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80. Introduction

This paper is the third of a series of articles on the exact WKB analysis of higher
order Painlevé equations; the first of the series is [7], and the second one is [12].
In [7] we studied basic properties of higher order Painlevé equations (Py),, with a
large parameter n (J =1, II-1, II-2; m = 1,2, .. .); we first constructed a particular
formal solution called a 0-parameter solution, and we then clarified the relationship
between

(i) the Stokes geometry of the linearization (APy),, of (Py). at the O-parameter
solution (often called the Fréchet derivative), and

(ii) the Stokes geometry of (one of) the underlying pair (L), of linear differen-
tial equations (Lax pair) with the O-parameter solution substituted into the
coeflicients.

To avoid possible confusion we used in [I2] the terms “P-turning points” and “P-
Stokes curves” (following the suggestion of the referee) to mean “turning points
of the Fréchet derivative” and “Stokes curves of the Fréchet derivative”, and in
this paper we keep this terminology. The main subject of [I2] was to establish
a structure theorem for O-parameter solutions of (Py),, (J = I, II-1, II-2); any
0-parameter solution can be formally and locally transformed near a simple P-
turning point of the first kind to a O-parameter solution of the second order
Painlevé-1 equation with a large parameter 7:
d* )\

(0.1) =7 = n*(6AF +1).

In proving this result we made essential use of the geometric results obtained in [7].
The above structure theorem is a generalization of a result for the second order
Painlevé equations ([8, Theorem 2.3]) to that applicable to an arbitrarily high or-
der equation (Pj).,. It is worth emphasizing that [8] covers only six equations, the
classical Painlevé equations (Pr), (Pi), ..., (Pyr), and that the results in [I2] are
applied to infinitely many equations. The purpose of this paper is to further gen-
eralize the results in [12] by replacing 0-parameter solutions with instanton-type
(2m)-parameter solutions ([23], [24]) of (Pj).; our main result (Theorem
means that Part 5 of the Toulouse Project ([10]) has been completed near a simple
P-turning point of the first kind. In this paper we basically follow [I7] concerning
notational issues; this means that we use symbols that are slightly different from
those in [7] and [12]. This is a nuisance, but it removes some clumsiness from
the presentation of [12]. The point is that [I7] presents three different ways of
expressing the same higher order Painlevé equations, (Py)m, (Pr)m and (G)m
(J =1, 34, I1-2 and IV). The first one is given in terms of polynomials of unknown
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functions and their derivatives, the second one is a system of first order non-linear
differential equations, and the third one is given by choosing some suitable Gar-
nier system and restricting it to an appropriate complex line; the symbol (G ),
is not used in the literature, but for the sake of convenience we use it in this
paper. Thus (P{), of [7] and [12] is designated as (P),, in this paper. The Lax
pair that underlies (Py),, or (Pj)m is respectively denoted by (L), or (L;)m;
we arrange the two equations in (Ls)y, and (Ls)m, so that the first one of them
is deformed by means of the second one that contains differentiation with respect
to the deformation parameter ¢, which is the independent variable of (Py),, and
(16 7)m in question. We emphasize that each of these three expressions of a higher
order Painlevé equation has its own advantage. For example, (Py),, and (L), are
amenable to the concrete computation because of their concise form and (Pj)m
and (G )., most neatly explain the intrinsic meaning of the change of unknown
functions from “u” to “\” that is used in [I2]. In [I2] the meaning of the trans-
formation was not explained well for (Pi1.1)m or (Pir2)m; with the introduction of
(Py)m we clearly see that the unknown function u; (j = 1,...,m) of (Py), is the
j-th elementary symmetric polynomial of the unknown functions Ag’s of (G ).
The important role that (G )., plays in our paper is basically due to its Hamil-
tonian structure on which the construction of instanton-type solutions is based.
(See [23] and [24].) For the convenience of the reader, we list up in Appendix A
the symbols and equations used in this paper, following the presentation of [17].
The plan of this paper is as follows. In Section 1 we first rewrite the Lax pair
(Lj)m as a pair of a Schrodinger equation (SLj),, and its deformation equation
(D j)m- As the derivation procedure of this system of scalar equations is essentially
the same for all J (J =1, 34, TI-2, IV), we present the explicit computation only
for J = IV (cf. [12], [14]). In Section 2 we summarize basic properties of (2m)-
parameter solutions of (Pjy),,, which have been constructed and called instanton-
type solutions in [24]. These solutions are the main target of our study in this paper.
We note that in studying the effect of substituting an instanton-type solution into
the coefficients of (), the potential of the Schrédinger equation (SLj).,, we
make use of the third order equation that Q(j,m) satisfies together with the
function a;,,,) that appears in (D), (Subsection 2.2). Although this equation
is known to be a basic one in the theory of deformations of linear differential
equations (cf., e.g., [11, (4.44)]), this is the first time that we have used it as
an essential ingredient in the study of (SL;j),,. The equation plays an
important role also in Section 3. Using the results of Section 2, we establish in
Section 3 a WKB-theoretic theorem (Theorem 3.1) to the effect that (SLj)n,
with instanton-type solutions substituted into its coefficients can be brought to
a canonical equation called (Can) near its double turning point x = Aj, o(¢); in
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particular, we describe how an instanton-type solution \j, of (Py),, is related to
the invariants pU¢) and ¢(0) that appear in the canonical equation. (See Theorems
3.1 and 3.2 for the precise statements.) In Section 4 we investigate the instanton
structure of the invariants by making use of the Hamiltonian structure of (G j)n,.
The results on the instanton structure of the invariants are used in an essential
manner in proving our main result (Theorem . In Appendix A we list up the
symbols and notations used in this paper; we follow [I7] as possible as we can.
Subsections A.1-A.4 are concerned with Pi-hierarchy with a large parameter 7,
Subsections A.5—A.8 are concerned with Pss-hierarchy with a large parameter 7,
and so on. Finally in Appendix B we explain the parity structure of instanton-type
solutions which is used in Section 5.

§1. Derivation of a Schrédinger equation (SLj),, and its deformation
equation (Dj)n,

The purpose of this section is to rewrite (L), (or (Ls)m) as a pair of a Schrodinger
equation (SLj)y, and its deformation equation (D), so that the Lax pair may be
analyzed in the framework of [§], [I] and [9]. Although we study only (Lyy ), in a
detailed manner, our procedure is uniformly applicable to any of (L), or (L)m
(J =1, 34, 11-2, IV). To emphasize this fact we rewrite (A.15.1) in a somewhat

abstract style:
0 7/11): (p Q><¢1> 11
Oz <¢2 \» /) \n /)’ (1a)

i) =1 S0 a1

Here all the coefficients are those given by with a solution (u, v) of (Pry)m
substituted. One can immediately see that any of (L), or (Lj),, has this form
with the exceptions of (L), and (Lsg)m; in (Ly ) and (Lsg)m the (1,2) component
of the matrix in (1.1.b) is 2, not 1. (Cf. Subsections A.3, A.7, A.11 and A.15.) We
try to find a system of scalar differential equations that ¢, satisfies. It follows from
(1.1.a) that

2
(1.2) 86;/;1 —%%— (n2(p2+qr)+n<pm—pq%)>¢1—0.
Here and in what follows, ¢, etc. and ¢; etc. respectively stand for dq/0z etc.
and 0q/0t etc. To rewrite in the form of a Schrédinger-type equation, we
introduce

(1.3) b = exp(; /w <q;)dx> N

(1.1)
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Then ) satisfies

0%
(1.4) 92z = Qv m)¥
with
) -1 P4z —2 3(]3 Gz
(1.5) Qav,m) =p" +qr+n <$q>+n <4(122q>

The equation (|1.4)) corresponds to (SLy) in [§], and we use a symbol (SLyv ), to
denote the Schrodinger equation. The next thing to do is to find its deformation
equation. For this purpose we note that (1.1.b) entails the following:

0
(16) L — o+

Combining (1.6) with the first row of (1.1.a), we find

oYy 0Py

1. — = —— —nd .
(1.7 o =+ q (Gt = vy
Using (|1.3]) we obtain the following relation from (|1.7)):

0 0
1. 92y 9172 1200 _ o5\,
(1.8) 54 V) = agi (@ 7Y) +ng (e — ad)
Then we find

oy o 1 _, 1

1. e U _ .
(1.9) Ug = 5y T3¢ @Y= | 5%+ —ndd |y
We now substitute the following explicit values of p, ¢ and ¢ into (1.9):

1 aK
1.1 =—|( (22— 29t) —n == —2n7!
(1.10) P M( (22 —u)(K +2vt) =0~ =21 7>7

1
1.11 = — 2yt
(1.11) 1= 9 (K +27t),
(1.12) 5:—x+g.
Then we find

1 1
(L13) ot (o= a8) = 7 K+ 29— (2~ u) (K + 20
— K — 2y —2n(K + 241) (—x + g)] =0.

Thus (1.9) assumes the following form:

) oy 1(0
(1.14) aif = q*a—f -3 ((%Jql)d%
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Hence, if we choose

2vx
1.15 =g ==
( ) a(rv,m) =4 K + 2+
we obtain the required deformation equation:
6’¢ 61/) 1 aa(w m)
1.16 Div)m: = = aqym) —— — = —oem)
( ) (Drv) ot HIv,m) or 2 Ox
We note that the most peculiar part of UQQ(IV,m), ie.,
3(]2 qzx
1.17 == - =
( ) QQ 4(]2 2q )
satisfies
1
(1.18) aav,m) Q2,2 + 201v,m),2Q2 = 5 (a(v,m))zae-
2

In fact, one can readily see that both sides of (|1.18) are equal to
N T e )

without using any specific feature of q.

(1.19)

We also note that, if we choose v = 2, then
(1.20) _Lwicrw=Llw- )
' = 2z 2z ke “ 7
(Cf. (A.15.8)) and (A.16.1); similar relations hold also for other J’s.)
Relations (|1.18)) and (1.20]) play important roles in our WKB-theoretic study
of (SLj)y, in the subsequent sections.

Remark 1.1. The simultaneous equations (SLyy )y, and (Dyy )., share with the pair
of equations (SLj);, and (Dyj)y, (J =1, II-2) the following property: the singular
point © = Xjo of (Drv)nm is a double turning point of (SLyv).,. Making use of
this property, we can confirm all the results in [12] also for J = IV, that is, we
can prove the regularity near © = \; o of Soaq for (SLiv).,, with a O-parameter
solution substituted into its coefficients (cf. [12, Theorem 2.4]) and we can further
prove the reduction theorem for a 0-parameter solution A; (cf. [I2, Theorem 3.2])
not only for J = I, II-2 but also for J = IV (and also for J = 34).

§2. Basic properties of instanton-type solutions

In Subsection 2.1 we recall basic properties of a (2m)-parameter solution of (Py),
constructed by Takei ([23], [24]). Such a solution is usually called an instanton-
type solution. As is noted in Section 0, the argument of [24] applies to all
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J =1, 34, II-2 and IV thanks to the existence of a Hamilton—Jacobi system (G ;).
that is equivalent to (Pj), ([I6], [I7]). By its definition an instanton-type solu-
tion contains a term of order —1/2 in 7, and when substituted into the coefficients
of Q(,m) it may provoke the appearance of a term of the form Q1 /n~1/2 in the
resulting potential . Fortunately we can confirm in Subsection@tha‘c Q1/2 actu-
ally vanishes thanks to the compatibility of (SL )., and (D)., and hence we can
develop the WKB analysis of (SLy),, with an instanton-type solution substituted
into its coefficients.

§2.1. Structure of an instanton-type solution (|24, Theorem 1])

Here, and in what follows, we use the symbol v;(t) to denote a root of the charac-
teristic equation of the Fréchet derivative (APj),, of (Py),, at some O-parameter
solution. As is shown in [7] and [19], we may, and do, label v;’s so that

(2.1.1) Vigm =—v; (1 <7< m)

hold. To construct a (2m)-parameter solution, we first fix a point ¢o for which the
following conditions are satisfied:

(2.1.2) to is not a P-turning point of (Py)y,

(2.1.3) Z n;v;j(t) does not vanish identically for any (nq,...,n,) € Z™\{0}.
j=1

Then, on a neighborhood of ty3, we can construct an instanton-type solution
(uj,vj)1<j<m Of (Pj)m which has the following form:

(2.1.4) uj(t, ma) = ujot) + n_l/zujﬁl/g(t, U, P) 4+ n_luj71(t, U, D)4,
(2.1.5)  wi(t,ma) =vj0t) + 072000t U, @) + 0 o (6T, B) 4 -

where u;;/o(t, ¥, ®) and v;;/5(t, ¥, ®) (I = 1,2,...) are polynomials in (¥, ®) of
degree at most [ which depend analytically on ¢. Here ¥ = (¥q,...,¥,,) and

® = (9q,...,P,,) are “instantons”, that is, formal series of exponential type of
the form
t oo
(216) ¥, =a exp{n / (320" 3 (i + Ve, (800" dt}7
K0 =k
t oo
217 B =ajim eXp{—n/ ( 1 (g + D, (t,n)U") dt},
k=0 |ul=Fk
where j € {1,...,m}, a; (1 < j < 2m) are free complex numbers, o stands

for (o1,...,0m) With 0; = ojojpm, = (H1,.. - pom) (1 € Zyp; > 0), €5 =
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(0,...,0,1,0,...,0) are multi-indices, and for each multi-index v = (v1,..., V),

—-1/2

gv(t,m) is a formal power series in 7 with analytic coefficients of the following

form:

(218) ZTI ng/2

Furthermore we obtain the following result concerning their structure.

Theorem 2.1.1 (T2, Theorem 1 and Remark 1). (i) The part (u;0,v;0) of top
order of (u;(t,n; o, 8),v;(t, m; o, B)) coincides with the top order part (1.0, 05.0)
of the 0-parameter solution (4j,0;).

(ii) The top order part of ge,(t,n), i.e., ge,0(t), coincides with v;(t).

Remark 2.1.1. Although we have given the statement for a solution (u;,v;)i<j<m
of (Py)m, the instanton structure of {); } . is seen to be the same as that of

(uj,v)1<j<m by the fact that A; (j =1,...,m) are solutions of
(2.1.9) U(:z:) + é(x,t) =0,
where U(z) = Zl<j<muj ~Land C(a,t) is 0 for J =1, /2 for J = 34,

C(x) = Zl<]<m 2™~ for J = 11-2 and C(z) + 2t for .J = IV.

§2.2. Vanishing of @,

In view of the definition of the Borel transformation, wave functions discussed in
the exact WKB analysis should have the form

(2.2.1) exp(nr_1(x))(1 + o(n?)).

