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Abstract

For a complex manifold X the ring £x of microdifferential operators acts on the mi-
crolocalization phom(F,Ox) for F in the derived category of sheaves on X. Kashiwara,
Schapira, Ivorra and Waschkies proved, as a byproduct of their new microlocalization
functor for ind-sheaves, px, that phom(F,Ox) can in fact be defined as an object of
D(Ex): this follows from the fact that uxOx is concentrated in one degree.

In this paper we prove that the tempered microlocalization T-phom(F,Ox) and
in fact ,uxOﬁ( are also objects of D(Ex). Since we do not know whether /LXOE( is con-
centrated in one degree we build resolutions of £x and uxO% such that the action of
Ex 1is realized in the category of complexes (and not only up to homotopy). To define
these resolutions we introduce a version of the de Rham algebra on the subanalytic site
which is quasi-injective. We prove that some standard operations in the derived category
of sheaves can be lifted to the (non-derived) category of dg-modules over this de Rham
algebra. Then we build the microlocalization in this framework.
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§1. Introduction

For a complex analytic manifold the sheaf of microdifferential operators on its
cotangent bundle was introduced in [I2] by Sato, Kawai and Kashiwara using
Sato’s microlocalization functor. Let us recall briefly the definition, in the frame-
work of [5]. Let X be a real manifold and let D’(Cx) be the bounded derived
category of sheaves of C-vector spaces on X. For objects F, G € D’(Cx) a gener-
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alization of Sato’s microlocalization functor gives phom(F,G) € D?(Cr-x) and a
convolution product is defined in [5] for this functor phom. When X is a complex
analytic manifold of complex dimension dx one version of the ring of microdif-
ferential operators is £ = uhom(CA,(’)gg’de())[dX], where A is the diagonal of
X x X and (’)g?’xdf() denotes the holomorphic forms of degree 0 on the first factor
and degree dx on the second factor. Its support is the conormal bundle of A,
identified with T*X. The product in ¥ is given by the convolution product in
phom.

The convolution product also induces an action of E& on phom(F, Ox) for any
F € D*(Cx), i.e. a morphism in D*(Cr-x), EB ® phom(F, Ox) — phom(F,Ox),
satisfying the condition of Definition below.

A natural question is then whether phom(F, Ox) has a natural construction
as an object of DY(ER). Tt was answered positively in [J] as a byproduct of the
construction of a microlocalization functor for ind-sheaves. The category of ind-
sheaves on X, I(Cx), is introduced and studied in [7]. It comes equipped with
an internal Hom functor, ZHom, and contains Mod(Cx) as a full subcategory;
the embedding of Mod(Cx) in I(Cx) admits a left adjoint (which corresponds
to taking the limit) ax: I(Cx) — Mod(Cx), which is exact. In this framework
the construction of [9] yields a new microlocalization functor ux: D*(I(Cx)) —
DY(I(Cr-x)) such that

(1) phom(F,G) ~ ar-x RITHom(ux F, uxG).

In particular phom(F, G) takes the form of the usual Hom functor between objects
on T*X.

The convolution product is also defined in this context and now it gives an
action of £ on p1x (Ox). Through isomorphism () this action on px (Ox) induces
an action on phom(F,Ox). Hence it is enough to define ux(Ox) as an object of
D’(ER) to have the answer for all ghom(F,Ox). It turns out that, outside the
zero section of T*X, ux(Ox) is concentrated in degree —dx. Thus pux(Ox) ~
H~% 5 (Ox)[dx] and, since the action of E®} gives an £&-module structure on
H=% 1% (Ox), we see that pux(Ox) naturally belongs to D*(ER).

However in many situations differential operators of finite order are more
appropriate. In this paper we solve the same problem in the tempered situation.
The tempered microlocalization T-phom(F, Ox) is introduced in [I] and also has
a reformulation in terms of ind-sheaves. Namely it makes sense to consider the ind-
sheaf of tempered C>°-functions and the corresponding Dolbeault complex O% (it
is actually a motivation for the theory of ind-sheaves). Then

(2) T-phom(F,Ox) ~ ar-xRITHom(ux F, ux O%).
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Replacing pthom by T-phom in the above definition of R yields another sheaf
of microdifferential operators, E)P;’f. We have as above a natural action of E)P}’f
on px(O%). Unfortunately this last complex is a priori not concentrated in one
degree and we cannot conclude directly that px (O%) is an object of Db(é)l?’f ).

We will in fact find resolutions of 5/ and px (O% ) such that the action cor-
responds to a dg-module structure over a dg-algebra. More precisely we will define
an ind-sheaf of dg-algebras £¢ on T* X (outside the zero section) with cohomology
only in degree 0 and such that H(£4) = £87. We will also find a dg-££-module,
say M, such that M ~ px(O%) in D*(I(Cr-x)) and such that the morphism of
complexes £ 3? ® M — M given by the dg—é’;?—module structure coincides with the
action 5§’f ® ux(0%) — ux(O%). Then, as recalled in Section |3| extension and
restriction of scalars yield an object M’ € Db(é’?’f) which represents px (O%)
with its E)P(”’f -action. So we conclude as in the non-tempered case.

Now we explain how we construct 55? and M. The main step in the definition
of 5;1,]‘ , as well as its action on phom(F, Ox), is the microlocal convolution product

dx) a d d
(3) 1 x OX0) 8 e x O 1dx) — i x OO,

where 6 denotes the composition of kernels. This is a morphism in the derived
category. In order to obtain a true dg-algebra at the end, and not a complex with
a product up to homotopy, we will represent the functor p by a functor between
categories of complexes which satisfies enough functorial properties so that the
convolution also corresponds to a morphism of complexes.

Let us be more precise. The first step is the construction of injective resolu-
tions with some functorial properties. For this we introduce a quasi-injective de
Rham algebra, A, below (quasi-injectivity is a property of ind-sheaves weaker than
injectivity but sufficient to derive the usual functors). We use the construction of
ind-sheaves from sheaves on the “subanalytic site” explained in [7]. For a real an-
alytic manifold X the subanalytic site, X,, has for open subsets the subanalytic
open subsets of X and for coverings the locally finite coverings. On X, it makes
sense to consider the sheaf of tempered C* functions, C)O(O’t.

We consider the embedding ix: X = X x {0} — X x R and define a sheaf
of i-forms on X,,, Ay =iy 'T XxR>0(C§(°7xtg)). This gives a de Rham algebra Ax
and it yields a quasi-injective resolution of Cx,_,. We denote by Mod(Ax) the
category of sheaves of dg-Ax-modules. We have an obvious forgetful functor
For’y : Mod(Ax) — D(Cx,,). We will prove that the operations needed in the
construction of are defined in Mod(Ax) and commute with For’y. Namely,
for a morphism of manifolds f: X — Y we have functors f* and f,, fu, of in-
verse and direct images of dg-A-modules. In some cases this gives a way to rep-
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resent the derived functors f~! and Rf., Rfy. For example, for F € Mod(Ax),
Fory (fu(F)) ~ Rfu(For’y (F)); if f is smooth we also prove, for G € Mod(Ay),
For'y (f*G) ~ f~!(Fory (G)). When X is a complex manifold we also have a “Dol-
beault resolution”, Ox, of O% by a dg-Ax-module which is locally free over .Ag(.

Once we have these operations we define a microlocalization functor for dg-.A-
modules. Let us recall that the functor ux is given by composition with a kernel
Lx € D*(C(xxr+x).,): for F € D’(Cx,,) we have

pix(F) = Lx o F = Rpau(Lx ® py ' F).

We define a corresponding dg-A-module, L;‘}, outside the zero section of 7% X, i.e.

over X x T*X , which is quasi-isomorphic to Lx, and for a dg-Ax-module F we
set

HE?'(F) = L§ oF szl!(LBAQ ®apiF).

This functor is defined on the categories of complexes, i.e. it is a functor from
Mod(Ax) to Mod(A7+x). If F has a finite O-presentation we show that p4(F) is
quasi-injective and represents px (F) over T*X: we have

For'p. x (i (F)) = px (Fory (F)).

In particular, when X is a complex manifold we obtain the dg-Ap-x-module
w4 (Ox ) which represents px (0% ) and can be used to compute RHom(-, jx (O%)).

With these tools in hand we define the sheaf £¢ mentioned above from u*,
the same way S)l?’f was defined from p. The definition of the product involves a
convolution product for . The kernel L4 has indeed the same functorial be-
havior as Lx not with respect to all operations but at least those needed in the
composition of kernels. We end up with a dg-Az- x-module €% which is a ring ob-
ject in the category of dg-Ap+ x-modules and which represents S)P;’f . In the same
way we obtain a structure of £¢-module on 5 (Oy), as desired. As said above
this Eé—module gives a Op« X(é';{’f )-module by extension and restriction of scalars
(here §3 is the functor from sheaves to ind-sheaves which is left adjoint to «). Our
result is more precisely stated in Theorem [T1.4}

Theorem 1.1. There exists an ind-sheaf O% € D(Bjux(é’?’f)) which satisfies
the following properties:

(i) the image of O% in D(I(Ci~x)) under the forgetful functor is px O,

(ii) for any F € D™ (I(Cx)) the complex ar-x RIHom(r~'F,O%) is naturally
defined in D(é‘?’f), over T*X . Tts image in D(Ct~x ) under the forgetful func-
tor is T-phom(F, Ox) endowed with its action of 5§’f.
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§2. Notations

If X is a manifold or a site and R a sheaf of rings on X we denote by Mod(R) the
category of sheaves of R-modules on X. The corresponding category of complexes is
C(R) and the derived category D(R); we use superscripts b, +, — for the categories
of complexes which are bounded, bounded from below, bounded from above. More
generally, if R is a sheaf of dg-algebras on X, then Mod(R) is the category of
sheaves of dg-R-modules on X, and D(R) its derived category (see Section .
In particular, if X is a real analytic manifold this applies to the subanalytic site
Xsq whose definition is recalled in Section @ We denote by px or p the natural
morphism of sites X — X;,. We denote by Cx and Cx,, the constant sheaves
with coefficients C on X and Xg,.

If X is a manifold we denote by I(Cx) the category of ind-sheaves of Cx-
vector spaces on X (see Section [4]), and by D(I(Cx)) its derived category. This
category comes with a natural functor ax or a: I(Cx) — Mod(Cx) which corre-
sponds to taking the limit. Its left adjoint is denoted Bx or 3.

The dimension of a (real) manifold X is denoted dx; if X is a complex man-
ifold its complex dimension is d.

For a morphism of manifolds f: X — Y, we let wx|y = f'Cy be the relative
dualizing complex. Hence wx |y is an object of D’(Cx). If Y is a point we simply
write wx; then wy ~ orx[dx], where orx is the orientation sheaf of X. In fact,
for X connected wx|y is always concentrated in one degree (since X and Y are
manifolds), say i, and we will also use the notation wx|y for the object of C*(Cx)
which is H'w x|y in degree i and 0 in other degrees. For an embedding of manifolds
iz: Z — X we will often abuse notation and write wyz|x for iz.wz|x-

For a manifold X we let TX and T*X be the tangent and cotangent bundles
and we denote by mx: T*X — X the projection. For a submanifold Z C X we
denote by Tz X and T7X the normal and conormal bundles to Z. In particular
T%X ~ X is the zero section of 7*X and we set T*X =T*X \ T%X. We denote
by Xz the normal deformation of Z in X (see for example [5]). We recall that
it contains 77X and comes with a map 7: Xz — R such that 77H0) = Tz X
and 77(r) ~ X for r # 0. We also have another map p: Xy — X such that
pl(z) = (TzX),U{z} xR for z € Z and p~(z) ~ R\ {0} for x € X \ Z. We
set 2 =771 Rso).

