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On the Voros Coefficient for the Whittaker
Equation with a Large Parameter

— Some Progress around Sato’s Conjecture in
Exact WKB Analysis

by

Tatsuya Koike and Yoshitsugu Takei

Abstract

Generalizing Sato’s conjecture for the Weber equation in exact WKB analysis, we explic-
itly determine the Voros coefficient of the Whittaker equation with a large parameter. By
using our results we also compute alien derivatives of WKB solutions of the Whittaker
equation at the so-called fixed singular points of their Borel transform.

2010 Mathematics Subject Classification: 34M30, 34M37, 34M55, 34M60.
Keywords: exact WKB analysis, Whittaker equation, Voros coefficient, alien derivative,
Stokes automorphism.

§1. Introduction

In this article we study a Schrödinger equation

(1.1)
(
− d2

dx2
+ η2Q(x, η)

)
ψ = 0 (η > 0 a large parameter)

with the potential Q(x, η) of the form

Q(x, η) =
1
4
− α

x
+ η−2 β

x2
(α, β complex constants),

that is, the Whittaker equation with a large parameter η, from the viewpoint of
exact WKB analysis.
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In [AKT2] Aoki, Kawai and the second author of the present article studied
analytic properties of the Borel transforms of WKB solutions of an MTP equation,
that is, a Schrödinger equation with a merging pair of simple turning points.
Making use of the reduction of an MTP equation to a canonical one, we determined
the location of “fixed singular points” (i.e., singular points whose relative locations
with respect to the reference singular point are unchanged; cf. [DDP], [DP]) of
Borel transformed WKB solutions and succeeded in explicitly computing the alien
derivative of WKB solutions at fixed singular points for an MTP equation. In the
case of an MTP equation the canonical equation is given by the Weber equation
and what we call Sato’s conjecture, that is, the explicit form of the Voros coefficient
of the Weber equation in terms of the Bernoulli numbers (cf. [KT1]; see also [SS]
and [T] for its proof), played an important role in studying analytic properties of
Borel transformed WKB solutions. (See, e.g., (2.13) in Section 2 for the definition
of the Voros coefficient.)

On the other hand, as is emphasized in [Ko1] and [Ko2], the behavior of a
WKB solution of a Schrödinger equation (1.1) near a simple pole is similar to that
near a simple turning point. Inspired by these results, in a joint work [KKKoT1]
with Kamimoto and Kawai we extended the analysis developed in [AKT2] to an
MPPT equation, that is, a Schrödinger equation with a merging pair of a sim-
ple pole and a simple turning point, again by making use of the reduction of an
MPPT equation to a canonical one. In the case of an MPPT equation the canoni-
cal equation is given by the Whittaker equation and this motivates our interest in
the Whittaker equation, and the computer-assisted study of its Voros coefficient
indicated that it should be possible to write it down again in terms of the Bernoulli
numbers. The aim of this paper is to show that it is really the case and to ana-
lyze the analytic structure of Borel transformed WKB solutions of the Whittaker
equation by using the explicit form of the Voros coefficient thus obtained.

The paper is organized as follows: In Section 2 we present our main result, i.e.,
the precise formulation of the counterpart of Sato’s conjecture for the Whittaker
equation. In Section 3 we prove the main result. The proof follows an idea used
in [T]. Finally in Section 4, by using the main result we study the analytic structure
of the Borel transform of WKB solutions of the Whittaker equation.

§2. Main Theorem

The equation we discuss in this article is the Whittaker equation with a large
parameter η:

(2.1)
{
− d2

dx2
+ η2

(
1
4
− α

x
+ η−2 β

x2

)}
ψ = 0.
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Here α (6= 0) and β are complex constants. Our main interest is in the analysis of
a WKB solution, that is, a formal solution of (2.1) of the form

(2.2) ψ = exp
(∫ x

S(x, η) dx
)
,

where

(2.3) S(x, η) = ηS−1(x) + S0(x) + η−1S1(x) + · · ·

is a formal solution of the Riccati equation

(2.4) S2 +
dS

dx
= η2

(
1
4
− α

x
+ η−2 β

x2

)
associated to (2.1). Here we briefly review the construction of WKB solutions (cf.
[KT2]). By substituting (2.3) into (2.4), we obtain the following recursion relations:

S2
−1 =

1
4
− α

x
,(2.5)

2S−1S0 +
dS−1

dx
= 0,(2.6)

2S−1S1 + S2
0 +

dS0

dx
=

β

x2
,(2.7)

2S−1Sn +
n−1∑
j=0

SjSn−j−1 +
dSn−1

dx
= 0 (n ≥ 2).(2.8)

It follows from (2.5) that the leading term S−1(x) of (2.3) should be

(2.9) S−1(x) = ±
√

1
4
− α

x
.

