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Abstract

I present the deep and lasting contributions of Mikio Sato to the mathematical physics
of statistical mechanics and random matrix theory.
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Prof. Mikio Sato is unique among Japanese mathematicians, and indeed, perhaps
among all mathematicians, in that he was trained as a graduate student by a
Nobel Prize winning physicist, Sin-Itero Tomonaga. This unique training has given
Prof. Sato a deep insight into the relation of mathematics to physics and has led
to the creation of profound mathematical tools for the solution of problems in
statistical mechanics and random matrix theory. The discoveries of Prof. Sato
have inspired an entire younger generation of Japanese mathematicians to enter
the field of mathematical physics which has led to the invention of quantum groups
and revolutionary advances in representation theory. In this note I will sketch
the discoveries of Prof. Sato in mathematical physics and outline the scope of
achievements of what may rightly be called the “Sato School” which have been
inspired by his work and by his training.

§1. The Ising model

The Ising model is a system in two dimensions with variables (called spins) σj,k =
±1 at the vertices of a rectangular lattice of Lv sites in the vertical direction
and Lh sites in the horizontal direction which interact with each other with an
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interaction energy

(1.1) E = −
Lv∑
j=1

Lh∑
k=1

{Evσj,kσj+1,k + Ehσj,kσj,k+1}

with periodic boundary conditions. The questions of interest to physicists are the
computation of the partition function

(1.2) Z =
∑

σj,k=±1

exp{−E/kBT},

the free energy per site

(1.3) −F/kBT = lim
Lv,Lh→∞

(LvLh)−1 lnZ

and the correlation functions

(1.4) 〈σj1,k1 · · ·σjn,kn〉 = lim
Lv,Lh→∞

Z−1
∑

σj,k=±1

σj1,k1 · · ·σjn,kn exp{−E/kBT}

where
∑
σj,k=±1 is the sum over all states of the system, T is the temperature and

kB is Boltzmann’s constant. The free energy (1.3) was computed by Onsager [8]
in 1944, the partition function (1.2) for finite Lv, Lh was computed by Kaufman
[6] in 1949 and correlation functions were computed as determinants by Kaufman
and Onsager [7] in 1949.

These computations of Onsager and of Kaufman are one of the major discov-
eries in mathematical physics of the 20th century and from these computations it
is seen that there is a special value of the temperature Tc defined as the solution
of the equation

(1.5) sinh(2Eh/kBTc) sinh(2Ev/kBTc) = 1

where the free energy has a singularity of the form (T − Tc)2 ln |T − Tc|.
It is of great interest to study the correlation functions 〈σj1,k1 · · ·σjn,kn〉 in

the vicinity of T = Tc. In particular it is of great interest to study the two-
point spin correlation function 〈σ0,0σM,N 〉 for M and N large. Unhappily the size
of the determinants which give the correlation functions grows linearly with the
separation between the spins.

The first result on the large separation behavior of the correlation functions
is the computation of the order parameter M− which may be defined as

(1.6) M2
− = lim

M2+N2→∞
〈σ0,0σM,N 〉.
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This order parameter was announced by Onsager [9] in 1949 and proven by Yang
[20] (in the isotropic case) to be

(1.7) M− = (1− k2)1/8

for T < Tc and zero for T ≥ Tc where

(1.8) k = (sinh(2Eh/kBT ) sinh(2Ev/kBT ))−1.

The next major advance was made by Wu [18] in 1966 who demonstrated,
among other things, that the row correlation function 〈σ0,0σ0,N 〉 behaves for N
large and T < Tc as

(1.9) 〈σ0,0σ0,N 〉 ∼M2
−

{
1 + C−(T )

α2N
2

N2
+ · · ·

}
where

(1.10) α2 = e−2Ev/kBT coth(Eh/kBT )

and

(1.11) C−(T ) ∼ (Tc − T )−2 as T → Tc,

and for T > Tc as

(1.12) 〈σ0,0σ0,N 〉 ∼M2
+C+(T )

α−N2

N1/2

where

(1.13) M+ = (1− k−2)1/8

and

(1.14) C+(T ) ∼ (T − Tc)−1/2 as T → Tc.

The results (1.9)–(1.14) have the property that if we let

N →∞ and T → Tc ± with r = N |T − Tc| fixed(1.15)

then the limits

(1.16) G(r)± = limM−2
± 〈σ0,0σ0,N 〉

exist and are non-zero. The limit (1.15) is called the scaling limit and the function
(1.16) is called the scaling function.
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In 1976 these computations were extended by Wu, McCoy, Tracy and Barouch
[19] to the general correlation function 〈σ0,0σM,N 〉 and not only were the leading
terms computed but all terms were computed and the scaling function was com-
puted for T < Tc in the form

(1.17) G−(r) = eF−(r) with F−(r) =
∞∑
n=1

F (2n)(r)

and for T > Tc as

(1.18) G+(r) = X(r)eF−(r) with X(r) =
∞∑
n=1

X(2n−1)(r)

where F (2n)(r) [X(2n−1)(r)] are given as 2n [2n− 1] dimensional integrals.
But the truly remarkable result demonstrated in [19] is that these scaled two-

point functions are expressed in terms of the Painlevé III function defined as the
solution of the equation

(1.19)
d2η

dθ2
=

1
η

(
dη

dθ

)2

− 1
θ

dη

dθ
+ η3 − η−1

with the boundary conditions

(1.20) η(θ) ∼ 1− 2λK0(2θ) as θ →∞ where λ = 1/π,

where K0(2θ) is the modified Bessel function, as

(1.21) G±(r) =
1∓ η(r/2)
η(r/2)1/2

exp
∫ ∞
r/2

dθ
1
4
θη−2[(1− η2)2 − (η′)2].