For a morphism of manifolds f: X — Y, the derivative of f gives the mor-
phisms

X 4 X <y TV I Ty
For two manifolds X,Y, and F € D¥(Cx), G € D" (Cy), we set F KRG =
ple ® pglG, where p; is the projection from X x Y to the i*" factor. For three
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manifolds XY, Z and “kernels” K € D¥(Cxxy), L € DT(Cyxz) we denote the
“composition of kernels” by KoL = Rpasi(pry K ®p2_31L), where p;; is the projection
from X x Y x Z to the i** x j*I factors.

83. dg-algebras

In this section we recall some facts about (sheaves of ) dg-algebras and their derived
categories. We refer the reader to [2].

A dg-algebra A is a Z-graded algebra with a differential d4 of degree +1.
A dg-A-module M is a graded A-module with a differential dj; such that, for
homogeneous elements a € A*, m € M7, dy(a-m) = da(a) - m+ (—1)'a- dym.

We consider a site X and a sheaf of dg-algebras Ax on X. We denote by
Mod(Ax) the category of (left) dg-Ax-modules. We let Ax be the graded al-
gebra underlying Ax (i.e. forgetting the differential). A morphism f: M — N
in Mod(Ax) is said to be null homotopic if there exists an Ax-linear morphism
s: M — N|[—1] such that f = sdy + dys. The homotopy category, K(Ax), has
for objects those of Mod(Ax) and for sets of morphisms those of Mod(Ax) quo-
tiented by null homotopic morphisms. A morphism in Mod(Ax) (or K(Ax)) is a
quasi-isomorphism if it induces isomorphisms on the cohomology groups. Finally,
the derived category D(Ax) is the localization of K(Ax) by quasi-isomorphisms.

Derived functors can be defined in this setting, in particular the tensor prod-
uct - ®ﬁx - If ¢: Ax — Bx is a morphism of sheaves of dg-algebras we obtain
the extension of scalars ¢*: D(Ax) — D(Bx), M — Bx ®£X M, which is left
adjoint to the natural restriction of scalars ¢.: D(Bx) — D(Ax). By [2, Theo-
rem 10.12.5.1], if ¢ induces an isomorphism H(A) = H(B) then these functors of
restriction and extension of scalars are mutually inverse equivalences of categories
D(Ax) ~ D(Bx).

Some dg-algebras considered in this paper will appear as ring objects in cat-
egories of complexes. We recall briefly what this means. We let C be a tensor
category with unit C (C will be D(Cy ), D(I(Cy)) or Mod(Ay ) for some manifold
Y and the unit is C = Cy).

Definition 3.1. A ring in C is a triplet (A, m,e) where A€ C, m: A A — A
and ¢: C — A are morphisms in C such that the following diagrams commute:

AC 2% 494 CoA2A AoAdA AoAA Y AsA4

SN TR

A AR A A




DG-METHODS FOR MICROLOCALIZATION 105

In the same way, for such a “ring” (A4, m, ), an action of A on M € C is a morphism
a: A® M — M compatible with m and e. The pairs (M, «) of this type form a
category, where morphisms from (M, «) to (M’, «’) are morphisms from M to M’
commuting with the action.

If Ex is a sheaf of (usual) algebras on X we may consider E'x as a ring object
in D(Cx) and we denote by Dg, (Cx) the category of “objects of D(Cx) with
FEx-action” as above.

We consider again a sheaf Ax of dg-algebras on X. We assume that its co-
homology sheaves are 0 except in degree 0 and we set Ex = H°(Ax). Hence, if
we forget the structures and view Ay, Ex as objects of D(Cx) we have isomor-
phisms Ax < 7<gAx = Ex (where 1<, 7> denote the truncation functors). We
note that 7<pAx =+ — A);l — kerdy — 0 is a sub-dg-algebra of Ax (whereas
T>0Ax has no obvious structure of dg-algebra). The multiplications of Ax and Ex
induce morphisms in D(Cx): Ax @ Ax — Ax, Ex @ Ex — Ex. These morphisms
coincide under the identification Ax ~ Ex. Hence Ax and Ex are isomorphic as
ring objects in D(Cx).

For M € D(Ax) the structure of Ax-module induces a morphism in D(Cx):
a: Ex @M~ Ax ® M — M. Then « is an action of Ex on M. In this way we
obtain a forgetful functor F4, : D(Ax) — Dg, (Cx).

Lemma 3.2. Let Ax be a sheaf of dg-algebras with cohomology sheaves concen-
trated in degree 0 and set Ex = H°(Ax). Let ¢: Ax — Bx be a morphism of
sheaves of dg-algebras such that ¢ induces an isomorphism H(A) = H(B). Then
we have isomorphisms of functors Fa, o ¢, ~ Fp, and Fp, 0 ¢* ~ Fa,.

Proof. The first isomorphism is obvious and the second one follows because ¢,
and ¢* are inverse equivalences of categories. O

Applying this lemma to the morphisms Ax R T<0Ax Po, Ex, we obtain:

Corollary 3.3. With the hypothesis of the above lemma, we have the commutative

diagram
D(Ax) Fay
$0b<on Dg, (Cx)
D(Ex) FEx

In particular, for M € Dg,(Cx), if there exists N € D(Ax) such that
Fy, (N)~ M then there exists N’ € D(Ex) such that Fg,(N’) ~ M.
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§4. Ind-sheaves and subanalytic site

We recall briefly some definitions and results of 7] about ind-sheaves. To define
the ind-sheaves we are interested in we will use the “subanalytic site” as in [7],
where it is introduced to deal with tempered C* functions. It is studied in more
detail in [I0].

§4.1. Ind-sheaves

For a category C we denote by C” the category of functors from C°P to the
category of sets. It comes equipped with the “Yoneda embedding”, h: C — C*,
X — Home(, X). The category C" admits small inductive limits but, in general,
even if C also admits such limits, the functor A may not commute with inductive
limits. We denote by “lil)n” the inductive limit taken in the category C”.

An ind-object in C is an object of C* which is isomorphic to “h_n)l”i for some
functor i: I — C, with I a small filtrant category. We denote by Ind(C) the full
subcategory of C" of ind-objects.

Let X be a real analytic manifold, Mod(Cx) the category of sheaves of C-
vector spaces on X, Modgr_.(Cx) the subcategory of R-constructible sheaves, and
Mod®(Cx) and Modg_.(Cx) their respective full subcategories of objects with
compact support. We define, as in [7],

I(Cx) =Ind(Mod“(Cx)) and Ir.(Cx)=Ind(Modg .(Cx)).

There are exact embeddings I : Ir .(Cx) — I(Cx) and tx: Mod(Cx) — I(Cx),
F - “li_rr)l” Fy, U running over relatively compact open sets. Then ¢x sends
MOdR_C(Cx) into IR-c(CX>~

The functor ¢x has an exact left adjoint functor ax: I(Cx) — Mod(Cx),
“@;’GI F, — lii)niel F;. Since vx is fully faithful, we have ax otx ~ id.

The functor ax admits an exact fully faithful left adjoint Sx: Mod(Cx) —
I(Cx). We have ax o fx ~id. For Z C X a closed subset we have

(4) Bx(Cz) ~“lm”Cyr, W open, ZC W C X.
w

We write «, 0 for ax, Bx when the context is clear. The machinery of Grothen-
dieck’s six operations also applies in this context. There are not enough injectives in
I(Cx), but enough “quasi-injectives” (see [7] and []]): F' € I(Cx) is quasi-injective
if the functor Hom(-, F)) is exact on Mod®(Cx). The quasi-injective objects are
sufficient to derive the usual functors. In particular, for a morphism of manifolds
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f: X — Y we have the functors

f7Y £ D'(I(Cy)) — D"(I(Cx)),
Rf., Rfu: D’(I(Cx)) — D*(I(Cy)),
RZHom: D*(I(Cx))°? x D’(I(Cx)) — D (I(Cx)),
®: D'(I(Cx)) x D*(I(Cx)) — D*(I(Cx)),

and also RHom = a RZHom: D(I(Cx))°? x D*(I(Cx)) — D*(Cx).
It will be convenient for us to use the equivalence of categories given in [7]
between Igr .(Cx) and sheaves on the subanalytic site, defined below.

§4.2. Subanalytic site

In this subsection X is a real analytic manifold. The open sets of the site X,, are

the subanalytic open subsets of X. A family | J,.; U; of such open sets is a covering

iel
of U if and only if, for any compact subset K, Ethere exists a finite subfamily J of
I with K NJ,c;U; = KNU. We denote by Mod(Cx,,) the category of sheaves
of C-vector spaces on Xg,.

We have a morphism of sites px : X — X, (where X also denotes the site nat-
urally associated to the topological space X). We just write p if there is no risk of
confusion. In particular we have adjoint functors p,: Mod(Cx) — Mod(Cx_,) and
p~t: Mod(Cx,,) — Mod(Cx). The functor p~! is exact, p. is left exact and fully
faithful and p~! o p, = id. We denote by pe. the restriction of p. to Modr..(Cx).
Then p. is exact and for F' € Modgr..(Cx) we usually write F' instead of p..F'.

The functor p.. induces an equivalence of categories (see [, Theorem 6.3.5])

AiIre(Cx) — Mod(Cy,, ),  “lm” Fj v lim pe. (£).
7 7
Through this equivalence the functor p~! corresponds to a and it also admits an
exact left adjoint functor corresponding to 3. When dealing with the analytic site
we will use the notation py: Mod(Cx) — Mod(Cx.,) for this functor. For example,
gives pCz ~ lim Cy7 (W open subanalytic). We note the commutative

—Zcw
diagrams

MOd(Cx) MOdR_C(Cx) ——— MOd(Cx)

e

Ir..(Cx) ~ Mod(Cx..) —=I(Cx)  Ir.(Cx)~Mod(Cy.,) —=I(Cx)

The functors appearing in these diagrams are exact and induce similar commuta-
tive diagrams at the level of derived categories.
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The functor Hom is defined on Mod(Cx,,) just as on every site and we set,
for Z C X alocally closed subanalytic subset,

(5) Fz(F):HOHl(p*Cz,F), FZ=F®p*CZ

The functors p, and Hom commute, hence p, and I'z also commute. For subana-
lytic open subsets U,V C X we have 'y (F)(V) =F{UNV).

As for ind-sheaves, a notion weaker than injective is defined in [I0]: F €
Mod(Cx.,) is quasi-injective if Hom(-, F') is exact on p.Modg_.(Cx). In fact, since
we consider coefficients in a field it is equivalent to require that for any subanalytic
open subsets U C V with compact closure, I'(V; F') — I'(U; F) is surjective. Quasi-
injective sheaves are sufficient to derive usual left exact functors. In particular we
obtain RHom, RI'z, and they commute with Rp,.. We note the following identity
(which has no equivalent on the classical site): for F € D% (Cx), H € D*(Cx),
G eD* (CXsa )

(6)  RHom(Rp.F,G)® pH ~ RHom(Rp.F,G®@pH) inD"(Cx,,).

We also have another related result (see [I0, Proposition 1.1.3]): for {F;}icr a
filtrant inductive system in Mod(Cx_, ) and U C X a subanalytic open subset,
(7) lim RI'y (£7) = Rly (lim £5).

For a morphism f: X — Y there are the usual direct and inverse image functors
f+, f~! on the subanalytic sites and also, as in the case of ind-sheaves, a notion of
proper direct image fi;, with a behavior slightly different from the behavior of f
on the classical site. The functor f~! is exact and f., fi admit derived functors.
We quote in particular: for F € D*(Cy,,), G € D% .(Cy) (we write G for p.G),

(8) JuF =lim f, (Fuy), U C X relatively compact open subanalytic,
U

(9) fuF =lim f,(I'xF), K C X compact subanalytic,
K

(10) Rfy RHom(f'G, F) =% RHom(G,RfuF),

(11) RfyRT -1y F = ROyR A F.