On the other hand, the term of degree —1/2 in 7 in an instanton type solution
may provoke the appearance of a term of degree —1/2 in 7 in the potential @,
i.e., Q(jm) With an instanton-type solution substituted into its coefficients. If it
were the case, we could not expect in view of the way of constructing a
WKB solution via the associated Riccati equation. Fortunately the compatibility
of (SLj)m and (D), forces such a term to vanish. In fact, one expression of the
compatibility condition is

3
B o, By iy, a0
(See [KT4, (4.44)] for example.) In view of Theorem 2.1.1(ii), Q1,2 should be of
the form

(2.2.3) Zaj z,t) exp(¢;(t) +Zbk (x,t) exp(—¢r(t)n)

(2.2.2)
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with

(2.2.4) qﬁj(t):/ vj(s)ds.

If it were not 0, the left-hand side of (2.2.2]) should contain a non-zero term which
is of degree 1/2 in 1. But the right-hand side of (2.2.2)) cannot contain such a term,
as it contains differentiation only with respect to x. Therefore

We will use this result frequently without explicit mention.

§3. Local reduction of (SLj),, to (Can) near a double turning point

Hereinafter we always assume that an instanton-type solution (u;, v;) (1 < j < m)
of (Py)m (or (Aj, ;) (1 < j < m) of (Gj)m) is substituted into the coefficients
of the potential Q) of (SLj)m. Then, if we let 7 be a simple P-turning point
of the first kind of (Py),, that does not coincide with any other P-turning point
of (Pj)m, there exists a pair of a double turning point = = A, o(t) and a simple
turning point « = a(t) of (SLj);, which merge at ¢t = 7 ([7], [19]). Let t. be a
point sufficiently close to 7 that lies on a P-Stokes curve emanating from 7, and
let V' be a sufficiently small neighborhood of t,. Furthermore we suppose

(3.1) Ajol(te) # Akolts) (5 #Kk)
for any (4, k). Then we have the following

Theorem 3.1. In the situation described above, we can find a neighborhood U of
x = X, 0(t), a formal series

(32) Z(I, tvn) = Zo(xatan) + 7’]_1/221/2(x,t, 7]) + 77_121(% tﬂ?) +ey

whose coefficients z;/2(x,t,n) are holomorphic on U x V, and formal series

(33)  EU(tm) = B (tn) + By (b P+ BV (G
B4 P m) = o () + o () 4 P (T

whose coefficients are holomorphic on V', so that the following conditions hold:

(3.5) 20 18 free from 1,
0
(3.6) % never vanishes on U X V,

(37) ZO()\jO,O(t);t) = 0,
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212 tdentically vanishes,

(39) Q(J,m) (55,75777)

2
= (gz> |:4Z($,t,77)2 + 0 LBV (¢, ) +
€Z

n_3/2p(j0) (t’ 77)
Z(I, t7 77) - Z()\JU (t7 77)» tv 77)

3n_2

T 1w tn) — 20 (L) )2

on U XV, where {z;x} stands for the Schwarzian derivative,

1
— 37 z(w,t,m); o}

(3.10)  the n-dependence of zl/g(m,t,n),Efjg)(t,n) and pl(;g)(t,n) is through
the instanton terms that Aj,(t,n) contains.

Theorem 3.2. The series EU0)(t,n) and plo) (t,n) in the preceding theorem can
be written down in terms of {\;}jL, and z(x,t,n) in (3.2) in the following manner:

(311)  pUl(t) =

12 (g;(/\jo (t,m),t, 77)) h B (;Aﬁ, (t, 77)) ((m - o (t17 n))au,m))

1 <6a(J’m)/8x 1 ) 3822/8332)]
+ 5 n )
2 a(s,m) (x — Xj, (t,m)) 4 0z/0x w=yq (tm)
(3.12) BV (t,m) = (pU90) (8,0))® — 4(n'22(Ajq (8,m), 8. 1))
Remark 3.1. In what follows we use the symbol ¢(0) (¢, ) to denote
(3.13) n'22(Ajo (8, ), 1, m).

Note that (3.7) implies that the degree of 070) (¢, 1) with respect to 7 is at most 0
despite multiplication by 7'/2 (if we count the degree of instanton terms to be 0,
as usual).

Definition 3.1. The equation (Can) is, by definition, the following Schrédinger

equation:
(3.14) (—622 + 1" Qcan(2, E, p, 0, n))@ =0,
where
-3/2 3 —2
42 —1 Ui P Ui
(315) Qcan =4z +n E+ Z_,r]—l/QO- + 4(2_77—1/20)2
with

(3.16) E = p? — 40
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To prove Theorems 3.1 and 3.2, we need the following

Lemma 3.3. Let ¢(t,n) (I =—-2,-1,0,1,...) denote the coefficient of the term
(x — Ny (t,m)! in the expansion of Qum (J = 1,34, 11-2, IV) in powers of
x — N, (t,m) with t being sufficiently close to t.. Then

(3.17) co =n*c? .

Proof. For the sake of definiteness we discuss the case J = IV. This is the situation
that seems to be most complicated in its appearance. Actually the computation
in other cases is slightly simpler than that given below, and the logical structure
of the proof is the same in all cases. Throughout the proof of this lemma we
let @ denote Qv ) With an instanton-type solution being substituted into its
coefficients. As in Section 1, we let ()2 denote

3¢;  Quw
3.18 Tr _ 2TT
(3.18) e
with ¢ being given in (1.11]), and we define @ by
(3.19) 7°Q — Q2

(cf. (1.17))). For notational simplicity we assume jo = 1. We also set
(320) Xj =T — >‘J(t777)
Then for J = IV with v = 2, we see by (1.20) and (1.15) that

m

1
(3.21) =5 1%
Jj=1
_ 2x
(3-22) a(= a(IV,m)) =4q !

H;nzl X; .

Note that the factor z=! in ¢ does not appear for J = I or II-2; it appears only
for J =34 or IV.

Our strategy of the proof is to write down the relation in power series
of X; (including negative degrees). We start with the following relation that

is obtained by the substitution of (1.18) into (2.2.2)):
(323) 772Qt = Q27t + ét = u@m + 2uw@7

where Q) etc. stand for 0Q /0t etc. First we note

G 1 1
3.24 Qe N~ - 2
(3.24) ij -
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Since )
(Qw) _ Gy G
q /. q q
we use (3.24)) to find that
32 (oo 1¢2 1(q
3.25 ST e
(3.25) @ = 4>  2¢ 4¢* 2\q/,
m 2 m m
1( 1 > 1 Z 1 1 1 1
O DR R DR DR
4 jle] 2333‘:1 § 2]‘:1 ;o 4

Hence we obtain
00 Q=) () ml et sz’
j=1 j=1""7J j=1"7J =
where A etc. stand for d)\;/dt etc. On the other hand, in view of the explicit form
of Q, we see that Q has the form

a(t,n)

(3.27) e

+ ﬂ(tvn) + O(Xl)

when expanded in powers of X7, which is regarded as a small quantity. We now
compute the coefficients of X! (I = 3,2) in (3.23).
Let

(3.28) Aj=Xh-X (j=2)

We first compute the expansion of a and a, in X;. If we write a as

1 . 2x
(3.29) a= Zf(x) with  f(x) = m,
we readily find
(3.30) o= — ( o0+ Loux + O(X1)>

(s (o).

L (L))
- (o)

X1+ O(Xf))

1
and

(3.31) iloga =—

dx +0(Xy)

A1

X1+ O(Xf)).

=\
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Hence we obtain

d
(3.32) a4 =a- loga

A d
:—fg(%l) (1+ (dxlng)
X (1 (ilogf)

fg?lgl) +0(1).

X1+ O(Xf))

=M\

X+ O(Xf))

I:>\1

Here the symbol O(1) means that the part consists of terms which contain a factor
of the form X? (p > 0). We note that the absence of terms of order O(X; ') in
a, is observed for J’s other than IV; the existence of the extra factor z in a has
nothing to do with this fact. Since

2\
(3.33) fM) ==
szz Aj
and
d I &1
(3.34) <dxlog f) v Z e
xT 1 j:2

it then follows from (3.27)), (3.30) and (3.32) that

(3.35)  aQu + 2a,Q
= (fg?ll) + (M) ((ZE log f) o O(Xl)) (—)?12 + 0(1)>

+ 2( f%) + 0(1)> (O‘ + B+ O(Xl))

X1
A d
= <205~ arow) (45 s )
+ [_ 20f (A1) 28f (M)
X7 X7

S i o 100 1)

6o 1 2\ 1 1 1 B
- - =N ) 428 1 o(xTY.
[ A X7 T, A {Q(Al ZA‘>+ ﬂ]Xf+O( )

Jj=2 j=2 "7

1
— + O(X‘l)}
T=A1 ‘le2 !

+ O(Xll)}

Z:)\l

On the other hand, (3.26)) and (3.27) entail that the left-hand side of (3.23)), i.e.,
(3.36) Q= Qa4 + Qr,
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has the form

3\ /\’ - aXy o
3.37 - - O(Xy L —+001
3V MN/(&1 1 1 .
_ A - — X h.
ox3 T ( A A1+20‘)X12+O( )
o
By comparing and -, we find
3 m
(3.38) —6ak = X} [JEY
j=2
and
(3.39) Al (i ! +2a) {mx Z 20 — 48\ 1
. -_— -— = 1 _— — =m
j=2 A] j=2 H]:2 AJ
Thus we obtain
4 = A
(3.40) !
J=2
and
11 Py 48X\
(3.41) —/\’< — ) LT A = ==—,
! ;AJ M)A T, A
ie.,

b o= (AT S D

Next let us compute the contribution of Qs to n?Q, i.e., _; and &y given by
(3.43) S_1=1n%c_1 —a,

(344) (50 = ’17260 — ,8

To find these quantities we rewrite Q2 in (3.25) in powers of X; as follows:

m

(3.45) Q2 = 2 X, 1 (Z é) 2 - 2x1Xl
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Jj=2 j=2
m m 2 m
3 1 1 1 1 1 1 1 1 1
=— 4= — = — =+ — ) - = — 4+ — X1).
4X12+2(ZAj /\1> . +4<ZAj> 2/\12Aj e TOXY
j=2 j=2 j=2
Thus we find
1/&K1 1
4 L= (Y ==
(3.46) 54 2<ZAJ A1),
Jj=2
I/(&1) 1 &1 1 [i/&1 1)\
4 = (Y =) - == (Y=
(34D % 4(, A-) o 2k e {Q(ZA- Alﬂ
j=2 J j=2 J 1 j=2 J
Combining (3.40)), (3.42)), (3.46) and (3.47)), we find
UL (=1 1
3.48 e = —L11A +2 — - —
(348) e 4>\1H J+2(ZAJ- )\1>’
j=2 j=2
) )\,1 m 2 /1 m 1 1 m
3.49 = A — [ A
(3.49) e (4A1.H J) 4A1(ZAJ- Al)H g
j=2 j=2 j=2
m 2
1 1 1
(X5 -%)
7j=2
N /&1 1\
A — = - =
35 %)
j=2 j=2
Therefore we obtain the required relation:
(3.50) (n*c_1)* = nteco,
ie.,
(3.51) co =2,

This completes the proof of Lemma 3.3. O
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Proof of Theorems 3.1 and 3.2. In proving Theorem 3.1 we construct the series
z(x,t,n) by induction on the degree of 7. To explain how Lemma 3.3 is used in
the induction procedure, we first examine the structure of the right-hand side of
assuming that the series z is given, regardless of the validity of the equality
. In what follows we assume jy = 1 for notational simplicity, as in the proof
of Lemma 3.3. In view of the relations

2 /
(3.52) <g;> — Z(il 0 _ ;ﬁA;\)l + g’z“()\l) +oen
9z \> 1 1 Z'(A) 1
(3.53) (fh) CEE ) LA CES WERRT W

z
N g Z///()\1 ~ 1 Z”(/\l) 2 N

3 Z(M) 4\ 2 (M) ’
where 2'()\1) ete. stand for the derivatives of z(x,t,n) with respect to x that are
evaluated at x = A1, we find that the right-hand side of (3.9) is of the form

3n~2 _3 3 102" (M) 1
54 /2) )y O _1/2
_ 3 _ 9 /"0’
1 4 2E(1) 2 —1/2 (1)1 1
+n {Z (A1) +gn T (M) + e )

+ 42/()\1)22:()\1)2 + 7y,

where r; is a sum of terms of order O(x — \1). If we further assume (3.12)), we find
that the coefficients & (I = —1,0) of (z — \)! in (3.54)) satisfy

(3.55) ¢y = n?é .

Thus Lemma 3.3 lets us expect that we can construct the required series z by first
adjusting the coefficients of (z — A\;)™! on both sides of and then defining
the constant E(M) by . Note that the most singular part, i.e., the double
pole part, is the same on both sides of . To realize these expectations, we use
induction on the degree of 1. In what follows we choose

x 1/2
(3.56) zo(x,t) = (//\ \/ Q(J,m),O dx) .

