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On Certain Arithmetic Functions M̃(s; z1, z2)
Associated with Global Fields:

Analytic Properties
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by
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Abstract

The arithmetic functions in the title arose from value-distribution theories related to
L-functions of global fields. They are “complexifications” of the Fourier duals of the cor-
responding density functions. We shall study their complex analytic properties including
analytic continuations and the limit behaviors at the critical point s = 1/2.
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Introduction

§0.1

In [2], we started our study of the complex analytic function M̃(s; z1, z2) (denoted
there as M̃s(z1, z2)) in three variables s, z1, z2 (<(s) > 1/2), in connection with
the value-distribution of {d logL(s, χ)/ds}χ. Here, χ runs over a suitable family
of abelian characters of a global field K and L(s, χ) denotes the associated L-
function. The connection is that for each fixed s with <(s) = σ > 1/2, the inverse
Fourier transform Mσ(w) of M̃σ(z) = M̃(σ; z, z̄) is the density function for the
distribution of {d logL(s, χ)/ds}χ on the complex w-plane (generally conjectural,
proved in various cases [2, 4, 6]). In the joint work with K. Matsumoto [5, 6] (cf.
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also a survey [7]), we continued this study treating also the corresponding M - and
M̃ -functions related to the value-distribution of {logL(s, χ)}χ. We use the same
symbols M , M̃ etc., and distinguish the former d log-case as Case 1, the latter log-
case as Case 2. They are different systems of functions having various properties in
common. Each also depends on the pair (K,P∞), where K is a global field (either
an algebraic number field or an algebraic function field of one variable over a finite
field) and P∞ is a given finite set of prime divisors of K including all archimedean
primes in the number field case. When K = Q (the rational number field) and
|P∞| = 1, M̃ is given by

(0.1.1) M̃(s; z1, z2) =
∞∑
n=1

λz1(n)λz2(n)n−2s (<(s) > 1/2),

where each λz(n) (n = 1, 2, . . . ) is a polynomial of z determined by

∞∑
n=1

λz(n)n−s :=


exp
(
iz

2
d

ds
log ζQ(s)

)
(Case 1)

exp
(
iz

2
log ζQ(s)

)
(Case 2)

(<(s) > 1, i =
√
−1), ζQ(s) being the Riemann zeta function. Note that

M̃(s,−2i,−2ix) = ζQ(2s)x (x ∈ C) in Case 2. It seems to the author that these
functions are interesting in themselves.

§0.2

We shall pursue the investigation of analytic properties of the functions M̃(s; z1, z2)
and Mσ(w). In the present article, we first study the variance µσ of the density
measure Mσ(w)|dw| (|dw| = dudv/(2π) for w = u+ vi) on C and the “Plancherel
volume”

(0.2.1) νσ =
∫

C
Mσ(w)2 |dw| =

∫
C
|M̃σ(z)|2 |dz|;

especially the limits limσ→1/2 and limσ→+∞ of the natural invariant µσνσ, the
variance-normalized measure µσMσ(µ1/2

σ w) and its Fourier transform M̃σ(µ−1/2
σ z)

(§1, §2). The first limit is of course more difficult. A key point here is the limit
behavior at s = 1/2 of the complex analytic version

(0.2.2) M̃(s;µ(s)−1/2z1, µ(s)−1/2z2)

of M̃σ(µ−1/2
σ z), which is partly related to the second main subject of this article,

namely analytic continuation. We shall prove (§3) that M̃(s; z1, z2) extends to an



Arithmetic Functions M̃(s; z1, z2) Associated with Global Fields 259

analytic function of (s; z1, z2) on the product space D × C2, where

(0.2.3) D = {<(s) > 0} \ {ρ/(2n); n ∈ N, ζ(ρ) = 0 or ∞},

ζ(s) = ζK,P∞(s) being the zeta function of K without P∞ factors. In fact,
M̃(s; z1, z2) is univalent on D × C2 in Case 1, but multivalent in Case 2 (uni-
valent on Durab × C2, Durab being the maximal unramified abelian cover of D).
This property is closely related to the infinite product expansion which, in Case 2,
looks like

(0.2.4) M̃(s; z1, z2) =
∞∏
n=1

ζ(2ns)Rn(z1,z2),

where each Rn(z1, z2) is a polynomial of degree ≤ n in each variable z1, z2. This
means that for any N ∈ N, (i) the quotient of M̃(s; z1, z2) by the partial product
over n ≤ N on the right hand side extends to a holomorphic function on <(s) >
1/(2N + 2), and (ii) on some subdomain of {<(s) > 1/2} × C2, the remaining
product converges absolutely to a non-vanishing holomorphic function which gives
that quotient. This result for N = 1 will be used to show that (0.2.2) converges to
exp(−z1z2/4) as s→ 1/2. Together with a result on the upper bound for |M̃σ(z)|2

near σ = 1/2, valid for all z ∈ C established in §4, this leads to our limit formulas
for µσνσ and µσMσ(µ1/2

σ w).

