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Abstract

For a complex manifold X the ring EX of microdifferential operators acts on the mi-
crolocalization µhom(F,OX) for F in the derived category of sheaves on X. Kashiwara,
Schapira, Ivorra and Waschkies proved, as a byproduct of their new microlocalization
functor for ind-sheaves, µX , that µhom(F,OX) can in fact be defined as an object of
D(EX): this follows from the fact that µXOX is concentrated in one degree.

In this paper we prove that the tempered microlocalization T -µhom(F,OX) and
in fact µXOt

X are also objects of D(EX). Since we do not know whether µXOt
X is con-

centrated in one degree we build resolutions of EX and µXOt
X such that the action of

EX is realized in the category of complexes (and not only up to homotopy). To define
these resolutions we introduce a version of the de Rham algebra on the subanalytic site
which is quasi-injective. We prove that some standard operations in the derived category
of sheaves can be lifted to the (non-derived) category of dg-modules over this de Rham
algebra. Then we build the microlocalization in this framework.

2010 Mathematics Subject Classification: 35A27, 32C38.
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§1. Introduction

For a complex analytic manifold the sheaf of microdifferential operators on its
cotangent bundle was introduced in [12] by Sato, Kawai and Kashiwara using
Sato’s microlocalization functor. Let us recall briefly the definition, in the frame-
work of [5]. Let X be a real manifold and let Db(CX) be the bounded derived
category of sheaves of C-vector spaces on X. For objects F,G ∈ Db(CX) a gener-
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alization of Sato’s microlocalization functor gives µhom(F,G) ∈ Db(CT∗X) and a
convolution product is defined in [5] for this functor µhom. When X is a complex
analytic manifold of complex dimension dX one version of the ring of microdif-
ferential operators is ERX = µhom(C∆,O(0,dX)

X×X )[dX ], where ∆ is the diagonal of
X ×X and O(0,dX)

X×X denotes the holomorphic forms of degree 0 on the first factor
and degree dX on the second factor. Its support is the conormal bundle of ∆,
identified with T ∗X. The product in ERX is given by the convolution product in
µhom.

The convolution product also induces an action of ERX on µhom(F,OX) for any
F ∈ Db(CX), i.e. a morphism in Db(CT∗X), ERX ⊗µhom(F,OX)→ µhom(F,OX),
satisfying the condition of Definition 3.1 below.

A natural question is then whether µhom(F,OX) has a natural construction
as an object of Db(ERX ). It was answered positively in [9] as a byproduct of the
construction of a microlocalization functor for ind-sheaves. The category of ind-
sheaves on X, I(CX), is introduced and studied in [7]. It comes equipped with
an internal Hom functor, IHom, and contains Mod(CX) as a full subcategory;
the embedding of Mod(CX) in I(CX) admits a left adjoint (which corresponds
to taking the limit) αX : I(CX) → Mod(CX), which is exact. In this framework
the construction of [9] yields a new microlocalization functor µX : Db(I(CX)) →
Db(I(CT∗X)) such that

(1) µhom(F,G) ' αT∗X RIHom(µXF, µXG).

In particular µhom(F,G) takes the form of the usual Hom functor between objects
on T ∗X.

The convolution product is also defined in this context and now it gives an
action of ERX on µX(OX). Through isomorphism (1) this action on µX(OX) induces
an action on µhom(F,OX). Hence it is enough to define µX(OX) as an object of
Db(ERX ) to have the answer for all µhom(F,OX). It turns out that, outside the
zero section of T ∗X, µX(OX) is concentrated in degree −dX . Thus µX(OX) '
H−dXµX(OX)[dX ] and, since the action of ERX gives an ERX -module structure on
H−dXµX(OX), we see that µX(OX) naturally belongs to Db(ERX ).

However in many situations differential operators of finite order are more
appropriate. In this paper we solve the same problem in the tempered situation.
The tempered microlocalization T -µhom(F,OX) is introduced in [1] and also has
a reformulation in terms of ind-sheaves. Namely it makes sense to consider the ind-
sheaf of tempered C∞-functions and the corresponding Dolbeault complex OtX (it
is actually a motivation for the theory of ind-sheaves). Then

(2) T -µhom(F,OX) ' αT∗XR IHom(µXF, µXOtX).
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Replacing µhom by T -µhom in the above definition of ERX yields another sheaf
of microdifferential operators, ER,fX . We have as above a natural action of ER,fX

on µX(OtX). Unfortunately this last complex is a priori not concentrated in one
degree and we cannot conclude directly that µX(OtX) is an object of Db(ER,fX ).

We will in fact find resolutions of ER,fX and µX(OtX) such that the action cor-
responds to a dg-module structure over a dg-algebra. More precisely we will define
an ind-sheaf of dg-algebras EAX on T ∗X (outside the zero section) with cohomology
only in degree 0 and such that H0(EAX ) = ER,fX . We will also find a dg-EAX -module,
say M , such that M ' µX(OtX) in Db(I(CT∗X)) and such that the morphism of
complexes EAX ⊗M →M given by the dg-EAX -module structure coincides with the
action ER,fX ⊗ µX(OtX)→ µX(OtX). Then, as recalled in Section 3, extension and
restriction of scalars yield an object M ′ ∈ Db(ER,fX ) which represents µX(OtX)
with its ER,fX -action. So we conclude as in the non-tempered case.

Now we explain how we construct EAX and M . The main step in the definition
of ER,fX , as well as its action on µhom(F,OX), is the microlocal convolution product

(3) µX×XOt(0,dX)
X×X

a◦ µX×XOt(0,dX)
X×X [dX ]→ µX×XOt(0,dX)

X×X ,

where
a◦ denotes the composition of kernels. This is a morphism in the derived

category. In order to obtain a true dg-algebra at the end, and not a complex with
a product up to homotopy, we will represent the functor µ by a functor between
categories of complexes which satisfies enough functorial properties so that the
convolution also corresponds to a morphism of complexes.

Let us be more precise. The first step is the construction of injective resolu-
tions with some functorial properties. For this we introduce a quasi-injective de
Rham algebra, A, below (quasi-injectivity is a property of ind-sheaves weaker than
injectivity but sufficient to derive the usual functors). We use the construction of
ind-sheaves from sheaves on the “subanalytic site” explained in [7]. For a real an-
alytic manifold X the subanalytic site, Xsa, has for open subsets the subanalytic
open subsets of X and for coverings the locally finite coverings. On Xsa it makes
sense to consider the sheaf of tempered C∞ functions, C∞,tX .

We consider the embedding iX : X = X × {0} → X ×R and define a sheaf
of i-forms on Xsa, AiX = i−1

X ΓX×R>0(C∞,t(i)X×R ). This gives a de Rham algebra AX
and it yields a quasi-injective resolution of CXsa . We denote by Mod(AX) the
category of sheaves of dg-AX -modules. We have an obvious forgetful functor
For′X : Mod(AX) → D(CXsa). We will prove that the operations needed in the
construction of (3) are defined in Mod(AX) and commute with For′X . Namely,
for a morphism of manifolds f : X → Y we have functors f∗ and f∗, f!!, of in-
verse and direct images of dg-A-modules. In some cases this gives a way to rep-
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resent the derived functors f−1 and Rf∗,Rf!!. For example, for F ∈ Mod(AX),
For′Y (f!!(F )) ' Rf!!(For′X(F )); if f is smooth we also prove, for G ∈ Mod(AY ),
For′X(f∗G) ' f−1(For′Y (G)). When X is a complex manifold we also have a “Dol-
beault resolution”, OX , of OtX by a dg-AX -module which is locally free over A0

X .
Once we have these operations we define a microlocalization functor for dg-A-

modules. Let us recall that the functor µX is given by composition with a kernel
LX ∈ Db(C(X×T∗X)sa): for F ∈ Db(CXsa) we have

µX(F ) = LX ◦ F = Rp2!!(LX ⊗ p−1
1 F ).

We define a corresponding dg-A-module, LAX , outside the zero section of T ∗X, i.e.
over X ×

.
T ∗X, which is quasi-isomorphic to LX , and for a dg-AX -module F we

set

µAX(F ) = LAX ◦ F = p2!!(LAX ⊗A p∗1F ).

This functor is defined on the categories of complexes, i.e. it is a functor from
Mod(AX) to Mod(A.

T∗X). If F has a finite 0-presentation we show that µAX(F ) is
quasi-injective and represents µX(F ) over

.
T ∗X: we have

For′T∗X(µAX(F )) ' µX(For′X(F )).

In particular, when X is a complex manifold we obtain the dg-AT∗X -module
µAX(OX) which represents µX(OtX) and can be used to compute RHom(·, µX(OtX)).

With these tools in hand we define the sheaf EAX mentioned above from µA,
the same way ER,fX was defined from µ. The definition of the product involves a
convolution product for µA. The kernel LAX has indeed the same functorial be-
havior as LX not with respect to all operations but at least those needed in the
composition of kernels. We end up with a dg-AT∗X -module EAX which is a ring ob-
ject in the category of dg-AT∗X -modules and which represents ER,fX . In the same
way we obtain a structure of EAX -module on µAX(OX), as desired. As said above
this EAX -module gives a βT∗X(ER,fX )-module by extension and restriction of scalars
(here β is the functor from sheaves to ind-sheaves which is left adjoint to α). Our
result is more precisely stated in Theorem 11.4:

Theorem 1.1. There exists an ind-sheaf OµX ∈ D(β.T∗X(ER,fX )) which satisfies
the following properties:

(i) the image of OµX in D(I(C.
T∗X)) under the forgetful functor is µXOtX ,

(ii) for any F ∈ D−(I(CX)) the complex αT∗X RIHom(π−1F,OµX) is naturally
defined in D(ER,fX ), over

.
T ∗X. Its image in D(C.

T∗X) under the forgetful func-
tor is T -µhom(F,OX) endowed with its action of ER,fX .
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§2. Notations

If X is a manifold or a site and R a sheaf of rings on X we denote by Mod(R) the
category of sheaves ofR-modules onX. The corresponding category of complexes is
C(R) and the derived category D(R); we use superscripts b,+,− for the categories
of complexes which are bounded, bounded from below, bounded from above. More
generally, if R is a sheaf of dg-algebras on X, then Mod(R) is the category of
sheaves of dg-R-modules on X, and D(R) its derived category (see Section 3).
In particular, if X is a real analytic manifold this applies to the subanalytic site
Xsa whose definition is recalled in Section 4. We denote by ρX or ρ the natural
morphism of sites X → Xsa. We denote by CX and CXsa the constant sheaves
with coefficients C on X and Xsa.

If X is a manifold we denote by I(CX) the category of ind-sheaves of CX -
vector spaces on X (see Section 4), and by D(I(CX)) its derived category. This
category comes with a natural functor αX or α : I(CX)→ Mod(CX) which corre-
sponds to taking the limit. Its left adjoint is denoted βX or β.

The dimension of a (real) manifold X is denoted dX ; if X is a complex man-
ifold its complex dimension is dcX .

For a morphism of manifolds f : X → Y , we let ωX|Y = f !CY be the relative
dualizing complex. Hence ωX|Y is an object of Db(CX). If Y is a point we simply
write ωX ; then ωX ' orX [dX ], where orX is the orientation sheaf of X. In fact,
for X connected ωX|Y is always concentrated in one degree (since X and Y are
manifolds), say i, and we will also use the notation ωX|Y for the object of Cb(CX)
which is HiωX|Y in degree i and 0 in other degrees. For an embedding of manifolds
iZ : Z ↪→ X we will often abuse notation and write ωZ|X for iZ∗ωZ|X .

For a manifold X we let TX and T ∗X be the tangent and cotangent bundles
and we denote by πX : T ∗X → X the projection. For a submanifold Z ⊂ X we
denote by TZX and T ∗ZX the normal and conormal bundles to Z. In particular
T ∗XX ' X is the zero section of T ∗X and we set

.
T ∗X = T ∗X \ T ∗XX. We denote

by X̃Z the normal deformation of Z in X (see for example [5]). We recall that
it contains TZX and comes with a map τ : X̃Z → R such that τ−1(0) = TZX

and τ−1(r) ' X for r 6= 0. We also have another map p : X̃Z → X such that
p−1(z) = (TZX)z ∪ {z} ×R for z ∈ Z and p−1(x) ' R \ {0} for x ∈ X \ Z. We
set Ω = τ−1(R>0).

For a morphism of manifolds f : X → Y , the derivative of f gives the mor-
phisms

T ∗X
fd←− X ×Y T ∗Y

fπ−→ T ∗Y.

For two manifolds X,Y , and F ∈ D+(CX), G ∈ D+(CY ), we set F � G =
p−1

1 F ⊗ p−1
2 G, where pi is the projection from X × Y to the ith factor. For three
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manifolds X,Y, Z and “kernels” K ∈ D+(CX×Y ), L ∈ D+(CY×Z) we denote the
“composition of kernels” byK◦L = Rp23!(p−1

12 K⊗p
−1
23 L), where pij is the projection

from X × Y × Z to the ith × jth factors.

§3. dg-algebras

In this section we recall some facts about (sheaves of) dg-algebras and their derived
categories. We refer the reader to [2].

A dg-algebra A is a Z-graded algebra with a differential dA of degree +1.
A dg-A-module M is a graded A-module with a differential dM such that, for
homogeneous elements a ∈ Ai, m ∈M j , dM (a ·m) = dA(a) ·m+ (−1)ia · dMm.

We consider a site X and a sheaf of dg-algebras AX on X. We denote by
Mod(AX) the category of (left) dg-AX -modules. We let ÃX be the graded al-
gebra underlying AX (i.e. forgetting the differential). A morphism f : M → N

in Mod(AX) is said to be null homotopic if there exists an ÃX -linear morphism
s : M → N [−1] such that f = sdM + dNs. The homotopy category, K(AX), has
for objects those of Mod(AX) and for sets of morphisms those of Mod(AX) quo-
tiented by null homotopic morphisms. A morphism in Mod(AX) (or K(AX)) is a
quasi-isomorphism if it induces isomorphisms on the cohomology groups. Finally,
the derived category D(AX) is the localization of K(AX) by quasi-isomorphisms.

