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A Family of Calabi–Yau Varieties and
Potential Automorphy II
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by
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Abstract

We prove new potential modularity theorems for n-dimensional essentially self-dual l-
adic representations of the absolute Galois group of a totally real field. Most notably,
in the ordinary case we prove quite a general result. Our results suffice to show that all
the symmetric powers of any non-CM, holomorphic, cuspidal, elliptic modular newform
of weight greater than one are potentially cuspidal automorphic. This in turns proves
the Sato–Tate conjecture for such forms. (In passing we also note that the Sato–Tate
conjecture can now be proved for any elliptic curve over a totally real field.)
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Introduction

In this paper we prove potential modularity theorems for n-dimensional essentially
self-dual l-adic representations of the absolute Galois group of a totally real field
which extend those of [HSBT]. In the ordinary case we prove quite a general result.
We also prove a result in the ‘niveau two’ case, but one with much more restrictive
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hypotheses. The combination of these two results does however suffice to show that
all the symmetric powers of any non-CM, regular algebraic (i.e. holomorphic weight
≥ 2 in the classical language) cuspidal automorphic representation of GL2(AQ)
(cuspidal newform in the classical language) are potentially cuspidal automorphic.
This in turns proves the Sato–Tate conjecture for any non-CM, regular algebraic,
cuspidal automorphic representation of GL2(AQ). (In passing we also remark that
the Sato–Tate conjecture can also now be proved for any elliptic curve over a
totally real field.)

We will now state some of our theorems more precisely.

Theorem A. Suppose that F is a totally real field, that n is a positive integer,
that l > 2n is a rational prime, and that

r : Gal(F/F )→ GLn(OQl)

is a continuous representation which is unramified at all but finitely many primes.
Suppose also that there is a perfect pairing 〈 , 〉 on Qn

l and a character µ :
Gal(F/F )→ O×Ql such that

〈gx, gy〉 = µ(g)〈x, y〉

for all x, y ∈ Qn

l and all g ∈ Gal(F/F ). Let r denote the semisimplification of the
reduction of r modulo the maximal ideal of OQl . Suppose moreover that r enjoys
the following properties:

1. [odd] There is an ε ∈ {±1} such that

• for every place v |∞ of F we have µ(cv) = ε (where cv denotes complex
conjugation at v);

• for every x, y ∈ Qn

l we have 〈y, x〉 = ε〈x, y〉.

2. [regular and ordinary] For every place v | l of F there is a Gal(F v/Fv)-invariant
decreasing filtration Filiv on Qn

l such that for i = 1, . . . , n the graded piece griv Qn

l

is one-dimensional and Gal(F v/Fv) acts on it by a character χv,i. Moreover
for v | l and i = 1, . . . , n there is an open subgroup of F×v on which we have

χv,i(ArtFv α) =
∏

τ :Fv↪→Ql

(τα)bτ,i

for some rational integers bτ,1 < bτ,2 < · · · < bτ,n.

3. [F
ker ad r

(ζl) : F
ker ad r

] > 2.

4. H0(r(Gal(F/F (ζl))), ad r) = Fl1n and H1(r(Gal(F/F (ζl))), ad r) = (0).
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5. For all irreducible Fl[Gal(F/F )]-submodules W of ad r we can find σ ∈
Gal(F/F ) and α ∈ Fl with the following properties:

• the element α is a simple root of the characteristic polynomial of r(σ) and if
β is another root then α2 6= β2;

• πr(σ),α ◦W ◦ ir(σ),α 6= (0) (where ir(σ),α (resp. πr(σ),α) denotes the inclusion
of (resp. r(σ)-equivariant projection to) the α-eigenspace of r(σ)).

Then there is a Galois totally real extension F ′/F such that r|Gal(F/F ′) is auto-
morphic.

See Theorem 7.5. We remark that the fourth and fifth conditions will be satis-
fied if, for instance, the following three conditions hold: l is sufficiently large com-
pared to n and [F : Fl]; r(Gal(F/F )) has no l-power quotient; and r(Gal(F/F )) ⊃
Symmn−1 SL2(Fl). (See Lemma 7.4.)

Theorem B. Suppose that f is a holomorphic, elliptic modular newform of weight
k ≥ 2, level N and nebentypus character ψ : (Z/NZ)× → C×. Write

f(z) = e2πiz +
∞∑
n=2

ane
2πinz,

and for p - N a prime write {αp, βp} for the roots of

X2 − apX + ψ(p)pk−1.

If m ∈ Z>0 and if χ : (Z/MZ)× → C× is a Dirichlet character we will write
L(NM)((Symmm f)× χ, s) for the partial L-function∏

p-NM

(1− αmp χ(p)/ps)−1(1− αm−1
p βpχ(p)/ps)−1 . . . (1− βmp χ(p)/ps)−1

which converges absolutely (uniformly on compact sets) to a holomorphic function
in Re s > m(k − 1)/2 + 1. Also write cf for the newform

cf(z) = e2πiz +
∞∑
n=2

cane
2πinz.

Suppose further that f is not CM, i.e. there does not exist an imaginary quadratic
field M such that ap = 0 for all p - N which are inert in M .

1. If m ∈ Z>0 then there is a Galois totally real number field F/Q and a cuspi-
dal automorphic representation SmF (f) of GLm+1(AF ) such that for all primes
v | p - N of F , the local component SmF (f)v is unramified and has Satake param-
eters

{αm[k(v):Fp]
p , α(m−1)[k(v):Fp]

p β[k(v):Fp]
p , . . . , βm[k(v):Fp]

p }.
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2. If m ∈ Z>0 and if χ : (Z/MZ)× → C× is a Dirichlet character then the L-
function L(NM)((Symmm f)×χ, s) has meromorphic continuation to the whole
complex plane, and is holomorphic and non-zero in Re s ≥ m(k − 1)/2 + 1.
Moreover the expected functional equation relating L(NM)((Symmm f) × χ, s)
to L(NM)((Symmm(cf))× χ−1,m(k − 1) + 1− s) holds.

3. If ζ is a root of unity with ζ2 in the image of ψ then, as p varies over primes
with ψ(p) = ζ2, the numbers ap/(2p(k−1)/2ζ) ∈ R are equidistributed in [−1, 1]
with respect to the measure (2/π)

√
1− t2 dt.

See Section 8. This theorem was proved in [HSBT] in the special case that
k = 2 and there exists a prime p which exactly divides N but does not divide the
conductor of ψ. In [Gee] this was extended to the case that k = 3 and there exists
a prime p which exactly divides N but does not divide the conductor of ψ.

As examples of Theorem B we mention the following special cases, though
many similar consequences are also available.

Corollary C. Write
∞∑
n=1

τ(n)qn = q
∏
n

(1− qn)24,

i.e. τ(n) denotes Ramanujan’s τ function. Then the numbers τ(p)/(2p11/2) are
equidistributed in [−1, 1] with respect to the measure (2/π)

√
1− t2 dt.

Corollary D. Let N12(n) denote the number of elements of Z12 with Euclidean
norm

√
n, i.e. the number of ways n can be written as the sum of 12 perfect squares

(where the order matters). As p runs over prime numbers,

(N12(p)− 8(p5 + 1))/(32p5/2)

lies in [−1, 1] and these numbers are equidistributed in [−1, 1] with respect to the
measure (2/π)

√
1− t2 dt.

There are four main advances which make these results possible, none original
to this paper:

1. The construction of Galois representations for all regular algebraic, essentially
conjugate self-dual, cuspidal automorphic representations of GLn of the adeles
of a CM field. This was possible because of work of Laumon and Ngo [LN] and of
Waldspurger (see for instance [W]). It was carried out on the one hand by Shin
[Sh] and on the other by a group of mathematicians including Chenevier, Clozel,
Labesse and M.H. working together (see [CHLN]). (This allows Guerberoff [Gu]
to remove the ‘discrete series at a finite place’ hypothesis in [CHT] and [Tay].)
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2. The generalization by D.G. (see [Ger]) of the modularity lifting theorems of
[CHT] and [Tay] to the ordinary case. This generalization has two important
advantages for applications to potential modularity theorems. Firstly it allows
one to work with l-adic representations of the absolute Galois group of a totally
real number field in which l ramifies. Secondly it allows one to use Hida families
to ‘change weight’.

3. The analysis of the whole of the cohomology of members of the Dwork family of
hypersurfaces that was begun in [Ka2] and carried further in [GHK], [BL1] and
[BL2]. This allows us to show that representations r : Gal(Q/Q) → GSpn(Fl)
with multiplier ε1−nl are potentially automorphic.

4. The invention of the ‘tensoring with an “induced from character” represen-
tation’ trick by M.H. in [H]. Tensoring by an ‘induced from character’ rep-
resentation firstly allows us to turn any essentially self-dual representation
r : Gal(Q/Q)→ GLn(Fl) into one with a symplectic essential self-duality with
multiplier ε1−nl , to which one can apply our analysis of the Dwork family to
obtain potential automorphy.

Perhaps more importantly, it also allows us to replace a representation
r : Gal(Q/Q) → GLn(Ql) with equally spaced Hodge–Tate numbers by one
which has Hodge–Tate numbers {0, 1, . . . , n− 1}. In the case that r is ordinary
this step is not needed, because D.G.’s automorphy lifting theorem (see [Ger])
allows for a change of weight. However in the ‘niveau two’ case, we are forced to
use the automorphy lifting theorem of [Gu], which does not allow for a change
of weight. Because the constituents of the cohomology of the Dwork family have
consecutive Hodge–Tate numbers, this forces us (in this ‘niveau two’ case) to
work with an r with Hodge–Tate numbers {0, 1, . . . , n− 1}.

Given these innovations the writing of this paper was relatively routine, although
there are a number of tricky, sometimes even subtle, points to take care of. We
believe our method could also be made to work for Hilbert modular forms, but for
simplicity we work only with elliptic modular forms in this paper. Shortly after
this paper was written T.B.-L., Toby Gee and D.G. wrote a different proof both
of Theorem B above and of the analogue for Hilbert modular forms [BLGG].

In the first section of this paper we recall the results of [Sh] and [CHLN]
on the construction of Galois representations for all regular algebraic, essentially
conjugate self-dual, cuspidal automorphic representations of GLn of the adeles of
a CM field. In the second section we recall the results of D.G. on modularity lifting
theorems in the ordinary case as well as Guerberoff’s [Gu] extension of the results
of [CHT] and [Tay]. In the third section we take the opportunity to record some
corrections to our earlier papers [CHT], [Tay] and [HSBT]. In the fourth and fifth
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sections we collect the information we will need about Dwork hypersurfaces. In
Section 4 we use transcendental methods to prove Proposition 4.2. Our arguments
follow those of [GHK]. In Section 5 we collect some more arithmetic information
about Dwork hypersurfaces.

We are then finally in a position to prove some potential modularity theorems.
In the sixth section we follow the method of [HSBT]. We are able to prove theorems
for symplectic representations with multiplier a specific power of the cyclotomic
character. In the ordinary case we can do this in any (regular) weight and any
coefficients (see Theorem 6.3). We also consider what one might call the ‘niveau
two case’, but here we can only treat minimal weight and coefficients Ql (see
Theorem 6.4). There is even a slight restriction on which primes l we can treat.
In Section 7 we use the trick of [H] to improve these potential modularity results.
In particular we can relax the condition that the self-duality is symplectic (and
the concomitant condition that we had an even-dimensional Galois representation)
and the condition on the multiplier character (see Theorems 7.5 and 7.6). In the
‘niveau two case’ we can also somewhat relax the condition on the weight (we can
treat ‘equally spaced weights’), but in this case we also have to pay a price: we
end up with a much more serious restriction on l. Finally in the eighth section
we apply these potential modularity theorems to study symmetric powers of two-
dimensional Galois representations and the Sato–Tate conjecture.

It is a pleasure to dedicate this paper to Mikio Sato, who first raised some of
these questions.

Notation

Let us establish some notation that we will use throughout the paper.
We will let c denote complex conjugation (or sometimes cv if we wish to make

clear to which real place v it is attached).
If F is a CM field then F+ is its maximal totally real subfield, and if R ⊂ F

is a subring then we will write R+ for F+ ∩R.
If v is a prime or a point of a scheme we will let k(v) denote its residue field.
For any positive integer N let ζN denote a primitive N th root of unity. We

will let εl denote the l-adic cyclotomic character defined by

σζlr = ζ
εl(σ) mod lr

lr

for any r ∈ Z>0 and any σ in the Galois group. If M is a Zl-module with Galois
action we will write M(n) for the nth Tate twist of M , i.e. M(εnl ).

If F is a p-adic field with valuation v then F nr will denote its maximal unram-
ified extension and Frobv ∈ Gal(F nr/F ) will denote geometric Frobenius. More-
over ArtF : F× → Gal(F/F )ab will denote the Artin map (normalized to take
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uniformizers to geometric Frobenius elements). We will let F 0 denote the maximal
subfield of F which is unramified over Qp. Also let BDR, Bcris and Bst denote
Fontaine’s rings. Thus BDR is a topological F -algebra with a filtration and a semi-
linear action of Gal(F/F ) which preserves the filtration. Similarly Bcris and Bst

are topological (F 0)nr-algebras with a continuous semilinear action of Gal(F/F )
and a commuting Frob−1

p semilinear endomorphism φ. In the case of Bst there
is a second endomorphism N which commutes with the action of Gal(F/F ) and
satisfies pφN = Nφ.

Continue to suppose that F is a p-adic field. By a Steinberg representation of
GLn(F ) we shall mean a representation Spn(ψ) (in the notation of Section I.3 of
[HT]) where ψ is an unramified character of F×. We will write recF for the lo-
cal Langlands correspondence, a bijection from irreducible smooth representations
of GLn(F ) over C to n-dimensional Frobenius semisimple Weil–Deligne represen-
tations of the Weil group WF of F . (See the introduction and/or Section VII.2
of [HT].) If π (resp. σ) is an irreducible smooth representation of GLn(F ) (resp.
GLm(F )) then π�σ is the irreducible admissible representation of GLn+m(F ) with
recF (π�σ) = recF (π)⊕recF (σ). If l 6= p is another prime and if ı : Ql

∼→ C then we
will write rl(ı−1π)∨(1−n) for the Frobenius semisimple continuous representation
of Gal(F/F ) into GLn(Ql) which is associated to the Weil–Deligne representation
ı−1 recF (π⊗|det|(1−n)/2

F ). (See Section 3.1 of [CHT]. We apologise for this horrible
notation. We are using it to maintain consistent normalizations with some of our
previous papers.)

If F = R or C one can make a similar definition of �. We will also write
ArtF : F× →→ Gal(F/F ) and denote by sgn the unique epimorphism R× →→ {±1}.

Let Ql2/Ql denote the unramified quadratic extension, let Zl2 denote its ring
of integers and let

ω2 : Gal(Ql/Ql2)→ F×l

be the character defined by

ω2(σ) = (σ l2−1
√
l)/ l2−1

√
l mod l.

Also let
ε
(2)
l : Gal(Ql/Ql2)→ Q×l2

denote the continuous character such that (ε(2)
l ◦ArtQl2 )(l) = 1 and

(ε(2)
l ◦ArtQl2 )(u) = u

for u ∈ Z×l2 . Then

ω2 = ε
(2)
l mod l.



36 T. Barnet-Lamb et al.

If F is a number field then

ArtF =
∏
v

ArtFv : A×F /F×(F×∞)0 ∼→ Gal(F/F )ab

will denote the Artin map. If π1, . . . , πr are cuspidal automorphic representations of
GLn1(AF ), . . . ,GLnr (AF ) then we will denote by π1 � · · ·�πr the irreducible repre-
sentation of GLn1+···+nr (AF ) (or strictly speaking irreducible GLn1+···+nr (A∞F )×
(Lie GLn1+···+nr (F∞), U∞)-module) with

(π1 � · · · � πr)v ∼= π1,v � · · · � πr,v

for all places v of F .
Suppose that V is a finite-dimensional vector space over a field k; that g is a

k-linear automorphism of V ; and that α ∈ k is an eigenvalue of g. We will write
Vg,α for the α-generalized eigenspace of g. We will also write ig,α for the canonical
inclusion Vg,α ↪→ V and πg,α for the g-equivariant projection V →→ Vg,α. Thus
πg,α ◦ ig,α = 1Vg,α . If h ∈ Endk(V ) then

πg,αhig,α ∈ Endk(Vg,α).

In the special case that α is a simple root of the characteristic polynomial of g we
may think of

πg,αhig,α ∈ k.
We will let gln denote the space of n× n-matrices with the adjoint action of

GLn, and gl0n the subspace of trace zero matrices.

§1. Galois representations for automorphic representations

In this section we recall recent improvements to our ability to attach Galois repre-
sentations to automorphic representations. None of the results are original to this
paper, but we state them here, partly for the reader’s convenience and partly to
establish notation.

Suppose that F is a number field and

χ : A×F /F
× → C×

is a continuous character for which there exists a ∈ ZHom(F,C) such that

χ|(F×∞)0 : x 7→
∏

τ∈Hom(F,C)

(τx)aτ

(i.e. an algebraic grossencharacter). Suppose also that ı : Ql
∼→ C. Then we define

rl,ı(χ) : Gal(F/F )→ Q×l
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to be the continuous character such that

ı
(

(rl,ı(χ) ◦ArtF )(x)
∏

τ∈Hom(F,C)

(ı−1τ)(xl)−aτ
)

= χ(x)
∏

τ∈Hom(F,C)

(τx)−aτ .

Now let F be a totally real field. By a RAESDC (regular, algebraic, essentially
self-dual, cuspidal) automorphic representation π of GLn(AF ) we mean a cuspidal
automorphic representation such that

• π∨ ∼= π⊗(χ◦det) for some continuous character χ : A×F /F× → C× with χv(−1)
independent of v |∞,

• π∞ has the same infinitesimal character as some irreducible algebraic represen-
tation of the restriction of scalars of GLn from F to Q.

Note that χ is necessarily algebraic.
Now let F be an imaginary CM field. By a RAECSDC (regular, algebraic,

essentially conjugate self-dual, cuspidal) automorphic representation π of GLn(AF )
we mean a cuspidal automorphic representation such that

• there is a continuous character χ : A×F+/(F+)× → C× with χv(−1) independent
of v |∞ such that

π∨ ∼= πc ⊗ (χ ◦NF/F+ ◦ det);

• π∞ has the same infinitesimal character as some irreducible algebraic represen-
tation of the restriction of scalars of GLn from F to Q.

Again note that χ is necessarily algebraic.
If F is CM or totally real we will write (Zn)Hom(F,C),+ for the set of a =

(aτ,i) ∈ (Zn)Hom(F,C) satisfying

aτ,1 ≥ · · · ≥ aτ,n.

If F ′/F is a finite totally real extension we define aF ′ ∈ (Zn)Hom(F ′,C),+ by

(aF ′)τ,i = aτ |F ,i.

If a ∈ (Zn)Hom(F,C),+, let Ξa denote the irreducible algebraic representation of
GLHom(F,C)

n which is the tensor product over τ of the irreducible representations
of GLn with highest weights aτ . We will say that a RAESDC (resp. RAECSDC)
automorphic representation π of GLn(AF ) has weight a if π∞ has the same in-
finitesimal character as Ξ∨a .

The next two results are improvements to one of the main theorems of [HT].
Following the proof of the fundamental lemma for endoscopy of unitary groups
[LN] it was fairly clear to experts how to attempt to establish this improvement.
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One of us (M.H.) has organized a group of mathematicians to inter alia write a
complete proof of this theorem (see [CHLN]). Meanwhile Shin gave a complete
proof in the case that a is sufficiently regular (Theorem 7.5 of [Sh]). The general
case is deduced from this by Chenevier and Harris [CH] (see also [C]).

Theorem 1.1. Let ı : Ql
∼→ C. Let F be a totally real field. Let a∈(Zn)Hom(F,C),+.

Suppose that π is a RAESDC automorphic representation of GLn(AF ) of weight a.
Specifically suppose that π∨ ∼= πχ where χ : A×F /(F )× → C× with χv(−1) inde-
pendent of v |∞. Then there is a continuous semisimple representation

rl,ı(π) : Gal(F/F )→ GLn(Ql)

with the following properties:

1. For every prime v - l of F we have

rl,ı(π)|ss
Gal(Fv/Fv)

= rl(ı−1πv)∨(1− n)ss.

2. rl,ı(π)∨ = rl,ı(π)εn−1
l rl,ı(χ).

3. If v | l is a prime of F then the restriction rl,ı(π)|Gal(Fv/Fv) is potentially semi-
stable. Moreover if πv is unramified, if F 0

v denotes the maximal unramified
subextension of Fv/Ql and if τ : F 0

v ↪→ Ql then rl,ı(π)|Gal(Fv/Fv) is crystalline

and the characteristic polynomial of φ[F 0
v :Ql] on

(rl,ı(π)⊗τ,F 0
v
Bcris)Gal(Fv/Fv)

equals the characteristic polynomial of ı−1 recFv (πv ⊗ |det|(1−n)/2
v )(Frobv).