The derived functor Rfy: D*(Cx,,) — D*(Cy,,) admits a right adjoint f'. The
notation is the same as in the classical case because of the commutation relation
f'oRp. ~ Rp. o f'. Hence f'Cy,, ~ pxwx|y and we will usually write wx |y
for p.wx|y. The adjunction morphism between f, and f" induces the integration
morphism

(12) inty: Rf”(wX|y) — Cy,,.
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8§4.3. “Soft” sheaves

In this subsection X is a real analytic manifold and X, is the corresponding
subanalytic site. Though we are not in a framework of sheaves on a locally compact
space, we may introduce a notion of soft sheaves on the subanalytic site which are
acyclic for direct image functors.

Definition 4.1. A sheaf F' € Mod(Cyx.,) is soft if for any closed subanalytic
subset Z C X and any subanalytic open subset U C X the natural morphism
I(U; F) — T'(U; Fz) is surjective.
As in the case of sheaves on a reasonable topological space,
(13)  T(U;Fz)~ lim T(W;F), W C X subanalytic open set.
UNZCWcCU

It follows that quasi-injective sheaves are soft. We also note that if F' is soft and
Z C X is a closed subanalytic subset then F is soft.

Lemma 4.2. Let U = |J;cn Ui be a locally finite covering by subanalytic open
subsets of X. There exist subanalytic open subsets of X, V; C U;, i € N, such that
U=U;enVi and unv; cu,.

Proof. We choose an analytic distance d on X and we define V,, inductively such
that U = Uign V; UUj>n Uj and UNV,, C U,,. We start with V_; = () and assume
Vi, i < m, is built. We set W,, = U, \ (U,.,,ViUU
because the covering is locally finite, and

Vi = {x € Uyp; d(x, Wy,) < d(z,0Up)}.

We have V,, C U,. Since d is analytic the functions d(-, Z), Z C X subanalytic,
are continuous functions with subanalytic graphs (see [3]). It follows that V;, is

i<n i>n Uj), which is subanalytic

a subanalytic open subset of X. By construction W,, C V,, and we deduce by
induction that U = {J;<,, Vi U U;,, U;. Since the covering is locally finite this
gives U = [J;en Vi

It remains to prove that U N'V,, C U,. If this is false there exists zo €
UNV,NoU,. Since zg € U but 2y € U, we have x( € Uicn ViU Uj>n U;. Hence
0 = d(x9, Wy,) > 0 and the ball B(zg, d/2) does not meet V,,. In particular xg ¢ V,,,
which is a contradiction. O

Proposition 4.3. Let0 — F' % F% F” — 0 be an exact sequence in Mod(Cyx,,)
with F' soft. Then for any open subanalytic subset U C X the morphisms
LU; F) = T(U; F") and limTk(U; F) — lim T (U5 FY),
K K
where K runs over the compact subanalytic subsets of X, are surjective.
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Proof. (i) We first consider a section s € I'(U; F"). We may find a locally finite
covering U = J;cn Us and s; € T'(Uy; F) such that u(s;) = s|y,. By Lemma
there exists a subcovering U = ;. Vi with U NV; C U;.

We set Z,, = |Ji—, Vi and prove by induction on n that there exists a section
Sn € T(U; Fz,) such that v(8,) = s|z, and $,|z,_, = Sn—1.

This is clear for n = 0 and we assume it is proved for n. We set ¢, =
(8n = 8n+1)| 7, A7 Then v(t,) = 0 so that t,, belongs to I'(U; Fémﬁ) and by

hypothesis we may extend it to t € I'(U; F'). Now we define 5,41 € T(U; Fz,.,)
by 8n+1lz, = $, and ‘§”+1|T+1 = $p+1 + u(t). The §,, glue together into a section
5 € I'(U; F) such that v(5) = s, which proves the surjectivity of the first morphism.

(ii) Now we consider a compact K and s € ' (U; F”). We choose an open
subanalytic subset V such that K C V and K’ =V is compact. We set Z = X\ V.
We have just seen that we may find § € I'(U; F) such that v(5) = s. Hence
v(8]z) = 0 so that 5|z € T'(U; F,) and we may extend §|z to t € T'(U; F’). Then
§ =5 — u(t) satisfies supp § C K" and v(8) = s. O

Corollary 4.4. If0 - F' — F — F” — 0 is an exact sequence in Mod(Cx_,)
with F' and F soft, then F" is also soft.

Proof. For Z C X a subanalytic closed subset we have the exact sequence 0 —
F}, — Fz — FJ — 0 and F},, Fy still are soft. Hence Proposition [4.3|implies that,
for any subanalytic open subset U C X, the morphisms I'(U; F') — I'(U; F") and
I(U; Fz) — I'(U; F}) are surjective. Now it follows from the definition that F" is
soft. O

Corollary 4.5. Let f: X — Y be a morphism of analytic manifolds, andU C X an
open subanalytic subset. Then soft sheaves in Mod(Cyx.,) are acyclic for the functors
(U;-), lim Tk (U;-), K running over the compact subsets of X, Ty, f« and fy.

Proof. For the first two functors this follows from Proposition and Corol-
lary This implies the result for the other functors. O

§4.4. Tempered functions

Here we recall the definition of tempered C*° functions. We also state a tempered
de Rham lemma on the subanalytic site, which is actually a reformulation of results
of []. In this subsection X is a real analytic manifold.

Definition 4.6. A C* function f defined on an open set U has polynomial growth
at p € X if there exist a compact neighborhood K of p and C; N > 0 such that
forallz € KNU, |f(z)| < Cd(z, K \U)™", for a distance d defined through some
coordinate system around p.
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We say that f is tempered if all its derivatives have polynomial growth at any
point. In [7] it is proved, using results of Lojasiewicz, that these functions define
a subsheaf C3"" of p,C¥ on Xyq.

We denote by QtXl the sheaf on X, of forms of degree ¢ with tempered coef-
ficients. We obtain as usual a sheaf of dg-algebras on X, the tempered de Rham
algebra Q% =0 — Q%° — ... = QY —0.

Lemma 4.7. The tempered de Rham algebra is a resolution of the constant sheaf
on the subanalytic site, i.e. we have an exact sequence on Xgq,

0—Cx,, —>Q§’(O—>~-~—>Qg’(n—>0.
Proof. This is equivalent to saying that for any F' € D% (Cx) we have
(14) RHom(p, F, Cx.,) ~ RHom(p, F, Q%).

Actually this is Proposition 4.6 of [4], except that it is not stated in this language,
and that it is given for tempered distributions instead of tempered C*° functions.
We let C¢ be the sheaf of real analytic functions and Dy the sheaf of linear
differential operators with coefficients in C%. Using a Koszul resolution of C%
we have the standard isomorphism RHom,, p, (0C%,CE") ~ Q4. In [] a functor
RT Hx (F) is defined (now denoted T Hom(F, Dbx )) and Proposition 4.6 (loc. cit.)
reads

RHom(F,Cx) ~ RHomp, (C%,T Hom(F,Dbx)).

To replace distributions by C* functions we have an analog of T Hom(F, Dbx)
for C* functions, introduced in [6] and [7]. By [6, Theorem 10.5], we have the
comparison isomorphism

RHomp, (C%, T Hom(F,C¥)) ~ RHomp, (C%,T Hom(F, Dbx)).

Actually, in [6] X is a complex manifold and the result is stated for the sheaf of
anti-holomorphic functions instead of C%, but the proof also works in our case.
By [7, Proposition 7.2.6] or [I0, Proposition 3.3.5], we may express the functor
T Hom using the subanalytic site: T Hom(F,C) ~ p~! RHom(p. F,C¥").
Putting these isomorphisms together we obtain :
RHom(p, F, Q%) ~ RHom(p. F, RHom,,p (mC%,CE"))

~ RHom,, p, (nC%, RHom(p. F,C¥"))

~ RHomp, (C%,T Hom(F,Dbx))

~ RHom(p.F,Cx),

where we have used adjunction morphisms between ®, Hom and pi, p~*. O
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The integration of forms also makes sense in the tempered case: we let
f: X — Y be a submersion with fibers of dimension d, V' C Y a subanalytic
open subset and we consider a form w € T'(f~1(V); Q%™ @ orx|y) such that
the closure (in X) of suppw is compact. Then [ jwE (V;0%"). We deduce the
morphism of complexes

(15) St (@ ®wxyy) — Q.

Its image in D’(Cy,,) coincides with the morphism inty of ([12).

§5. Resolution

In this section all manifolds are real analytic.

Definition 5.1. For a manifold X we introduce the notations X = X x R,
ix: X = X,z — (2,0), and XT = X x Rsg. We consider the tempered de
Rham algebra on the site X,

t t,0 t,n+1
Q)?—O—>Q)2—> —>Q)A( — 0,

and define Ax = iy Tx+ (Q}) This is a sheaf of anti-commutative dg-algebras
on Xg,.

The inverse image of forms under the projection X — X induces an injective
morphism of dg-algebras Qx <— Ax. In particular C;o’t C A%. We denote by ¢
the coordinate on R. This gives a canonical element dt € AL,. The decomposition
X = X x R induces a decomposition of the differential d = dy + do into anti-
commuting differentials, where we set ds(w) = (Jw/0t)dt.

The algebra Ax comes equipped with natural morphisms related to inverse
image and direct image under a smooth map. Let f: X — Y be a morphism of
manifolds. It induces f = f x id: X — ¥ and f*: X+ — Y+. We consider the
morphism of functors f'T'y+ — T'y+f~1; it induces a morphism of dg-algebras

Fily+ Q%) — FX+J?_1(Q§7) — Tx+ (Q%).

Definition 5.2. We denote by f#: f~1Ay — Ax the image of the above mor-
phism under the restriction functor i}l. It is a morphism of dg-algebras.

Now we assume that f is smooth. Hence f is also smooth and we have the
integration morphism ff: S (Q} Qux|y) — Q% We apply the functor iy, T'y+

to this morphism. We also have the base change f”i;(l ~ i;lﬁg and the morphism
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ﬁ!F x+ — I'y+ ﬁ. They give the sequence of morphisms
(16)  fuix'Tx+(Q% ® wgp) = iy Ty+ fu(Q% wgip) = iy Ty+ Q%

Definition 5.3. For a smooth map f: X — Y, we call morphism the inte-
gration morphism and denote it ff: fn(Ax @wx)y) — Ay.

The main result of this section is the following theorem. It is proved in the
remaining part of the section: the quasi-injectivity of the A% is proved in Propo-
sition [5.11] and the fact that Ax is a resolution is Corollary

Theorem 5.4. Let X be a real analytic manifold. The sheaf of dg-algebras Ax is
a quasi-injective resolution of Cx_, .

Remark 5.5. By this theorem we have fi(Ax ® wx|y) ~ Rfi(wxy). Hence
the morphism [ f of Definition induces a morphism in the derived category
Rfuwx)y — Cy,,. It coincides with the topological integration morphism
because this holds for the usual de Rham resolution.

For the proof of the theorem we need some lemmas on tempered functions. We
refer to [3] for results on subanalytic sets. We recall that a function is subanalytic
if its graph is a subanalytic set. We introduce the following notation, for U C X
an open subset and ¢: U — R a positive continuous function:

Up={(a,t) eX;2 €U, |t| < p(x)}, Uf=U,nX".

Lemma 5.6. Let U C X be a subanalytic open subset and V' C X bea subanalytic
open neighborhood of U in X. Then there exists a subanalytic continuous function
¢ defined on U such that ¢ =0 on OU and U, C V.