The results which express the scaled two-point function of the Ising model in
terms of a Painlevé function were published in physics journals [19, 1, 16] with
titles that give no hint of the mathematics involved. However, because of his long-
standing interest in physics, Sato read these papers and once he read them he
realized that the Ising model had a far deeper connection with mathematics than
anyone previously had any idea existed, and from 1977-1979 with Michio Jimbo
and Tetsuji Miwa he developed, in a remarkable series of papers [12] and letters
[13], the “theory of holonomic quantum fields”.

In these papers on holonomic quantum field theory Sato recasts the Ising com-
putations of [19] as a problem in quantum field theory and shows that the Green’s
functions of this theory satisfy maximally overdetermined (or holonomic) partial
differential equations. Consequently, not only are the results of [19] recovered but
the equations for all the n-point functions are obtained. None of this had been
thought of or expected by the mathematics community and the developments are
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collected and presented in the papers [14], “Aspects of holonomic quantum fields.
Isomonodromic deformation and Ising model. Complex analysis, microlocal calcu-
lus and relativistic quantum field theory” and [5], “The unanticipated link between
deformation theory of differential equations and quantum fields”.

§2. The impenetrable Bose gas in one dimension

Once Sato had invented holonomic quantum field theory he continued to apply it to
other problems in physics. The first of these problems is the gas of impenetrable
bosons in one dimension. The Hamiltonian of this system is the special case of
c→∞ of

(2.1) H = −1
2

N∑
j=1

∂2

∂x2
j

+ c
∑
k<j

δ(xj − xk)

which is equivalent to the quantum non-linear Schrödinger equation

(2.2) i
∂φ

∂φ
= [φ,Hc] = −∂

2φ

∂x2
+ cφ∗φ2

with the commutation relation

(2.3) [φ(x, t), φ∗(x′, t)] = δ(x− x′)

and the Hamiltonian

(2.4) Hc =
1
2

∫ L

0

dx

(
−φ∗ ∂

2φ

∂x2
+ cφ∗2φ2

)
.

The physical problem of interest for this system is the n-particle reduced density
matrix at zero temperature defined as

(2.5) ρn,N,L(x1, . . . , xn;x′1, . . . , x
′
n)

=
N !

(N − n)!

∫ L

0

· · ·
∫ L

0

dyn+1 · · · dyN ψ∗N,L(x1, . . . , xn, yn+1, . . . , yN )

× ψN,L(x′1, . . . , x
′
n, yn+1, . . . , yN )

where ψN,L(x1, . . . , xn) is the N -particle ground state wave function normalized
to unity (〈ψN,L|ψN,L〉 = 1). In particular we are interested in the limit N,L→∞
where

(2.6) lim
N,L→∞

ρ1,N,L(x;x) = lim
N,L→∞

N/L = ρ0.
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Sato’s study of this Bose gas begins with the study [4, 2] of the XY quantum
spin chain defined by the Hamiltonian

(2.7) HXY = −1
4

∞∑
j=−∞

{(1 + γ)σxj σ
x
j+1 + (1− γ)σyj σ

y
j+1 + 2hσzj }

where σij are the Pauli spin matrices at site j with

(2.8) σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

For arbitrary γ 6= 0 this quantum spin chain has a behavior at h = 1 which is
intimately related to the Ising model at T = Tc. However, there are most inter-
esting new features which appear in the “double scaling” limit where γ → 0 and
h → 1− that are obtained by the methods of holonomic quantum field theory
and deformation theory of differential equations. Furthermore there is an exact
mapping of this double scaling limit to the impenetrable Bose gas problem and
thus in a paper of fundamental importance [3] Sato and coauthors find differential
equations which are satisfied by the n-particle reduced density matrix.

To illustrate these results we choose the normalization πρ0 = 1 and consider
the one-particle density matrix

(2.9) lim
N,L→∞

ρ1,N,L(x;x′) = ρ(x− x′).