4. If v | l is a prime of F and if τ : F ↪→ Ql lies above v then

dimQl gri(rl,ı(π)⊗τ,Fv BDR)Gal(Fv/Fv) = 0

unless i = aıτ,j + n− j for some j = 1, . . . , n in which case

dimQl gri(rl,ı(π)⊗τ,Fv BDR)Gal(Fv/Fv) = 1.

This follows from Theorem 3.2.5 of [CH] in exactly the same way that Propo-
sition 4.3.1 of [CHT] was deduced from Proposition 4.2.1 of that paper.

Theorem 1.2. Let ı : Ql
∼→ C. Let F be an imaginary CM field. Let a ∈

(Zn)Hom(F,C),+. Suppose that π is a RAECSDC automorphic representation of
GLn(AF ) of weight a. Specifically suppose that π∨ ∼= πc(χ ◦ NF/F+) where χ :
A×F+/(F+)× → C× is a continuous character with χv(−1) independent of v |∞.
Then there is a continuous semisimple representation

rl,ı(π) : Gal(F/F )→ GLn(Ql)
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with the following properties:

1. For every prime v - l of F we have

rl,ı(π)|ss
Gal(Fv/Fv)

= rl(ı−1πv)∨(1− n)ss.

2. rl,ı(π)∨ = rl,ı(π)cεn−1
l rl,ı(χ)|Gal(F/F ).

3. If v | l is a prime of F then the restriction rl,ı(π)|Gal(Fv/Fv) is potentially semi-
stable. Moreover if πv is unramified, if F 0

v denotes the maximal unramified
subextension of Fv/Ql and if τ : F 0

v ↪→ Ql then rl,ı(π)|Gal(Fv/Fv) is crystalline

and the characteristic polynomial of φ[F 0
v :Ql] on

(rl,ı(π)⊗τ,F 0
v
Bcris)Gal(Fv/Fv)

equals the characteristic polynomial of ı−1 recFv (πv ⊗ |det|(1−n)/2
v )(Frobv).

4. If v | l is a prime of F and if τ : F ↪→ Ql lies above v then

dimQl gri(rl,ı(π)⊗τ,Fv BDR)Gal(Fv/Fv) = 0

unless i = aıτ,j + n− j for some j = 1, . . . , n in which case

dimQl gri(rl,ı(π)⊗τ,Fv BDR)Gal(Fv/Fv) = 1.

Proof. Note that χ is algebraic. By Lemma 4.1.4 of [CHT] we can find an algebraic
character ψ of A×F /F× such that

χ ◦NF/F+ = ψψc.

Then
(πψ)c ∼= (πψ)∨.

Theorem 3.2.5 of [CH] tells us that one can associate a Galois representation
rl,ı(πψ) to πψ as in the theorem. Finally set

rl,ı(π) = rl,ı(πψ)⊗ rl,ı(ψ)−1.

In both cases the representation rl,ı(π) can be taken to be valued in GLn(O)
where O is the ring of integers of some finite extension of Ql. Thus we can reduce it
modulo the maximal ideal of O and semisimplify to obtain a continuous semisimple
representation

rl,ı(π) : Gal(F/F )→ GLn(Fl)

which is independent of the choices made.
Write (Zn)Hom(F,Ql),+ for the set of a ∈ (Zn)Hom(F,Ql) satisfying

aτ,1 ≥ · · · ≥ aτ,n
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for all τ ∈ Hom(F,Ql). If F ′/F is a finite totally real extension we define aF ′ ∈
(Zn)Hom(F ′,Ql),+ by

(aF ′)τ,i = aτ |F ,i.

If ı : Ql
∼→ C and a ∈ (Zn)Hom(F,Ql),+, then we define ı∗a ∈ (Zn)Hom(F,C),+ by

(ı∗a)ıτ,i = aτ,i.

Suppose that F is either totally real or imaginary CM and that a ∈
(Zn)Hom(F,Ql),+ satisfies the conditions of the previous paragraph. We will call
a continuous semisimple representation

r : Gal(F/F )→ GLn(Ql) (resp. r : Gal(F/F )→ GLn(Fl))

automorphic of weight a if there is an isomorphism ı : Ql
∼→ C and a RAESDC

automorphic representation π of GLn(AF ) of weight ı∗a (resp. of weight ı∗a and
with πl unramified) such that r ∼= rl,ı(π) (resp. r ∼= rl,ı(π)). We will say that r is
automorphic of weight a and level prime to l if there is an isomorphism ı : Ql

∼→ C
and a RAESDC automorphic representation π of GLn(AF ) of weight ı∗a and with
πl unramified such that r ∼= rl,ı(π).

The following standard lemmas extend and correct Lemmas 4.2.2, 4.3.2 and
4.3.3 of [CHT], which were stated slightly incorrectly in [CHT]. (These lemmas
allow one to check automorphy after first making a suitable soluble base extension
and are used repeatedly in the sequel, as they were in [CHT], [HSBT] and [Tay].)

Lemma 1.3. Suppose that E/F is a soluble Galois extension of totally real fields;
that

χ : Gal(F/F )→ Q×l
is a continuous character whose value at complex conjugations, χ(cv), is indepen-
dent of the infinite place v; and that

r : Gal(F/F )→ GLn(Ql)

is a continuous semisimple representation with

r∨ ∼= r ⊗ χ.

Suppose also that r|Gal(F/E) is irreducible and automorphic of weight a. Then:

1. aτ = aτ ′ if τ |F = τ ′|F so we can define aF by aF,σ = aeσ for any extension σ̃ of
σ to E.

2. r is automorphic over F of weight aF .
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Proof. Inductively we may reduce to the case that E/F is cyclic of prime order.
Suppose that Gal(E/F ) = 〈σ〉 and that r|Gal(F/E) = rl,ı(π), for π a RAESDC au-
tomorphic representation π of GLn(AE) of weight a. Then r|σ

Gal(F/E)
∼= r|Gal(F/E)

so that πσ ∼= π. By Theorem 4.2 of [AC], π descends to a cuspidal automorphic
representation πF of GLn(AF ). If v |∞ is a place of E then πF,v|F

∼= πv, so that
the first assertion of the lemma follows and πF has weight aF .

Suppose that χ = rl,ı(χ̃). Then

π∨ ∼= π ⊗ ((χ̃| · |1−nF ) ◦NE/F ◦ det).

It follows that
π∨F
∼= πF ⊗ ((χ̃| · |1−nF µ) ◦ det)

for some character µ of A×F /F×(NE/FA×E). Thus πF is a RAESDC automorphic
representation of GLn(AF ). As r and rl,ı(πF ) are irreducible and have the same
restriction to Gal(F/E) we see that r = rl,ı(πF )⊗ψ = rl,ı(πF ⊗ (ı ◦ψ ◦ArtF )) for
some character ψ of Gal(E/F ). The lemma follows.

Lemma 1.4. Suppose that E/F is a soluble Galois extension of imaginary CM
fields; that

χ : Gal(F/F+)→ Q×l
is a continuous character with χ(cv) independent of v |∞; and that

r : Gal(F/F )→ GLn(Ql)

is a continuous semisimple representation with

r∨ ∼= r ⊗ χ|Gal(F/F ).

Suppose also that r|Gal(F/E) is irreducible and automorphic of weight a. Then:

1. aτ = aτ ′ if τ |F = τ ′|F so we can define aF by aF,σ = aeσ for any extension σ̃ of
σ to E.

2. r is automorphic over F of weight aF .

Proof. Inductively we may reduce to the case that E/F is cyclic of prime order.
Suppose that Gal(E/F ) = 〈σ〉 and that r|Gal(F/E) = rl,ı(π), for π a RAECSDC au-
tomorphic representation π of GLn(AE) of weight a. Then r|σ

Gal(F/E)
∼= r|Gal(F/E)

so that πσ = π. By Theorem 4.2 of [AC], π descends to a cuspidal automorphic
representation πF of GLn(AF ). If v |∞ is a place of E then πF,v|F

∼= πv, so that
the first assertion of the lemma follows and πF has weight aF .

Suppose that χ = rl,ı(χ̃). Then

π∨ ∼= πc ⊗ ((χ̃| · |1−nF+ ) ◦NE/F+ ◦ det).
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It follows that
π∨F
∼= πcF ⊗ ((χ̃| · |1−nF+ µ) ◦NF/F+ ◦ det)

for some character µ of

A×F /F
×(NE/FA×E) ∼→ A×F+/(F+)×(NE+/F+A×E+)

(via the norm map NF/F+). Thus πF is a RAECSDC automorphic representation
of GLn(AF ). As r and rl,ı(πF ) are irreducible and have the same restriction to
Gal(F/E) we see that r = rl,ı(πF )⊗ψ = rl,ı(πF ⊗(ı◦ψ◦ArtF )) for some character
ψ of Gal(E/F ). The lemma follows.

Lemma 1.5. Suppose that F is an imaginary CM field; that

χ : Gal(F/F+)→ Q×l

is a continuous character whose value at complex conjugations, χ(cv), is indepen-
dent of the infinite place v; and that

r : Gal(F/F+)→ GLn(Ql)

is a continuous semisimple representation with

r∨ ∼= r ⊗ χ.

Suppose also that r|Gal(F/F ) is irreducible and automorphic of weight a. Then:

1. aτ = aτc so we can define aF+ by aF+,σ = aeσ for any extension σ̃ of σ to F .

2. r is automorphic over F+ of weight aF+ .

Proof. Suppose that r|Gal(F/F ) = rl,ı(π), for π a RAECSDC automorphic repre-
sentation π of GLn(AF ) of weight a. As r|c

Gal(F/F )
∼= r|Gal(F/F ) we have πc = π.

By Theorem 4.2 of [AC], π descends to a cuspidal automorphic representation πF+

of GLn(AF+). If v |∞ then πv ∼= πcv, so that the first assertion of the lemma follows
and πF+ has weight aF+ .

Suppose that χ = rl,ı(χ̃). Then

π∨ ∼= πc ⊗ ((χ̃| · |1−nF+ ) ◦NF/F+ ◦ det).

It follows that
π∨F+

∼= πF+ ⊗ ((χ̃| · |1−nF+ µ) ◦ det)

for some character µ of A×F+/(F+)×(NF/F+A×F ). As F is imaginary CM, µv(−1)
is independent of v |∞. Thus πF+ is a RAESDC automorphic representation of
GLn(AF+). As r and rl,ı(πF+) are irreducible and have the same restriction to
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Gal(F/F ) we see that r = rl,ı(πF+) ⊗ ψ = rl,ı(πF+ ⊗ (ı ◦ ψ ◦ ArtF+)) for some
character ψ of Gal(F/F+). The lemma follows.

§2. Automorphy lifting theorems

In this section we recall two improvements to the modularity lifting theorems of
[CHT] and [Tay]. The first is due to Guerberoff [Gu] and the second to David
Geraghty [Ger].

The next theorem is Theorem 5.2 of [Gu].

Theorem 2.1 (Guerberoff). Let F be a totally real field. Let n ∈ Z≥1 and let
l > n be a prime which is unramified in F . Let r : Gal(F/F ) → GLn(Ql) be a
continuous irreducible representation with the following properties. Let r denote
the semisimplification of the reduction of r.

1. r∨ ∼= rεn−1
l χ for some character χ : Gal(F/F ) → Q×l with χ(cv) independent

of v |∞. (Here cv denotes a complex conjugation at v.)

2. r ramifies at only finitely many primes.

3. For all places v | l of F , r|Gal(Fv/Fv) is crystalline.

4. There is an element a ∈ (Zn)Hom(F,Ql),+ such that

• for all τ ∈ Hom(F,Ql) we have

0 ≤ aτ,1 + n− aτ,n ≤ l − 1;

• for all τ ∈ Hom(F,Ql) above a prime v | l of F ,

dimQl gri(r ⊗τ,Fv BDR)Gal(Fv/Fv) = 0

unless i = aτ,j + n− j for some j = 1, . . . , n in which case

dimQl gri(r ⊗τ,Fv BDR)Gal(Fv/Fv) = 1.

5. ζl 6∈ (F )ker ad r.

6. The image r(Gal(F/F (ζl))) is big (see Definition 2.5.1 of [CHT], which is the
same as 1-big, defined in 7.2 below).

7. r is automorphic of weight a.

Then r is automorphic of weight a and level prime to l.

If a ∈ (Zn)Hom(F,Ql),+, we call a continuous representation

r : Gal(F/F )→ GLn(Ql)
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ordinary of weight a if for every prime v | l of F the following conditions are satis-
fied:

• there is a Gal(F v/Fv)-invariant decreasing filtration Filiv on Qn

l such that for
i = 1, . . . , n the graded piece griv Qn

l is one-dimensional and Gal(F v/Fv) acts on
it by a character χv,i;

• there is an open subgroup of F×v on which we have

χv,i(ArtFv α) =
∏

τ :Fv↪→Ql

(τα)i−n−aτ,i .

The first part of the following lemma is Lemma 2.7.6 of [Ger], the second part
is proved in a similar way.

Lemma 2.2. 1. Suppose that a ∈ (Zn)Hom(F,Ql),+ and that

r : Gal(F/F )→ GLn(Ql)

is crystalline at all primes v | l. We think of v as a valuation v : F×v →→ Z. If
τ : F ↪→ Ql lies above v suppose that

dimQl gri(r ⊗τ,Fv BDR)Gal(Fv/Fv) = 0

unless i = aıτ,j + n− j for some j = 1, . . . , n in which case

dimQl gri(r ⊗τ,Fv BDR)Gal(Fv/Fv) = 1.

For v | l let αv,1, . . . , αv,n denote the roots of the characteristic polynomial of
φ[F 0

v :Ql] on
(r ⊗τ,F 0

v
Bcris)Gal(Fv/Fv),

for any τ : F 0
v ↪→ Ql. (This characteristic polynomial is independent of the

choice of τ .) Let valv denote the valuation on Ql normalized by valv(l) = v(l).
(Thus valv ◦τ = v for any τ : Fv ↪→ Ql.) Arrange the αv,i’s so that

valv(αv,1) ≥ valv(αv,2) ≥ · · · ≥ valv(αv,n).

Then r is ordinary of weight a if and only if for all v | l and all i = 1, . . . , n we
have

valv(αv,i) =
∑
τ

(aτ,i + n− i)

where τ runs over embeddings F ↪→ Ql above v.

2. Suppose that r : Gal(F/F ) → GLn(Ql) is semistable at all primes v | l. If
τ : F ↪→ Ql lies above v suppose that

dimQl gri(r ⊗τ,Fv BDR)Gal(Fv/Fv) = 0



A Family of Calabi–Yau Varieties and Potential Automorphy II 45

unless i = 0, . . . , n− 1 in which case

dimQl gri(r ⊗τ,Fv BDR)Gal(Fv/Fv) = 1.

Suppose moreover that for some (and hence every) τ : F 0
v ↪→ Ql and for each

j = 1, . . . , n− 1 the kernel of N j on

(r ⊗τ,F 0
v
Bst)Gal(Fv/Fv)

has Ql-dimension j. Then r is ordinary of weight 0.

If F is a totally real field we will call a continuous semisimple representation

r : Gal(F/F )→ GLn(Fl)

ordinarily automorphic of level prime to l if there is a ∈ (Zn)Hom(F,Ql),+, an iso-
morphism ı : Ql

∼→ C and a RAESDC automorphic representation π of GLn(AF )
of weight ı∗a, with πl unramified, such that rl,ı(π) is ordinary of weight a and
r ∼= rl,ı(π). We will call r ordinarily Steinberg automorphic if there is an isomor-
phism ı : Ql

∼→ C and a RAESDC automorphic representation π of GLn(AF ) of
weight 0, with πv a Steinberg representation for all v | l, such that r ∼= rl,ı(π).

The following is a slightly special case of Theorem 5.4.2 of [Ger].

Theorem 2.3 (Geraghty). Let F be a totally real field. Let n ∈ Z≥1 and let l > n

be a prime. Let r : Gal(F/F ) → GLn(Ql) be a continuous irreducible represen-
tation with the following properties. Let r denote the semisimplification of the
reduction of r.

1. r∨ ∼= rεn−1
l χ for some character χ : Gal(F/F ) → Q×l with χ(cv) independent

of v |∞. (Here cv denotes a complex conjugation at v.)

2. r ramifies at only finitely many primes.

3. r is ordinary of weight a for some a ∈ (Zn)Hom(F,Ql),+.

4. (F )ker ad r does not contain F (ζl).

5. The image r(Gal(F/F (ζl))) is big (see Definition 2.5.1 of [CHT]).

6. r is ordinarily automorphic of level prime to l or ordinarily Steinberg automor-
phic.

Then r is automorphic of weight a.

We remark that this theorem has two important advantages over earlier au-
tomorphy lifting theorems: it is not assumed that l is unramified in F and it is
only assumed that r is ordinarily automorphic of some weight, not necessarily of
weight a.
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§3. Corrections to [CHT], [HSBT] and [Tay]

In this section we will digress to record some minor corrections to [CHT] and [Tay].

[CHT]

The first assertion of Lemma 2.2.3 of [CHT] is false. No proof was offered in [CHT]
beyond ‘the first assertion is clear’. We thank Shrenik Shah for asking a question
that brought this to our attention. This part of Lemma 2.2.3 was not in fact used
elsewhere in [CHT] or [Tay], but for completeness will give a corrected version
below.

Lemma 3.1. Suppose O is the ring of integers of a finite extension of Ql with
residue field k. Suppose R is a reduced, noetherian, complete noetherian local O-
algebra with residue field k, but R 6= k. Suppose that F ∈ R[[X1, . . . , Xm]] is a
power series and that F (a1, . . . , am) = 0 for all a1, . . . , am ∈ mR − {0}. Then
F = 0.

Proof. By induction we may reduce to the case m = 1. We may also reduce to
the case that R is a domain (as R embeds in the product of R/p as p runs over
non-maximal primes). Suppose F (X) 6= 0. Writing

F (X) =
∞∑
i=0

FiX
i,

we may further suppose that F0 6= 0 (if not, consider F (X)/Xr for a suitable r).
Then replacing F by F−1

0 F (F0X) we may further suppose that F0 = 1. In this
case F (a) 6= 0 for all a ∈ mR, and as long as mR 6= (0) we are done.

Now we state our corrected lemma. (In [CHT] the conditions in the third
sentence of the lemma below were missed.)

Lemma 3.2. Keep the notation and assumptions of Section 2.2 of [CHT]. Sup-
pose that I is a 1n+Mn×n(mRloc

q
)-invariant ideal of Rloc

q . Assume also that Rloc
q /I

is reduced and that I 6= mRloc
q

. Then the collection DI of all liftings r of r|∆q such
that the kernel of the corresponding map Rloc

q → R contains I is a deformation
problem.

Proof. The only non-trivial thing to check is that if r : ∆q → GLn(R) is a lifting
of r|∆q in DI and if g ∈ ker(GLn(R) → GLn(k)) then grg−1 also belongs to DI .
One immediately reduces to the (universal) special case that

R = (Rloc
q /I)[[Xi,j ]]i,j=1,...,n,
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that r is the push-forward of runiv
q and that g = 1n + (Xi,j). Let

φ : Rloc
q → (Rloc

q /I)[[Xi,j ]]

be the morphism corresponding to

(1n + (Xi,j))runiv
q (1n + (Xi,j))−1.

We must show that φI = (0). However for all ai,j ∈ mRloc
q

we know that the map
Rloc
q → Rloc

q /I which is the composite of φ with evaluation Xi,j 7→ ai,j sends I
to (0). The result now follows from the previous lemma.

We thank Bao Le Hung for pointing out that at the start of the proof of
Lemma 3.2.2 we should remark that we can replace M by its intersection with the
K[GLn(Fw)]-submodule of M ⊗OK generated by M Iw(w). After doing this, every
irreducible subquotient of M ⊗O K has an Iw(w) fixed vector and so M ⊗O K
has finite length over K[GLn(Fw)]. We may further assume that R acts faithfully
on M , which now implies that R is finite over O and that M ⊗K is semisimple
as a K[GLn(Fw)]-module. The rest of the proof then goes through unchanged.

The second item of the third list on page 95, the second item of the first list
on page 11 and the second item of the third list on page 151 should all read ‘For
every place v |∞. . . ’ rather than ‘For a place v |∞. . . ’.

In the proof of Lemma 4.1.1 “any finite index subgroup of O×F ” should read
“any finite index subgroup of OF [1/S]×”.

As already remarked there are slight errors in the statements of Lemmas 4.2.2,
4.3.2 and 4.3.3 of [CHT]. Corrected versions, along with proofs, can be found in
Lemmas 1.4, 1.3 and 1.5 of this paper.

[Tay]

The second item of the second list on page 206 should read ‘For every place
v |∞. . . ’ rather than ‘For a place v |∞. . . ’.

In addition D.G. pointed out that the assertions of the first paragraph of
page 218 of [Tay] are not fully justified. The ring R�T

{χv},∞ is a completed tensor
product of rings for which the corresponding assertions were proved in Section
2.4 of [CHT] and Proposition 3.1 of [Tay]. What is missing is a justification that
these properties are preserved under completed tensor products. R.T. has been
able to locate few references for this sort of question, so we give here a proof of
the required properties of completed tensor products.

