C2.

If γ0(x; Λ) = − 1
2x

2 log(x/Λ) + 3
4x

2 denotes the leading part of γε1,ε2(x; Λ)
(‘genus 0 part’), we have

γε1,ε2(x; Λ) =
∞∑
n=0

∫
C2

Toddn(C2)γ(n)
0 (x).

We introduce the function for the matter contribution as

δε1,ε2(x; Λ) := γε1,ε2

(
x− ε1 + ε2

2
; Λ
)

=
1

ε1ε2

{
−1

2
x2 log

(
x

Λ

)
+

3
4
x2

}
+
ε2

1 + ε2
2

24
log
(
x

Λ

)
+ · · · .

The shift −(ε1 + ε2)/2 is identified with KC2/2, and is compatible with our shift
for the instanton partition function.

We define the full partition function as

Z(ε1, ε2,~a, ~m; Λ) := exp
[
−
∑
~α∈∆

γε1,ε2(〈~a, ~α〉; Λ) +
∑
f,α

δε1,ε2(aα +mf ; Λ)
]

× Z inst(ε1, ε2,~a, ~m; Λ),

where ∆ is the set of type A roots, i.e., 〈~a, ~α〉 = aα − aβ and the summation runs
over all α 6= β.

Remark 5.2. We do not make precise to which ring the full partition functions
belong, as functions in Λ. We just use them formally to make the blow-up equa-
tion (5.4) shorter. The rigorous form of the blow-up equation is given by rewriting
it as an equation for the instanton part. This was given in [26, Cor. 6.12], for
the Nekrasov partition function without matters, and the version with matters is
similar. But we do not give it here since it is not enlightening. This remark ap-
plies to all formulas below until they (more precisely their leading coefficients) are
identified with those defined via Seiberg–Witten curves, which are really functions
defined over an appropriate open set in Λ.

Let us expand the perturbative part as

−
∑
~α∈∆

γε1,ε2(〈~a, ~α〉; Λ) +
∑
f,α

δε1,ε2(aα +mf ; Λ)

=
1

ε1ε2

(
F pert

0 + (ε1 + ε2)Hpert + ε1ε2A
pert +

ε2
1 + ε2

2

3
Bpert + · · ·

)
as in the instanton part.
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For future reference, we give explicit formulas for some terms when r = 2,
Nf = 1:

Hpert = π
√
−1a,

∂F pert
0

∂ log Λ
= −3a2 +m2,

∂2F pert
0

∂(log Λ)2
= 0, − 1

γ

∂2F pert
0

∂ log Λ∂a
= 2a,

∂2F pert
0

∂a2
= 8 log

−2
√
−1a

Λ
− log

(a+m)(−a+m)
Λ2

,

∂2F pert
0

∂a∂m
= log

(
−a+m

Λ

)
− log

(
a+m

Λ

)
,

∂2F pert
0

∂m2
= − log

(
−a+m

Λ

)
− log

(
a+m

Λ

)
,

∂2F pert
0

∂m∂ log Λ
= 2m,

Apert =
1
2

log
(
−2
√
−1a

Λ

)
,

Bpert =
1
2

log
(
−2
√
−1a

Λ

)
+

1
8

log
(

(m− a)(m+ a)
Λ2

)
.

(5.3)

§5.3. Blow-up formula

Similarly we define the perturbative part to the correlation function on the blow-up
as

Ẑc1=kC(ε1, ε2,~a, ~m; t; Λ)

:= exp
[
−
∑
~α∈∆

γε1,ε2(〈~a, ~α〉; Λ) +
∑
f,α

δε1,ε2(aα +mf ; Λ)
]
Ẑ inst
c1=kC(ε1, ε2,~a, ~m; t; Λ).

As in [27, §4.4], we get

(5.4) Ẑc1=kC(ε1, ε2,~a, ~m; t; Λ)

= exp
[
t

γ

((
r

12
(2r +Nf − 2) +

Nf
2
k2

r

)
(ε1 + ε2) +

(
r

2
− k
)∑

f

mf

)]

×
∑
~k

Z

(
ε1, ε2 − ε1,~a+ ε1

~k, ~m+
(
k

r
− 1

2

)
ε1~e; Λetε1/γ

)

× Z
(
ε1 − ε2, ε2,~a+ ε2

~k, ~m+
(
k

r
− 1

2

)
ε2~e; Λetε2/γ

)
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by analyzing the fixed points in M̂(r, k, n) and then using a difference equation
satisfied by the perturbative term. Here ~e = (1, . . . , 1) ∈ Zr, and ~k runs over{

~k = (k1, . . . , kr) ∈ Qr :
∑

kα = 0, kα ≡ −
k

r
mod Z

}
.

This is slightly different from the ~k which appeared in the parametrization of the
fixed point set M̂(r, k, n) eT : we subtract k/r from each factor so that the sum of
entries becomes 0.

The complete proof will be given in [32], but is a straightforward modification
of the original one.

In [31, Th. 2.1] we proved the following vanishing theorem:

(5.5)
Ẑc1=0(ε1, ε2,~a, ~m; t; Λ)
Z(ε1, ε2,~a, ~m; Λ)

= 1 +O(tmax(r+1,2r−Nf )).

This is a generalization of the vanishing theorem for the pure theory (Nf = 0),
which was proved by the dimension counting argument in [26]. The proof of this
generalization requires the theory of perverse coherent sheaves in [29, 30, 31], but
has a similar flavor to the original one. In particular, the exponent 2r−Nf , which
is written γ here, comes from the formula for

deg
(
Eu(V ⊗K1/2

C2 ⊗M) ∩ [M(r, n)]
)

= (2r −Nf )n = γn.

From (5.4) together with (5.5), we can prove

(1) ε1ε2 logZ(ε1, ε2,~a, ~m; Λ) is regular at ε1, ε2 = 0.

(2) The instanton part satisfies Z inst(ε1,−2ε1,~a, ~m; Λ) = Z inst(2ε1,−ε1,~a, ~m; Λ).

The proofs of these assertions are exactly as in [27, §5.2] and [26, Lem. 7.1] re-
spectively. They will be reproduced in [32] for this version, and are not repeated
here.

We expand the partition function as in (3.4):

ε1ε2 logZ(ε1, ε2,~a, ~m; Λ)

= F0(~a, ~m; Λ) + (ε1 + ε2)H(~a, ~m; Λ) + ε1ε2A(~a, ~m; Λ) +
ε2

1 + ε2
2

3
B(~a, ~m; Λ) + · · · .

From the symmetry property (2) of Z, we see that H comes only from the per-
turbative part. This is already explained above. As in [27, §5.3] (which has a sign
mistake) we have

H(~a, ~m; Λ) = −π
√
−1〈~a, ρ〉,

where ρ is half the sum of the positive roots.
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As in [27, §6] we can take the limit of (5.4) to get

(5.6) lim
ε1,ε2→0

Ẑc1=kC(ε1, ε2,~a, ~m; t; Λ)
Z(ε1, ε2,~a, ~m; Λ)

= exp
[
− 1

2

∑
f,f ′

∂2F0

∂mf∂mf ′

(
k

r
− 1

2

)2

+A−B

− t

γ

{∑
f

(
k

r
− 1

2

)(
∂2F0

∂ log Λ∂mf
−mfr

)}
− 1

γ2

∂2F0

∂(log Λ)2

t2

2

]

×ΘEk

(
− 1

2π
√
−1

∂2F0

∂~a∂mf

(
k

r
− 1

2

)
− t

γ

1
2π
√
−1

∂2F0

∂~a∂ log Λ

∣∣∣∣ τ),
where ΘEk is the Riemann theta function with the characteristic Ek as in [27, §B].
The period matrix τ is given by

τkl = − 1
2π
√
−1

∂2F0

∂ak∂al
.

Here we change the coordinate from (a2, . . . , ar) to the root system coordinate

defined as ~a =
∑
aiα∨i by simple coroots α∨i = (0, . . . , 0,

i
1,
i+1
−1, 0, . . . , 0), i =

1, . . . , r.
In the r = 2 case, we have a1 = a1 = −a2 = −a. Therefore we need to note

∂/∂~a = −∂/∂a when we use (5.6).
For a later purpose, we need another vanishing for c1 6= 0:

(5.7) Ẑc1=kC(ε1, ε2,~a, ~m; t; Λ) = O(tk(r−k))

for 0 < k < r. See [31, Th. 2.5]. This is again proved by a version of the dimension
counting argument, and k(r − k) appears as the dimension of the Grassmannian
of k-planes in Cr.