Once we fix the sign in (2.9), i.e., the branch of
√

1/4− α/x, the higher order terms
{Sn}n≥0 are determined uniquely and recursively by (2.6)–(2.8). In particular, the
sign in (2.9) is inherited only by the odd degree terms. Therefore there exist two
formal solutions of (2.4) of the form

(2.10) S(±)(x, η) = ±Sodd(x, η) + Seven(x, η),

where

Sodd(x, η) =
∞∑
j=0

η−2j+1S2j−1(x), Seven(x, η) =
∞∑
j=0

η−2jS2j(x).

Since

(2.11) Seven(x, η) = −1
2
d

dx
logSodd(x, η)
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(see Remark 2.2 in [KT2]), we thus obtain two WKB solutions of (2.1),

(2.12) ψ±(x, η) =
1√

Sodd(x, η)
exp
(
±
∫ x

x0

Sodd(x, η) dx
)
.

In exact WKB analysis (cf. [V], [DP], [KT2]), we give an analytic meaning
to these WKB solutions (2.2) or (2.12) through the Borel resummation method.
As was explained in Introduction, the following theorem plays a crucial role in
studying the analytic structure of Borel transformed WKB solutions.

Theorem 2.1. Let V be the Voros coefficient of the Whittaker equation (2.1),
that is,

(2.13) V :=
∫ ∞

4α

(Sodd(x, η)− ηS−1(x)) dx =
∞∑
n=1

η1−2n

∫ ∞
4α

S2n−1(x) dx.

Then the following relation holds as a formal power series in η−1:

(2.14) V =
∞∑
n=1

(αη)1−2n B2n(−γ)
2n · (2n− 1)

.

Here γ is a constant satisfying γ(γ + 1) = β and Bn(z) denotes the Bernoulli
polynomial of degree n defined by

(2.15) Bn(z) =
n∑
k=0

n!
k! (n− k)!

Bk z
n−k,

where {Bk}k≥0 are the Bernoulli numbers defined by the generating function

(2.16)
t

et − 1
=
∞∑
n=0

Bn
tn

n!
.

Remark. (i) The lower endpoint x = 4α of the integration interval on the right-
hand side of (2.13) is a simple turning point of (2.1). Since Sn(x) behaves like
O((x − 4α)−1−3n/2) near x = 4α, S2n−1(x) (n ≥ 0) is not integrable near 4α.
We consider the integral in (2.13) as a contour integral along a path γ shown in
Figure 1, i.e.,

V =
1
2

∫
γ

(Sodd(x, η)− ηS−1(x)) dx.

Figure 1
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Note also that, since we can show

(2.17) Sn(x) = O(|x|−1−n/2) (|x| → ∞)

by induction on n, Sn(x) with n ≥ 1 is integrable near infinity.
(ii) The first few Bernoulli numbers are

B0 = 1, B1 = −1
2
, B2k+1 = 0 (k = 1, 2, . . . ),

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42
, B8 = − 1

30
, B10 =

5
66
.

(iii) The generating function of the Bernoulli polynomials is given by

(2.18)
tetz

et − 1
=
∞∑
n=0

Bn(z)
tn

n!
.

Formula (2.18) is obtained by using the definition (2.15) of the Bernoulli polyno-
mials and the generating function (2.16) of the Bernoulli numbers.

(iv) It is also known that the Bernoulli polynomial satisfies Bn(1 − z) =
(−1)nBn(z). In view of this relation we can readily find that the 2n-th Bernoulli
polynomial B2n(z) is a function of z(z−1). Therefore the right-hand side of (2.14)
is a function of β, not depending on the choice of a solution γ of γ(γ + 1) = β.

Theorem 2.1 is the counterpart of Sato’s conjecture for the Whittaker equa-
tion. It is proved in Section 3 and by using Theorem 2.1 we study some analytic
properties of the Borel transforms of WKB solutions in Section 4. Note that our
results play an essential role in analyzing the fixed singular points of an MPPT
equation in [KKKoT1] (see also [KKKoT2] for a review).

§3. Proof of Main Theorem

We prove Theorem 2.1 using the idea employed in [T]. Firstly, we derive the
difference equation that the Voros coefficient satisfies. In this derivation the raising
and lowering operators (with respect to the parameter α) play a crucial role. Then,
as the difference equation determines a solution uniquely, we compute its solution
to verify that it coincides with the right-hand side of (2.14). In this paper we use
the Borel transformation technique to compute a unique solution of the difference
equation.