§0.3

In §1.1, we first discuss general density functions M(x)|dx| on Rd (d = 1, 2, . . . )
with center 0, in particular, the best possible lower bound for the quantity µd/2ν
(Theorem 1), where µ is the variance and ν is the Plancherel volume. For d = 2,
this gives µν ≥ 8/9. Then in §1.2, we briefly review (from [6, §4]) the definitions
and basic properties of our functions M̃(s; z1, z2) and Mσ(w).

In §2, we study the limits as σ → 1/2, +∞, of µσνσ and µσMσ(µ1/2
σ w) (The-

orems 2, 3). Some of the relevant key lemmas will be proved later (§3, §4). This
logically inverted ordering of sections is due to the introductory nature of §2 and
the “heaviness” of §3 and §4.

In §3, we shall prove the analytic continuation of M̃(s; z1, z2) (Theorem 5).
In §4, we shall study the rapid decay property of |M̃σ(z)|2, with special care

when σ is arbitrarily close to 1/2 and |z| is not bounded (Theorem 7C).

§0.4

Now we mention something about the zero divisor of M̃(s; z1, z2) on which no
information appears in the product formula (0.2.4). First, as is already shown in
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the previous articles (reviewed in §1.2), M̃(s; z1, z2) has an Euler product decom-
position

(0.4.1) M̃ = M̃(s; z1, z2) =
∏

p6∈P∞

M̃p(s; z1, z2) (<(s) > 1/2),

where each local factor M̃p = M̃p(s; z1, z2) is holomorphic on {<(s) > 0} ×C2. In
Case 2, M̃p can be expressed by the Gauss hypergeometric function F (a, b; c;x),
as

(0.4.2) M̃p(s; z1, z2) = F (iz1/2, iz2/2; 1; N(p)−2s).

Each M̃p has a non-trivial zero divisor Zp; {Zp}p is locally finite, and the inter-
section with D × C2 of

∑
pZp gives the zero divisor of M̃ .

The local zero divisor Zp seems worth studying fully.1 But let us touch here
the main property of its restriction to the hyperplane z1 + z2 = 0, say, in Case 2.
Put t = N(p)−s, x = iz1, and consider the “locally normalized” function

(0.4.3) ft(x) = F (x/(2 arcsin(t)),−x/(2 arcsin(t)); 1; t2).

Then f0(x) = J0(x), the Bessel function of order 0. If ±{γν}∞ν=1 with 0 < γ1 <

γ2 < · · · denote all the zeros of J0(x), then there exists 0 < t0 < 1 such that each
γν extends uniquely and holomorphically to a zero γν(t) of ft(x) for all |t| < t0
(real if t is so). Moreover, ft(x) has no other zeros than {±γν(t)}, and we have
the Weierstrass decomposition

(0.4.4) ft(x) =
∞∏
ν=1

(
1− x2

γν(t)2

)
.

This gives rise to another infinite product decomposition

(0.4.5) M̃(s; z,−z) =
∏

p6∈P∞

∞∏
ν=1

(
1 +

(
arcsin(N(p)−s)
γν(N(p)−s)

)2

z2

)
=
∞∏
µ=1

(1 + θ2
µz

2)

for <(s) > 1/2, where {θµ}µ is a reordering of {arcsin(N(p)−s)/γν(N(p)−s)}p,ν
according to the absolute values. For s = σ ∈ R, θ2

µ are all positive real, as long as
N(p)σ is sufficiently large. Comparing the two decompositions (0.2.4) and (0.4.5)
will be a subject of future study.

1Left to future articles; cf. [3] for some partial results for Case 1.
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§1. Preliminaries

§1.1. The Plancherel volume

Let Rd = {x = (x1, . . . , xd); xi ∈ R (1 ≤ i ≤ d)} be the d-dimensional Euclidean
space (d = 1, 2, . . . ), and |dx| = (dx1 . . . dxd)/(2π)d/2 be the self-dual Haar mea-
sure with respect to the self-dual pairing ei〈x,x

′〉 of Rd, where 〈x, x′〉 =
∑d
i=1 xix

′
i.