§5.4. Lower terms

We assume r = 2, Nf = 1 hereafter. Therefore γ = 3.
Let us define a function u by

(5.8) u := − 1
γ

(
∂F0

∂ log Λ
−m2

)
= a2 − 1

γ

∂F inst
0

∂ log Λ
.

In the formula of Theorem 4.5, this appears as the coefficient of x. Note that x is
a variable for the µ-class of the point. Its gauge-theoretic interpretation is already
implicitly used in the proof of Theorem 4.5, but becomes clear if we look again
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the partition function as follows: Consider

(5.9)
∑∞
n=0 Λγnι−1

0∗ π∗
(
ch2(E)/[0] ∩ Eu(V ⊗K1/2

C2 ⊗M) ∩ [M(2, n)]
)∑∞

n=0 Λγnι−1
0∗ π∗

(
Eu(V ⊗K1/2

C2 ⊗M) ∩ [M(2, n)]
) ,

where [0] is the equivariant homology class of the origin. The denominator is
nothing but Z inst(ε1, ε2, a,m; Λ), and we have ch2(E)/[0] = a2 − nε1ε2. Therefore
this is equal to

a2 − ε1ε2

γ

∂

∂ log Λ
logZ inst(ε1, ε2, a,m; Λ).

From the expansion (3.4), this converges to (5.8) at ε1, ε2 = 0. In other words,
the function u is the limit of (5.9) at ε1, ε2 = 0.

This can be generalized as follows. Let us replace ch2(E)/[0] by its pth power
in (5.9). We have

Z inst(ε1, ε2, a,m; Λ)−1

p∑
k=0

(
p

k

)
a2k

(
−ε1ε2

γ

∂

∂ log Λ

)p−k
Z inst(ε1, ε2, a,m; Λ).

If we set F := ε1ε2 logZ inst, we also get higher derivatives of F . But they always
come with ε1ε2 and disappear in the limit ε1, ε2 → 0. Therefore we differentiate F
only once, and get

p∑
k=0

(
p

k

)
a2k

(
− 1
γ

∂F inst
0

∂ log Λ

)p−k
=
(
a2 − 1

γ

∂F inst
0

∂ log Λ

)p
at ε1, ε2 = 0. This is equal to up.

In [31, Th. 2.6] a general structural result of the blow-up formula was proved.
The integral

ι−1
0∗ π̂∗

(
etµ(C) ∩ Eu(V0 ⊗ p∗(K1/2

C2 )⊗M) ∩ [M̂(2, k, n)]
)
,

appearing in the correlation function on the blow-up, can be written as a linear
combination of

ι−1
0∗ π̂∗

(
(ch2(E)/[0])p ∩ Eu(V ⊗K1/2

C2 ⊗M) ∩ [M(2, n− k(2− k)/4− j)]
)

for various p, j ≥ 0, where the coefficients are in C[m, ε1, ε2][[t]]. (In higher rank
cases, we also need higher Chern classes.) Moreover, the coefficients depend on p, j
(and k), but not on n. Therefore the ratio

Ẑc1=C(ε1, ε2, a,m; t; Λ)
Z(ε1, ε2, a,m; Λ)

is a formal power series in t with coefficients in C[m, ε1, ε2, u,Λ]. Here the finiteness
as power series in u, Λ comes from the cohomological degree reason.
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In particular, when we expand the ratio in t, we only get finitely many powers
of Λ, and the coefficients can be computed from the integrals over finitely many
moduli spaces. By using the combinatorial expressions of the partition and corre-
lation functions, these are really possible to compute. We use a Maple program to
get

(5.10) lim
ε1,ε2→0

Ẑc1=C(ε1, ε2, a,m; t; Λ)
Z(ε1, ε2, a,m; Λ)

= −Λt− t3

3!
Λu− t5

5!
Λ(u2 + 2mΛ3)− t7

7!
Λ(u3 + 6umΛ3 + 6Λ6) +O(t9).

In fact, we have computed the ratio before taking limε1,ε2→0, but imposing ε1 +ε2

= 0 instead. Otherwise, the program runs very slow.
Let us check the cohomological degree, which we briefly mentioned above. We

have deg Λ = degm = 1, deg u = 2. Then the coefficient of tn has degree n.

§6. Seiberg–Witten curves

In this section we determine the coefficients F0, A, B of Z in terms of certain ‘peri-
ods’ of a family of elliptic curves, called the Seiberg–Witten curves. Our derivation
of the Seiberg–Witten curves is analogous to Fintushel–Stern’s method [11]: They
described (in fact, before Seiberg–Witten’s work) that the blow-up formula for
Donaldson invariants is given by elliptic integrals, associated with cubic curves
of Weierstrass form. And the moduli parameter u for the cubics is coupled to the
µ-class of the point. We define u, and derive cubic curves in the same way by using
the partition function Z instead of Donaldson invariants. The cubic curves are the
Seiberg–Witten curves for the theory with one fundamental matter. In fact, our
derivation is much simpler, as we already see the theta function in the blow-up
formula.3

A similar discussion of the relation between the σ-function and the blow-up
formula is given in [27, §6.3] for the partition function without matters. Some
relevant formulas for elliptic functions are collected there. (See also [27, App. B]
for notation.)

§6.1. Elliptic curve

As before, we set

(6.1) τ := − 1
2π
√
−1

∂2F0

∂a2

3In higher rank cases, the story becomes much more complicated, as we need to show that
the theta function is associated with a hyper-elliptic curve. See [32].
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and consider the corresponding elliptic curve Eτ with period τ . We put

q = exp(π
√
−1 τ) = exp

(
−1

2
∂2F0

∂a2

)
.

Its expansion is given by

q =
Λ3(m2 − a2)1/2

(2a)4
(1 +O(Λ3))

from (5.3). Note that the instanton part is a formal power series in Λ3.
We have defined u in (5.8). Since

u = a2 +O(Λ3),

we can take u as a variable instead of a2 since Λ is a formal variable. This viewpoint
will be taken later since the curve Eτ will be explicitly given as a cubic curve so
that its coefficients are polynomials in u. This u is the coordinate of what Seiberg–
Witten called the u-plane, a family of vacuum states.

We realize the elliptic curve Eτ as C/(Zω + Zω′) = C/(Zω + Zωτ), where

(6.2) ω := −2π
√
−1
(
∂u

∂a

)−1

=
(

1
2π
√
−1

1
γ

∂2F0

∂a∂ log Λ

)−1

= −π
√
−1
a

+O(Λ3).

Using the Weierstrass ℘-function associated with Zω + Zω′, we can realize Eτ in
the Weierstrass form:

y2 = 4x3 − g2x− g3.

Since g2, g3 are given by (see, e.g., [2, §13.20])

g2 =
2
3

(
π

ω

)4

(θ4
00 + θ4

01 + θ4
10), g3 =

4
27

(
π

ω

)6

(θ4
00 + θ4

10)(θ4
00 + θ4

01)(θ4
01 − θ4

10),

Eτ is defined over the formal power series ring in Λ.
Then the blow-up formula for the c1 = C case (5.6) can be rewritten in terms

of the σ-function:

lim
ε1,ε2→0

Ẑc1=C(ε1, ε2, a,m; t; Λ)
Z(ε1, ε2, a,m; Λ)

= − exp
[
A−B − t2

{
1

2γ2

∂2F0

∂ log Λ2
+

π2

6ω2
E2(τ)

}]
σ(t)

θ′11(0)
ω

.

We compare the expansion

e−Tt
2
σ(t) = t− Tt3 +

(
T 2

2
− g2

2 · 5!

)
t5 +

(
−T

3

3!
+

Tg2

2 · 5!
− 6g3

7!

)
t7 + · · ·
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with our computation of lower terms of the blow-up formula (5.10). We get

exp(A−B)
θ′11(0)
ω

= Λ,(6.3)

1
2γ2

∂2F0

∂ log Λ2
+

π2

6ω2
E2(τ) = −u

6
,(6.4)

g2 =
4
3
u2 − 4mΛ3,(6.5)

g3 = − 8
27
u3 +

4
3
umΛ3 − Λ6.(6.6)

In particular, the curve Eτ has the Weierstrass form

y2 = 4x3 −
(

4
3
u2 − 4mΛ3

)
x+

8
27
u3 − 4

3
umΛ3 + Λ6.