Until the end of the proof of Lemma 3.3, O will denote a complete DVR
with perfect residue field k, maximal ideal λ and field of fractions L. We will let
Cnoeth
O (resp. Cnoeth

k ) denote the category of complete noetherian local O-algebras
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(resp. k-algebras) with residue field k. Note that if A and B are objects of Cnoeth
O

(resp. Cnoeth
k ) then so is A ⊗̂O B (resp. A ⊗̂k B). We will call an object A of Cnoeth

O
(resp. Cnoeth

k ) geometrically integral if for all finite extensions L′/L (resp. k′/k) the
algebra A ⊗O OL′ (resp. A ⊗k k′) is an integral domain. We will call an object
A of Cnoeth

O (resp. Cnoeth
k ) geometrically irreducible if for all finite extensions L′/L

(resp. k′/k) the affine scheme SpecA⊗O OL′ (resp. SpecA⊗k k′) is irreducible.

Lemma 3.3. 1. If A is an object of Cnoeth
O and p is a maximal ideal of A ⊗O L

then the residue field k(p) is a finite extension of L and the image of A in k(p)
is an order (i.e. an O-subalgebra which is finitely generated as an O-module
which spans k(p) as an L-vector space). Moreover any prime ideal of A ⊗O L
is the intersection of the maximal ideals containing it.

2. If A and B are objects of Cnoeth
O which are flat over O and integral then the

Krull dimension of A ⊗̂O B is one less than the sum of the Krull dimensions
of A and of B.

3. If two objects A and B of Cnoeth
O are flat over O and geometrically integral

(resp. irreducible) then A ⊗̂O B is flat over O and geometrically integral (resp.
irreducible).

4. If two objects A and B of Cnoeth
k are geometrically integral (resp. irreducible)

then A ⊗̂O B is geometrically integral (resp. irreducible).

5. Suppose A (resp. B) is an object of Cnoeth
O with minimal prime ideals p1, . . . , pr

(resp. q1, . . . , qs). Suppose also that the rings A/pi and B/qj are all flat over O
and geometrically integral. Then the distinct minimal primes of A ⊗̂OB are the

pi(A ⊗̂O B) + qj(A ⊗̂O B)

for i = 1, . . . , r and j = 1, . . . , s.

6. Suppose A (resp. B) is an object of Cnoeth
k with minimal ideals p1, . . . , pr (resp.

q1, . . . , qs). Suppose also that the rings A/pi and B/qj are all geometrically
integral. Then the distinct minimal primes of A ⊗̂O B are the

pi(A ⊗̂O B) + qj(A ⊗̂O B)

for i = 1, . . . , r and j = 1, . . . , s.

7. Suppose that A and B are two objects of Cnoeth
O . Suppose also that for each min-

imal prime p of A (resp. B) the quotient A/p (resp. B/p) is flat over O and
geometrically integral. Suppose moreover that for each prime q of A (resp. B)
which is minimal over λA (resp. λB) the quotient A/q (resp. B/q) is geomet-
rically integral. Suppose finally that for each prime q of A (resp. B) which is
minimal over λA (resp. λB), q contains a unique minimal prime of A (resp. B).
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Then each prime of A⊗̂OB which is minimal over λ(A⊗̂OB) contains a unique
minimal prime of A ⊗̂O B.

8. Suppose that X/ SpecO is a flat scheme of finite type and that x ∈ X is a closed
point with residue field k. Then there is a finite extension L′/L such that for
every minimal prime ideal p of O∧X,x ⊗O OL′ the algebra (O∧X,x ⊗O OL′)/p is
flat over OL′ and geometrically integral.

9. Suppose that X/ Spec k is a scheme of finite type and that x ∈ X is a closed point
with residue field k. Then there is a finite extension k′/k such that for every
minimal prime ideal p of O∧X,x⊗k k′ the algebra (O∧X,x⊗k k′)/p is geometrically
integral.

Proof. The first part is proved in exactly the same way as Lemma 2.6 of [Tay].
For the second part note that A ⊗̂O B is flat over A (as in the first paragraph of
the proof of Lemma 3.4.12 of [Ki]). Thus the Krull dimension of A ⊗̂O B equals
the Krull dimension of A plus the Krull dimension of

k ⊗A (A ⊗̂O B) ∼= k ⊗O B.

As B is flat over O this latter quantity is one less than the Krull dimension of B.
The third part is proved in exactly the same way as Lemma 3.4.12 of [Ki], with
the reference to [deJ] replaced by a reference to the first part of this lemma.

For the fourth part note that A[[T ]] and B[[T ]] are flat over k[[T ]], geometri-
cally integral (resp. irreducible) objects of Cnoeth

k[[T ]] . (If L′/k((T )) is a finite extension
then OL′ is a complete local Dedekind domain, and hence isomorphic to k′[[S]] for
some finite extension k′/k (see [M, (28.J)]). Thus A[[T ]]⊗k[[T ]]OL′ ∼= (A⊗k k′)[[S]]
is integral (resp. irreducible).) Thus by the second part (A[[T ]]⊗̂k[[T ]]B[[T ]])⊗k[[T ]]

k′[[T ]] is an integral domain (respectively has irreducible spectrum) for any finite
extension k′/k. However (A[[T ]] ⊗̂k[[T ]]B[[T ]])⊗k[[T ]] k

′[[T ]] ∼= ((A ⊗̂kB)⊗k k′)[[T ]]
(one can write explicit maps in both directions), and so we deduce that (A ⊗̂k B)
⊗kk′ is an integral domain (resp. has irreducible spectrum) for any finite extension
k′/k.

The fifth and sixth parts are proved in the same way, so we will just describe
the proof of the fifth part. There are exact sequences

(0)→ pi(A ⊗̂O B)→ A ⊗̂O B → (A/pi) ⊗̂O B → (0)

and

(0)→ qj((A/pi) ⊗̂O B)→ (A/pi) ⊗̂O B → (A/pi) ⊗̂O (B/qj)→ (0),

so that

(A ⊗̂O B)/(pi(A ⊗̂O B) + qj(A ⊗̂O B)) ∼→ (A/pi) ⊗̂O (B/qj),
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and pi(A⊗̂OB)+qj(A⊗̂OB) is a prime ideal of A⊗̂OB. On the other hand if P is
any prime ideal of A⊗̂OB then the contraction of P to A contains some pi and the
contraction to B some qj so that P ⊃ pi(A ⊗̂O B) + qj(A ⊗̂O B). Finally we must
show that no pi(A ⊗̂OB) +qj(A ⊗̂OB) contains another. This follows because the
map A/pi → (A/pi)⊗̂O(B/qj) is injective (because the algebra (A/pi)⊗̂O(B/qj) is
flat over A/pi by the argument of the first paragraph of the proof of Lemma 3.4.12
of [Ki]).

For the seventh part note that any prime of A ⊗̂O B which is minimal over
λ(A ⊗̂O B) has the form p′(A ⊗̂O B) + q′(A ⊗̂O B), where p′ (resp. q′) is a prime
of A (resp. B) minimal over λA (resp. λB). Similarly any minimal prime of A⊗̂OB
has the form p(A ⊗̂O B) + q(A ⊗̂O B), where p (resp. q) is a minimal prime of A
(resp. B). It suffices to show that if

p′(A ⊗̂O B) + q′(A ⊗̂O B) ⊃ p(A ⊗̂O B) + q(A ⊗̂O B)

then p′ ⊃ p and q′ ⊃ q. However as

A/p′ ↪→ (A ⊗̂O B)/(p′(A ⊗̂O B) + q′(A ⊗̂O B))

we see that the composite

A/p→ (A ⊗̂O B)/(p(A ⊗̂O B) + q(A ⊗̂O B))

→→ (A ⊗̂O B)/(p′(A ⊗̂O B) + q′(A ⊗̂O B))

factors through A/p′, i.e. p′ ⊃ p. Similarly q′ ⊃ q.
Again the eighth and ninth parts are proved in the same way and we will just

describe the eighth part. Suppose L′′/L is a finite extension and that x′′ is the
unique closed point of X × SpecOL′′ above x. From the proof of Lemma 2.7 of
[Tay] we know that the minimal prime ideals of O∧X×SpecOL′′ ,x′′

∼= O∧X,x ⊗O OL′′
are exactly the kernels of the maps

O∧X×SpecOL′′ ,x′′ → O
∧eXi,y

where X̃i runs over the normalizations of the irreducible components of X×OOL′′
and where y runs over the points of X̃i over x′′. Now there is a finite extension
L′/L such that if X̃i/OL′ are the normalizations of the irreducible components
of X × SpecOL′ then for any finite extension L′′/L′ the X̃i × SpecOL′′ are the
normalizations of the irreducible components of X × SpecOL′′ . (If X = SpecA
let B̃ denote the integral closure of the image of A ⊗O OL in its total quotient
ring. Let B̃ = (A ⊗O OL)[b1, . . . , br] and let f1, . . . , fr be monic polynomials in
(A⊗O OL)[T ] such that fi(bi) = 0 for i = 1, . . . , r. Let L′/L be a finite extension
such that the coefficients of each fi lie in A⊗O OL′ . This field L′ suffices.) Let x′
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be the unique point of X × SpecOL′ above x. We may further assume that every
point of each X̃i over x′ is actually defined over OL′/λ′ (where λ′ is the maximal
ideal of OL′). Let pi,y denote the kernel of

O∧X×SpecOL′ ,x′ → O
∧eXi,y.

If L′′/L′ is a finite extension and x′′ is the unique point of X × SpecOL′′ above x
then we see that pi,yO∧X⊗SpecOL′′ ,x′′ = pi,y(O∧X×SpecOL′ ,x′ ⊗OL′ OL′′) is the kernel
of

O∧X⊗SpecOL′ ,x′ ⊗OL′ OL′′ → O
∧eXi,y ⊗OL′ OL′′ ∼= O∧eXi×SpecOL′′ ,y′′

where y′′ denotes the unique point of X̃i × SpecOL′′ above y. Thus the ideal
pi,y(O∧X×SpecOL′ ,x′ ⊗OL′ OL′′) is prime and

(O∧X×SpecOL′ ,x′/pi,y)⊗OL′ OL′′

is integral.

Now we return to the properties of

R�T
{χv},∞ =

(⊗̂
v∈T

Rloc
v /Iv

)
[[Y1, . . . , Yq′ ]].

We can calculate the Krull dimension of all irreducible components of this ring
using the second part of the previous lemma and the calculation of the Krull
dimension of all irreducible components of the Rloc

v /Iv in Section 2.4 of [CHT]
and Proposition 3.1 of [Tay] (and the fact, also proved there, that the generic
point of all these components has characteristic 0). For v 6∈ R ∪ S(B)1 it is shown
in Section 2.4 of [CHT] that Rloc

v /Iv is a power series ring over O and hence
geometrically integral. If v ∈ S(B)1 then Proposition 3.1 of [Tay] shows that
Rloc
v /Iv is irreducible, and as we can replace O by the ring of integers of any finite

extension of L in that proposition, it is in fact geometrically irreducible. If v ∈ R
and all the χv,i are distinct for i = 1, . . . , n then it follows from Proposition 3.1 of
[Tay] that Rloc

v /Iv is geometrically irreducible (again because in that proposition
we can replace O by the ring of integers of any finite extension L′/L). We deduce
that if for all v ∈ R the characters χv,i for i = 1, . . . , n are distinct then R�T

{χv},∞
is irreducible.

We will only prove the last assertion of the first paragraph on page 218 of
[Tay] under the additional assumptions that L is large enough so that for each
v ∈ R ∪ S(B)1 and each minimal prime p of Rloc

v /Iv (resp. of Rloc
v /(λ, Iv)) the

ring (Rloc
v /Iv)/p (resp. (Rloc

v /(λ, Iv))/p) is geometrically integral. This assumption
is harmless because we can make a finite extension of L before proving Theorem 4.1
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of [Tay] (i.e. Theorem 4.1 for one L implies the same theorem for all other possible
L’s). In this case the last assertion of the first paragraph on page 218 of [Tay]
follows from part seven of the above lemma.

[HSBT]

T.B.-L. has pointed out that in Theorem 3.3 of [HSBT] we should have assumed
that r has multiplier ε1−nl . The assumptions of the theorem as stated do not seem
to be sufficient to conclude that the image r(Gal(F/F1)) is big. It will be in the
case that r is surjective, and so Theorem B of the introduction of [HSBT] is correct
as stated. See Theorems 7.5 and 7.6 of this paper for results for other multipliers.

§4. The Dwork family I

In this section we will follow the arguments of Section 4 of [GHK] in a slightly
more general setting.

Let N > n + 1 denote positive integers with n even and N odd. (The case
N = n + 1, which was treated in [HSBT] and [GHK], is very similar, but for
simplicity of exposition we exclude it here.) Recall that Z[ζN ]+ denotes the subring
of Z[ζN ] consisting of elements fixed by complex conjugation. Let T0 denote P1 −
({∞} ∪ µN )/Z[1/N ] with coordinate t. Let Y ⊂ PN−1 × T0 denote the family of
hypersurfaces

XN
1 +XN

2 + · · ·+XN
N = NtX1X2 . . . XN

where t is the coordinate on T0. Thus π : Y → T0 is smooth of relative dimension
N−2. Let ς denote the automorphism of Y with ς∗Xj = XN+1−j . Let H = µNN/µN
(diagonal embedding) and let H0 be the subgroup

{(ξ1, . . . , ξN ) ∈ µNN : ξ1 . . . ξN = 1}/µN ⊂ H.

The scheme Y × Spec Z[1/N, ζN ] has a natural action of the group H, given by

(ξ1, . . . , ξN )(X1 : · · · : XN ) = (ξ1X1 : · · · : ξNXN ),

compatible with the action on T0 given by

(ξ1, . . . , ξN )t = (ξ1 . . . ξN )−1t.

Thus H0 acts on Y over T0 × Spec Z[1/N, ζN ]. Consider the idempotent

e =
1

2#H0
(ς + 1)

∑
ξ∈H0

(ξ1
1ξ

2
2 . . . ξ

(N−n−1)/2
(N−n−1)/2ξ

(N+n+1)/2
(N+n+3)/2 . . . ξ

N−1
N

+ ξ−1
1 ξ−2

2 . . . ξ
−(N−n−1)/2
(N−n−1)/2 ξ

(N−n−1)/2
(N+n+3)/2 . . . ξ

1
N )ξ
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in the group algebra over Z[ζN , 1/(2N)]+ of the semidirect product of H0 by
{1, ς}. The idempotent e defines a self-correspondence [e] with coefficients from
Z[1/(2N), ζN ]+ on Y over T0 × Spec Z[1/N, ζN ]+.

If λ | l is a prime of Z[1/(2N), ζN ]+ (resp. if n is a non-zero ideal of
Z[1/(2N), ζN ]+) then we define a lisse sheaf Vλ/(T0 × Spec Z[1/(2Nl), ζN ]+)et

(resp. V [n]/(T0 × Spec Z[1/(2N(Nn)), ζN ]+)et) by

Vλ = [e]∗RN−2π∗Z[1/(2N), ζN ]+λ

(resp.

V [n] = [e]∗RN−2π∗Z[1/(2N), ζN ]+/n).

Similarly define lisse sheaves Uλ over (T0 × Spec Z[1/(2Nl), ζN ])et and U [n]
over (T0 × Spec Z[1/(2N(Nn)), ζN ])et to be the direct summands of the sheaves
RN−2π∗Z[1/(2N), ζN ]λ and RN−2π∗Z[1/(2N), ζN ]/n where ξ ∈ H0 acts as

ξ1
1ξ

2
2 . . . ξ

(N−n−1)/2
(N−n−1)/2ξ

(N+n+1)/2
(N+n+3)/2 . . . ξ

N−1
N .

Then H0-equivariant projection defines isomorphisms

Vλ ⊗Z[1/(2N),ζN ]+λ
Z[1/(2N), ζN ]λ

∼→ Uλ

over (T0 × Spec Z[1/(2Nl), ζN ])et, and

V [n]⊗Z[1/(2N),ζN ]+/n Z[1/(2N), ζN ]/n ∼→ U [n]

over (T0 × Spec Z[1/(2N(Nn)), ζN ])et.
The action of H0 on the fibre Y0 extends to an action of H. Thus we can

decompose the fibres

Uλ,0 =
N⊕
i=1

Ui,λ and U [n]0 =
N⊕
i=1

Ui[n]

where Ui,λ (resp. Ui[n]) is the direct summand where ξ ∈ H acts by

ξ1+i
1 ξ2+i

2 . . . ξ
(N−n−1)/2+i
(N−n−1)/2 (ξ(N−n+1)/2 . . . ξ(N+n+1)/2)iξ(N+n+1)/2+i

(N+n+3)/2 . . . ξN−1+i
N .

Lemma 4.1. 1. Ui,λ (resp. Ui[n]) is free rank 1 over Z[ζN , 1/(2N)]λ (resp.
Z[ζN , 1/(2N)]/n) for (N + 1 − n)/2 ≤ i ≤ (N − 1 + n)/2, and otherwise it
is trivial. Moreover if n =

∏
λ λ

aλ then

Ui[n] ∼=
∏
λ

Ui,λ/λ
aλ .
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2. The sheaf Vλ (resp. V [n]) is locally free rank n over Z[ζN , 1/(2N)]+λ (resp.
Z[ζN , 1/(2N)]+/n). Moreover if n =

∏
λ λ

aλ then

V [n] ∼=
∏
λ

Vλ/λ
aλ .

Proof. The first part follows by the method of proof of Proposition I.7.4 of [DMOS].
The second part need only be checked on the fibre at 0, where it follows from the
first part.

The cup product induces perfect alternating pairings

Vλ((N − 1− n)/2)× Vλ((N − 1− n)/2)→ Z[ζN , 1/(2N)]+λ (1− n)

and

V [n]((N − 1− n)/2)× V [n]((N − 1− n)/2)→ (Z[ζN , 1/(2N)]+/n)(1− n).

Now let F/Q(ζN )+ be a finite extension and n be a non-zero ideal of
Z[ζN , 1/(2N)]+. Suppose that W is a finite free Z[ζN , 1/(2N)]+/n-module of rank
n with a continuous action of Gal(F/F ) and a perfect alternating pairing

〈 , 〉W : W ×W → (Z[ζN , 1/(2N)]+/n)(1− n)

such that

〈gw1, gw2〉 = g〈w1, w2〉

for all g ∈ Gal(F/F ) and all w1, w2 ∈ W . Then W can be thought of as a lisse
sheaf on (SpecF )et. Consider the functor which sends a scheme S/(T0 ×Z[1/N ] F )
to the set of isomorphisms WS

∼→ V [n]((N − 1 − n)/2)S . It is represented by a
finite etale cover TW /(T0 ×Z[1/N ] F ).

The only purpose of the rest of this section is to prove the next proposition.
A reader willing to accept it without proof can pass directly to the next section.
The proof of the proposition is transcendental. It will be complete once we have
established Corollaries 4.5 and 4.8 below.

Proposition 4.2. Keep the above notation and assumptions.

1. If n is square free and if no two distinct prime factors of n have the same residue
characteristic then TW is geometrically connected.

2. If t ∈ T0(C) then the image of a generator of monodromy at infinity in T0(C) in
Sp(Vλ) ⊂ GLn(Q(ζN )+

λ ) has minimal polynomial (X − 1)n, i.e. it is unipotent
with just one Jordan block.
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Fix τ0 : Q(ζN ) ↪→ C so that τ0(ζN ) = e2πi/N . Let VB/T0(C) denote the locally
constant sheaf

VB = [e]∗RN−2π∗Z[1/(2N), ζN ]+.

The sheaf VB has a natural perfect alternating pairing

〈 , 〉 : VB × VB → Z[ζN , 1/(2N)]+.

Also let UB/T0(C) denote the direct summand of RN−2π∗Z[1/(2N), ζN ] where
ξ ∈ H0 acts as

ξ1
1ξ

2
2 . . . ξ

(N−n−1)/2
(N−n−1)/2ξ

(N+n+1)/2
(N+n+3)/2 . . . ξ

N−1
N .

Thus projection again gives an isomorphism

VB ⊗Z[1/(2N),ζN ]+ Z[1/(2N), ζN ] ∼→ UB .

The sheaf VB,λ (resp. VB/nVB , resp. UB,λ, resp. UB/n) is the Betti sheaf
corresponding to the base change to (T0 ×Spec Z[ζN ,1/(Nl)]+,τ∗0

Spec C)et (resp.
(T0×Spec Z[ζN ,1/(N(Nn))]+,τ∗0

Spec C)et, resp. (T0×Spec Z[ζN ,1/(Nl)],τ∗0
Spec C)et, resp.

(T0 ×Spec Z[ζN ,1/(N(Nn))],τ∗0
Spec C)et) of Vλ (resp. V [n], resp. Uλ, resp. U [n]).

Let T̃0 denote P1 − {0, 1,∞} with coordinate t̃. We will consider T0 − {0}
as a scheme over T̃0 via t̃ = tN . Also let Ỹ ⊂ PN−1 × T̃0 denote the family of
hypersurfaces

X̃N
1 + · · ·+ X̃N

(N−1)/2 + t̃−1X̃N
(N+1)/2 + X̃N

(N+3)/2 + · · ·+ X̃N
N = NX̃1X̃2 . . . X̃N .