Proof. Weset V=V N (U xR), Z= X\ V' and let ¢ be the distance function
to Z: p(x) = d(z, Z). By [3l Remark 3.11], this is a subanalytic function on X and
its restriction to U satisfies the required property. O

The following result is similar to a division property for flat C* functions,
which can be found for example in [I3, Lemma V.2.4].

Lemma 5.7. Let U C X be a subanalytic open subset and p: U — R a subana-
lytic continuous function on U, such that o = 0 on the boundary of U and ¢ > 0
on U. Then there exist another subanalytic continuous function ¢’ on U and a C*
function ¢: U — R such that

(i) Vz € U, 0 < ' (z) < Y(x) < p(x), (ii) ¢ and 1/+¢ are tempered.
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Proof. (a) We first note that (i) and “¢ tempered” imply that 1/1 is tempered.
Indeed it is enough to check that 1/¢ has polynomial growth along OU. But this
follows from Lojasiewicz’s inequality (see [3, Theorem 6.4 and Remark 6.5]) applied
to ¢'. We may also work locally: assuming the result is true in local charts, we
choose

e locally finite coverings of X by subanalytic open subsets, (U;), (V;), together
with a partition of unity p;: X — R and subanalytic continuous functions
v;: X — R such that U; CVi,0<y; < i, Youi=1, p; =v; =1 on U; and
i; = 0 on a neighborhood of X \ V;,

e C™ tempered functions ¥;: U N'V; — R and subanalytic continuous functions
©i: UNV; = R such that 0 < ¢} < ¢; < pon UNV,,

and we set ¥ = Y. p;9;, ¢ = >, v, Then 1, ¢ satisfy the conclusion of the
lemma. Indeed, each p;v; is defined and tempered on U and their sum is locally
finite, hence also tempered.

(b) Hence we assume X = R™ and U is bounded. By [I3], Lemma IV.3.3,
there exist constants Cy, k € N™, such that, for any compact K C R™ and any
€ > 0, there exists a C* function o on R"™ such that

0<a<l «alx)=0ifdz,K)>e, oalz)=1ifzeK,
Vk e N, |D*a| < Cpe ¥,

(The function « is the convolution of the characteristic function of {z; d(z, K)
< ¢/2} with a suitable test function.)

We set K; = {z € U; 2771 < d(x,0U) < 27%} and we let a; be a function
associated to K = K; and ¢ = 27%~2 by the above result. In particular o; = 1
on K;, supp a; C S;, where we set S; = K; 1 UK; UK, 1, and |DFo;| < C,’CQik for
some C € R. This implies that for x € U, |D*a;(x)| < C}d(x,0U)~* for some
other constants C}’ € R.

Lojasiewicz’s inequality gives, for z € U, cd(x,dU)" < o(z) < ¢d(x,dU)"
for some ¢,r,¢/,7" > 0 (see [3, Theorem 6.4]). We set A\; = min{p(z);z € S;}. We
note that for x,2’ € S;, we have 1/8 < d(x,9U)/d(«’,0U) < 8. Hence, for z € S;,
we have Cd(x,dU)" < A\; < C'd(x,dU)"" for some C,C’ > 0. Since suppa; C S;,
we also have \;a; < ¢ for all 4.

We note that each x € U belongs to at most three sets S; and we define
1 = (1/3) >, iy The above inequalities give, for z € U, 0 < ¢(z) < ¢(x) and

1
@)
Hence 9 is tempered and we can take ¢'(x) = (C/4) d(x,0U)". O

|D¥4p(z)| < CYC'd(a, U 7F, < 3C'd(z,8U)".
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Lemma 5.8. Let U be an open subanalytic subset of X and Z1, Zs disjoint closed
subanalytic subsets of U. There exists a tempered function o € F(U;C;”t) such
that 0 < a<1l,a=1on 2 and a =0 on Zs.

Proof. We set U; = U \ Z;, i = 1,2, and define the subanalytic function ¢; on U;
by @i(z) = d(x,9U;). We apply Lemma to U; and ¢; to obtain subanalytic
functions ¢} and C* functions v; on U; satisfying the conclusions of the lemma.
We define functions on V. =U \ (Z1 U Za), 7 = 1 /12, s = ¢ /p2, s’ = p1/¢ so
that r is C*, s, s’ are subanalytic and we have the inequalities 0 < s < r < s’. We
also note that r is tempered on V.

We set Vi = Z3 U{s’ < 1}, Vo = Z3 U {2 < s}. These are subanalytic open
subsets of X and U = V UV} U V5. We choose a C* function h on R such that
0<h<I1,h(t)=1fort <1andh(t) =0 for t > 2. Now we define a by a = 1
onVi,a=0o0on V; and @« = hor on V. We see that « is well-defined and C*
on U. It is clearly tempered on V; and V,. Since the derivatives of h (to a given
order) can be uniformly bounded on R and r is tempered on V' we see that hor
is also tempered on V. Hence « is tempered on U as required. O

Proposition 5.9. Any C;O’t—module or A% -module is soft in the sense of Defini-

tion 11

Proof. Because of the inclusion C;’(O’t C A% it is enough to prove the result for
every C*-module F.

Let U and Z be respectively open and closed subanalytic subsets of X and
consider s € I'(U; Fz). We may assume s € I'(W; F') for a subanalytic open set W
with UNZ C W C U. We choose two subanalytic open sets W;, Wy such that
UNZcW,cUnNW, CcWe cUNW, C W. ByLemmawemayﬁnd
a € T(U;C%°") such that « = 1 on Wi and a = 0 on U \ Wy. Then as € T'(W; F)
extends by 0 on U and as = s in I'(U; Fz). It follows that I'(U; F') — I'(U; Fz) is
surjective, as required. O

Corollary 5.10. The sheaf of dg-algebras Ax is a resolution of Cx,, , i.e. we

have the exact sequence 0 — Cx_, — A% — Ak — -+ — AL — 0.

sa’

Proof. The sequence is obtained from the exact sequence of Lemma [4.7| (on X) by
applying the functors I' y+ and i)_(l. Since i)_(l is exact, it just remains to see that
the terms C .o and Q}Z are I' y+-acyclic.

For Q}Z this follows from Proposition and Corollary For C %, it
follows from RI'x+(Cg ) ~ C= (recall that p, commutes with RI'x+). O

é s
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Proposition 5.11. Let F be a C;:’t—module and set G = i'Tx+F. Let U C X be
a subanalytic open subset. Then the natural map T'(XT; F) — T'(U; Q) is surjective
and G is quasi-injective. In particular the Ay are quasi-injective.

Proof. We consider s € T'(U; G). As in the case of sheaves on manifolds we have,
for H € Mod(Cg ) and U C X,/\F(U;i}lH) ~lim  I'(V; H) where V' runs over
the subanalytic open subsets of X containing U. By Lemma we may assume
V= U;‘ for some ¢: U — R, so that s is represented by a section 5 € F(U;; F).

Since Xt HUJ/Q C U} this 5 defines a section of T'(X™; Fos
w/2

we may extend it to § € I'(XT;F) and we have §|U+/ = §\U+/ . This shows
»/2 ©/2

the surjectivity of I'(X*; F) — I'(U;G). Since this morphism factors through

I'(X;G) — I'(U; G) this also proves that G is quasi-injective. O

). By Proposition

§6. A-modules

For a real analytic manifold X, we denote by Mod(Ax) the category of sheaves of
dg-Ax-modules bounded below on Xg,. We have an obvious forgetful functor and
its composition with the localization:

(17)  Forx: Mod(Ax) — C*(Cyx.,), Fory: Mod(Ax)— DT (Cx.,).

We will usually write F' instead of Forx (F') or For’y (F') when the context is clear.
We still write Fory, For’y for the compositions of these forgetful functors with the
exact functor I;: C(Cx.,) — C(I(Cx)).

In this section we define operations on Mod(Ax) and check usual formulas in
this framework, as well as some compatibility with the corresponding operations in
C(Cx,,) or D(Cx_,) (hence also in C(I(Cx)) or D(I(Cx)), because I, commutes
with the standard operations).

Tensor product. For M,N € Mod(Ax), the tensor product M ®4, N €
Mod(Ax) is defined as usual by taking the tensor product of the underlying sheaves
of graded modules over the underlying sheaf of graded algebras and defining the
differential by d(m ® n) = dm ® n + (—1)%e™m ® dn (for m homogeneous). We
have an exact sequence in C*(Cx_,),

(18) MAx AN S MON = Mas N =0,

where §(m®a®@n) = (—1)%*9e™mgm @ n —m®an for a, m,n homogeneous. For
two real analytic manifolds X,Y and M € Mod(Ax), N € Mod(Ay ), we denote
by X the external tensor product in the category of .A-modules,
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Proposition 6.1. Let I,F € Mod(Ax) be such that I is quasi-injective and F
has a finite presentation (Ax)N — F — 0. Then I @4, F is quasi-injective.

Proof. Let U C X be a subanalytic open subset. The morphism u: IV — I®4, F
is surjective. Since keru is an A%-module, Proposition and Corollary
imply that it is acyclic for ['(U;-). It follows that the morphism I'(U;IY)
— T(U;I ®4, F) is surjective. Since IV is quasi-injective this implies that
NX;I®a F) = T(U;I @4, F) is surjective too, which proves the result. O

Inverse image and direct image. Let f: X — Y be a morphism of real analytic
manifolds. Recall the morphism f*: f~' Ay — Ax of Definition For N €
Mod(Ay) we define its inverse image in Mod(Ax),

"N = Ax Qf-14y fﬁl./\/..

By adjunction f* gives a morphism Ay — f..Ax. Hence, for M € Mod(Ax), f«M
has a natural structure of dg-Ay-module, as also has fiyM, through the natural
morphism fiAx ® fuM — fu(Ax @ M) — fuM.

We have a natural morphism f~*N — f*A in C(Cyx,,) (with the notations
of (17), we could write more precisely f~!(Fory N') — Forx f*N). We show in
Proposition [6.3] that it is a quasi-isomorphism when f is smooth. We first consider
a particular case.

Lemma 6.2. Set X = R™T!, Y = R™ and let f: X — Y be the projection.
Consider coordinates (y1,...,Ym,u) on X. For N' € Mod(AY) we have an ezact
sequence in Mod(Cxs,,),

0— f_lN - Ag( ®f—1A(§, f_lN i) Ag( ®f—1A“’, f_l./\/ — 0,
where d is defined by d(a @ n) = g—q‘i@nforaeflg(, nenN.

Proof. We have the exact sequence 0 — f~1A) — A% 4, A% — 0 where
d(a) = %. The tensor product with f~'N gives the exactness of the sequence
of the lemma except at the first term. It just remains to check that ¢: f~'N —
A% ®f-1.49 7N, n — 1®n, is injective.

(a) We consider a section n € T'(U; f~'N) such that «(n) = 0. This means
that there exist a locally finite covering U = (J,;.; U; and, setting V; = f(Us),
sections n;,n;; € D(Vi; N), ai; € T'(U;; A), bij € T(Vi; AY), where j runs over
a finite set J;, such that for each ¢ € I, n|y, = f*n; and we have the identity in

L(U; AS) @ T(Vis ),

(19) 1®n; = Z(aij(bij (¢} f) QNnij — a5 & b”n”)
JjeJ;
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We may as well assume that the U; are compact. We show in this case that n; = 0,
which will prove n = 0, hence the injectivity of ¢.

(b) By Proposition we may represent the a;;, b;; by tempered C*° func-
tions defined on X, Y. We choose continuous subanalytic functions ¢, : U; — R,
©; > 0 on U, such that the identities hold in F((Ui);fi;(/’;;’t) QT(Vi; N).