We also note that the relation (2.2.5)) enables us to choose
By convention we choose

1 1
(3.58) P, =EY, =0

—1/2
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Our task is to construct the series z(x, t,n) so that (3.9) holds. In view of Lemma
3.3 and (3.54)), the series should eventually satisfy

3/2 C-1 3 1) 2" (M)

200 4T @)
(3.60) EW = pM2 _4pnz(Ay,t, )2

(3.59) p =n

To construct the required series, we let A = Ag+A; o0~ Y24+ A1~ Ay 00 ~3/2+
- (with Ay /2 = 0) denote the left-hand side of (3.9)) minus its right-hand side. We
then prove the following assertion (A), by induction on n, starting with n = —1:

(A)n We can construct z(jy2)/2, pgl/)Q and Ej(})z (j =0,1,...,n) so that the fol-
lowing relations (3.61),, and (3.62),, are satisfied:

(3.61), Ajjp=0forj=0,1,...,n+2,
(3.62), B59) and (B-60) hold modulo terms of order at most n~("T1/2,

It is clear that (A)_; holds by (3.56)—(3.58). Suppose (A),_1 holds. We can then

construct pfll/)Q (resp., En1/2) as the homogeneous part of degree n/2 (with respect

to 1) of the right-hand side of (3.59) (resp., (3.60))). Note that in constructing
pfll/)Q through (3.59) we only need z;/5 up to j = n+ 1 since c_; = O(n~') thanks
to Lemma 3.3. Thus (3.62),, is attained. On the other hand, A(,49)/2 has the form

aZO) 6Z(n+2

2
9 0z
(3.63) Atz =82 ( 7 2 | 82 (a:f) Hnt2)/2 T Rint2) 2,

where R(,,12)/2 is a function defined by {z;/2}j<nt1, {pj/2}i<n—1 and {E;/2}j<n.
Furthermore (3.62),, attained above guarantees that

n+2
(3.64) S A
7=0

has no singularity at x = A; and that it vanishes there modulo terms of order at
most 1~ ("+3)/2 while the induction hypothesis entails

Therefore

at £ = Ay o. Since

(367) Zo()\l’o(t), t) =0
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by its definition, we conclude that

(3.68) Rny2y/2(A10(t),t) = 0.
This means that we can divide the equation

(3.69) Ant2)/2 =0

by zo(z,t) to find an ordinary differential equation for z(, 2/ with regular sin-
gularity at © = Ay (t) with the characteristic index —1. Thus we can find a
holomorphic solution z(;,y2)/2 of , as is required by (3.61),,. This shows that
the induction proceeds and hence the proof of Theorem 3.1 is completed. In par-

ticular we have obtained (3.59) and (3.60)). Then (3.48) and (3.59) entail that, for
J =1V,

_ 0z -
(370) p(l) =—-nN 1/2 (a()\l(tv 77)7 tv 77))

Q1SRRI i (= I |

On the other hand the explicit form (3.22)) of a(ry ) readily implies

1 oA
(3.71) _ 1 _ %4y
X161v,m) [z=x, (tm) 2)1

and

oaqy.my/0r 1 11
o (Pmweior 1) 1o

a(IV7m) Xl J;:)\l(t,n) j=2 A] )\1

Combining (3.70)—(3.72) we obtain (3.11)) for J = IV. The computation for other
J’s can be done in the same way. This completes the proof of Theorem 3.2. O

§4. Splitting of the top order part of (AG),

Once we obtain Theorems [3.1] and [3.2] the next thing to do would be to try to
extend the domain of definition of the series z(x,t,n) so that it contains the simple
turning point x = a(t) of (SLy),, that merges with z = A, o(t) at ¢t = 7. Such an
extension is done in [9] when m = 1. As we will see in Section[5] to obtain such an
extension when m is greater than 1, we need to prove some particular instanton
structure of pl0) and ¢U0); our reasoning there requires that the top degree parts

(Jo) (o)

pi”) and o® of plo) and ¢U0) contain instanton terms whose phase functions

are “related to” the P-turning point in question. Here a phase function related to
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the P-turning point in question is, by definition,

(4.1) / t v, (t)dt o / t Vigsm (t) dt

in the labeling (2.1.1)). To confirm (4.1]) we use Theorem below. Our proof of
(4.1) in [I3] is somewhat more complicated but more elementary in the sense that
it does not use the Hamiltonian form of (Py),,.

Theorem 4.1. The top degree part of the Fréchet derivative (AG j)m of (Gy)m
(J =1, 34, I1-2, IV) at a O-parameter solution splits into a direct sum of 2 X 2
systems.

Proof. Let K denote the Hamiltonian of (G's),, and let (A, 4(®)) denote a 0-
parameter solution of (G ). An explicit way of the presentation of Theorem [4.1
is then given as follows:

0’K
(4.2) ( ) =0 (j#k),
OXj0Nk | (3, 1)=(x® @)/ 0
P’K .
(4.3) (8/\8 ) =0 (J# k)7
OB (X, 1)=(A© u)/ 0
0?°K .
(4.4) (a 5 > =0 (j#k).
HGORE |(x 1)=(A©, 1)/ 0
Here
0’K
. ( )
OXOMe | (3, =2 @)/ 0

etc. denote the 0-th degree (in 1) part of 8*K/0\;0)\ etc. evaluated at the 0-
parameter solution. In what follows let the symbol

?K
4.6 e
(0 o),
stand for (4.5). We also use the symbol N; to denote
(4.7) Ty =2
k#3j
To begin, we observe that the results in [16] and [I7] (cf. Appendix A) imply that

m

(4.8) K=Y NiF(\j,p,t)

=1
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for some polynomial F'(\, u,t). Hence we find

oK oF

Therefore we have

PK
4.10 =0 (j#k),
(4.10) Domr ( # k)

which immediately entails (4.4). It also follows from (4.9) that

#K  ON; (9F
(4'11) (’Mkauj B 8)\k <

(,m)w,uj,t)

if j # k. On the other hand, looking at the highest degree part of (G ), in 7, we
find

8K] .
4.12 — =0, 7=1,....,m.
( ) {8/@ 0
Then (4.9)) entails
oF .
(4.13) [aﬂw,uj,t)h —0, j=1l...,m.

Therefore (4.11)) proves (4.3). It remains to prove (4.2]). We may assume without
loss of generality that (j,k) = (2,1). We first show

?K _, 0K _, 0K
(4.14) N (A1 —A2) I + (A2 — A1) N
Since
0K
(4.15) [] =0, j=1,...,m,
oA ],

by observing the highest degree part of (Gj), in 1, we can deduce (4.2) from
({4.14). In what follows we use Fj and F} to denote respectively

(4.16) F()‘j7 Nj?t)

and

(4.17) <881:)()\jauj,t);
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for example we have

0K _ NN,

4.1 — = F; + N, F}.
( 8) 8A1 = 6)\1 J+ 147
Concerning ON;/0\; etc., we can readily deduce the following relations:
0Ny ~1
4.1 = - A=A N
(4.19) o (;2(1 07 )M
N
(4.20) on; _ N —A)7N; (1>2),
oM
(4.21) oM _ (M= X)INy (5> 2),
O\j
ONy _ 1
(4.22) e (Z(Ag — ) )NQ.
k#2
Hence
82N1 —2 —1 —1
(423) 8)\18)\2 = 72()\1 — )\2) N1 — ()\1 — )\2) (%(Al - Ak) )Nla
02Ny 9 1 -1
(121)  FEE =200 = A) N — (e~ h) (’;(AQ — )7 N,

Combining these relations, we obtain

oK
(425) G = NF = (a0 = )T NE Y (= )TN,
L k>2 i>2
0K / —1 -1
(4.26) o, = NeFi = (o = M) TN F (Z()\g —Ap) )N2F2
k>3
+ (A1 — X)) PN F F Z()\j — Xo) "N Fy,
>3
(4.27) OK (A2 — A1) "IN F) — 2(Mg — A\y) 2No F.
. 8)\16)\2 - 2 1 21479 2 1 2472
— e =) (o0 = M) Ny
k>3
20— M) ENLF — (A — M) (Z(/\1 - /\k)*l)NlFl
k>3
+ (A= M) TINIF DT = M) Ty — ) TN

Jj=3

Then (E25) and (E26) imply

173



174 T. KAWAI AND Y. TAKEIL
K
(428) (M=) P (M=)

= (A = X) T INIF) — (A — X)) 2Ny
= (1= 22) 7 (00 = M) TN = (= 20) 2N P

k>3
+ (A= 22) D) (N = M) TINGE + (M2 — M) TN FY
jz3
(M= M) "2NoFy — (Ag — Ap)~ ! (Z(/\2 - )\k)_l)Nng

k>3
— (A1 = X) NI F 4 (Ao = M) 7Y (4 = ) TN E

i>3

Let us now compare (4.27) and (4.28)). First, the coefficient of N1 F] (resp., NoF3)
is (A1 — A2) 7! (resp., (A2 — A1)71) in either case. Secondly the coefficient of Ny F}
is
(4.29) “2A = A2) 2= (A= A2) Y (M=)

k>3

in either case. Note that —(\; — \2) 2N F} originates from both K/d\; and
OK /X2 in ([.28), giving the factor —2(A; — A2)~2. The situation is the same for
the coefficient of NoFj. Finally let us compare the coefficients of N;F; (j > 3).
They are

(4.30) N = A) Oy = )

in (4:27), and

(431) (= 22)7HG = A) T Qe = A)THOG = A2) T
=M= 2) = A) T =G = Aa)Th
= (A= A) 7Ty = A7t

in (4.28)). Thus they coincide. Summing up all these comparisons, we obtain (4.14)).
This completes the proof of Theorem O

§5. Structure theorem for instanton-type solutions of (Pj),, near a
simple P-turning point of the first kind

The purpose of this section is to prove our main result (Theorem [5.1.1)) which
shows that near a simple P-turning point of (Pj),, of the first kind we can trans-
form an instanton-type solution A; of (G )., associated with the P-turning point
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to an appropriate 2-parameter solution of (Pr);, the classical (i.e., second order)
Painlevé-I equation. In Subsection [5.1] we first fix our notations and then we present
our main result. In Subsection we recall the definition of the system (DCan),
i.e., the simultaneous equations (Can) and its deformation equation (Deay), which
was introduced in [9]. Then in Subsection [5.3| we show the local equivalence near
the double turning point x = \j, o(t) between (DCan) and the simultaneous equa-
tions (SLy)m and (Dj)s,, which will be denoted by (DSL;),, in what follows.
In Subsection the local equivalence is further ameliorated to become a semi-
global one, covering not only the double turning point but also a simple turning
point = a(t) of (SLy);, that is found (Subsection in conjunction with the
P-turning point 7 in question. The resulting semi-global equivalence plays a key
role in Theorem .11l

85.1. The geometric setting for the main result

In order to state our main result in a precise manner, let us first clarify the geo-
metric setting which we use in our subsequent discussion. It is basically the same
as the situation we encountered in Section [3} See also [I2} Section 3]. Let us start
with a simple P-turning point 7 of the first kind of (Py),, (J =1, 34, II-2, IV)
that does not coincide with any other P-turning point of (Py),,. As was noted in
Section (3] there exists a pair of turning points of (SLj),, one a double turning
point « = Aj, o(t) and the other a simple turning point « = a(t), which merge at
t = 7. These two turning points of (SLj),, will play a central role in our analysis
in Subsections and Next we fix a point o (# 7) that is sufficiently close
to 7 and that lies on a P-Stokes curve emanating from 7. A characteristic feature
of o is that the double turning point © = Aj, o(c) and the simple turning point
x = a(o) are connected by a Stokes curve 7 (i.e., a Stokes “segment”) of (SL ).
See [I2l Appendix B] for the proof of such a characteristic feature of o on a P-
Stokes curve. Actually the definition of the “sufficient closeness of o and 77 is given
through the appearance of this degeneration of the Stokes geometry of (SL ).
Since 7 is supposed to be of the first kind, we can find a pair of characteristic
roots, say (Vj,, Vjo+m), of the Fréchet derivative (AG )y, so that

(5.1.1) Vjo+m = —Vjg,
(5.1.2) Vjo(T) = Vjo4m(T) =0,
and

t )\jO’O(t)
(5.1.3) / vj,(s)ds = 2/ Q1,m)0(x,t) dx.
T a(t)



176 T. KAWAI AND Y. TAKEIL
We let ¢;,(t) denote

t
(5.1.4) / vj,(s)ds.
Note that the P-Stokes curve on which o lies is given by
(5.1.5) Im ¢;,(t) = 0.

Note also that Theorem |4.1{implies that the degree —1/2 part (in 1) Xj, 1,2 of the
instanton-type solution A;, of (G)n, is of the form

(5.1.6) @jo,00(t) exp(ndjy (1)) + jo+m,0b(t) exp(—ndjq (1))

with some constants a;,,0 and aj,+m,0 and some analytic functions a(t) and b(t)
(cf. (2.1.4) and (2.1.5).
Using the setting so far described, we now present our main result which

asserts that the solution \j,(t,7) of (G)m can be locally transformed near o to
an appropriate 2-parameter solution of the classical Painlevé-1 equation.

Theorem 5.1.1. Suppose

(5.1.7) EY) 0.

Then there exist a 2-parameter solution 5\1(5,77; B1(n), B2(n)) of the equation
d? <y -

(5.1.8) P =n? (60} +1),

where Bi(n) = 2150 Bim™ (i = 1,2) with (;; being a constant, a neighbor-
hood w of the point o, a neighborhood ) of the Stokes segment v, Z(x,t,n)
= leojl/2(xvt777)nil/2
leo 51/277*1/2 with fl/g being holomorphic on w for which the following hold:

(5.1.9) F(Njo (t,m)st,m) = Me(E(t,m), 5 ),
(5.1.10) «aj,0 = 203170 and 0y ym,0 = 20*13270 for a constant ¢ that depends

only on E(()jo) ,

with ;)5 being holomorphic on Q X w and t(t,n) =

(5.1.11) %15 and fl/g vanish identically,

(5.1.12)  the n-dependence of T/, and fl/g is only through instanton terms that
they contain, and o, &1, to and t1 are free from instanton terms.

§5.2. Systems (DCan) and (DSLj)m
As is shown in [9, Proposition 2.1], the system (Can) in Definition|[3.1]is compatible
with another equation (deformation equation)
P _, O 104w
0s Moz 2 0z

(5.2.1) (Dean) -
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with
1
2(z =01 200m)°

(522) Acan =

on the condition that (pean(8,m), 0can(s,n)) satisfies the Hamiltonian system

dpcan
Z - _4770can1
. S
(5.2.3) (Haw): 9 g0
ds NPcan-

In what follows we use the symbol (DCan) to denote the simultaneous system of
equations (Can) and (Dean):

62
(_822 + 772Qcan(za Ecan(57 77)7 pcan(57 77); Ucan(57 77), 77))90 =Y,

o O¢  10Acan
as@ CUMY, 2 9z

In parallel with this notation we use the symbol (DSL )., to denote the simulta-
neous system of equations (SLj)y, and (D), that is,

(5.2.4)

82
(81‘2 + UQQ(J,m))qz[} =0,

0 _ oY 1 8a(‘;’m)
ol =gy T3 e

(5.2.5)

Although Theorem 3.1 guarantees that

N
(526) 1/J(337t777) = (2‘17) (p(z(m7t777)>t777)

solves (SLj)n, near x = \j, o(t) if ¢ is a solution of (Can) with (pean,Tcan) =
(pto) glio)), ) given by does not satisfy (Dj),, in general; we have to
find an appropriate correspondence between s and t besides the change of vari-
ables z and x. The results in [9] indicate that we should be able to find such a
correspondence by requiring the existence of an infinite series

(5.2.7) s(t,n) = Z siy2(tn™"?

1>0
which satisfies

(5.2.8) PO (t, 1) = pean(s(t,m),m),
(5.2.9) o) (t,n) = Gean(s(t, ), ).
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In the subsequent subsections we first construct the series s(¢,7n) that contains
some free parameters and then adjust the constants so that the series z(z,¢,7) and
s(t,n) thus constructed satisfy (5.1.9]). As the first step we show in Subsection
that

N
(5.2.10) w(x,t,n)=<gx) o(z(z,t,n),s(t,n),m)

is a solution of (DSLj)m, near x = Aj, 0(t) if ¢(z,s,m) is a solution of (DCan).
In Subsection we construct a semi-global equivalence between (DSL )., and
(DSL1)1 on a neighborhood of the Stokes segment v of (SLj),, by appropriately
combining the transformations constructed in Subsection [5.3] and then we prove
that the constructed equivalence gives the required relation ((5.1.9)).