Derived functors can be defined in this setting, in particular the tensor prod-
uct · ⊗LAX ·. If φ : AX → BX is a morphism of sheaves of dg-algebras we obtain
the extension of scalars φ∗ : D(AX) → D(BX), M 7→ BX ⊗LAX M , which is left
adjoint to the natural restriction of scalars φ∗ : D(BX) → D(AX). By [2, Theo-
rem 10.12.5.1], if φ induces an isomorphism H(A) ∼−→ H(B) then these functors of
restriction and extension of scalars are mutually inverse equivalences of categories
D(AX) ' D(BX).

Some dg-algebras considered in this paper will appear as ring objects in cat-
egories of complexes. We recall briefly what this means. We let C be a tensor
category with unit C (C will be D(CY ), D(I(CY )) or Mod(AY ) for some manifold
Y and the unit is C = CY ).

Definition 3.1. A ring in C is a triplet (A,m, ε) where A ∈ C, m : A ⊗ A → A

and ε : C→ A are morphisms in C such that the following diagrams commute:

A⊗C
A⊗ε //

$$JJJJJJJJJJ A⊗A

m

��
A

C⊗A ε⊗A //

$$JJJJJJJJJJ A⊗A

m

��
A

A⊗A⊗A
m⊗A //

A⊗m
��

A⊗A

m

��
A⊗A m // A
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In the same way, for such a “ring” (A,m, ε), an action of A onM ∈ C is a morphism
α : A ⊗M → M compatible with m and ε. The pairs (M,α) of this type form a
category, where morphisms from (M,α) to (M ′, α′) are morphisms from M to M ′

commuting with the action.

If EX is a sheaf of (usual) algebras on X we may consider EX as a ring object
in D(CX) and we denote by DEX (CX) the category of “objects of D(CX) with
EX -action” as above.

We consider again a sheaf AX of dg-algebras on X. We assume that its co-
homology sheaves are 0 except in degree 0 and we set EX = H0(AX). Hence, if
we forget the structures and view AX , EX as objects of D(CX) we have isomor-
phisms AX v←− τ≤0AX

∼−→ EX (where τ≤0, τ≥0 denote the truncation functors). We
note that τ≤0AX = · · · → A−1

X → ker d0 → 0 is a sub-dg-algebra of AX (whereas
τ≥0AX has no obvious structure of dg-algebra). The multiplications of AX and EX
induce morphisms in D(CX): AX⊗AX → AX , EX⊗EX → EX . These morphisms
coincide under the identification AX ' EX . Hence AX and EX are isomorphic as
ring objects in D(CX).

For M ∈ D(AX) the structure of AX -module induces a morphism in D(CX):
α : EX ⊗M ' AX ⊗M → M . Then α is an action of EX on M . In this way we
obtain a forgetful functor FAX : D(AX)→ DEX (CX).

Lemma 3.2. Let AX be a sheaf of dg-algebras with cohomology sheaves concen-
trated in degree 0 and set EX = H0(AX). Let φ : AX → BX be a morphism of
sheaves of dg-algebras such that φ induces an isomorphism H(A) ∼−→ H(B). Then
we have isomorphisms of functors FAX ◦ φ∗ ' FBX and FBX ◦ φ∗ ' FAX .

Proof. The first isomorphism is obvious and the second one follows because φ∗
and φ∗ are inverse equivalences of categories.

Applying this lemma to the morphisms AX
φ≤0←−− τ≤0AX

φ0−→ EX , we obtain:

Corollary 3.3. With the hypothesis of the above lemma, we have the commutative
diagram

D(AX)

φ∗0◦φ≤0∗

��

FAX
,,XXXXXXXXXXXX

DEX (CX)

D(EX) FEX

22ffffffffffff

In particular, for M ∈ DEX (CX), if there exists N ∈ D(AX) such that
FAX (N) 'M then there exists N ′ ∈ D(EX) such that FEX (N ′) 'M .
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§4. Ind-sheaves and subanalytic site

We recall briefly some definitions and results of [7] about ind-sheaves. To define
the ind-sheaves we are interested in we will use the “subanalytic site” as in [7],
where it is introduced to deal with tempered C∞ functions. It is studied in more
detail in [10].

§4.1. Ind-sheaves

For a category C we denote by C∧ the category of functors from Cop to the
category of sets. It comes equipped with the “Yoneda embedding”, h : C → C∧,
X 7→ HomC(·, X). The category C∧ admits small inductive limits but, in general,
even if C also admits such limits, the functor h may not commute with inductive
limits. We denote by “ lim−→” the inductive limit taken in the category C∧.

An ind-object in C is an object of C∧ which is isomorphic to “lim−→” i for some
functor i : I → C, with I a small filtrant category. We denote by Ind(C) the full
subcategory of C∧ of ind-objects.

Let X be a real analytic manifold, Mod(CX) the category of sheaves of C-
vector spaces on X, ModR-c(CX) the subcategory of R-constructible sheaves, and
Modc(CX) and ModcR-c(CX) their respective full subcategories of objects with
compact support. We define, as in [7],

I(CX) = Ind(Modc(CX)) and IR-c(CX) = Ind(ModcR-c(CX)).

There are exact embeddings Iτ : IR-c(CX)→ I(CX) and ιX : Mod(CX)→ I(CX),
F 7→ “lim−→” FU , U running over relatively compact open sets. Then ιX sends
ModR-c(CX) into IR-c(CX).

The functor ιX has an exact left adjoint functor αX : I(CX) → Mod(CX),
“lim−→”

i∈I Fi 7→ lim−→i∈I Fi. Since ιX is fully faithful, we have αX ◦ ιX ' id.
The functor αX admits an exact fully faithful left adjoint βX : Mod(CX) →

I(CX). We have αX ◦ βX ' id. For Z ⊂ X a closed subset we have

(4) βX(CZ) ' “lim−→”
W

CW , W open, Z ⊂W ⊂ X.

We write α, β for αX , βX when the context is clear. The machinery of Grothen-
dieck’s six operations also applies in this context. There are not enough injectives in
I(CX), but enough “quasi-injectives” (see [7] and [8]): F ∈ I(CX) is quasi-injective
if the functor Hom(·, F ) is exact on Modc(CX). The quasi-injective objects are
sufficient to derive the usual functors. In particular, for a morphism of manifolds
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f : X → Y we have the functors

f−1, f ! : Db(I(CY ))→ Db(I(CX)),

Rf∗, Rf!! : Db(I(CX))→ Db(I(CY )),

RIHom: Db(I(CX))op ×Db(I(CX))→ D+(I(CX)),

⊗ : Db(I(CX))×Db(I(CX))→ Db(I(CX)),

and also RHom = αRIHom: Db(I(CX))op ×Db(I(CX))→ D+(CX).
It will be convenient for us to use the equivalence of categories given in [7]

between IR-c(CX) and sheaves on the subanalytic site, defined below.

§4.2. Subanalytic site

In this subsection X is a real analytic manifold. The open sets of the site Xsa are
the subanalytic open subsets of X. A family

⋃
i∈I Ui of such open sets is a covering

of U if and only if, for any compact subset K, there exists a finite subfamily J of
I with K ∩

⋃
i∈J Ui = K ∩ U . We denote by Mod(CXsa) the category of sheaves

of C-vector spaces on Xsa.
We have a morphism of sites ρX : X → Xsa (whereX also denotes the site nat-

urally associated to the topological space X). We just write ρ if there is no risk of
confusion. In particular we have adjoint functors ρ∗ : Mod(CX)→ Mod(CXsa) and
ρ−1 : Mod(CXsa)→ Mod(CX). The functor ρ−1 is exact, ρ∗ is left exact and fully
faithful and ρ−1 ◦ ρ∗ = id. We denote by ρc∗ the restriction of ρ∗ to ModR-c(CX).
Then ρc∗ is exact and for F ∈ ModR-c(CX) we usually write F instead of ρc∗F .
The functor ρc∗ induces an equivalence of categories (see [7, Theorem 6.3.5])

λ : IR-c(CX)→ Mod(CXsa), “lim−→”
i

Fi 7→ lim−→
i

ρc∗(Fi).

Through this equivalence the functor ρ−1 corresponds to α and it also admits an
exact left adjoint functor corresponding to β. When dealing with the analytic site
we will use the notation ρ! : Mod(CX)→ Mod(CXsa) for this functor. For example,
(4) gives ρ!CZ ' lim−→Z⊂W CW (W open subanalytic). We note the commutative
diagrams

Mod(CX)
ρ!

vvmmmmmmmmmmmmm
βX

��
IR-c(CX) ' Mod(CXsa)

Iτ // I(CX)

ModR-c(CX) //

ρc∗

��

Mod(CX)

ιX

��
IR-c(CX) ' Mod(CXsa)

Iτ // I(CX)

The functors appearing in these diagrams are exact and induce similar commuta-
tive diagrams at the level of derived categories.
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The functor Hom is defined on Mod(CXsa) just as on every site and we set,
for Z ⊂ X a locally closed subanalytic subset,

(5) ΓZ(F ) = Hom(ρ∗CZ , F ), FZ = F ⊗ ρ∗CZ .

The functors ρ∗ and Hom commute, hence ρ∗ and ΓZ also commute. For subana-
lytic open subsets U, V ⊂ X we have ΓU (F )(V ) = F (U ∩ V ).

As for ind-sheaves, a notion weaker than injective is defined in [10]: F ∈
Mod(CXsa) is quasi-injective if Hom(·, F ) is exact on ρ∗ModcR-c(CX). In fact, since
we consider coefficients in a field it is equivalent to require that for any subanalytic
open subsets U ⊂ V with compact closure, Γ(V ;F )→ Γ(U ;F ) is surjective. Quasi-
injective sheaves are sufficient to derive usual left exact functors. In particular we
obtain RHom, RΓZ , and they commute with Rρ∗. We note the following identity
(which has no equivalent on the classical site): for F ∈ Db

R-c(CX), H ∈ D+(CX),
G ∈ D+(CXsa),

(6) RHom(Rρ∗F,G)⊗ ρ!H ' RHom(Rρ∗F,G⊗ ρ!H) in D+(CXsa).

We also have another related result (see [10, Proposition 1.1.3]): for {Fi}i∈I a
filtrant inductive system in Mod(CXsa) and U ⊂ X a subanalytic open subset,

(7) lim−→
i

RΓU (Fi) ∼−→ RΓU (lim−→
i

Fi).

For a morphism f : X → Y there are the usual direct and inverse image functors
f∗, f−1 on the subanalytic sites and also, as in the case of ind-sheaves, a notion of
proper direct image f!!, with a behavior slightly different from the behavior of f!

on the classical site. The functor f−1 is exact and f∗, f!! admit derived functors.
We quote in particular: for F ∈ D+(CXsa), G ∈ Db

R-c(CY ) (we write G for ρ∗G),

f!!F = lim−→
U

f∗(FU ), U ⊂ X relatively compact open subanalytic,(8)

f!!F = lim−→
K

f∗(ΓKF ), K ⊂ X compact subanalytic,(9)

Rf!! RHom(f−1G,F ) ∼−→ RHom(G,Rf!!F ),(10)

Rf!!RΓf−1UF
∼−→ RΓURf!!F.(11)

The derived functor Rf!! : D+(CXsa) → D+(CYsa) admits a right adjoint f !. The
notation is the same as in the classical case because of the commutation relation
f ! ◦ Rρ∗ ' Rρ∗ ◦ f !. Hence f !CYsa ' ρ∗ωX|Y and we will usually write ωX|Y
for ρ∗ωX|Y . The adjunction morphism between f!! and f ! induces the integration
morphism

(12) intf : Rf!!(ωX|Y )→ CYsa .
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§4.3. “Soft” sheaves

In this subsection X is a real analytic manifold and Xsa is the corresponding
subanalytic site. Though we are not in a framework of sheaves on a locally compact
space, we may introduce a notion of soft sheaves on the subanalytic site which are
acyclic for direct image functors.

Definition 4.1. A sheaf F ∈ Mod(CXsa) is soft if for any closed subanalytic
subset Z ⊂ X and any subanalytic open subset U ⊂ X the natural morphism
Γ(U ;F )→ Γ(U ;FZ) is surjective.

As in the case of sheaves on a reasonable topological space,

(13) Γ(U ;FZ) ' lim−→
U∩Z⊂W⊂U

Γ(W ;F ), W ⊂ X subanalytic open set.

It follows that quasi-injective sheaves are soft. We also note that if F is soft and
Z ⊂ X is a closed subanalytic subset then FZ is soft.

Lemma 4.2. Let U =
⋃
i∈N Ui be a locally finite covering by subanalytic open

subsets of X. There exist subanalytic open subsets of X, Vi ⊂ Ui, i ∈ N, such that
U =

⋃
i∈N Vi and U ∩ Vi ⊂ Ui.

Proof. We choose an analytic distance d on X and we define Vn inductively such
that U =

⋃
i≤n Vi ∪

⋃
j>n Uj and U ∩Vn ⊂ Un. We start with V−1 = ∅ and assume

Vi, i < n, is built. We set Wn = Un \ (
⋃
i<n Vi ∪

⋃
j>n Uj), which is subanalytic

because the covering is locally finite, and

Vn = {x ∈ Un; d(x,Wn) < d(x, ∂Un)}.

We have Vn ⊂ Un. Since d is analytic the functions d(·, Z), Z ⊂ X subanalytic,
are continuous functions with subanalytic graphs (see [3]). It follows that Vn is
a subanalytic open subset of X. By construction Wn ⊂ Vn and we deduce by
induction that U =

⋃
i≤n Vi ∪

⋃
j>n Uj . Since the covering is locally finite this

gives U =
⋃
i∈N Vi.