By Lemmawe may choose a; € I‘(X*;C;:’t) suchthat 0 < a; <1, =1
on (Ui);ri/4 and «; = 0 outside (Ui);/? Multiplying both sides of by a; we
obtain identities which now hold on T'(X *; C;i:’t) QT (Vi; N). These identities imply

@ ®n;=0 in T(XHCEY) @pyr oy T(VisN).
X Ty

We note that «; has compact support and we set §; = [ JXet du. We have (3; €
F(Y*;C;O’t) and the last identity gives B;n; = 0. Now ['(V;;N) is a T'(V;; A% )-
module and to conclude that n; = 0 it just remains to prove that j;|y, is invertible
in T'(Vi; AY).

(c) Since f3; is a tempered C* function on Y™ it is enough to check that
ﬂi_l has polynomial growth along the boundary of W; = f((Ui):;M). We set
Zy = Xt \(Uy)], )4 and for (z,t) € XV, di(w,t) = d((z,t),0Z;). We obtain the
bound, for (y,t) € W,

Bi(y,t) > / 1-du > 2maxd;(y,u,t).
(COMPHRICIORIITS 13 ueR
The function m;(y,t) = maxycr d;(y,u,t) is subanalytic since the max can be
taken for u running over a compact set. We have m;(y,t) > 0 for (y,t) € W;,.
Hence, by Lojasiewicz’s inequality we have m;(y,t) > Cd((y,t), OW;)~" for some
C,N € R and it follows that 3; ! has polynomial growth along dW;. O

Proposition 6.3. Let f: X — Y be a smooth morphism and N' € Mod(Ay).

(i) The morphism in C(Cx,,), f N — f*N, is a quasi-isomorphism.
(ii) If N is locally free as an A% -module, then f*N is locally free as an A%-
module.
(iii) If N is flat over A and we have an ezact sequence in Mod(Ay ), 0 — N —
N’ — N — 0, then the sequence 0 — f*N" — f*N' — f*N — 0 is exact.

Proof. The statements are local on X so that, up to restriction to open subsets,
we may assume X = Y x R” and f is the projection. Then we factorize f as a
composition of projections with fiber dimension 1, so that we may even assume
X =Y xR (and X =Y xR x R). We take coordinates (y1,- .., Ym,u,t) on X
(u is the coordinate in the fiber of f).
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With this decomposition of X we define the A%-module Ay = A% & A% du.
This is a sub-A%-algebra of Ax (not a sub-dg-algebra); f~1.Ay is another subal-
gebra, and the multiplication Ayers ® -1 A9 f~'Ay — Ax, is an isomorphism of
AY%-algebras. This shows that for any dg-Ay-module N’ we have an isomorphism
of A%-modules
(20) Avert @149 FINT = N

Assertions (ii) and (iii) follow easily. Now we prove (i). By again, f*N is
identified with the total complex of the double complex with two rows:

1,4

. . d .
A())( ®f*1A(;, f71N171 EE— Ag( ®f—1Ag), fﬁl./\/.l —s Ag( ®f—1Ag, f71N1+1

| S

A ®f-1.40 FNGL A9 ®f-1.40 FING T A ®f-1.40 FrINFL

where d(a ® n) = 22 @ n, dy'(a®n) = Zkﬁ%c@dyk-n—&-%@dt-n and
di’i = —dflf. By Lemma m the i*® column is a resolution of f~'A*. The induced

differential on the cohomology of the columns is easily seen to be the differential
of f=*N and (i) follows. O

Remark 6.4. Statement (iii) of Proposition could be improved if we knew
that A% is flat over f~1.A% but the author does not know whether this is true.

Proposition 6.5. Let f: X — Y be a morphism of real analytic manifolds. For
any M € Mod(Ax) we have isomorphisms in D*(Cy,,),

For'(f.(M)) ~ Rf.(For' (M), For'(fu(M)) = R fu(For'(M)).

Proof. By Proposition For (M) € C*(Cx,,) consists of soft sheaves. Hence
Corollary gives the result. O

Projection formula

Lemma 6.6. Let f: X — Y be a morphism of analytic manifolds, M € Mod(Ax),
N € Mod(Ay). There exists a natural isomorphism in Mod(Ay ),

N @ay fuM = fu(fN @ax M),
whose image in CT(Cy,,) gives a commutative diagram

N ®@ay IM —= fu(f*N @4, M)

f !

N @ fuM ——— fi(fT'N @ M)

where the bottom arrow is the usual projection formula.
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Proof. Using and f*N @4, M ~ f’lj\/@fflAY M we have the commutative
diagram (extending the diagram of the lemma)

N@ Ay @ fuM N ® fuM N @4, M —0

la i |

fi(f7 N @ fTrAy @ M) — fu(f TN @ M) — fulf TN @p-14, M) —0

The top row of this diagram is exact by definition of the tensor product, as also is
the bottom row, before we take the image under f;;. But any complex of the type
P ® M is an A%-module because M is; hence it is fiy-acyclic by Proposition
and Corollary [£.5] It follows that the bottom row is exact. Now, the vertical arrows
a and b are isomorphisms in view of the classical projection formula. Hence so is
the morphism of the lemma. O

Base change. We consider a Cartesian square of real analytic manifolds

xr Ly

g'l O lg
f
X —Y

We have the usual base change formula in Mod(Cy: ) or C+(Cy5/a), flgn ~
g0 f'~! (and its derived version in D*(Cy ), f~'Rgn ~ Ry, f'~1).

Lemma 6.7. Let N be a dg-Ay -module. There exists a natural morphism
(21) FrouN — gh f"N
of dg-Ax-modules, whose image in CT(Cx,,) gives a commutative diagram

g N —— g f*N

T !

frgN —— g/ f'NV

where the bottom arrow is the usual base change isomorphism. If f is an immersion
and g is smooth, then is an isomorphism.

Proof. The morphism is defined by the following composition:

FroN ~ Ax @14y gnf TN = gi(¢ " Ax @114, fTIN)
S gh(Ax @pray, FTIN) = ghf"N,
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where the first isomorphism uses the classical base change formula (for complexes),
and the second one the classical projection formula. The morphism ¢ is induced
by ¢'t.

Now we show that ¢ is an isomorphism when f is an immersion and g is
smooth. It is enough to show that

(22) gl_lAX ®g’*1f*1¢4y f/_l,/\/ ~ AX’ ®f/71Ay/ fl_lj\/.

This is a local statement on X’ so that we may as well assume that f is an
embedding and X' = X x Z, Y’ =Y x Z for some manifold Z. We may also
assume that X is given by the equations y; = 0,7 =1,...,d, in Y. Then Ay is
the quotient of f~'Ay by the ideal generated by y;,dy;, i = 1...,d. The same
holds for X’ and we have the presentations

dya)

f—l(Ay)2d (Y1seees f_l(AY) N AX _ 0’

Since the tensor product is right exact, the images of these exact sequences under
) @g-1p-1ay TN and (1) @p-1a,, f'TIN give the same presentations of
both sides of , which shows that they are isomorphic. O

Complex manifolds. Now we assume that X is a complex analytic manifold, of
dimension d$ over C; we denote by XR the underlying real analytlc manifold. We
recall that ¢ is the coordinate on XR given by the projection XR — R, and that we
have the decomposition d = d; + dy of the differential of Ax, (d2(w) = Ow/0t dt).
We consider the complex of “tempered holomorphic functions”, O% € D(Cx.,,),
defined as the Dolbeault complex with tempered coefficients

(23) Of = 0020 L 01 2, 2, g0k
where QE(ZRJ denotes as usual the forms of type (i, 7). The product of forms induces
a morphism O% ® O% — O% in D’(Cx_,). In degree 0, H°(OY%) is a subalgebra
of Px OX .
Definition 6.8. We let Q}(’J be the sub—C%o\’t—module of Q%ﬂ” generated by the
R R R

forms of type (7,j) coming from Xg.

We define AY =iyl T Xt QtJJ This is a sub-A% -module of A% and we

have the decomposition A% = @Zﬂ —k Am Dok A% '_dt. The operators

9,0 on Qf Xy, induce a decomposition of the dlﬁ'erentlal of .AXR, d=0+0+ds.
Welet Jx C Axy be the differential ideal generated by Al X’ and introduce the

dg-Axy-module Ox = Ax, /Jx. As a quotient by a differential ideal, Ox inherits
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a structure of dg-algebra. We note the obvious inclusions pOx C ng)O(o’t C A&R
and we define, for two complex analytic manifolds, X, Y,

0F = 0x ®p0x POV,  OUT, = Oxy p(0xmoy) M(OF BOY),
where (’)g? denotes the holomorphic i-forms on X.
Proposition 6.9. (i) We have an isomorphism of complexes between Qx and
AR — (ARL @ ASL dt) — (ASE @ ARLdE) — - — AYDxa,
with differential 0+ ds.
(ii) (O)g?g()[—d%] is isomorphic to the differential ideal of Axg,
AT (AT @ A dt) — - — Ay,
Moreover, setting Mx = @i<d§( JSdS(( :LX]R @ Ag’gﬁdt), we have a decomposi-
tion Axp = @g?x)[fdg(] ® Mx into locally free A% -modules.
(iii) There ezists a natural isomorphism O% ~ Ox in D*(C(xy)..) which com-

mutes with the products O% ® O% — O% and Ox ® Ox — Ox. We also have
t(p, ) .
O)gz;gf) = (O)ggf%/ m Db(C(XRXYR)sa)'
Proof. The decomposition of A’)“(R given in Definition yields projections A’)“(R
— Aﬂ;’; @ Ag&’:ldt. The sum of these projections is a surjective morphism from

Axy, to the complex in (i) and we see that its kernel is Jx. This gives (i), and (ii)
follows. We obtain (iii) by the exact sequences

0 — QY07 — A% 2O/, L0 gt —

and the definition of OY%. O

For a morphism of complex analytic manifolds f: X — Y, we have a
“tempered” integration morphism in the derived category, Rf”(’);gdg‘)[dg(]
(’);(di’)[dgf]. When f is a submersion, using the adjunction between Rf; and
[~ f7Y2(d5% — dS)], it can be written

(24) O [—ds] — f 10N [—dg).

Proition 6.10. Let f: X — Y be a submersion. The embeddings of Proposi-

tion [6.9(ii), @(chz)[—dcz] C Az (for Z = X|Y), induce a morphism of dg-Axpg -
modules

d% c ) (dy c
(25) O [=di] — O [~dy]

which represents through the isomorphism of Proposition iii).
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Proof. By Proposition we have a decomposition Ay;, ~ (D)yg’)[fdcy] ® My
into locally free A9, -modules; hence the quotient Ay, /@(d;)[—df/] is flat over
.Ag), and Proposmon implies that the morphism f* (O)(d”)[ d$] — f* Ay ~
Axy is injective. Hence we just have to check the inclusion of ideals of Axp:
@g?g‘) [—d%] C f*@g-i;)[—df/]. This is a local problem on X which can be checked
in a local coordinate system. 0

With the hypothesis of Proposition[6.10} we could have defined an integration
morphism f,00x[dS] — O [de).

In Section we need the following composition of kernels. Let XY, Z be
three complex analytic manifolds and ¢;; the projection from their product to
the 8 x j* factors. The product of O and the integration morphism give a
convolution product

d c — dZ C dZ C
(26) Rau3: (415 OO0y [45] © a3 OV 5 [d5)) — O¢2) dg).