§5.3. Correspondence between (DSL;),, and (DCan)
The purpose of this section is to establish a local correspondence near = \j, o(t)
between a solution of (DCan) and that of (DSLy),, by finding an appropriate
transformation s = s(¢,n). Our first task is to construct s(¢,n) so that s satisfies
(5.2.8) and (5.2.9)). To do this we first note that the compatibility of (SL;),, with
the deformation equation (D), entails the following invariance property of the

constant EU0) (¢, 1) in Theorems and

Lemma 5.3.1. The series EU0)(t,1) is independent of t.

Proof. Let Soaqa denote the odd part of S ), that is,

1, o _
(5.3.1) i(S(Jﬂ") - S(J’m)),
where S(jf, m) denotes the solution of the Riccati equation associated with (SL ),
namely
as
(5.3.2) 52 4+ —= 0 Q(Jm)

whose highest degree part in 1 is £17,/Q(7m),0, respectively. An important prop-
erty of Soqq, often denoted by S m) 0dd, is that

9S(1myodd O

(5.3.3) ot = %(Q(J,m)S(J,m),odd)v

as a consequence of the deformation equation (Dj),, that the wave function 1
satisfies (cf. [I, Section 2]). It is also well-known (e.g., [II}, Corollary 2.1.7]) that
(13.9) entails

dz

(534) Sodd(l'a t, 77) = %

Scan,odd(z(xv ta 77)7 tv 77),
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where we define Scan,oda in the same way as Soqqa by using Qcan instead of Qs )
in (5.3.2). As a consequence of these properties we obtain

(535) % Sodd dr = % Scan,odd(z(xa t7 77)3 t7 77) % dx
j2=Xjq 0l=5 2= Xjq,0/=6 O

= % Scan odd dz = ﬂE(JU)
=0 2

for sufficiently small positive numbers § and §’. On the other hand, (5.3.3) and
the definition of Soqq entail

0 0
(5.3.6) & 7{ Sodd dr = f%(a(lm)s()dd) dx = 0.

This completes the proof of the lemma. O
We also note that, if we define E.,(s,n) by

(5.3.7) Eean = pta, — 4072

can?’
the series Eecay is also independent of s; in fact (Hcay) implies

dpcan docan
Ecan = 2pcan — 80can
p ds 7 ds

= 7877pcano—can + 87]Ucanpcan =0.

d
(5.3.8) .

Actually the series E.,, can be explicitly expressed in terms of the constant defined
by (Ccans Pean), namely (Ocan, Pean) has the following form as a solution of (Hean):

(5.3.9) Ocan(s,1) = A(n) exp(2ns) + B(n) exp(—2ns),
(5.3.10) Pean(s,n) = —2A(n) exp(2ns) + 2B(n) exp(—2ns),

where A(n) = leo 141/217*1/2 and B(n) = leo Bl/gn’l/Q with A;/5 and By/s
being constants. It then follows from ([5.3.7)) that

(5.3.11) Ecan = —16A(n)B(n).

In particular,

(5.3.12) Ecan,0 = —16A0By.

On the other hand, for the a-dependence of EU0) we have the following

Lemma 5.3.2. (i) The highest degree part Eéjo) of BUo) = > 150 El(;;)n_l/Q sat-
isfies

(5.3.13) Eéj(’) = Co®jg,00%g+m,0
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for some non-zero constant Cy which is independent of the free parameters

{ozj}1<j<2m contained in an instanton-type solution.

(ii) For any odd integer I, E(jz) vanishes.
Proof. Tt follows from (3.11)) and ( - ) that

; 0z -1
(5:3.14)  pfV = - <a;(/\jo,0)> (00 (£) 65, () exp (11 (1))
— @y 1 0b(£) ), (£) exp(—nj, (1))/2607) ) 1 (Ajo 0)
where
(5.3.15) bg?]om (z,t,m) = (x = Xjo(t,0))acsm) (2, t,7).
On the other hand, (3.13]) implies
io 0z
(5.3.16) 06" = 5 Moo (0) (o 00(t) exp(nds, (1))

+ Qjom,0b(t) exp(=110, (1)))-

), we now prepare the following

In order to compute Eéj 0

Sublemma 5.3.3. For J =1, 34, I1I-2 or IV we find

) (22)

for zo in (3.2).
Proof of Sublemma 5.3.3. Let us first recall that
(5.3.18) Qs.my,0 = (det Bo)/(a(sm).0)>

for the matrix B used to define the Lax pair that underlies (P;),, in the notation of
Appendix A. (See [7] and [20] for the proof of (5.3.18).) Then the Taylor expansion
of the highest degree part of (3.9 shows, with the help of (5.3.18)),

det By 4<820>
(33 - AijO)Q(a(Jxm)’O)Q £:>‘J'(J,0 81: I:)‘jD,O

Since we know ([7, Proposition 2.1.3 and (2.3.8)], [20]) that

V2 J(4670) 1 (Njo.0))?

z=Xjj.,0

(5.3.19)

2
(5.3.20) det Bol,_,  =v5,/4,

we conclude that

(5.3.21) <6;;>4

This completes the proof of the sublemma. O

=v; (4[’5?7)71),0(/\]'0,0))?

:E:Ajo‘o
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We now resume the proof of Lemma[5.3.2] Since it follows from the definition
of EU0) that

(5.322) G = (o) = 4(05"))?,
we deduce the following relation from (5.3.14) and ([5.3.16)):
(5:323)  E§" = (a3, 0a? exp(2n65,) + 02, 4 0D exp(—2065,))
1/0z —2 920 2
0 i _
x [4<8$(/\j0’0)> ¢%(b8]?7)n),0(>‘j070)) 2 - 4(axo‘jo70)) :|

1 aZO —2 1 _

- gmnaigsmand( G2 o)) R Aol
820 2

- 8ajo,004jo+m,oab<ax()\jo,O)) :

As it follows from the definition that

(5.3.24) Vj, = (ﬁ}o,
(5.3.17)) and (5.3.23|) entail
(jo) 92 ’
(5325) EO = 7160&j0700éj0+m,0ab %(Aj()vo) .
Then we find by Lemma [5.3.1] that
820 2
(5.3.26) Co(t) = at)p(t) 52 (i (1), )

is independent of ¢. Thus we obtain . This completes the proof of (i).
To prove (ii) we again note . Then by the “alternating parity” structure
of instanton-type solutions (Appendix B), El(;g) (I odd) is a sum of monomials
in instantons of odd degree. This means that it cannot be a constant unless it
vanishes identically. Therefore Lemma shows (ii). O

In view of our definition of instanton-type solutions (Appendix B), the as-
sumption o, 00, +m,0 7 0 enables us to choose (A(n), B(n)) in (5.3.9)) and (5.3.10)
so that the following relations hold:

(5327) Ecan = E(jo)’
(5328) Al/2 = Bl/2 =0.

Fixing (A(n), B(n)) in this manner, we construct s(¢,7) so that it satisfies (5.2.8))
and (5.2.9). To describe the precise structure of s(t,n) we summarize its properties
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in Lemma [5.3.4] below. We call the reader’s attention to the fact that the series
s(t,n) relates the objects attached to (DSLy),, with those attached to (DCan).
Thus its role is substantially different from that of the series #(¢,7) used in Theo-
rem which will be explicitly constructed in Theorem The series £(t,7)
relates the objects attached to (DSLy),, with those attached to (DSLy);.

Lemma 5.3.4. Consider the problem in the setting of Subsection [5.1]. In par-
ticular, let w denote a meighborhood of the point o that is close to, but differ-
ent from, the P-turning point T in question. Then we can construct a series
s(t,n) =250 sl/g(t,n)n_lﬂ so that it satisfies the following conditions:

(5:329)  ocan(s(t,n),m) = U (t, @, m),
(5330)  pean(s(t,m),n) = pVU°)(t, ),
(5.3.31) each s1/5(t,n) is holomorphic on w,

1
(5332) So(t) = §¢jo t),
(5333) 81/2 = 0,

1 —1 8z0
(5334) Sl(t) = 5 log AO Oéjo’oa(t)%(Ajmo(t),t)

1 _ 4,0z _

(= 5108 Boa b 5 o071 ) ),

(5.3.35) s1/2(t,m) (1> 3) is a polynomial in instantons of degree | — 2.

Proof. Here and in what follows we use the symbol

(5.3.36) [0can(s0(t) + 0~ s1(t), )

to denote the degree [ part (in 71) of gean(so(t) + n~1s1(t),n), counting the
degree of an instanton to be 0 by convention. We first construct (so, s1/2(= 0), s1)

by using

(5.3.37) [ean(s0(t) + 17 s1(t), )]0 = 0V (£ 1),

and then check that it also satisfies

(5.3.38) [pean(s0(t) + 17 s1(t), Mo = pU (£, 7).

We find by that

(5.3.39) Agexp(2nso +2s1) = ajo,oa(t)%()\jo,o(t)) exp(nej, (t))
and

(5.3.40) By exp(—2nsg — 2s1) = ajo+m,0b(t)%(>\jo,o(t)) exp(—ndj, (t))
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should be satisfied. It is then clear that we should choose sy and s so that

(5.3.41) so(t) = %% (t),
(5342) A() exp(231(t)) = Oéjm()a(t)%()\jo’o(t),t),
(5.3.43) By exp(—2s1(t)) = aj0+m,0b(t)%()\jo,0(t)’ t).

On the other hand, (5.3.12)) and (5.3.25)) tell us that (5.3.27)) reads

(5344) —16AOB0 = —1604]‘0,0()4]‘04_7”,00,(15)()('&) <(ZZ;()\]‘070(t), t)) :
Note that
(5.3.45) Co(t) = a(tp(t) G (8.0

is independent of ¢ (cf. (5.3.26)). Thanks to (5.3.44), (5.3.42)) and (5.3.43)) are

simultaneously solved if we choose s1(t) so that

0z
67:5 (Njo,o(t),1).

Furthermore the relation (5.3.21)) guarantees that the functions so(t) and s;(t)
thus chosen also satisfy

(5.3.46) exp(2s1(t)) = Ay, oa(t)

(5.3.47) [Pean(50(t) + 0~ s1(t)]o = p§° (t.1)

(with the interchange of indices of jo and jo+m so that the appropriate sign of v,

is chosen in the relation (5.3.21))). In fact, (5.3.47) holds if (5.3.41)) does together
with
(5.3.48) 2A0 exp(2s1)

1 B) -t <
= 5o 0(t) (;;<Ajo,o<t>7t>> B D67 o (No0(8),8) 71,

while (5.3.48)) follows from (5.3.21)), (5.3.24) and (5.3.42)). Thus we have found s
and s; that satisfy (5.3.37) and (5.3.38)).
Let us now embark on the construction of s;/5(¢,1) (I > 3) by induction on [;

we construct s;/5 by supposing that s;/ /5 (I’ < 1—1) have been given. The method
is basically the same as that used in the proof of Lemma 3.1 of [9]. However,
we have to be careful as po) and o) may contain instanton terms other than
exp(£nnej, (t)) (n € Z). To make our argument clearer we prepare the following
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Sublemma 5.3.5. Let T' denote exp(n¢;,(t)) and let f = Zf:_p aT" and g =

P
l=—p

(5.3.49) (@ =BT~ Y)f = (oI + BT Y)g

bT be instanton-type solutions given by (2.1.4) and (2.1.5). Assume that

for some instanton-free series a and 8 whose top degree parts ag and By satisfy

(5350) 04060 7é 0.

Then there exists an instanton-type solution h = Ef;ipﬂ

o TY which satisfies
(5.3.51) f=(aT + BT Hh.

Furthermore ¢; is a linear combination of ar’s (—p < k < p) with coefficients that
can be described in terms of o, 3, a~' and B7L.

Proof of Sublemma 5.3.5. Let feven denote the even degree (in T') part of f, and
let fodd, Geven and goqq be defined similarly. By rewriting ([5.3.49) as

(5.3.52) (aT? = B)f = (aT? + B)g,

and equating the even degree parts and the odd degree parts, we find

(5353) (OKTQ - /g)fovcn = (aTz + 6)gcvcn7
(5.3.54) (aT? = B) foad = (@T? + B3)godd;
hence

(5355) (OZT - 5T_1)feven = (OéT + ﬁT_l)geveny
(5.3.56) (T = BT ™) foaa = (aT + BT ")goaa-

Therefore it suffices to show the existence of h under the assumption that

(i) f and g are both of even degree in T', or
(ii) f and g are both of odd degree in T

As the logical structure of the proof is the same in either case, we only consider
the even degree case (i). Suppose

(5.3.57) f=> anT?,
l=—n
(5.3.58) g= > buT*
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Then, multiplying both sides by a~'T?"*!, we find (5.3.55) can be written as

(5.3.59) (T? — o' B)(T*" ) = (T2 + o' B)(T™"g).
Hence it follows from (5.3.59)) that
(5.3.60) (T*" f)|r2=—a-15 = 0.

In what follows we use the expressions

n 2n
(5.3.61) T2 f = Z ag T2 = ZalTZ(Q"—U,
I=—n 1=0
n 2n
(5.3.62) T?rg = Z boy T304 = Z b, T2
I=—n 1=0
that is, we let @; = ag(,—j) and l;j = by(n—j) (j = 0,...,2n). In this notation we

can readily deduce the following “division” formula:

2n 2n—1
(5.3.63) =Y @ = (17 + a7 '8) Y T 4 gy,
1=0 1=0
where ¢y = ag and
(5.3.64) G=a+(—a'Ba_1+-+ (—a"'p) ag
for I =1,...,2n. In particular, (5.3.60)) implies
(5.3.65) on = (T?"f)| 12— _o-15 =0,
and hence we obtain
2n—1
(5.3.66) T f = (T? +a7'8) > &T?Cr=17h,
1=0
that is,
2n—1
(5.3.67) f=aY(aT + 5T*1)( 3 aT?”*Hl).
1=0
Thus, letting
2n—1
(5.3.68) h=a"t > T,

=0

we obtain ([5.3.51]). This completes the proof of Sublemmaw O
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We now resume the proof of Lemma [5.3.4] By using the Taylor expansion of
exp £2(s3/2n~ Y2+ -+ 51/5m~72/2), we deduce the relation (5.3.70) below from
the requirement
(5.3.69)  [ocan(s0(t) + s1(t)n " + s3)2(t, mn 2t s1/2(t, mn 2, Mla—2)/2

= UElji)Q)/Q (tv 77),
Xi/2
Ap exp(2nso + 2s1) — Bgexp(—(2nsg + 2s1)))’

where X/, is a polynomial in instantons of degree [ — 1 by the instanton structure
of ¢U0) (cf. Appendix B) together with the induction hypothesis, i.e., (5.3.35).