It remains to prove that U ∩ Vn ⊂ Un. If this is false there exists x0 ∈
U ∩ Vn ∩ ∂Un. Since x0 ∈ U but x0 6∈ Un we have x0 ∈

⋃
i<n Vi ∪

⋃
j>n Uj . Hence

δ = d(x0,Wn) > 0 and the ball B(x0, δ/2) does not meet Vn. In particular x0 6∈ Vn,
which is a contradiction.

Proposition 4.3. Let 0→ F ′
u−→ F

v−→ F ′′→ 0 be an exact sequence in Mod(CXsa)
with F ′ soft. Then for any open subanalytic subset U ⊂ X the morphisms

Γ(U ;F )→ Γ(U ;F ′′) and lim−→
K

ΓK(U ;F )→ lim−→
K

ΓK(U ;F ′′),

where K runs over the compact subanalytic subsets of X, are surjective.
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Proof. (i) We first consider a section s ∈ Γ(U ;F ′′). We may find a locally finite
covering U =

⋃
i∈N Ui and si ∈ Γ(Ui;F ) such that u(si) = s|Ui . By Lemma 4.2

there exists a subcovering U =
⋃
i∈N Vi with U ∩ Vi ⊂ Ui.

We set Zn =
⋃n
i=0 Vi and prove by induction on n that there exists a section

s̃n ∈ Γ(U ;FZn) such that v(s̃n) = s|Zn and s̃n|Zn−1 = s̃n−1.
This is clear for n = 0 and we assume it is proved for n. We set tn =

(s̃n− sn+1)|Zn∩Vn+1
. Then v(tn) = 0 so that tn belongs to Γ(U ;F ′

Zn∩Vn+1
) and by

hypothesis we may extend it to t ∈ Γ(U ;F ′). Now we define s̃n+1 ∈ Γ(U ;FZn+1)
by s̃n+1|Zn = s̃n and s̃n+1|Vn+1

= sn+1 + u(t). The s̃n glue together into a section
s̃ ∈ Γ(U ;F ) such that v(s̃) = s, which proves the surjectivity of the first morphism.

(ii) Now we consider a compact K and s ∈ ΓK(U ;F ′′). We choose an open
subanalytic subset V such that K ⊂ V and K ′ = V is compact. We set Z = X \V .
We have just seen that we may find s̃ ∈ Γ(U ;F ) such that v(s̃) = s. Hence
v(s̃|Z) = 0 so that s̃|Z ∈ Γ(U ;F ′Z) and we may extend s̃|Z to t ∈ Γ(U ;F ′). Then
ŝ = s̃− u(t) satisfies supp ŝ ⊂ K ′ and v(ŝ) = s.

Corollary 4.4. If 0 → F ′ → F → F ′′ → 0 is an exact sequence in Mod(CXsa)
with F ′ and F soft, then F ′′ is also soft.

Proof. For Z ⊂ X a subanalytic closed subset we have the exact sequence 0 →
F ′Z → FZ → F ′′Z → 0 and F ′Z , FZ still are soft. Hence Proposition 4.3 implies that,
for any subanalytic open subset U ⊂ X, the morphisms Γ(U ;F )→ Γ(U ;F ′′) and
Γ(U ;FZ)→ Γ(U ;F ′′Z) are surjective. Now it follows from the definition that F ′′ is
soft.

Corollary 4.5. Let f : X → Y be a morphism of analytic manifolds, andU ⊂ X an
open subanalytic subset. Then soft sheaves in Mod(CXsa) are acyclic for the functors
Γ(U ; ·), lim−→K

ΓK(U ; ·), K running over the compact subsets of X, ΓU , f∗ and f!!.

Proof. For the first two functors this follows from Proposition 4.3 and Corol-
lary 4.4. This implies the result for the other functors.

§4.4. Tempered functions

Here we recall the definition of tempered C∞ functions. We also state a tempered
de Rham lemma on the subanalytic site, which is actually a reformulation of results
of [4]. In this subsection X is a real analytic manifold.

Definition 4.6. A C∞ function f defined on an open set U has polynomial growth
at p ∈ X if there exist a compact neighborhood K of p and C,N > 0 such that
for all x ∈ K ∩U , |f(x)| < Cd(x,K \U)−N , for a distance d defined through some
coordinate system around p.
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We say that f is tempered if all its derivatives have polynomial growth at any
point. In [7] it is proved, using results of Łojasiewicz, that these functions define
a subsheaf C∞,tX of ρ∗C∞X on Xsa.

We denote by Ωt,iX the sheaf on Xsa of forms of degree i with tempered coef-
ficients. We obtain as usual a sheaf of dg-algebras on Xsa, the tempered de Rham
algebra ΩtX = 0→ Ωt,0X → · · · → Ωt,nX → 0.

Lemma 4.7. The tempered de Rham algebra is a resolution of the constant sheaf
on the subanalytic site, i.e. we have an exact sequence on Xsa,

0→ CXsa → Ωt,0X → · · · → Ωt,nX → 0.

Proof. This is equivalent to saying that for any F ∈ Db
R-c(CX) we have

(14) RHom(ρ∗F,CXsa) ' RHom(ρ∗F,ΩtX).

Actually this is Proposition 4.6 of [4], except that it is not stated in this language,
and that it is given for tempered distributions instead of tempered C∞ functions.
We let CωX be the sheaf of real analytic functions and DX the sheaf of linear
differential operators with coefficients in CωX . Using a Koszul resolution of CωX
we have the standard isomorphism RHomρ!DX (ρ!CωX , C∞X

t) ' ΩtX . In [4] a functor
RTHX(F ) is defined (now denoted T Hom(F,DbX)) and Proposition 4.6 (loc. cit.)
reads

RHom(F,CX) ' RHomDX (CωX , T Hom(F,DbX)).

To replace distributions by C∞ functions we have an analog of T Hom(F,DbX)
for C∞ functions, introduced in [6] and [7]. By [6, Theorem 10.5], we have the
comparison isomorphism

RHomDX (CωX , T Hom(F, C∞X )) ' RHomDX (CωX , T Hom(F,DbX)).

Actually, in [6] X is a complex manifold and the result is stated for the sheaf of
anti-holomorphic functions instead of CωX , but the proof also works in our case.
By [7, Proposition 7.2.6] or [10, Proposition 3.3.5], we may express the functor
T Hom using the subanalytic site: T Hom(F, C∞X ) ' ρ−1 RHom(ρ∗F, C∞X

t).
Putting these isomorphisms together we obtain (14):

RHom(ρ∗F,ΩtX) ' RHom(ρ∗F,RHomρ!DX (ρ!CωX , C∞X
t))

' RHomρ!DX (ρ!CωX ,RHom(ρ∗F, C∞X
t))

' RHomDX (CωX , T Hom(F,DbX))

' RHom(ρ∗F,CX),

where we have used adjunction morphisms between ⊗, Hom and ρ!, ρ
−1.
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The integration of forms also makes sense in the tempered case: we let
f : X → Y be a submersion with fibers of dimension d, V ⊂ Y a subanalytic
open subset and we consider a form ω ∈ Γ(f−1(V ); Ωt,i+dX ⊗ orX|Y ) such that
the closure (in X) of suppω is compact. Then

∫
f
ω ∈ Γ(V ; Ωt,iY ). We deduce the

morphism of complexes

(15)
∫
f

: f!!(ΩtX ⊗ ωX|Y )→ ΩtY .

Its image in Db(CYsa) coincides with the morphism intf of (12).

§5. Resolution

In this section all manifolds are real analytic.

Definition 5.1. For a manifold X we introduce the notations X̂ = X × R,
iX : X → X̂, x 7→ (x, 0), and X+ = X × R>0. We consider the tempered de
Rham algebra on the site X̂sa,

ΩtbX = 0→ Ωt,0bX → · · · → Ωt,n+1bX → 0,

and define AX = i−1
X ΓX+(ΩtbX). This is a sheaf of anti-commutative dg-algebras

on Xsa.
The inverse image of forms under the projection X̂ → X induces an injective

morphism of dg-algebras ΩX ↪→ AX . In particular C∞,tX ⊂ A0
X . We denote by t

the coordinate on R. This gives a canonical element dt ∈ A1
X . The decomposition

X̂ = X × R induces a decomposition of the differential d = d1 + d2 into anti-
commuting differentials, where we set d2(ω) = (∂ω/∂t)dt.

The algebra AX comes equipped with natural morphisms related to inverse
image and direct image under a smooth map. Let f : X → Y be a morphism of
manifolds. It induces f̂ = f × id : X̂ → Ŷ and f+ : X+ → Y +. We consider the
morphism of functors f̂−1ΓY + → ΓX+ f̂−1; it induces a morphism of dg-algebras

f̂−1ΓY +(ΩtbY )→ ΓX+ f̂−1(ΩtbY )→ ΓX+(ΩtbX).

Definition 5.2. We denote by f ] : f−1AY → AX the image of the above mor-
phism under the restriction functor i−1

X . It is a morphism of dg-algebras.

Now we assume that f is smooth. Hence f̂ is also smooth and we have the
integration morphism (15)

∫ bf : f̂!!(ΩtbX⊗ωX|Y )→ ΩtbY . We apply the functor i−1
Y ΓY +

to this morphism. We also have the base change f!!i
−1
X ' i

−1
Y f̂!! and the morphism
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f̂!!ΓX+ → ΓY + f̂!!. They give the sequence of morphisms

(16) f!!i
−1
X ΓX+(ΩtbX ⊗ ω bX|bY )→ i−1

Y ΓY + f̂!!(ΩtbX ⊗ ω bX|bY )→ i−1
Y ΓY +ΩtbY .

Definition 5.3. For a smooth map f : X → Y , we call morphism (16) the inte-
gration morphism and denote it

∫
f

: f!!(AX ⊗ ωX|Y )→ AY .

The main result of this section is the following theorem. It is proved in the
remaining part of the section: the quasi-injectivity of the AiX is proved in Propo-
sition 5.11, and the fact that AX is a resolution is Corollary 5.10.

Theorem 5.4. Let X be a real analytic manifold. The sheaf of dg-algebras AX is
a quasi-injective resolution of CXsa .

Remark 5.5. By this theorem we have f!!(AX ⊗ ωX|Y ) ' Rf!!(ωX|Y ). Hence
the morphism

∫
f
of Definition 5.3 induces a morphism in the derived category

Rf!!ωX|Y → CYsa . It coincides with the topological integration morphism (12)
because this holds for the usual de Rham resolution.

For the proof of the theorem we need some lemmas on tempered functions. We
refer to [3] for results on subanalytic sets. We recall that a function is subanalytic
if its graph is a subanalytic set. We introduce the following notation, for U ⊂ X

an open subset and ϕ : U → R a positive continuous function:

Uϕ = {(x, t) ∈ X̂; x ∈ U, |t| < ϕ(x)}, U+
ϕ = Uϕ ∩X+.

Lemma 5.6. Let U ⊂ X be a subanalytic open subset and V ⊂ X̂ be a subanalytic
open neighborhood of U in X̂. Then there exists a subanalytic continuous function
ϕ defined on U such that ϕ = 0 on ∂U and Uϕ ⊂ V .

Proof. We set V ′ = V ∩ (U ×R), Z = X̂ \ V ′ and let ϕ be the distance function
to Z: ϕ(x) = d(x, Z). By [3, Remark 3.11], this is a subanalytic function on X̂ and
its restriction to U satisfies the required property.

The following result is similar to a division property for flat C∞ functions,
which can be found for example in [13, Lemma V.2.4].

Lemma 5.7. Let U ⊂ X be a subanalytic open subset and ϕ : U → R a subana-
lytic continuous function on U , such that ϕ = 0 on the boundary of U and ϕ > 0
on U . Then there exist another subanalytic continuous function ϕ′ on U and a C∞

function ψ : U → R such that

(i) ∀x ∈ U, 0 < ϕ′(x) < ψ(x) < ϕ(x), (ii) ψ and 1/ψ are tempered.
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Proof. (a) We first note that (i) and “ψ tempered” imply that 1/ψ is tempered.
Indeed it is enough to check that 1/ψ has polynomial growth along ∂U . But this
follows from Łojasiewicz’s inequality (see [3, Theorem 6.4 and Remark 6.5]) applied
to ϕ′. We may also work locally: assuming the result is true in local charts, we
choose

• locally finite coverings of X by subanalytic open subsets, (Ui), (Vi), together
with a partition of unity µi : X → R and subanalytic continuous functions
νi : X → R such that U i ⊂ Vi, 0 ≤ νi ≤ µi,

∑
µi = 1, µi = νi = 1 on Ui and

µi = 0 on a neighborhood of X \ Vi,
• C∞ tempered functions ψi : U ∩ Vi → R and subanalytic continuous functions
ϕ′i : U ∩ Vi → R such that 0 < ϕ′i < ψi < ϕ on U ∩ Vi,

and we set ψ =
∑
i µiψi, ϕ

′ =
∑
i νiϕ

′
i. Then ψ, ϕ′ satisfy the conclusion of the

lemma. Indeed, each µiψi is defined and tempered on U and their sum is locally
finite, hence also tempered.

(b) Hence we assume X = Rn and U is bounded. By [13], Lemma IV.3.3,
there exist constants Ck, k ∈ Nn, such that, for any compact K ⊂ Rn and any
ε > 0, there exists a C∞ function α on Rn such that

0 ≤ α ≤ 1, α(x) = 0 if d(x,K) ≥ ε, α(x) = 1 if x ∈ K,
∀k ∈ Nn, |Dkα| ≤ Ckε−|k|.

(The function α is the convolution of the characteristic function of {x; d(x,K)
≤ ε/2} with a suitable test function.)

