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Regular Holonomic Z][#]]-modules

Dedicated to Professor Mikio Sato on the occasion of his 80th birthday with our
deep admiration and warmest regards
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Abstract

We describe the category of regular holonomic modules over the ring Z[[A]] of linear
differential operators with a formal parameter #. In particular, we establish the Riemann—
Hilbert correspondence and discuss the additional t-structure related to h-torsion.
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Introduction

On a complex manifold X, we will be interested in the study of holonomic mod-
ules over the ring Zx[[A]] of differential operators with a formal parameter .
Such modules naturally appear when studying deformation quantization modules
(DQ-modules) along a smooth Lagrangian submanifold of a complex symplectic
manifold (see [13, Chapter 7]).

In this paper, after recalling the tools from [I3] that we shall use, we explain
some basic notions of Zx[[h]]-modules theory. For example, it follows easily from
general results on modules over C[[#i]]-algebras that given two holonomic Zx[[A]]-
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modules .7 and ./, the complex R#om o, (4, /") is constructible over C[[h]]
and that the microsupport of the solution complex R#om g, (4, Ox|[[h]]) co-
incides with the characteristic variety of .#.

Then we establish our main result, the Riemann—Hilbert correspondence for
regular holonomic Zx [[A]]-modules, an fi-variant of Kashiwara’s classical theorem.
In other words, we show that the solution functor with values in Ox[[A]] induces
an equivalence between the derived category of regular holonomic Zx [[%]]-modules
and that of constructible sheaves over C[[A]]. A quasi-inverse is obtained by con-
structing the “sheaf” of holomorphic functions with temperate growth and a formal
parameter & in the subanalytic site. This needs some care since the literature on
this subject is written in the framework of sheaves over a field and does not im-
mediately apply to the ring C[[A]].

We also discuss the t-structure related to A-torsion. Indeed, as we work over
the ring C[[h]] and not over a field, the derived category of holonomic Zx|[[h]]-
modules (or, equivalently, that of constructible sheaves over C[[A]]) has an ad-
ditional t-structure related to h-torsion. We will show how the duality functor
interchanges it with the natural t-structure.

We end this paper by describing some natural links between the ring Zx[[h]]
and deformation quantization algebras, as mentioned above.

Historical remark. As is well-known, holonomic modules play an essential role
in mathematics. They appeared independently in the work of M. Kashiwara [4]
and J. Bernstein [I], but they were first invented by Mikio Sato in a series of
(unfortunately unpublished) lectures at Tokyo University in the 60’s. (See [I7] for
a more detailed history.)

Notation and conventions

We shall mainly follow the notation of [I2]. In particular, if € is an abelian cat-
egory, we denote by D(%) the derived category of € and by D*(¥) (x = +, —,b)
the full triangulated subcategory consisting of objects with cohomology bounded
from below (resp. bounded from above, resp. bounded).

For a sheaf # of rings on a topological space X, or more generally on a
site, we denote by Mod(Z) the category of left Z-modules and we write D*(Z)
instead of D*(Mod(Z)) (x = 0, +, —,b). We denote by Mod. (%) the full abelian
subcategory of Mod(Z) of coherent objects, and by DP | (%) the full triangulated
subcategory of DP(Z) of objects with coherent cohomology groups.

If R is a ring (a sheaf of rings over a point), we write for short DE} (R) instead
of D® , (R).

coh
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§1. Formal deformations (after [13])

We review here some definitions and results from [I3] that we shall use in this
paper.
Modules over Zl[h]-algebras. Let X be a topological space. One says that a

sheaf of Zx[h]-modules .# has no h-torsion if h: .# — .# is injective; and one
says that . is h-complete if .# — lim .4 /R"./ is an isomorphism.

n

Let #Z be a sheaf of Zx[fi]-algebras, and assume that % has no h-torsion. Set
R =L W Ry B, Ko = RN,
and consider the functors
(+)'°¢: Mod(Z) — Mod(%#"°), M — M =R @, M,
L
gry: D(Z) — D(%Ro), M gry(M):=Ro Ry A .

Note that (+)!°¢ is exact and that for .#, 4 € D’(#) and & € DP(%°P) one has
isomorphisms

(L.1) G P Gy ) = g1, P Sy 1 M,

(1.2) grp(RAom (A, N)) = RAtom 4 (g, (A ), grp(A)).
Here, the functor gr, on the left hand side acts on Zx[h]-modules.
Cohomologically h-complete sheaves

Definition 1.1. One says that an object .# of D(Z) is cohomologically h-com-
plete if Rotom ,(%#'°°, M) = 0.

Hence, the full subcategory of cohomologically Ai-complete objects is trian-
gulated. In fact, it is the right orthogonal complement to the full subcategory
D (') of D(Z).

Remark that .# € D(Z) is cohomologically fi-complete if and only if its image
in D(Zx[h]) is cohomologically Ai-complete.

Proposition 1.2. Let # € D(Z). Then # is cohomologically hi-complete if and
only if

. j —11 7i(7T. _

hi)nEth[h](Z[hvh ]aH (Uv'%)) _0

Usx
for any v € X, any integer i € Z and any j = 0,1. Here, U ranges over an open

neighborhood system of x.
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Corollary 1.3. Let .# € Mod(#). Assume that .# has no h-torsion, is h-
complete and there exists a base B of open subsets such that H'(U;.#) = 0 for
any i > 0 and any U € B. Then A is cohomologically h-complete.

The functor gry, is conservative on the category of cohomologically h-complete
objects:

Proposition 1.4. Let .# € D(Z) be a cohomologically h-complete object. If
gr, () =0, then .# = 0.

Proposition 1.5. If # € D(Z) is cohomologically hi-complete, then the object
Rotom (N, M) € D(Zx[h]) is cohomologically h-complete for any A € D(Z).

Proposition 1.6. Let f: X — Y be a continuous map, and # € D(Zx[h)]). If
M is cohomologically h-complete, then so is Rf.. .

Reductions to i = 0. Now we assume that X is a Hausdorff locally compact
topological space.

By a basis B of compact subsets of X, we mean a family of compact subsets
such that for any x € X and any open neighborhood U of z, there exists K € B
such that x € Int(K) C K C U.

Let <7 be a Z[h]-algebra, and recall that we set o = o/ /hef/. Consider the
following conditions:

(i) < has no h-torsion and is fi-complete,
(ii) % is a left Noetherian ring,
(iii) there exists a basis B of compact subsets of X and a prestack U —
Modgood (% |u) (U open in X) such that
(a) for any K € % and any open subset U such that K C U, there exists
K’ € 9B such that K C Int(K’) C K’ C U,
(b) U — Modgood(“%|v) is a full subprestack of U +— Modcon(2%|vr),
(c) for any K € ‘B, any open set U containing K, any j > 0 and any
M € Modgood(#|u), one has H? (K; 4) =0,
(d) for any open subset U and any .# € Modcon(“|v), if 4|y belongs to

Modgood (% |v) for any relatively compact open subset V' of U, then .#
belongs to Modgood(%|v),

(e) for any U open in X, Modgood(#%|v) is stable under subobjects, quo-
tients and extensions in Modeon (2% |v),

(f) for any U open in X and any .# € Modcon(9%]|v), there exists an open
covering U = |J,; U; such that .Z |y, € Modgeod(#|u, ),

(8) “ € Modgooa(40),
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(iii)" there exists a basis B of open subsets of X such that for any U € 9B, any
A € Modcon(#|v) and any j > 0, one has HY(U;.#) = 0.

We will suppose that &/ and o satisfy either Assumption or Assump-
tion below.

Assumption 1.7. & and & satisfy conditions (i)—(iii) above.
Assumption 1.8. & and ¢ satisfy conditions (i), (ii) and (iii)" above.
Theorem 1.9.

(i) « is a left Noetherian ring.
(ii) Any coherent o -module .# is h-complete.
(iii) Let .# € D>, (/). Then .4 is cohomologically h-complete.

coh

Corollary 1.10. The functor gr): D?

b () — D2 (%) is conservative.

Theorem 1.11. Let .# € DV (/) and assume:

(a) A is cohomologically h-complete,
(b) gry,(#) € DLy ().

coh
Then 4 € DT

coh

(/) and for all i € Z we have the isomorphism

H (M) = Yim HY (o [T &, M),

n

Theorem 1.12. Assume that «y* = &/°P/ha/°P is a Noetherian ring and the
flabby dimension of X is finite. Let A be an of -module. Assume the following
conditions:

(a) # has no h-torsion,
(b) A is cohomologically h-complete,
(¢) A |hAM is a flat Hy-module.

Then A is a flat of -module.
If moreover A | is a faithfully flat <y-module, then A is a faithfully flat
o/ -module.