Furthermore it follows from (5.3.69)) and (5.3.27)) that

(5.3.71)  [pean(s0(t) + -+ + sia(t,mn ™%, 12y 72 = [0 (£, 1)* 1=2) 2.
Hence ([5.3.38)) entails

(5.3.72) [pean(s0(t) + -+ + s1a(t ™2 )12y 12 = P o (E:70)-

Then, just as (5.3.70) was deduced from ([5.3.69)), we obtain from (5.3.72)) the

following relation:

(5.3.70)  s1/5(t,m) = o

Y0
—4(Ag exp(2nsg + 251) + Boexp(—(2nso + 251)))’

where Y} /5 is a polynomial in instantons of degree [ — 1 by the instanton structure
of plio) together with the induction hypothesis. Combining (5.3.70) and (5.3.73)

we now find

(5.3.73) si2(t,n) =

(5.3.74) (0T — A1) Xypo = 3 (aT + BT ¥y
by choosing

(5.3.75) a = Agexp(2s1),

(5.3.76) B = —Bgexp(—2s1),

(5.3.77) T = exp(2nso).

Therefore Sublemma, m guarantees that X/, is divisible by oT" + BT~ in the
polynomial ring generated by T and T~! with instantons in the coefficients. Hence

(5.3.70) implies that s;/5 is of the required instanton structure (5.3.35). Thus the
induction proceeds. This means that the proof of Lemma is completed. O

Remark 5.3.1. Although we have imposed constraints (5.3.27) and (5.3.28)), there
still remains arbitrariness in the choice of either Ay /o or Bogy/g, say Ag/o. This

arbitrariness is inherited by s;/5.
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The series s(t,n) constructed in Lemma together with the series con-
structed in Theorem brings the simultaneous equation (DSL;),, to (DCan);
the precise statement is as follows.

Proposition 5.3.6. Consider the problem in the setting of Subsection[5.1l: in par-
ticular, assume (5.1.7). Let p(z, s,m) be a WKB solution of (Can) that also satisfies
(Dean), and let (xz,t,n) be given by

z(x -1/
(5.3.78) Y(x,t,n) = <8(8’;’n)> w(z(z,t,n),s(t,n),n),

where z = z(x,t,n) and s = s(t,n) are the transformations given respectively
by Theorem and Lemma m Then (xz,t,n) satisfies (DSLy)m, i.e., the
simultaneous equations (5.2.5)) near x = Aj, o(o).

Proof. First we note that the s-dependence of Qcay, is through Fean, pean and oean.
Since we obtain S.,, by recursively solving the Riccati equation

ascan )
Dz =17 Qcan

in an algebraic way, the s-dependence of S¢ay, is also only through Eca, (= p2,, —

(5.3.79) S2 o+

2 .
4Ucan)a Pcan and Ocans that 18,

(5380) Scan(Z7 S, 77) = Scan(za pcan(sa 77)’ acan<5a 77)7 77)
Now, as is well-known (e.g. [I1], Corollary 2.1.7]), the relation between Q)

and Qcan given by (3.9) implies the following relation between Syqq given by ((5.3.1))
and Scan,odd:

0z(x,t, . ,
%Scan,odd(z(xa t, 77), p(jo) (ta 77)7 o'lo) (ta 77))

On the other hand, (5.3.29) and (5.3.30) mean that the right-hand side of ([5.3.81))
is identical with

(5381) Sodd(l’,t, ’I]) =

0z

(5-3-82) %Scan,odd(Z(l’,t,n)yﬂcan(S(t,??)m), Ucan(s(tan)vn))-
Hence, by using (|5.3.80]), we find
0z(x,t,
(5:38%) Soaa(rt.) = BN 5 aalo(as o)t ). ).
Then, differentiating (5.3.83|) with respect to ¢, we obtain
0Sodd 0%z
(5384) 8t == mscan,odd(z(w7t7n)7S(tan)an)

82 (ascan,odd(z(xa tv 77)7 s(tv 77)7 7’) % + aScan,odd(z(xv ta 77)7 S(tv 77), 77) 85)

+ or 0z ot Os ot
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It then follows from (5.3.3) and (5.3.83) that

0 0z
(5385) % {a(J,m) %Scan,odd(z(ma ta 77)7 S<t7 77)7 77)}

. 2 % % @ aScan,odd(z(xvtan)vS(tvn)vn)
- 833{8t5can,odd(z(mvt,n)aS(tan)vn)} 833 6t 85 :

Since we know
8Scan,odd 0

(5.3.86) T = %(Acanscan,odd)a
we can rewrite (5.3.85)) as
0 Jdz 0z
(5387) 8%‘{ <C1(J7m) % - (9t> Scan,odd(z(xa ta n)a S(ta 77)7 77)}
ds 0z 0
= a % az{(AcanScan,odd)(z(xv t7 7’)3 S(ta 7])7 77)}
_0s 0

=~ ot oz {(Acanscan,odd)(z(m7 t,m); s(tm);m) }’

that is,

0 0z 0z ds
(5388) 8.13{ (ﬂ((]ym) % — E - Acanﬁt> Scan,odd(Z(l’y t? 77)7 S(ta 77)7 77)} =0.

Here we recall [8 Proposition 2.2]; its proof applies to the current situation without
any changes and it shows that the equality

8¢($, t, r]) 8¢ 1 8a(J’m)

follows from the relation
0z 0z Js
(5.3.90) Usm) 5~ gy ~ Aeangy =0

on the condition that ¢ solves (DCan). Thus our task is to deduce (5.3.90) from
(5.3.88). To do this we follow the reasoning in [9, Section 3]; that is, we introduce
the following two symbols 7 and K and we deduce J = 0 from the relation ((5.3.93))

below by using induction on the degree of J with respect to n~1/2:
(5.3.91) T =2(z(z,t,m) =" Pocan(s(t,m), 1))
Oz(x,t,n)  Oz(x,t,n) 9s(t,n)
8 (““m) Y TR T

n_lscan,odd(z(x7 tv 77), S(ta 77)7 77)
2(2(x,t,m) — N~ 20can(s(t,m),m)

(5.3.92) K=
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It is then clear that (5.3.88)) can be rewritten as
(5393) a(,_7IC)—0
3. or = 0.

In order to make the induction argument run smoothly, we prepare the following
sublemmas:

Sublemma 5.3.7. In the current situation,
(5:3.94)  pU)(t,m)| (26 AN %
o ’ () \ Oz a=Ay ot

0 ; 0z 3 iy 0%z Oz
_ =172 ) Y [ (o) vz Ov(jo) Y < UYx
[ () (5) + (g -5 )|

Sublemma 5.3.8. Let X denote x — \j, and let O(X') denote a sum of terms
containing a factor X™ (m >1). Then

2
(Jo) % —%
(5.3.95) J= ({% Jm)<6x>]m_>\jo 3t>
G %2 5 0 (G0 \(92) _,02) 02
[GBMMa2+28 G“m0<3x “ou) ol

Proof of Sublemma 5.3.7. Using the definition of 0(/0), we differentiate both sides
of (5.3.29)) with respect to ¢ to find

s=s(t,n T=X\j, (t,n))
On the other hand, (3.11)) entails

0s 771/2<8,Z
(5.3.97) Lo :_{2771/2/)“0)[,&3” 2 (bgo?)n >+ o 2/ 0z ]

X +0(X?).

dUcan

ds

a, | 02
w=)‘j0(tv77) dt 8t

(5.3.96)

) at Ox
dt ) O 8 ) 9z/0x

I:)\ju

Then by using (5.2.3)), (5.3.30)) and (5.3.97)) we obtain
_ gt/ i) 95

2
1/2 (jo) Go) (0=
(5.3.98) G <2b ;m)(a ) ) . =
_ pl0) 3 o) Pz 0z
0C7m) 2 05m) 012 Ot

Thus we have confirmed (5.3.94)). O

T=Xj,
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Proof of Sublemma 5.3.8. Using (5.3.29)), the definition of (/) and the Taylor

expansion in X, we obtain

(5.3.99) T = 2{2; s %% z:AjOXQ + O(X3)}
r (o] M| xvoum)
- (gz o=, % z:,\,-OX - O(X2)> - <g§ o=y, +O(X)>} B %
()]s
+ 2(% <[’§§?L>) (§§)2 = % gj] X 0(X?).
Thus we have verified (5.3.95). 0

Let us now resume the proof of Proposition Our strategy is to employ

(15.3.93)) to prove that
(5.3.100) T = Z n—k/zjk/2

k>0

vanishes by using induction on k. Let us first show Jy = 0. Since Ey does not

vanish by assumption (5.1.7)),

(5.3.101) P9 £ 0.
Hence (5.3.94)) shows
2
(Jo) dzo _ % _
(5.3.102) 2b(],m),0<a$> . % 0,
700

and then Sublemma, [5.3.8| implies

(5.3.103) Jolz=x,.0 = 0
Since Ky = 1, this means

(5.3.104) JoKole=r, o =0.

30,0

Therefore ([5.3.93)) proves that JyKo, and hence also Jy, vanishes identically.
Let us now suppose

(5.3.105) T2 =0 for k < ko.
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Since

(920

(5.3.106) o

#0,

Z:)\joyo

(02/0x)|4=»,, is invertible and its inverse is of degree at most 0 in 7. Hence
Sublemma [5.3.8| entails
w_)‘j())

oJ 0z
o

3.1 —

(5.3.107) <a$
_ (8Z 3.6y 02 O aZ)
_ ; i

ot

J
(J;m) 92 or Ox

I:)\]‘U

Then ([5.3.105)) implies that the left-hand side of (5.3.107)), and hence also its right-
hand side, is of degree at most — (ko +1)/2 in 7. As the right-hand side of (5.3.94))

is (—1)n~'/2 times the right-hand side of (5.3.107)), the left-hand side of (5.3.94)
is of degree at most — (ko +2)/2. Again using the assumption (5.1.7)), we then find

that

Go) [ Oz 2
(5.3.108) [<2b(f;jm)<ax> )

i.e., the degree —(ko + 1)/2 part in 5 of the second factor of the left-hand side of
(5.3.94)), should vanish. Then Sublemma implies

(5.3.109) T(ko+1)/2lz=2;0.0 = 0

On the other hand the induction hypothesis (5.3.105) and (5.3.93) entail

_35}
o=, Ot (kot+1)/2

0
(5.3.110) %(j(ko-u)/zlco) =0.

Combining (5.3.109) and (5.3.110]), we find

(5.3.111) Tko+1)/2K0 = 0.
Thus we have shown
(5.3.112) Tko+1)/2 =0,

as Ko = 1. This means that the induction proceeds and hence the proof of Propo-
sition [5.3.6] is completed. O

The zig-zag reasoning between (/5.3.94) and (5.3.95)), which is the core part
of the induction used in the proof of Proposition has proved the following
results as a by-product.
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Proposition 5.3.9. In the situation of Proposition [5.3.0] the following relations
hold:

ds _ Go) (0% ’
(53113) a = <2b(J,m) % =)\ 7
(Jo)
0z 3 () 0%z b7y Oz
3.114 = T 2 o m) Ze —0.
(5:3.114) (315 2 O (m) Ox? ox  0x)|,_, 0

Jo
Combining (5.2.8), (5.2.9) and (5.3.113) with (Hcan), we obtain

Corollary 5.3.10. In the above situation we have

9g'9) G (0zY’
2 (2))

8t - _877(b(J,m) % o

Remark 5.3.2. An important consequence of (5.3.113)) is that the series s(¢,n) is
uniquely determined modulo an additive infinite series in 7 that is free from t.

p(j())’

CD:)\]‘O

(5.3.115)
0‘(]0) .

=X\

§5.4. Semi-global equivalence of (DSL;),, and (DSLr);

Propositionenables us to construct a local correspondence between (DSL y),
and (DSLp)1 near the double turning point © = Aj, o(t) of (SLj), by using
(DCan) as an intermediator. Here (DSLy); is the same as (DSL;) in [9] by its def-
inition. The local correspondence thus constructed is an almost unique one, but it
is not really unique; it inherits the arbitrariness contained in s(¢,7n) that is noted
in Remark By appropriately getting rid of the arbitrariness we can analyt-
ically extend the local equivalence so that it may be defined on a neighborhood
of a simple turning point « = a(t) of (SLy),, in the setting described in Subsec-
tion[5.1] As we will show at the end of this subsection, the semi-global equivalence
thus obtained gives us the transformation (Z(x,t,n),t(t,n)) used in Theorem
As three systems of differential equations, (DSLj)m, (DSL1) (= (DSL1)1) and
(DCan) are involved in the construction of the transformation, we use the following
symbols to facilitate the identification of the differential equation studied at that
spot: (x,t) (resp., (%,%) and (2, 5)) designates the independent variable of (DSL ),
(resp., (DSL1) and (DCan)), and we normally add a tilde (resp. a subscript “can”)
to the quantities relevant to (DSLy) (resp., (DCan)), whenever possible. For ex-
ample, the symbol Sodd(if, t,m) means the odd part of a solution S of the Riccati
equation associated with (SLy), and Soqa(z,t,m) (resp., Scan,odd(%,s,7)) stands
for a similar object which we encounter in analyzing (DSLy), (resp., (DCan)).
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We believe that the usage of symbols employed here is systematic and reasonable.
In Theorem [5.4.1] below, we use the same symbols as in Subsection [5.1] The logical
structure of the proof of Theorem is essentially the same as that of Theo-
rem 4.1 of [9], but for the sake of completeness we include it here without paring
it down.

Theorem 5.4.1. There exist a neighborhoodV of o, a neighborhood U of the Stokes
segment 7y that connects \j, o(0) and a(o), holomorphic functions &y/5(x,t,n) on
U xV and t~l/2(t, n) onV (1 =0,1,2,...) for which the following conditions are
satisfied:

(i) The function to(t,n) is independent of n, and it satisfies
(5.4.1) Bjo (t) = r(fo(t)),
where (ﬁl (f) designates the phase function that appears in an instanton-type
solution A1 of the classical Painlevé-1 equation (5.1.8]).

(ii) dto/dt never vanishes on V.

(iii) The function Zo(xz,t,n) is also independent of 1, and it satisfies

(5.4.2) Z0(Njo,0(t), 1) = Aro(to(t))
(5.4.3) Fo(a(t),t) = =2Ar0(to(t))-
(iv) 0%o/0x never vanishes on U X V.
(v) &1/2 and t~1/2 vanish identically.
(vi) The n-dependence of ;5 and fl/g (I > 2) is solely through instanton terms
originating from those in \j,(t,n), and %5 and fl/g are polynomials in
instantons of degree at most | — 2.