§3.1. Derivation of the difference equation

In this section the parameter α plays an important role. To show the dependence
on α more manifestly, we use the notation S(±)(x, α, η) for solutions (2.10) of the
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Riccati equation, ψ±(x, α, η) for WKB solutions, etc. in what follows. We also set

I(α, η) :=
∫
γ

(Sodd(x, α, η)− ηS−1(x, α)) dx = 2V.(3.1)

In this subsection we prove

Proposition 3.1. I(α, η) formally satisfies

I(α+ η−1, η)− I(α, η)

= 2 + log
α2 + η−1α− η−2β

α2
− 2(αη + 1) log

(
1 +

1
αη

)
(3.2)

= 2 + log
[(

1− γ

αη

)(
1 +

γ + 1
αη

)]
− 2(αη + 1) log

(
1 +

1
αη

)
.(3.3)

In Proposition 3.1 the word “formally” means the equality of formal power
series with respect to η−1. In fact, the right-hand side of (3.2) has a formal power
series expansion

−1 + 6β
α2

η−2 +
1 + 6β
α3

η−3 − 10β2 + 20β + 3
20α4

η−4 +
15β2 + 15β + 2

15α5
η−5 + · · ·

by the (formal) use of the Taylor expansion.

Figure 2

To prove Proposition 3.1, we first note that S2n(x, α) for n = 1, 2, . . . are
single-valued around x = 4α and their residues are zero (cf. (2.11)). Therefore

(3.4) I(α, η) =
∫
γ

(S(+)(x, α, η)− ηS−1(x, α)− S0(x, α)) dx.

In studying the right-hand side of (3.4), we also consider the following cut-off
integrals:

Ix(α, η) =
∫
γx

S(+)(x, α, η) dx,

Ixn(α, η) =
∫
γx

Sn(x, α) dx (n = −1, 0),
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where γx is the contour shown in Figure 2. From (3.4) and the definition of Ix

and Ixn , we have

(3.5) I(α, η) = lim
x→∞

[Ix(α, η)− ηIx−1(α)− ηIx0 (α)].

We then determine the asymptotic behavior of Ix(α+ η−1, η)− Ix(α, η).

Lemma 3.1. As x tends to infinity, we have

(3.6) Ix(α+ η−1, η)− Ix(α, η) = log
α2 + η−1α− η−2β

x2
+O(|x|−1).

To prove Lemma 3.1, we use the raising and lowering operators of the Whit-
taker equation with respect to α:

A(α) = η−1 d

dx
+

1
2
x− α, A†(α) = η−1 d

dx
− 1

2
x+ α.

We also set

L(α) =
d2

dx2
− η2

(
1
4
− α

x
+ η−2 β

x2

)
.

Lemma 3.2. If ψ is a solution of the Whittaker equation (2.1) (i.e. L(α)ψ = 0),
then L(α− η−1)A(α)ψ = 0 and L(α+ η−1)A†(α)ψ = 0.

Proof. By direct computations, we have

η−2x2L(α) = A(α+ η−1)A†(α) + c(α) = A†(α− η−1)A(α) + c(α− η−1)

with
c(α) = α2 + η−1α− η−2β.

Therefore

η−2x2L(α+ η−1)A†(α)ψ = [A†(α)A(α+ η−1) + c(α)]A†(α)ψ

= [A†(α)A(α+ η−1)A†(α) + c(α)A†(α)]ψ

= [A†(α){η−2x2L(α)− c(α)}+ c(α)A†(α)]ψ = 0.

By the same reasoning we can also prove η−2x2L(α− η−1)A(α)ψ = 0.

Proof of Lemma 3.1. Lemma 3.2 implies that there exists a constant C(η) for
which

(3.7)
(
η−1x

d

dx
− 1

2
x+ α

)
ψ+(x, α, η) = C(η)ψ+(x, α+ η−1, η).

Since the left-hand side of (3.7) is(
η−1xS(+) − 1

2
x+ α

)
ψ+(x, α, η),
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the logarithmic derivatives of both sides of (3.7) give

S(+)(x, α+ η−1, η) = S(+)(x, α, η) +
d

dx
log
[
η−1xS(+)(x, α, η)− 1

2
x+ α

]
.

Therefore we obtain

(3.8)
∫
γx

S(+)(x, α+ η−1, η) dx−
∫
γx

S(+)(x, α, η) dx

= log
[
η−1xS(+)(x, α, η)− 1

2
x+ α

]
− log

[
η−1xS(−)(x, α, η)− 1

2
x+ α

]
.

To determine the asymptotic behavior of the right-hand side of (3.8), we use the
following explicit formulas as x→∞ which are easily obtained from the recursion
relations (2.5)–(2.8):

S−1(x, α) =

√
1
4
− α

x
=

1
2
− α

x
− α2

x2
− 2α3

x3
+O(|x|−4),

S0(x, α) =
1
4

(
1
x
− 1
x− 4α

)
= − α

x2
+O(|x|−3),

S1(x, α) = − 5
16
x1/2(x− 4α)−5/2 +

1
8
x−1/2(x− 4α)−3/2

+
(
β +

3
16

)
x−3/2(x− 4α)−1/2

=
β

x2
+O(|x|−3).