Theorem 1.13. Let d € N. Assume that <oy is d-syzygic, i.e., any coherent <7-
module locally admits a projective resolution of length < d by free <fy-modules of
finite rank. Then

(a) o is (d+ 1)-syzygic.
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(b) Let .#"° be a complex of </ -modules concentrated in degrees [a,b] and with
coherent cohomology groups. Then locally there exists a quasi-isomorphism
L — M° where L " is a complex of free o -modules of finite rank concen-
trated in degrees [a —d — 1,b].

Proposition 1.14. Let .# € D®, (&) and let a € Z. The conditions below are

coh
equivalent:

(i) H"(gry(#)) =0,

(i) H*(A) ~0 and H " (#) has no h-torsion.

Cohomologically hA-complete sheaves on real manifolds. Let now X be a
real analytic manifold. Recall from [9] that the microsupport of F' € D(Zx) is

a closed involutive subset of the cotangent bundle 7% X denoted by SS(F'). The
microsupport is additive on DP(Zx) (cf. Definition (ii) below). Considering the

distinguished triangle F’ LNy SN gry F' il—>7 one gets
(1.3) SS(gry,(F)) C SS(F).

Proposition 1.15. Let F € D®(Zx[h]) and assume that F is cohomologically
h-complete. Then

(1.4) SS(F) = SS(gry,(F)).

Proof. Tt is enough to show that SS(F) C SS(gr,(F)). For V' C U open subsets,
consider the distinguished triangle

RI(U;F) - RI(V; F) —» G X5 .

By Proposition RI(U; F) and RI'(V; F') are cohomologically fi-complete, and
thus so is G. One has the distinguished triangle

RI'(U;gry, F) — RI'(V;gr, F) — gr, G R

By the definition of microsupport, it is enough to prove that gr, G = 0 implies
G = 0. This follows from Proposition O

For K a commutative unital Noetherian ring, one denotes by Modg «(Kx)
the full subcategory of Mod(Kx) consisting of R-constructible sheaves and by
D2 .(Kx) the full triangulated subcategory of DP(Kx) consisting of objects with
R-constructible cohomology (see [9, §8.4]). In this paper, we shall mainly be in-
terested in the case where K is either C or the ring of formal power series in an
indeterminate A, which we denote by

C:=C[[n]).
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Proposition 1.16. Let F € DX (C%). Then F is cohomologically h-complete.

Proof. This follows from Proposition [I.2] since for any z € X one has
RI(U; F) = F, for U in a fundamental system of neighborhoods of x. O

Corollary 1.17. The functor gr,: D} (C%) — D} .(Cx) is conservative.
Corollary 1.18. For F € D (C%), one has the equality
SS(grp(F)) = SS(F).

Proposition 1.19. For F € DR _(C%) and i € 7Z one has supp H'(F) C
supp H(gry, F). In particular if H'(gr, F) = 0 then H(F) = 0.

Proof. We apply Proposition [[.14] to F, for any = € X. O

§2. Formal extension

Let X be a topological space, or more generally a site, and let %Zy be a sheaf of
rings on X. In this section, we let

R = Ro([h]) = [ [ Zoh”

n>0

be the formal extension of %, whose sections on an open subset U are formal
series 7 = Y >~ r,i", with 7, € T'(U; %,). Consider the associated functor

(2.1) (+)": Mod(Zo) — Mod(Z), N — N [[h]] = im(Zn @y, N ),
where %Z,, := Z/h" T % is regarded as an (%, %,)-bimodule. Since %, is free of

finite rank over %, the functor (+)" is left exact. We denote by (+)R" its right
derived functor.

Proposition 2.1. For .4 € D®(%,) one has
NP~ Rtom , (R'°|WR, N,
where #'°¢ /bR is regarded as an (o, F)-bimodule.
Proof. Tt is enough to prove that for .4/ € Mod(%,) one has
NP %omﬁo(ﬁloc/h%,,/ﬁ/).

Using the right Zo-module structure of %,,, set Z;, = Hom 4 (%, Zo). Then Z;:
is an (%o, #)-bimodule, and

NP = Um (%, ®g, N) = Hom g (UmZ,, N).
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Since
A'° W ~ Yim(h™" R [hR),

it is enough to prove that there is an isomorphism of (%, %)-bimodules
Hom g (B, Ho) =~ N "%|hX.
Recalling that %,, = Z/h" 1%, this follows from the pairing
(Z/N T R) @ (W"RINR) — Ro, | © g — Resp—o(fgdh/h). O
Note that the isomorphism of (2, %,)-bimodules

R~ (Ho)" = Hom 4 (%' /WA, Ko)

induces a natural morphism

L
(2.2) R Qg N — N for ¥ € D).

Proposition 2.2. For .4 € D*(%,), the formal extension N R is cohomologi-
cally h-complete.

L
Proof. The statement follows from (#'°¢/h#) ®,, %'°° ~ 0 and from the isomor-
phism

L
Rt om, 5y (%', N ) =~ Rtom, 5 (%' |hR) @5y B, N). O

Lemma 2.3. Assume that %y is an Sy-algebra, for Sy a commutative sheaf of
rings, and let . = S|[h]). For 4, € DP(%) we have an isomorphism in
D>(7)

Rtom g (M, N )" ~ Rotom , (M, N"").

Proof. Note the isomorphisms

L
gloc/h% ~ %o ®y0 (yloc/hy) ~ R, ®5ﬂ0 (yloc/hy)
as (%o, .7 )-bimodules. Then one has
Rotom g (A N )R = RAtom
~ Ro%om g
~ RAtom 4,
= RAom 4,

S0  RAtom 5 (M, N))
M RAom 5 (/0T N))
M, RAom 4 (Z"°C /bR, N))
M N, O

o]

—~ o~~~
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Lemma 2.4. Let f: X — Y be a morphism of sites, and assume that (f =1 %y)" ~
f~Y%. Then the functors Rf. and (*)®" commute, that is, for 2 € D*(f~'%,)
we have (Rf, 2)’" ~ Rf,(2R") in D*(Z).

Proof. One has the isomorphism
Rf.(P%) = RERHAom ;. ([~ (R /0R), )
~ RAom 5 (B |hR,Rf. D) = Rf(2)*" O

Proposition 2.5. Let 7 be either a basis of open subsets of the site X or, as-
suming that X is a locally compact topological space, a basis of compact subsets.
Denote by Jo the full subcategory of Mod(%y) consisting of T -acyclic objects,
i.e., sheaves A for which H*(S;.A) =0 for allk >0 and all S € 7. Then J#
is injective with respect to the functor (+)". In particular, for ¥ € Jz, we have

N0 NRE,

Proof. (i) Since injective sheaves are J-acyclic, J& is cogenerating.

(ii) Consider an exact sequence 0 — A" — A — A" — 0 in Mod(%y).
Clearly, if both .#” and .4 belong to J, then so does 4.

(iii) Consider an exact sequence as in (ii) and assume that .4’ € J5. We have
to prove that 0 — A" — A" — 4"h 0 is exact. Since (+)" is left exact, it
is enough to prove that 4" — 47" is surjective. Noticing that A" ~ [y as
Ho-modules, it is enough to prove that [[ A — [[y 4" is surjective.

(iii)-(a) Assume that 7 is a basis of open subsets. Any open subset U C X
has a cover {U,};cr by elements U; € 7. For any 4 € I, the morphism A4 (U;) —
A" (U;) is surjective. The result follows taking the product over N.

(iii)-(b) Assume that .7 is a basis of compact subsets. For any K € 7, the
morphism A (K) — A" (K) is surjective. Hence, there exists a basis ¥ of open
subsets such that for any x € X and any V > z in ¥, there exists V' € ¥ with
z € V' C V and the image of A (V') — A" (V') contains the image of A4 (V) in
A" (V'). The result follows as in (iii)-(a) by taking the product over N. O

Corollary 2.6. The following sheaves are acyclic for the functor (+)":

(i) R-constructible sheaves of C-vector spaces on a real analytic manifold X,
(ii) coherent modules over the ring Ox of holomorphic functions on a complex
analytic manifold X ,
(iii) coherent modules over the ring Px of linear differential operators on a com-
plex analytic manifold X .

Proof. The statements follow by applying Proposition [2.5|for the following choices
of 7.
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(i) Let F be an R-constructible sheaf. Then for any z € X one has F, <
RI(U,; F) for U, in a fundamental system of open neighborhoods of z. Take for
Z the union of these fundamental systems.

(ii) Take for .7 the family of open Stein subsets.

(iii) Let .# be a coherent Zx-module. The problem being local, we may
assume that .# is endowed with a good filtration. Then take for .7 the family of
compact Stein subsets. O

Example 2.7. Let X =R, % =Cx, Z ={1/n:n=1,2,...} U{0} and U =
X\ Z. One has the isomorphisms (C")x ~ (Cx)" ~ (Cx)?" and (C")y ~ (Cy)".
Considering the exact sequences

0— (CMy — (C"x — (C")z — 0,
0— (Cy)" — (Cx)" — (Cz)" — H (Cy)*" — 0,

we get H'(Cy)®" ~ (Cz)"/(C")z, whose stalk at the origin does not vanish.