We set Ki = {x ∈ U ; 2−i−1 ≤ d(x, ∂U) ≤ 2−i} and we let αi be a function
associated to K = Ki and ε = 2−i−2 by the above result. In particular αi = 1
on Ki, suppαi ⊂ Si, where we set Si = Ki−1 ∪Ki ∪Ki+1, and |Dkαi| ≤ C ′k2ik for
some C ′k ∈ R. This implies that for x ∈ U , |Dkαi(x)| ≤ C ′′k d(x, ∂U)−k for some
other constants C ′′k ∈ R.

Łojasiewicz’s inequality gives, for x ∈ U , cd(x, ∂U)r ≤ ϕ(x) ≤ c′d(x, ∂U)r
′

for some c, r, c′, r′ > 0 (see [3, Theorem 6.4]). We set λi = min{ϕ(x);x ∈ Si}. We
note that for x, x′ ∈ Si, we have 1/8 ≤ d(x, ∂U)/d(x′, ∂U) ≤ 8. Hence, for x ∈ Si,
we have Cd(x, ∂U)r ≤ λi ≤ C ′d(x, ∂U)r

′
for some C,C ′ > 0. Since suppαi ⊂ Si,

we also have λiαi ≤ ϕ for all i.
We note that each x ∈ U belongs to at most three sets Si and we define

ψ = (1/3)
∑
i λiαi. The above inequalities give, for x ∈ U , 0 < ψ(x) ≤ ϕ(x) and

|Dkψ(x)| ≤ C ′′kC ′d(x, ∂U)r
′−k,

1
ψ(x)

≤ 3C−1d(x, ∂U)−r.

Hence ψ is tempered and we can take ϕ′(x) = (C/4) d(x, ∂U)r.
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Lemma 5.8. Let U be an open subanalytic subset of X and Z1, Z2 disjoint closed
subanalytic subsets of U . There exists a tempered function α ∈ Γ(U ; C∞,tX ) such
that 0 ≤ α ≤ 1, α = 1 on Z1 and α = 0 on Z2.

Proof. We set Ui = U \ Zi, i = 1, 2, and define the subanalytic function ϕi on Ui
by ϕi(x) = d(x, ∂Ui). We apply Lemma 5.7 to Ui and ϕi to obtain subanalytic
functions ϕ′i and C∞ functions ψi on Ui satisfying the conclusions of the lemma.
We define functions on V = U \ (Z1 ∪ Z2), r = ψ1/ψ2, s = ϕ′1/ϕ2, s′ = ϕ1/ϕ

′
2 so

that r is C∞, s, s′ are subanalytic and we have the inequalities 0 < s < r < s′. We
also note that r is tempered on V .

We set V1 = Z1 ∪ {s′ < 1}, V2 = Z2 ∪ {2 < s}. These are subanalytic open
subsets of X and U = V ∪ V1 ∪ V2. We choose a C∞ function h on R such that
0 ≤ h ≤ 1, h(t) = 1 for t ≤ 1 and h(t) = 0 for t ≥ 2. Now we define α by α = 1
on V1, α = 0 on V2 and α = h ◦ r on V . We see that α is well-defined and C∞

on U . It is clearly tempered on V1 and V2. Since the derivatives of h (to a given
order) can be uniformly bounded on R and r is tempered on V we see that h ◦ r
is also tempered on V . Hence α is tempered on U as required.

Proposition 5.9. Any C∞,tX -module or A0
X-module is soft in the sense of Defini-

tion 4.1.

Proof. Because of the inclusion C∞,tX ⊂ A0
X it is enough to prove the result for

every C∞,tX -module F .
Let U and Z be respectively open and closed subanalytic subsets of X and

consider s ∈ Γ(U ;FZ). We may assume s ∈ Γ(W ;F ) for a subanalytic open set W
with U ∩ Z ⊂ W ⊂ U . We choose two subanalytic open sets W1,W2 such that
U ∩ Z ⊂ W1 ⊂ U ∩ W1 ⊂ W2 ⊂ U ∩ W2 ⊂ W . By Lemma 5.8 we may find
α ∈ Γ(U ; C∞,tX ) such that α = 1 on W1 and α = 0 on U \W2. Then αs ∈ Γ(W ;F )
extends by 0 on U and αs = s in Γ(U ;FZ). It follows that Γ(U ;F )→ Γ(U ;FZ) is
surjective, as required.

Corollary 5.10. The sheaf of dg-algebras AX is a resolution of CXsa , i.e. we
have the exact sequence 0→ CXsa → A0

X → A1
X → · · · → A

n+1
X → 0.

Proof. The sequence is obtained from the exact sequence of Lemma 4.7 (on X̂) by
applying the functors ΓX+ and i−1

X . Since i−1
X is exact, it just remains to see that

the terms C bXsa and Ωt,ibX are ΓX+ -acyclic.
For Ωt,ibX this follows from Proposition 5.9 and Corollary 4.5. For C bXsa it

follows from RΓX+(C bXsa) ' C
X+
sa

(recall that ρ∗ commutes with RΓX+).
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Proposition 5.11. Let F be a C∞,tbX -module and set G = i−1
X ΓX+F . Let U ⊂ X be

a subanalytic open subset. Then the natural map Γ(X+;F )→ Γ(U ;G) is surjective
and G is quasi-injective. In particular the AiX are quasi-injective.

Proof. We consider s ∈ Γ(U ;G). As in the case of sheaves on manifolds we have,
for H ∈ Mod(C bXsa) and U ⊂ X, Γ(U ; i−1

X H) ' lim−→V
Γ(V ;H) where V runs over

the subanalytic open subsets of X̂ containing U . By Lemma 5.6, we may assume
V = U+

ϕ for some ϕ : U → R, so that s is represented by a section s̃ ∈ Γ(U+
ϕ ;F ).

Since X+∩U+
ϕ/2 ⊂ U

+
ϕ this s̃ defines a section of Γ(X+;F

U+
ϕ/2

). By Proposition 5.9

we may extend it to ŝ ∈ Γ(X+;F ) and we have ŝ|U+
ϕ/2

= s̃|U+
ϕ/2

. This shows

the surjectivity of Γ(X+;F ) → Γ(U ;G). Since this morphism factors through
Γ(X;G)→ Γ(U ;G) this also proves that G is quasi-injective.

§6. A-modules

For a real analytic manifold X, we denote by Mod(AX) the category of sheaves of
dg-AX -modules bounded below on Xsa. We have an obvious forgetful functor and
its composition with the localization:

(17) ForX : Mod(AX)→ C+(CXsa), For′X : Mod(AX)→ D+(CXsa).

We will usually write F instead of ForX(F ) or For′X(F ) when the context is clear.
We still write ForX , For′X for the compositions of these forgetful functors with the
exact functor Iτ : C(CXsa)→ C(I(CX)).

In this section we define operations on Mod(AX) and check usual formulas in
this framework, as well as some compatibility with the corresponding operations in
C(CXsa) or D(CXsa) (hence also in C(I(CX)) or D(I(CX)), because Iτ commutes
with the standard operations).

Tensor product. For M,N ∈ Mod(AX), the tensor product M ⊗AX N ∈
Mod(AX) is defined as usual by taking the tensor product of the underlying sheaves
of graded modules over the underlying sheaf of graded algebras and defining the
differential by d(m ⊗ n) = dm ⊗ n + (−1)degmm ⊗ dn (for m homogeneous). We
have an exact sequence in C+(CXsa),

(18) M⊗AX ⊗N
δ−→M⊗N →M⊗AX N → 0,

where δ(m⊗a⊗n) = (−1)deg a degmam⊗n−m⊗an for a,m, n homogeneous. For
two real analytic manifolds X,Y andM ∈ Mod(AX), N ∈ Mod(AY ), we denote
by � the external tensor product in the category of A-modules,

M�N = AX×Y ⊗(AX�AY ) (M�N ).
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Proposition 6.1. Let I, F ∈ Mod(AX) be such that I is quasi-injective and F
has a finite presentation (AX)N → F → 0. Then I ⊗AX F is quasi-injective.

Proof. Let U ⊂ X be a subanalytic open subset. The morphism u : IN → I⊗AX F
is surjective. Since keru is an A0

X -module, Proposition 5.9 and Corollary 4.5
imply that it is acyclic for Γ(U ; ·). It follows that the morphism Γ(U ; IN )
→ Γ(U ; I ⊗AX F ) is surjective. Since IN is quasi-injective this implies that
Γ(X; I ⊗AX F )→ Γ(U ; I ⊗AX F ) is surjective too, which proves the result.

Inverse image and direct image. Let f : X → Y be a morphism of real analytic
manifolds. Recall the morphism f ] : f−1AY → AX of Definition 5.2. For N ∈
Mod(AY ) we define its inverse image in Mod(AX),

f∗N = AX ⊗f−1AY f
−1N .

By adjunction f ] gives a morphism AY → f∗AX . Hence, forM∈ Mod(AX), f∗M
has a natural structure of dg-AY -module, as also has f!!M, through the natural
morphism f∗AX ⊗ f!!M→ f!!(AX ⊗M)→ f!!M.

We have a natural morphism f−1N → f∗N in C(CXsa) (with the notations
of (17), we could write more precisely f−1(ForY N ) → ForX f∗N ). We show in
Proposition 6.3 that it is a quasi-isomorphism when f is smooth. We first consider
a particular case.

Lemma 6.2. Set X = Rm+1, Y = Rm and let f : X → Y be the projection.
Consider coordinates (y1, . . . , ym, u) on X. For N ∈ Mod(A0

Y ) we have an exact
sequence in Mod(CXsa),

0→ f−1N → A0
X ⊗f−1A0

Y
f−1N d−→ A0

X ⊗f−1A0
Y
f−1N → 0,

where d is defined by d(a⊗ n) = ∂a
∂u ⊗ n for a ∈ A0

X , n ∈ N .

Proof. We have the exact sequence 0 → f−1A0
Y → A0

X
d−→ A0

X → 0 where
d(a) = ∂a

∂u . The tensor product with f−1N gives the exactness of the sequence
of the lemma except at the first term. It just remains to check that ι : f−1N →
A0
X ⊗f−1A0

Y
f−1N , n 7→ 1⊗ n, is injective.

(a) We consider a section n ∈ Γ(U ; f−1N ) such that ι(n) = 0. This means
that there exist a locally finite covering U =

⋃
i∈I Ui and, setting Vi = f(Ui),

sections ni, nij ∈ Γ(Vi;N ), aij ∈ Γ(Ui;A0
X), bij ∈ Γ(Vi;A0

Y ), where j runs over
a finite set Ji, such that for each i ∈ I, n|Ui = f∗ni and we have the identity in
Γ(Ui;A0

X)⊗ Γ(Vi;N ),

(19) 1⊗ ni =
∑
j∈Ji

(aij(bij ◦ f)⊗ nij − aij ⊗ bijnij).
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We may as well assume that the Ui are compact. We show in this case that ni = 0,
which will prove n = 0, hence the injectivity of ι.

(b) By Proposition 5.11 we may represent the aij , bij by tempered C∞ func-
tions defined onX+, Y +. We choose continuous subanalytic functions ϕi : Ui → R,
ϕi > 0 on Ui, such that the identities (19) hold in Γ((Ui)+

ϕi ; C
∞,tbX )⊗ Γ(Vi;N ).

By Lemma 5.8 we may choose αi ∈ Γ(X+; C∞,tbX ) such that 0 ≤ αi ≤ 1, αi = 1
on (Ui)+

ϕi/4
and αi = 0 outside (Ui)+

ϕi/2
. Multiplying both sides of (19) by αi we

obtain identities which now hold on Γ(X+; C∞,tbX )⊗Γ(Vi;N ). These identities imply

αi ⊗ ni = 0 in Γ(X+; C∞,tbX )⊗Γ(Y +;C∞,tbY ) Γ(Vi;N ).

We note that αi has compact support and we set βi =
∫
f̂
αi du. We have βi ∈

Γ(Y +; C∞,tbY ) and the last identity gives βini = 0. Now Γ(Vi;N ) is a Γ(Vi;A0
Y )-

module and to conclude that ni = 0 it just remains to prove that βi|Vi is invertible
in Γ(Vi;A0

Y ).
(c) Since βi is a tempered C∞ function on Y + it is enough to check that

β−1
i has polynomial growth along the boundary of Wi = f((Ui)+

ϕi/4
). We set

Zi = X+ \ (Ui)+
ϕi/4

and for (x, t) ∈ X+, di(x, t) = d((x, t), ∂Zi). We obtain the
bound, for (y, t) ∈Wi,

βi(y, t) ≥
∫

(Ui)
+
ϕi/4
∩({(y,t)}×R)

1 · du ≥ 2 max
u∈R

di(y, u, t).

The function mi(y, t) = maxu∈R di(y, u, t) is subanalytic since the max can be
taken for u running over a compact set. We have mi(y, t) > 0 for (y, t) ∈ Wi.
Hence, by Łojasiewicz’s inequality we have mi(y, t) > Cd((y, t), ∂Wi)−N for some
C,N ∈ R and it follows that β−1

i has polynomial growth along ∂Wi.

Proposition 6.3. Let f : X → Y be a smooth morphism and N ∈ Mod(AY ).

(i) The morphism in C(CXsa), f−1N → f∗N , is a quasi-isomorphism.
(ii) If N is locally free as an A0

Y -module, then f∗N is locally free as an A0
X-

module.
(iii) If N is flat over A0

Y and we have an exact sequence in Mod(AY ), 0→ N ′′ →
N ′ → N → 0, then the sequence 0→ f∗N ′′ → f∗N ′ → f∗N → 0 is exact.