We can realize this tempered convolution product on the resolutions (O)g?’f;y,), but
in fact we will rather need its “adjoint” morphism

0,d 0,d 0,dS-,d¢,
27)  dL00N (5] @4 450V 7 [~dy] — 002 [d — dy)

* 0,d c
- Q13@g( x%) [—dz]:

where the first morphism is induced by the product Oy ® Oy ®,,0, 0 (’)g v) o,
Oy ®p 0y p!O;d ) and the second morphism is induced by (25).

§7. Microlocalization functor

In this section we recall the definition of the microlocalization functor u introduced
in [9]. For a manifold X this is a functor, py, from D*(I(Cx)) to D*(I(Cz-x))
given by a kernel Ly € Db(I(CXXT*X)).

We define an analog of this kernel and of the microlocalization functor in the
framework of A-modules. We check that in the case we are interested in, this gives
a quasi-injective resolution of ux F', and that it has a functorial behavior with
respect to the usual operations.

In fact, with the definition of [9] the construction of the external tensor prod-
uct is not so straightforward. For this reason we define another kernel for which
the tensor product is easy and which coincides with the kernel of [9] outside the
zero section.
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§7.1. Microlocalization functor in the derived category

In [9] the authors define a kernel associated to the following data: let X be a
manifold, Z C X a closed submanifold and ¢ a 1-form defined on Z, i.e. o is a
section of the bundle Z xx T*X — Z. To simplify the exposition we make the
following assumption which will be satisfied in our case:

(28) for any z € Z, 0, is non-zero but 0,(v) =0, Vv € T, Z.
Hence o induces a non-vanishing section of 77X — Z and we may define
P = {(x,v) € Tz X; (v,0(x)) >0}, P, = PO.

Thus P, is a subset of Tz X, viewed itself as a subset of the normal deformation
of Z in X, Xz. We recall that Xz and the projection p: Xz — X are given in

local coordinates as follows. We choose coordinates (z1,...,z,) on X such that
Z is given by x; = 0, i = 1,...,d. This gives coordinates (z;,7) on Xz and
p(z;,7) = (t21,..., 724 Td41,- .-, Tn). The normal bundle T X is embedded in

X as the submanifold {7 = 0} and we define Q = {7 > 0}:

P, ¢ T7zXC Xy 0 ()

L

In [9] the objects are introduced in the category of ind-sheaves but we will work
on the subanalytic site, using the embedding of categories I.: Mod(Cx, ) =~
Ir .(Cx) — I(Cx). Moreover, under hypothesis we may use the following
definition for the kernel instead of Definition 1.2.3 of [9] (see Proposition 1.2.11,
loc. cit.).

Definition 7.1. The kernel associated to the above data is the complex £, =
I.(£:%) € D(I(Cx)), where £3% € D(Cyx,,) is given by (recall that, for i: Z —
X, we write wy|x instead of i.wz|x)

L3 =Rpu(pg, (Cp,) ® Co) ® pX’(w?\;{l)'

We note that Rpu(p1(Cp,)®Cq) is supported on Z (i.e. its restriction outside
Z is 0). Hence taking the tensor product with pg(w%}l) reduces locally to a shift
by the codimension of Z. By Proposition 1.2.11 of [9] we also have

(29) Rpu(px,(Cp,) ® Co) =~ “lim” Cy ® px1(Cz),
U
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where U runs over the open subsets of X such that the cone of U along Z does
not intersect P, outside the zero section. In particular the complexes in (29)) are
concentrated in degree 0: Rpu(px,,(Cp,) ® Ca) ~ pu(px,,(Cp,) ® Ca).

When considering resolutions of £, by .A-modules it will be convenient to use
the following different formulation.

Definition 7.2. For an analytic manifold Y and 7" C Y a locally closed suban-
alytic subset we define Kr € Mod(Cy,,) by Kr = th o CW\WO, where W
(resp. W?) runs over the open neighborhoods of T (resp. T) in Y. We note that

K71 has support in the boundary 0T =T \ T.

Lemma 7.3. Let (X, Z,0) be a kernel data satisfying . We have an isomor-
phism in D*(Cx,,),
£3% = Rpu(Kpo ® Ca) @ pxi (W3-

Proof. We define F' = li_r)nW0 Cyros
of PY in X,. Hence we have an exact sequence 0 — Kpo — p5,(Cp,) > F —0
and it is enough to show that Rpy(F ® Cq) = 0.

We have Rpu(F ® Cq) ~ thU URp*CWanU,

same set as above and U runs over the open subsets of X, with compact closure.

where WP runs over the open neighborhoods

where W9 runs over the

Since p, commutes with p, we are reduced to a computation with sheaves on
topological spaces.

For x in X \ Z, near Z, p~'(z) N WO N QNU is a union of intervals of the
line, all compact except at most one which is homeomorphic to [0,1[. When we
take the limit over W° and U only the last one has a non-zero contribution to
H@rwinenu — Cpmt@nwmnanys- Since RE(R; Cpoa) = 0
we deduce that our direct image vanishes. O

the morphisms Cp,

Now, for any manifold X the cotangent bundle 7" X is endowed with a canon-
ical 1- form say wx . We restrict outside the zero-section and set X =X ><T*X 3=
X xx T*X ~ T*X and consider the section ox: X Xx T*X — T*X x T*(T*X)
defined by ox = (—id,wx), i.e. in local coordinates

UX(xa xvg) = (((E, —f),WX(xgg)) = ((.’E, _5), (%5,5,0))
Hence hypothesis is satisfied for the data (X,3,0x).

Definition 7.4. With the above notations, we set Lx = E,,X so that Lx €
DY(I(Cxxi+x)). We denote by p;: X x "X — X, pa: X x T*X — T*X the
projections. The microlocalization is the functor

px: D*(I(Cx)) — D’(I(Cj+x)), Fr LxoF =Rpan(Lx ®p; ' F).
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§7.2. Microlocalization functor for A-modules

Definition 7.5. With the notations of Definition we define Br € Mod(Ay)
by By = lL)nW’W0 Fy\wo(Ay ® Cyr), where W (resp. W?9) runs over the open
neighborhoods of T' (resp. T) in Y.

For an open subset U C Y, we denote by Cy; the complex Ci;z — Cay in
C*(Cy,,), with Cg in degree 0. We have a quasi-isomorphism Cy — Cj;.

For a kernel data (X, Z,0) we define £ € Mod(Ax) by

L3 = pu(Bpo ® Cq) © px1(wF )

Remark 7.6. For V C Y open, a section of By (V) is represented by an element
a € T(VNW; Ay) such that a|yo = 0, where W and W9 are some neighborhoods
of T and T.

Lemma 7.7. (i) LetY be a real analytic manifold and T C'Y be a locally closed
subset whose embedding in'Y is locally homeomorphic to the embedding of a
convez set in R™. Then in D’(Cy,,) we have an isomorphism K = Br and
Br consists of quasi-injective sheaves on Yy, .

(ii) For a kernel data (X, Z,0) satisfying hypothesis ([28)), (i) induces an isomor-
phism L, ~ LA in DT(I(Cx)).

(iii) C;‘\ is a complex of quasi-injective sheaves on Xs,.

(iv) For F € Mod(Ax), the morphism LA ® F — LA @4, F in CT(Cx,,) is a
quasi-isomorphism.

Proof. (i) In Definition we may as well assume that the embedding of W?°
in Y is locally homeomorphic to the embedding of an open convex set in R", so
that Cy\ﬁ ~ RI'y\woCy. Since Ay is a quasi-injective resolution of Cy we
deduce CY\W ~ I'y\woAy. Now we take the tensor product with p/C7 and use
formula (@ to obtain the isomorphism.

The quasi-injectivity of By follows from that of Ay and the description of
sections in Remark

(ii) By (i) we have Kpo ® Cq = Bpo ® Cg. By Proposition and Corol-
lary Bpo ® Cg, is py-acyclic and we deduce L, ~ LA,

(iii) Since Q and 9 are closed, (i) and Proposition 1.5.13 of [10] show that
Bpo @ C{, is quasi-injective. Since py preserves quasi-injectivity the result follows.

(iv) Since p|g: @ — X is smooth Proposition and Corollary give an
isomorphism (Bpo ® Cq) @ p~'F ~ (Bpo ® Cq) @p-14, p~'F in D+(C()~(Z) ).
We also have Cq = Cf,, so we may replace Cq by Cg, in this isomorphism.

sa

We take the image under py, and using the projection formula and the fact that
sz—modules are pp-acyclic, we obtain the result. O
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Now we can define the microlocalization functor for A-modules. We keep the
notations introduced before Definition [7.4t for a manifold X we have the kernel
data (%,3,0x).

Definition 7.8. With the above notations, we set L{ = LA so that L{ €

(o
Mod(Ax x7+x). The microlocalization is the functor

% Mod(Ax) — Mod(Aj-x), F > Ly o F =pon(L ®a, piF).

Proposition 7.9. (i) For F € Mod(Ax) there exists a natural isomorphism
px (Forly (F)) 2 Forf  (j(F)) in D*(I(Ci- ).

(i) If F' admits a presentation (Ax)N — F — 0 then pus(F) is a complex of
quasi-injective sheaves on T* X, .

Proof. (i) By Lemma ii) we have pix F' =~ Rpan (L4 @ py ' F). Since A-modules
are soft we may replace Rpan by pan. By Propositionwe also have ple = piF
and we conclude by Lemma [7.7](iv).

(ii) follows from Proposition and the fact that poy preserves quasi-injec-
tivity. O

§8. Functorial behavior of the kernel

We study the behavior of £4 under direct image, inverse image and external
tensor product. The morphisms built in this section correspond to the morphisms
of Propositions 1.3.1, 1.3.3, 1.3.4 and 1.3.8 of [9] through the isomorphism of
Lemma (ii), but we have to make additional hypothesis on the maps.

In this section (X1,Z1,01) and (X, Za,09) are two sets of data as above,
satisfying hypothesis . We set for short X; = (X;) 7.

Direct and inverse 1mages Let f: X1 — X5 be a morphlsm with f(Z1) C Z5
and 07 = f*o2. It induces f X, — X, decomposed as f h o g in the following
diagram where the square is Cartesian:

Qlc—>X1 $X1 X x, X24h>)22<—)92

VN AN

1—>X2 Py,

We have Oy = f~1Qy, Tz, Xy = f~1(T2,Xs), Py, = f7'P,,, P2 = f~1P2 . We
note that X; xx, Xo is in general not a manifold and may have components of
different dimensions. When f is clean with respect to Z; and Z; = f~1(Z3) (clean
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then means that ¢’': Ty, X1 — X3 X x, Tz, X5 is injective), g is a closed embedding.
When f is transversal to Z, and Z; = f~1(Z,), g is an isomorphism.

Proposition 8.1. Assume that f and f|z,: Z1 — Zs are smooth. Then there
exists a natural morphism of dg-Ax,-modules
(31) Fu(L8, ® pxi(wzy)2,) = L3,
Proof. The hypothesis implies that f is smooth. Since P) = f ~1PY , the integra-
tion morphism of Definition induces f”(Bpg1 ®wg,x,) — Bpy. (this can be
checked by using the description of sections of Br in Remark . We also have
pl_lwxl‘XZ ~ Wiz, and f’lcg22 = Cq,, . This gives the morphisms

fu(pin(Bpe ® Cq,) ® wx,|x,) = panfu(Bpe ® f~'Cq, @ wg, %,)

— pau(Bpo @ Cg,),

where in the first line we use the projection formula for p; and fp; = pof. In
the second line we use the projection formula for f and the above morphism

f”(BPBl & wX1|X2) — Bp£2.