Hence Cy is not acyclic for the functor («)".

Assume now that
JZ{O = %0 and & = %OWZ]]

satisfy either Assumption [1.7]or Assumption (where condition (i) is clear) and
that o is syzygic. Note that by Proposition one has & ~ (a)R".

Proposition 2.8. For .4 € Db, (o):

coh

- L
(i) there is an isomorphism AR =5 of @, N induced by (2.2),
(ii) there is an isomorphism gr, (A Rh) ~ 4.

Proof. Since  is syzygic, we may locally represent .4 by a bounded complex .#*
of free ofy-modules of finite rank. Then (i) is obvious. As for (ii), both complexes
are isomorphic to the mapping cone of h: (£ *)" — (£ *)". O

In particular, the functor («)" is exact on Modcon (%) and preserves coher-
Rh. Db () — DP (o).

ence. One thus gets a functor () b ok

The subanalytic site. The subanalytic site associated to an analytic manifold
X has been introduced and studied in [11, Chapter 7] (see also [I5] for a detailed
and systematic study as well as for complementary results). Denote by Opy the
category of open subsets of X, the morphisms being the inclusion morphisms, and
by Opx_, the full subcategory consisting of relatively compact subanalytic open
subsets of X. The site X, is the presite Opy_ endowed with the Grothendieck
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topology for which the coverings are those admitting a finite subcover. One calls
Xia the subanalytic site associated to X. Denote by p: X — X, the natural
morphism of sites. Recall that the inverse image functor p~—!, besides the usual
right adjoint given by the direct image functor p., admits a left adjoint denoted p;.
Consider the diagram

Rp.
D*(Cx) ==—=D"(Cx,,)

Lemma 2.9. (i) The functors p~' and («)®" commute, that is, for G €
DP(Cx.,) we have (p~1G)’" ~ p=1(GR") in DP(CY).

(ii) The functors Rp. and ()R commute, that is, for F € DP(Cx) we have
(Rp. F)® ~ Rp, (FR") in DP(Ck ).

1

Proof. (i) Since it admits a left adjoint, the functor p~! commutes with projective

limits. It follows that for G € Mod(Cx_,) one has an isomorphism
“HGM = (O™

To conclude, it remains to show that (p~*(+))R" is the derived functor of (p~1(+))".
Recall that an object G of Mod(Cx_, ) is quasi-injective if the functor Hom ¢ ( -,G)
is exact on the category Modgr..(Cx). By a result of [15], if G € Mod((CX ) is
quasi-injective, then p~'G is soft. Hence, p~ G is injective for the functor ()" by

Proposition [2.5
(ii) By (i) we can apply Lemma[2.4] O

§3. Z[[h]-modules and propagation

Let now X be a complex analytic manifold of complex dimension dx. As usual,
denote by Cx the constant sheaf with stalk C, by Ox the structure sheaf and by
Px the ring of linear differential operators on X. We will use the notation

D’ Db((C )P — DP(Cx), F i RAom (F,Cx),
Deon(Zx)P = Deon(Zx), M — Rtom g, (M, Dx @, Q) ldx],

Sol: D2,,(Zx)® — D"(Cx),  .# +— RAom,, (M, 0x),

DR: D¢y, (Zx) — D°(Cx), M — RAom, (Ox, M),

C

where 2x denotes the line bundle of holomorphic forms of maximal degree and
Q%! the dual bundle.
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As shown in Corollary the sheaves Cx, Ox and Zx are all acyclic for the
functor («)". We will be interested in the formal extensions

Ck =Cx[ln), 6% = ox[nl, Z% = x|

In the following, we shall treat left 2% -modules, but all results apply to right
modules since the categories Mod(2%) and Mod(@h °P) are equivalent.

Proposition 3.1. Assumption is satisfied by the Cl-algebras 2% and @)h(’(’p.

Proof. Assumptionholds for o = D%, oy = Dx, Modgood(“|u) the category
of good Zy-modules (see [7]) and for 9B the family of Stein compact subsets of X.
O

In particular, by Theorem EL 9 is right and left Noetherian (and thus
coherent). Moreover, by Theorem [1.13| any object of D2, (2%) can be locally
represented by a bounded complex of free P% -modules of finite rank.

We will use the notation

Dj,: DP(C%)°P — DP(C%), F = Rotomey (F,CY),

Dt DCop(Z%)% — Deon(Z% ), M = Rtom g (M, Tk @5, OF7) [dx],
Sol: Db, (2%)°P — DP(CM), M RAOM g (M, OF),
DRy, Dgy, (%) — DP(C), M +— RAom 5 (O, M ).

By Proposition and Lemma [2.3] u for 4 € D2, (Zx) one has

L
(3.1) N~ P, N,
grp (AR ~ 1
Soly (AR’ ~ Sol(A)RP,

Definition 3.2. For .# ¢ Mod(@)h(), denote by 4 ior its submodule consisting
of sections locally annihilated by some power of h and set #y tt = A | Mp tor- We
say that .# € Mod(2%) is an h-torsion module if My or — # and that # has
no h-torsion (or is h-torsion free) if M — My s.

Denote by ,.# the kernel of A" T1: .# — .#. Then .4, is the sheaf associ-
ated with the increasing union of the ,,.#’s. Hence, if .# is coherent, the increasing
family {,.# }, is locally stationary and .#} tor as well as .#}, ¢ are coherent.

Characteristic variety. Recall the following definition.
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Definition 3.3. (i) For ¢ an abelian category, a function ¢: Ob(%) — Set is
called additive if ¢(M) = ¢(M') U ¢(M") for any short exact sequence 0 —
M —-M-—-M'"—0.
(ii) For .7 a triangulated category, a function ¢: Ob(.7) — Set is called additive
if ¢((M) = ¢(M[1]) and ¢(M) C ¢(M") U c(M") for any distinguished triangle
M — M — M" .
Note that an additive function ¢ on % naturally extends to the derived cate-
gory D(%) by setting c¢(M) =, c(H (M)).
For .4 a coherent Zx-module, denote by char(.4") its characteristic variety,
a closed involutive subvariety of the cotangent bundle 7T*X. The characteristic

variety is additive on Modcon(Zx). For A4 € DP, (Zx) one sets char(.A) =
U, char(H*(A)).

Definition 3.4. The characteristic variety of # € DY, (Z%) is defined by

coh
chary(.#) = char(gr,(.#)).
To .# € Modcoh(@)h() one associates the coherent Zx-modules
(3.4) ot =XKer(h: M — M) =H (g, A),
(3.5) Mo = Coker(h: M — M) = H(gv), ).
Lemma 3.5. For /4 € Modcoh(@;}) an h-torsion module, one has
chary(#) = char(.#y) = char(o.#).

Proof. By definition, char,(.#) = char(.#p) U char(o.#). It is thus enough to
prove the equality char(.#p) = char(o.#).

Since the statement is local we may assume that hV.# = 0 for some N € N.
We proceed by induction on N.

For N = 1 we have .# ~ .#y ~ o.#, and the statement is obvious.

Assume that the statement has been proved for N — 1. The short exact se-
quence

(3.6) 0— htl — M — My— 0
induces the distinguished triangle
gr, hotl — gry, M — gry, Mo =+

Noticing that .4y ~ (#y)o =~ o(.#), the associated long exact cohomology se-
quence gives

0—>0(h.///)—>0,//f—>.//f0—>(h¢//)0—>0.
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By inductive hypothesis we have char(o(h.#)) = char((h#)o), and we deduce
char(.#y) = char(.#p) by additivity of char. O

Proposition 3.6. (i) For .# € Modcon(2%) one has
chary(#4) = char(.4).

(ii) The characteristic variety chary is additive both on Modeon(2%) and on
D(?oh(‘@_?()'

Proof. (i) As char(gr, #) = char(.#,) U char(o.#), it is enough to prove the
inclusion

(3.7 char(o.#) C char(.#).

Consider the short exact sequence 0 — Mptor — M — Myt — 0. Since Myt
has no A-torsion, o(.#n.t) = 0. The associated long exact cohomology sequence
thus gives

o(Mpsor) =0 M, 00— (Mrtor)o = Mo — (Mrit)o — 0.
We deduce
char(g.#) = char(o(Mn-tor)) = char(( My tor)o) C char( ),

where the second equality follows from Lemma[3.5]
(ii) It is enough to prove the additivity on Modcon(Z%), i.e. the equality

chary(.#) = charp(.#") U chary(.#")

for 0 — . #' — M — M" — 0 a short exact sequence of coherent Z%-modules.

The associated distinguished triangle gr, .#' — gr, # — gr, 4" FL in-

duces the long exact cohomology sequence
o(M") = (Mo — Mo — (M")o — 0.