Replacing x by x+ u/3, we get

(6.7) y2 = 4x2(x+ u) + 4mΛ3x+ Λ6.

This is none other than the Seiberg–Witten curve for the theory with one funda-
mental matter, first determined in [38]. There is a vast literature on this curve.
For example, [1] was useful for the authors.

The discriminant ∆ = g3
2 − 27g2

3 is given by

(6.8) ∆ = −Λ6(16u3 − 16u2m2 − 72umΛ3 + 64m3Λ3 + 27Λ6).

Let e1−u/3, e2−u/3, e3−u/3 be the solutions of the right hand side of (6.7)
= 0. We number them as in [2, p. 361]:

(6.9)
e1 =

1
3

(
π

ω

)2

(θ4
00 + θ4

01), e2 =
1
3

(
π

ω

)2

(θ4
10 − θ4

01),

e3 = −1
3

(
π

ω

)2

(θ4
10 + θ4

00).

Note that ω in [2] is our ω/2.
The blow-up formula is further simplified as

lim
ε1,ε2→0

Ẑc1=C(ε1, ε2, a,m; t; Λ)
Z(ε1, ε2, a,m; Λ)

= −eut
2/6σ(t)Λ

(cf. [27, §6.3]). This is the form of Fintushel–Stern’s blow-up formula for the Don-
aldson invariants if we replace the curve appropriately, i.e., the Seiberg–Witten
curve for the pure theory.
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§6.2. Seiberg–Witten differential

In this subsection, we revert the roles of u and a. We consider u as a variable
and introduce the cubic curve (6.7). Then we write a as the integral of a certain
differential form dS on the Seiberg–Witten curve. The prepotential F0 is defined
in a similar way. It is the usual framework to relate the Seiberg–Witten curve and
the partition function. This is not necessary for our computation of derivatives
of F0, but we explain it for completeness.

Let Q(x) be the right hand side of (6.7). We set

dS := − 1
2π
√
−1

Q′(x)dx
4xy

.

Then we define

(6.10) a =
∫
A

dS.

Let us explain a motivation of this definition. We differentiate (6.7) to get

2ydy = Q′(x)dx.

Therefore
dS = − 1

2π
√
−1

dy

2x
.

We differentiate (6.7) by u after setting y to be constant:

0 = Q′(x)
∂x

∂u

∣∣∣∣
y=const

+ 4x2.

Hence

−2π
√
−1

∂

∂u
dS

∣∣∣∣
y=const

= − dy

2x2

∂x

∂u

∣∣∣∣
y=const

=
2dy
Q′(x)

=
dx

y
.

This is compatible with (6.2). And we have (6.10) up to a constant independent
of u.

Note that dS has a pole at x = 0. We have y = ±Λ3, hence the residue is

Res
x=0, y=±Λ3

dS =
∓m

2π
√
−1

.

Therefore we need to specify the A-cycle in (6.10), otherwise the residue is well-
defined only up to Z m

2π
√
−1

. This is possible by studying the perturbative part of
the integral, but we leave the details to [32].

We assume that the perturbative part has a correct behavior and sketch how
to prove that the above a, denoted by aSW, coincides with the original a. We
consider both a and aSW as functions in u, m, Λ. The latter is a convergent power
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series in Λ in a bounded region of u, m avoiding the discriminant of the Seiberg–
Witten curves. We consider it as a formal power series and compare with a. Since
da/du = daSW/du, a−aSW is a function of m and Λ only. On the other hand, both
a and aSW are homogeneous of degree 1 if we put deg u = 2, degm = deg Λ = 1.
For a, this is a cohomological degree. And for aSW, it can be shown as in [27, §2.2].
Since a and aSW have the same perturbative part (by our assumption), a−aSW is
a power series in Λ3, so it must be of the form

∑∞
n=1 anm

1−3nΛ3n with constants
an, for degree reasons. But as both a and aSW are regular at m = 0, we must have
an = 0 for all n, i.e., a = aSW.

The remaining part of the derivation of F0 from the Seiberg–Witten curves
can be discussed as usual. Let us sketch it again. We define the dual variable aD

as the integral of dS over the B-cycle. We consider a as a variable, and u as a
function in a. Then we define F0 by

aD = − 1
2π
√
−1

∂F0

∂a
.

This is compatible with (6.1) and determine F0 up to a constant independent of a.
We fix the ambiguity so that F0 satisfies (5.8). (F0 satisfies (5.8) up to a constant
as in [27, §2.4].)

§6.3. Genus 1 part

We next determine the coefficients A and B. This was done in [27, §7.1] for the
pure theory. We use the same method.

Consider the blow-up formula (5.4) for c1 = C and take the coefficient of
t0 · (ε1 + ε2). By (5.7) it is zero. As in [27] we get

∂

∂a

(
A− 1

3
B

)
= −1

3
∂

∂a
log θ′11(0).

Therefore we have

exp
(
A− 1

3
B

)
= Cθ′11(0)−1/3

for some constant C independent of a. Together with (6.3) we get

expA = (C3Λ−1ω−1)1/2,

expB = (CΛ−1ω−1)3/2θ′11(0) = C3/2(2π)−1/2Λ−3/2∆1/8,

where ∆ = 16(π/ω)12(θ′11(0)/π)8 is the discriminant.
The perturbative part of expA is(

−2
√
−1 a

Λ

)1/2

.
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On the other hand, ω−1/2 = (−2π
√
−1)−1/2(∂u/∂a)1/2 has

(−2π
√
−1)−1/2

√
2a.

Therefore

expA
(
−
√
−1

Λ
∂u

∂a

)−1/2

has perturbative part 1. On the other hand, from the discussion above, this is a
constant independent of a. From degree considerations as in [27], it is a homoge-
neous element. However the instanton part is a formal power series in Λ/a and
m/a. Therefore it must be 1. Hence

(6.11) expA =
(
−
√
−1

Λ
∂u

∂a

)1/2

, expB =
√
−1 Λ−3/2∆1/8.

§6.4. Derivatives of F0

We will redo the computation in this subsection at the point a = m again later,
so the reader can safely skip to the next section. But we just want to point out
that the derivatives of F0 can be computed before specializing a = m.

Let us rewrite the blow-up formula (5.6) for c1 = 0 in terms of the σ-function:

(6.12) lim
ε1,ε2→0

Ẑc1=0(ε1, ε2, a,m; t; Λ)
Z(ε1, ε2, a,m; Λ)

= θ01(0) exp
[
−1

8
∂2F0

∂m2
+A−B − η

ω

(
ω

4π
√
−1

∂2F0

∂a∂m

)2

+ t

{
1
γ

(
−m+

1
2

∂2F0

∂ log Λ∂m

)
+

η

2π
√
−1

∂2F0

∂a∂m

}
+
ut2

6

]
× σ3

(
t− ω

4π
√
−1

∂2F0

∂a∂m

)
,

where η = ζ(ω/2) = π2E2(τ)/(6ω). Taking the coefficients of t0, t1, t2 and com-
paring with (5.5), we get

θ01(0) exp
[
−1

8
∂2F0

∂m2
+A−B − ηω

(
1

4π
√
−1

∂2F0

∂a∂m

)2]
σ3

(
− ω

4π
√
−1

∂2F0

∂a∂m

)
= 1,

(6.13)

1
γ

(
m+

1
2

∂2F0

∂ log Λ∂m

)
+

η

2π
√
−1

∂2F0

∂a∂m
+
d

dt
(log σ3)

(
− ω

4π
√
−1

∂2F0

∂a∂m

)
= 0,

(6.14)

u

3
+
d2

dt2
(log σ3)

(
− ω

4π
√
−1

∂2F0

∂a∂m

)
= 0.(6.15)
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Since the second derivative of log σ is (−1) times the Weierstrass ℘-function,
we have

u

3
= − d2

dt2
(log σ3)

(
− ω

4π
√
−1

∂2F0

∂a∂m

)
= ℘

(
ωτ

2
− ω

4π
√
−1

∂2F0

∂a∂m

)
(6.16)

from the last equation. Therefore

− ω

4π
√
−1

∂2F0

∂a∂m
=
∫ 0

∞

dx

y
− ω3

2
=
∫ 0

e3−u/3

dx

y
,

where y is as in (6.7) and u/3 is replaced by 0 since the quadratic term of (6.7)
is 4u. Note that this 0 is the point where dS has a pole.