Now we take the tensor product with wQZZ’Z_l)lQ and we obtain . [
Proposition 8.2. Assume that Z, = f~1(Zs) and f is clean with respect to Zs.
Then there exists a natural morphism of dg-Ax, -modules
(32) f*ﬁﬁz - ‘Cﬁl ® lel(wZﬂZz) ® w;@él—éQ'

If f is transversal to Zy the morphism becomes f*ﬁj,“2 — £341'

Proof. The hypotheses imply that the morphism ¢ in diagram is an embed-
ding. Hence g, = gy and we have the adjunction morphism id — gng=t. We
compose it with the base change f~!pan — quh~! to obtain

F pan — qugng Rt = puf

We apply Ax, ®-1.4y, (+) to this morphism and use the projection formula for p;
to obtain a morphism f*pay — pin f *. It induces the first arrow in the sequence

below. The second arrow is induced by f~1C} , = Cq, and the inverse image 1t
The composition defines ([32)):

FoL7, = " (pan(Bpy, © Co,) @ pxawi,)
— (p1!1f*(BP32 ® Cq,)) ® f_leQ!w%;(?
— pu(Bre ©Ch,) ® f px,wi k.

If f is transversal to Zs we have wz,|x, ~ f~'wz,|x,- O
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External tensor product. The external tensor product is a consequence of
Proposition 1.3.8 of [9]. We give a slightly different proof here using the modi-
fication in our definition of £,. In particular we use the following lemma.

Lemma 8.3. Let Y;, i = 1,2, be real analytic manifolds, and T; C Y; and T C
Y1 X Y5 be locally closed subanalytic subsets such that

T C (Tl X Yg) @] (Yl X TQ) and T C (Tl X YQ) @] (Yl X TQ) U (Tl X TQ)

Then there exist morphisms K, XK, — Kt in C(C(y, xvs),,) and By, XBr, — Br
in Mod(Ay, xy,) which coincide in the derived category.

Proof. We only define the morphism for B., the construction for K. being similar.
We recall that a section of Br, over U; C Y; is represented by a; € T'(U; N W;; Ay;,)
such that ai|W{’ = 0, for some neighborhoods W; and W} of T; and T; in Y;. Hence
a = ajy - ay gives a section of Ay, xy, over Wy x Wy such that a|ww, xw,)nwo = 0,
where W0 = (W x Y3) U (Y1 x WY). Hence we may extend a by 0 on W =
(W1 x W) UW?P. Since W and W are open neighborhoods of T and 7" in Y; x Y5,
this defines a section of By over Uy x Us. O

Now we consider (X1, Z1,01) and (Xa, Zo,02) as at the beginning of this
section. We set X = X; x Xy, Z = Z1 X Zs, 0 = 01 + 09. Then (X, Z,0) is
also a kernel data satisfying . We keep the notations of diagram and
let p: X; — X be the projection. We also have a natural embedding k: X; —
X1 X Xo. We set p/ = p1 X p2: X1 x Xo — X.

Proposition 8.4. There exists a natural morphism E{,“l X Efz — L in
MOd(AX1XX2)~

Proof. We let Q0 be the image of P? in Ty, X; x Tz, Xo C X; x X. We have a
natural restriction morphism k’lBQg — Bpo and Lemma gives a morphism
Bpg1 X Bp£2 — Bqo, so that we obtain k’l(Bpgl X Bpgz) — Bpo. We also have a
morphism k~!(Cg, M Cy, ) — Cg,. Now the proposition follows easily from these
morphisms and the morphism of functors

p1n B pan — ply — phknk™ = puk~1. O

§9. Functorial properties of microlocalization

In this section f: X — Y is a morphism of real analytic manifolds. We recall the
functorial behavior of microlocalization and define the corresponding morphism
for the microlocalization of .A-modules. This makes the link between kernels on
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X xT*X and Y x T*Y and we consider an intermediate space introduced in the

diagram
X X - Y
plT T qu
5 id . - 5
33) XxT*X — X (xXxyTry) — D vy
p?l 7'2l qu
T X e X xy T*Y - Y

We define the submanifold Z = X x yT*Y diagonally embedded in X x (X XYT*Y)
and the kernel data (X x (X xy T*Y), Z,0y._x), where
oy—x = (id x fa)"(ox) = (f x fz)"(oy).

This equality follows from f}(wx) = f}(wy). We note that Z = (id x fq) "} (X x x
T*X) and Z C (f x fr) 1Y xy T*Y), with equality if f is an embedding. This
implies that hypothesis is satisfied for (X x (X XYT*Y), Z, 0y x). We denote
the corresponding kernel by Ly . x = L

Oy —X "

Inverse image. In the next proposition we assume that f: X — Y is an embed-
ding. For G € D*(I(Cy)) Theorem 2.4.4 of [9] gives a morphism

(34) Rfanfr iy (G) — px (f71G).

Proposition 9.1. For an embedding f: X — Y and G € Mod(Ay), we have a
morphism of Aj«x-modules

(35) Fanf7i8(G) = wx (f°G),

whose image in DT (I(Cqwx)) is morphism (34)).

Proof. We first note the morphism of functors fqan — ran(f X fr)*. It is obtained
by the following composition of adjunction morphisms, where we use the fact that

f, hence f. and f x f, are embeddings, so that direct and proper direct images
coincide:

(36)  frazn = fraan(f X fr)«(f X fa)" = frfraeran(f X fa)" = ron(f X fz)"
We also note the morphisms between kernels:
BT (fx )L = Loy 0wl (dx fonldox @) — L.

The first one is morphism applied to f x f: we note that f x f. is clean with
respect to Y xy T*Y and X xy T*Y = (f x fz)"1(Y xy T*Y). The second one is
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morphism applied to id x f3. Now the morphism of the proposition is defined
by the succession of morphisms

(38) fanFi13(G) = fanfrgon(L3 @4 q;G)

(39) — faran((f X fz)* Ly @475 f*G)

(40) < pon((id X fa)u(f X f=)"L3 @4 pif*G)
(41) — pan(L% @4 D f*G),

where in line we used morphism and the commutativity of inverse image
and tensor product, and in the identities fyro = po(id x fq), r1 = p1(id x fgq)
and the projection formula for (id x f4) (Lemma [6.6]). The last morphism is the
composition of the morphisms in (37). O

Direct image. Theorem 2.4.2 of [9] gives a morphism Rfﬂ”fd_l,uX(F) — py (fuF)
for F € D*(I(Cx)). We can define its analog for A-modules if we assume that f
is a submersion and F is of the type F = f'G ~ f~'G ® wx|y; then the above
morphism induces

(42) wa!!fdil,uX(filG@wa) — ,uy(G).

Proposition 9.2. There exists a natural morphism of Aj«y-modules, for a sub-
mersion f: X — Y and for G € Mod(Ay),

(43) Fanfiu (f1G @ wxpy) — pi(G),
whose image in DY (I(Cjxy)) is morphism (42).
Proof. We set ' = f*G @ wx|y and define by the sequence of morphisms

(with the notations of diagram (33))

(44)  faufipan(L @4 pPiF)

(45) — fruran((id X fo)* LY @ 15 F)

(46) ~ qan(f % fo)u((id x fo)* LY @ 'wx)y @a (f X f2) ¢ G)
(47) 2 gun((f x fo)u((id x fa)* Ly @17 wxpy) ®4 41 G)

(48) — gan(LY ®4 ¢ G),

where in line we used the base change formula fjpan — ray(id X fg)* and
the identity 1 = p1(id X f4), in line the identities frr2 = ¢2(f X fr) and
fri=aq(f % fx), and in line the projection formula for f x f.. The last line
is given by the composition of

(id x fa)* L% — Ly _x and  (f x fo)u(Lf_x @1y lwxyy) — L3,
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which are given respectively by and (for the first morphism we note
that id x fy is transversal to X x x T*X and for the second one we note that the
restriction of Tl_le‘Y to X xy T*Y is isomorphic to wxx, 7+y |y xy7+y)- O

External product. For F € DT(I(Cx)) and G € D" (I(Cy)) Proposition 2.1.14
of [9] implies the existence of a natural morphism

(49) ILI/XF&MYG — ,U,Xxy(F&G)

Proposition 9.3. For F' € Mod(Ax) and G € Mod(Ay) there exists a natural
morphism

(50) PR F B pstG — pf o,y (FRG)

T*XxT*Y
whose image in DT (I(Cixx xixy)) is .

Proof. The existence of the morphism follows from the Kiinneth formula and
Proposition [8:4] It coincides with the already known construction outside the zero
section by Proposition [7.9] O

§10. Composition of kernels

We first recall some standard notations and definitions. We consider three analytic
manifolds X, Y, Z and we let ¢;; be the projection from X x Y x Z to the
ith x j* factors and pij be the similar projection from T*X x T*Y x T*Z. We
also denote by a: T*Y — T*Y the antipodal map and we set p{y, = (id X a) o p12.
For F € DT(I(Cx«xy)), G € DT(I(Cyxz)) and § € DY (I(Cr-xx1+y)), & €
D+(I(CT*Y><T*Z)) we define

(51)  FoG =Raam(¢s F®¢yG), F66 =Rpian(pfs 'S @ py ®).

We set for short M = X xY xY xZ, N=X XY x Z and let j: N — M be the
diagonal embedding. We define the maps

k: T*N — N XM T*M7 (3373/72;577770 g (xayuy7z;€7 _77777707
T: T*N — N XXXZT*(X X Z)a (x7yaz;£an7C) = (xvyaz;gaC)a
pP=jnok,
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and obtain the following commutative diagram with a Cartesian square:

p

T*NC k Nxy T*MC— 77— ppp

(52) lT - jdl

P13 | NXszT*(XXZ)(—>T*N

\ q13d

N

T*(X x Z)

We note that § 6 & ~ Rpizn p~1(F X &). Theorem 2.5.1 of [9] gives a natural
morphism, for K; € DY (I(Cxxy)), K2 € DT (I(Cyxz)),

(53) ,uXxYK1gMYxZK2—>MXxZ(K1 o K»).

It can be restated as follows. For complexes K; € DT (I(Cxxy)), Ko €
DH(I(Cyxz)) and K3 € D¥(I(Cxxz)), with a morphism ¢, K1 ® ¢o5 Ko —
ql_glK 3 ® wy, there exists a natural morphism

(54) xxy K16 pyxz Ko — pixxzKs.

This is equivalent to : indeed using the adjunction between Rgisn and q!13 we
may apply to K3 = K; o K5 and recover . But for A-modules we do not
have this adjunction and the statement of the following proposition is actually
weaker than an .4-module analog of .

For § € MOd(AT*XXT*y) and & € MOd(AT*yXT*Z) we set

A a* * *
FC 6 =psn(PHF Oy P53 ®) =~ pranp* (TR 6).

If §, resp. @, is defined only on T* (X xY), resp. T*(Y x Z), then 3‘154@ is defined
on T*X x T*Z. In DT (I(Cr+x x7+7)) we have the morphisms

a % % o o~ A
(55) o086 — RplSI!(p(fzg DAy p23@) < F o6,
where the second arrow is an isomorphism by Proposition [6.5

Proposition 10.1. For K; € Mod(Axxy), Ko € Mod(Ayxz) and K3 €
Mod(Axxz) with a morphism g, K1 @4 ¢33K2 — qi{3K3 ® wy there exists a
natural morphism in Mod(Af~y xi+7),

aA
(56) MéXYKl © MéxZKQ - MéxZK&
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which makes a commutative diagram in D+(I(Cf*xxi“*z))) with ,

[ix vy K1 6 pryx 7 Ky — 1ixxzK3

| l

aA A
15y B0 it g Ko > Xz K3

Proof. By definition MéxyKl ag‘#észg = plgygp*(,uéxyKlgqung). The ex-
ternal tensor product gives uﬁxyKlguészg — uj\ﬁ[ (K1XK>) and the base
change formula gives pi13np* = quznmnk* jr << qi3anqis, janjs, which is an
isomorphism because ¢34 is an embedding and j4 is smooth. We obtain the mor-
phisms

H?xyKl %4 W}L}sz2 - Q137r!!‘ﬁ3djd!!j;(ﬂﬁ(Kngﬂ)
— qQuangiza v I (K1KK>)
— QuaniGiaq i (413 Ks @ wy)
- N,J)%XZKZ%

where in the second line we have applied Proposition in the third the hypoth-
esis and in the fourth Proposition [9.2] O

We are in fact only interested in the following example. We assume now that
X, Y, Z are complex analytic manifolds. We use the A-module Qx and its variants
introduced in Definition m We set Ky = (O)g?f:‘ﬁ) [d$-], which gives a resolution
of Oég(igl})[d%], K, = @ﬁf?[dcz], K; = (O)g?’j? [d%]. With these notations mor-
phism yields a morphism ¢j5 K1 ®4 ¢35 K2 — ¢i3 K3 @wy and Propositionm
gives the microlocal convolution
(57) ik O 5] 8 it 20V 1) — ik, 0857 la).
This convolution product is associative, because the composition of kernels ! is
associative as also is the integration morphism by Fubini.