By additivity of char(+), the exactness of this sequence at the first, second and
third term from the right, respectively, gives

chary(A4") C chary(4),
char(#) C chary(.#") U charp ("),
chary(.#") C char(o(.#")) U chary(4).

Finally, note that char(o(.#")) C chary(.#") C charp(4). O
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In view of Proposition (i), in order to define the characteristic variety of a
coherent 2% -module .# one could avoid derived categories considering char(.#)
instead of char(grj .#). The next lemma shows that these definitions are still

compatible for .# € D2, (Z%).

coh

Lemma 3.7. For .# € D2, (2%) one has

coh
Ui char(H'(gr), #)) = LJZ char((H .4 )).
Proof. By additivity of char, the short exact sequence
(3-8) 0— (H' M )o — H'(gry, M) — o(H™ M) — 0
from [13, Lemma 1.4.2] induces the relations

char((H'.#)o) C char(H'(gry, #)),
char(H"(gr,, .#)) = char((H".# o) U char(o(H' ' .4)).

One concludes by noticing that (3.7) gives
char(o(H'"™'.#)) C char((H™™ .4 ),). O

Proposition 3.8. Let .# € Mod(2%) be an h-torsion module. Then # is co-
herent as a 9% -module if and only if it is coherent as a Px-module, and in this
case one has chary(#) = char(A).

Proof. As in the proof of Lemma we assume that AY.# = 0 for some N € N.
Since coherence is preserved by extension and since the characteristic varieties of
2% -modules and Zx-modules are additive, we can argue by induction on N using
the exact sequence . We are thus reduced to the case N = 1, where .# = .4
and the statement becomes obvious. O

From (3.2) we obtain

Proposition 3.9. For .4 € Db, (Zx) one has chary(A4") = char(.4).

coh

Holonomic modules. Recall that a coherent Zx-module (or an object of the
derived category) is called holonomic if its characteristic variety is isotropic. We
refer e.g. to [7, Chapter 5] for the notion of regularity.

Definition 3.10. We say that .# € Db, (2%) is holonomic, or regular holo-
nomic, if so is gry,(.#). We denote by D2 (Z%) the full triangulated subcategory
of D2, (2%) of holonomic objects and by DY (2%) the full triangulated subcate-

coh
gory of regular holonomic objects.
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Note that a coherent #%-module is holonomic if and only if its characteristic
variety is isotropic.

Example 3.11. Let .4 be a regular holonomic Zx-module. Then

(i) A itself, considered as a Z%-module, is regular holonomic, as follows from
the isomorphism gry A ~ A4 & A [1];

(ii) A" is a regular holonomic Z%-module, as follows from the isomorphism
gr, A ~ 4. In particular, % is regular holonomic.

Remark 3.12. We denote by Mod,;,(Zx) the category of regular holonomic Zx-
modules and by Mod,,(2%) the subcategory of Mod(Z%) of regular holonomic
objects in the above sense. The proofs of Lemma [3.5] and Proposition adapt to
the notion of regular holonomy and give the following results:

(i) For .# € Modcon(2%) an h-torsion module,
M € Mody, (2%) & My € Mod,,(Zx) < ot € Mod,y,(Zx).
(ii) For .# € Mod.on(2%),
M € Mody,(2%) & My € Mod,,(Px).
In this case, o.# € Mod,,(Zx).
Now for .# € Db, (2%) the exact sequence shows that, for any 1,

coh
H(gry, #) € Mod,,(Zx) < (H' M), o(H T ) € Mod,y,(Zx).

By the above we deduce that .# € DY, (2% ) if and only if (H!.# )¢ € Mod,,(Zx)
for all 4. This is again equivalent to H*.# € Mod,,,(2%) for all i.

Propagation. Denote by D2 .(C%) the full triangulated subcategory of DP(C%)
consisting of objects with C-constructible cohomology over the ring C”.

Theorem 3.13. Let .4,V €DV, (2%). Then

coh
SS(Rt%ﬂom@)ﬁ( (A, N)) =SS(Rtom 4 (gry,(A),grp(AN)))-

If moreover M and AN are holonomic, then ijomgi (M, N) is an object of
D2..(Ck).-

cohomologically A-complete. Hence SS(F) = SS(gr,(F')) by Proposition If
moreover .# and .4 are holonomic, then gr, F' is C-constructible. The equal-
ity SS(F') = SS(gr,(F)) implies that F is weakly C-constructible. Moreover, the

Proof. Set F = R%ﬂomgi (A, /). By Theorem and Proposition F is
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finiteness of the stalks gry,(F), ~ gr;(F,) over C implies the finiteness of F, over
C" by Theorem applied with X = {pt} and &/ = C". O

Applying Theorem and [9, Theorem 11.3.3], we get:

Corollary 3.14. Let .# € D" (2%). Then

coh
SS(Soly(.#)) = SS(DRy (4 )) = chary (A ).
If moreover . is holonomic, then Soly(.#) and DRy (.#) belong to DR_.(C%).

Theorem 3.15. Let .# € DY (2%). Then there is a natural isomorphism in
D2..(C%)
(3.9) Soly () ~ D}, (DRy(A)).

Proof. The natural C"-linear morphism
L
R om g (0%, M) Qcr, RAom gy (M O%) — Rtom 4 (0%, 0%) ~ Ck
induces the morphism in D _(C%)
(3.10) a: RAtom gy (A , oty — D';-L(Rj‘fom@;(ﬁ?(, M)).
(Note that, choosing .# = 2%, this morphism defines the morphism 0% —
D}, (2% [—dx]).) The morphism (3.10) induces an isomorphism
grp(a): Rtom, (gry(A), Ox) — D' (RAom , (Ox,gry(A))).

It is thus an isomorphism by Corollary [I.17} O

8§4. Formal extension of tempered functions

Let us start by reviewing after [I1, Chapter 7] the construction of the sheaves
of tempered distributions and of C'*°-functions with temperate growth on the
subanalytic site.

Let X be a real analytic manifold, and U an open subset. One says that
a function f € € (U) has polynomial growth at p € X if, for a local coordinate
system (z1, ..., z,) around p, there exist a sufficiently small compact neighborhood
K of p and a positive integer N such that

sup (dist(z, K \ U))N|f(x)| < occ.
reKNU

One says that f is tempered at p if all its derivatives are of polynomial growth at
p. One says that f is tempered if it is tempered at any point of X. One denotes
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by €' (U) the C-vector subspace of € (U) consisting of tempered functions. Tt
then follows from a theorem of Lojasiewicz that U — €' (U) (U € Opy,,)is a
sheaf on X,. We denote it by €y : or simply €3> if there is no risk of confusion.

Lemma 4.1. One has Hj(U;%;:f”t) =0 for any U € Opx_ and any j > 0.

This result is well-known (see [I0, Chapter 1]), but we recall its proof for the
reader’s convenience.

Proof. Consider the full subcategory # of Mod(Cx,,) whose objects are sheaves
F such that for any pair U,V € Opy_, the Mayer—Vietoris sequence

0— FUUV)=FU)®FV)—FUNV)—=0

is exact. Let us check that this category is injective with respect to the functor
I'(U; +). The only non-obvious fact is that if 0 - F/ — F — F” — 0 is an
exact sequence and that F’ belongs to ¢, then F(U) — F”(U) is surjective. Let
t € F"(U). There exist a finite covering U = | J,.; U; and s; € F(U;) whose image
in F"(U;) is t|y,. Then the proof goes by induction on the cardinality of I using
the property of F’ and standard arguments. To conclude, note that €y " belongs
to # thanks to Lojasiewicz’s result (see [14]). O

Let Zbx be the sheaf of distributions on X. For U € Opy_, denote by
Dbl (U) the space of tempered distributions on U, defined by the exact sequence

0 — Ix\v(X; Pbx) — I'(X; Zbx) — b (U) — 0.

Again, it follows from a theorem of Lojasiewicz that U — 2b!(U) is a sheaf on
Xsa. We denote it by @bfxsa or simply 2b' if there is no risk of confusion. The
sheaf 2b', is quasi-injective, that is, the functor t%ﬂomcxm(',@btx) is exact in
the category Modg..(Cx ). Moreover, for U € Opy_, Home, (Cy, Dbl) is also
quasi-injective and R%”omsta (Cy, 2VY) is concentrated in degree 0. Note that
the sheaf
i Zbx = p_ljfomcxsa (Cy, 2VY)

is a €%°-module, so that in particular RT'(V; ') Zbx ) is concentrated in degree 0
for V'.C X an open subset.

Formal extensions. By Propositionﬁthe sheaves €y ot Db and L Zbx are
acyclic for the functor (+)". We set

Ct = (T, g = ()", T @b = (D 2bx)"
Note that, by Lemmas 2.3 and [2.9]
T2V ~ p~ ' Home (Cy, 205).
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By Proposition 2.2 we get:

Proposition 4.2. The sheaves %;O’t’h, @bt)’(ﬁ and I‘[U]@b} are cohomologically
h-complete.