Proof. The statements are local on X so that, up to restriction to open subsets,
we may assume X = Y × Rn and f is the projection. Then we factorize f as a
composition of projections with fiber dimension 1, so that we may even assume
X = Y ×R (and X̂ = Y ×R ×R). We take coordinates (y1, . . . , ym, u, t) on X̂
(u is the coordinate in the fiber of f̂).
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With this decomposition of X we define the A0
X -module Avert = A0

X⊕A0
Xdu.

This is a sub-A0
X -algebra of AX (not a sub-dg-algebra); f−1AY is another subal-

gebra, and the multiplication Avert ⊗f−1A0
Y
f−1AY → AX , is an isomorphism of

A0
X -algebras. This shows that for any dg-AY -module N ′ we have an isomorphism

of A0
X -modules

(20) Avert ⊗f−1A0
Y
f−1N ′ ∼−→ f∗N ′.

Assertions (ii) and (iii) follow easily. Now we prove (i). By (20) again, f∗N is
identified with the total complex of the double complex with two rows:

A0
X ⊗f−1A0

Y
f−1N i−1

��

// A0
X ⊗f−1A0

Y
f−1N i

div
��

d1,ih // A0
X ⊗f−1A0

Y
f−1N i+1

��
A0
X ⊗f−1A0

Y
f−1N i−1 // A0

X ⊗f−1A0
Y
f−1N i

d2,ih // A0
X ⊗f−1A0

Y
f−1N i+1

where div(a ⊗ n) = ∂a
∂u ⊗ n, d1,i

h (a ⊗ n) =
∑
k
∂a
∂yk
⊗ dyk · n + ∂a

∂t ⊗ dt · n and
d2,i
h = −d1,i

h . By Lemma 6.2 the ith column is a resolution of f−1N i. The induced
differential on the cohomology of the columns is easily seen to be the differential
of f−1N and (i) follows.

Remark 6.4. Statement (iii) of Proposition 6.3 could be improved if we knew
that A0

X is flat over f−1A0
Y but the author does not know whether this is true.

Proposition 6.5. Let f : X → Y be a morphism of real analytic manifolds. For
anyM∈ Mod(AX) we have isomorphisms in D+(CYsa),

For′(f∗(M)) ' Rf∗(For′(M)), For′(f!!(M)) ' Rf!!(For′(M)).

Proof. By Proposition 5.9, For (M) ∈ C+(CXsa) consists of soft sheaves. Hence
Corollary 4.5 gives the result.

Projection formula

Lemma 6.6. Let f : X→ Y be a morphism of analytic manifolds,M∈Mod(AX),
N ∈ Mod(AY ). There exists a natural isomorphism in Mod(AY ),

N ⊗AY f!!M ∼−→ f!!(f∗N ⊗AX M),

whose image in C+(CYsa) gives a commutative diagram

N ⊗AY f!!M ∼ // f!!(f∗N ⊗AX M)

N ⊗ f!!M
∼ //

OO

f!!(f−1N ⊗M)

OO

where the bottom arrow is the usual projection formula.
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Proof. Using (18) and f∗N ⊗AXM' f−1N ⊗f−1AYM we have the commutative
diagram (extending the diagram of the lemma)

N ⊗AY ⊗ f!!M

a

��

// N ⊗ f!!M

b

��

// N ⊗AY f!!M

��

// 0

f!!(f−1N ⊗ f−1AY ⊗M) // f!!(f−1N ⊗M) // f!!(f−1N ⊗f−1AY M) // 0

The top row of this diagram is exact by definition of the tensor product, as also is
the bottom row, before we take the image under f!!. But any complex of the type
P ⊗M is an A0

X -module becauseM is; hence it is f!!-acyclic by Proposition 5.9
and Corollary 4.5. It follows that the bottom row is exact. Now, the vertical arrows
a and b are isomorphisms in view of the classical projection formula. Hence so is
the morphism of the lemma.

Base change. We consider a Cartesian square of real analytic manifolds

X ′
f ′ //

g′

��
�

Y ′

g

��
X

f // Y

We have the usual base change formula in Mod(CY ′sa) or C+(CY ′sa), f−1g!! '
g′!!f
′−1 (and its derived version in D+(CY ′sa

), f−1Rg!! ' Rg′!!f
′−1).

Lemma 6.7. Let N be a dg-AY ′-module. There exists a natural morphism

(21) f∗g!!N → g′!!f
′∗N

of dg-AX-modules, whose image in C+(CXsa) gives a commutative diagram

f∗g!!N // g′!!f
′∗N

f−1g!!N

OO

∼
g′!!f
′−1N

OO

where the bottom arrow is the usual base change isomorphism. If f is an immersion
and g is smooth, then (21) is an isomorphism.

Proof. The morphism is defined by the following composition:

f∗g!!N ' AX ⊗f−1AY g
′
!!f
′−1N ' g′!!(g

′−1AX ⊗g′−1f−1AY f
′−1N )

ϕ−→ g′!!(AX′ ⊗f ′−1AY ′ f
′−1N ) = g′!!f

′∗N ,
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where the first isomorphism uses the classical base change formula (for complexes),
and the second one the classical projection formula. The morphism ϕ is induced
by g′].

Now we show that ϕ is an isomorphism when f is an immersion and g is
smooth. It is enough to show that

(22) g′−1AX ⊗g′−1f−1AY f
′−1N ' AX′ ⊗f ′−1AY ′ f

′−1N .

This is a local statement on X ′ so that we may as well assume that f is an
embedding and X ′ = X × Z, Y ′ = Y × Z for some manifold Z. We may also
assume that X is given by the equations yi = 0, i = 1, . . . , d, in Y . Then AX is
the quotient of f−1AY by the ideal generated by yi, dyi, i = 1 . . . , d. The same
holds for X ′ and we have the presentations

f−1(AY )2d (y1,...,dyd)−−−−−−−→ f−1(AY )→ AX → 0,

f ′−1(AY ′)2d (y1,...,dyd)−−−−−−−→ f ′−1(AY ′)→ AX′ → 0.

Since the tensor product is right exact, the images of these exact sequences under
g′−1(·) ⊗g′−1f−1AY f

′−1N and (·) ⊗f ′−1AY ′ f
′−1N give the same presentations of

both sides of (22), which shows that they are isomorphic.

Complex manifolds. Now we assume that X is a complex analytic manifold, of
dimension dcX over C; we denote by XR the underlying real analytic manifold. We
recall that t is the coordinate on X̂R given by the projection X̂R → R, and that we
have the decomposition d = d1 + d2 of the differential of AXR

(d2(ω) = ∂ω/∂t dt).
We consider the complex of “tempered holomorphic functions”, OtX ∈ Db(CXsa),
defined as the Dolbeault complex with tempered coefficients

(23) OtX = 0→ Ωt,0,0XR

∂̄−→ Ωt,0,1XR

∂̄−→ · · · ∂̄−→ Ωt,0,d
c
X

XR
,

where Ωt,i,jXR
denotes as usual the forms of type (i, j). The product of forms induces

a morphism OtX ⊗OtX → OtX in Db(CXsa). In degree 0, H0(OtX) is a subalgebra
of ρ∗OX .

Definition 6.8. We let Ωt,i,jdXR
be the sub-C∞,tdXR

-module of Ωt,i+jdXR
generated by the

forms of type (i, j) coming from XR.
We define Ai,jXR

= i−1
XR

ΓX+
R

Ωt,i,jdXR
. This is a sub-A0

XR
-module of Ai+jXR

and we

have the decomposition AkXR
=
⊕

i+j=kA
i,j
XR
⊕
⊕

i+j=k−1A
i,j
XR

dt. The operators
∂, ∂̄ on ΩtXR

induce a decomposition of the differential of AXR
, d = ∂ + ∂̄ + d2.

We let JX ⊂ AXR
be the differential ideal generated byA1,0

XR
and introduce the

dg-AXR
-module OX = AXR

/JX . As a quotient by a differential ideal, OX inherits
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a structure of dg-algebra. We note the obvious inclusions ρ!OX ⊂ ρ!C∞,tX ⊂ A0
XR

and we define, for two complex analytic manifolds, X, Y ,

O(i)
X = OX ⊗ρ!OX ρ!O(i)

X , O(p,q)
X×Y = OX×Y ⊗ρ!(OX�OY ) ρ!(O(p)

X �O(q)
Y ),

where O(i)
X denotes the holomorphic i-forms on X.

Proposition 6.9. (i) We have an isomorphism of complexes between OX and

A0,0
XR
→ (A0,1

XR
⊕A0,0

XR
dt)→ (A0,2

XR
⊕A0,1

XR
dt)→ · · · → A0,dcX

XR
dt,

with differential ∂̄ + d2.
(ii) O(dcX)

X [−dcX ] is isomorphic to the differential ideal of AXR
,

Ad
c
X ,0
XR

→ (Ad
c
X ,1
XR
⊕Ad

c
X ,0
XR

dt)→ · · · → Ad
c
X ,d

c
X

XR
dt.

Moreover, setting MX =
⊕

i<dcX ,j≤dcX
(Ai,jXR

⊕Ai,jXR
dt), we have a decomposi-

tion AXR
' O(dcX)

X [−dcX ]⊕MX into locally free A0
XR

-modules.
(iii) There exists a natural isomorphism OtX ' OX in Db(C(XR)sa) which com-

mutes with the products OtX⊗OtX → OtX and OX⊗OX → OX . We also have
Ot(p,q)X×Y ' O(p,q)

X×Y in Db(C(XR×YR)sa).

Proof. The decomposition of AkXR
given in Definition 6.8 yields projections AkXR

→ A0,k
XR
⊕ A0,k−1

XR
dt. The sum of these projections is a surjective morphism from

AXR
to the complex in (i) and we see that its kernel is JX . This gives (i), and (ii)

follows. We obtain (iii) by the exact sequences

0→ Ωt,0,jXR
→ A0,j

XR

α7→(∂α/∂t)dt−−−−−−−−−→ A0,j
XR

dt→ 0

and the definition of OtX .

For a morphism of complex analytic manifolds f : X → Y , we have a
“tempered” integration morphism in the derived category, Rf!!O

t(dcX)
X [dcX ] →

Ot(d
c
Y )

Y [dcY ]. When f is a submersion, using the adjunction between Rf!! and
f ! ' f−1[2(dcX − dcY )], it can be written

(24) Ot(d
c
X)

X [−dcX ]→ f−1Ot(d
c
Y )

Y [−dcY ].

Proposition 6.10. Let f : X → Y be a submersion. The embeddings of Proposi-
tion 6.9(ii), O(dcZ)

Z [−dcZ ] ⊂ AZR
(for Z = X,Y ), induce a morphism of dg-AXR

-
modules

(25) O(dcX)
X [−dcX ]→ f∗O(dcY )

Y [−dcY ]

which represents (24) through the isomorphism of Proposition 6.9(iii).
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Proof. By Proposition 6.9 we have a decomposition AYR
' O(dcY )

Y [−dcY ] ⊕ MY

into locally free A0
YR

-modules; hence the quotient AYR
/O(dcY )

Y [−dcY ] is flat over
A0
YR

and Proposition 6.3 implies that the morphism f∗O(dcY )
Y [−dcY ] → f∗AYR

'
AXR

is injective. Hence we just have to check the inclusion of ideals of AXR
:

O(dcX)
X [−dcX ] ⊂ f∗O(dcY )

Y [−dcY ]. This is a local problem on X which can be checked
in a local coordinate system.

With the hypothesis of Proposition 6.10, we could have defined an integration
morphism f!!O

(dcX)
X [dcX ]→ O(dcY )

Y [dcY ].
In Section 10 we need the following composition of kernels. Let X,Y, Z be

three complex analytic manifolds and qij the projection from their product to
the ith × jth factors. The product of OtY and the integration morphism give a
convolution product

(26) Rq13!(q−1
12 O

(0,dcY )
X×Y [dcY ]⊗ q−1

23 O
(0,dcZ)
Y×Z [dcZ ])→ O(0,dcZ)

X×Z [dcZ ].

We can realize this tempered convolution product on the resolutions O(0,dcY )
X×Y , but

in fact we will rather need its “adjoint” morphism

(27) q∗12O(0,dcY )
X×Y [−dcY ]⊗A q∗23O(0,dcZ)

Y×Z [−dcZ ]→ O(0,dcY ,d
c
Z)

X×Y×Z [−dcY − dcZ ]

→ q∗13O(0,dcZ)
X×Z [−dcZ ],

where the first morphism is induced by the product OY ⊗ OY ⊗ρ!OY ρ!O
(dcY )
Y →

OY ⊗ρ!OY ρ!O
(dcY )
Y and the second morphism is induced by (25).

§7. Microlocalization functor

In this section we recall the definition of the microlocalization functor µ introduced
in [9]. For a manifold X this is a functor, µX , from Db(I(CX)) to Db(I(CT∗X))
given by a kernel LX ∈ Db(I(CX×T∗X)).

We define an analog of this kernel and of the microlocalization functor in the
framework of A-modules. We check that in the case we are interested in, this gives
a quasi-injective resolution of µXF , and that it has a functorial behavior with
respect to the usual operations.

In fact, with the definition of [9] the construction of the external tensor prod-
uct is not so straightforward. For this reason we define another kernel for which
the tensor product is easy and which coincides with the kernel of [9] outside the
zero section.
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§7.1. Microlocalization functor in the derived category

In [9] the authors define a kernel associated to the following data: let X be a
manifold, Z ⊂ X a closed submanifold and σ a 1-form defined on Z, i.e. σ is a
section of the bundle Z ×X T ∗X → Z. To simplify the exposition we make the
following assumption which will be satisfied in our case:

(28) for any z ∈ Z, σz is non-zero but σz(ν) = 0, ∀ν ∈ TzZ.

Hence σ induces a non-vanishing section of T ∗ZX → Z and we may define

P 0
σ = {(x, v) ∈ TZX; 〈v, σ(x)〉 > 0}, Pσ = P 0

σ .