§7. Partition functions at the singular point

Recall that we need to specialize a = m in Theorem 4.5. At this point, the Seiberg–
Witten curve is singular, and many formulas are simplified.

§7.1. The special point a = m

Recall that the period τ of the Seiberg–Witten curve was given by the second
derivative of F0 with respect to a (see (6.1)). Its perturbative part is given by
(5.3). In particular, q = exp(π

√
−1 τ) vanishes at a = m since it contains a factor

−a + m. Therefore θ00 → 1, θ01 → 1, θ10 → 0 at a = m, and hence we have
e2 = e3 from (6.9). The cycle encircling e2, e3 vanishes and the curve develops
singularities.

The blow-up formula (6.12) is not suitable for the specialization e2 = e3, as it
contains an expression ∂2F0/∂a∂m, which has log(−a+m)/Λ in the perturbative
part. We observe that

ω3

2
− ω

4π
√
−1

∂2F0

∂a∂m
= − ω

4π
√
−1

(
∂2F0

∂a2
+

∂2F0

∂a∂m

)
does not contain the term log(−a+m)/Λ in the perturbative part. Hence we can
evaluate this term at a = m. Therefore we use σ instead of σ3 in (6.12):

lim
ε1,ε2→0

Ẑc1=0(ε1, ε2,~a, ~m; t; Λ)
Z(ε1, ε2,~a, ~m; Λ)

=
√
−1 Λ exp

[
−1

8

(
∂2F0

∂m2
+ 2

∂2F0

∂a∂m
+
∂2F0

∂a2

)
− ηω

{
1

4π
√
−1

(
∂2F0

∂a∂m
+
∂2F0

∂a2

)}2

+
t

γ

{
1
2

(
∂2F0

∂ log Λ∂m
− 2m

)}
+ π
√
−1

t

ω
+

tη

2π
√
−1

(
∂2F0

∂a∂m
+
∂2F0

∂a2

)
+
t2u

6

]
× σ

(
t− ω

4π
√
−1

(
∂2F0

∂a∂m
+
∂2F0

∂a2

))
.
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Here we have used

θ01(z) = exp
(
π
√
−1

4
τ + π

√
−1
(
z +

1
2

))
θ11

(
z +

1
2
τ

)
,

σ(t) = ω exp
(
η

ω
t2
)
θ11(t/ω)
θ′11(0)

= ω exp
(
π2

6ω2
E2(τ)t2

)
θ11(t/ω)
θ′11(0)

.

Now we can specialize e2 = e3 (see, e.g., [2, §13.15] for relevant formulas): the
σ-function becomes

σ(t) =
ω

π
sin
(
π

ω
t

)
exp
[

1
6

(
π

ω

)2

t2
]
.

We also note that

ηω = π2/6

at e2 = e3. Therefore

lim
ε1,ε2→0

Ẑc1=0(ε1, ε2,~a, ~m; t; Λ)
Z(ε1, ε2,~a, ~m; Λ)

=
√
−1ωΛ
π

exp
[
−1

8

(
∂2F0

∂m2
+ 2

∂2F0

∂a∂m
+
∂2F0

∂a2

)
+
t

γ

{
1
2

(
∂2F0

∂ log Λ∂m
− 2m

)}
+ π
√
−1

t

ω
+
t2

6

(
u+

(
π

ω

)2)]
× sin

(
π

ω
t− 1

4
√
−1

(
∂2F0

∂a∂m
+
∂2F0

∂a2

))
.

As before, we take the coefficients of t0, t1, t2, compare with (5.5) and get

1 =
√
−1ωΛ
π

exp
[
−1

8

(
∂2F0

∂m2
+ 2

∂2F0

∂a∂m
+
∂2F0

∂a2

)]
(7.1)

× sin
(
− 1

4
√
−1

(
∂2F0

∂a∂m
+
∂2F0

∂a2

))
,

0 =
1
γ

{
1
2

(
∂2F0

∂ log Λ∂m
− 2m

)}
+
π
√
−1
ω

(7.2)

+
π

ω
cot
(
− 1

4
√
−1

(
∂2F0

∂a∂m
+
∂2F0

∂a2

))
,

0 =
1
3

(
u+

(
π

ω

)2)
−
(
π

ω

)2

sin−2

(
− 1

4
√
−1

(
∂2F0

∂a∂m
+
∂2F0

∂a2

))
.(7.3)

§7.2. Miscellaneous identities

We assume a = m hereafter, and solve equations (7.1, 7.2, 7.3) to write down
various derivatives of F0 explicitly.
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Since e1−u/3 = (2/3)(π/ω)2−u/3, e2−u/3 = e3−u/3 = −(1/3)(π/ω)2−u/3
is a solution of 0 = 4x2(x+ u) + 4aΛ3x+ Λ6, we have

4
(
x+

u

3
+

1
3

(
π

ω

)2)2(
x+

u

3
− 2

3

(
π

ω

)2)
= 4x2(x+ u) + 4aΛ3x+ Λ6.

Thus (
u+

(
π

ω

)2)2(
u− 2

(
π

ω

)2)
=

27
4

Λ6,(7.4) (
u+

(
π

ω

)2)(
u−

(
π

ω

)2)
= 3aΛ3.(7.5)

This suggests the possibility to replace a by u− (π/ω)2 or u+ (π/ω)2. Therefore
we write various functions in terms of u and π/ω instead of a. In fact, we will find
that it is even more natural to introduce a function T given by

T :=
1
3

(
u+

(
π

ω

)2)
=

1
3

(
u− 1

4

(
∂u

∂a

)2)
.

Up to a constant multiple, this is the contact term for surfaces in the physics
literature, say in [22, 19]. It will give the contribution of the intersection number
(α2) in Donaldson invariants in view of our formula in Theorem 4.5, thanks to
(7.7) proved just below.

The perturbative parts of u and (1/4)(∂u/∂a)2 cancel out, so the perturbative
part of T is 0. We calculate its leading term from the combinatorial expression of
(3.3) for the ‘1-instanton part’ M(2, n = 1) to find

(7.6) T =
1
2a

Λ3 +O(Λ6).

By (6.4) together with E2(τ) = 1 when a = m, we have

(7.7)
∂2F0

∂(log Λ)2
= −3

(
u+

(
π

ω

)2)
= −9T.

Since ∆ vanishes at a = m, we have ∂∆
∂a + ∂∆

∂m = 0. Therefore we get

0 =
(

3u2 − 2a2u− 9
2
aΛ3

)(
∂u

∂a
+
∂u

∂m

)
− 2u2a− 9

2
uΛ3 + 12a2Λ3

from (6.8). Using (7.4, 7.5), we find

−2u2a− 9
2
uΛ3 + 12a2Λ3 =

4
Λ3

(
π

ω

)6

T,

3u2 − 2a2u− 9
2
aΛ3 = − 4

Λ6

(
π

ω

)6

T 2.

(7.8)
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For example, the upper equality is checked as

−2u2a− 9
2
uΛ3 + 12a2Λ3

=
1

3Λ3

[
−2u2

(
u2 −

(
π

ω

)4)
+ 4
(
u2 −

(
π

ω

)4)2

− 27
2
uΛ6

]
=

4
3Λ3

(
π

ω

)6(
u+

(
π

ω

)2)
,

where the first equality is from (7.5) and the second from (7.4). The lower equality
can be proved in a similar way.

Therefore

(7.9) − 1
γ

(
∂2F0

∂ log Λ∂m
− 2m

)
− 2π

√
−1

ω
=
∂u

∂a
+
∂u

∂m
= Λ3T−1.

Plugging (7.9) to (7.2), we obtain

π

ω
cot
(
− 1

4
√
−1

(
∂2F0

∂a∂m
+
∂2F0

∂a2

))
=

1
2

Λ3T−1.

The left hand side is

π
√
−1
ω

exp
[
− 1

2

(
∂2F0
∂a∂m + ∂2F0

∂a2

)]
+ 1

exp
[
− 1

2

(
∂2F0
∂a∂m + ∂2F0

∂a2

)]
− 1

.