Now assume X is a complex manifold. Denote by X the complex conjugate
manifold and by X® the underlying real analytic manifold, identified with the
diagonal of X x X. One defines the sheaf (in fact, an object of the derived category)
of tempered holomorphic functions by

O = RHom .5 (pOx,C5") = RAom 5 (pOx, D).
Here and below, we write €y and 2bl instead of %)ﬁ’t and Zb', ., respectively.
We set
o= (0%

a cohomologically h-complete object of Db((C}m). By Lemma
ﬁ;h ~ R%C)mp!%(p[ ﬁYa %;o,t-ﬁ) :_) R%Omp]%(,ﬂ!ﬁy, ‘@bt)’(h)

Note that gr,(64") ~ &% in D*(Cx.,).

§5. Riemann—Hilbert correspondence
Let X be a complex analytic manifold. Consider the functors
TH: DE_C((C)() - DEh(@X)Opv F— p_lR‘%ﬁomCx (p*F7 ﬁg{)v
THy: D2..(Ck) — D*(Z%)P,  F s p~'RAomen (p-F, o).
The classical Riemann-Hilbert correspondence of Kashiwara [6] states that the
functors Sol and TH are equivalences of categories between D2 (Cx) and
Db, (2x)°P quasi-inverse to each other. In order to obtain a similar statement

for Cx and Zx replaced with C% and 2%, respectively, we start by establishing
some lemmas.

Lemma 5.1. For ./, € D}.;(2%) one has a natural isomorphism in D2 (Ch)
Ratom gn (M, N) = Rotom ¢, (Solp(A), Solp(A)).

Proof. Applying the functor grj, to this morphism, we get an isomorphism by the
classical Riemann—Hilbert correspondence. Then the result follows from Corol-
lary and Theorem [3.13 O

Note that there is an isomorphism in D”(Zx)

(5.1) gry(THR(F)) ~ TH(gr,,(F)).
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Lemma 5.2. The functor THy, induces a functor
(5.2) THj: DR (C%) — Db, (2%)°P.

Proof. Let F € D2 (C%). By and the classical Riemann-Hilbert correspon-
dence we know that gr, (THx(F')) is regular holonomic, and in particular coherent.
It is thus left to prove that THy(F') is coherent. Note that our problem is of local
nature.

We use the Dolbeault resolution of ﬁ;h with coefficients in .@bg’(h and we
choose a resolution of F as given in Proposition [A.2{i). We find that THp(F) is
isomorphic to a bounded complex .# °, where the .#* are locally finite sums of
sheaves of the type 'y, 2b4" with U € Op x..- 1t follows from Propositionthat
THy(F) is cohomologically A-complete, and we conclude by Theorem with
o = DL. O

Lemma 5.3. We have R#om , 5 (p: o, 0% ~ Ck..-
Proof. This isomorphism is given by the sequence

Rotom , o1 (0%, 6% ~ RAtom , 4 (pOx, o4 ~ RAtom , 5 (0 Ox, o' )RA
~ (p.RAom ,, (Ox,0x))"" ~ (Cx, ¥~ Ck_,

where the first isomorphism is an extension of scalars, the second follows from
Lemma and the third is given by the adjunction between p; and p~!. O

Theorem 5.4. The functors Sol, and THy, are equivalences of categories between
D2_.(C%) and DY, (2%)°P quasi-inverse to each other.

Proof. In view of Lemma the functor Soly is fully faithful. It is then enough
to show that Sol,(THp(F)) ~ F for F € D2 (C%). By Theorem this is
equivalent to DRy (THRF') ~ D} F. Since we already know by Lemma that
TH;(F) is holonomic, we may use . We have the sequence of isomorphisms

p*Rjiﬂom%h( (0% , THL(F)) = p*R%”om@)h( (0%, p*le%”om@,(sa (p+ F, ﬁ;ﬁ))
h
~ Rﬁfomp!@; (pO%, R%ﬂom(cisa (p<F, O%))
~ Re}fom@( (p«F, Rotom , 51 (0%, ﬁ;{»ﬁ))
~ RAomer (pF,Cl )~ RA#om ¢, (p« F, p.C%) ~ p, D, F,

1 the isomorphism of

where we have used the adjunction between py and p~
Lemma [5.3] and the commutation of p, with R#om. One concludes by recall-

ing the isomorphism of functors p~!p, ~ id. O
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t-structure. Recall the definition of the middle perversity t-structure for complex
constructible sheaves. Let K denote either the field C or the ring C". For F €
D2 . (Kx), we have F € PD5° (Ky) if and only if

(5.3) VieZ dimsupp H(F) < dx —1,

and F' € pD%_OC(K x) if and only if, for any locally closed complex analytic subset
ScCX,

(5.4) HLY(F)=0 foralli<dx —dim(S).

One denotes by Perv(Kx) the heart of this ¢-structure.
With the above convention, the de Rham functor

DR: DEO](@X) - pD(l(.é—c((CX)
is t-exact, when DEOI(@X) is equipped with the natural ¢-structure.

Theorem 5.5. The de Rham functor DRy: DR (2%) — PDR_(C%) is t-exact,
and induces a t-ezact equivalence between DY (2%) and PDR_(C%). In particular,
it induces an equivalence between Mod,,(2%) and Perv(Ch).

Proof. (i) Let A4 € DE(?I(.@;}). Let us prove that DRy # € pDé_OC((C}). Since
DRy.# is constructible, by Proposition m it is enough to check for
gr, (DR 4) ~ DR(gr,, 4 ). In other words, it is enough to check that DR(gr;, .#)
e’ DE_%((C x). Since gry, A4 € D]i,ol(@x), this result follows from the t-exactness of
the functor DR.

(ii) Let .# € D3(2%). Let us prove that DRy.# € PDZY(Ch). We set
N = (H° ) ptor- We have a morphism u: A — .# induced by H'.# — .# and
we let .#’ be the mapping cone of u. We have a distinguished triangle

DRy A — DRy # — DRy 5

so that it is enough to show that DRy.#" and DRy.#" belong to pD%_OC(C?().
(ii-a) By Propositions[3.6{ii) and 3.8] .#" is holonomic as a Zx-module. Hence
DRp# ~ DR is a perverse sheaf (over C) and satisfies ([5.4)). Since does
not depend on the coefficient ring, DRy A" € pD%_%((C}).
(ii-b) We note that H.#" ~ (H .4 );,.s. Hence by Proposition gry, A €
D:5(2x) and DR(gr,.#") € PDZ%(Cx), that is, DR(gr), .#") satisfies (5-4). Let
S C X be a locally closed complex subanalytic subset. We have

R s(DR(gry, #")) =~ gry,(R[s(DRp.#"))

and it follows from Proposition that DRy.#" also satisfies (5.4) and thus
belongs to PDZ(C).
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(iii) Consider the restriction DRy: DB (2%) — PD2_ .(C%) to regular holo-
nomic complexes. In view of Lemma [A7T] it follows from Theorems [5.4] and [3.15]
that the functor THy o D, is a quasi-inverse to DRy. As quasi-inverse to a t-exact
functor, THy o D}, is also t-exact. Thus DRy, is a t-exact equivalence, and it in-
duces an equivalence between the respective hearts, i.e. between Mod,,(2%) and
Perv(Ch). O

§6. Duality and 7-torsion

The duality functors D on D, (Zx) and D’ on PDR (Cx) are t-exact. We will
discuss here the finer ¢t-structures needed in order to obtain a similar result when
replacing Cx and Zx by their formal extensions C% and Z%.

Following |2, Chapter 1.2], let us start by recalling some facts related to torsion
pairs and ¢-structures. We need in particular Proposition [6.2] below, which can also
be found in [3].

Definition 6.1. Let ¥ be an abelian category. A torsion pair on % is a pair
(Gior, Git) of full subcategories such that

(i) for all objects T in Gior and F' in @i, we have Hom (T, F') = 0,

(ii) for any object M in ¥, there are objects My in Gior and Mis in G and a
short exact sequence 0 — Mo, — M — My — 0.

Proposition 6.2. Let D be a triangulated category endowed with a t-structure
(PD=Y,PD=20). Let us denote its heart by € and its cohomology functors by
PH': D — €. Suppose that € is endowed with a torsion pair (€ior, Git). Then
we can define a new t-structure ("D<?,"D=) on D by setting

D=0 ={M €?D=":PH' (M) € Giox}, D70 ={M €?D=":PH(M) € %is}.

With the notation of Definition there is a natural torsion pair attached
to Mod(2%) given by the full subcategories

Mod(@f})h_tor ={M: Myror — MY}, MOd(.@?{)h—tf ={l: M= My}

Definition 6.3. (a) We call the torsion pair on Mod(2%) defined above, the
h-torsion pair.