Thus π̃ : Ỹ → T̃0 is smooth of relative dimension N − 2. Moreover the pull-back
of Ỹ to T0 − {0} is isomorphic to Y via X̃(N+1)/2 = tX(N+1)/2 and X̃j = Xj for
j 6= (N + 1)/2. Let ς̃ denote the automorphism of Ỹ with ς̃∗X̃j = X̃N+1−j . Then
ς and ς̃ are compatible with the map (Y − Y0)→ Ỹ . Let

H̃0 = {(ξ1, . . . , ξ(N−1)/2, ξ(N+3)/2, . . . , ξN ) ∈ µN−1
N }/µN .

There is an isomorphism H̃0
∼→ H0 given by

(ξ1, . . . , ξ(N−1)/2, ξ(N+3)/2, . . . , ξN )

7→ (ξ1, . . . , ξ(N−1)/2, (ξ1 . . . ξ(N−1)/2ξ(N+3)/2 . . . ξN )−1, ξ(N+3)/2, . . . , ξN ).

The hypersurface Ỹ ×Spec Z[1/N, ζN ] has a natural action of the group H̃0, given
by

(ξ1, . . . , ξN )(X̃1 : . . . : X̃N )

= (ξ1X̃1 : . . . : ξ(N−1)/2X̃(N−1)/2 : X̃(N+1)/2 : ξ(N+3)/2X̃(N+3)/2 : . . . : ξN X̃N ).
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This action is compatible with the maps H̃0
∼→ H0 and (Y − Y0) → Ỹ and the

action of H0 on Y . If we embed µN ↪→ H by injection onto the ((N + 1)/2)th

coordinate, then Ỹ × Spec Q(ζN ) is identified with ((Y − Y0) × Spec Q(ζN ))/µN
and T̃0 × Spec Q(ζN ) with ((T0 − {0})× Spec Q(ζN ))/µN .

Consider the idempotent

ẽ =
1

2#H̃0

(ς̃ + 1)
∑
ξ∈ eH0

(ξ1
1ξ

2
2 . . . ξ

(N−n−1)/2
(N−n−1)/2ξ

(N+n+1)/2
(N+n+3)/2 . . . ξ

N−1
N

+ ξ−1
1 ξ−2

2 . . . ξ
−(N−n−1)/2
(N−n−1)/2 ξ

(N−n−1)/2
(N+n+3)/2 . . . ξ

1
N )ξ

in the group algebra over Z[ζN , 1/(2N)]+ of the semidirect product of H̃0 by
{1, ς̃}. The idempotent ẽ defines a self-correspondence [ẽ] with coefficients from
Z[1/(2N), ζN ]+ on Ỹ over T̃0×Spec Z[1/N, ζN ]+. Let ṼB/T̃0(C) denote the locally
constant sheaf

ṼB = [ẽ]∗RN−2π̃∗Z[1/(2N), ζN ]+.

The sheaf ṼB has a natural perfect alternating pairing

〈 , 〉 : ṼB × ṼB → Z[ζN , 1/(2N)]+.

Similarly let ŨB denote the direct summand of RN−2π̃∗Z[1/(2N), ζN ] on which
ξ ∈ H̃0 acts by

ξ1
1ξ

2
2 . . . ξ

(N−n−1)/2
(N−n−1)/2ξ

(N+n+1)/2
(N+n+3)/2 . . . ξ

N−1
N ,

so that projection gives an isomorphism

ṼB ⊗Z[1/(2N),ζN ]+ Z[1/(2N), ζN ] ∼→ ŨB .

The pull-back of the pair (ṼB , 〈 , 〉) from T̃0(C) to T0(C)− {0} is naturally iden-
tified to the pair (VB , 〈 , 〉).

If t̃ ∈ T̃0(C) then the fundamental group π1(T̃0(C), t̃) is generated by elements
γ0, γ1 and γ∞ subject only to the relation γ0γ1γ∞ = 1. Moreover γx is a generator
of the monodromy group around x for x = 0, 1 or ∞. We get a representation

ρet : π1(T̃0(C), t̃)→ Spn(ṼB,et).
Lemma 4.3. Keep the above notation and assumptions.

1. ρet(γ0) has characteristic polynomial
∏(N+n−1)/2
j=(N−n+1)/2(X − ζjN ).

2. ρet(γ1) has characteristic polynomial (X − 1)n, and ker(ρt(γ1)− 1) has rank at
least n− 1.

3. ρet(γ∞) has characteristic polynomial (X − 1)n.
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Proof. We may work with ŨB ⊗Z[1/(2N),ζN ] Q(ζN ) instead of ṼB .
The image of γ0 in µN = Gal(T0(C)−{0}, T̃0(C)) is ζ±1

N = τ−1
0 (e±2πi/N ). Thus

the action of γ0 on ŨB,et⊗Q(ζN ) is equivalent to the action of ζ±1
N on UB,0⊗Q(ζN ).

The first part now follows from Lemma 4.1.
As T0(C)− {0} → T̃ (C) is etale in a neighbourhood of t = 1 the second part

will follow if we can show the same for the action of a generator of monodromy
around 1 on UB,t, where t is a preimage of t̃ in T0(C) − {0}. Picard–Lefschetz
theory (see [SGA7]) gives an H0-orbit ∆ of elements of Hn−1(Yt(C),Z) and an
exact sequence

(0)→ Hn−1(Y1(C),Z)→ Hn−1(Yt(C),Z)→ Z∆.

If x ∈ Hn−1(Yt(C),Z) maps to (xδ) ∈ Z∆ then the monodromy operator sends x
to x±

∑
δ∈∆ xδδ. As the action of H0 commutes with the action of inertia we see

that for ξ ∈ H0 we have (ξx)δ = xξ−1δ. Thus picking δ0 ∈ ∆ we see that x maps
to

x± #∆
#H0

∑
ξ∈H0

(ξ−1x)δ0ξδ0.

Thus if x transforms under a character χ under the action of H0 it maps to

x± xδ0
#∆
#H0

∑
ξ∈H0

χ(ξ)−1ξδ0.

Thus ker(γ1 − 1) has rank at least n − 1 on UB,t. As γ1 acts as a symplectic
transformation we conclude that it has characteristic polynomial (X − 1)n.

For the third part one can refer to the combination of Theorem 5.3 of [Ka2]
and Theorem 8.4.11 of [Ka1]. However it would seem to us more elegant to find a
direct argument which does not go via hypergeometric sheaves.

Write
(X − 1)n = Xn +A1X

n−1 + · · ·+An

and
(N+n−1)/2∏
j=(N−n+1)/2

(X − ζjN ) = Xn +B1X
n−1 + · · ·+Bn

and

A =


0 0 . . . 0 −An
1 0 . . . 0 −An−1

0 1 . . . 0 −An−2

. . .
0 0 . . . 1 −A1
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and

B =


0 0 . . . 0 −Bn
1 0 . . . 0 −Bn−1

0 1 . . . 0 −Bn−2

. . .
0 0 . . . 1 −B1

 .

Then Theorem 1.1 of [Le] (but see also Theorem 3.5 of [BH]) and Proposition 3.3
of [BH] give us the following corollary.

Corollary 4.4. Keep the above notation and assumptions and fix Spn(ṼB,et) ⊂
GLn(C). As a representation into GLn(C), the representation ρet is conjugate to
one sending γ∞ to A; γ1 to BA−1; and γ0 to B−1. Moreover this representation
is irreducible.

Corollary 4.5. Keep the above notation and assumptions. Then ρet(γ∞) has min-
imal polynomial (X−1)n, i.e. it has just one Jordan block. Hence the same is true
for the image of a generator of monodromy at infinity in Sp(VB,t) ⊂ GLn(C) (for
any t ∈ T0(C)).

Lemma 4.6. Keep the above notation and assumptions. Suppose that λ is a non-
zero prime of Z[ζN , 1/(2N)]+ and let k(λ) denote its residue field. Then the image
of ρet mod λ is Sp(ṼB,t/λ).

Proof. Let ρ : π1(T̃0(C), t̃) → GLn(Z[ζN , 1/(2N)]+) be the representation send-
ing γ0 to B−1 and γ∞ to A. The argument for Proposition 3.3 of [BH] shows
that ρ mod λ is absolutely irreducible. On the other hand, by the last but one
corollary ρet mod λ and ρ mod λ have the same trace and so they have equivalent
semisimplifications. Thus ρet mod λ is absolutely irreducible.

Let ∆ ⊂ π1(T̃0(C), t̃) denote the normal subgroup generated by γ1.
Then π1(T̃0(C), t̃)/∆ is cyclic generated by γ0∆ = γ−1

∞ ∆. Thus the in-
dex [(ρet mod λ)(π1(T̃0(C), t̃)) : (ρet mod λ)(∆)] divides both the order of
(ρet mod λ)(γ0) and (ρet mod λ)(γ∞), i.e. divides both N and a power of the
characteristic of k(λ). Thus (ρet mod λ)(π1(T̃0(C), t̃)) = (ρet mod λ)(∆) and
(ρet mod λ(π1(T̃0(C), t̃)) is generated by elements C with characteristic poly-
nomial (X − 1)n and dim ker(C − 1) ≥ n − 1. It follows from the main the-
orem of [SZ] that (ρet mod λ)(π1(T̃0(C), t̃)) is conjugate in GLn(k(λ)) to one
of the groups SLn(k), Spn(k) or SU (n, k) for some subfield k ⊂ k(λ). (Here
SU (n, k) is only defined if k has even degree over its prime subfield and then
it equals the subgroup of SLn(k) consisting of the matrices g with σ(g)tg = 1n,
where σ is the unique field automorphism of k of order exactly 2.) Because
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the image is contained in a conjugate of Spn(k(λ)) we see that the possibil-
ities SLn(k(λ)) and SU (n, k(λ)) cannot occur unless n = 2. (If α, β ∈ k(λ)
satisfy σ(α)α = σ(β)β = 1 then the diagonal matrix (α, β, (αβ)−1, 1, . . . , 1)
lies in SU (n, k(λ)) but can only be conjugate to an element of Spn(k(λ)) if
one of α, β or αβ equals 1.) Also note that Sp2(k(λ)) = SL2(k(λ)) and that
tr SU (2, k(λ)) ⊂ k(λ)σ=1. (If g ∈ SU (2, k(λ)) then tr g = tr g−1 = trσ(g) =
σ(tr g).) Thus it suffices to show that the characteristic polynomials of the ele-
ments of (ρet mod λ)(π1(T̃0(C), t̃)) do not all lie in k[X] for some proper subfield
k ⊂ k(λ).

Considering just the element (ρet mod λ)(γ0) we see that it suffices to check
that if α ∈ (Z/NZ)× and

{αj : j = (N + 1− n)/2, . . . , (N − 1 + n)/2}
= {j : j = (N + 1− n)/2, . . . , (N − 1 + n)/2} ⊂ Z/NZ

then α = ±1. (See part 1 of Lemma 4.3 for the characteristic polynomial of
(ρet mod λ)(γ0).) The case n = 2 is easy, so we suppose n > 2. We may assume
that α has a representative a ∈ Z with 0 < a < N/2, and we wish to prove
a = 1. Choose j1 from amongst (N + 1 − n)/2, . . . , (N − 3 + n)/2 and j2 from
amongst (N + 1− n)/2, . . . , (N + 1)/2 with αj1 ≡ j2 mod N . (This is possible as
n > 2.) Then α(j1 + 1) ≡ j2 + a mod N and j2 + a ≤ N , so that we must have
j2 + a ≤ (N − 1 +n)/2, which implies that a < n. Now if j = 0, . . . , (N − 1−n)/2
and α−1j 6≡ (N − 1− n)/2 mod N then α(α−1j + 1) ≡ j + a mod N and j + a <

(N − 1 +n)/2, so that we must have j + a < (N + 1−n)/2. Thus indeed we must
have a = 1, and the proof is complete.

Corollary 4.7. Suppose that t ∈ T0(C). Let λ be a non-zero prime of the ring
Z[ζN , 1/(2N)]+. Then the natural map π1(T0(C), t)→ Sp(VB,t/λ) is surjective.

Proof. We may reduce to the case t 6= 0. Then it suffices to show that the composite

π1(T0(C)− {0}, t)→→ π1(T0(C), t)→ Sp(VB,t/λ)

is surjective. However if t̃ denotes the image of t in T̃0(C) then π1(T0(C)− {0}, t)
is a normal subgroup of π1(T̃0(C), t̃) with quotient cyclic of order N . As

π1(T̃0(C), t̃)→→ Sp(ṼB,et/λ) ∼= Sp(VB,t/λ)

it suffices to show that if l - 2N is a prime then Spn(Flr ) has no cyclic quotient
of order dividing N . However the only cyclic composition factors of Spn(Flr ) have
order 2 or 3, and a cyclic composition factor of order 3 only occurs if lr = 3 and
n = 2.



60 T. Barnet-Lamb et al.

Corollary 4.8. If n is a square-free ideal of Z[ζN , 1/(2N)]+ such that any two
distinct prime factors of n have distinct residue characteristics, then the map
π1(T0(C), t)→→ Sp(VB,t/n) is surjective.

Proof. Suppose l > 2 is a prime and r ∈ Z>0 and either n > 2 or lr 6= 3; then the
only non-trivial quotient of Spn(Flr ) is PSpn(Flr ), which is an insoluble simple
group. On the other hand Sp2(F3) is soluble. Moreover for positive integers r, s
and for primes l 6= l′ both greater than 2 the groups PSpn(Flr ) and PSpn(F(l′)s)
are not isomorphic. The corollary then follows from the previous corollary and
Goursat’s lemma.

One can ask if this corollary remains true for any non-zero ideal n of
Z[ζN , 1/(2N)]+. We have now completed the proof of Proposition 4.2.

§5. The Dwork family II

We now turn to an analysis of the action of Galois groups of local fields on the
spaces Vλ,t. First we consider the case that t lies in a p-adic field with p different
from the residue characteristic of λ. The next lemma follows from Proposition 4.2
as in the proof of Lemma 1.15 of [HSBT].

Lemma 5.1. Suppose that q and λ are non-zero primes of Z[ζN , 1/(2N)]+ with
distinct residue characteristics. Suppose also that F/Q(ζN )+

q is a finite extension
and that t ∈ F with tN 6= 1.

1. If t ∈ OF but tN − 1 is not in the maximal ideal of OF then the action of
Gal(F/F ) on Vλ,t is unramified.

2. If t ∈ F − OF then the action of Gal(F/F ) on Vλ,t is tamely ramified. A
generator of tame inertia acts via a unipotent matrix with minimal polynomial
(X − 1)n. A Frobenius lift has characteristic polynomial

(X − α)(X − α#k(q)) . . . (X − α(#k(q))n−1)

for some α = ±1.

We next turn to the case that t lies in an l-adic field, where l equals the
residue characteristic of λ. The rest of this section is entirely devoted to the proof
of Lemma 5.3. A reader who is prepared to take that lemma on trust may simply
read its statement and skip to the next section.

The proof of Lemma 5.3 will depend on the use of Fontaine’s functors to
reduce the statements to questions about de Rham cohomology, so we must first
study the de Rham cohomology of the varieties Yt. The analysis is complicated
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because we have to work with ‘de Rham cohomology with coefficients’ and these
coefficients are embeddable in the field containing t, but there is not a canonical
embedding.

The relative de Rham cohomology

HDR = HN−2
DR (Y/(T0 ×Z[1/N ] Q(ζN )))

is a locally free OT0×Z[1/N]Q(ζN )-module (for the Zariski toplogy on T0 ×Z[1/N ]

Q(ζN )). It comes with a decreasing filtration F jHDR by local direct summands
(with F 0HDR = HDR). Moreover there are compatible decompositions

F jHDR ⊗Q Q(ζN ) =
⊕

σ∈Gal(Q(ζN )/Q)

F jHDR,σ,

where
F jHDR,σ = (F jHDR)⊗σ−1,Q(ζN ) Q(ζN ).

Here we think of the second factor Q(ζN ) as ‘coefficients’. Define UDR, F jUDR,
UDR,σ and F jUDR,σ to be the direct summands of HDR ⊗Q Q(ζN ), F jHDR ⊗Q
Q(ζN ), HDR,σ and F jHDR,σ where ξ ∈ H0 acts by

ξ1
1ξ

2
2 . . . ξ

(N−n−1)/2
(N−n−1)/2ξ

(N+n+1)/2
(N+n+3)/2 . . . ξ

N−1
N

(acting through the right hand ‘coefficient’ factor of Q(ζN )). Again we can decom-
pose the fibres

UDR,0 =
N⊕
i=1

Ui,DR and UDR,σ,0 =
N⊕
i=1

Ui,DR,σ

where Ui,DR (resp. Ui,DR,σ) is the direct summand where ξ ∈ H acts by

ξ1+i
1 ξ2+i

2 . . . ξ
(N−n−1)/2+i
(N−n−1)/2 (ξ(N−n+1)/2 . . . ξ(N+n+1)/2)iξ(N+n+1)/2+i

(N+n+3)/2 . . . ξN−1+i
N .

If λ and v are primes of Z[ζN , 1/N ] both with residue characteristic l; if F/Q(ζN )v
is a finite extension; if t ∈ T0(F ); and if σ : F ↪→ Q(ζN )λ, then

((Uλ,t ⊗Z[ζN ,1/N ]λ Q(ζN )λ)⊗σ,F BDR)Gal(F/F ) ∼= UDR,σ|Q(ζN ),t ⊗F,σ Q(ζN )λ.

Similarly for i = 1, . . . , N and σ : Q(ζN )v ↪→ Q(ζN )λ we have

((Ui,λ ⊗Z[ζN ,1/N ]λ Q(ζN )λ)⊗σ,Q(ζN )v BDR)Gal(Q(ζN )λ/Q(ζN )λ)

∼= Ui,DR,σ ⊗Q(ζN )v,σ Q(ζN )λ.

If a ∈ Z we will write a for the integer in the range 1 ≤ a ≤ N which is
congruent to a modulo N . Let τ0 : Q(ζN ) ↪→ C be such that τ0(ζN ) = e2πi/N .
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Lemma 5.2. 1. Suppose that σ−1(ζN ) = ζaN . Then Ui,DR,σ = (0) unless (N+1−
n)/2 ≤ i ≤ (N − 1 + n)/2. If (N + 1− n)/2 ≤ i ≤ (N − 1 + n)/2 then Ui,DR,σ

is a one-dimensional Q(ζN )-vector space and grj Ui,DR,σ is non-zero only for

j = (N − n− 3)/2 + #{(N + 1− n)/2 ≤ b ≤ (N − 1 + n)/2 : ab ≤ ai}.

2. UDR,σ is a locally free sheaf of OT0×Z[1/N]Q(ζN )-modules of rank n. If (N −
1 − n)/2 ≤ j ≤ (N + n − 3)/2 then grj UDR,σ is locally free rank 1 over
OT0×Z[1/N]Q(ζN ). Otherwise it is zero.

Proof. As grj UDR,σ is locally free over OT0×Z[1/N]Q(ζN ), the second part follows
from the first. Now consider the first part. The space

grj Ui,DR,σ ⊗Q(ζN ),τ0σ−1 C

is identified with the space

Hj,N−2−j(Y (C),C)(a(1+i),a(2+i),...,a((N−n−1)/2+i),ai,...,ai,a((N+n+1)/2+i),...,a(N−1+i))

of Section I.7 of [DMOS] (where we define Y (C) via τ0 : Q(ζN ) ↪→ C). By Proposi-
tions I.7.4 and I.7.6 of [DMOS] this is non-zero if and only if none of the entries of
(a(1+i), a(2+i), . . . , a((N−n−1)/2+i), ai, . . . , ai, a((N+n+1)/2+i), . . . , a(N−
1 + i)) are congruent to zero modulo N and

j + 1 = (a(1 + i) + a(2 + i) + · · ·+ a((N − n− 1)/2 + i) + ai+ · · ·

+ ai+ a((N + n+ 1)/2 + i) + · · ·+ a(N − 1 + i))/N.

Define j(0) = (N − n− 1)/2 and

j(d) = (a+ d+ 2a+ d+ · · ·+ a(N − n− 1)/2 + d+ d+ · · ·

+ d+ a(N + n+ 1)/2 + d · · ·+ a(N − 1) + d)/N − 1

for d > 0. For d = 1, . . . , N − 1 we have j(d) = j(d− 1) + 1 if d− 1 ≡ ai mod N

for some (N + 1− n)/2 ≤ i ≤ (N − 1 + n)/2, and otherwise j(d) = j(d− 1). The
first part follows.

Lemma 5.3. Suppose that λ is a non-zero prime of Z[ζN , 1/(2N)]+ which has
residue characteristic l. Suppose that v is also a place of Q(ζN )+ with residue
characteristic l. (The place v might, or might not, equal the place λ.) Let F/Q(ζN )+

v

be a finite extension and let t ∈ F with tN 6= 1.