Thus Pσ is a subset of TZX, viewed itself as a subset of the normal deformation
of Z in X, X̃Z . We recall that X̃Z and the projection p : X̃Z → X are given in
local coordinates as follows. We choose coordinates (x1, . . . , xn) on X such that
Z is given by xi = 0, i = 1, . . . , d. This gives coordinates (xi, τ) on X̃Z and
p(xi, τ) = (τx1, . . . , τxd, xd+1, . . . , xn). The normal bundle TZX is embedded in
X̃Z as the submanifold {τ = 0} and we define Ω = {τ > 0}:

Pσ
� � // TZX

��

� � // X̃Z

p

��

Ω? _oo

~~}}
}}

}}
}}

Z
� � // X

In [9] the objects are introduced in the category of ind-sheaves but we will work
on the subanalytic site, using the embedding of categories Iτ : Mod(CXsa) '
IR-c(CX) → I(CX). Moreover, under hypothesis (28) we may use the following
definition for the kernel instead of Definition 1.2.3 of [9] (see Proposition 1.2.11,
loc. cit.).

Definition 7.1. The kernel associated to the above data is the complex Lσ =
Iτ (Lsaσ ) ∈ Db(I(CX)), where Lsaσ ∈ Db(CXsa) is given by (recall that, for i : Z ↪→
X, we write ωZ|X instead of i∗ωZ|X)

Lsaσ = Rp!!(ρX̃Z !(CPσ )⊗CΩ)⊗ ρX!(ω⊗−1
Z|X ).

We note that Rp!!(ρ!(CPσ )⊗CΩ) is supported on Z (i.e. its restriction outside
Z is 0). Hence taking the tensor product with ρ!(ω⊗−1

Z|X ) reduces locally to a shift
by the codimension of Z. By Proposition 1.2.11 of [9] we also have

(29) Rp!!(ρX̃Z !(CPσ )⊗CΩ) ' “lim−→”
U

CU ⊗ ρX!(CZ),



dg-Methods for Microlocalization 125

where U runs over the open subsets of X such that the cone of U along Z does
not intersect Pσ outside the zero section. In particular the complexes in (29) are
concentrated in degree 0: Rp!!(ρX̃Z !(CPσ )⊗CΩ) ' p!!(ρX̃Z !(CPσ )⊗CΩ).

When considering resolutions of Lσ by A-modules it will be convenient to use
the following different formulation.

Definition 7.2. For an analytic manifold Y and T ⊂ Y a locally closed suban-
alytic subset we define KT ∈ Mod(CYsa) by KT = lim−→W,W 0 C

W\W 0 , where W

(resp. W 0) runs over the open neighborhoods of T (resp. T ) in Y . We note that
KT has support in the boundary ∂T = T \ T .

Lemma 7.3. Let (X,Z, σ) be a kernel data satisfying (28). We have an isomor-
phism in Db(CXsa),

Lsaσ ' Rp!!(KP 0
σ
⊗CΩ)⊗ ρX!(ω⊗−1

Z|X ).

Proof. We define F = lim−→W 0 CW 0 , where W 0 runs over the open neighborhoods
of P 0

σ in X̃Z . Hence we have an exact sequence 0→ KP 0
σ
→ ρX̃Z !(CPσ )→ F → 0

and it is enough to show that Rp!!(F ⊗CΩ) = 0.
We have Rp!!(F ⊗ CΩ) ' lim−→W 0,U

Rp∗CW 0∩Ω∩U , where W
0 runs over the

same set as above and U runs over the open subsets of X̃Z with compact closure.
Since p∗ commutes with ρ∗ we are reduced to a computation with sheaves on
topological spaces.

For x in X \ Z, near Z, p−1(x) ∩W 0 ∩ Ω ∩ U is a union of intervals of the
line, all compact except at most one which is homeomorphic to [0, 1[. When we
take the limit over W 0 and U only the last one has a non-zero contribution to
the morphisms Cp−1(x)∩W 0∩Ω∩U → Cp−1(x)∩W ′0∩Ω∩U ′ . Since RΓ(R; C[0,1[) = 0
we deduce that our direct image vanishes.

Now, for any manifold X the cotangent bundle T ∗X is endowed with a canon-
ical 1-form, say ωX . We restrict outside the zero-section and set X = X×

.
T ∗X, Z =

X ×X
.
T ∗X '

.
T ∗X and consider the section σX : X ×X

.
T ∗X → T ∗X × T ∗(

.
T ∗X)

defined by σX = (−id, ωX), i.e. in local coordinates

σX(x, x, ξ) = ((x;−ξ), ωX(x, ξ)) = ((x;−ξ), (x, ξ; ξ, 0)).

Hence hypothesis (28) is satisfied for the data (X,Z, σX).

Definition 7.4. With the above notations, we set LX = LσX so that LX ∈
Db(I(CX×

.
T∗X)). We denote by p1 : X ×

.
T ∗X → X, p2 : X ×

.
T ∗X →

.
T ∗X the

projections. The microlocalization is the functor

µX : Db(I(CX))→ Db(I(C.
T∗X)), F 7→ LX ◦ F = Rp2!!(LX ⊗ p−1

1 F ).



126 S. Guillermou

§7.2. Microlocalization functor for A-modules

Definition 7.5. With the notations of Definition 7.2, we define BT ∈ Mod(AY )
by BT = lim−→W,W 0 ΓY \W 0(AY ⊗ CW ), where W (resp. W 0) runs over the open

neighborhoods of T (resp. T ) in Y .
For an open subset U ⊂ Y , we denote by C′U the complex CU → C∂U in

C+(CYsa), with CU in degree 0. We have a quasi-isomorphism CU → C′U .
For a kernel data (X,Z, σ) we define LAσ ∈ Mod(AX) by

LAσ = p!!(BP 0
σ
⊗C′Ω)⊗ ρX!(ω⊗−1

Z|X ).

Remark 7.6. For V ⊂ Y open, a section of BT (V ) is represented by an element
a ∈ Γ(V ∩W ;AY ) such that a|W 0 = 0, where W and W 0 are some neighborhoods
of T and T .

Lemma 7.7. (i) Let Y be a real analytic manifold and T ⊂ Y be a locally closed
subset whose embedding in Y is locally homeomorphic to the embedding of a
convex set in Rn. Then in Db(CYsa) we have an isomorphism KT

∼−→ BT and
BT consists of quasi-injective sheaves on Ysa.

(ii) For a kernel data (X,Z, σ) satisfying hypothesis (28), (i) induces an isomor-
phism Lσ ' LAσ in D+(I(CX)).

(iii) LAσ is a complex of quasi-injective sheaves on Xsa.
(iv) For F ∈ Mod(AX), the morphism LAσ ⊗ F → LAσ ⊗AX F in C+(CXsa) is a

quasi-isomorphism.

Proof. (i) In Definition 7.2 we may as well assume that the embedding of W 0

in Y is locally homeomorphic to the embedding of an open convex set in Rn, so
that CY \W 0 ' RΓY \W 0CY . Since AY is a quasi-injective resolution of CY we
deduce CY \W 0 ' ΓY \W 0AY . Now we take the tensor product with ρ!CT and use
formula (6) to obtain the isomorphism.

The quasi-injectivity of BT follows from that of AY and the description of
sections in Remark 7.6.

(ii) By (i) we have KP 0
σ
⊗ CΩ

∼−→ BP 0
σ
⊗ C′Ω. By Proposition 5.9 and Corol-

lary 4.5, BP 0
σ
⊗C′Ω is p!!-acyclic and we deduce Lσ ' LAσ .

(iii) Since Ω and ∂Ω are closed, (i) and Proposition 1.5.13 of [10] show that
BP 0

σ
⊗C′Ω is quasi-injective. Since p!! preserves quasi-injectivity the result follows.
(iv) Since p|Ω : Ω → X is smooth Proposition 6.3 and Corollary 5.10 give an

isomorphism (BP 0
σ
⊗ CΩ) ⊗ p−1F ' (BP 0

σ
⊗ CΩ) ⊗p−1AX p−1F in D+(C(X̃Z)sa

).
We also have CΩ

∼−→ C′Ω, so we may replace CΩ by C′Ω in this isomorphism.
We take the image under p!!, and using the projection formula and the fact that
AX̃Z -modules are p!!-acyclic, we obtain the result.
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Now we can define the microlocalization functor for A-modules. We keep the
notations introduced before Definition 7.4: for a manifold X we have the kernel
data (X,Z, σX).

Definition 7.8. With the above notations, we set LAX = LAσX so that LAX ∈
Mod(AX×.T∗X). The microlocalization is the functor

µAX : Mod(AX)→ Mod(A.
T∗X), F 7→ LAX ◦ F = p2!!(LAX ⊗AX

p∗1F ).

Proposition 7.9. (i) For F ∈ Mod(AX) there exists a natural isomorphism
µX(For′X(F )) ∼−→ For′T∗X(µAX(F )) in D+(I(C.

T∗X)).
(ii) If F admits a presentation (AX)N → F → 0 then µAX(F ) is a complex of

quasi-injective sheaves on T ∗Xsa.

Proof. (i) By Lemma 7.7(ii) we have µXF ' Rp2!!(LAX ⊗ p
−1
1 F ). Since A-modules

are soft we may replace Rp2!! by p2!!. By Proposition 6.3 we also have p−1
1 F ∼−→ p∗1F

and we conclude by Lemma 7.7(iv).
(ii) follows from Proposition 6.1 and the fact that p2!! preserves quasi-injec-

tivity.

§8. Functorial behavior of the kernel

We study the behavior of LAσ under direct image, inverse image and external
tensor product. The morphisms built in this section correspond to the morphisms
of Propositions 1.3.1, 1.3.3, 1.3.4 and 1.3.8 of [9] through the isomorphism of
Lemma 7.7(ii), but we have to make additional hypothesis on the maps.

In this section (X1, Z1, σ1) and (X2, Z2, σ2) are two sets of data as above,
satisfying hypothesis (28). We set for short X̃i = (̃Xi)Zi .

Direct and inverse images. Let f : X1 → X2 be a morphism with f(Z1) ⊂ Z2

and σ1 = f∗σ2. It induces f̃ : X̃1 → X̃2, decomposed as f̃ = h ◦ g in the following
diagram where the square is Cartesian:

(30)

Ω1
� � // X̃1

g //

p1
$$JJJJJJJJJJJ X1 ×X2 X̃2

q

��

h //

�

X̃2

p2

��

Ω2
? _oo

Pσ1

. �

>>||||||||
X1

f // X2 Pσ2

0 P

``BBBBBBBB

We have Ω1 = f̃−1Ω2, TZ1X1 = f̃−1(TZ2X2), Pσ1 = f̃−1Pσ2 , P 0
σ1

= f̃−1P 0
σ2
. We

note that X1 ×X2 X̃2 is in general not a manifold and may have components of
different dimensions. When f is clean with respect to Z2 and Z1 = f−1(Z2) (clean



128 S. Guillermou

then means that g′ : TZ1X1 → X1×X2 TZ2X2 is injective), g is a closed embedding.
When f is transversal to Z2 and Z1 = f−1(Z2), g is an isomorphism.

Proposition 8.1. Assume that f and f |Z1 : Z1 → Z2 are smooth. Then there
exists a natural morphism of dg-AX2-modules

(31) f!!(LAσ1
⊗ ρX1!(ωZ1|Z2))→ LAσ2

.

Proof. The hypothesis implies that f̃ is smooth. Since P 0
σ1

= f̃−1P 0
σ2
, the integra-

tion morphism of Definition 5.3 induces f̃!!(BP 0
σ1
⊗ ωX̃1|X̃2

) → BP 0
σ2

(this can be
checked by using the description of sections of BT in Remark 7.6). We also have
p−1

1 ωX1|X2 ' ωX̃1|X̃2
and f̃−1C′Ω2

= C′Ω1
. This gives the morphisms

f!!(p1!!(BP 0
σ1
⊗C′Ω1

)⊗ ωX1|X2) ' p2!!f̃!!(BP 0
σ1
⊗ f̃−1C′Ω2

⊗ ωX̃1|X̃2
)

→ p2!!(BP 0
σ2
⊗C′Ω2

),

where in the first line we use the projection formula for p1 and fp1 = p2f̃ . In
the second line we use the projection formula for f̃ and the above morphism
f̃!!(BP 0

σ1
⊗ ωX̃1|X̃2

)→ BP 0
σ2
.

Now we take the tensor product with ω⊗−1
Z2|X2

and we obtain (31).

Proposition 8.2. Assume that Z1 = f−1(Z2) and f is clean with respect to Z2.
Then there exists a natural morphism of dg-AX1-modules

(32) f∗LAσ2
→ LAσ1

⊗ ρX1!(ωZ1|Z2)⊗ ω⊗−1
X1|X2

.

If f is transversal to Z2 the morphism becomes f∗LAσ2
→ LAσ1

.

Proof. The hypotheses imply that the morphism g in diagram (30) is an embed-
ding. Hence g∗ = g!! and we have the adjunction morphism id → g!! g

−1. We
compose it with the base change f−1p2!! → q!!h

−1 to obtain

f−1p2!! → q!!g!! g
−1h−1 = p1!!f̃

−1.

We apply AX1 ⊗f−1AX2
(·) to this morphism and use the projection formula for p1

to obtain a morphism f∗p2!! → p1!!f̃
∗. It induces the first arrow in the sequence

below. The second arrow is induced by f̃−1C′Ω2
= C′Ω1

and the inverse image f̃ ].
The composition defines (32):

f∗LAσ2
= f∗(p2!!(BP 0

σ2
⊗C′Ω2

)⊗ ρX2!ω
⊗−1
Z2|X2

)

→ (p1!!f̃
∗(BP 0

σ2
⊗C′Ω2

))⊗ f−1ρX2!ω
⊗−1
Z2|X2

→ p1!!(BP 0
σ1
⊗C′Ω1

)⊗ f−1ρX2!ω
⊗−1
Z2|X2

.