These asymptotic formulas together with (2.17) show

S(+)(x, α, η) = η

(
1
2
− α

x
− α2

x2

)
+
−α+ η−1β

x2
+O(|x|−5/2),(3.9)

S(−)(x, α, η) = η

(
−1

2
+
α

x
+
α2

x2

)
+
−α− η−1β

x2
+O(|x|−5/2).(3.10)

The formula (3.6) readily follows from (3.8), (3.9) and (3.10). This completes the
proof of Lemma 3.1.

Next we determine the asymptotic behavior of Ix−1(α + η−1) − Ix−1(α) and
Ix0 (α+ η−1)− Ix0 (α).

Lemma 3.3. (i) As x tends to infinity, we have

Ix−1(α+η−1)−Ix−1(α) = η−1

[
−2+2(1+αη) log

(
1+

1
αη

)
+log

α2

x2

]
+O(|x|−1).

(ii) Ix0 (α+ η−1)− Ix0 (α) = 0.
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Proof. Since S0(x) is single-valued near x = 4α, Ix0 (α) is 2πi times the residue
of S0(x) at x = 4α. Hence Ix0 (α) = −iπ/2 and thus we obtain (ii). To prove (i),
we compute the integral explicitly:

Ix−1(α) =
∫
γx

S−1 dx

= 2x

√
1
4
− α

x
− α log

[
x− 2α+ 2x

√
1
4
− α

x

]
+ α log

[
x− 2α− 2x

√
1
4
− α

x

]
.

As x tends to infinity, we have√
1
4
− α

x
=

1
2
− α

x
+
α2

x2
+O(|x|−3),

and hence

x− 2α+ 2x

√
1
4
− α

x
= 2x− 4α− 2α2

x
+O(|x|−2),

x− 2α− 2x

√
1
4
− α

x
=

2α2

x
+O(|x|−2).

Therefore we obtain

Ix−1(α) =
∫
γx

S−1(x, α) dx = x− 2α+ α log
α2

x2
+O(|x|−1).

This asymptotic behavior of Ix−1(α) verifies (i).

We now prove Proposition 3.1.

Proof of Proposition 3.1. Lemmas 3.1 and 3.2 give

[Ix(α+ η−1, η)− ηIx−1(α+ η−1)− Ix0 (α+ η−1)]− [Ix(α, η)− ηIx−1(α)− Ix0 (α)]

= [Ix(α+ η−1, η)− Ix(α, η)]− η[Ix−1(α+ η−1)− Ix−1(α)]

= 2− 2(1 + αη) log
(

1 +
1
αη

)
+ log

α2 + η−1α− η−2β

α2
+O(|x|−1).

This relation and (3.5) give (3.2). Since β = γ(γ + 1), we can also verify

α2 + η−1α− η−2β

α2
=
(

1− γ

αη

)(
1 +

γ + 1
αη

)
.

This proves (3.3). �
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§3.2. Determination of the Voros coefficient

Let V (α, η) be the Voros coefficient defined by (2.13). From Proposition 3.1 and
(3.1), we have

(3.11) V (α+ η−1, η)− V (α, η)

= 1 +
1
2

log
[(

1− γ

αη

)(
1 +

γ + 1
αη

)]
− (αη + 1) log

(
1 +

1
αη

)
.

In this subsection we verify that this difference equation determines V uniquely.
To this end we convert (3.11) to a difference equation with respect to η by using
the homogeneity of V (α, η).

Lemma 3.4. Let

V2n−1(α) =
∫ ∞

4α

S2n−1(x, α) dx (n = 1, 2, . . . ).

Then
V2n−1(α) = α1−2nV2n−1(1) for n = 1, 2, . . . .

Proof. Using the recursion relations (2.5)–(2.8), we can verify

Sn(αx, α) =
1

αn+1
Sn(x, 1) (n = −1, 0, 1, 2, . . . )

by induction on n. Therefore∫ ∞
4α

S2n−1(x, α) dx = α

∫ ∞
4

S2n−1(αt, α) dt = α1−2n

∫ ∞
4

S2n−1(t, 1) dt

for n = 1, 2, . . . .

Thanks to Lemma 3.4,

V (α, η) =
∞∑
n=1

V2n−1(α)η1−2n =
∞∑
n=1

V2n−1(1)(αη)1−2n,

and

(α+ η−1)η = αη + 1 = α

(
η +

1
α

)
entails

(3.12) V (α+ η−1, η) = V

(
α, η +

1
α

)
.

From (3.12) and (3.11) we obtain the following difference equation for V with
respect to η.
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Proposition 3.2.

(3.13) V

(
α, η +

1
α

)
− V (α, η)

= 1 +
1
2

log
[(

1− γ

αη

)(
1 +

γ + 1
αη

)]
− (αη + 1) log

(
1 +

1
αη

)
.