1. Vλ,t((N−1−n)/2) is a de Rham representation of Gal(F/F ). Moreover for each
continuous embedding τ : F ↪→ Q(ζN )+

λ the Hodge–Tate numbers of Vλ,t((N −
1− n)/2)⊗Z[ζN ,1/(2N)]+λ

Q(ζN )+
λ with respect to τ are {0, 1, 2, . . . , n− 1}.
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2. If t ∈ OF and tN −1 is not in the maximal ideal of OF then Vλ,t((N−1−n)/2)
is crystalline.

3. If l ≡ 1 mod N and t is in the maximal ideal of OF then Vλ,t((N − 1− n)/2)
is ordinary of weight 0.

4. If l ≡ 1 mod N is an odd prime and if v is a place of Q(ζN ) above l then

V [λ]((N − 1− n)/2)0
∼= Fl ⊕ Fl(−1)⊕ · · · ⊕ Fl(1− n)

as a module for IQ(ζN )+v
.

5. If l ≡ −1 mod N then

V [λ]((N − 1− n)/2)0 ⊗Z[ζN ,1/(2N)]+/λ Fl
∼= Fl(ω1−n

2 )⊕ Fl(ω−l+2−n
2 )⊕ Fl(ω−2l+3−n

2 )⊕ · · · ⊕ Fl(ωl(1−n)
2 )

as a module for IQ(ζN )+v
.

Proof. The first part follows from Lemma 5.2 and the comparison isomorphism
discussed just before the statement of that lemma. The second part follows as for
these values of t the variety Yt has good reduction at v.

For the third and fourth parts it suffices to show that if l ≡ 1 mod N then

Vλ((N − 1− n)/2)0 ⊗Z[ζN ,1/(2N)]+λ
Ql
∼= Ql ⊕Ql(−1)⊕ · · · ⊕Ql(1− n)

as modules for IQ(ζN )+v
. (Note that for t in the maximal ideal of OF we have

(Vλ,0 ⊗Z[ζN ,1/(2N)]+λ
Bcris)Gal(F/F ) ∼= (Vλ,t ⊗Z[ζN ,1/(2N)]+λ

Bcris)Gal(F/F ),

as both can be calculated from the crystalline cohomology of the base change of
Y0 to the residue field of OF . Thus, by Lemma 2.2, Vλ,0 is ordinary if and only if
Vλ,t is ordinary.) However if λ′ is a prime of Q(ζN ) above λ then

Vλ((N − 1− n)/2)0 ⊗Z[ζN ,1/(2N)]+λ
Ql

∼=
(N−1+n)/2⊕
i=(N+1−n)/2

Ui,λ′((N − 1− n)/2)⊗Z[ζN ,1/(2N)]λ′
Ql,

and each Ui,λ′((N − 1− n)/2)⊗Z[ζN ,1/(2N))]λ′
Ql is crystalline. Suppose that v′ is

a place of Q(ζN ) above v; that σ ∈ Gal(Q(ζN )/Q) is such that λ′ corresponds to
v′ ◦σ−1; and that σ−1(ζN ) = ζaN . Then the Hodge–Tate number of Ui,λ′((N − 1−
n)/2)⊗Z[ζN ,1/(2N)]λ′

Ql as a module for Gal(Q(ζN )v′/Q(ζN )v′) is

#{(N + 1− n)/2 ≤ b ≤ (N − 1 + n)/2 : ab ≤ ai} − 1.
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Thus

Ui,λ′((N − 1− n)/2)⊗Z[ζN ,1/(2N)]λ′
Ql

∼= Ql(1−#{(N + 1− n)/2 ≤ b ≤ (N − 1 + n)/2 : ab ≤ ai})

as a module for IQ(ζN )v′
. The third and fourth parts follow. (Note that l > N > n,

so that none of the characters 1, ε−1
l , . . . , ε1−nl of IQ(ζN )v′

become congruent
modulo l.)

For the fifth part it suffices to show that

Vλ((N − 1− n)/2)0 ⊗Z[ζN ,1/(2N)]+λ
Ql

∼= (Ql((ε
(2)
l )1−n)⊕Ql((ε

(2)
l )2−n(ε(2),Frobl

l )−1)⊕ · · · ⊕Ql((ε
(2),Frobl
l )1−n))

as a module for IQ(ζN )+v
. (Again note that none of these n characters of IQ(ζN )+v

are
congruent modulo l, because (n−1)(l−1) < l2−1. Also recall the definition of the
character ε(2)

l of Gal(Ql/Ql2) given in the notation section after the introduction.)
However

Vλ((N − 1− n)/2)0 ⊗Z[ζN ,1/(2N)]+λ
Ql

∼=
(N−1+n)/2⊕
i=(N+1−n)/2

Ui,λ((N − 1− n)/2)⊗Z[ζN ,1/(2N)]λ Ql,

and each Ui,λ((N − 1 − n)/2) ⊗Z[ζN ,1/(2N))]λ Ql is crystalline. Suppose σ ∈
Gal(Q(ζN )/Q) and λ corresponds to v ◦ σ−1 and σ−1(ζN ) = ζaN . There are
two continuous embeddings Q(ζN )v into Q(ζN )λ, one being the continuous ex-
tension of σ and the other cσ = σ Frobl. Then the Hodge–Tate number of
Ui,λ((N −1−n)/2)⊗Z[ζN ,1/(2N)]λ Ql with respect to σ (resp. σ Frobl) as a module
for Gal(Q(ζN )v/Q(ζN )v) is

#{(N + 1− n)/2 ≤ b ≤ (N − 1 + n)/2 : ab ≤ ai} − 1

(resp.

#{(N + 1− n)/2 ≤ b ≤ (N − 1 + n)/2 : −ab ≤ −ai} − 1

= n−#{(N + 1− n)/2 ≤ b ≤ (N − 1 + n)/2 : ab ≤ ai}).

Thus

Ui,λ((N − 1− n)/2)⊗Z[ζN ,1/(2N)]λ Ql
∼= Ql((σε

(2)
l )1−j(σ Frobl ε

(2)
l )j−n)

as a module for IQ(ζN )v , where

j = #{(N + 1− n)/2 ≤ b ≤ (N − 1 + n)/2 : ab ≤ ai}.



A Family of Calabi–Yau Varieties and Potential Automorphy II 65

§6. Potential modularity I

The arguments of this section follow those of [HSBT]. However we will make use of
the improvements to [HT], [CHT] and [Tay] which have been made in [Sh], [CH],
[Gu] and [Ger] (which we have recalled in Sections 1 and 2) in order to in turn
improve upon the results of [HSBT] (and also simplify some of the arguments in
[HSBT]).

We start with a result from elementary number theory.

Lemma 6.1. Suppose that m is a positive integer, l is a rational prime and S is
a finite set of rational primes. Then we can find a positive integer N not divisible
by any prime in S such that if ls ≡ 1 mod N then m | s.

Proof. We may assume that m = pt is a prime power. Moreover we may assume
that t > 1 and that for each prime q ∈ S ∪ {p}, either q divides none of the
numbers lp

u − 1 (for u ∈ Z≥0) or q | (lpt−2 − 1). If a prime r divides lp
t−1 − 1 and

lp
t−1(p−1) + · · ·+ lp

t−1
+ 1 then r = p. Moreover in that case

lp
t−1(p−1) + · · ·+ lp

t−1
+ 1 ≡ p mod p2.

We conclude that it suffices to take N to be any prime divisor of

(lp
t−1(p−1) + · · ·+ lp

t−1
+ 1)/(p, lp

t−1(p−1) + · · ·+ lp
t−1

+ 1).

We will need yet another very minor variant of a theorem of Moret-Bailly
[MB] (see also [GPR]).

Proposition 6.2. Let F be a number field and let S = S1qS2qS3 be a finite set
of places of F , so that every element of S2 is non-archimedean. Suppose that M/F

is a finite Galois extension such that every element of S1 splits in M and every
element of S2 is unramified in S2. Let SMi denote the set of places of M above Si.
Suppose that T/M is a smooth, geometrically connected variety. Suppose also that

• for v ∈ SM1 , Ωv ⊂ T (Mv) is a non-empty open subset (for the v-topology);

• for v ∈ SM2 , Ωv ⊂ T (Mnr
v ) is a non-empty open Gal(F nr

v /Mv)-invariant subset;

• for v ∈ SM3 , Ωv ⊂ T (F v) is a non-empty open Gal(F v/Mv)-invariant subset.

Suppose finally that L/F is a finite Galois extension linearly disjoint from M .
Then there is a finite Galois extension F ′/F and a point P ∈ T (F ′) such that

• F ′ ⊃M ;

• F ′/F is linearly disjoint from L/F ;

• every place v of S1 splits completely in F ′ and if w is a prime of F ′ above v

then P ∈ Ωw|M ⊂ T (F ′w);
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• every place v of S2 is unramified in F ′ and if w is a prime of F ′ above v then
P ∈ Ωw|M ∩ T (F ′w);

• if w is a prime of F ′ above an element of v ∈ S3 then P ∈ Ωw|M ∩ T (F ′w).

Proof. Let L1, . . . , Lr denote the intermediate fields L ⊃ Li ⊃ F with Li/F

Galois with simple Galois group. Combining Hensel’s lemma with the Weil bounds
we see that T has an Fv-rational point for all but finitely many primes v of F .
Thus enlarging S1 to include, for each i, one sufficiently large prime that is split
completely in M but not split in Li (the prime may depend on i), we may suppress
the second condition on F ′.

Let M ′/F be a finite Galois extension such that

• M ′ ⊃M ;

• all places in S1 split completely in M ′;

• every place v of S2 is unramified in M ′ and if w is a prime of M ′ above v then
Ωw|M ∩ T (M ′w) 6= ∅;

• if w is a prime of M ′ above an element of v ∈ S3 then Ωw|M ∩ T (M ′w) 6= ∅.

Theorem 1.3 of [MB] tells us that we can find a finite Galois extension F ′′/M ′ and
a point P ∈ T (F ′′) such that

• every place v of S1 splits completely in F ′′ and if w is a prime of F ′′ above v
then P ∈ Ωv ⊂ T (F ′′w);

• every place v of S2 is unramified in F ′′ and if w is a prime of F ′′ above v then
P ∈ Ωv ∩ T (F ′′w);

• if w is a prime of F ′′ above an element of v ∈ S3 then P ∈ Ωv ∩ T (F ′′w).

Now take F ′ to be the normal closure of F ′′ over F .

We now turn to our first potential modularity theorem in the ordinary case.

Theorem 6.3. Suppose that F is a totally real field and that n is an even positive
integer. Suppose that l > n is a rational prime and that L/Ql is a finite extension
with ring of integers O and residue field F. Suppose also that

r : Gal(F/F )→ GSpn(O)

is a continuous representation which is unramified at all but finitely many primes.
Let r denote the semisimplification of the reduction of r modulo the maximal ideal
of O. Suppose moreover that r enjoys the following properties:

1. r has multiplier ε1−nl .
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2. The image r(Gal(F/F (ζl))) is big (in GLn(Fl)) and ζl 6∈ F
ker ad r

.

3. r is ordinary of weight a for some a ∈ (Zn)Hom(F,Ql),+.

Then there is a Galois totally real extension F ′/F such that r|Gal(F/F ′) is auto-
morphic of weight aF ′ .

Proof. The strategy is to find an N (as at the start of Section 4) and primes λ, λ′

of Q(ζN )+ (with say λ′ | l′) and t ∈ T0(F ′) such that V [λ]t ∼= r|Gal(F/F ′) while
V [λ′]t ∼= r′|Gal(F/F ′), where r′ : Gal(F/F ) → GLn(Zl′) is an ordinary weight 0
representation which is induced from a character θ of Gal(F/FM) for a suitable
CM field M . We will first choose N . Then we will choose M and a character φ
of A×M valued in a number field M ′ ⊃ M . Then we choose l′ to be a prime that
splits in M ′ and take θ to be the l′-adic character associated to φ. Having made
these choices, the bulk of the proof will be spent checking that r′ satisfies the
conditions of Theorem 2.3. To enable us to check (inter alia) that r′Gal(F/F ) is
big we arrange that φ, and hence θ, ramifies in a particular way above an auxiliary
prime q. We then argue that as r′ is automorphic over F ′, so is r′ ∼= V [λ′]t, and
hence by Theorem 2.3 so is Vλ′,t. Then r ∼= V [λ]t is automorphic over F ′ and
hence, by Theorem 2.3 again, so is r.

Step 1: Choosing N , λ, M , q, φ, l′, λ′, θ and r′. Choose an odd positive integer
N divisible only by primes which do not ramify in F

ker r
(ζl) and a prime λ | l of

Q(ζN )+ such that there is an embedding F ↪→ Z[ζN ]+/λ. (Use Lemma 6.1.) Fix
such an embedding. Note that Q(ζN ) is linearly disjoint from F

ker r
(ζl) over Q.

Choose an imaginary CM field M which is cyclic Galois over Q of degree n in
which all primes which ramify in F

ker r
(ζNl) are unramified. Let τ denote a gener-

ator of Gal(M/Q). Choose an odd rational prime q - Nl which splits completely in
M and is unramified in F , and a prime q of M above q. Choose a finite extension
M ′/M and a character with open kernel

φ : A×M → (M ′)×

such that

• if α ∈M× then

φ(α) =
n/2−1∏
i=0

τ i(α)iτ i(cα)n−1−i;

• φ(φ ◦ c) =
∏
v-∞ | · |1−nv ;

• φ is unramified above lN ;

• φ is unramified at all primes above q except q and qc, but q |#φ(O×M,q).
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(See Lemma 2.2 of [HSBT].) Then choose a rational prime l′ such that

• l′ splits completely in M ′(ζN );

• l′ is unramified in F ;

• φ is unramified at l′;

• l′ - lq;
• l′ > n+ 1.

Also choose a prime λ1 | l′ of M ′ and a prime λ′ | l′ of Q(ζN )+. Let

θ : Gal(Q/Q)→ O×M ′,λ1
= Z×l′

be the character defined by

θ(Artα) = φ(α)
n/2−1∏
i=0

τ i(αl′)−i(τ ic)(αl′)i+1−n,

and let θ denote the reduction of θ modulo λ1. Note that θθc = ε1−nl′ .
Looking at inertia above q we see that if i, j, k ∈ Z/nZ and if

θθ
τk

= θ
τ i

θ
τj

on Gal(Q/FM(ζl′)) then we have one of the following alternatives (‡): either

• {0, k} = {i, j} ⊂ Z/nZ, or

• k = i− j = n/2 ∈ Z/nZ.

(Recall that q |#θ(IMq) but that θ is unramified at all other primes of M above q
except cq. Note also that θθ

c
is unramified above q.)

Let τ̃ ∈ Gal(F/F (ζl′)) lift τ ∈ Gal(M/Q). Then

θ(τ̃n) = θ(c(cτ̃n/2)c(cτ̃n/2)) = (θθ
c
)(cτ̃n/2) = −1.

Also let r′ denote the induction of θ from Gal(Q/M) to Gal(Q/Q) and let r′ denote
the reduction of r′ modulo λ1. The representation r′ has a basis e0, . . . , en−1 where

r′(σ)ei = θτ
i

(σ)ei for σ ∈ Gal(F/M),(6.1)

r′(τ̃)ei = ei−1 for i = 1, . . . , n− 1,(6.2)

r′(τ̃)e0 = −en−1.(6.3)

Define a perfect alternating pairing on r′ by

〈ei, ej〉 =


1 if j = i+ n/2,
−1 if i = j + n/2,
0 otherwise.



A Family of Calabi–Yau Varieties and Potential Automorphy II 69

This pairing is preserved by r up to scalar multiples and we see that

r′ : Gal(F/Q)→ GSpn(Zl′)

with multiplier ε1−nl′ .

Note that F
ker(r×r′)

(ζll′) is linearly disjoint from Q(ζN ) over Q (as they ramify
at disjoint sets of primes).

Step 2: Checking the conditions of Theorem 2.3 for r′. Let f0, . . . , fn−1 denote the
basis of Hom(r′,Zl′) dual to e0, . . . , en−1, so that {ei⊗fj} is a basis of ad r′. Then
we can decompose

ad r′ ⊗Zl′ Fl′ =
( ⊕
χ∈Hom(Gal(M/Q),Fl′ )

Wχ

)
⊕
(n−1⊕
i=1

Wi

)
,

where

• Wχ is the span of
∑n−1
i=0 χ(τ i)ei ⊗ fi;

• Wi is the span of {ej ⊗ fi+j}j=0,...,n−1.

Thus Wχ
∼= Fl′(χ) and

Wi
∼= IndGal(F/Q)

Gal(F/M)
θ/θ

τ i

.

For i, j = 1, . . . , n− 1 we have θ/θ
τ i 6= θ

τj

/θ
τ i+j

on Gal(F/FM(ζl′)) (see alterna-
tive (‡) above) and so we deduce that Wi is an irreducible Fl′ [Gal(F/F (ζl′)]-

module. If i, i′ = 1, . . . , n − 1, j = 0, . . . , n − 1 and θ/θ
τ i

= θ
τj

/θ
τ i
′+j

on
Gal(F/FM(ζl′)) then we see that either i = i′ or i + i′ = n (see alternative
(‡) above). Thus Wi

∼= Wi′ as Gal(F/F (ζl′))-modules (if and) only if i = i′ or
i+ i′ = n.

We can choose σ0 ∈ Gal(Q/M(ζl′)) such that θ(σ0) has order divisible by q

but θ
τ i

(σ0) = 1 for i = 1, . . . , n/2−1. (For instance choose σ0 in the inertia group
at q and recall that q |#θ(IMq).) Then

πr′(σ0),θ(σ0)

(n−1∑
i=0

χ(τ i)ei ⊗ fi
)
ir′(σ0),θ(σ0) = 1

and so
πr′(σ0),θ(σ0)Wχ ir′(σ0),θ(σ0) 6= (0)

for all χ ∈ Hom(Gal(M/Q),F×l′ ). If W is any other irreducible Gal(F/F (ζl′)-
submodule of ad r ⊗ Fl′ then it contains a vector either of the form

αe0 ⊗ fi + βen/2+i ⊗ fn/2
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for some i = 1, . . . , n/2− 1, or of the form

e0 ⊗ fn/2.

Let ζ denote a non-trivial nth root of unity in Fl′ with, in the former case, α +
ζ−2iβ 6= 0. Then either

πr′(eτ),ζ(αe0 ⊗ fi + βen/2+i ⊗ fn/2)ir′(eτ),ζ = ζi(α+ ζ−2iβ)/n 6= 0,

or
πr′(eτ),ζ(e0 ⊗ fn/2)ir′(eτ),ζ = ζn/2/n.

As l does not divide #r′(Gal(F/F (ζl′))), we conclude that r′(Gal(F/F (ζl′))) is
big.

Choose σ1 ∈ Gal(F/FM) such that εl′(σ1) mod l′ has order l′−1 (e.g. choose
a suitable element of an inertia group above l′). Let

σ2 =
n−1∏
j=0

τ̃ jσ1τ̃
−j .

Then

θ
τ i

(σ2) =
n−1∏
j=0

θ
τj

(σ1)

is independent of i so that ad r′(σ2) = 1. However

εl′(σ2) mod l′ = εl′(σ1)n mod l′ 6= 1.

Thus ζl′ 6∈ F
(ker ad r′)∩Gal(F/F )

.

Step 3: Completion of the proof. Let T0 be the scheme described in Section 4 corre-
sponding to N and let Vλ and Vλ′ be the sheaves on (T0×SpecF )et corresponding
to N and n. We can choose a Galois extension F ′/F and a point t ∈ T0(F ′) such
that

• F ′ ⊃ F (ζN )+;

• F ′ is totally real;

• F ′/F is linearly disjoint from F
ker(r×r′)

(ζll′) over F ;

• V [λ]t ∼= r|Gal(F/F ′);

• V [λ′]t ∼= r′|Gal(F/F ′);

• v(t) < 0 for all places v | l of F ′;

• v(t) > 0 for all places v | l′ of F ′.
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(Apply Moret-Bailly’s Proposition 6.2 to Tr×r′ as in the proof of Theorem 3.1 of
[HSBT]. We take F of Proposition 6.2 to be F ; we take M of Proposition 6.2 to

be F (ζN )+; and we take L of Proposition 6.2 to be F
ker(r×r′)

(ζll′). We take T of
Proposition 6.2 to be Tr×r′ , as defined in the paragraph after the proof of Lemma
4.1. We also take S1 to consist of the infinite places of F , and S3 to consist of
the divisors of ll′ (and S2 = ∅). For v ∈ SF (ζN )+

1 we take Ωv = Tr×r′(F (ζN )+
v ).

For v | l we take Ωv to be the set of points in Tr×r′(F v) which map to a point
t ∈ T0(F v) ⊂ F v with v(t) < 0. For v | l′ we take Ωv to be the set of points
in Tr×r′(F v) which map to a point t ∈ T0(F v) ⊂ F v with v(t) > 0. Note that
by Proposition 4.2, Tr×r′ is geometrically connected. If v |∞ then any point in
T0(Fv) lifts to a point in Tr×r′(Fv) as all involutions in GSpn(k) with multiplier
−1 are conjugate (for any field k of characteristic not 2). Hence for v |∞ we have
Ωv 6= ∅.)