(vii) For Z(z,t,n) = Elzo Ty/o(w,t, nn~? and t(t,n) = leo fl/g(t, nn~2, the
following relation holds:

(5.44)  Qum (x,t,m)
~ 2
B (W) Qi(&(x, t,m),€(t,n),m) — %7772{1%(%1%?7);56}»

where Qy designates the potential that appears in (SLy) and {i;z} stands for
the Schwarzian derivative.

Proof. Since Zo(z,t) and #y(t), i.e., the top degree part of the transformation that
satisfies (i)—(iv), have already been constructed in [I2] Section 3.2], it suffices to
construct higher degree parts of the transformation. Let us first fix a correspon-
dence among parameters of (31(n), B2(n)), (A(n), B(n)) and (a1, ..., a2, ). Using
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the assumption (5.1.7)) and Lemmal5.3.2] we can fix (A(n), B(n)) and (81(n), 52(n))
so that

(5.4.5) By = B, = B0,

Then Lemma enables us to find tU0) (¢, ) and t;(,7) that satisfy the relations
(5.4.6)—(5.4.9) below (note that the corresponding object is denoted by s(t,n) in
Lemma [5.3.4]):

(5.4.6) Tean(tV°)(t,m),m) = o) (t,m),
(5.4.7) pean(t90) (t,m),m) = pU°)(t,m)
(5.4.8) ean(tr(t,n), ) = G1(F,n),
(5.4.9) Pean(t1(t,n),n) = pr(t,n)

Here (671, p1) denotes the infinite series corresponding to (a(0), pld0)) for (DSLy),
where jp is uniquely determined and usually not referred to.

In parallel with the above usage of the symbols ¢t\70) (¢, ) and t1(£,1) we let
(zU0) (z,t,n),tW0) (¢,n)) and (x1(Z,%,n),t:1(f,n)) denote respectively the transfor-
mation with which we find a WKB solution ¢ (z,t,n) of (DSL);, from a WKB
solution @ean(z,s,n) of (DCan) by defining

dx(90) (2, t, 1/ ; ;
(5.4.10)  (x,t,n) = (“) Pean (@) (£, 1), 9°)(t, 1), )

and the transformation with which we find a WKB solution ¢1(Z,Z,7) of (DSL;)
from a WKB solution ¢can(z, s,1) of (DCan) by defining

. ) L= —1/2 . 5
(5.4.11) Uiz, 1,m) = (W) Pean(®1(Z, 1, 1), t1(t, 1), 7).

We note that both transformations were designated simply by (z(x,t,n), s(t,n))

in Proposition [5.3.6]
In order to construct the required series #(x,t,7) and #(¢,7) using the above

transformations; we first note that (5.3.32)) together with (5.4.1) (or, originally,
(3.2.6) of [12]) entails

(5.4.12) t99(t) = tr.o(fo(1)).
This means that £y(o) is not a P-turning point of (P;); that is,

(5.4.13) to(o) # 0.
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On the other hand it follows from ([5.3.32)) that

B - S =\ 1/4
ol _Ldbd wmw(%)7

1
5.4.14 = = —
( ) dt 2 d 2
and hence it does not vanish at #o(o). Therefore t1(, 1) is invertible near ¢y (o). Sim-
ilarly (3.6]) guarantees that z1(Z,%,7) is also invertible near (Zo(\j,.0(c), ), to(0))
= (Ao(fo(0)),fo(c)). Thus the transformation

= ~7 5’ b
(5.4.15) 2= 2@t n)
s =ti(t,n)
can be inverted as
|
(54.16) :;Ij‘_mll (z7s7n))
t=t; (s,m)

Using this inverse transformation, we now define

(5.4.17) {

near (z,t) = (Aj,,0(0), 0

x,t, ) :fl(x(”)(wtn) o) (t,m),m),
o) =t (90 (¢, ), ),

,0). The relation ) may also be expressed as

T X
OF’—\

~—

t = o) vta )
(5.4.15) rcl( i(z, 77 (t,n),n) =2V (z,t,n)
ti(t — t(]o)(t n).
Then (5.3.83) entails

oz (do) z,t, . )
(5.4.19)  Soqa(w,t,n) = (“)Scan,odd (x(ﬂo)(x,t,n),t(”)(t,n),n)

_ Oa(@(x,t,m), £(t,n), n)
ox
X Scan,odd (21(Z (2, 1, 1), €(t, 1), ), tr(E(t, 1), 1), 1)

t
= (52 ) ot e 2

X Scan odd(xl( (z,t,m), ( n),m), ti(t (7277),77),77)

= PTG, @t by, it m)om).

This relation means that the series (Z(z, t,7),f(t,n)) enjoys the required properties
near (z,t) = (\j,,0(0),0). However, it may be singular at = a(o); our task is
to adjust the free parameters that (¢, ) contains so that Z;/»(x,t) is holomorphic
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near (x,t) = (a(c), o). We also note that ([5.4.18]) enables us to deduce the following
relations from (5.4.6[)—(5.4.9)):

(5.4.20) G1(E(t,m),m) = oV (t,n),
(5.4.21) pr(E(t,n),m) = pY°(t,m).

To find an appropriate way of fixing the free parameters contained in (¢, 7)
we first construct a transformation

(5422) g(xvta 77) = 251/2(%15777)77_”2

1>0
that brings (SLj)m to (SL1); near the simple turning point = a(c). In contrast
to the situation near x = \j, 0(), Q(J,m) is non-singular near x = a(c). Hence the
reasoning in [I1, Section 2] readily applies to our situation, and we can construct
the series g(x,t,n) that satisfies

ag z, ta )& ~ 7
(5.4.23) Stamyoaalaton) = LD G, et e )
near (z,t) = (a(0),0). In the course of the construction of g, one finds that 7/,
is a polynomial of instantons of degree at most [ — 2 (cf. Appendix B).

For the computation required for the adjustment of the constants we prepare

following series:

(5.4.24) R(E, ) = / - 118 oaa (w, £, 1) dw,
(5.4.25) F(w,t,n) = R(@E(x,t,m), (), 1),
(5.4.26) G, t,m) = R(G(x,t,m), #(t,n), ).
It then follows from (5.4.19) and (5.4.23) that
oOF _
(5.4.27) 9z IS(J,m),odd(Ivt,U),
oG _
(5.4.28) ar IS(J,m),odd(xvtan)'
Hence we find
0
4.2 v —y)=0
(5.4.29) 5eF —9) =0
Next we try to prove
0
A4, —(F-g)=0.
(5.4.30) 5 (F-G)=0

To do this, we prepare the following



WKB ANALYSIS OF HIGHER ORDER PAINLEVE EQUATIONS 197

Sublemma 5.4.2. The functions 6,y and a1y that appear in the deformation
equation satisfy

8% (x,t,n) 0F(z,t,n) . - it(t,n)
(5:4:31) === = A (2, 1) =5 = dn (E(, ), 1t m) =5

Proof of Sublemma 5.4.2. Since we have proved ([5.3.90)) in the course of the proof
of Proposition [5.3.6] we have

4.39 - — Agan (z10) (Jo) -
(5 3 ) a(J,m)(xvt) B ot (.’II (9U7t777)at (t777)) ot 0
and
- _ - 0x ox - ~ ot
(5.4.33) a1y (2, t)a?l - 85 — Acan(21(7, t,n),tl(t,n))a—g =0
On the other hand, we differentiate ([5.4.18)) with respect to x and ¢ to find
Oxy 0% 9zlo)
5.4.34 el
( ) 0% |&=&(z,t,n) Oz ox '’
f=£(t771)
Ox1 0% Oz ot 9zl
.4. — - — _~ -_— =
(5.4.35) 0% |z=%(xt;n) Ot Ot |&=#(z,t,m) Ot ot '
f:f(tﬂi) f:f(tﬂi)
ot ot otlo)
(5.4.36) =1 = = .
ot F=i(tm) ot ot
Substituting (5.4.32) and (5.4.33) into (5.4.35)), we obtain
Oy oF  [. . - 0w(dtn)
5.4.37 — t)————=
A3 B lsmswam a0 [a“'”(‘r’ ) oz
f:f(tm)
~ 7 z atl(ﬂ 77) 65(75»77)
- Acan 7t7 at ta =
(@1(Z,t,m), tr(t,m)) o1 s=i(atm)  Of
t=t(t,n)
= a(J,m)\T, Oz can T z,t,1), 1 ot .
Since ([5.4.18)) entails

8tI (E(tv n)a 77) af(ta 77)
ot ot
Htlio) (t,n)
o’

(5.4.38) Acan(z1(Z(,t,m), L(t, 1), n), t1(t(t, n), 1))

= Acan(x(jo) (IL’, t7 7])3 t(jO) (t’ 77))
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(5.4.36) and (5.4.37) imply

o (0% . _ -0l §zlio)
4. — - = t
(5.4.39) oF (875 + a7, )625) G (et a(sm) (2, Oz
t=t(t,n)

It then follows from (5.4.34) that

aj =~ ~ g 6£(t7 T]) 81‘(337 t7 77)
(5440) E + ﬂ(1,1)(1’($at777)7t(ta77)) ot = 0(J,m) (xvt)T
Thus we have obtained (5.4.31)). d

Remark 5.4.1. An important point in Sublemma [5.4.2| is that we can deduce
despite the fact that Z(x,t,n) may be singular at the simple turning point
x = a(t). As [8, Proposition 2.2] shows, rather straightforwardly follows
from , the deformation equation for the odd part of a solution of the Riccati
equation, if the transformation series involved is defined near a simple turning
point.

We now resume the proof of Theorem [5.4.1] Using Sublemma [5.4.2] we find

OF ORO¥ OROt | - ( or ai) OR Ot
= o7 =71 "Olodd| &

44y Y _oftor OROL_ or o Oty oRot
G441 Hr =2z %t o 7 (Zam) g T D 5y | T BF By

On the other hand, the deformation equation (5.3.3)) applied to S’Lodd implies

OR - o e
(5.4.42) 2 " Ya1,1)(Z,1)S1,0aa(Z, 1, 1).
Hence it follows from ([5.4.19)) that
oF _
(5443) E =T 1a(Jme)S(J,m),odd'

As we noted in Remark (5.4.31)) is valid if we replace z(%,%,71) by
g(x,t,n). This means that the above computation of 9F /0t is equally applicable

to the computation of 9G/0t, that is,

oG _
(5.4.44) S = Y 7m)S(Jm) 0dd-

Therefore we obtain (5.4.30)).
It then follows from ([5.4.29)) and (5.4.30]) that

(5.4.45) F=G=Y Cion'?

1>0

with a genuine constant C,.
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Let us now prove the following assertion (C); for any ! by induction on I:

(C)1 An appropriate choice of t;/o guarantees the vanishing of Cyo and the coin-
cidence of xy/o and /2.

It follows from the definition of x¢ and o that (C)o holds. Since x1/5 = y1/ =0
and t,5 = 0, (C); is trivially valid. Let us now suppose (C) holds for every k <[
and that [ is even. Let H(I/2) denote the part of F;/5 — G /o which is irrelevant to
St,—1, that is,

Z(z,t,m)

(5.4.46)  H(1/2) = Fija — Gija — [/ St—1(w, (t,n)) dw

—2X1,0(f0 (%))

g(z,t,m) 5 ~

- St ) de
—2A1,0(to (1)) 1/2
Thus H(1/2) consists of all terms originating from Sy ; (j > 0). On the other hand
each term in H(l/2) is of degree —I/2 in n by definition. Hence only &/ /o and g /o
(I,1" <1—1) are relevant to H(l/2). Then the induction hypothesis implies that
H(1/2) should vanish. Thus we concentrate on the terms relevant to S'L,l. Then
by using the Taylor expansion we find

Z(x,tm) 5 g(z,tm) B
(5.4.47) / ) St—1(w, t) dw — / ) Sto1(w, t) dw
—2A1,0(%) —2Ar,0(%)

= St (@0, D{(n " # 4+ + 0_1/2551/2 +0)
— 7 g )}

1081, . _1~ 1.

o B D ) 0 )
Hence terms that contain Z;/, or g,/ and that contributed to F;/3 — G /o are
(5.4.48) St —1(&o,t0) (@172 — Guj2)n~ 2.

Recalling the concrete form of SL_l, we obtain

(5449) Cl/g = 2\/ .’i‘o + 25\1)0(50 (t)) (-i'O_S\I,O (t~0 (t)))(i‘l/g (l‘, t, T])—gl/g (.TJ, t, ’17))

We now apply the same reasoning to (5.4.19)). The degree —(I — 2)/2 (in 1) part
in the last term in (5.4.19)) is then seen to be of the form

~ . 856;/2 OTg 35‘1,_1
(5450) 517_1(1‘0,750) O +% 07

(Zo(x, 1), t0(t))T1/2
OFo 0511, PN ~ . . .
871'0 8Ijt~ ! (xo(x;t)ato(t))tl/Z + Rl/Q(:L‘O7' .. ,:C(lfl)/QatO?' . at(lfl)/2)7
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where R; /5 is determined by Z;/ /5 and flu/z with I/,1” < 1—1. Then the top degree

part of the deformation equation (5.3.3)) applied to S’Lodd entails

dS1 1 _ 0
ot 0z

Thus it follows from ([5.4.19)) that

(5.4.51)

( T+ 25\1,0(1?))

(6452) - (2330w 1) + Dhnollo(t) ol 1) — Srollo(t))2)
+ (8(1 <\/:EO(:E, t)+ 25\1,0(50@)))51/2) + Ry

= S(1.m).1—2)72(x, t,1m).
Exactly the same reasoning applied to (5.4.23)) entails

(5.4.53) (% (2\/%(957 t) + 210 (fo (1)) (fo (2, ) — :\I,o(fo(t)))ﬂm)

n (ai (\/go(x, t) + 2;\17o(fo(t)))fl/2)

+ Ri2(fos - - - Yu—1)/2: tos - - - ta—1y/2)

= S(1.m),a—2)2(®, t,m).
Since x;/, is non-singular at « = \j, o(t), comparison of (5.4.52)) and ([5.4.53)) with

the help of the induction hypothesis entails that ¢/, has an at most simple pole
near & = \j,,0(¢). That is,

dl/?(ta 77) B il/Q(ta 77)
2(Zo(x,t) — Aro(to(1)))

+ (non-singular function near x = Aj; o(t)),

(5.4.54) iz =

where d;/, is determined by #; /5 and t~lu/2 with I,1” < 1—1. Substituting ([5.4.54)
into (5.4.49) and evaluating the resulting function at = X, o(t), we find

(5.4.55) 3A0(to (1) (E1/2(t,m) — dija(t,n)) = Ciya.