(b) We denote by (D=°(2%),D=%(2%)) the natural t-structure on D(Z%).

(c) We denote by (*D=<0(2%),'D=%(2%)) the t-structure on DP(Z%) associated
via Proposition with the A-torsion pair on Mod(Z%).
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Proposition implies the following equivalences for .# € D2 (2%):

coh

(6.1) MDD & gr,. M € DZ(Dy),
(6.2) M e DD o gr, M € D=V(Dx).

Proposition 6.4. Let .4 be a holonomic 9% -module.

(i) If A has no h-torsion, then Dp.# is concentrated in degree 0 and has no
h-torsion.

(ii) If A is an h-torsion module, then Dy.# is concentrated in degree 1 and is an
h-torsion module.

Proof. By we have gr,(Dp.#) ~ D(gr, .#). Since grj, # is concentrated
in degrees 0 and —1, with holonomic cohomology, D(gr, .#) is concentrated in
degrees 0 and 1. By Proposition Dy itself is concentrated in degrees 0
and 1 and H°(Dy.#) has no h-torsion.

(i) The short exact sequence

0= ML tt — it )bt — 0
induces the long exact sequence
o — HY(Dp (M b)) — H (Dptt) L H (Dptt) — 0.

By Nakayama’s lemma H!(Dy.#) = 0 as required.

(ii) Since . is locally annihilated by some power of h, the cohomology groups
Hi(Dy#) also are h-torsion modules. As H°(Dy.#) has no h-torsion, we get
HO(Dy ) = 0. O

Theorem 6.5. The duality functor Dy: D2 (2%)°P — DP (Z%) is t-exact.
In other words, Dy, interchanges DEOOI(.@;Z() with tDiﬂ(@;}) and Dﬁﬁ(.@)h() with
tDSO(Qh)

hol\- X/~

Proof. (i) Let us first prove, for .# € DY ;(Z%),
(6.3) M €DFH(TX) & Di(A) € 'DR3(7K).

By (1.2) we have gr(Dp.#) ~ D(gry, .#) and we know that the analog of (6.3))
holds true for Zx-modules:

N €DEY(Zx) & D(A) € DES(Zx).

Hence (6.3) follows easily from (6.1)) and (6.2).
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(ii) We recall the general fact for a t-structure (D, D<° DZ°) and A € D:

AeD=" & Hom(4,B) =0 for any B € D=1,
A€ D2’ & Hom(B,A) =0 for any B € DS

Since Dy, is an involutive equivalence of categories we deduce from (6.3 the dual
statement:

M EDIN DY) & Dy() € 'DEY(DR). O

Remark 6.6. The above result can be stated as follows in the language of quasi-
abelian categories of [19]. We will follow the notation of [8, Chapter 2]. The cate-
gory € = Mod (2% )4t is quasi-abelian. Hence its derived category has a natural
generalized t-structure (D<*(%), D>S_1(<€))segz- Note that DI=1/2:0(%) is equiv-
alent to Mod(2%), and DI®'/2(%) is equivalent to the heart of *DP(2%). Then
Theorem states that the duality functor Dy, is t-exact on D2 (%).

Recall that Perv(C%) denotes the heart of the middle perversity t-structure
on DR (C%). Consider the full subcategories of Perv(C%)

PerV(C’}()h_tor = {F': locally RN F =0 for some N € N},

Perv(C%)p.tt = {F: F has no non-zero subobjects in Perv(C% )p-tor }-

Lemma 6.7. (i) Let F' € Perv(C%). Then the inductive system of sub-perverse
sheaves Ker(h™: F — F) is locally stationary.

(ii) The pair (Perv(Ch)p tor, Perv(CRh )y is) is a torsion pair.

Proof. (i) Set .# = D;THy(F). By the Riemann-Hilbert correspondence, one
has Ker(h": F — F) ~ DRy(Ker(h": # — A)). Since .# is coherent, the
inductive system Ker(h™: .# — ) is locally stationary. Hence so is the system
Ker(h": F — F).

(ii) By (i) it makes sense to define, for F' € Perv(C%),

Fhior = | JKer(B": F = F),  Fys = F/Fyor-

It is easy to check that Fj ior € Perv(C?})h_tor and Fy.p € Perv((C})ﬁ_tf. Then
property (ii) in Deﬁnitionis clear. For property (i) let u: F' — G be a morphism
in Perv((C@) with F € Perv((CZ)h_tor and G € PeI'V((C;;()h_tf. Then Imw is also in
Perv((C})h_tor and so it is zero by the definition of PGI'V((C?()E_AE{. O

Denote by ("D (C%),"DZ%(C%)) the t-structure on Dg (C%) induced by
the perversity ¢-structure and this torsion pair as in Proposition We also set
- 7R <0 >0

Perv(Cly) = "DE(C) N "DE(Ch).
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Theorem 6.8. There is a quasi-commutative diagram of t-exact functors

Dpo(74)°P == 7D (Ch )P
Dﬁi lD,n
DRy -
tDEol(@;i() - D(E—C(Cg(')

where the duality functors are equivalences of categories and the de Rham functors
become equivalences when restricted to the subcategories of reqular objects.

Example 6.9. Let X = C, U = X\ {0} and denote by j: U — X the embedding.
Let L be the local system on U with stalk C" and monodromy 1 + &. The sheaf
Rj.L ~ D} (ji(Dj},L)) is perverse for both t-structures, as is the sheaf H°(Rj,. L) =
j«L ~ j51L. The sheaf H'(Rj.L) ~ Cyoy has h-torsion. From the distinguished

triangle j.L — Rj.L — Cyoy[—1] +—1>, one gets the short exact sequences
0— j.L = Rj.L = C(py[~1] = 0 in Perv(Ck),
0 — Cf3[-2] = j«L = Rj.L — 0 in "Perv(Ch).

87. 2((h)-modules

Denote by

Chloc = C((n) = Cl[*, A
the field of Laurent series in h, that is, the fraction field of C". Recall the exact
functor

(7.1) ()¢ Mod(C%) — Mod(CY'°), F — CMc @, F,

and note that by [9, Proposition 5.4.14] one has the inclusion

(7.2) SS(F'°¢) C SS(F).

For G € D?(Cy), we write G™!°¢ instead of (G")'°¢. We will consider in particular
oY = Ox(h), TR = Tx (1),

Lemma 7.1. Let .# be a coherent @;’loc-module, Then M is pseudo-coherent
over 9%. In other words, if & C M is a finitely generated 2% -module, then &
is P -coherent.

Proof. The proof follows from [7, Appendix, Al]. O

Definition 7.2. A lattice .2 of a coherent Z%'°“-module .# is a coherent Z%-
submodule of .#Z which generates it.
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Since .# has no h-torsion, none of its lattices has h-torsion. In particular, one
has A ~ £'°¢ and gr;, & ~ % = L /hL.

It follows from Lemma that lattices locally exist: for a local system of
generators (mi,...,my) of ., define ¥ as the 2% -submodule with the same
generators.

Lemma 7.3. Let 0 — A" — # — A" — 0 be an exact sequence of coherent
@f{’loc-modules. Locally there exist lattices &', L, L" of M', H, H", respec-
tively, inducing an evact sequence of D% -modules

0¥ - % — <" 0.

Proof. Let £ be a lattice of .4 and let " be its image in .#". We set &’ :=
LN .. These sub-2%-modules give rise to an exact sequence.

Since .£" is of finite type over 2%, it is a lattice of .#"”. Let us show that
Z' is a lattice of .#’. Being the kernel of a morphism ¥ — .Z” between coherent
P%-modules, .#" is coherent. To show that %’ generates .#’, note that any m’ €
AM' C M may be written as m’ = h~Vm for some N > 0 and m € Z. Hence
m=mm'en'NY=2". O

For an abelian category %, we denote by K(%) its Grothendieck group. For
an object M of €, we denote by [M] its class in K(%). We let J#(Zx) be the
sheaf on X associated to the presheaf

Uw— K(Modcoh(.@th)).
We define .# (2%'°°) in the same way.

Lemma 7.4. Let £ be a coherent 2% -module without h-torsion. Then, for any
i >0, the Dx-module £ /WL is coherent, and we have the equality £ /W' L] =
i [gr, (L)) in K(Modcon(Z2x)).

Proof. Since the functor (*)®c, C"/R'C" is right exact, .#/h’.Z is a coherent Px-

module. Since .Z has no h-torsion, multiplication by A’ induces an isomorphism
LIS = WL /hiTLL. We conclude by induction on i with the exact sequence

0— WLy - /KT Y - /KL —0. O

Lemma 7.5. For /4 € Modcoh(.@;’loc), U C X an open set and £ C M|y a
lattice of M |u, the class [gry (L)) € K(Modeon(Zx|v)) only depends on A . This
defines a morphism of abelian sheaves H# (2%'°°) — A (Dx).