Write, as usual, |x| = 〈x, x〉1/2. Consider any density measure M(x)|dx| (M(x)
a measurable real-valued function) on Rd with center 0, for which the standard
formulas in Fourier analysis hold; namely (the integrals denoting those over Rd),

M(x) ≥ 0,
∫
M(x) |dx| = 1;(1.1.1) ∫

M(x)xi |dx| = 0 (1 ≤ i ≤ d);(1.1.2)

M̃(y) :=
∫
M(x)ei〈x,y〉 |dx|, M(x) =

∫
M̃(y)e−i〈x,y〉 |dy|;(1.1.3)

ν := νM =
∫
M(x)2 |dx| =

∫
|M̃(y)|2 |dy| (Plancherel formula).(1.1.4)

We shall compare the two invariants

(1.1.5) µ := µM =
∫
M(x)|x|2 |dx| (the variance)

and the above νM which will be called the Plancherel volume of M(x) (or of
M(x) |dx|). Note that νM can also be expressed as

(1.1.6) νM = M(x) ∗M(−x) |x=0

(∗ being the convolution product with respect to |dx|). Thus, νM may be regarded
as the density at the origin of the distribution of the differences of two points in
the measure space (Rd,M(x) |dx|).

In general, the two invariants, the average µ of the square of the distance from
the center and the density ν at the origin of x− x′ (x, x′ ∈ Rd), both with respect
to the given density measure M(x) |dx|, are unrelated invariants. But the product

(1.1.7) µd/2ν

seems to be an interesting basic invariant. Note that this is invariant under the
scalar transform

(1.1.8) M(x) 7→ cdM(cx)

for any c > 0; in fact, µ (resp. ν) is multiplied by c−2 (resp. cd).
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If we denote by M?(x) = µd/2M(µ1/2x) the scalar transform (1.1.8) for
c = µ1/2, then M?(x) has Fourier dual M̃(µ−1/2y), variance 1, and Plancherel
volume µd/2ν. This scalar transform M(x) 7→ M?(x) will be called the variance
normalization.

Let us pay attention to the following three special cases and the theorem to
come thereafter.

Example 1. If M(x) |dx| is Gaussian, i.e., M(x) = ce−a|x|
2

(a, c > 0), then

(1.1.9) µd/2ν = (d/2)d/2.

In particular, the two-dimensional Gaussian distribution satisfies µν = 1.
Indeed, we have c = (2a)d/2 by (1.1.1), and µ = d/(2a), ν = ad/2.

Example 2. If M(x) = c (|x| ≤ R) and = 0 (|x| > R), where c,R > 0, then

(1.1.10) µd/2ν =
(

2d
d+ 2

)d/2
Γ
(
d

2
+ 1
)
.

In particular, when d = 2, we again have µν = 1.
Indeed, c = 2d/2Γ(d/2 + 1)R−d, µ = d

d+2R
2, ν = 2d/2Γ(d/2 + 1)R−d.

Thus, when d = 2, µν = 1 holds in these two special cases.

Example 3. Define the function f∗d (r) of r ≥ 0 by

(1.1.11) f∗d (r) =


d(d+ 2)

2
γd · (1− r2), 0 ≤ r ≤ 1,

0, r ≥ 1,

where

(1.1.12) γd = (2π)d/2/Vol(Sd−1) = 2d/2−1Γ(d/2),

Vol(Sd−1) being the Euclidean volume of the (d− 1)-dimensional unit sphere. For
any fixed c > 0, consider the function M(x) = cd · f∗d (c|x|) on Rd. Then M(x) also
satisfies (1.1.1) and (1.1.2), and we have

(1.1.13) µd/2ν =
(

2d
d+ 4

)d/2 4Γ(d+4
2 )

d+ 4
.

Indeed, µ = c−2µ∗d and ν = cdν∗d , where

(1.1.14) µ∗d =
d

d+ 4
, ν∗d =

2d(d+ 2)
d+ 4

γd = 2d/2
4Γ(d+4

2 )
d+ 4

.
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Now, intuitively, µ and ν cannot be too small at the same time and hence there
must be some inequality showing this. The following elementary but seemingly
basic inequality was obtained in passing. Since I could not find it in the literature
(including e.g. [1]), I take this opportunity to present it with a full proof (a sketch
was given in [3]).

Theorem 1. For each d ≥ 1 and each measurable function M(x) on Rd satisfying
(1.1.1)–(1.1.2), we have, for µ = µM and ν = νM ,1

(1.1.15) µd/2ν ≥
(

2d
d+ 4

)d/2 4 Γ(d+4
2 )

d+ 4
.

Moreover, equality holds if and only if M(x) coincides almost everywhere with the
function given in Example 3.