Hence

(7.10) exp
[
−1

2

(
∂2F0

∂a∂m
+
∂2F0

∂a2

)]
= −

(
2π
√
−1

ω
+ Λ3T−1

)/(
2π
√
−1

ω
− Λ3T−1

)
=

1
4
T−1

(
2π
√
−1

ω
+ Λ3T−1

)2

,

where we have used (7.4) in the last equality.
By (7.1) and (7.3) we have

(7.11) exp
[
−1

4

(
∂2F0

∂m2
+ 2

∂2F0

∂a∂m
+
∂2F0

∂a2

)]
= − 1

Λ2
T.

By (7.10) and (7.11) we obtain

(7.12) exp
[
−1

2

(
∂2F0

∂m2
+

∂2F0

∂a∂m

)]
=

4T 3

Λ4

(
2π
√
−1

ω
+ Λ3T−1

)−2

.
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§7.3. Computation of instanton parts

Since we will express Mochizuki’s formula in terms of instanton parts of derivatives
of F0 and A, B, we need to compute them. Since their perturbative parts are
explicit functions, we just subtract them from the full partition functions. We
denote instanton parts by putting ‘inst’ as sub/superscripts.

We have

(7.13)
1
γ

∂F inst
0

∂ log Λ
=

1
γ

(
∂F0

∂ log Λ
+ 2a2

)
= −u+ a2

from the perturbative part of ∂F0/ log Λ and the definition of u in (5.8).
Since exp[−(1/4)(∂2F0/∂m

2 + 2∂2F0/∂a∂m+ ∂2F0/∂a
2)] has −(2a/Λ)−1 as

the perturbative part, we get

(7.14) exp
[
−1

4

(
∂2F inst

0

∂m2
+ 2

∂2F inst
0

∂a∂m
+
∂2F inst

0

∂a2

)]
=

2a
Λ3
T

from (7.11). Note that the left hand side starts with 1 as a formal power series
in Λ. This is compatible with the expansion of the right hand side in (7.6).

In the same way, we get

(7.15) exp
[
−1

2

(
∂2F inst

0

∂a∂m
+
∂2F inst

0

∂a2

)]
=

1
4

(
2a
Λ

)3

T−1

(
2π
√
−1

ω
+ Λ3T−1

)2

from (7.10), and

(7.16) exp
[
−1

2

(
∂2F inst

0

∂m2
+
∂2F inst

0

∂a∂m

)]
=

2T 3

Λ3a

(
2π
√
−1

ω
+ Λ3T−1

)−2

from (7.12).
We need a trick to compute the instanton part of q = exp(−(1/2)∂2F0/∂a

2),
since it vanishes at a = m. For the moment we no longer set a = m and consider

q2
inst = exp

(
−∂

2F inst
0

∂a2

)
= q2

(
−2
√
−1 a

Λ

)8( (m+ a)(m− a)
Λ2

)−1

=
q2

m− a

(
−2
√
−1 a

Λ

)8(
m+ a

Λ2

)−1

.

Since q vanishes at a = m, we get

q2
inst

∣∣
m=a

= −Λ
∂(q2)
∂a

∣∣∣∣
m=a

(
2a
Λ

)7

.
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The discriminant ∆ has an expansion ω12∆ = (2π)12(q2 − 24q4 + · · · ), so

ω12 ∂∆
∂a

∣∣∣∣
m=a

=
∂

∂a
(ω12∆)

∣∣∣∣
m=a

= (2π)12 ∂(q2)
∂a

∣∣∣∣
m=a

.

We differentiate (6.8) with respect to a to get

(7.17)
∂∆
∂a

∣∣∣∣
m=a

= −16Λ6

(
3u2 − 2a2u− 9

2
aΛ3

)
∂u

∂a
= −
√
−1
(

2π
ω

)7

T 2,

where we have used (7.8). Therefore

(7.18) q2
inst = exp

(
−∂

2F inst
0

∂a2

)
= Λ
√
−1
(

2π
ω

)−5(2a
Λ

)7

T 2.

It is to be understood that all functions are evaluated at a = m unless an equation
contains an expression ‘m− a’.

Substituting (7.18) into (7.15) we get

exp
(
−∂

2F inst
0

∂a∂m

)
=

1√
−1 Λ

T−4

(
2a
Λ

)−1(2π
ω

)5(
π
√
−1
ω

+
Λ3

2T

)4

.

Then we substitute this into (7.16) to get

(7.19) exp
(
−∂

2F inst
0

∂m2

)
=
√
−1

Λ7
T 10

(
2a
Λ

)−1(2π
ω

)−5(
π
√
−1
ω

+
Λ3

2T

)−8

.

Let us consider instanton parts of other derivatives: we have

(7.20)
∂2F inst

0

∂a∂ log Λ
+

∂2F inst
0

∂m∂ log Λ
= 6a− 3Λ3T−1

from the definition (5.8) of u and (7.9). We also have

(7.21)
∂2F inst

0

∂m∂ log Λ
= −3

(
Λ3T−1 +

2π
√
−1

ω

)
,

from the definition (6.2) of ω and its perturbative part.
From (6.11) we have

(7.22) expAinst =
(

1
2a
∂u

∂a

)1/2

=
(

1√
−1 a

π

ω

)1/2

.

In order to compute the instanton part of B, we use the same technique
as for q, since B also vanishes at a = m. The perturbative part of B is
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(1/2) log(−2
√
−1 a/Λ) + (1/8) log((m− a)(m+ a)/Λ2). Thus we have

expBinst =
√
−1 Λ−3/2

(
∆

m− a

)1/8(−2
√
−1 a

Λ

)−1/2(
m+ a

Λ2

)−1/8

from (6.11). Therefore at m = a, we have

exp 8Binst = Λ−11

(
−∂∆
∂a

)(
2a
Λ

)−5

.

Using (7.17), we get

(7.23) exp 8Binst =
√
−1 Λ−11

(
2π
ω

)7(2a
Λ

)−5

T 2.

§7.4. The variable φ

In the partition function, we need to substitute Λ4/3a−1/3 into Λ. We denote the
substitution by •|Λ=Λ4/3a−1/3 .

Let T := T |Λ=Λ4/3a−1/3 . By (7.6) it has the expansion Λ4/(2a2) + · · · . So we
can choose the branch of its square root so that it starts as

√
T = Λ2/(

√
2a)+ · · · .

We set

(7.24) φ :=
√

T/Λ.

From (7.4,7.5) we have(
u|Λ=Λ4/3a−1/3 +

(
π

ω

)2∣∣∣∣
Λ=Λ4/3a−1/3

)2(
u|Λ=Λ4/3a−1/3 − 2

(
π

ω

)2∣∣∣∣
Λ=Λ4/3a−1/3

)
=

27
4

Λ8a−2,(
u|Λ=Λ4/3a−1/3 +

(
π

ω

)2∣∣∣∣
Λ=Λ4/3a−1/3

)(
u|Λ=Λ4/3a−1/3 −

(
π

ω

)2∣∣∣∣
Λ=Λ4/3a−1/3

)
= 3Λ4.

From the second equation and the definition of φ, we get

1
Λ2

(u)|Λ=Λ4/3a−1/3 =
1
2

(3φ2 + φ−2),

1
Λ2

((
π

ω

)2)∣∣∣∣
Λ=Λ4/3a−1/3

=
1
2

(3φ2 − φ−2).
(7.25)

Substituting this to the first equation, we obtain

(7.26)
1
4

Λ2a−2 = φ4

(
−1

2
φ2 +

1
2φ2

)
=

1
2
φ2(−φ4 + 1).
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Therefore

(7.27)
da

a
= − dφ

φ(1− φ4)
(1− 3φ4).

Taking square roots in (7.25, 7.26), we get

(7.28)
2π
√
−1

ωΛ
= −
√

2φ−1
√

1− 3φ4,
Λ
a

=
√

2φ
√

1− φ4.

By the above formulas, all the terms computed in §7.3 can be expressed in terms
of φ only. Hence we will treat φ as a variable instead of a. We will write the
differential B(ξ1, ξ; a)da, of which we take the residue in Mochizuki’s formula, in
terms of φ. The explicit formula will be given in the next section, but it is already
clear that it will involve several square roots and rational expressions in φ, when
we expand it as a series in x and z. We will see that square roots, in fact, do not
appear, so we get a rational differential in φ defined over P1.