From Theorem 4.2 of [AC] we know that r′ is automorphic over F ′ of weight 0.
Thus r′ ∼= V [λ′]t is ordinarily automorphic over F ′ of level prime to l′. By
Lemma 5.3 we see that Vλ′,t is ordinary of weight 0. By Theorem 2.3 we see
that it is automorphic of weight 0. Moreover it follows from Lemma 5.1 and
Theorem 1.1 that it arises from a RAESDC automorphic representation π of
weight 0 with πv a Steinberg representation for all v | l. (Because πv is generic,
rl(ı−1πv)∨(1 − n)ss is unramified and rl(ı−1πv)∨(1 − n)ss(Frobv) has eigenvalues
of the form {α, α(#k(v)), . . . , α(#k(v))n−1}, it follows that πv is Steinberg.) Thus
r ∼= Vt[λ] is ordinarily Steinberg automorphic over F ′. Applying Theorem 2.3 again
we conclude that r is automorphic over F ′ of weight aF ′ .

We now turn to a first potential modularity theorem for the case of ‘niveau
two’.

Theorem 6.4. Suppose that F is a totally real field and that n is an even positive
integer. Let S denote a finite set of rational primes which contains 2 and all primes
which ramify in F . Suppose that l is a rational prime and write l + 1 = N1N2,
where N1 is divisible only by primes in S and N2 is divisible by no prime in S.
Suppose that N2 > n+ 1. Suppose also that

r : Gal(F/F )→ GSpn(Zl)

is a continuous representation which is unramified outside S∪{l}. Let r denote the
semisimplification of the reduction of r modulo l. Suppose moreover that r enjoys
the following properties:

1. r has multiplier ε1−nl .

2. The image r(Gal(F/F (ζl))) is big (in GLn(Fl)) and ζl 6∈ F
ker ad r

.
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3. • l is unramified in F ;

• if v | l is a prime of F then r is crystalline at v;

• if v | l is a prime of F then

r|IFv ∼ ω
1−n
2 ⊕ ω−l+2−n

2 ⊕ ω−2l+3−n
2 ⊕ · · · ⊕ ω(1−n)l

2 ;

• if v | l is a prime of F then

dimFv gri(r ⊗Zl BDR)Gal(Fv/Fv) = 0

unless 0 ≤ i < n, in which case

dimFv gri(r ⊗Zl BDR)Gal(Fv/Fv) = 1.

Then there is a Galois totally real extension F ′/F such that r|Gal(F/F ′) is auto-
morphic of weight 0.

Proof. The strategy is very similar to the proof of Theorem 6.3. We apply the
results of Section 4 with N = N2. We will find primes λ, λ′ of Q(ζN2)+ (with say
λ′ | l′) and t ∈ T0(F ′) such that V [λ]t ∼= r|Gal(F/F ′) while V [λ′]t ∼= r′|Gal(F/F ′),
where r′ : Gal(F/F ) → GLn(Zl′) is an ordinary weight 0 representation which is
induced from a character θ of Gal(F/FM) for a suitable CM field M . We first
choose M and a character φ of A×M valued in a number field M ′ ⊃ M . Then we
choose l′ to be a prime that splits in M ′ and take θ to be the l′-adic character
associated to φ. (If we choose l′ first it is hard to construct a suitable θ valued in
Z×l′ , as opposed to some extension of Zl′ .) Having made these choices we must check
that r′ satisfies the conditions of Theorem 2.3. To enable us to check (inter alia)
that r′(Gal(F/F )) is big we arrange that φ and hence θ ramifies in a particular
way above an auxiliary prime q. We then argue that as r′ is automorphic over
F ′, so is r′ ∼= V [λ′]t, and hence by Theorem 2.3 so is Vλ′,t. Then r ∼= V [λ]t is
automorphic over F ′ and hence, by Theorem 2.1, so is r.

We remark that in order to apply Theorem 2.1 we need to choose F ′/F

unramified above l. (This is in contrast with the proof of Theorem 6.3, where we
could apply the stronger Theorem 2.3.) To find such an F ′ we need some t0 in the
maximal unramified extension of Ql such that

V [λ]t0 ∼ ω1−n
2 ⊕ ω−l+2−n

2 ⊕ ω−2l+3−n
2 ⊕ · · · ⊕ ω(1−n)l

2

as a representation of IQl . The only suitable t0 we know of is t0 = 0 and this only
works if N | (l + 1). This in particular implies that l splits in Q(ζN )+, so that λ
has residue field Fl. Thus we need to assume that r is valued in GSpn(Fl). (In fact
for simplicity we assume that r is valued in GSpn(Zl), but all the proof actually
requires is that r is valued in GSpn(Fl).)
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Step 1: Choosing M , q, φ, l′, θ and r′. Choose an imaginary CM field M which
is cyclic Galois over Q of degree n in which all primes which ramify in F

ker r
(ζN2l)

are unramified. Let τ denote a generator of Gal(M/Q). Choose an odd rational
prime q - N2l which splits completely in M and is unramified in F , and a prime q

of M above q. Choose a finite CM extension M ′/M which is Galois over Q, and a
character with open kernel φ : A×M → (M ′)× such that

• if α ∈M× then

φ(α) =
n/2−1∏
i=0

τ i(α)iτ i(cα)n−1−i;

• φ(φ ◦ c) =
∏
v-∞ | · |1−nv ;

• φ is unramified above lN2;

• φ is unramified at all primes above q except q and qc, but q |#φ(O×M,q).

(See Lemma 2.2 of [HSBT].) Then choose a rational prime l′ such that

• l′ splits completely in M ′(ζN2);

• l′ unramified in F (ζlq);

• φ unramified at l′;

• l′ > n+ 1.

Also choose a prime λ1 | l′ of M ′. Let

θ : Gal(Q/Q)→ O×M ′,λ1
= Z×l′

be the character defined by

θ(Artα) = φ(α)
n/2−1∏
i=0

τ i(αl′)−i(τ ic)(αl′)i+1−n,

and let θ denote the reduction of θ modulo λ1. Also let r′ denote the induction of
θ from Gal(Q/M) to Gal(Q/Q) and let r′ denote the reduction of r′ modulo λ1.
Exactly as in the proof of Theorem 6.3 we see that

r′ : Gal(F/Q)→ GSpn(Zl′),

that r′(Gal(F/F (ζl′))) is big, and that ζl′ 6∈ F
(ker ad r′)∩Gal(F/F )

.

Step 2: Completion of the proof. Let λ and λ′ be primes of Q(ζN2) above l and l′.
Let T0 be the scheme described in Section 4 corresponding to N2 and let Vλ and
Vλ′ be the sheaves on (T0 × SpecF )et corresponding to N2 and n. We can choose
a Galois extension F ′/F and a point t ∈ T0(F ′) such that

• F ′ ⊃ Q(ζN2)+;

• F ′ is totally real and l is unramified in F ′;
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• F ′/F is linearly disjoint from F
ker(r×r′)

(ζll′) over F ;

• V [λ]t ∼= r|Gal(F/F ′);

• V [λ′]t ∼= r′|Gal(F/F ′);

• v(t) > 0 for all places v | l of F ′;

• v(t) > 0 for all places v | l′ of F ′.

Apply Moret-Bailly’s Proposition 6.2 to Tr×r′ as in the proof of Theorem 3.1 of
[HSBT]. We also take S1 to consist of the infinite places of F and S3 to consist
of the divisors of ll′ (and S2 = ∅). For v ∈ SF (ζN )+

1 we take Ωv = Tr×r′(F (ζN )+
v ).

For v | l we take Ωv to be the set of points in Tr×r′(F v) which map to a point
t ∈ T0(F v) ⊂ F v with v(t) < 0. For v | l′ we take Ωv to be the set of points in
Tr×r′(F v) which map to a point t ∈ T0(F v) ⊂ F v with v(t) > 0. Note that by
Proposition 4.2, Tr×r′ is geometrically connected. If v |∞ then any point in T0(Fv)
lifts to a point in Tr×r′(Fv) as all involutions in GSpn(k) with multiplier −1 are
conjugate (for any field k of characteristic not 2). Hence for v |∞ we have Ωv 6= ∅.
(Apply Moret-Bailly’s Proposition 6.2 to Tr×r′ as in the proof of Theorem 3.1 of
[HSBT]. We take F of Proposition 6.2 to be F ; we take M of Proposition 6.2

to be F (ζN2)+; and we take L of Proposition 6.2 to be F
ker(r×r′)

(ζll′). We take
T of Proposition 6.2 to be Tr×r′ , as defined in the paragraph after the proof of
Lemma 4.1. We take S1 to consist of the infinite places of F and S2 to consist

of places above l, and S3 to consist of places above l′. For v ∈ S
F (ζN2 )+

1 we
take Ωv = Tr×r′(F (ζN2)+

v ), which is non-empty as in the proof of Theorem 6.3.
For v | l we take Ωv to be the set of points in Tr×r′(F nr

v ) which map to a point
t ∈ T0(F nr

v ) ⊂ F nr
v with v(t) > 0. This is non-empty as by Lemma 5.3 it contains a

point above 0 ∈ T0(F nr
v ). For v | l′ we take Ωv to be the set of points in Tr×r′(F v)

which map to a point t ∈ T0(F v) ⊂ F v with v(t) > 0. Note that by Proposition
4.2, Tr×r′ is geometrically connected.)

From Theorem 4.2 of [AC] we know that r′ is automorphic over F ′ of weight 0.
Thus r′ ∼= V [λ′]t is ordinarily automorphic over F ′ of level prime to l′. By Lemma
5.3 we see that Vλ′,t is ordinary of weight 0. By Theorem 2.3 we see that it is
automorphic of weight 0. Moreover by Lemma 5.1 and Theorem 1.1, it arises from
a RAESDC automorphic representation π of weight 0 with πv unramified for all
v | l. Thus r ∼= Vt[λ] is automorphic over F ′ of level prime to l. Applying Theorem
2.1 we conclude that r is automorphic over F ′ of weight 0.

We remark that the condition on l in the first paragraph of the theorem only
excludes a set of primes of Dirichlet density zero. (This may be proved just the
same way as Proposition 11 of [BL1].)
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§7. Potential modularity II

In this section we will use an idea of [H] to improve upon the theorems of the last
section. Before turning to the main business of this section, let us recall some facts
about infinitesimal characters.

Let T ⊂ GLn denote the diagonal maximal torus. Also let T̃ denote the
restriction of scalars of TC from C to R. We will identify

X∗(T ) ∼= Zn via (m1, . . .mn) : diag(t1, . . . , tn) 7→ tm1
1 . . . tmnn .

The Weyl group of T in GLn is the symmetric group Sn and under the above
identification it acts on Zn by permuting the coordinates. Similarly we may identify

X∗(T̃ ×R C) ∼= X∗(T )⊕X∗(T ) ∼= Zn ⊕ Zn,

where

((m1, . . . ,mn), (m′1, . . . ,m
′
n)) : diag(t1, . . . , tn) 7→ tm1

1 (ct1)m
′
1 . . . tmnn (ctn)m

′
n .

The Weyl group of T̃ × C in the base change to C of the restriction of scalars of
GLn from C to R is Sn × Sn, which acts on Zn ⊕ Zn by each factor of Sn × Sn
permuting the coordinates of the corresponding factor of Zn ⊕ Zn.

The centre of the universal enveloping algebra of (Lie GLn(R)) ⊗R C (resp.
(Lie GLn(C)) ⊗R C) acts by a character (the infinitesimal character) on any irre-
ducible admissible ((Lie GLn(R))⊗R C, O(n))-module (resp. ((Lie GLn(C))⊗R C,
U(n))-module) π. Harish-Chandra parametrised such a character by an element

zπ ∈ (X∗(T )⊗Z C)/Sn ∼= Cn/Sn

(resp.
zπ ∈ (X∗(T̃ ×R C)⊗Z C)/(Sn × Sn) ∼= Cn/Sn × Cn/Sn).

We call π regular if the pre-image of zπ in X∗(T )⊗Z C (resp. X∗(T̃ ×R C)⊗Z C)
has cardinality n! (resp. (n!)2). We call π algebraic if zπ ∈ ρ + X∗(T ) (resp.
ρ̃+X∗(T̃ ×R C)), where

ρ = ((n− 1)/2, (n− 3)/2, . . . , (1− n)/2)

and ρ̃ = (ρ, ρ). Then π has the same infinitesimal character as an irreducible
algebraic representation of GLn (resp. the restriction of scalars of GLn from C
to R) if and only if π is regular and algebraic.

If π is an irreducible admissible ((Lie GLn(R))⊗R C, O(n))-module and if πC
denotes its base change to C then

zπC = (zπ, zπ).
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If πi is an irreducible admissible ((Lie GLni(R)) ⊗R C, O(ni))-module (resp.
((Lie GLni(C))⊗R C, U(ni))-module) for i = 1, 2 then zπ1�π2 is the image of

(zπ1 , zπ2) ∈ (Zn1/Sn1)× (Zn2/Sn2)

(resp. ((Zn1 ⊕ Zn1)/(Sn1 × Sn1))× ((Zn2 ⊕ Zn2)/(Sn2 × Sn2))) in Zn1+n2/Sn1+n2

(resp. ((Zn1+n2 ⊕ Zn1+n2)/(Sn1+n2 × Sn1+n2))).
The following observation will be very important for us.

Lemma 7.1. Suppose that π is an irreducible, unitary, admissible ((Lie GLn(C))
⊗R C, U(n))-module and that zπ ∈ (1/2)X∗(T̃ ×R C). Then

πc ∼= π∨.

Proof. It follows from the classification of irreducible, unitary, admissible
((Lie GLn(C))⊗R C, U(n))-modules in [Tad] that π is the full normalized induction
of a unitary character of some parabolic subgroup of GLn(C). The lemma is then
immediate.

We will also need a slight strengthening of the notion of ‘big’ introduced in
[CHT].

Definition 7.2. Let k/Fl be algebraic and let m be a positive integer. We will
call a subgroup H ⊂ GLn(k) m-big if the following conditions are satisfied:

• H has no l-power order quotient.

• H0(H, gl0n(k)) = (0).

• H1(H, gl0n(k)) = (0).

• For all irreducible k[H]-submodules W of gln(k) we can find h ∈ H and α ∈ k
with the following properties:

– the element α is a simple root of the characteristic polynomial of h and if β
is another root then αm 6= βm;

– πh,α ◦W ◦ ih,α 6= (0).

We will use big as a synonym for 1-big. (This agrees with the terminology of
[CHT].)

The criteria given in Section 2.5 of [CHT] for a subgroup H ⊂ GLn(k) to be
big, easily generalise to criteria for H to be m-big. We state just two examples.
The proofs are so similar to those of Lemma 2.5.2 and Corollary 2.5.3 of [CHT]
we do not give them here.

Lemma 7.3. Keep the notation of the definition and assume that l >

2(n− 1)m+ 1. Suppose also that
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• H has no l-power order quotient;

• H contains Symmn−1 SL2(Fl);

• H1(H, gl0n(k)) = (0).

Then H is m-big.

Lemma 7.4. Let m, n and d be positive integers. Then there is a constant C
(depending on m, n and d) with the following properties. If l > C is a prime and
if k/Fl is an extension of degree ≤ d and if H ⊂ GLn(k) is a subgroup satisfying

• H has no l-power order quotient;

• H contains Symmn−1 SL2(Fl),

then H is m-big.

We now turn to the main theorems of this section, first the ordinary case.

Theorem 7.5. Suppose that F is a totally real field and that n is a positive in-
teger. Suppose that l > 2n is a rational prime and that L/Ql is a finite extension
with ring of integers O, maximal ideal λ and residue field F. Suppose also that

r : Gal(F/F )→ GLn(O)

is a continuous representation which is unramified at all but finitely many primes.
Suppose also that there is a perfect pairing

〈 , 〉 : Ln × Ln → L

and a character
µ : Gal(F/F )→ O×

such that
〈gx, gy〉 = µ(g)〈x, y〉

for all x, y ∈ Ln and all g ∈ Gal(F/F ). Let r denote the semisimplification of the
reduction of r modulo λ. Suppose moreover that r enjoys the following properties.

1. There is an ε ∈ {±1} such that

• for every place v |∞ of F we have µ(cv) = ε;

• for every x, y ∈ Ln we have 〈y, x〉 = ε〈x, y〉.

2. [F
ker ad r

(ζl) : F
ker ad r

] > 2.

3. The image r(Gal(F/F (ζl))) is 2-big (in GLn(Fl)).
4. r is ordinary of weight a for some a ∈ (Zn)Hom(F,Ql),+.
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Then there is a Galois totally real extension F ′/F such that r|Gal(F/F ′) is auto-
morphic of weight aF ′ .

Proof. The strategy is to tensor r with a representation r′ induced from a charac-
ter θ of MF , where M is a suitable imaginary quadratic field. The character θ is
chosen so that there is a perfect pairing on r′ with the opposite parity to the given
pairing on r, and so that the tensor product r′′ = r ⊗ r′ has multiplier a power
of the cyclotomic character. We then apply Theorem 6.3 to r′′. Much of the proof
will be devoted to checking that r′′(Gal(F/F )) is big. Finally we use the theory
of base change to deduce the automorphy of r from the automorphy of r′′.

Step 1: Choice of b, M , q, φ, θ, r′. As r is absolutely irreducible, the dual lattice
of On in Ln under 〈 , 〉 is λmOn for some integer m. Replacing 〈 , 〉 by α〈 , 〉,
where λm = (α), we may suppose that it induces a perfect duality on On.

Choose an integer b strictly greater than aτ,1−aτ,n for all τ : F ↪→ Ql. Define
a′′ ∈ (Z2n)Hom(F,Ql),+ by

a′′τ = (aτ,1 + b, . . . , aτ,n + b, aτ,1, . . . , aτ,n).

Also choose an imaginary quadratic fieldM which is linearly disjoint from F
ker r

(ζl)
over Q and in which l splits. Let δM denote the quadratic character of Gal(F/Q)
corresponding to M/Q. Choose a rational prime q which splits in M , is unramified
in F

ker r
(ζ4l) and does not divide #r(Gal(F/F )). Also choose a prime q of M

above q. Choose a CM field M0 and a prime λ0 of M0 above l and a continuous
embedding L ↪→M0,λ0 and a continuous character

ψ : Gal(F/F )→ O×M0
with ψ ≡ µ−1εb+1−2n

l δ
(1+ε)/2
M mod λ0.

Choose a finite CM extension M ′/MM0 and a character φ : A×MF → (M ′)× with
open kernel such that

• if α ∈ (MF )× then φ(α) = (NMF/Mα)b;

• φ|A×F = (
∏
v-∞ | · |−bv )(

∏
v |∞ sgnbv)(ψ ◦ArtF );

• q |#φ(O×FM,q).

(See Lemma 2.2 of [HSBT].) Choose a prime λ′ of M ′ above λ0. Let

θ : Gal(F/FM)→ O×M ′,λ′

be the character defined by

θ(ArtFM α) = φ(α)(NFM/Mα)−bλ′|M .



A Family of Calabi–Yau Varieties and Potential Automorphy II 79

The induced representation

r′ = IndGal(F/FM)

Gal(F/F )
θ

has a basis e1, e2 such that r′(c)e1 = e2 and r′(c)e2 = e1, and for σ ∈ Gal(F/M),

r′(σ)e1 = θ(σ)e1 and r′(σ)e2 = θ(cσc)e2.

Define a perfect pairing 〈 , 〉′ on r′ by setting

〈ei, ei〉′ = 0 for i = 1, 2,

〈e1, e2〉′ = 1, 〈e2, e1〉′ = −ε.

Then
〈r′(σ)x, r′(σ)y〉′ = εl(σ)−bψ(σ)δM (σ)(1+µ(cv))/2〈x, y〉

for all x, y ∈ (M ′λ′)
2 and all σ ∈ Gal(F/Q). Let f1, f2 denote the basis of

Hom(r′,OM ′,λ′) dual to e1, e2.
Now define

r′′ = r ⊗ r′ : Gal(F/F )→ GSp2n(OM ′,λ′).

It has multiplier µε−bl ψδ
(1+µ(cv))/2
M which is congruent to ε1−2n

l modulo λ′. Let r′

(resp. r′′) denote the reduction of r′ (resp. r′′) modulo λ′.

Step 2: Automorphy of r′′ = r⊗ r′. As the primes that ramify in F
ker r

(ζl)/Q and
in M/Q are disjoint sets we may find σ ∈ Gal(F/F

ker ad r
M) so that εl(σ) mod l

has order greater than 2. Let

σ′ = σ(cvσcv).

Then ad r′′(σ′) = 1 while εl(σ′) = εl(σ)2 is not equivalent to 1 modulo l. Thus

ζl 6∈ F
ker ad r′′

.
Let H (resp. H ′, resp. H ′′) denote the image (ad r) Gal(F/F (ζl)) (resp.

(ad r′) Gal(F/F (ζl)), resp. (ad r′′) Gal(F/F (ζl))). Note that the only scalar ele-
ment of H or H ′ (thought of as subgroups of Aut(ad r) and Aut(ad r′)) is the
identity (look at the action of such an element on 1n) and so

H ×H ′ ↪→ Aut(ad r′′).