Since ;/5(t,7) contains a free parameter originating from the arbitrary parameter
(Ay)2, Byj2) contained in (pcan, Ocan), We can choose some point ¢, at which Cj /5 in
vanishes. Then it follows from that ;o = /2. Since [ is even by
assumption, [+ 1 is odd. This means C(;41)/2 is a sum of monomials in instantons
of odd degree. But then it should vanish to become a constant. Therefore we find
T(14+1)/2 = Y@+1)/2- This shows that the induction proceeds and hence the proof of
Theorem [5.4.1] is completed. O
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The semi-global transformation (#(z,t,n),%(t,n)) found in Theorem is
the required one in Theorem [5.1.1} Actually Sublemma [5.4.2] entails

(5456)  2(#(w.tn) — A(E(tm),m) 2L ot(t, )

ot ot
_ o) E(z,t,n) — M(E(t,n),n) 0F(x, t,1)
B %("’m)(x’t)( ) or
as
(5.4.57) i 1

AL = T2 % 7
RRETCENIRT)
Since the left-hand side of (5.4.56) is non-singular at = A;,(¢,n), we find

This is the required relation (5.1.9). Thus Theorem together with Sub-

lemma [5.4.2] proves Theorem [5.1.1]

§A. Basic properties of the (Py)-hierarchy (J =1, 34, II-2 or IV) with a
large parameter 7

For the convenience of the reader we list up the symbols and equations we use
in this paper. We basically follow the notation of [I7], and therefore the symbols
used here sometimes differ slightly from those in [7]. For example, the differential
polynomial F;(c) of u given by below corresponds to G; in [7], the constant
27y in below is designated by g in [7], and so on. In this appendix we confine
our attention to the notational aspect of the problem, and we refer the reader to
[1I77] for the theoretical issues such as equivalence of two expressions etc.

§A.1. Definition of (P),, and (P),,

As is discussed in [7, Appendix B]|, Pi-hierarchy can be expressed in two different
but equivalent ways. Here, and in what follows, we use the symbol (P}),, to denote
the equation

(A.1.1) Fms1(c) + 27t =0,

where F;(c) is, by definition,

J
(A.1.2) Fi(e) = _exFj_x (with o =1).
k=0

Here F;’s denote appropriately normalized Gel’fand-Dickey polynomials with a
large parameter n; they are polynomials of the (unknown) function w and its
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derivatives, and they satisfy

dFH_l ) dSFl dFl du

A13 — qu—t o p
( ) a1 gl TR et
with

(A.1.4) Fy=1/2.

We note that they are normalized as follows:

(A15) ,F1:’LL7
d2
(A].G) F2 = 3U2 -+ 7772%1;,
d?u du 2 d*u
Al7 Fy =10+ 972 10u—— + 5 — i
(A.L7) s 100 72 (1005 +5( 5 ) )+t G

and so on. In the equation (A.1.1]) we normally assume
(A18) C1 = Cm+1 = 0

by adding appropriate constants to w and t respectively. In practice, we usually
abbreviate F,11(c) to Frut1-

Another expression of P-hierarchy given below is denoted by (Pp),; it is
denoted by (Pr)m, in [7].

d
i —18 gy, G=1,...,m),
(A.1.9) (P dt
-1 de .
N = 2t wmy +wy) (G=1,..,m),
where
(A.1.10) U1 = Tt
and
1 J j—1
(A.1.11) w; = B Zukuj_k_H + Zukwj_k
k=1 k=1
= j—1
— 5 VEUj—k + EQ(QUj — Zuku]'_k) + 5j.
k=1 k=1

§A.2. Correspondence between (P),, and (),

For a solution u of (Pp),, the equation (131),,, is satisfied by (uj,v;)1<j<m defined
by (A.2.1) below through F; given in ({A.1.2)) if constants 4 and ¢; (0 < j < m)
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are chosen to satisfy (A.2.2)) below:

(A-21) uj = —27HF vy = —2*237771% (1<j<m),
g+l

(A.2.2) F=d4"my, =03 Z ¢ricr (0<j<m).
k=0

Conversely if (u;,v;)1<j<m is a solution of (P;),,, then
(A.2.3) u=—2(u1 + co)
is a solution of (P),, on the condition that the relation (A.2.2)) is satisfied.

§A.3. Lax pairs (L), for (P),, and (Li),, for (P

The m-th member of (P;)-hierarchy is the compatibility condition of the following
system (Ly),, of linear differential equations, which we call the Laz pair underlying

(Pl)m:

217_17% = Ay, (A.3.1.a)
(A.3.1) (L1)m - 6Jax
1Y% _ nd
5 = BY, (A.3.1.b)
with
_n—lai 2F
(A.3.2) A= oy O +N,
50 L OF
N+ 2(x —u)F nl—-
ot? ot
0 1
(A.3.3) B_(qu 0)7
where
(A.3.4) F=> (4o)" I F;,
=0

(A.3.5) N

(—(fm? + 271) 8) '

Remark A.3.1. The Lax pair is slightly different from that given in [5].
(See also [7, Appendix BJ].) We add a matrix N to A of [5] in such a way that
the compatibility condition of exactly becomes F,, 11 + 2yt = 0 instead
of (d/dt)(Fm+1 + 27yt) = 0. For the role of the matrix N see also Remark
below.
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On the other hand, the Lax pair (L;),, that underlies (P;),, is given by:

) n,ng _ iy, (A.3.6.a)
(A.3.6) R T
% - By (A.3.6.b)
where
- V(x)/2 Ulz)
(A.3.7) A= ((2xm+1 — (= 260)U(x) +2W (x) +27t) /4 =V (x)/2 >’
N 0 2
(A.3.8) B(u1+x/2+50 0>,
with
(A.3.9) Ulw) =™ =3 uga™,
j=1
(A.3.10) V(z) = Em:”j"”m_jv
j=1
(A.3.11) W) = iwjxm_j'
j=1

Note that the relation entails that the (1,2)-component of the matrix A is
the 4™ multiple of that of A.

To avoid some numerical complexity in the description of the associated
Hamiltonian (to be given in Subsection A.4 below) we assume in this paper that
4 = 1/2; this means that we can choose the constant © in [I7] to be 1. This choice
of 4 causes, however, a tiny difference between the Lax pair used here and that
used in [7].

§A.4. The Hamiltonian structure of (P;),, ([I7, Theorem 1.10])

Let us choose (A1, ..., A, 41, - - -, fm) SO that

m

(A4.1) U) =[] —- )

and

(A4.2) pi=V(R;) (1<j<m)
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for U(z) and V' (z) defined respectively by (A.3.9) and (A.3.10). By letting N; (1 <
j < 'm) denote

(A.4.3) H (A=),

k=1,....m
k#j
we define
(A4.4) H, = ZNj (,u? _ (/\?m-«-l I Ztk)\;n+k_1))
J=1 k=1

for complex numbers {t;}7 ;. It is known ([I7]) that H; is a Hamiltonian for the
degenerate Garnier system G(m + 5/2;m).

Set
(A45) tl =t+ 25mv
A.4.6) tj=2m—jy1 (2<j7<m)

in Hy, and let K denote the resulting function of (¢ \1,..., Ap, i1, -« -5 f)- Then
the system (Py),, is equivalent to the following Hamiltonian system:

d\; oK .
ditjznﬁ (G=1...,m),
) j
(A47) COPER S

dt :—’]’]aiAJ (]:1,...,m).

§A.5. Definition of (Ps4),, and (Psg)m,

In view of the results in [2] we study (Ps4)-hierarchy as an equivalent substitute
of (Pip1)-hierarchy in [7]. One advantage of studying (Ps4)-hierarchy is its inti-
mate connection with (Pp)-hierarchy; a similar connection is also observed between
(Pry)-hierarchy and (Pr.2)-hierarchy discussed in the subsequent subsections. We
note that the awkward naming of (Ps4)-hierarchy is due to its relevance to the
equation numbered XXXIV in the classical study of the Painlevé property ([G]
p. 340]).
The m~th member of (Ps4)-hierarchy is, by definition,

dit? dt
+ du(Fp 4 29t)* + w2 =0,

& F,, dF, 2
(A5.1) (Psa)m = 20 2(Fm + 271) —n? ( + 27)

where 7 is a large parameter, v (# 0) and & are constants and F,,, = F,(c) is a
sum of Gel’fand-Dickey polynomials given in (A.1.2)). In what follows we use the



206 T. KAWAI AND Y. TAKEIL

symbol I, to denote the left-hand side of (A.5.1)), i.e.,

&> Fn dFom ?
(A52)  In =20 (Fm+270)—73 —”2<cﬁ+27> +4u(Fp +27t)2 + K2

Another expression of (Ps4)-hierarchy is given by (Ps4),, below ([I7, Theorem 2.3]):

d
1= =g (1<j<m)
- dv; .
(A5.3)  (Paa)m : W_lde = 2(u1u; + ujt1 + wj) (1<j<m),
. . o, (um—n719/2)? - R?
U1 = =W + Cottm — (1 + ) + 2(um —At)

where w; is a polynomial of (u;, vy )1<,r<j which is recursively determined through
(A.1.11)) containing constants ¢;, and ¢, 7 and & are also constants.
§A.6. Correspondence between (Ps,),, and (Ps4),, ([L7, Theorem 2.3])

For a solution u of (Ps4)m, the equation (}534)m is satisfied by (u;,v;j)1<j<m defined
by (A.2.1) with the help of F; if the constants 4, & and ¢; (0 < j < m) satisfy

Jj+1
(A.6.1) F=4"mtly Rg=4"mg g =27%73 ch,kﬂck.
k=0
Conversely, if (uj,vj)1<j<m satisfies (P34)m, then u = —2(u; + &) is a solution

of (P34)m. (Note that [I7, (2.3)] contains some typographical errors; 5 = 4™~ 1y,
i =27k in [I7, (2.3)] should be replaced by the first two relations of (A.6.1). In
what follows we correct such errors of [I7] without explicit mention when citing
formulas in [17]. We refer the reader to [I8] for a list of corrections of typographical
errors in [I7].)

§A.7. Lax pairs (L34),, and (i34)m ([5], [17)

We now give the Lax pair (Ls4)m (resp., (Ls4)m) that underlies (Psy4),, (resp.,
(Ps4)pm). The first of these is as follows:

4n_17x8—w = Ay, (A.7.1.a)
(A.7.1) (L3a)m 53 Ox
-19% _ nd
n o By, (A.7.1.b)
where
oF
1 _77_1 (at + 2’}/) 2(.7: + 2’7t)

+ N
0°F oF ’
777*278752 +2(x —u)(F+29t) nt <8t + 2fy>
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(A.7.3) B:< 0 1),

r—u 0
with
(A.74) F= Zm:(élx)m’j]-"j,
=0
0 0
(A-75) V= (am s 2 o)

Remark A.7.1. The purpose of adding the matrix N to the original Lax pair used
in [B] is two-fold: first it fixes the expression of the Lax pair by eliminating the
2m-th derivative of u in A, and secondly it makes the compatibility condition of
(A.7.1.a) and (A.7.1.b) coincide with (Ps4),, with the parameter £? fixed. The first
fact enabled Koike ([I7]) to smoothly find the corresponding Lax pair (Lsy)m, of
(]334)m, and the second fact is effectively used in his reasoning to relate (1334)m, and
hence (Ps4)m, to a Garnier system. Note that the original formulation of [5] gives a
family of (Ps4).m (parameterized by 2 in the notation of [I7]) as the compatibility
condition of their Lax pair. In practice we always substitute a solution of (Psy)m,
into the coefficients of (L34)., in this paper and hence we may ignore N in analyzing
the Lax pair.

With the help of Remark A.7.1, Koike ([I7]) gives the Lax pair (Lss)m of
(}534)m as follows:

) 7771%871/} _ Ay, (A.7.6.a)
(A.7.6) (L3a)m 81;633
1% _ B7 A.7.6.
o 7. (A.7.6.b)
where
1 1
(A7.7) A= i(zgjm“ — (z —260)U +2W - (IV(x) - ln‘lﬁ) 7
+7t(z + 2u1 + 260) + 2Um41) ? !

(A.7.8) B:(l o 2).
5T +u1+ co 0

Here U, V and W are the polynomials given respectively by (A.3.9)—(A.3.11)). In
view of (A.2.1) the (1,2)-component of A is again found to be the 22*~! multiple
of that of A.
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In parallel with the study of (P),,, we choose 4 to be 1/2 in what follows.
This choice of 4 enables us to assume that the constant © in [I7] is 1.

§A.8. The Hamiltonian structure of (Psy),, ([I7, Theorem 2.19])
Let us choose (A1,..., Am, fi1,- -+, fm) SO that

1
(A.8.1) Ulx) + 5t = JJEERY)
j=1

and

1 1, _
(A8.2) pi=1-(V)—Fk—=1m (1<j<m).

\; 1
By letting N; (1 < j < m) denote
(A.8.3) IT =2

k=1,. ,m

we define
(A.8.4) Hy =30 N; (A = 2y = (A2 4 3 At

j=1 k=1

for complex numbers {t;}}" ;. It is known ([I7]) that H; is a Hamiltonian for the
degenerate Garnier system G(1,m + 3/2;m). Set

(A85) tl =4t + 267”—17
(A.8.6) tj=2n—; (2<j<m)

in Hy, and let
(A.8.7) Kt My Ay 1y - -+ s o) = AH1 |1, =40426,, 1 12=281 ... bn =250 -

Then the system (Psy),, is equivalent to the following Hamiltonian system:

A\, K

— = N5 (lea 7m)7
. dt 8uj
(A.8.8) (G34)m : du, 0K - .

§A.9. Definition of (Pi2),» and (PII_Q)m

The (Pi1.2)-hierarchy and the (Pry)-hierarchy are defined in [3] 4] with the help of
differential polynomials (K, Ly, )n>0 of a pair of functions (u, v) and their deriva-
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tives, which are recursively determined by the following relation:

1 dK,
Knpr =5 <uKn + 2L, —n~* pr ) (A.9.1.a)
(A.9.1) 1 . dL.
Lnsi=7) (vKanj — Lo—jLj+n~ Knjdtﬂ) (A.9.1.b)
7=0
with
(A.9.2) Koy=2, Ly=0.

(See [22] for the background of the formula (A.9.1)).) For the convenience of nota-
tion we introduce

’Cn Kn Kn—l KO
A9. =
( 93) (£n> CO(LH>+61<L7L—1>+ +cn(L0>’

where c¢;’s are constants. Unless otherwise stated explicitly, we choose c¢g to be 1.
For example,

Ks\ 1 u3 + 6uv 1 d [ —u L d* (u
(4.9-4) (£3>4[(3u2v+3v2)+3w’ a\ v )T aE\

_’_071 u? 4+ 2 n _1i —u L U L 2
2 2uv Tw\ v 2\ v o)

(Ctf. [1, Remark 1.3.1].) The m-th member of (Pro)-hierarchy is, by definition, the
following equation ([7, Definition 1.3.1]; note, however, that we have reversed the
order of labeling the constants c;’s so that our notation may become consistent
with [I7]):

Kot + 27t = 0, (A.9.5.2)
A9. Piio)m :
(A.9.5) (Pri-2)m {ﬁm+1 — o, (A.9.5.b)

with v (# 0) and & being constants. Unless otherwise stated, we suppose ¢;,+1 = 0
for simplicity.