We will use the residue theorem to rewrite Mochizuki’s formula as the sum
of the residues at other poles in the next section. But it is instructive to see the
meaning of poles at this stage.

Since φ = Λ/(
√

2a) + · · · , we have φ = 0 at a =∞. By (7.26) there are other
points φ4 = 1 giving a = ∞. By (7.27) they are indeed poles of the differential.
From (7.25) we have

u2
∣∣
Λ=Λ4/3a−1/3 = 4Λ4.

As u is coupled with the variable x for the µ-class of the point in the formula in
Theorem 4.5, these correspond to the KM-simple type condition in Definition 2.2.
In [40] it was noted that the Seiberg–Witten curve (for the pure theory) has sin-
gularities at those points, and they give the Seiberg–Witten invariant contribution
to Donaldson invariants. Therefore even before the actual calculation, it is natural
to expect that the residues at φ4 = 1 give what is expected in Witten’s conjec-
ture (1.1).

There are other poles, which is already seen in (7.28), at φ4 = 1/3. At those
points π/ω = (

√
−1/2)∂u/∂a vanishes. This means that the Seiberg–Witten curve

completely degenerates as we have e1 = e2 = e3. It is called a superconformal
point in the physics literature, and is the origin of the superconformal simple type
condition [20]. Therefore it is natural to expect that the residue at φ4 = 1/3
is related to the superconformal simple type condition. We will see that this is
indeed so.
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§8. Computation

§8.1. Explicit expression of the differential

Substituting all terms computed in the previous section into the formula in The-
orem 4.5, we obtain

(8.1) B(ξ̃1, ξ; a)da = −(−1)((ξ,ξ+KX)−(K2
X)−(KX ,ξ̃1))/2+χh(X) 1− 3φ4

1− φ4

dφ

φ

× exp
[
−Λ2

2
(3φ2 + φ−2)x− 1

2
φ2Λ2(α2)z2

]
φ−((ξ−KX)2)−(KX)2−3χh(X)

×
(

1√
2
φ−2(

√
1− φ4 −

√
1− 3φ4)

)(ξ−KX ,ξ̃1)

× exp
(

Λ√
2
φ−1(

√
1− 3φ4(ξ̃1, α)z −

√
1− φ4(ξ −KX , α)z)

)
× (
√

2
√

1− 3φ4)(K2
X)−χh(X).

This is a simple substitution except that we need to take square roots or 8th

roots for some expressions. For example, the term with ((ξ −KX)2) is

2−1/2

(
2a
Λ

)
exp
[

1
8

(
∂2F inst

0

∂m2
+ 2

∂2F inst
0

∂a∂m
+
∂2F inst

0

∂a2

)]∣∣∣∣
Λ=Λ4/3a−1/3

.

From (7.14) the square of this is equal to Λ2/T. Since the leading term of the
above is

√
2a/Λ, we find that it is equal to Λ/

√
T = φ−1 from our choice of

√
T.

We use the same argument for other expressions involving square roots.
When we expand Ã(ξ1, y; a) into a formal power series in z, x as

∑
k,lAk,lzkxl,

we will be interested in the case k + 2l = 4n − (ξ2) − 3χh(X) = dimMH(y),
otherwise the residue at φ = 0 vanishes for cohomology degree reasons. Note
also that dimMH(y) ≡ −(ξ2)− 3χh(X) mod 4 is independent of n. Therefore we
decompose B(ξ̃1, ξ; a) as

B(ξ̃1, ξ; a) = B(0)(ξ̃1, ξ; a) + B(1)(ξ̃1, ξ; a) + B(2)(ξ̃1, ξ; a) + B(3)(ξ̃1, ξ; a)

according to (k + 2l) mod 4. If we write variables (x, z), those are given explicitly
as

B(p)(ξ̃1, ξ; a)(x, z) =
1
4

3∑
q=0

(
√
−1)−qpB(ξ̃1, ξ; a)((−1)qx, (

√
−1)qz).

We will be concerned with B(dimMH(y))(ξ̃1, ξ; a), where we understand dimMH(y)
modulo 4 as explained above.

We will be interested in the sum over all Seiberg–Witten classes ξ̃1. There-
fore we can combine the contribution for ξ̃1 and −ξ̃1, using SW(−ξ̃1) =
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(−1)χh(X) SW(ξ̃1). Hence we will be interested in

(8.2) B(dimMH(y))(ξ̃1, ξ; a) + (−1)χh(X)B(dimMH(y))(−ξ̃1, ξ; a).

Proposition 8.3. (1) The sum B(p)(ξ̃1, ξ; a)da+(−1)χh(X)B(p)(−ξ̃1, ξ; a)da is un-
changed under the sign change of

√
1− 3φ4.

(2) Suppose that p ≡ dimMH(y) mod 2. Then B(p)(ξ̃1, ξ; a)da is unchanged
under the simultaneous sign change of

√
1− φ4 and

√
1− 3φ4.

In particular, if p ≡ dimMH(y) mod 2, the combination B(p)(ξ̃1, ξ; a)da +
(−1)χh(X)B(p)(−ξ̃1, ξ; a)da contains even powers of

√
1− 3φ4 and

√
1− φ4, and

hence is a rational 1-form in φ.
(3) The sum B(dimMH(y))(ξ̃1, ξ; a)da+(−1)χh(X)B(dimMH(y))(−ξ̃1, ξ; a)da is a

rational 1-form in φ4.

Proof. (1) Looking at (8.1), we see that replacing
√

1− 3φ4 by −
√

1− 3φ4 has
the same effect as replacing ξ̃1 by −ξ̃1 together with multiplication by (−1)χh(X),
as

1√
2φ2

(
√

1− φ4 +
√

1− 3φ4) =
{

1√
2φ2

(
√

1− φ4 −
√

1− 3φ4)
}−1

and
(−1)(KX ,KX−ξ̃1)/2 = (−1)(KX ,KX+ξ̃1)/2(−1)(K2

X).

Therefore the sum B(p)(ξ̃1, ξ; a)da+ (−1)χh(X)B(p)(−ξ̃1, ξ; a)da is unchanged.
(2) Looking at (8.1), we find that the replacement of

√
1− φ4,

√
1− 3φ4 by

−
√

1− φ4, −
√

1− 3φ4 has the same effect as the replacement of (x, z) by (x,−z)
together with multiplication by (−1)(ξ−KX ,ξ̃1)+(K2

X)−χh(X). From the definition,
the first replacement gives multiplication by (−1)p. Now the assertion follows from
the following:

(8.4) (ξ −KX , ξ̃1) + dimMH(y) ≡ (ξ −KX , ξ̃1) + (ξ2) + χh(X)

≡ (ξ −KX ,KX) + (ξ,KX) + χh(X) ≡ (K2
X)− χh(X) (mod 2).

For a later purpose we need a refinement:

(8.5) (ξ −KX , ξ̃1) + (K2
X) + 3χh(X)

≡ (ξ −KX , ξ̃1) + (K2
X)− (ξ2)− dimMH(y) (mod 4)

= (ξ −KX , ξ̃1 −KX) + (ξ,KX − ξ)− dimMH(y).

(3) Looking at (8.1) again, we find that the replacement of φ by
√
−1φ has the

same effect as the replacement (x, z) by (−x,−
√
−1z) together with multiplication

by
(−1)(ξ−KX ,ξ̃1)(

√
−1)−((ξ−KX)2)−(KX)2−3χh(X).
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The first replacement gives multiplication by (
√
−1)− dimMH(y). Therefore the as-

sertion follows from

−dimMH(y)− 2(ξ −KX , ξ̃1)− {((ξ −KX)2) + (K2
X) + 3χh(X)}

≡ (ξ2) + 3χh(X)− 2(ξ −KX ,KX)− {((ξ −KX)2) + (K2
X) + 3χh(X)}

≡ 0 (mod 4).

From the form of B(ξ̃1, ξ; a)da in (8.1), we find that the differential (8.2) has
poles possibly only at φ4 = 0, ∞, 1 and 1/3. Mochizuki’s formula is given by the
residue at φ4 = 0. The power of φ containing −(ξ −KX)2 is very negative since
ξ is sufficiently ample when we apply Mochizuki’s formula to compute Donaldson
invariants. Hence it is not so easy to compute the residue at φ4 = 0 directly.
Therefore we use the residue theorem(

Res
φ4=0

+ Res
φ4=∞

+ Res
φ4=1

+ Res
φ4=1/3

)
[the differential (8.2)] = 0,

to compute the residues at ∞, 1, 1/3 instead.