We solve the difference equation (3.13) by using the Borel transformation. We
first note that (3.13) has a unique (formal) solution of the form

V =
∞∑
n=1

Vnη
1−2n = V1η

−1 + V3η
−3 + V5η

−5 + · · · .

Hence (3.13) determines V uniquely. We now explicitly compute its Borel trans-
form

VB =
∞∑
n=1

Vn
(2n− 2)!

y2n−2

by considering the Borel transform of (3.13). The Borel transform of the left-hand
side of (3.13) is

(3.14) (e−y/α − 1)VB(α, y).

To compute the Borel transform of the right-hand side, we use

Lemma 3.5. Let C be a non-zero complex constant. Then

(i) B[log(1 + Cη−1)](y) =
1− e−Cy

y
.

(ii) B[η log(1 + Cη−1)− C](y) =
−1 + (1 + Cy)e−Cy

y2
.

Here B denotes the Borel transformation with respect to η.

Lemma 3.5 can be proved by straightforward computations. By using Lemma
3.5 we can compute the Borel transform of the right-hand side of (3.13) in the
following way:

(3.15) B
[
1− (αη + 1) log

(
1 +

1
αη

)]
= −B

[
α

(
η log

(
1 +

1
αη

)
− 1
α

)]
− B

[
log
(

1 +
1
αη

)]
=

α

y2

[
1−

(
1 +

y

α

)
e−y/α

]
− 1− e−y/α

y

= α
1− e−y/α

y2
− 1
y
,
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(3.16) B
[

1
2

log
(

1− γ

αη

)(
1 +

γ + 1
αη

)]
=

1
2
B
[
log
(

1− γ

αη

)]
+

1
2
B
[
log
(

1 +
γ + 1
αη

)]
=

1
2
· 1− eγy/α

y
+

1
2
· 1− e−(γ+1)y/α

y

=
1
y
− 1

2
· e

γy/α + e−(γ+1)y/α

y
.

We conclude from (3.14), (3.15) and (3.16) that the difference equation (3.13)
becomes

(e−y/α − 1)VB(α, y) = α
1− e−y/α

y2
− 1

2
· e

γy/α + e−(γ+1)y/α

y

after the Borel transformation. This equation can be easily solved and we obtain

Theorem 3.1. The Borel transform VB of the Voros coefficient V is given by

(3.17) VB(α, y) =
1
2y
· e
−γy/α + e(γ+1)y/α

ey/α − 1
− α

y2
.

Thus, to prove Theorem 2.1, it suffices to show that the Borel transform of the
right-hand side of (2.14) coincides with the right-hand side of (3.17). The Borel
transform of the right-hand side of (2.14) is, by its definition,

(3.18)
∞∑
n=1

α1−2nB2n(−γ)
(2n)!

y2n−2 =
α

y2

∞∑
n=1

B2n(−γ)
(2n)!

(
y

α

)2n

.

We then use (2.18) to obtain

(3.19)
∞∑
n=0

B2n(z)
(2n)!

t2n =
1
2

[
tetz

et − 1
+
−te−tz

e−t − 1

]
=
t

2
· e

tz + e−t(z−1)

et − 1
.

From (3.18) and (3.19) we can confirm that the Borel transform of the right-hand
side of (2.14) is exactly the same as the right-hand side of (3.17). This proves
Theorem 2.1.

Remark. Since

e−γy/α + e(γ+1)y/α

=
1
2

[(ey/α + 1)(eγy/α + e−γy/α) + (ey/α − 1)(eγy/α − e−γy/α)]

= (ey/α + 1) cosh
γy

α
+ (ey/α − 1) sinh

γy

α
,
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we have the following expression for VB :

VB =
1
2

[
1
y

ey/α + 1
e−y/α − 1

cosh
γy

α
+

1
y

sinh
γy

α
− 2α
y2

]
.

This expression was used in [KKKoT1] and [KKKoT2].

The following lemma will be used in the subsequent section.

Proposition 3.3. VB has poles at y = 2mπiα (m ∈ Z \ {0}) and has no other
singular points. The poles are all simple with residues

Res
y=2mπiα

VB =
e2mπiγ + e−2mπiγ

4mπi
.

§4. Analytic structure of the Borel transform of WKB solutions for
the Whittaker equation

In this section we derive some important analytic properties of the Borel trans-
forms of WKB solutions of the Whittaker equation. All of them are obtained as
consequences of our main theorems (Theorems 2.1 and 3.1). For simplicity we re-
strict our considerations in this section to the case where argα = π/2 or argα is
sufficiently close to π/2. The configuration of Stokes curves, i.e., integral curves of
the direction field = (S−1(x) dx) = 0 emanating from turning points, of the Whit-
taker equation (2.1) for argα = π/2 is shown in Figure 3. Note that the origin
also plays the same role as a turning point (cf. [Ko1] and [Ko2]). We also show in
Figure 4 and Figure 6 (resp., Figure 5 and Figure 7) the configuration of Stokes
curves for argα = π/2− ε (resp., argα = π/2 + ε) for sufficiently small positive ε.