Another expression (A.9.6) of (Pi.2)nm, is given by Koike ([16]); it is denoted
by (Prr)m in [17].

(A96) (PII_Q)m .

du:
71% = —2(U1Uj +v; + Uj+1) + 2c;uq (1<j<m), (A.9.6.a)
dv.
,1% =2(viuj +vjp1 +wy) —2c;01 (1<j<m),  (A.9.6.b)
with

Umt1 =Vt Umy1 = K. (A.9.6.c)
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Here v (# 0), s and ¢;’s are constants used in the definition of (Pi1.2)m,, and w; is
a polynomial in (ux, vk )k<; that is recursively determined by the relation

Jj—1 J 1 Jj—1 Jj—1
(A97) w; = Zuj,kwk + Zuj‘,k+1’l)k + 5 Zvj,kvk — ch,kwk.
k=1 k=1 k=1 k=1

§A.10. Correspondence between (Pjs),, and (PH_Q)m
([I7, Theorem 3.5])

For a solution (u,v) of (Pir.2)m, the equation (pII-Q)m is satisfied by (u;,v;)1<j<m
defined through (K;, £;)1<j<m by

1
uj ——ile +c¢; (1<j<m),
(A.10.1) .
vj iﬁj (1<j<m)

Conversely, if (uj,v;)1<j<m is a solution of (]511_2),”, then
(A.10.2) u=—2uy, v=2n
is a solution of (Pir2)m.

§A.11. Lax pairs (L), and (Lio)m (17 §3])

We give the Lax pair (Li2)m (resp., (f/H-Q)m) that underlies (Pir2)m (resp.,
(PII_Q)m). The first of these is as follows:

'yn*la—w = Ai, (A.11.1.a)
(A.11.1) (Lita)m : agx
~1== = By, A1
W _ By, (A1L1D)
with
1 —(Qx—u)lC—n_lﬁ 2K
(A.11.2) A=< " dt |+
_op—12Z2 _ _ -1~
2n 7 20K 2z —u)K +n 7t
—r+u/2 1
A11. B =
( 3) ( vz —u/2>7
where
(A.11.4) K=Y amiK;, L£=)Y am7L;,
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1/-K — 27t 0
(A.11.5) N:( m T )
2\ 2(Lms1 — 26) K1 + 279t

Remark A.11.1. The role of the additional matrix NV is essentially the same as for
the case of (Ls4)m.

The Lax pair (EII_Q)m of (Pi1.2)m given by Koike ([17]) is

o -
R ’w]_la—qi = Ay, (A.11.6.a)
(A116) (LH-2)m : ad_},
1Y% _ ~nd
Uy By, (A.11.6.b)
with
(A117) i —(@™ T+ V + 2C(x) + 1) U+ C(x)
o N =22V +W+k) ™ 4V 4 2C(z) + 4t )’
(A1ls) B ( @rw 1
o —2v1 x+u /)’
where
(A.11.9) Clz) = cjam
j=1

and U, V and W are polynomials of z given respectively by (A.3.9)—(A.3.11)). Note
that the (1,2)-component of A exactly coincides with that of A thanks to ([A.10.1)).

§A.12. The Hamiltonian structure of (Pi.3),, (|16, Theorem 1.3])
Let us choose (A1,..., A, ft1,s- -+, ) SO that

(A.12.1) U)+Ca)=[[=-X) G=1....m)
j=1

and
(A.12.2) wi=-V0y) (G=1,...,m).
By letting N; (1 < j < 'm) denote
(A.12.3) II o=

k=1,....m

k]

and letting A,,(z,t) denote
(A.12.4) 2" 4y "ty

j=1
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we define

1 m
(A.12.5) Hi=35) N — An(Xj Dy — (20 + 1))

Jj=1

for a constant . Then Hy (for @ # —1/2) is a Hamiltonian of a degenerate Garnier
system called the A,,-system ([21I]). (The Hamiltonian H; used in [I7] is the same
as that of [21I], which contains some additional terms depending only on ¢. As such
terms independent of (A, ;) are irrelevant in defining the Hamiltonian system,
we eliminate them here.) Set

(A.12.6) t, =2t
(A127) tj = 2Cm,j/j (2 S] < m),

and let K denote the resulting function of (¢; A\1,..., Ap, i1, -« -, fn)- Then (}511_2)m
is equivalent to the following Hamiltonian system:

. K
Bl a<j<m),
(A.12.8) (Grr-2)m : du ng
Hi_ 522 1<j<m)
a ~ Tox, VA=
if we choose
(A.12.9) k=—(a+1/2).

We note k may vanish in (A.12.8).

§A.13. Definition of (P ),, and (P )mn

With the help of differential polynomials C,,, and £, the m-th member of (Pry)-
hierarchy is given by

(Algl) (PIV)m :

_1dKm
T

n_l(’c’ln + 2’)/15)

= 2L, + uk,, + 2vtu — 46, — 2~ 1y, (A.13.1.a)

ac,,

= (K 270)° + (Lo — 201)7 — 463, (A13.1)

with v, 601,62 and ¢;’s (1 < j < m) being constants.
Another expression (A.13.2)) of (Prv )., is found by Koike ([16]); it is denoted
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(A13.2)  (Py)m:

du;
n‘ld—; = 2wuj +vj +ujpr) +2cu (1<j<m), (A.13.2.a)
dv, )
_17; = 2(v1uj + vj41 + w;) — 2¢v1 (1<j<m), (A.13.2.b)
U1 = —(vtuy + 61 + 577 19), (A.13.2.c)
(Vm — 91)2 - 9%
mtl = — Wy — YV — 77—, A.13.2.d
e v e 2(um 77t75m) ( )

where the constants are as in (Prv)., and w; is the polynomial determined by
(A.97).

§A.14. Correspondence between (Pry),, and (Pry), ([I7, Theorem 3.6])

For a solution (u,v) of (Prv)m the equation (Islv)m is satisfied by (u;,v;)i1<j<m
defined by (A.10.1]), and for a solution (u;,v;)1<;j<m of (Pry)m the functions (u,v)
given by provide a solution of (Pry)m,; the situation is exactly in parallel
with the situation of the pair (Pr2),, and (]311_2)m.

§A.15. Lax pairs (Lry), and (Liy), ([I7, Theorem 3.8 and 3.9])

We give the Lax pair (L1y)m (resp., (Lrv)m) that underlies (Pry)m (resp., (Prv)m)-
The first of these is as follows:

vxr]_la—w = Ay, (A.15.1.a)
(A.15.1) (L1y)m : %ﬁw
1= =By A15.1b
5 = By, (A.15.1.b)
with
(A152) A=
4K -1
1 [ —QCz—uw)(K+29t) —n E—Qn ~ 2(K + 24t)
4 ac dK
4 —27]_15 — 20(K + 2vt) (22 —u)(K+29t) + n_lﬁ — 2071y
+ N
and
—x 4 u/2 1
A15. B= .
(A-15.3) < v z— u/2>

Here K and £ are the polynomials given in (A.11.4) and

1 1, 0
Al54 N=- n
( ° ) 4 <2Jm/(’Cm + 2’7t) _Im >’
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where

Ao, _
(A155) I, = 77,1% — (o + 29t) — 2L, + 46, + 217 1y,

(A15.6)  Jpm =1 (K + 2715)%’" + (K + 29t)2 — (L — 201)? + 403

Remark A.15.1. The role of the additional matrix NV is essentially the same as for
the case of (L34)m.-

The Lax pair (-Z/IV)m of (Plv)m given by Koike ([17]) is

~ 'y:vn*lg—w = Ay, (A.15.7.a)
(A157) (LIV)m : 81; z
120 = By A15.7.
Y b (A15.7h)
with
(A.15.8) A=
—(2™ + V + 2C(z) + yat — 6;) U+ C(x)+t
=2(zV + W + vpy1 + ytvr) 2™t 4V 4+ 2C0(x) + yat — 0y
and
(A.15.9) B= <_(‘T+“1) ! )
—2’01 T+ u

where C(z),U,V and W are polynomials of = respectively given by (A.11.9) and
(A-3.9)-(A-3.11). The (1,2)-component of A again coincides with that of A.

§A.16. The Hamiltonian structure of (Pry),, ([16, Theorem 1.4])
Let us fix the constant v to be 2 and choose (A1, ..., A\p, 41, - .-, fm) s0O that

m

(A.16.1) U(z) + Cla) + 2t = [[(z = ;)
and
1 .
(A162) Ky = —E(V(Aj)—al—ag) (] :1,...7m).
Set
(A163) Ko = 027

(A.16.4) Koo = (91 + 92)/2.
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In parallel with the case of (1511_2)m, we let N; (1 < j <m) denote

(A.16.5) IT o=

k=1,....m
K
and define
(A.16.6) Hy =Y _N; (Aju§ -~ (Z A+ AT 4 no)uj + mooAgn),
j=1 k=1

where t;’s are complex parameters. Then H; is a Hamiltonian of a degenerate
Garnier system called the Kawamuko system ([I5]). Set

(A.16.7) t1 =2t + cm,

(A168) tk = Cm—k+1 (2 § k S m),

and let K denote the resulting function of (t; A1, ..., A, i1, - - -, fim ). Then (ﬁIV)m
is equivalent to the following Hamiltonian system:

; K
Pinf a<i<m)
(A169) (GIV)m : dis ’UC:)JK
Hi— %2 1<j<m)
dt nﬁ)\j R

§B. Parity structure of instanton-type solutions

To prove Lemmas [5.3.2) and we have used the “alternating parity” structure
of instanton-type solutions in Section [5} In this appendix we explain this structure
for (Py)m (J=1,34,11-2 or IV, m =1,2,...).

Let us start with a brief review of the core part of [24], concerning the con-
struction of instanton-type solutions. Each member (Pj),, of the (Pj)-hierarchy
can be expressed in the form of the Hamiltonian system

dg; _ OH

= —_— ‘: 1 P
(B.1) a "o, YT henm
. d; _ _ oH (=1 m)
dt - Waqj .]_ ) I 9

with the Hamiltonian H = H (¢,q,p;n~!) by introducing an appropriate canonical
variable (¢,p) = (¢;,pj)1<j<m through a canonical transform

(B2) Uj; = uj(tv(Iap;n_l)v v; = Uj(t»q7p§77_l)~

For example, the variable (A;, ;) discussed in Appendix A (cf. Subsections A.4,
A.8, A.12 and A.16) is one of such canonical variables. (See [24] for another choice
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of canonical variables in the case of (P)-hierarchy.) To construct instanton-type
solutions of (Pj),, we use the Hamiltonian form (B.1)). We first note that the
system (B.1)) admits a formal power series solution (with respect to n71) of the
form

B3)  G=a"O+n O+, =" +n @)+

which is called a 0-parameter solution. We then introduce a new canonical variable
(v, ;) defined by

(B.4) 4 = a4+, py=py P

Pj-
In the new variable (¢;,¢;) (B.1) is expressed again in the Hamiltonian form as

dp; K

— —p—— =1,.
(B.5) & "o, U
' dej _ 0K
dt - nawj j_ )t 9

where the Hamiltonian K = K (t, 1, ¢;n~/?) is given by

1 olr+tvl g
B.6 K = o IR (8 4 )

(cf. [24 (21), (22)]). Note that, if
(B.7) K=Y n KW (t,4,0)
k=0

denotes the formal power series expansion of K in n~/2, each coefficient K ) is a
polynomial in (1, ¢) of degree at most k+2 and has the following parity structure:

(B.8)  When k is an odd (resp., even) integer, K*) is a sum of monomials
of odd (resp., even) degree.

As is shown in [24] Theorem 2], if we assume (2.1.2]) and ([2.1.3), in a neighborhood
of an arbitrarily given point ¢ = t; we can find a canonical transform

(B.9) Z”_W RGN R NS —Zn"“” (e, 9, @),

where w](-k) and gag-k) are homogeneous polynomials of degree k + 1 in (1, @), that
transforms (B.5|) into its Birkhoff normal form
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al, _, oF

=1N3= (j:17"'7m)7
dt 0p;
(B.10) i Pi_
dpj _ 0K (=1 m)
dt 776/1;] -] b ) )
with the Hamiltonian K of the form
(B.11) f(:f((t,al,...,am;nflﬂ)

(where o = 1;¢;). Since we can readily check that

P
~ 0K
\Ilj:ajexp(n/ 0.

J

dt) |
(B 12) O1=Q1&m+1,--,0m=QmQ&2m

. L oK
Q; = ajim €Xp <—77/ 0. dt),
J

(j = 1,...,m) provides a solution of , we thus obtain a formal solution
2.1.47 of the original (Py),, by substituting successively into ,
and . This is an outline of the construction of instanton-type solutions
discussed in [24].

In the course of the proof of [24] Theorem 2] (cf. [24, Section 4]) we see that

O1=010m+41,--;0m=0m&2m

(B.13)  the coefficients w;k) and gog.k) in are formal power series in 7!
(not in 77_1/2), that is, w;k) and go§k) contain no odd degree terms with
respect to 77_1/2.

Furthermore

(B.14) K also contains no odd degree terms with respect to n=/2.
In other words, writing K as

(B.15) K=" >" gltmno”

k=0 |v|=k+1

in accordance with the expressions (2.1.6) and (2.1.7) of instantons, we find that

g, (t,n) is a formal power series in 7!, that is, there are no odd degree terms with
respect to 77*1/ 2 in the expansion . Hence every instanton contains terms
with integral powers of n~! only. It then follows from this fact and that
the coefficients u;;/5(t, ¥, ®) and v;;/5(t, ¥, @) of instanton-type solutions
and have the following “alternating parity” structure:

(B.16) When [ is an odd (resp., even) integer, u;; 2 and v;;/; are sums of
monomials of (U, ®) of odd (resp., even) degree (at most 1).
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Finally, combining the parity structure (B.16)) of instanton-type solutions with
the definitions [B.11) and B.13) of pU0)(t,n) = 32,54 77’1/2;)[(?%) and o) (t,m) =
leo n~Y 201(;;), respectively, we deduce the following:

(B.17)  When [ is an odd (resp., even) integer, pl(;g) and O'l(;g) are sums of
monomials in (¥, ®) of even (resp., odd) degree (at most [ + 1).

As a consequence of (B.17) and the definition (3.12) we also find the following

parity structure for E0) = >0 n_l/QEl(;g):

(B.18) El(;g) is a sum of monomials in instantons of odd (resp., even) degree
for an odd (resp., even) integer I.
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