Remark 8.6. The differential in (8.1) was originally only defined in the formal
neighborhood of φ = 0, corresponding to a = ∞. Its extension to P1 is obvious
from its explicit form, but is quite mysterious if we remember that it is originally
given by the partition function. We do not have a geometric explanation, and a
similar mystery appears also in the study of mirror symmetry, where the analytic
continuation is far from obvious in the A-model, but is clear in the B-model.

§8.2. Residue at φ =∞

We first treat the simplest (possible) pole φ = ∞. Recall that we expand the
1-form B(ξ̃1, ξ; a)da as a formal power series in x, z and take the coefficients of
xkzl with k + 2l = 4n − (ξ2) − 3χh(X) = dimMH(y). Let us denote this part as
B[dimMH(y)](ξ̃1, ξ; a)da. The residue at φ4 = 0 is the same as that of Ã(ξ1, y; a)
for cohomological degree reasons, but it is not equal to Ã(ξ1, y; a) itself as we
still take the sum over all n. Recall that when we use Mochizuki’s formula in
Theorem 4.1, we expand B(dimMH(y))(ξ̃1, ξ; a)da in x, z, compute the residue at
φ4 = 0, and then take the sum over y. Thus we actually need to compute the
residue of B[dimMH(y)](ξ̃1, ξ; a)da.

Proposition 8.7. B[dimMH(y)](ξ̃1, ξ; a)da + (−1)χh(X)B[dimMH(y)](−ξ̃1, ξ; a)da is
regular at φ4 =∞ if χ(y) > 0.
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Proof. Terms appearing in (8.1) have the following order of vanishing at φ =∞:

Order
φ=∞

(φ) = −1, Order
φ=∞

(
dφ

φ

)
= −1, Order

φ=∞
(3φ2 + φ−2)k = −2k,

Order
φ=∞

(φ−1
√

1− φ4)l = −l, Order
φ=∞

(φ−1
√

1− 3φ4)l = −l,

Order
φ=∞

(
√

1− 3φ4) = −2

Therefore B[dimMH(y)](ξ̃1, ξ)+(−1)χh(X)B[dimMH(y)](−ξ̃1, ξ) has a zero of order at
least

− 1 + [((ξ −KX)2) + (K2
X) + 3χ(OX)]− dimMH(y)− 2(K2

X) + 2χ(OX)

= (ξ, ξ − 2KX) + 5χ(OX)− dimMH(y)− 1.

This is equal to 4χ(y)− 1. The assertion follows.

§8.3. Residue at φ4 = 1

Next we study the residue at φ4 = 1. We will show that it is identified with
Witten’s formula.

By (8.1), the residue of B(ξ̃1, ξ; a)da at φ = 1 is given by

− 1
2

(−1)((ξ,ξ+KX)−(K2
X)−(KX ,ξ̃1))/2+χh(X)e−2Λ2x− 1

2 Λ2(α2)z2(
√

2
√
−2)(K2

X)−χh(X)

×
(

1√
2

(−
√
−2)

)(ξ−KX ,ξ̃1)

exp
(

Λ√
2

√
−2(ξ̃1, α)z

)
= −(−1)((ξ,ξ+KX)−(K2

X)−(KX ,ξ̃1))/2+(K2
X) 2(K2

X)−χh(X)−1

× exp
[
−2Λ2x− 1

2
Λ2(α2)z2

]
(
√
−1)−{(ξ−KX ,ξ̃1)+(K2

X)−χh(X)} exp(Λ
√
−1(ξ̃1, α)z).

By (8.5),

(ξ−KX , ξ̃1)+(K2
X)−χh(X) ≡ (ξ−KX , ξ̃1−KX)+(ξ,KX−ξ)−dimMH(y) mod 4.

We combine the first two terms, which are even, with the factor coming from
((K2

X) + (KX , ξ̃1))/2:

− (KX ,KX + ξ̃1)
2

+ (ξ −KX ,
ξ̃1 −KX

2
) +

(ξ,KX − ξ)
2

= − (ξ, ξ − ξ̃1)
2

− (KX , ξ̃1) ≡ (ξ, ξ − ξ̃1)
2

− (K2
X) (mod 2).
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Hence we get

Res
φ=1
B(ξ̃1, ξ; a)da

= −(−1)((ξ,ξ+KX)+(ξ,ξ−ξ̃1))/22(K2
X)−χh(X)−1 exp[−2Λ2x− 1

2
Λ2(α2)z2]

× (
√
−1)dimMH(y) exp(Λ

√
−1(ξ̃1, α)z)

and
1
2

Res
φ=1

[B(dimMH(y))(ξ̃1, ξ; a)da+ (−1)χh(X)B(dimMH(y))(−ξ̃1, ξ; a)da]

= −(−1)((ξ,ξ+KX)+(ξ,ξ−ξ̃1))/22(K2
X)−χh(X)−3

×
[
e−2Λ2x− 1

2 Λ2(α2)z2{(
√
−1)dimMH(y)eΛ

√
−1(ξ̃1,α)z

+ (
√
−1)− dimMH(y)e−Λ

√
−1(ξ̃1,α)z}

+ e2Λ2x+ 1
2 Λ2(α2)z2{e−Λ(ξ̃1,α)z + (−1)− dimMH(y)eΛ(ξ̃1,α)z}

]
,

where we have used (ξ, ξ̃1)+χh(X) ≡ dimMH(y) (mod 2) (cf. (8.4)). The residues
at φ =

√
−1, −1, −

√
−1 are the same as above by Proposition 8.3(3). Thus we

multiply the above by 4 for the contribution from φ4 = 1.
This contribution satisfies the KM-simple type condition, i.e., it is killed by

(∂/∂x)2− 4Λ4. If we consider the contribution to the Donaldson series Dξ, we get

−(−1)
(ξ,ξ+KX )

2 2(K2
X)−χh(X)+1e2Λ2x+ 1

2 Λ2(α2)z2
∑
ξ̃1

SW(ξ̃1)(−1)
(ξ,ξ−ξ̃1)

2 e−Λ(ξ̃1,α)z.

Replacing ξ̃1 by −ξ̃1, removing the sign factor (−1)(ξ,ξ+KX)/2 as in §2.2 and mul-
tiplying with the 2 from Mochizuki’s convention, we get the right hand side of
(1.1) with the opposite sign. Therefore, if the residue at φ4 = 1/3 vanishes, we
obtain (1.1).

§8.4. Residue at φ4 = 1/3

Proposition 8.8. Suppose that X is of superconformal simple type. Then∑
ξ̃1

SW(ξ̃1)B(dimMH(y))(ξ̃1, ξ; a)da

is regular at φ4 = 1/3.

Proof. Let

f(λ) :=
∑
ξ̃1

(−1)((KX ,KX+ξ̃1))/2 SW(ξ̃1)λ(ξ−KX ,ξ̃1)

× {(−λ+ λ−1)(ξ̃1, α)− (λ+ λ−1)(ξ −KX , α)}k,
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where we assume k has the same parity as dimMH(y). By (8.4), we have

f(λ) = (−1)χh(X)−(K2
X)f(−λ).

By the superconformal simple type condition, we have

f (n)(1) = 0 for n = 0, . . . , χh(X)− (K2
X)− 3.

Therefore f(λ) ∈ (λ − 1)χh(X)−(K2
X)−2C[λ±]. Since f(−λ) is equal to f(λ) up to

sign, we also have f(λ) ∈ (λ+ 1)χh(X)−(K2
X)−2C[λ±]. Therefore

f(λ) ∈ (λ− λ−1)χh(X)−(K2
X)−2C[λ±].

From this we have the assertion by substituting (1/
√

2)φ−2(
√

1− φ4−
√

1− 3φ4)
to λ.

Next we study the converse direction. We fix ξ◦ and consider

ξ = KX + t(ξ◦ −KX)

with t ∈ 2Z≥0 + 1 as a function in t. Suppose ξ◦ −KX is ample.

Proposition 8.9. Assume that for any given M1 there exists M2 > 0 such that
the coefficients of xlzk (2l + k ≤M1) in

Res
φ4=1/3

(∑
ξ̃1

SW(ξ̃1)B(dimMH(y))(ξ̃1,KX + t(ξ◦ −KX); a)da
)

are assumed to be independent of any integer t > M2 up to sign. Then X is of
superconformal simple type.