We will in fact use morphism in a slightly more general situation, namely
for complexes of the type Hom (7 'F, uG), rather than uG. We first introduce
notations in the category of complexes:

0 _ _ a0 a— _
FolG= QIB!!((thF ® QQ31G)a §o06= p13!1(p12 13®p231 )

Proposition 10.2. For F € C%(Cxxy),,), G € C'(Cyxz)..), § €
Mod(Arp-(xxy)) and & € Mod(Ar+(y xz)) we have a natural morphism

(58)  Hom(ryly F.§) 6 Hom(myl ,G, ®) — Hom(ryk ,(F 8 G), 5 ®).
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Proof. We keep the notations of diagram . Let us denote by LHS the left hand
side of . We have the morphisms

(59) LHS = pian p* (Hom(r oy F, §)X Hom(my L ,G, ®))
~ pi3n p* Hom(my, (F K G), FHS)
— Hom(p13« pilw&l(F X G), 3a54@5),

where in the last line we have used the morphisms of functors p* Hom(,:) —
Hom(p~*(-),p*(-)) and przn Hom(, -) — Hom(piz.(-), pan(-))-

We let 0: N xXxxz T*(X x Z) — T*N be induced by the inclusion of the
zero section of Y and we let 7y : N Xxxz T*(X x Z) — N be the projection.
Then mps opo o = jomh. Moreover, since we deal with conic sheaves we have the
isomorphism of functors 7, ~ o~1. We also have a morphism gisz11 — qi3x+. We
deduce the sequence of morphisms

11 11
P13« T = q13axT«P Tpp

-1, -1
<~ Q137110 P

1

-1 —1.-1 . -1 1
Ty =qu3aTyn ] = Txezq1310)

where the last isomorphism is a base change. So we obtain w;(lx 7 1311 71—
P13+« p_17r;41 and composing this morphism with we deduce (58]). O

Remark 10.3. We can define analogs of morphism in the derived category or
in the category of complexes. We then obtain the first two lines in the commutative
diagram

RHom(mx y F,F) 6 RHom(ry L ,G, &) — RHom(ry. ,(F o G),§ 0 ®)

(60 A
Hom(myy F, F) ) Hom(my L ,G, &)

:

Hom(ry', F,F) 4! Hom(my L ,G, &) — Hom(my} ,(F 3 G),§ st ®)

The vertical arrows u and v in this diagram go in the wrong direction but it will
be used in cases where they are isomorphisms.

§11. &-modules

In this section X is a complex analytic manifold of complex dimension n = d$%
and A denotes the diagonal of X x X. We identify T*X and TX (X x X) by the
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first projection. We denote by £x the sheaf of microdifferential operators of finite
order; this is a sheaf on 7% X. It can be defined by a construction similar to Sato’s
definition of microdifferential operators of infinite order, using the tempered mi-
crolocalization; this is done in [I] (see also [II]—here we can use (2)) as a definition
of T-phom), as follows. We let v: T*X — T*X/C* be the quotient map by the
action of C* in the fibers. Then Ex ~ v 14, (E%/) where E87 is the sheaf on
T*X ~TX(X x X),

g)r({vf = T-phom(Ca, Og?;?))( [n]).

The product of E)l}’f is defined in [I] by the convolution product for tempered
microlocalization. This can also be defined in the language of ind-sheaves, follow-
ing [9]. We first define £ € D(I(Cr+(xxx))) by

g}nd _ RIHom(w_ch,uXxXO)goxg()[ ])

where O;g(;}), defined in as an object of Db(C(XXx)sa), is now considered in
D®(I(Cxxx)) using the functor . Thus £47¢ has support on T*X ~ T% (X x X)
but this does not imply that it is the image of an ind-sheaf on T* X. We recall the
notations py,pa: T*(X x X) — T*X for the projections, a: T*X — T*X for the
antipodal map and we define the embedding

§: T X ~Ti(X x X) > THX x X), (2,8 — (z,2,& —¢).

Since supp £474 = T (X x X) the morphisms of functors py,. — p1.0.6'~1 = ¢!

and pa, — a~16’~! induce isomorphisms:
(61) 5/7163i(nd ~ pl*géi(nd ~a” p >kglmd'
We could write the same isomorphisms with p;i;, Rp;« or Rp;in instead of p.,.

Definition 11.1. We let £24 € D*(I(Cr+x)) be the ind-sheaf on T*X defined

by .

Since the functor a from ind-sheaves to sheaves commutes with direct image
and inverse image we have £y RS~ e «x (€189). The complex €8¢ comes equipped
with a product in the sense of Definition m defined as follows (omitting the
subscript in p):

(i) Using we see that 4 @ £ipd ~ §/~1(g4ind § gind),
(ii) We have Ca 0 Ca = Ca and the top line in diagram 1@} with X =Y =2
gives £i0d @ gind — §/-1 RIHom( ’1CA,uO§OX;}) 5 uOXXX[ nJ).
(iii) Morphisms (26]) and (54) give MOXxX /,LOX(LT)L{) [2n] — MOXxX[”]-
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The composition of (i)—(iii) defines the product €4 @ £#d — £d The same
discussion, applied to X = Y and Z a point, ends up with an action of £2¢ on pO%
in the sense of Deﬁnition We deduce an action of £24 on RTHom (71 F, nO%)
for any F € D*(I(Cx)).

This product and this action are just morphisms in the derived category and
do not endow the complex €8¢ with a structure of algebra. However, when we go
back to the derived category of sheaves with the functor ar«x, the product gives
a morphism E)I;’f ® é}l?’f — 5§’f which endows 8§’f with a structure of algebra
because 8§’f is a sheaf (i.e. concentrated in degree 0). But this is not enough to de-
fine a structure of Sﬁ’f—module on T-phom(F,Ox) ~ ar-x RIHom(r 1 F, uO%)
which is in general not concentrated in one degree.

To solve this problem we define a dg-algebra 53‘(‘ on the site X, (and not
merely an object in the derived category) such that £@4 ~ I, (£4). We also define
in the same way a dg-module over 53? representing uO%. In fact our definition is
exactly the previous one but in categories of .A-modules instead of derived cate-
gories.

Definition 11.2. We define a complex of sheaves on T*Xsa,
£ = "L Hom(n 1 Ca, i xOR LK ),
with a product, 53? ® 83(4 — 5;(4, defined as the composition of
4 ® 4 — &' Hom(n ™' Ca, wAOLL) S AOL Lk [2n])
and
O 6 10Kk [2n] — pAOL T [n),

which are respectively given by and together with .
We also have a natural morphism 85? ® ué@x — u;‘}@ x defined like the
above action of 24 on pO%.

Proposition 11.3. The morphisms introduced in the previous definition give 53?
a structure of dg-algebra and give u;‘}@x a structure of dg—é’;?—module.

Over T*X, we have isomorphisms End ~ [ (£4) and pO% ~ I (p40x).
Through these isomorphisms the product of 53(4 and its action on u;‘}@x coincide
with the product of EXY and its action on pOY% defined above.

Proof. The complex £ j‘(‘ is a dg-algebra and ,u;*}@ x isa dg—é‘;’?—module because the
product and the action are defined in categories of complexes and not merely up
to homotopy.



138 S. GUILLERMOU

The second part of the proposition follows from Proposition [I0.1] and Re-
mark With the notations of diagram we are interested in the cases
3 = ,uf}@g?’xn;([n], F = Ca and either & = §, G = F (for the product) or

® = ,u;‘}@x, G = Cx (for the action).

By Proposition using the composition of kernels § 56 — ® and its
analogs for % and ot we change diagram into another commutative diagram,
where §6 @ is replaced by &. We just have to check that the vertical arrows u and
v (in the notations of (60)) in this new diagram are isomorphisms.

By Proposition [7.9] § and & consist of quasi-injective sheaves on T* X, and
so are acyclic for the functors Hom(H, ), H constructible. In particular the Hom
sheaves in diagram are isomorphic to the RHom. For the composition of
kernels o we also have to compute a direct image. Since we deal with A-modules
Proposition [6.5| implies that direct images and derived direct images coincide. This
proves that the vertical arrows are isomorphisms. O]

We still have to make the link between £ and E)r({’f. We note that p~1€¢ is
quasi-isomorphic to E)P;’f . In particular pflé';él has its cohomology concentrated in
degree 0 and we have isomorphisms of sheaves

EXT > HO(p 1) ~ HO (o (%)),

Moreover the structure of dg-algebra on Ej? gives a structure of dg-algebra on
p’lé';? and a structure of algebra on Ho(pflé';?). The above proposition implies
that this product induced on S)P;’f coincides with the usual one.

We also have a structure of dg-£x-module on p4QOx; in particular it de-
fines an object I, (u5Qx) € D(I(E¢)). For any G € D~(I(Cr-x)) the complex
RIHom(G, I, (14 0x)) is thus also naturally defined as an object of D(I,(E¢)).
For G =7"'F, F € D~(I(Cx)), we deduce that

T-phom(F,0x) = aRTHom(r ' F, I (15 0x)) € D(p~ 1),
and, by construction, the corresponding action in D(Cr-x)
p LR @ T-phom(F, Ox) — T-phom(F,Ox)

coincides with the action of 8§’f on T-phom(F, Ox) defined above.

Thus we are almost done, except that T-phom(F, Ox) is defined as an object
of D(p~1E4) rather than D(E5/). But the dg-algebra p~ €4 is quasi-isomorphic
to 5§’f and it just remains to apply Corollary as follows. We have the quasi-
isomorphisms of dg-algebras on T*X

p_lé’}? Rl Tgop_lé';? Po, 5§’f,
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and the equivalence of categories ¢f o ¢<g.: D(p~ %) = D(E)P;’f). We set £ =
Brx(p~1EL) so that we have an adjunction morphism &5 — I,(£%). This mor-
phism induces the restriction of scalars r: D(I, (%)) — D(E%) and ¢ o d<o
induces an equivalence of categories ®: D(E%) = D(fr- X(S)Fé’f )). Hence we ob-
tain an object

O% = ®(r(I;(1x0x))) € D(Br-x (£x™))

representing pO% and we can state the final result:

Theorem 11.4. The object O% € D(,BT*X(E)I({J)) defined above over T*X is sent
to uxO% in D(I(Ci~x)) by the forgetful functor. Moreover, for F € D~ (I(Cx))
the complex

ar«x RTHom(r ' F, O%,),

which is naturally defined in D(E)r({’f), over T*X, is isomorphic in D(Ci-x) to
T-uhom(F, Ox) endowed with its action of E)P}’f.
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