Proof. (i) We first prove that [gr,(-£)] only depends on .#. We consider another
lattice .2’ of . |y. Since & is a Z%-module of finite type, and .#’ generates .#,
there exists n > 1 such that . C h™".%¢’. Similarly, there exists m > 1 with
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L C h™™.%, so that we have the inclusions
pmtnt2 g c printly c LY c g C L.

Any inclusion A C B C C yields an identity [C'/A] = [C/B] + [B/A] in the
Grothendieck group, and we obtain in particular
[ﬁmfl/hernJrlg] — [ﬁmfl/ﬁerlf/] 4 [hm+1$//hm+n+1 .ﬁ,ﬂ],
[g/hm—i-n—i-lg] _ [f/hm+1$/] + [hm+1$//hm+n+1 3]7
[.Z/hm*”“.f] — [f/ﬁm+1$/} 4 [hm+1$//hm+n+2 f]

Note that we have isomorphisms of the type h*.#; /hk//lg ~ M1 | Mo for modules
without h-torsion. Then Lemma [7.4] and the above equalities give:

L L) = [gr, (L) + £ /R Z),
(m+n+1)[gry (L)) = [Z/Wm L) + (£ /7" Z),
(m+n+2)gr,(L)] = [L/F"T L + [ LY.

A suitable combination of these lines gives [gr;,(.Z)] = [gr;(-Z")], as desired.

(ii) Now we consider an open subset V C X and .# € Modeon(2%'°|v). We
choose an open covering {U; }ie; of V such that for each i € I, #|y, admits a
lattice, say .Z¢. We have seen that [gr,(£")] € K(Modeon(Zx|v,)) only depends
on .. This implies that

lgrn (L., = lgra(L)lv,,  in K(Modeon(Zx]u, ,))-

Hence the [gr,(-£")]’s define a section, say c(.#), of # (Zx) over V. By Lem-
ma E’ () only depends on the class [.#] in K(Modeon(25'°°|v)), and .4 —
() induces the morphism ¢ (2%'°°) — # (Zx). O

By Lemma the following definition is correct.

Definition 7.6. The characteristic variety of a coherent Z%'°“-module .7 is de-
fined by

chars joc () = chary(Z),
for 2 € Modeon(2%) a (local) lattice. For .# € DY, (2%'°°), one sets charp, ¢ (.#)
= Uj charhyloc(Hj (.%))

Proposition 7.7. The characteristic wvariety charpioc @5 additive both on
Modeon (Z2%'°°) and on DY, (2%1°°).

coh

Proof. This follows from Proposition ii) and Lemma O
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Consider the functor

SOlh,loci Db(@;?loo)op — Db(C;L(,IOC)’ M — RAFom. @g?loc (///, ﬁ;i(,loc).

Proposition 7.8. Let .# € DY, (Z%'°°). Then

coh
SS(SOIh,loc(-///)) C chary joc (A ).

Proof. By dévissage, we can assume that .Z € Modcoh(@?{’loc). Moreover, since
the problem is local, we may assume that .# admits a lattice .Z.
One has the isomorphism Soly, joc(#) ~ R#om on (<, ﬁ?{loc) by extension

of scalars. Taking a local resolution of .# by free Z%-modules of finite type, we
deduce that Soly joc(#) ~ F'°° for F = Sol(£). The statement follows by (7.2)

and Corollary O
One says that .# is holonomic if its characteristic variety is isotropic.
Proposition 7.9. The functor Solp joc induces a functor
Solp,loc : Dﬁol(@;?loc)()p - DE-C(C;’IOC)

Proof. By the same arguments and with the same notation as in the proof of
Proposition we reduce to the case Solj joc(#) ~ F'°¢, for F = Sol,(¥) and
& a lattice of A4 € Modhol(Qf(’loc). Hence .# is a holonomic 2%-module, and
F e DR (Ch). O

Remark 7.10. In general the functor
Sy DL () — O ()

is not locally essentially surjective. In fact, consider the quasi-commutative dia-
gram of categories

Sol
Dpoi(2% ) —————=D..(Ck)
(-)Mi lmlw
b h,locyop Sol loc b h,loc
Dhol(‘@X ) DC—C(CX )

By the local existence of lattices the left vertical arrow is locally essentially sur-
jective. If Solp 1o Were also locally essentially surjective, so should be the right
vertical arrow. The following example shows that it is not the case.

One can interpret this phenomenon by remarking that DP_,(Z%'°°) is equiva-
lent to the localization of the category DP (2% ) with respect to the morphism #,
in contrast to the category D2_(C%'¢).
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Example 7.11. Let X = C, U = X \ {0} and denote by j: U — X the em-
bedding. Set F' = RjiL, where L is the local system on U with stalk C/!°¢
and monodromy % around the origin. Since A is not invertible in C", there is
no Fp € D2 (C%) such that F ~ (Fp)'°c.

§8. Links with deformation quantization

In this last section, we shall briefly explain how the study of deformation quanti-
zation algebras on complex symplectic manifolds is related to Z%. We follow the
terminology of [13].

The cotangent bundle X = T* X to the complex manifold X has the structure
of a complex symplectic manifold and is endowed with the C"-algebra 7//;, a non-
homogeneous version of the algebra of microdifferential operators. Its subalgebra
”///;(O) of operators of order at most zero is a deformation quantization algebra. In
a system (x,u) of local symplectic coordinates, %(0) is identified with the star
algebra (0%, %) in which the star product is given by the Leibniz product

o]
(8.1) frg= 3 Tl@un@se) for fge ox

aeNn

In this section we will set for short & := %(0), so that @7'°¢ ~ % Note that &
satisfies Assumption [1.8

Let us identify X with the zero section of the cotangent bundle X. Recall that
X is a local model for any smooth Lagrangian submanifold of X, and that 0% is a
local model of any simple .«7-module along X. As 0% has both a 2%-module and
an .« |x-module structure, there are morphisms of C"-algebras

(8.2) Dl — Enden(O%) — o | x.

Lemma 8.1. The morphisms in (8.2) are injective and induce an embedding
&fLX LAEZQ.

Proof. Since the problem is local, we may choose a local symplectic coordinate
system (z,u) on X such that X = {u = 0}. Then &/|x is identified with O%|x. As
the action of u; on 0% is given by ho,,, the morphism &7|x — Enden(O%) factors
through 2%, and the induced morphism & |x — % is described by

(8:3) S fwwh =303 O (0008 ),

ieN JEN "aeN", |a|<j

which is clearly injective. O
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Consider the following subsheaves of Z%:

78" =] Fem2x) B, 2% = | 2™
i>0 m>0

Note that @;’O and @)h(’f are subalgebras of 2%, that @)h(’o is h-complete while _@;’f
is not, and that Z%%1°¢ ~ gktloc By (83), the image of 7 |x in Z% is contained

in 9;?0. (The ring @Z’O should be compared with the ring Zx «c of [16].)

Remark 8.2. More precisely, denote by ﬁgx ~ (ﬁﬂx)h the formal completion
of 0% along the submanifold X. Then the star product in (8.1) extends to this

sheaf, and (8.3) induces an isomorphism (ﬁgx,*) o~ _@Z’O.
Summarizing, one has the compatible embeddings of algebras

%10(3 ‘X( 9;‘?0,101: gz,f,loc( 9;1{,100

| R

C n,0C nfC h
o |x Dy DX Dx

One has
5,0 - Bt
gr, o |x =~ Ox|x, g, 93’ ~ Ox|x, gr, D% ~gr, 9% ~ Ix.

Proposition 8.3. (i) The algebra _@?0 is faithfully flat over of|x.
(ii) The algebra 2%'° is flat over o7'°¢|x.

Proof. (i) follows from Theorem [I.12]
(ii) follows from (i) and the isomorphism (Z%°)¢ ~ @',

The next examples show that the scalar extension functor
B,0 h
MOdcoh(@X ) — MOdcoh(@X)

is neither exact nor full.

Example 8.4. Let X = C? with coordinates (z,y). Then hd, is injective as

an endomorphism of .@Z’O /{h0;) but it is not injective as an endomorphism of
P /{hd,), since 0, belongs to its kernel. This shows that 2% is not flat over 9;?0.

Example 8.5. This example was communicated to us by Masaki Kashiwara. Let

X = C with coordinate z, and denote by (z,u) the symplectic coordinates on

X = T*C. Consider the cyclic «/-modules

M =[x —w), N =),
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and their images in Mod(2%)
M=) hdy), N = D)),

As their supports in X differ, .# and .4 are not isomorphic as &/-modules. On
the other hand, in 9;} one has the relation

(8.4) - e"0i/2 = ehdi/2 (x — hoy),

. e—h8§/2]

and hence an isomorphism .#’ = _#" given by [P] — [P . In fact, one

checks that
Som o, (M, N )|x =0, f%ﬂom@;}(///’,f/i/'):(cgb(.