If f is transversal to Z2 we have ωZ1|X1 ' f−1ωZ2|X2 .
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External tensor product. The external tensor product is a consequence of
Proposition 1.3.8 of [9]. We give a slightly different proof here using the modi-
fication in our definition of Lσ. In particular we use the following lemma.

Lemma 8.3. Let Yi, i = 1, 2, be real analytic manifolds, and Ti ⊂ Yi and T ⊂
Y1 × Y2 be locally closed subanalytic subsets such that

T ⊂ (T1 × Y2) ∪ (Y1 × T2) and T ⊂ (T1 × Y2) ∪ (Y1 × T2) ∪ (T 1 × T 2).

Then there exist morphisms KT1�KT2→ KT in C(C(Y1×Y2)sa) and BT1�BT2→ BT
in Mod(AY1×Y2) which coincide in the derived category.

Proof. We only define the morphism for B·, the construction for K· being similar.
We recall that a section of BTi over Ui ⊂ Yi is represented by ai ∈ Γ(Ui ∩Wi;AYi)
such that ai|W 0

i
= 0, for some neighborhoodsWi andW 0

i of T i and Ti in Yi. Hence
a = a1 · a2 gives a section of AY1×Y2 over W1 ×W2 such that a|(W1×W2)∩W 0 = 0,
where W 0 = (W 0

1 × Y2) ∪ (Y1 × W 0
2 ). Hence we may extend a by 0 on W =

(W1×W2)∪W 0. Since W and W 0 are open neighborhoods of T and T in Y1×Y2,
this defines a section of BT over U1 × U2.

Now we consider (X1, Z1, σ1) and (X2, Z2, σ2) as at the beginning of this
section. We set X = X1 × X2, Z = Z1 × Z2, σ = σ1 + σ2. Then (X,Z, σ) is
also a kernel data satisfying (28). We keep the notations of diagram (30) and
let p : X̃Z → X be the projection. We also have a natural embedding k : X̃Z →
X̃1 × X̃2. We set p′ = p1 × p2 : X̃1 × X̃2 → X.

Proposition 8.4. There exists a natural morphism LAσ1
� LAσ2

→ LAσ in
Mod(AX1×X2).

Proof. We let Q0
σ be the image of P 0

σ in TZ1X1 × TZ2X2 ⊂ X̃1 × X̃2. We have a
natural restriction morphism k−1BQ0

σ
→ BP 0

σ
and Lemma 8.3 gives a morphism

BP 0
σ1

� BP 0
σ2
→ BQ0

σ
, so that we obtain k−1(BP 0

σ1
� BP 0

σ2
)→ BP 0

σ
. We also have a

morphism k−1(C′Ω1
� C′Ω2

)→ C′Ω. Now the proposition follows easily from these
morphisms and the morphism of functors

p1!! � p2!! → p′!! → p′!!k!!k
−1 = p!!k

−1.

§9. Functorial properties of microlocalization

In this section f : X → Y is a morphism of real analytic manifolds. We recall the
functorial behavior of microlocalization and define the corresponding morphism
for the microlocalization of A-modules. This makes the link between kernels on
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X ×
.
T ∗X and Y ×

.
T ∗Y and we consider an intermediate space introduced in the

diagram

(33)

X X
f

// Y

X×
.
T ∗X

p2

��

p1

OO

X×(X×Y
.
T ∗Y )

id×fdoo f×fπ //

r1

OO

r2

��

Y×
.
T ∗Y

q2

��

q1

OO

.
T ∗X X ×Y

.
T ∗Y

fdoo fπ // .T ∗Y
We define the submanifold Z = X×Y

.
T ∗Y diagonally embedded inX×(X×Y

.
T ∗Y )

and the kernel data (X × (X ×Y
.
T ∗Y ), Z, σY←X), where

σY←X = (id× fd)∗(σX) = (f × fπ)∗(σY ).

This equality follows from f∗d (ωX) = f∗π(ωY ). We note that Z = (id×fd)−1(X×X.
T ∗X) and Z ⊂ (f × fπ)−1(Y ×Y

.
T ∗Y ), with equality if f is an embedding. This

implies that hypothesis (28) is satisfied for (X×(X×Y
.
T ∗Y ), Z, σY←X). We denote

the corresponding kernel by LY←X = LσY←X .

Inverse image. In the next proposition we assume that f : X → Y is an embed-
ding. For G ∈ D+(I(CY )) Theorem 2.4.4 of [9] gives a morphism

(34) Rfd!!f
−1
π µY (G)→ µX(f−1G).

Proposition 9.1. For an embedding f : X → Y and G ∈ Mod(AY ), we have a
morphism of A.

T∗X-modules

(35) fd!!f
∗
πµ
A
Y (G)→ µAX(f∗G),

whose image in D+(I(C.
T∗X)) is morphism (34).

Proof. We first note the morphism of functors f∗πq2!! → r2!!(f×fπ)∗. It is obtained
by the following composition of adjunction morphisms, where we use the fact that
f , hence fπ and f × fπ, are embeddings, so that direct and proper direct images
coincide:

(36) f∗πq2!! → f∗πq2!!(f × fπ)∗(f × fπ)∗ ' f∗πfπ∗r2!!(f × fπ)∗ → r2!!(f × fπ)∗.

We also note the morphisms between kernels:

(37) (f × fπ)∗LAY → LAY←X ⊗ ω⊗−1
X|Y , (id× fd)!!(LAY←X ⊗ ω⊗−1

X|Y )→ LAX .

The first one is morphism (32) applied to f ×fπ: we note that f ×fπ is clean with
respect to Y ×Y T ∗Y and X ×Y T ∗Y = (f × fπ)−1(Y ×Y T ∗Y ). The second one is
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morphism (31) applied to id× fd. Now the morphism of the proposition is defined
by the succession of morphisms

fd!!f
∗
πµ
A
Y (G) = fd!!f

∗
πq2!!(LAY ⊗A q∗1G)(38)

→ fd!!r2!!((f × fπ)∗LAY ⊗A r∗1f∗G)(39)
v←− p2!!((id× fd)!!(f × fπ)∗LAY ⊗A p∗1f∗G)(40)

→ p2!!(LAX ⊗A p∗1f∗G),(41)

where in line (39) we used morphism (36) and the commutativity of inverse image
and tensor product, and in (40) the identities fdr2 = p2(id× fd), r1 = p1(id× fd)
and the projection formula for (id × fd) (Lemma 6.6). The last morphism is the
composition of the morphisms in (37).

Direct image. Theorem 2.4.2 of [9] gives a morphism Rfπ!!f
−1
d µX(F )→ µY (f!!F )

for F ∈ Db(I(CX)). We can define its analog for A-modules if we assume that f
is a submersion and F is of the type F = f !G ' f−1G ⊗ ωX|Y ; then the above
morphism induces

(42) Rfπ!!f
−1
d µX(f−1G⊗ ωX|Y )→ µY (G).

Proposition 9.2. There exists a natural morphism of A.
T∗Y -modules, for a sub-

mersion f : X → Y and for G ∈ Mod(AY ),

(43) fπ!!f
∗
dµ
A
X(f∗G⊗ ωX|Y )→ µAY (G),

whose image in D+(I(C.
T∗Y )) is morphism (42).

Proof. We set F = f∗G ⊗ ωX|Y and define (43) by the sequence of morphisms
(with the notations of diagram (33))

fπ!!f
∗
d p2!!(LAX ⊗A p∗1F )(44)

→ fπ!!r2!!((id× fd)∗LAX ⊗ r∗1F )(45)

' q2!!(f × fπ)!!((id× fd)∗LAX ⊗ r−1
1 ωX|Y ⊗A (f × fπ)∗q∗1G)(46)

v←− q2!!((f × fπ)!!((id× fd)∗LAX ⊗ r−1
1 ωX|Y )⊗A q∗1G)(47)

→ q2!!(LAY ⊗A q∗1G),(48)

where in line (45) we used the base change formula f∗d p2!! → r2!!(id × fd)∗ and
the identity r1 = p1(id × fd), in line (46) the identities fπr2 = q2(f × fπ) and
fr1 = q1(f × fπ), and in line (47) the projection formula for f × fπ. The last line
is given by the composition of

(id× fd)∗LAX → LAY←X and (f × fπ)!!(LAY←X ⊗ r−1
1 ωX|Y )→ LAY ,
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which are given respectively by (32) and (31) (for the first morphism we note
that id× fd is transversal to X ×X T ∗X and for the second one we note that the
restriction of r−1

1 ωX|Y to X ×Y T ∗Y is isomorphic to ωX×Y T∗Y |Y×Y T∗Y ).

External product. For F ∈ D+(I(CX)) and G ∈ D+(I(CY )) Proposition 2.1.14
of [9] implies the existence of a natural morphism

(49) µXF � µYG→ µX×Y (F �G).

Proposition 9.3. For F ∈ Mod(AX) and G ∈ Mod(AY ) there exists a natural
morphism

(50) µAXF � µAYG→ µAX×Y (F�G)|.T∗X×.T∗Y ,

whose image in D+(I(C.
T∗X×

.
T∗Y )) is (49).

Proof. The existence of the morphism follows from the Künneth formula and
Proposition 8.4. It coincides with the already known construction outside the zero
section by Proposition 7.9.

§10. Composition of kernels

We first recall some standard notations and definitions. We consider three analytic
manifolds X, Y , Z and we let qij be the projection from X × Y × Z to the
ith × jth factors and pij be the similar projection from T ∗X × T ∗Y × T ∗Z. We
also denote by a : T ∗Y → T ∗Y the antipodal map and we set pa12 = (id× a) ◦ p12.
For F ∈ D+(I(CX×Y )), G ∈ D+(I(CY×Z)) and F ∈ D+(I(CT∗X×T∗Y )), G ∈
D+(I(CT∗Y×T∗Z)) we define

(51) F ◦G = Rq13!!(q−1
12 F ⊗ q

−1
23 G), F

a◦G = Rp13!!(pa−1
12 F⊗ p−1

23 G).

We set for short M = X × Y × Y ×Z, N = X × Y ×Z and let j : N →M be the
diagonal embedding. We define the maps

k : T ∗N ↪→ N ×M T ∗M, (x, y, z; ξ, η, ζ) 7→ (x, y, y, z; ξ,−η, η, ζ),

τ : T ∗N → N ×X×Z T ∗(X × Z), (x, y, z; ξ, η, ζ) 7→ (x, y, z; ξ, ζ),

p = jπ ◦ k,
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and obtain the following commutative diagram with a Cartesian square:

(52)

T ∗N

τ

��

� � k //

p

((

p13

((

�

N ×M T ∗M

jd
��

� � jπ // T ∗M

N ×X×Z T ∗(X × Z) � �

q13d
//

q13π
��

T ∗N

T ∗(X × Z)

We note that F
a◦ G ' Rp13!! p

−1(F � G). Theorem 2.5.1 of [9] gives a natural
morphism, for K1 ∈ D+(I(CX×Y )), K2 ∈ D+(I(CY×Z)),

(53) µX×YK1
a◦ µY×ZK2 → µX×Z(K1 ◦K2).

It can be restated as follows. For complexes K1 ∈ D+(I(CX×Y )), K2 ∈
D+(I(CY×Z)) and K3 ∈ D+(I(CX×Z)), with a morphism q−1

12 K1 ⊗ q−1
23 K2 →

q−1
13 K3 ⊗ ωY , there exists a natural morphism

(54) µX×YK1
a◦ µY×ZK2 → µX×ZK3.

This is equivalent to (53): indeed using the adjunction between Rq13!! and q!
13 we

may apply (54) to K3 = K1 ◦K2 and recover (53). But for A-modules we do not
have this adjunction and the statement of the following proposition is actually
weaker than an A-module analog of (53).

For F ∈ Mod(AT∗X×T∗Y ) and G ∈ Mod(AT∗Y×T∗Z) we set

F
aA◦ G = p13!!(pa∗12F⊗AN p∗23G) ' p13!!p

∗(F � G).

If F, resp. G, is defined only on
.
T ∗(X×Y ), resp.

.
T ∗(Y ×Z), then F

aA◦ G is defined
on

.
T ∗X ×

.
T ∗Z. In D+(I(CT∗X×T∗Z)) we have the morphisms

(55) F
a◦G→ Rp13!!(pa∗12F⊗AN p∗23G) v←− F

aA◦ G,

where the second arrow is an isomorphism by Proposition 6.5.

Proposition 10.1. For K1 ∈ Mod(AX×Y ), K2 ∈ Mod(AY×Z) and K3 ∈
Mod(AX×Z) with a morphism q∗12K1 ⊗A q∗23K2 → q∗13K3 ⊗ ωY there exists a
natural morphism in Mod(A.

T∗Y×
.
T∗Z),

(56) µAX×YK1
aA◦ µAY×ZK2 → µAX×ZK3,
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which makes a commutative diagram in D+(I(C.
T∗X×

.
T∗Z))) with (54),

µX×YK1
a◦ µY×ZK2

//

��

µX×ZK3

��
µAX×YK1

aA◦ µAY×ZK2
// µAX×ZK3

Proof. By definition µAX×YK1
aA◦ µAY×ZK2 = p13!!p

∗(µAX×YK1�µY×ZK2). The ex-
ternal tensor product (50) gives µAX×YK1�µAY×ZK2 → µAM (K1�K2) and the base
change formula (21) gives p13!!p

∗ = q13π!!τ!!k
∗ j∗π

v←− q13π!!q
∗
13d jd!!j

∗
π, which is an

isomorphism because q13d is an embedding and jd is smooth. We obtain the mor-
phisms

µAX×YK1
aA◦ µAY×ZK2 → q13π!!q

∗
13d jd!!j

∗
π(µAM (K1�K2))

→ q13π!!q
∗
13d µ

A
N j
∗(K1�K2)

→ q13π!!q
∗
13d µ

A
N (q∗13K3 ⊗ ωY )

→ µAX×ZK3,

where in the second line we have applied Proposition 9.1, in the third the hypoth-
esis and in the fourth Proposition 9.2.