Figure 3. argα = π/2
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Figure 4. argα = π/2− 0.2 Figure 5. argα = π/2 + 0.2

Figure 6. argα = π/2− 0.45 Figure 7. argα = π/2 + 0.45

As we can observe from these figures, degeneration occurs in the configuration
of Stokes curves for argα = π/2 (Figure 3), i.e., there exists a Stokes curve con-
necting a turning point 4α and the origin in Figure 3. Although this degeneration
is resolved in Figures 4–7, the topological configuration of Stokes curves is quite
different between, for example, Figure 6 and Figure 7; in particular, the configu-
ration of a Stokes curve emanating from 4α abruptly changes at argα = π/2. We
will see in §4.2 that this abrupt change of the configuration of Stokes curves is
related to Stokes phenomena for WKB solutions that occur when α varies.

§4.1. Fixed singularities of the Borel transforms of WKB solutions

Let us consider WKB solutions normalized at a simple turning point 4α:

(4.1) ψ± =
1√
Sodd

exp
[
±
∫ x

4α

Sodd dx

]
.
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These WKB solutions ψ+ and ψ− can be expanded as

ψ± = eηy±(x)
∞∑
n=0

ψ±,n(x)η−n−1/2

with

y±(x) = ±
∫ x

4α

S−1(x) dx = ±
∫ x

4α

√
1
4
− α

x
dx

and the Borel transform ψ±,B of ψ± is given by

(4.2) ψ±,B(x, y) =
∞∑
n=0

ψ±,n(x)
Γ(n+ 1/2)

(y + y±(x))n−1/2.

Theorem 4.1. Assume that the path of integration in (4.1) does not cross any
Stokes curve for any α with |argα−π/2| < ε (ε > 0). Then the Borel transform of
the WKB solution ψ+,B (resp., ψ−,B) has singular points at y = −y+(x) + 2mπiα
(resp., y = −y−(x)+2mπiα) with m ∈ Z\{0}. Furthermore, their alien derivatives
there are given by

(∆y=−y±(x)+2mπiαψ±,B)(x, y) =
e2mπiγ + e−2mπiγ

2m
ψ+,B(x, y − 2mπiα).

Note that the singular points described in Theorem 4.1 are fixed singular
points (cf. [DDP], [DP]) of ψ+ (resp., ψ−) since their relative locations with respect
to the reference singular point y = −y+(x) (resp., y = −y−(x)) are unchanged
when x varies.

In this subsection we prove Theorem 4.1. Since the same reasoning holds also
for ψ−,B , we only consider ψ+,B . We refer the reader to [Sa] for the definition of
the alien derivative and the relevant alien calculus employed in what follows. See
also [AKT2, §3] where a similar discussion is given for the Weber equation.

To prove Theorem 4.1 we use the relation

(4.3) ψ+ = exp
[∫ ∞

4α

(Sodd − ηS−1(x)) dx
]
ψ

(∞)
+ = eV ψ

(∞)
+ ,

where ψ(∞)
+ is a WKB solution normalized at infinity:

(4.4) ψ
(∞)
+ =

1√
Sodd

exp
[
η

∫ x

4α

S−1(x) dx
]

exp
[∫ x

∞
(Sodd(x, η)− ηS−1(x)) dx

]
.

The formal relation (4.3) becomes

ψ+,B = B[eV ] ∗ ψ(∞)
+,B
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after the Borel transformation, where ∗ denotes the convolution product for the
variable y. Since VB is singular at y = 2mπiα (m ∈ Z \ {0}) as we have seen in
Section 3, we then find that y = 2mπiα is also a singular point of ψ+,B .

To compute the alien derivative of ψ+ there, we use

Lemma 4.1. The WKB solution (4.4) normalized at infinity is Borel summable if
the path of integration from infinity to x in (4.4) does not cross any Stokes curve.

See [DP, Theorem 1.2.2(c)] for the corresponding result for the Weber equa-
tion. Lemma 4.1 for the Whittaker equation can be verified in a similar manner.

Under our assumption we can choose a path of integration from infinity to x
in such a way that it does not cross any Stokes curve (see Remark below). Hence
ψ

(∞)
+,B is holomorphic at y = −y+(x) + 2mπiα. This enables us to compute the

alien derivative of ψ+,B at y = −y+(x) + 2mπiα as follows:

∆y=−y+(x)+2mπiαψ+,B = ∆y=−y+(x)+2mπiα[B(eV ) ∗ ψ(∞)
+,B ]

= [∆y=−y+(x)+2mπiαB(eV )] ∗ ψ(∞)
+,B

= [∆y=−y+(x)+2mπiαVB ]B(eV ) ∗ ψ(∞)
+,B

= 2πi Res
y=2mπiα

[VB(α, y)] · ψ+,B

=
e2mπiγ + e−2mπiγ

2m
ψ+,B .