§A. Complements on constructible sheaves

Let us review some results, well-known to specialists (see, e.g., [18, Proposition
3.10]), but which are usually stated over a field, and we need to work here over
the ring C".

Let K be a commutative unital Noetherian ring of finite global dimension.
Assume that K is syzygic, i.e. any finitely generated K-module admits a finite
projective resolution by finite free modules. (For our purposes we will either have
K=C or K=Ch.

Let X be a real analytic manifold. Denote by Modg_.(Kx) the abelian cate-
gory of R-constructible sheaves on X and by DH%_C(K x) the bounded derived cat-
egory of sheaves of K-modules with R-constructible cohomology. Under the above
assumptions on the base ring, by [9, Propositions 3.4.3, 8.4.9| one has

Lemma A.1. The duality functor Dg(+) = R#omy (+,Kx) induces an invo-
lution of DE_ (Kx).

For the next proposition we recall some notation and results of [6, @]. We
consider a simplicial complex S = (S, A), with set of vertices S and set of sim-
plices A. We let |S| be the realization of S. Thus |S| is the disjoint union of the
realizations |o| of the simplices. For a simplex o € A, the open set U(o) is defined
in [9 (8.1.3)]. A sheaf F' of K-modules on |S] is said to be weakly S-constructible
if F||,| is constant for any ¢ € A. An object F' € DP(Kg)) is said to be weakly
S-constructible if its cohomology sheaves are so. If moreover, all stalks F, are
perfect complexes, F' is called S-constructible. By [9, Proposition 8.1.4] we have
isomorphisms, for a weakly S-constructible sheaf F' and for any o € A and z € |0,

(A1) L(U(0): F) = L(lo|; F) = Fy,
(A.2) HI(U(0);F) = Hi(lo|; F) =0 for j #0.
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It follows that, for a weakly S-constructible F' € Db(K‘S|), the natural morphisms
of complexes of K-modules

(A.3) D(U(0); F) = T(|o; F) — F,

are quasi-isomorphisms.
For U C X an open subset, we denote by Ky := (Kx )y the extension by 0 of
the constant sheaf on U.

Proposition A.2. Let F € DH%_C(KX). Then

(i) F is isomorphic to a complex

0— @ Ky,,, — " — @KUb,tb_’Ov

1a€laq S

where the {Uy i, }rix s are locally finite families of relatively compact subana-
lytic open subsets of X.

(il) F is isomorphic to a complex

0— @ rVa,iaKX — e @ FVb,ibKX — 0,

1a€lq €Ly

where the {Vi. i, Yi.i, 's are locally finite families of relatively compact subana-
lytic open subsets of X.

Proof. (i) By the triangulation theorem for subanalytic sets (see for example [9]
Proposition 8.2.5]) we may assume that F is an S-constructible object in D"(K|g))
for some simplicial complex S = (S, A). For 4 an integer, let A; C A be the subset
of simplices of dimension < i and set S; = (S, A;). We denote by K"(K) (resp.
KP(Kjs|)) the category of bounded complexes of K-modules (resp. sheaves of K-
modules on |S|) with morphisms up to homotopy. We shall prove by induction on
i that there exists a morphism u;: G; — F in K(K|g)) such that:

(a) the G¥ are finite direct sums of K(,,)’s for some o, € A,

(b) wil|s,|: Gilis,] — Fljs,| is a quasi-isomorphism.

The desired result is obtained for ¢ equal to the dimension of X.

(1)-(1) For i = 0 we consider F[|s,| ~ @D,ca, F'o- The complexes I'(U(0); F'),
o € Ay, have finite bounded cohomology by the quasi-isomorphisms . Hence
we may choose bounded complexes of finite free K-modules, Ry ,, and morphisms
Ug,o: Ro,o — I'(U(0); F) which are quasi-isomorphisms.

We have the natural isomorphism I'(U(0); F') >~ a..7€om Kb(K‘S‘)(KU(U)’ F)in
KP(K), where a: |S| — pt is the projection and #om is the internal Hom functor.
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We deduce the adjunction formula, for R € K*(K) and F € KP(Kg)),
(A.4) Hom g ) (R, L'(U(0); F)) =~ Home(Kw)(RU(a)vF)-

Hence the ug, induce ug: Go := @UGAO(RO,U)U(U) — F. By , (ug)z is a
quasi-isomorphism for all = € [Sql, so that ug|g,| also is a quasi-isomorphism, as
required.

(i)-(2) We assume that w; is built and let H; = M (u;)[—1] be the mapping
cone of u;, shifted by —1. By the distinguished triangle in Kb(K|S‘)

(A.5) H Y g s p A

Hilis,| is quasi-isomorphic to 0. Hence @,cn, \a,(Hi)jo| — Hiljs,,| is a
quasi-isomorphism. As above we choose quasi-isomorphisms u;1,6: Rit1,0 —
I'(U(o); H;), 0 € Ajy1 \ A4, where the R;41, are bounded complexes of finite

free K-modules. By (A.4) again the u;11,, induce a morphism in K"(Kg|)

wi g Gipq = @ (Riv1,0)u(o) — Hi.
c€Ai11\A;
For x € [S;41] \ [Si], (¢j;)s is a quasi-isomorphism by (A.3)), and, for = € |S;],
this is trivially true. Hence uj,,||s,,,| is a quasi-isomorphism.
Now we let H;y; and Gj;1 be the mapping cones of uj,; and v; o uj, g,
respectively. We have distinguished triangles in Kb(K‘S|)

! !
’ Uit +1 ’ ViOU;4q +1
(AG) Gi+1 Hl - Hi-i—l 8 i+1 Gz — Gi.}rl —_— .

By the construction of the mapping cone, the definition of G}, ; and the induction
hypothesis, G, satisfies property (a) above. The octahedral axiom applied to tri-
angles and gives a morphism u;11: G;41 — F and a distinguished tri-
angle H;11 — Gy M, p A By construction Hz‘+1‘|si+1\ is quasi-isomorphic
to 0 so that u;41 satisfies property (b) above.

(ii) Set G = D (F), and represent it by a bounded complex as in (i). Since
Uk, corresponds to an open subset of the form U(o) in |S|, the sheaves Ku,,, are
acyclic for the functor Df. Hence F ~ D (G) can be represented as claimed. O

Lemma A.3. Let F — G — 0 be an exact sequence in Modg_.(Kx). Then for
any relatively compact subanalytic open subset U C X, there exists a finite covering
U = U Ui by subanalytic open subsets such that, for each i € I, the morphism
F(U;) — G(U;) is surjective.

Proof. As in the proof of Proposition we may assume that F', G and Ky are
constructible sheaves on the realization of some finite simplicial complex (S, A).
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For o € A the morphism I'(U(0); F) — I'(U(0); G) is surjective, by (A.1]). Since
the image of U in [S] is a finite union of U(c)’s, this proves the lemma. O

§B. Complements on subanalytic sheaves

We review here some well-known results (see [I1, Chapter 7] and [15]) but which
are usually stated over a field, and we need to work here over the ring C".

Let K be a commutative unital Noetherian ring of finite global dimension (for
our purposes we will have either K = C or K = C"). Let X be a real analytic
manifold, and consider the natural morphism p: X — Xj,.

Lemma B.1. The functor p.: Modg.(Kx) — Mod(Kx.,) is ezact and p~p, is
isomorphic to the canonical functor Modg_.(Kx) — Mod(Kx).

Proof. Being a direct image functor, p, is left exact. It is right exact thanks to
Lemma The composition p~!p, is isomorphic to the identity on Mod(Kx)
since the open sets of the site X, give a basis of the topology of X. O

In the following, we denote by Modg ((Kx_, ) the image under the functor p,
of Modr.(Kx) in Mod(Kx,, ). Hence p, induces an equivalence of categories
Modg.(Kx) ~ Modg..(Kx., ). We also denote by Dﬁ_C(KXSH) the full triangulated
subcategory of DP(Kx_,) consisting of objects with cohomology in Modg..(Kx., )-

Corollary B.2. The subcategory Modg (Kx.,) of Mod(Kx_,) is thick.

Proof. Since p, is fully faithful and exact, Modgr..(Kx_, ) is stable under taking
kernels and cokernels. It remains to see that, for F,G € Modg..(Kx),

Ext!

Mods. (&) (> G) = EX‘E%\/Iod(sza)(p*F7 p«G).

By [6] we know that the first Ext' may as well be computed in Mod(Kx). Note
that the functors p~! and Rp, between DP(Kx) and DP(Kx,,) are adjoint, and
moreover p~'Rp, =~ id. Thus, for F’, G’ € DP(Kx) we have

Hom e, (Rp ', RpuG') =~ Hompy e (F', GY),
and this gives the result. O

This corollary gives the equivalence D} (Kx) ~ D (Kx..), both categories
being equivalent to D®(Modg_.(Kx)).
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