We are in fact only interested in the following example. We assume now that
X,Y, Z are complex analytic manifolds. We use the A-module OX and its variants
introduced in Definition 6.8. We set K1 = O(0,dcY )

X×Y [dcY ], which gives a resolution
of Ot(0,d

c
Y )

X×Y [dcY ], K2 = O(0,dcZ)
Y×Z [dcZ ], K3 = O(0,dcZ)

X×Z [dcZ ]. With these notations mor-
phism (27) yields a morphism q∗12K1⊗A q∗23K2 → q∗13K3⊗ωY and Proposition 10.1
gives the microlocal convolution

(57) µAX×Y O(0,dcY )
X×Y [dcY ]

aA◦ µAY×ZO(0,dcZ)
Y×Z [dcZ ]→ µAX×ZO(0,dcZ)

X×Z [dcZ ].

This convolution product is associative, because the composition of kernels
aA◦ is

associative as also is the integration morphism by Fubini.
We will in fact use morphism (56) in a slightly more general situation, namely

for complexes of the type Hom(π−1F, µG), rather than µG. We first introduce
notations in the category of complexes:

F
0◦G = q13!!(q−1

12 F ⊗ q
−1
23 G), F

a0◦ G = p13!!(pa−1
12 F⊗ p−1

23 G).

Proposition 10.2. For F ∈ C+(C(X×Y )sa), G ∈ C+(C(Y×Z)sa), F ∈
Mod(AT∗(X×Y )) and G ∈ Mod(AT∗(Y×Z)) we have a natural morphism

(58) Hom(π−1
X×Y F,F)

aA◦ Hom(π−1
Y×ZG,G)→ Hom(π−1

X×Z(F
0◦G),F

aA◦ G).
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Proof. We keep the notations of diagram (52). Let us denote by LHS the left hand
side of (58). We have the morphisms

(59) LHS = p13!! p
∗(Hom(π−1

X×Y F,F)�Hom(π−1
Y×ZG,G)

)
' p13!! p

∗Hom(π−1
M (F �G),F�G)

→ Hom(p13∗ p
−1π−1

M (F �G),F
aA◦ G),

where in the last line we have used the morphisms of functors p∗Hom(·, ·) →
Hom(p−1(·), p∗(·)) and p13!!Hom(·, ·)→ Hom(p13∗(·), p13!!(·)).

We let σ : N ×X×Z T ∗(X × Z) → T ∗N be induced by the inclusion of the
zero section of Y and we let π′N : N ×X×Z T ∗(X × Z) → N be the projection.
Then πM ◦ p ◦ σ = j ◦ π′N . Moreover, since we deal with conic sheaves we have the
isomorphism of functors τ∗ ' σ−1. We also have a morphism q13π!! → q13π∗. We
deduce the sequence of morphisms

p13∗p
−1π−1

M ' q13π∗τ∗p
−1π−1

M

← q13π!!σ
−1p−1π−1

M ' q13π!!π
′−1
N j−1 ' π−1

X×Zq13!!j
−1,

where the last isomorphism is a base change. So we obtain π−1
X×Z q13!! j

−1 →
p13∗ p

−1π−1
M and composing this morphism with (59) we deduce (58).

Remark 10.3. We can define analogs of morphism (58) in the derived category or
in the category of complexes. We then obtain the first two lines in the commutative
diagram

(60)

RHom(π−1
X×Y F,F)

a◦ RHom(π−1
Y×ZG,G) // RHom(π−1

X×Z(F ◦G),F
a◦G)

��

Hom(π−1
X×Z(F

0◦G),F
a◦G)

Hom(π−1
X×Y F,F)

a0◦ Hom(π−1
Y×ZG,G)

u

OO

��

// Hom(π−1
X×Z(F

0◦G),F
a0◦ G)

v
OO

��

Hom(π−1
X×Y F,F)

aA◦ Hom(π−1
Y×ZG,G) // Hom(π−1

X×Z(F
0◦G),F

aA◦ G)

The vertical arrows u and v in this diagram go in the wrong direction but it will
be used in cases where they are isomorphisms.

§11. E-modules

In this section X is a complex analytic manifold of complex dimension n = dcX
and ∆ denotes the diagonal of X ×X. We identify T ∗X and T ∗∆(X ×X) by the
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first projection. We denote by EX the sheaf of microdifferential operators of finite
order; this is a sheaf on T ∗X. It can be defined by a construction similar to Sato’s
definition of microdifferential operators of infinite order, using the tempered mi-
crolocalization; this is done in [1] (see also [11]—here we can use (2) as a definition
of T -µhom), as follows. We let γ : T ∗X → T ∗X/C∗ be the quotient map by the
action of C∗ in the fibers. Then EX ' γ−1γ∗(ER,fX ) where ER,fX is the sheaf on
T ∗X ' T ∗∆(X ×X),

ER,fX = T -µhom(C∆,O(0,n)
X×X [n]).

The product of ER,fX is defined in [1] by the convolution product for tempered
microlocalization. This can also be defined in the language of ind-sheaves, follow-
ing [9]. We first define E ′ind

X ∈ Db(I(CT∗(X×X))) by

E ′ind
X = RIHom(π−1C∆, µX×XOt(0,n)

X×X [n]),

where Ot(0,n)
X×X , defined in (23) as an object of Db(C(X×X)sa), is now considered in

Db(I(CX×X)) using the functor Iτ . Thus E ′ind
X has support on T ∗X ' T ∗∆(X×X)

but this does not imply that it is the image of an ind-sheaf on T ∗X. We recall the
notations p1, p2 : T ∗(X ×X) → T ∗X for the projections, a : T ∗X → T ∗X for the
antipodal map and we define the embedding

δ′ : T ∗X ' T ∗∆(X ×X)→ T ∗(X ×X), (x, ξ) 7→ (x, x, ξ,−ξ).

Since supp E ′ind
X = T ∗∆(X ×X) the morphisms of functors p1∗ → p1∗δ

′
∗δ
′−1 = δ′−1

and p2∗ → a−1δ′−1 induce isomorphisms:

(61) δ′−1E ′ind
X ' p1∗E ′ind

X ' a−1p2∗E ′ind
X .

We could write the same isomorphisms with pi!!, Rpi∗ or Rpi!! instead of pi∗.

Definition 11.1. We let E ind
X ∈ Db(I(CT∗X)) be the ind-sheaf on T ∗X defined

by (61).

Since the functor α from ind-sheaves to sheaves commutes with direct image
and inverse image we have ER,fX ' αT∗X(E ind

X ). The complex E ind
X comes equipped

with a product in the sense of Definition 3.1, defined as follows (omitting the
subscript in µ):

(i) Using (61) we see that E ind
X ⊗ E ind

X ' δ′−1(E ′ind
X

a◦ E ′ind
X ).

(ii) We have C∆ ◦C∆ = C∆ and the top line in diagram (60) with X = Y = Z

gives E ind
X ⊗ E ind

X → δ′−1 RIHom(π−1C∆, µOt(0,n)
X×X

a◦ µOt(0,n)
X×X [2n]).

(iii) Morphisms (26) and (54) give µOt(0,n)
X×X

a◦ µOt(0,n)
X×X [2n]→ µOt(0,n)

X×X [n].
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The composition of (i)–(iii) defines the product E ind
X ⊗ E ind

X → E ind
X . The same

discussion, applied toX = Y and Z a point, ends up with an action of E ind
X on µOtX

in the sense of Definition 3.1. We deduce an action of E ind
X on RIHom(π−1F, µOtX)

for any F ∈ Db(I(CX)).
This product and this action are just morphisms in the derived category and

do not endow the complex E ind
X with a structure of algebra. However, when we go

back to the derived category of sheaves with the functor αT∗X , the product gives
a morphism ER,fX ⊗ ER,fX → ER,fX which endows ER,fX with a structure of algebra
because ER,fX is a sheaf (i.e. concentrated in degree 0). But this is not enough to de-
fine a structure of ER,fX -module on T -µhom(F,OX) ' αT∗X RIHom(π−1F, µOtX)
which is in general not concentrated in one degree.

To solve this problem we define a dg-algebra EAX on the site Xsa (and not
merely an object in the derived category) such that E ind

X ' Iτ (EAX ). We also define
in the same way a dg-module over EAX representing µOtX . In fact our definition is
exactly the previous one but in categories of A-modules instead of derived cate-
gories.

Definition 11.2. We define a complex of sheaves on
.
T ∗Xsa,

EAX = δ′−1Hom(π−1C∆, µ
A
X×XO(0,n)

X×X [n]),

with a product, EAX ⊗ EAX → EAX , defined as the composition of

EAX ⊗ EAX → δ′−1Hom(π−1C∆, µ
AO(0,n)

X×X
aA◦ µAO(0,n)

X×X [2n])

and

µAO(0,n)
X×X

aA◦ µAO(0,n)
X×X [2n]→ µAO(0,n)

X×X [n],

which are respectively given by (58) and (56) together with (27).
We also have a natural morphism EAX ⊗ µAXOX → µAXOX defined like the

above action of E ind
X on µOtX .

Proposition 11.3. The morphisms introduced in the previous definition give EAX
a structure of dg-algebra and give µAXOX a structure of dg-EAX -module.

Over
.
T ∗X, we have isomorphisms E ind

X ' Iτ (EAX ) and µOtX ' Iτ (µAXOX).
Through these isomorphisms the product of EAX and its action on µAXOX coincide
with the product of E ind

X and its action on µOtX defined above.

Proof. The complex EAX is a dg-algebra and µAXOX is a dg-EAX -module because the
product and the action are defined in categories of complexes and not merely up
to homotopy.



138 S. Guillermou

The second part of the proposition follows from Proposition 10.1 and Re-
mark 10.3. With the notations of diagram (60) we are interested in the cases
F = µAXO(0,n)

X×X [n], F = C∆ and either G = F, G = F (for the product) or
G = µAXOX , G = CX (for the action).

By Proposition 10.1, using the composition of kernels F
a◦ G → G and its

analogs for
a0◦ and

aA◦ we change diagram (60) into another commutative diagram,
where F

a◦G is replaced by G. We just have to check that the vertical arrows u and
v (in the notations of (60)) in this new diagram are isomorphisms.

By Proposition 7.9, F and G consist of quasi-injective sheaves on T ∗Xsa and
so are acyclic for the functors Hom(H, ·), H constructible. In particular the Hom
sheaves in diagram (60) are isomorphic to the RHom. For the composition of
kernels ◦ we also have to compute a direct image. Since we deal with A-modules
Proposition 6.5 implies that direct images and derived direct images coincide. This
proves that the vertical arrows are isomorphisms.

We still have to make the link between EAX and ER,fX . We note that ρ−1EAX is
quasi-isomorphic to ER,fX . In particular ρ−1EAX has its cohomology concentrated in
degree 0 and we have isomorphisms of sheaves

ER,fX ' H0(ρ−1EAX ) ' H0(αIτ (EAX )).

Moreover the structure of dg-algebra on EAX gives a structure of dg-algebra on
ρ−1EAX and a structure of algebra on H0(ρ−1EAX ). The above proposition implies
that this product induced on ER,fX coincides with the usual one.

We also have a structure of dg-EAX -module on µAXOX ; in particular it de-
fines an object Iτ (µAXOX) ∈ D(Iτ (EAX )). For any G ∈ D−(I(CT∗X)) the complex
RIHom(G, Iτ (µAXOX)) is thus also naturally defined as an object of D(Iτ (EAX )).
For G = π−1F , F ∈ D−(I(CX)), we deduce that

T -µhom(F,OX) = αRIHom(π−1F, Iτ (µAXOX)) ∈ D(ρ−1EAX ),

and, by construction, the corresponding action in D(CT∗X)

ρ−1EAX ⊗ T -µhom(F,OX)→ T -µhom(F,OX)

coincides with the action of ER,fX on T -µhom(F,OX) defined above.
Thus we are almost done, except that T -µhom(F,OX) is defined as an object

of D(ρ−1EAX ) rather than D(ER,fX ). But the dg-algebra ρ−1EAX is quasi-isomorphic
to ER,fX and it just remains to apply Corollary 3.3 as follows. We have the quasi-
isomorphisms of dg-algebras on

.
T ∗X

ρ−1EAX
φ≤0←−− τ≤0ρ

−1EAX
φ0−→ ER,fX ,
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and the equivalence of categories φ∗0 ◦ φ≤0∗ : D(ρ−1EAX ) ∼−→ D(ER,fX ). We set E ′X =
βT∗X(ρ−1EAX ) so that we have an adjunction morphism E ′X → Iτ (EAX ). This mor-
phism induces the restriction of scalars r : D(Iτ (EAX )) → D(E ′X) and φ∗0 ◦ φ≤0∗

induces an equivalence of categories Φ: D(E ′X) ∼−→ D(βT∗X(ER,fX )). Hence we ob-
tain an object

OµX = Φ(r(Iτ (µAXOX))) ∈ D(βT∗X(ER,fX ))

representing µOtX and we can state the final result:

Theorem 11.4. The object OµX ∈ D(βT∗X(ER,fX )) defined above over
.
T ∗X is sent

to µXOtX in D(I(C.
T∗X)) by the forgetful functor. Moreover, for F ∈ D−(I(CX))

the complex

αT∗X RIHom(π−1F,OµX),

which is naturally defined in D(ER,fX ), over
.
T ∗X, is isomorphic in D(C.

T∗X) to
T -µhom(F,OX) endowed with its action of ER,fX .
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