This completes the proof of Theorem 4.1.

Remark. If x does not lie on a Stokes curve for argα = π/2, we can find a path
of integration from infinity to x so that it does not cross any Stokes curve for all
α with |argα−π/2| being sufficiently small. Examples of such paths are shown in
Figures 8–10. For example, for xj (j = 1, 2) in Figure 8, γj gives a path satisfying
the above condition.

§4.2. Derivation of the Stokes automorphism for WKB solutions

It follows from Theorem 4.1 that, when argα = π/2, the singular points y =
−y+(x)−2mπiα (m = 1, 2, . . . ) of the Borel transform of the WKB solution ψ+,B

are located on

(4.5) {y;<y ≥ <(−y+(x)), =y = =(−y+(x))}.

As (4.5) is nothing other than the path of integration for the Borel sum of ψ+, this
implies that ψ+ is not Borel summable when argα = π/2. If we let the parameter
α vary from argα = π/2 − ε to argα = π/2 + ε, these singular points cross
the path of integration for the Borel sum. Therefore, we conclude that the WKB
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Figure 8. argα = π/2

Figure 9. argα = π/2− 0.2 Figure 10. argα = π/2 + 0.2

solution ψ+ suffers a Stokes phenomenon (with respect to α) at argα = π/2. Such
Stokes phenomena are well described by the Stokes automorphism (cf. [Sa]). In
this subsection we compute the action of the Stokes automorphism on the WKB
solutions ψ±.

Let S denote the Stokes automorphism. In our case, it is defined by

Sψ+ = exp
[ ∞∑
m=1

∆y=−y+(x)−2mπiα

]
ψ+,

Sψ− = exp
[ ∞∑
m=1

∆y=−y−(x)−2mπiα

]
ψ−.

Theorem 4.2. When argα = π/2, Sψ± are explicitly given by

Sψ± = (1− e2πi(αη+γ))1/2(1− e2πi(αη−γ))1/2ψ±.
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Proof. We compute the action of the Stokes automorphism in the formal model.
Let ∆ be the sum of the alien derivatives:

∆ =
∞∑
m=1

∆y=−y+(x)−2mπiα.

We then obtain

∆ψ+ =
∞∑
m=1

B−1[∆y=−y+(x)−2mπiαψ+,B ]

= −
∞∑
m=1

e2mπiγ + e−2mπiγ

2m
B−1ψ+,B(x, y + 2mπiα)

= −
∞∑
m=1

e2mπiγ + e−2mπiγ

2m
e2mπiαηψ+

=
1
2

log[(1− e2πi(αη+γ))(1− e2πi(αη−γ))]ψ+.

Here B denotes the Borel transformation. Therefore we obtain

Sψ+ = e∆ψ+ = (1− e2πi(αη+γ))1/2(1− e2πi(αη−γ))1/2ψ+.

The same computation can also be done for ψ−.

§4.3. Borel sum of the Voros coefficient

In this final subsection we determine the Borel sum of the Voros coefficient.

Theorem 4.3. Let ε > 0 be sufficiently small. Then the Borel sum of the Voros
coefficient VB for argα = π/2− ε is given by

(4.6)
1
2

log
Γ(αη − γ)√

2π
+

1
2

log
Γ(αη + γ)√

2π
+

1
2

log(αη + γ) + αη(1− log(αη)),

and for argα = π/2 + ε it is

(4.7) −1
2

log
Γ(−αη − γ)√

2π
− 1

2
log

Γ(−αη + γ)√
2π

− 1
2

log(−αη + γ) + αη(1− log(αη) + πi).

Proof. Making a change of variables w = y/α, we obtain

αVB =
1

2w

[
ew

ew − 1
eγw +

1
ew − 1

e−γw
]
− 1
w2

=
1

2w

(
1

ew − 1
+

1
2
− 1
w

)
eγw +

1
2w

(
1

ew − 1
+

1
2
− 1
w

)
e−γw

+
sinh(γw)

2w
+

cosh(γw)− 1
w2

.
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Let S[V ] denote the Borel sum of the Voros coefficient V , i.e.,

S[V ](α, η) :=
∫ ∞

0

e−yηVB(α, y) dy =
∫ ∞

0

e−αwη(αVB(α, αw)) dw.

To compute S[V ](α, η), we make use of the following formula:∫ ∞
0

(
1

et − 1
+

1
2
− 1
t

)
e−tθ

dt

t
= log

Γ(θ)√
2π
−
(
θ − 1

2

)
log θ + θ (<θ > 0)

(cf. [E, Vol. I, Chapter I, §1.9, (5)]). We also use the following formulas for Laplace
transforms of hyperbolic functions:∫ ∞

0

e−pt
sinh(at)

t
dt =

1
2

log
p+ a

p− a
,∫ ∞

0

e−pt
cosh(at)− 1

t2
dt =

a

2
log

p+ a

p− a
+
p

2
log
(

1− a2

p2

)
.