The assumption above is satisfied thanks to Theorem 4.1: For a given M1, we
only need to consider finitely many n for Ã(ξ1, (2, ξ, n); a). Then the assumption
χ(y) = χ((2, ξ, n)) > 0 is satisfied for t > M2. So Theorem 4.1 is applicable. But
the left hand side of (4.2) is independent of t. Therefore X is of superconformal
simple type. Then the residue at φ4 = 1/3 vanishes by the previous proposition,
and the sum of the residues at φ4 = 0 and φ4 = 1 is zero. This proves Witten’s
conjecture (1.1).

Before starting the proof of Proposition 8.9, we give some preparation.
Replacing ξ̃1 by −ξ̃1 if necessary, we may assume (ξ◦ − KX , ξ̃1) ≥ 0. We

expand (8.1) by using the binomial theorem:
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1
2
(
B(dimMH(y))(ξ̃1, ξ; a)da+ (−1)χh(X)B(dimMH(y))(−ξ̃1, ξ; a)da

)
= −(−1)((ξ,ξ+KX)−(K2

X)−(KX ,ξ̃1))/22(K2
X)−χh(X)+1 φ4

1− φ4

dφ

φ

×
∑
i,j,k,l

φ−((ξ−KX)2)+(K2
X)−5χh(X)+k+2l

× (−1)i+k−jΛk
(

(ξ −KX , ξ̃1)
i

)(
k

j

)
(ξ̃1, α)j(ξ −KX , α)k−j

×
(

1− φ4

2φ4

)((ξ−KX ,ξ̃1)−i+k−j)/2(1− 3φ4

2φ4

)(i+j+(K2
X)−χh(X)+2)/2

×
(
−Λ2

2
(3 + φ−4)x− 1

2
Λ2(α2)z2

)l 1
l!
zk

k!
,

where the summation runs over

2l + k ≡ dimMH(y) mod 4, i+ j + (K2
X)− χh(X) ≡ 0 mod 2.

Moreover, since we are interested in the residue at φ4 = 1/3, we only need to
consider terms with

(8.10) i+ j + (K2
X)− χh(X) + 2 ≤ −2.

We put

ζ =
1− 3φ4

2φ4
.

Then the above is equal to

(8.11) −(−1)((ξ,ξ+KX)−(K2
X)−(KX ,ξ̃1))/22(K2

X)−χh(X)−1dζ

×
∑
i,j,k,l

(2ζ + 3){((ξ−KX)2)−(K2
X)+5χh(X)−k−2l}/4−1

× (−1)i+k−jΛk
(

(ξ −KX , ξ̃1)
i

)(
k

j

)
(ξ̃1, α)j(ξ −KX , α)k−j

× (ζ + 1)((ξ−KX ,ξ̃1)−i+k−j)/2−1ζ(i+j+(K2
X)−χh(X)+2)/2

×
(
−Λ2(ζ + 3)x− 1

2
Λ2(α2)z2

)l 1
l!
zk

k!
.

In order to illustrate the idea of the proof, let us first consider the simplest
nontrivial case (K2

X)−χh(X) = −5. (The case (K2
X)−χh(X) = −4 is too simple.)

We only need to consider terms with i+ j = 1, i.e., i = 1, j = 0 and i = 0, j = 1
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by (8.10). Then, up to a constant, the residue of (8.11) is

(−1)(KX ,KX+ξ̃1)/2
∑
k,l

3{((ξ−KX)2)−(K2
X)+5χh(X)−k−2l}/4(−Λ)k

×
(
−3Λ2x− 1

2
Λ2(α2)z2

)l 1
l!
zk

k!

×
(
(ξ −KX , ξ̃1)(ξ −KX , α)k + k(ξ̃1, α)(ξ −KX , α)k−1

)
.

Since Λ, x, z are formal variables, each term for individual k, l must be independent
of t. Since (ξ − KX , ξ̃1)(ξ − KX , α)k and k(ξ̃1, α)(ξ − KX , α)k−1 have different
degrees in t (the former has degree k+ 1, the latter has k− 1), they cannot cancel
out. Therefore we must have∑

ξ̃1

(−1)(KX ,KX+ξ̃1)/2(ξ̃1, α) SW(ξ̃1) = 0.

This is the superconformal simple type condition when (K2
X)− χh(X) = −5.

Proof of Proposition 8.9. For the same reason as in the special case (K2
X) −

χh(X) = −5, each term for individual k, l must be independent of t.
We expand terms in (8.11) as

(2ζ + 3){((ξ−KX)2)−(K2
X)+5χh(X)−k−2l}/4−1(ζ + 1)((ξ−KX ,ξ̃1)−i+k−j)/2−1

= 3{((ξ−KX)2)−(K2
X)+5χh(X)−k−2l}/4−1

×
[
1 + ζ

{
2
3

(
1
4

(−(K2
X) + 5χh(X)− 2l)− 1

)
+
−i− j

2
− 1 +

k

3

+
(ξ −KX , ξ̃1)

2
+

1
6

((ξ −KX)2)
}

+ · · ·
]
.

The coefficient of ζL in [ ] has the leading term (as a polynomial in k)

(8.12)
∑

L1+L2=L

(−k)L1

4L1

2L1

3L1

1
L1!
× kL2

2L2

1
L2!

=
kL

3LL!
6= 0.

Moreover the coefficient of ζL is a polynomial in (ξ −KX , ξ̃1) whose degree is at
most L.

When we multiply the above expression with ζ(i+j+(K2
X)−χh(X)+2)/2 in (8.11),

it contributes to the residue at ζ = 0 only if

i+ j = −2L+ (χh(X)− (K2
X)− 4).

And the residue is a linear combination of

(ξ −KX , ξ̃1)p+q((KX − ξ)2)r(α, ξ̃1)j(ξ −KX , α)k−j
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for various p, q, r, j. (k is fixed, as we explained at the beginning.) Here q and r

come from the above expansion, and p appears when we expand
(

(ξ−KX ,ξ̃1)
i

)
. There-

fore we have

0 ≤ p ≤ i and i 6= 0 implies p 6= 0,

q + r ≤ L, q, r ≥ 0.
(8.13)

Up to the factor 3−((ξ−KX)2), each term is a polynomial in t with degree m :=
k − j + p+ q + 2r. We will consider each coefficient of tm whose sum over p, q, r,
j and over the Seiberg–Witten classes ξ̃1 must be 0 by our assumption.

We set jmax := χh(X) − (K2
X) − 4. Then j ≤ jmax and the equality holds if

and only if i = L = 0. We will check the superconformal simple type condition
(1.4) by descending induction on n. Starting from n = jmax, we check it for n =
jmax − 2, jmax − 4 and so on. (As SW(−ξ̃1) = (−1)χh(X) SW(ξ̃1), the assertions
for n = jmax − 1, jmax − 3, . . . are automatically true. See also §2.5.)

We assume

k − jmax ≤ m ≤ k, k − jmax ≡ m mod 2.

We will be interested in j + p + q, which will appear as n in (1.4). We first note
that

(8.14) j + p+ q ≤ i+ j + L = −L+ (χh(X)− (K2
X)− 4) ≤ jmax.

Equality holds if and only if L = q = r = 0 and p = i. We next note that

(8.15) j + p+ q = k −m+ 2(p+ q + r) ≥ k −m.

Equality holds if and only if p = q = r = 0 and (i, j) = (0, k − m). Thus each
coefficient of tm is

(8.16) A(α, ξ̃1)k−m + (higher order terms),

where the “higher order terms” means a sum of monomials with j+p+q > k−m.
By (8.12) we have A 6= 0. (More precisely, when we vary k fixing k −m, we have
A 6= 0 for sufficiently large k.)

We now start the descending induction on k −m. Start with k −m = jmax.
Then (8.14, 8.15) imply j = jmax and p = q = r = 0 and i = n = 0. Thus there
are no higher order terms in the above expression, and we get the superconformal
simple type condition (1.4) for n = jmax.

If (1.4) is true for n > k − m, then the sum of the higher order terms in
(8.16) over ξ̃1 vanishes. Hence we also get (1.4) with n = k −m. This completes
the proof.
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