The result of [3] is that

(2.10) ρ(x) = ρ0 exp
∫ x

0

dx′
(

x′

4y(1− y)2

((
dy

dx′

)2

+ 4y2

)
− (1 + y)2

4x′y

)
where y = y(x′) satisfies the Painlevé V equation

d2y

dx2
=
(

1
2y

+
1

y − 1

)(
dy

dx

)2

− 1
x

dy

dx
(2.11)

+
(y − 1)2

x2

(
αy +

β

y

)
+
γy

x
+
δy(1 + 1)
y − 1

with α = 1/2, β = −1/2, γ = −2i, δ = 2 and the boundary conditions

y(x) =−1− 2i
3
x+

(
2
9

+
2i
π

)
x2 +O(x3) as x→ 0,(2.12)

y(x) =−e−2ix(1 +O(x−1)) as x→∞.(2.13)

Furthermore if we set

(2.14) σ(x) = x
d

dx
ln ρ(x)
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it is found that

(2.15)
(
x
d2σ

dx2

)2

= −4
(
x
dσ

dx
− 1− σ

)(
x
dσ

dx
+
(
dσ

dx

)2

− σ
)

with the boundary conditions

σ(x) = −1
3
x2 +

1
3π
x2 +O(x4) as x→ 0,(2.16)

σ(x) = −1
2
− 1

4x
sin 2x+O(x−2) as x→∞,(2.17)

It is from these results for the Ising model and the delta function Bose gas
that Sato [10, 15, 11] was able to make the profound mathematical generalization
that the solutions of integrable classical soliton equations such as KdV and KP
can be expressed as Plücker relations on an infinite-dimensional Grassmannian
manifold.

§3. Random matrices

But perhaps the most important, influential and totally unexpected physics result
of [3] is the pioneering discovery which is made in the theory of random matrices.

A random matrix is an N × N matrix whose matrix elements are chosen
randomly out of a probability distribution. Physicists have been interested in the
distribution of eigenvalues of random matrices starting with the work of Wigner
[17] who was interested in random Hermitian matrices for a statistical description
of energy levels for large nuclei. Wigner considered the level spacing probability
E(s) (where s is the spacing between levels) of a Hermitian matrix whose matrix
elements are chosen from a Gaussian distribution. The probability distribution is
invariant under unitary transformations and this ensemble of matrices is called the
Gaussian Unitary Ensemble (GUE). By means of approximate arguments Wigner
[17] argued that this level spacing should be approximated in the limit N → ∞
by

(3.1) EW (s) =
πs

2
exp
(
−π

4
s2
)
.

It would seem out of the question that the level spacing of such a random
matrix could have anything to do with holonomic systems of partial differential
equations which would seem to be the most constrained and least random of
mathematical objects. It is therefore a stunning discovery, tucked away in a few
lines in [3], that for the Gaussian unitary ensemble the level spacing is expressed
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as

(3.2) E(t) = exp
∫ πt

0

dt′
σ(t′)
t′

where σ satisfies

(3.3)
(
x
d2σ

dx2

)2

= −4
(
x
dσ

dx
− σ

)(
x
dσ

dx
+
(
dσ

dx

)2

− σ
)

with the boundary condition

(3.4) σ(x) = −λx+O(x2)

with λ = 1/π. The equation (3.3) is equivalent to the Painlevé V equation (2.11)
with α = β = 0, γ = −2i, δ = 2.

This result for the level spacing of the Gaussian unitary ensemble is the key to
dramatic advances in random matrix theory which have been made by C. A. Tracy
and H. Widom in a long series of papers for which they won the Pólya prize of
SIAM in 2002. There are two other ensembles, the Gaussian Orthogonal Ensemble
and the Gaussian Symplectic Ensemble, which may also be studied by the methods
of [3], and there are more refined properties of the spectrum which may also be
obtained. Furthermore random matrix theory has found many applications to such
diverse subjects as flame fronts and collisions of high energy particles which are far
removed from the original motivation of Wigner in studying nuclear energy levels.
Sato’s work in [3] is a monument to what can be accomplished when incisive
mathematical power is applied to problems of physical importance.

§4. Algebraic analysis and the Sato school

The contributions of Sato to mathematical physics do not stop with the discovery
of the unexpected connection of the deformation theory of differential equations
to problems in statistical mechanics and random matrix theory. Indeed, Sato’s
contribution is not limited to the papers he has written because Sato has the
distinction of having founded an entire school of mathematical physics which is
known as “algebraic analysis.”

At first sight the term “algebraic analysis” appears to be self-contradictory
because at the heart of analysis are limiting procedures whereas limits do not
appear at all in algebra. So how can algebra and analysis coexist in the same
subject??

The answer to this paradox is that every problem for which a physicist will say
that there is an exact or closed form solution is actually controlled by an algebra.
All of the results found by Sato which lead to Painlevé equations are the result of
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symmetry algebras and thus holonomic differential equations, which would seem
to be in the province of analysis, are seen to actually be in the purview of algebra.

This deep appreciation of the role of algebra in the solution of problems in
physics is the hallmark of what I will call the “Sato school” of mathematical
physics as it has developed at the hands of Sato’s former students Michio Jimbo
and Tetsuji Miwa and their many collaborators and students. This has led to
magnificent advances in representation theory and the invention of quantum groups
which have had a transforming effect in mathematical physics from statistical
mechanics to string theory. Sato’s accomplishments are many and long lasting,
and mathematical physics has been immensely enriched by his labors.
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