Thus there is a finite group H and surjections π : H →→ H and π′ : H ′ →→ H so
that H ′′ is the set of elements (h, h′) ∈ H × H ′ such that π(h) = π′(h′). Let K
(resp. K ′) denote the kernel of π (resp. π′). Note that the image of the inertia
group at any prime above q in H ′ is contained in K ′ (as r is unramified at q). Also
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note that the restriction of H ′ → Gal(MF (ζl)/F (ζl)) to K ′ is surjective (as M is
linearly disjoint from F

ker r
(ζl) over Q).

Write
ad r ⊗F Fl = V ⊕m0

0 ⊕ V ⊕m1
1 ⊕ · · · ⊕ V ⊕mss ,

with 1 = V0, V1, . . . , Vs pairwise non-isomorphic, irreducible Fl[Gal(F/F (ζl))]-
modules, and with 1 = m0,m1, . . . ,ms positive integers. Then

ad r′′ ⊗OM′/λ′ Fl =
s⊕
j=0

(
V
mj
j ⊕ (Vj ⊗ δM )mj ⊕ (IndGal(F/F (ζl))

Gal(F/FM(ζl))
(Vj ⊗ θ/θ

c
))mj

)
.

Here we identify Vj with Vj⊗(e1⊗f1+e2⊗f2); Vj⊗δM with Vj⊗(e1⊗f1−e2⊗f2);

and IndGal(F/F (ζl))

Gal(F/FM(ζl))
(Wj⊗θ/θ

c
) with the span of Vj⊗ (e1⊗f2) and Vj⊗ (e2⊗f1).

These constituents are all irreducible as Vj |Gal(F/FM(ζl))
is irreducible and Vj 6∼=

Vj ⊗ (θ/θ
c
)2 as Fl[Gal(F/FM(ζl))]-modules (as one is ramified above q and the

other is not). In particular

H0((ad r′′)(Gal(F/F (ζl))), ad0 r′′) = (0)

(as no Vj is isomorphic to δM as M is linearly disjoint from F
ker r

). Moreover

(0) = H1(H, ad0 r) = H1(H ′′/K ′, (ad0 r′′)K
′
) ∼→ H1(H ′′, ad0 r′′)

(as l - #K ′).
Fix a copy Vj ⊂ ad r ⊗F Fl. We can find a σ ∈ Gal(F/MF (ζl)) and a simple

root α of the characteristic polynomial of r(σ) such that πr(σ),αVjir(σ),α 6= (0).
Altering σ by elements of inertia subgroups at primes above q we may further
suppose that the ratio (θ/θ

c
)(σ) does not equal α′/α for any root α′ (including α)

of the characteristic polynomial of r(σ) (as q |#(θ/θ
c
)(IMq) and q > n). Then

αθ(σ) is a simple root of the characteristic polynomial of r′′(σ) and

πr′′(σ),αθ(σ)Vj ⊗ (e1 ⊗ f1 ± e2 ⊗ f2)ir′′(σ),αθ(σ)

= πr′′(σ),αθ(σ)Vj ⊗ (e1 ⊗ f1)ir′′(σ),αθ(σ) = πr(σ),αVjir(σ),α 6= (0)

for both signs ±.
Continue to fix a copy Vj ⊂ ad r⊗F Fl. Choose σ ∈ Gal(F/F (ζl)) and a simple

root α of the characteristic polynomial of r(σ) such that

• σ maps to c ∈ Gal(MF (ζl)/F (ζl));

• πr(σ),αVjir(σ),α 6= (0);

• −α is not a root of the characteristic polynomial of r(α).
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(We are using the assumption that r(Gal(F/F (ζl))) is 2-big.) Write

r′(σ)ei = βiei+1

for i = 0, 1 (where we take e2 = e0). The roots of the characteristic polynomial
of r′(σ) are exactly ±β where β2 = β0β1 and corresponding eigenvectors are
e0 ± β0/βe1. Then αβ is a simple root of the characteristic polynomial of r′′(σ)
and

πr′′(σ),αβ(v ⊗ e0 ⊗ f1)ir′′(σ),αβ = (β/2β1)πr(σ),αvir(σ),α.

For some choice of v this will be non-zero. We conclude that r′′(Gal(F/F (ζl))) is
big.

It follows from Theorem 6.3 that there is a Galois totally real extension F ′/F ,
an isomorphism ı : M ′λ′

∼→ C and a RAESDC automorphic representation Π of
GL2n(AF ′) of weight ı∗a′′ and such that rl,ı(Π) ∼= r′′.

Step 3: Automorphy of r. We see that Π⊗(δM ◦ArtF ′) ∼= Π, and hence by Theorem
4.2 of [AC] there is a cuspidal automorphic representation π of GLn(AF ′M ) such
that for all places v of F ′M the representation πv � (πc)v is the base change of
Πv|F ′ | · |

−n/2
v|F ′

from F ′v|F ′
to (F ′M)v. Note that for v |∞ the representation πv is

regular algebraic.
There is also an algebraic Hecke character χ of A×F ′/(F ′)× such that Π∨ =

Π ⊗ ((| · |−nχ) ◦ det). From the classification of algebraic grossencharacters we
know that there is an integer w such that χ| · |−w has finite image. It follows
that π∨ ∼= π ⊗ (χ ◦NF ′M/F ′ ◦ det) or πc(χ ◦NF ′M/F ′ ◦ det). We wish to exclude
the first possibility. If it held then π ⊗ (| · |w/2 ◦ det) would have unitary central
character and so would itself be unitary. Also, for v |∞, the infinitesimal character
of πv ⊗ (| · |w/2v ◦ det) has Harish-Chandra parameter lying in (1/2)X∗(T̃ ×R C).
Hence using Lemma 7.1 we would see that

πv � πcv
∼= πv � ((πv ⊗ (| · |w/2 ◦ det))c ⊗ (| · |−w/2 ◦ det))
∼= πv � (π∨v ⊗ (| · |−w ◦ det))
∼= πv � (πv ⊗ ((χ| · |−w) ◦NMF ′/F ′ ◦ det)),

which would contradict the regularity of Πv|F ′ . We conclude that

π∨ ∼= πc(χ ◦NF ′M/F ′ ◦ det).

Thus π is a RAECSDC automorphic representation of GLn(AF ′M ) and it has an
associated Galois representation rl,ı(π).

We see that

rl,ı(π)⊕ rl,ı(π)c ∼= rl,ı(Π)|Gal(F/F ′M)
∼= (θ ⊕ θc)⊗ r|Gal(F/F ′M).
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Writing θ = rl,ı(θ̃) we see that

r|Gal(F/F ′M)
∼= rl,ı(π ⊗ (θ̃ ◦ det)−1) or rl,ı(πc ⊗ (θ̃ ◦ det)−1).

In either case the theorem follows from Lemma 1.5.

We now turn to the ‘niveau two’ case, where we are only able to prove a much
weaker theorem.

Theorem 7.6. Suppose that F is a totally real field; that n and b are positive
integers; that T is a finite set of rational primes and that µ : Gal(F/F )→ Q× is a
continuous character. Then we can find a Galois CM extension M ′/Q containing
the image of µ and a finite set S of rational primes, containing all primes that
ramify in M ′, with the following properties.

Suppose that l 6∈ S is a rational prime with [Frobl] = [c] ⊂ Gal(M ′/Q) and
that λ′ | l is a prime of M ′ (so that Mλ′

∼= Ql2). Suppose also that r : Gal(F/F )→
GLn(OM ′,λ′) is a continuous representation which is unramified outside T ∪ {l}.
Suppose also that there is a perfect pairing

〈 , 〉 : (M ′λ′)
n × (M ′λ′)

n →M ′λ′

such that
〈gx, gy〉 = εl(g)(1−n)bµ(g)〈x, y〉

for all x, y ∈ Ln and all g ∈ Gal(F/F ). Let r denote the semisimplification of the
reduction of r modulo the maximal ideal of O. Suppose moreover that r enjoys the
following properties:

1. There is an ε ∈ {±1} such that

• for every place v |∞ of F we have µ(cv) = ε(−1)(1−n)b;

• for all x, y ∈ Ln we have 〈y, x〉 = ε〈x, y〉.

2. c ◦ r ∼= r ⊗ µ−1.

3. [F
ker ad r

(ζl) : F
ker ad r

] > 2b.

4. The image r(Gal(F/F (ζl))) is 2b-big (in GLn(Fl)).
5. • l is unramified in F ;

• if v | l is a prime of F then r is crystalline at v;

• if v | l is a prime of F then

r|IFv ∼ ω
(1−n)b
2 ⊕ ω(−l+2−n)b

2 ⊕ ω(−2l+3−n)b
2 ⊕ · · · ⊕ ω(1−n)lb

2 ;

• if v | l is a prime of F and if τ : Fv ↪→M
′
λ′ then

dimM
′
λ′

gri((r ⊗M ′
λ′
M
′
λ′)⊗τ,Fv BDR)Gal(Fv/Fv) = 0
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unless i = (n− j)b for some j = 1, . . . , n in which case

dimM
′
λ′

gri((r ⊗M ′
λ′
M
′
λ′)⊗τ,Fv BDR)Gal(Fv/Fv) = 1.

Then there is a Galois totally real extension F ′/F such that r|Gal(F/F ′) is auto-
morphic.

Proof. The strategy is much the same as for the proof of Theorem 7.5. We will
again tensor r with a representation r′ induced from a character θ of MF , where
M/Q is an imaginary cyclic CM extension of degree 2b. The character θ is chosen
so that there is a perfect pairing on r′ with the opposite parity to the given pairing
on r, and so that the tensor product r′′ = r ⊗ r′ has multiplier a power of the
cyclotomic character. In this case the character θ must also be chosen so that r′′

has consecutive Hodge–Tate numbers. We then apply Theorem 6.4 to r′′. Much of
the proof will be devoted to checking that r′′(Gal(F/F )) is big. Finally we use the
theory of base change to deduce the automorphy of r from the automorphy of r′′.

One complication in this case is that we must ensure that r′′ is defined over Ql,
and not some extension. This is the reason for choosing a Galois CM extension
M ′/Q at the start and requiring that [Frobl] = [c] ⊂ Gal(M ′/Q). We choose M ′ so
that there is a continuous character φ : A×M → (M ′)×. Then for any prime l with
[Frobl] = [c] ⊂ Gal(M ′/Q) we obtain (from φ) a character θ : Gal(F/M) → Q×l2 .
Thus r′′ is at least defined over Ql2 . In the presence of the other assumption that we
will require for φ and θ, it turns out that r′′ will be defined over Ql if c◦r ∼= r⊗µ−1.
We remark that if c ◦ r ∼= r ⊗ µ then there is a finite extension F̃ /F such that
tr r(Gal(F/F̃ )) ⊂ Ql. We also remark that this is not such a strange condition, for
instance it is satisfied for the Galois representations attached to elliptic modular
forms and their tensor powers. (More generally suppose that ρ is a semisimple
representation of the Galois group of a number field over the completion Nλ of a
CM field N at a prime λ with cλ = λ. Suppose also that ρ is pure of some weight
w and essentially self-dual, say ρ ∼= ρ∨⊗ψ. Then c◦ρ ∼= ρ∨⊗ε−wl ∼= ρ⊗(ε−wl ψ−1).)

Another complication is that to apply Theorem 6.4 we must arrange that
l ≡ −1 mod N2 for a suitable integer N2, in particular N2 should not be divisible
by any primes at which r′′ ramifies. Hence we specify at the outset of the theorem
the set of primes T where r can ramify (excluding l), and choose a suitable integer
N (which will be the N2 of Theorem 6.4) at the outset of this proof. We then
choose M ′ ⊃ Q(ζN ) so that the condition [Frobl] = [c] ⊂ Gal(M ′/Q) implies that
l ≡ −1 mod N .

Step 1: Choice of N , M , q, φ, M ′, S, θ, r′, r′′. As r is absolutely irreducible, the
dual lattice of Znl2 in Qn

l2 under 〈 , 〉 is lmZnl2 for some integer m. Replacing 〈 , 〉
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by lm〈 , 〉 we may suppose that it induces a perfect duality on Znl2 . We may also
suppose that T contains 2 and all primes which ramify in F .

Choose an odd positive integer N > 2nb+1 only divisible by primes outside T .
Choose a cyclic CM extension M/Q of degree 2b in which all primes in T are
unramified; a generator τ of Gal(M/Q); and a generator κ of Gal(M/Q)∨. Note
that M is linearly disjoint from F over Q as they ramify at disjoint sets of primes.
Set δM = κb. Also choose a rational prime q such that

• q 6∈ T ;

• q splits completely in M ;

• q is unramified in F
ker r

;

• q − 1 > 2n;

and a prime q of FM above q. Choose a finite CM extension M ′/M(ζN ) and a
character φ : A×MF → (M ′)× with open kernel such that

• M ′/Q is Galois;

• if α ∈ (FM)× then

φ(α) =
b−1∏
j=0

(τ j(NFM/Mα))j(τ b+j(NFM/Mα))(n+1)b−1−j ;

• φ|A×
FM+

= (
∏
v-∞ |·|

1−(n+1)b
v )(

∏
v |∞ sgn1−(n+1)b

v )((µδ(1+ε)/2
M )−1◦ArtFM+), where

we think of µ as valued in M ′ via some embedding M ′ ↪→ Ql;

• q |#φ(O×FM,q), but φ is unramified at primes above q other than q and qc.

(See Lemma 2.2 of [HSBT].) Let S denote the union of T , the set of primes ≤ 2bn,
the set of primes which ramify in Q(ζN ) and the set of primes above which φ

ramifies.
Note that

(c ◦ φ)φ
∏
v-∞

| · |(n+1)b−1
v : A×FM/(FM)× → ((M ′)+

�0)×,

where the subscript � 0 indicates the subset of totally positive elements. As
((M ′)+

�0)× has no finite subgroups except for {1} we deduce that

(c ◦ φ) = (µ ◦ArtFM )φc.

(In case it has caused confusion we point out that φc is short for φ ◦ c.)
Now suppose λ′ | l are primes as in the theorem. Let

θ : Gal(F/FM)→ O×M ′,λ′
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be the character defined by

θ(ArtFM α) = φ(α)
b−1∏
j=0

(τ j(NFM/Mαl))−j(τn/2+j(NFM/Mαl))1+j−(n+1)b,

so that
c ◦ θ = µθc and θθc = ε

1−(n+1)b
l µ−1.

Also set
r′ = IndGal(F/F )

Gal(F/FM)
θ

and r′ = r′ mod λ′.
Choose a lifting τ̃ ∈ Gal(F/F ) of τ ∈ Gal(FM/F ) such that we have

(ε1−(n+1)b
l µ−1)(τ̃) = 1. (This is possible as M is linearly disjoint from the field

F
ker ε

1−(n+1)b
l µ−1

over Q, these extensions being ramified at disjoint sets of primes.)
Choose a non-zero primitive vector e0 in r′ such that

r′(σ)e0 = θ(σ)e0

for all σ ∈ Gal(F/FM), and set

ei = r′(τ̃ i)e0

for i = 1, . . . , 2b− 1. Then for σ ∈ Gal(F/MF ) we have

r′(σ)ei = θ(τ̃−iστ̃ i)ei.

Moreover

r′(τ̃)e2b−1 = θ(τ̃n)e0 = (θ ◦ArtFM )|A×
FM+

(Art−1
FM+ τ̃

b)

= (ε1−(n+1)b
l µ−1δ

(1+ε)/2
M )(τ̃ b)e0 = −εe0.

We define a perfect pairing on r′ by

〈ei, ej〉′ =


1 if j = i+ n/2,
−ε if i = j + n/2,
0 otherwise.

Then we see that

〈x, y〉′ = −ε〈y, x〉′ and 〈r′(σ)x, r′(σ)y〉′ = (ε1−(n+1)b
l µ−1)(σ)〈x, y〉′

for all x, y ∈ O2b
M ′,λ′ and σ ∈ Gal(F/F ). We also see that

c ◦ r′ ∼= µ⊗ r′.
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For v | l the restriction r′|Gal(Fv/Fv) is crystalline and

r′|Gal(Fv/Fv)
∼= ω

1−(n+1)b
2 ⊕ ω2−(n+1)b−l

2 ⊕ · · · ⊕ ω−nb−(b−1)l
2

⊕ ωl−(n+1)bl
2 ⊕ ω2l−(n+1)bl−1

2 ⊕ · · · ⊕ ω−nbl−(b−1)
2 .

Moreover for any τ ′ : Fv ↪→M
′
λ′ we have

dimM
′
λ′

gri((r′ ⊗M ′
λ′
M
′
λ′)⊗τ,Fv BDR)Gal(Fv/Fv) = 0

unless 0 ≤ i ≤ b− 1 or nb ≤ i ≤ (n+ 1)b− 1 in which case

dimM
′
λ′

gri((r′ ⊗M ′
λ′
M
′
λ′)⊗τ,Fv BDR)Gal(Fv/Fv) = 1.

Now set r′′ = r ⊗ r′ and r′ = r′′ mod λ′. Thus

r′′ : Gal(F/F )→ GSp2bn(OM ′,λ′)

and r′′ has multiplier ε1−2bn
l . Moreover c ◦ r′′ ∼= r′′. Because the Brauer group of

every finite extension of Fl is trivial we see that r′′ is conjugate to a homomorphism

Gal(F/F )→ GL2bn(Fl).

(Recall that Gal((OM ′/λ′)/Fl) ∼= {1, c}.) Then by a lemma of Carayol (see Lemma
2.1.10 of [CHT]) we see that r′′ can be replaced by a conjugate homomorphism

r′′ : Gal(F/F )→ GL2bn(Zl).

Consider the vector subspace V of Mn×n(Ql) consisting of anti-symmetric matrices
A such that

r′′(σ)tAr′′(σ) = ε1−2bn
l (σ)A

for all σ ∈ Gal(F/F ). The polynomial det does not vanish identically on V ⊗Ql
M ′λ′ and so does not vanish identically on V . Thus we can find a non-degenerate
alternating bilinear form 〈 , 〉′′ on Qn

l with

〈r′′(σ)x, r′′(σ)y〉′′ = ε1−2bn
l (σ)〈x, y〉′′

for all x, y ∈ Qn
l and all σ ∈ Gal(F/F ).

For v | l the restriction r′′|Gal(Fv/Fv) is crystalline and

r′′|Gal(Fv/Fv)
∼= ω1−2nb

2 ⊕ ω2−2nb−l
2 ⊕ · · · ⊕ ωl(1−2nb)

2 .

Moreover
dimFv gri(r′′ ⊗Zl BDR)Gal(Fv/Fv) = 0
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unless 0 ≤ i ≤ 2bn− 1 in which case

dimFv gri(r′′ ⊗Zl BDR)Gal(Fv/Fv) = 1.

Step 2: Automorphy of r′′. As the primes that ramify in F
ker r

(ζl)/Q and in M/Q
are disjoint sets we may find σ ∈ Gal(F/F

ker ad r
M) so that εl(σ) mod l has order

greater than 2b. Let

σ′ = σ(τ−1στ) . . . (τ1−2bστ2b−1).

Then ad r′′(σ′) = 1 while εl(σ′) = εl(σ)2b is not equivalent to 1 modulo l. Write

ad r ⊗OM′/λ′ Fl = V ⊕m0
0 ⊕ V ⊕m1

1 · · · ⊕ V ⊕mrr

with 1 = V0, V1, . . . , Vr pairwise non-isomorphic, irreducible Gal(F/F (ζl))-mod-
ules and 1 = m0,m1, . . . ,mr positive integers. Write θ for θ mod λ′. If i, i′ =

1, . . . , 2b − 1, i′′ = 0, . . . , 2b − 1 and θ/θ
τ i

= θ
τ i
′′

/θ
τ i
′+i′′

on all inertia groups
above q then we see that either i = i′ and i′′ = 0, or i+ i′ = 2b. Let f0, . . . , f2b−1

denote the basis of Hom(r′,OM ′,λ′) dual to e0, . . . , e2b−1. Then we can decompose

ad r′ ⊗OM′,λ′ Fl =
( ⊕
χ∈Hom(Gal(M/Q),F×l )

Wχ

)
⊕
(2b−1⊕
i=1

Wi

)
,

where

• Wχ is the span of
∑2b−1
i=0 χ(τ i)ei ⊗ fi;

• Wi is the span of {ej ⊗ fi+j}j=0,...,2b−1.

Thus Wχ
∼= Fl(χ) and

Wi
∼= IndGal(F/Q)

Gal(F/M)
θ/θ

τ i

.

Moreover

ad r′′ ⊗ Fl ∼=
( r⊕
j=0

⊕
χ∈Hom(Gal(M/Q),F×l )

Vj(χ)mj
)
⊕
( r⊕
j=0

2b−1⊕
i=1

(Vj ⊗Wi)mj
)
.