Then, when argα = π/2− ε, we find

S[V ](α, η) =
1
2

[
Γ(ηα− γ)√

2π
−
(
ηα− γ − 1

2

)
log(ηα− γ) + ηα− γ

]
+

1
2

[
Γ(ηα+ γ)√

2π
−
(
ηα+ γ − 1

2

)
log(ηα+ γ) + ηα+ γ

]
+

1
4

log
ηα+ γ

ηα− γ
+
γ

2
log

ηα+ γ

ηα− γ
+
ηα

2
log
(

1− γ2

η2α2

)
=

1
2

log
Γ(αη − γ)√

2π
+

1
2

log
Γ(αη + γ)√

2π

+
1
2

log(αη + γ) + αη(1− log(αη)).

When argα = π/2 − ε, we can compute S[V ](α, η) in a similar manner by using
the relation S[V ](α, η) = −S[V ](−α, η).

Using the concrete expressions (4.6) and (4.7) for the Borel sum of V given
by Theorem 4.3, we can prove Theorem 4.2 without resorting to the alien calculus.
We conclude this final section with a different proof of Theorem 4.2 which is based
on Theorem 4.3.

Since both ψ
(∞)
+ and V are Borel summable for argα = π/2 ± ε, it follows

from (4.3) that

S[ψ+]|argα=π/2−ε = exp
[
S[V ]|argα=π/2−ε

]
· S[ψ(∞)

+ ]|argα=π/2−ε,

S[ψ+]|argα=π/2+ε = exp
[
S[V ]|argα=π/2+ε

]
· S[ψ(∞)

+ ]|argα=π/2+ε,
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where S denotes the Borel sum. Note that ψ(∞)
+ is Borel summable for argα ∈

[π/2− ε, π/2 + ε] for a sufficiently small positive ε in view of Lemma 4.1. Thus we
have

S[ψ(∞)
+ ]|argα=π/2+ε = S[ψ(∞)

+ ]|argα=π/2−ε.

Therefore, we obtain

(4.8)
S[ψ+]|argα=π/2+ε

S[ψ+]|argα=π/2−ε
= exp

[
S[V ]|argα=π/2+ε − S[V ]|argα=π/2−ε

]
.

The right-hand side of (4.8) can be explicitly computed thanks to Theorem 4.3:

(4.9) S[V ]|argα=π/2+ε − S[V ]|argα=π/2−ε

= −1
2

log
Γ(−αη − γ)Γ(−αη + γ)Γ(αη − γ)Γ(αη + γ)

(2π)2

− 1
2

log(γ2 − α2η2) + πiαη.

Since
Γ(αη − γ)Γ(−αη + γ)

2π
=

1
−αη + γ

1
2 sinπ(αη − γ)

and
Γ(αη + γ)Γ(−αη − γ)

2π
=

1
−αη − γ

1
2 sinπ(αη + γ)

,

the right-hand side of (4.9) becomes

1
2

log
4(α2η2 − γ2) sinπ(αη + γ) sinπ(αη − γ)

γ2 − α2η2
+ πiαη

=
1
2

log[(eiπ(αη+γ) − e−iπ(αη+γ))(eiπ(αη−γ) − e−iπ(αη−γ))] + πiαη

=
1
2

log[(1− e2iπ(αη+γ))(1− e2iπ(αη−γ))].

Hence we obtain

S[ψ+]|argα=π/2+ε = (1− e2iπ(αη+γ))1/2(1− e2iπ(αη−γ))1/2S[ψ+]|argα=π/2−ε.

This proves Theorem 4.2.
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[E] A. Erdélyi et al., Higher transcendental functions, Bateman Manuscript Project
(Vol. I, II, III), Krieger, Malabar, FL, 1981. Zbl 0542.33001(Vol. I),
Zbl 0505.33001(Vol. II), Zbl 0542.33002(Vol. III) MR 0698779(Vol. I),
MR 0698780(Vol. II), MR 0698781(Vol. III)

[KKKoT1] S. Kamimoto, T. Kawai, T. Koike and Y. Takei, On the WKB theoretic structure
of a Schrödinger operator with a merging pair of a simple pole and a simple turning
point, Kyoto J. Math. 50 (2010), 101–164. MR 2629645

[KKKoT2] , On a Schrödinger equation with a merging pair of a simple pole and a
simple turning point—Alien calculus of WKB solutions through microlocal analysis,
preprint RIMS-1686, 2009.

[KT1] T. Kawai and Y. Takei, Secular equations through the exact WKB analysis, in
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