Each factor Vj(χ) is irreducible over F (ζl) and (because MF is linearly disjoint
from F

ker r
over F ) there is no isomorphism Vj(χ) ∼= Vj′(χ′) unless χ = χ′ and

j = j′. Moreover each factor

Vj ⊗Wi
∼= IndGal(F/F (ζl))

Gal(F/FM(ζl))
(Vj ⊗ θ/θ

τ i

)
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is irreducible, as otherwise

Vj ∼= Vj((θθ
τ i+i

′

)/(θ
τ i

θ
τ i
′

))

(which is impossible on inertia above q). Similarly

IndGal(F/F (ζl))

Gal(F/FM(ζl))
(Vj ⊗ θ/θ

τ i

) ∼= IndGal(F/F (ζl))

Gal(F/FM(ζl))
(Vj′ ⊗ θ/θ

τ i
′

)

if and only if Vj ∼= Vj′ and i = i′ or 2b − i′. Moreover looking at inertia above q
shows that

Vj(χ) 6∼= IndGal(F/F (ζl))

Gal(F/FM(ζl))
(Vj′ ⊗ θ/θ

τ i

)

for all i, j, j′, χ.
Let H (resp. H ′, resp. H ′′) denote the image (ad r) Gal(F/F (ζl)) (resp.

(ad r′) Gal(F/F (ζl)), resp. (ad r′′) Gal(F/F (ζl))). We see that

H0(H ′′, ad0 r′′) = (0).

Note that the only scalar element of H or H ′ (thought of as subgroups of Aut(ad r)
and Aut(ad r′)) is the identity and so

H ×H ′ ↪→ Aut(ad r′′).

Thus there is a finite group H and surjections π : H →→ H and π′ : H ′ →→ H so
that H ′′ is the set of elements (h, h′) ∈ H × H ′ such that π(h) = π′(h′). Let K
(resp. K ′) denote the kernel of π (resp. π′). Note that the image of the inertia
group at any prime above q in H ′ is contained in K ′ (as r is unramified above q).
Also note that the restriction of H ′ → Gal(MF (ζl)/F (ζl)) to K ′ is surjective (as
M is linearly disjoint from F

ker r
(ζl) over Q, these fields being ramified at disjoint

sets of primes). Thus

(ad r′′)K
′

= (ad r′)K
′
⊗ (ad r) = ad r

and we see that

(0) = H1(H, ad0 r) = H1(H ′′/K ′, (ad0 r′′)K
′
) ∼→ H1(H ′′, ad0 r′′)

(because l - #K ′ implies that H1(K ′, ad0 r′′) = (0)).
Fix a copy Vj ⊂ ad r ⊗ Fl. We can find a σ ∈ Gal(F/MF (ζl)) and a simple

root α of the characteristic polynomial of r(σ) such that πr(σ),αVjir(σ),α 6= (0).
Altering σ by elements of inertia subgroups at primes above q we may further

suppose that for i = 1, . . . , 2b− 1 the ratio (θ/θ
τ i

)(σ) does not equal α′/α for any
root α′ (including α) of the characteristic polynomial of r(σ). (Here we use the
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fact that q > 2n to see that we can choose an element ς of the inertia group at

τ−iq so that θ
τ i

(ς) avoids n values and θ
τb+i

(ς) also avoids n values.) Then αθ(σ)
is a simple root of the characteristic polynomial of r′′(σ) and

πr′′(σ),αθ(σ)Vj(χ)ir′′(σ),αθ(σ)

= (πr(σ),αVjir(σ),α)
(
πr′(σ),θ(σ)

(2b−1∑
j=0

χ(τ j)ej ⊗ fj
)
ir′(σ),θ(σ)

)
= πr(σ),αVjir(σ),α 6= (0)

for every χ ∈ Hom(Gal(M/Q),F×l ).
Now fix indices j = 0, . . . , r and i = 1, . . . , b. Also fix γ : Wi

∼→W2b−i (unless
i = b) such that γ(e0 ⊗ fi) = eb+i ⊗ fb). Any submodule of ad r′′ ⊗ Fl which is
isomorphic to Vj ⊗Wi is of the form

{η1(v)⊗ w + η2(v)⊗ γ(w) : v ∈ Vj and w ∈Wi}

where η1 and η2 are embeddings Vj ↪→ ad r ⊗ Fl. (If i = b we suppress the sec-
ond term.) Choose σ ∈ Gal(F/F (ζl)) and a simple root α of the characteristic
polynomial of r(σ) such that

• σ maps to the generator τ of Gal(MF (ζl)/F (ζl));

• πr(σ),αη1(Vj)ir(σ),α 6= (0);

• no other root of the characteristic polynomial of r(α) has (2b)th power equal
to α2b.

(Here we are using the assumption that r(Gal(F/F (ζl))) is 2b-big.) Write

r′(σ)ei = βiei+1

for i = 0, . . . , 2b−1 (where we take i+1 modulo 2b). The roots of the characteristic
polynomial of r′(σ) are exactly the (2b)th roots of β0 . . . β2b−1. If β2b = β0 . . . β2b−1

then a corresponding eigenvector is

e0 +
β0

β
e1 +

β0β1

β2
e2 + · · ·+ β0 . . . β2b−2

β2b−1
e2b−1

and

πr′(σ),βej =
βj

2bβ0β1 . . . βj−1

(
e0 +

β0

β
e1 + · · ·+ β0 . . . β2b−2

β2b−1
e2b−1

)
.
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Moreover αβ is a simple root of the characteristic polynomial of r′′(σ) and

πr′′(σ),αβ(η1(v)⊗ e0 ⊗ fi + η2(v)⊗ eb+i ⊗ fb)ir′′(σ),αβ

= (πr(σ),αη1(v)ir(σ),α)(πr′(σ),βe0 ⊗ fiir′(σ),β)

+ (πr(σ),αη2(v)ir(σ),α)(πr′(σ),βeb+i ⊗ fbir′(σ),β)

=
1

2bβi

(
β0 . . . βi−1πr(σ),αη1(v)ir(σ),α + β2i

βb . . . βb+i−1
πr(σ),αη2(v)ir(σ),α

)
,

where again we drop the second term if i = b. For some choice of v and β this will
be non-zero.

We conclude that r′′(Gal(F/F )) is big. Theorem 6.4 then tells us that there is
a Galois totally real extension F ′/F , a RAESDC automorphic representation Π of
GL2bn(AF ′) of weight 0 and an isomorphism ı : M ′λ′

∼→ C such that rl,ı(Π) ∼= r′′.
(Note that l ≡ −1 mod N and that N is not divisible by any primes at which r′′

ramifies.)

Step 3: Automorphy of r. We see that

Π∨ ∼= Π and Π⊗ (κ ◦ArtF ◦det) ∼= Π.

We will claim that there is a cuspidal automorphic representation ΠM+ of
GL2n(AFM+) such that

ΠM+ ⊗ (δM ◦ArtFM+ ◦ det) ∼= ΠM+ ,

such that ΠM+,v is regular for all v |∞ and such that the base change from F to
FM+ of Π is equivalent to

ΠM+ � Πτ
M+ � · · · � Πτb−1

M+ ,

in the sense that for all v the base change from Fv|F to (FM+)v of Πv|F is

ΠM+,v � (Πτ
M+)v � · · · � (Πτb−1

M+ )v.

This can be proved for all intermediate fields M+ ⊃ M1 ⊃ Q by induction on
[M1 : Q]. So suppose that M+ ⊃ M2 ⊃ M1 ⊃ Q with M2/M1 cyclic of prime
degree and suppose that we have already found a cuspidal automorphic represen-
tation ΠM1 of GL2n[M+:M1](AFM1) with the corresponding properties. Then

ΠM1 ⊗ (κ⊗ArtFM1 ⊗det) ∼= Πτ i

M1

for some i = 0, . . . , [M+ : M1]− 1. If i > 0 then for v |∞,

ΠM1,v � (Πτ
M1

)v � · · · � (Πτ [M1:Q]−1

M1
)v
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is not regular, so that Πv|F is not regular, a contradiction. Thus

ΠM1 ⊗ (κ⊗ArtFM1 ⊗det) ∼= ΠM1

and the result for M2 follows from Theorem 4.2 of [AC].
We can further conclude (using Theorem 4.2 of [AC]) that there is a cuspidal

automorphic representation π of GLn(AFM ) such that

• the base change of Π to MF is equivalent to

π � πτ � · · · � πτ
2b−1

;

• the representations πτ
i

for i = 0, . . . , 2b− 1 are pairwise non-isomorphic;

• π ⊗ |det|n(1/2−b) is regular algebraic;

• π∨ ∼= πc.

For the second assertion we use the regularity of Πv for v |∞. For the last of these
assertions note that π∨ ∼= πτ

i

for some i = 0, . . . , 2b− 1. As (π∨)∨ ∼= π we deduce
that either i = 0 or n/2. So we must rule out the case π∨ ∼= π. If this held then
π would have a unitary central character and so would itself be unitary. On the
other hand for v |∞ the Harish-Chandra parameter of πv lies in (1/2)X∗(T̃ ×R C),
and so by Lemma 7.1 we have πcv ∼= π∨v

∼= πv. Again this would contradict the
regularity of πv ⊕ πcv and ΠM+,v|FM+ .

Thus π ⊗ |det|n(1/2−b) is a RAECSDC representation of GLn(AFM ) and we
can associate an l-adic representation rl,ı(π) to it. Then

rl,ı(Π)|Gal(F/FM)

∼= rl,ı(π ⊗ |det|n(1/2−b))⊕ rl,ı(π ⊗ |det|n(1/2−b))τ

⊕ · · · ⊕ rl,ı(π ⊗ |det|n(1/2−b))τ
2b−1

∼= (r|Gal(F/FM) ⊗ θ)⊕ (r|Gal(F/FM) ⊗ θ
τ )⊕ · · · ⊕ (r|Gal(F/FM) ⊗ θ

τ2b−1
).

Hence
r|Gal(F/FM)

∼= rl,ı(π ⊗ |det|n(1/2−b))⊗ θ−τ
j

for some j and r|Gal(F/FM) is automorphic, and we conclude that r is automorphic.

§8. Applications

Let F be a totally real field. We will call a RAESDC automorphic representation
π of GL2(AF ) CM if there is a non-trivial character χ : A×F /F× → C× with
π ∼= π ⊗ (χ ◦ det). In this case χ2 = 1 and π is the automorphic induction of a
grossencharacter of the quadratic extension defined by χ.
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Theorem 8.1. Suppose that π is a RAESDC automorphic representation of
GL2(AQ) and that m ∈ Z>0. If π is not CM then there is a Galois totally real num-
ber field F/Q and a RAESDC automorphic representation SmF (π) of GLm+1(AF )
such that for all primes l and all ı : Ql

∼→ C we have

rl,ı(SmF (π)) = Symmm rl,ı(π)|Gal(Q/F ).

Proof. We may suppose that π∞ has weight (k − 2, 0) for some k ∈ Z>1. Let
N ⊂ C denote the field of coefficients of π (i.e. the extension of Q generated by
the eigenvalues of the Hecke operator

GL2(Zp)
(
p 0
0 1

)
GL2(Zp)

on π
GL2(Zp)
p for all p for which πp is unramified). (Strictly speaking: the Hecke

operator coming from the product of the characteristic function of this double
coset and the Haar measure on GL2(Qp) giving GL2(Zp) volume 1.) Then N is a
CM field. There is a continuous character

ν : Gal(Q/Q)→ N×

such that for all l and ı we have

det rl,ı = ε1−kl (ı−1 ◦ ν).

(The character ν is sometimes called the nebentypus character. We have c ◦ π ∼=
π ⊗ (ν ◦ ArtQ ◦det)−1.) Let M ′ be the CM field which Theorem 7.6 asserts exist
for n = m + 1 and b = k − 1 and µ = νm. Let N ′ denote the normal closure of
NM ′ over Q.

By a theorem of Ribet (see Theorem 2.1 of [R] and the first three lines of
its proof) for all but finitely many l the image rl,ı(Gal(Q/Q)) contains SL2(Fl).
Moreover for all but finitely many l either rl,ı(π) is ordinary of weight (k − 2, 0)
for all ı or

rl,ı|IQl
∼= ω1−k

2 ⊕ ωl(1−k)
2

for all ı. In the former case we call l ordinary, in the latter case we call l supersin-
gular.

Thus for all but finitely many ordinary primes l Theorem 7.5 tells us that there
exists a Galois totally real field F/Q such that Symmm rl,ı|Gal(Q/F ) is automorphic
of weight (m(k−2), . . . , k−2, 0)F . For all but finitely many supersingular primes for
which [Frobl] = [c] ⊂ Gal(N ′/Q) Theorem 7.6 tells us that there exists a Galois
totally real field F/Q such that Symmm rl,ı|Gal(Q/F ) is automorphic of weight
(m(k − 2), . . . , (k − 2), 0)F . Thus, for all but finitely many of the infinitely many
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primes l with [Frobl] = [c] ⊂ Gal(N ′/Q), there exists a Galois totally real field F/Q
such that Symmm rl,ı|Gal(Q/F ) is automorphic of weight (m(k−2), . . . , (k−2), 0)F .
The theorem follows.

At a referee’s request we remark that for any finite subset M ⊂ Z>0 we can
find a Galois totally real field F/Q such that Symmm rl,ı(π)|Gal(Q/F ) is automor-
phic for all m ∈ M. To see this one must check that Theorems 7.5 and 7.6 can
be modified to simultaneously realize the automorphy of a finite number of repre-
sentations r1, . . . , rs of Gal(F/F ) (corresponding to a finite number of characters
µ1, . . . , µs) over one Galois totally real extension F ′/F . (In the case of Theorem 7.6
the set of primes at which it will apply will depend on the {µi}.) The generalized
form of these theorems would in turn rely on slight generalizations of Theorems 6.3
and 6.4 which would simultaneously realize the automorphy of a finite number of
representations r1, . . . , rs of Gal(F/F ) over one Galois totally real extension F ′/F .
To prove these latter generalizations one simply chooses F ′ so that the schemes
Tri×r′i simultaneously have F ′ rational points of the desired sort. We leave it to
the interested reader to provide the details.

Corollary 8.2. Suppose that π is a non-CM RAESDC automorphic representa-
tion of GL2(AQ) of weight (k−2, 0) with k ∈ Z>1. Suppose also that m ∈ Z≥0 and
that ψ : A×/Q×R×>0 → C× is a continuous character. Then there is a meromorphic
function L(Sm(π)×ψ, s) on the whole complex plane such that for any prime l and
any isomorphism ı : Ql

∼→ C we have L(Sm(π) × ψ, s) = L(ı(Symmm rl,ı(π)) ⊗
rl,ı(ψ), s). The expected functional equation holds between L(Sm(π) × ψ, s) and
L(Sm(π∨ ⊗ |det|2−k)× ψ−1, 1 +m(k − 1)− s). Moreover if m > 0 or ψ 6= 1 then
L(Sm(π)× ψ, s) is holomorphic and non-zero in Re s ≥ 1 +m(k − 1)/2.

Proof. This follows from the previous theorem as in the proof of 4.2 of [HSBT].

We now formulate the Sato–Tate conjecture for RAESDC automorphic rep-
resentations of GL2(AQ) following [Gee]. For a ∈ Z>0 we will let U(2)a denote the
subgroup of U(2) consisting of matrices g with (det g)a = 1. We will let U(2)a/∼
denote the space of conjugacy classes of U(2)a. By Haar measure on U(2)a/∼ we
will mean the push-forward of the Haar measure on U(2)a with total volume 1.

Corollary 8.3. Suppose that π is a non-CM RAESDC automorphic representa-
tion of GL2(AQ) of weight (k − 2, 0) with k ∈ Z>1. Let ψ denote the product
of the central character of π with | · |k−2. The character ψ has finite order and
we denote this order a. For all but finitely many primes p the component πp
will be unramified and we will let [Fp] denote the conjugacy class of the matrix
p1−k/2 recQp(πp)(Frobp), which lies in U(2)a (and has determinant ψp(p)).
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The conjugacy classes [Fp] are equidistributed in U(2)a/∼ with respect to Haar
measure.

Proof. This follows from the previous corollary and the corollary to Theorem 2
of [Se1], as explained on page I-26 of [Se1]. (We remark that the irreducible rep-
resentations of U(2)a are the representations detn ⊗ Symmm for n = 0, . . . , a − 1
and m ∈ Z≥0.)

This corollary can be reformulated as follows.

Corollary 8.4. Suppose that π is a non-CM RAESDC automorphic representa-
tion of GL2(AQ) of weight (k − 2, 0) with k ∈ Z>1. Let ψ denote the product of
the central character of π with | · |k−2, so that ψ has finite order. Let ζ be a root
of unity such that ζ2 lies in the image of ψ. For all but finitely many p the space
π

GL2(Zp)
p is one-dimensional. Let tp denote the eigenvalue of the Hecke operator[

GL2(Zp)
(
p 0
0 1

)
GL2(Zp)

]
on πGL2(Zp)

p (or strictly speaking, of the Hecke operator coming from the product of
the characteristic function of this double coset with the Haar measure on GL2(Qp)
which gives GL2(Zp) volume 1). If ψp(p) = ζ2 then tp/(2p(k−1)/2ζ) ∈ [−1, 1] ⊂ R.

As p varies over primes with ψp(p) = ζ2, the numbers tp/(2p(k−1)/2ζ) are
equidistributed in [−1, 1] with respect to the measure (2/π)

√
1− t2 dt.

As special cases we mention the following corollaries, though many similar
examples are also available.

Corollary 8.5. Write
∞∑
n=1

τ(n)qn = q
∏
n

(1− qn)24,

i.e. τ(n) denotes Ramanujan’s τ function. Then the numbers τ(p)/(2p11/2) are
equidistributed in [−1, 1] with respect to the measure (2/π)

√
1− t2 dt.

Corollary 8.6. Let N12(n) denote the number of elements of Z12 with Euclidean
norm

√
n, i.e. the number of ways n can be written as the sum of 12 perfect squares

(where the order matters). As p runs over prime numbers,

(N12(p)− 8(p5 + 1))/(32p5/2)

lies in [−1, 1] and these numbers are equidistributed in [−1, 1] with respect to the
measure (2/π)

√
1− t2 dt.
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Proof. For an odd prime p we have

N12(p) = 8(p5 + 1) + 16ap,

where ap is the coefficient of qp in the cuspidal newform

q

∞∏
n=1

(1− q2n)12,

of weight 6 on Γ0(4). (See [Gl].)

The following results do not depend on the innovations of this paper (as far as
there are any innovations in this paper). However the results of [Sh] and [CHLN]
have made them accessible, so we are taking the opportunity to record them in
print. We will call an elliptic curve E over a number field F CM if End(E/F ) 6= Z.

Theorem 8.7. Suppose that F is a totally real field, that E/F is an elliptic curve
and that m ∈ Z>0. If E is not CM then there is a Galois totally real field F ′/F

and a RAESDC automorphic representation SmF ′(E) of GLm+1(AF ′) such that for
all primes l and all ı : Ql

∼→ C we have

rl,ı(SmF ′(E)) = SymmmH1
et(E × SpecF ,Ql).

Proof. Let rE,l denote the representation of Gal(F/F ) which occurs on H1
et(E ×

SpecF ,Zl). As E is not CM the image of rE,l is GL2(Zl) for all but finitely many
primes l. (See [Se2].) Thus there is a set S of primes of F with Dirichlet density
zero such that for v 6∈ S the elliptic curve E has good ordinary reduction at v
and Fv ∼= Qv|Q . (Take S to consist of the set of primes of F where E has bad
reduction, where Fv 6∼= Qv|Q , where #E(k(v)) = 1 + #k(v), or which divide 6.
Note that for v - l a prime of good reduction of E the latter is equivalent to
tr rE,l(Frobv) = 0 and the set of matrices of trace zero in GL2(Zl) has Haar
measure 0.) Choose a rational prime l so that no place of F above l lies in S and
so that rE,l(Gal(F/F )) = GL2(Zl). Then apply Theorem 6.3 to Symmm rE,l and
the theorem follows.

Corollary 8.8. Suppose that F is a totally real number field, that E/F is an
elliptic curve and that m ∈ Z>0. The L-function L(SymmmE, s) has meromorphic
continuation to C and satisfies the expected functional equation relating the values
at s and m + 1 − s. If E is not CM then L(SymmmE, s) is holomorphic and
non-zero in Re s ≥ 1 +m/2.

Proof. If E is CM then the result is well known. If E is not CM it follows from
the previous theorem as in the proof of 4.2 of [HSBT].
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Corollary 8.9. If F is a totally real field and if E/F is a non-CM elliptic curve
then the numbers

(1 + #k(v)−#E(k(v)))/(2
√

#k(v))

are equidistributed in [−1, 1] with respect to the measure (2/π)
√

1− t2 dt.

Proof. This follows from the previous corollary and the corollary to Theorem 2 of
[Se1], as explained on page I-26 of [Se1].
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[Tad] M. Tadić, GL(n, C)∧ and GL(n, R)∧, in Automorphic forms and L-functions II: Local
aspects, D. Ginzburg et al. (eds.), Amer. Math. Soc. and Bar-Ilan Univ., 2009, 285–313.
Zbl 1186.22021 MR 2537046

[Tay] R. Taylor, Automorphy of some l-adic lifts of automorphic mod l representations II,
Publ. Math. IHES 108 (2008), 183–239. Zbl 1169.11021 MR 2470688

[W] J.-L. Waldspurger, Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu
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