The minimum-giving Example 3 was found by using small deformations, which
led to a simple differential equation of order 1. And once found, the proof is simple
(and somewhat miraculous).

Proof. Let M(x) be as at the beginning of this subsection, with invariants µ, ν.
We shall prove

(1.1.16) µd/2ν ≥ (µ∗d)
d/2ν∗d ,

where µ∗d, ν
∗
d are as defined by (1.1.14). We may assume that M(x) is rotation-

invariant, because averaging over |x| = r does not change µ, while ν either de-
creases or remains the same. Therefore, M(x) = f(|x|) with some non-negative
real-valued function f(r) of r ≥ 0, and

(1.1.17)
1
γd

∫ ∞
0

f(r)rd−1 dr = 1,
1
γd

∫ ∞
0

f(r)rd+1 dr = µ,
1
γd

∫ ∞
0

f(r)2rd−1 dr = ν.

By a suitable scalar transform (1.1.8) we may assume that µ is any given positive
real number, and so we assume µ = µ∗d. We then have

(1.1.18)
1
γd

∫ 1

0

f(r)(1− r2)rd−1 dr ≥ 1
γd

∫ ∞
0

f(r)(1− r2)rd−1 dr = 1− µ∗d =
4

d+ 4
,

because the corresponding integral over (1,∞) is obviously non-positive. Now the
Schwarz inequality gives

(1.1.19)
(∫ 1

0

f∗d (r)2rd−1 dr

)(∫ 1

0

f(r)2rd−1 dr

)
≥
(∫ 1

0

f∗d (r)f(r)rd−1 dr

)2

.

1Here we just need the first definition of ν in (1.1.4) involving only M(x).
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Here, the first integral on the left hand side is nothing but γdν∗d , while the right
hand side is

(1.1.20)
(
d(d+ 2)

2

)2

γ2
d

(∫ 1

0

f(r)(1−r2)rd−1 dr

)2

≥
(
d(d+ 2)

2

)2

γ4
d

(
4

d+ 4

)2

,

by (1.1.11) and (1.1.18). Therefore, (1.1.19) gives

(1.1.21)
1
γd

∫ 1

0

f(r)2rd−1 dr ≥ γ2
d(ν∗d)−1

(
2d(d+ 2)
d+ 4

)2

= ν∗d

by (1.1.14), and hence the desired inequality ν ≥ ν∗d . The last statement of Theo-
rem 1 is clear from the above proof.

In particular, for d = 1, 2, we obtain

Corollary 1.1.22. We have

µ1/2ν ≥ (18π/125)1/2 (d = 1),(1.1.23)

µν ≥ 8/9 (d = 2).(1.1.24)

On the other hand, there is no upper bound for µd/2ν; indeed, if the support
of M(x) is concentrated on the sphere with center 0 and radius r, then µ is close
to r2 while ν can be arbitrarily large.

§1.2. The function M̃(s; z1, z2)

We shall review, mainly from [6, §4], the definition and some main properties of
the function M̃(s; z1, z2) and its local factors M̃p(s; z1, z2). Let K be any global
field, i.e., either an algebraic number field of finite degree, or an algebraic function
field of one variable over a finite field. Let p be any non-archimedean prime of K.
Define λz(pn) (z ∈ C, n ≥ 0) to be the coefficient of the power series

(1.2.1)
∞∑
n=0

λz(pn)N(p)−ns =


exp
(
iz

2
d

ds
log((1−N(p)−s)−1)

)
(Case 1),

exp
(
iz

2
log((1−N(p)−s)−1)

)
(Case 2),

of N(p)−s. It is a polynomial of z given by

(1.2.2) λz(pn) =


Fn

(
− iz

2
logN(p)

)
(Case 1),

Fn

(
iz

2

)
(Case 2),
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with

(1.2.3) Fn(x) =



n∑
k=1

1
k!

(
n− 1
k − 1

)
xk (Case 1),

n∑
k=1

1
k!
δk(n)xk =

1
n!
x(x+ 1) . . . (x+ n− 1) (Case 2),

for n ≥ 1, and F0(x) = 1, where

(1.2.4) δk(n) =
∑

n=n1+···+nk
n1,...,nk≥1

1
n1 . . . nk

≤
∑

n=n1+···+nk
n1,...,nk≥1

1 =
(
n− 1
k − 1

)
.

Now the local p-factor M̃p(s; z1, z2) of M̃(s; z1, z2) is a holomorphic function of
(s, z1, z2) on {<(s) > 0} × C2 defined by the following power series of N(p)−2s:

(1.2.5) M̃p(s; z1, z2) =
∞∑
n=0

λz1(pn)λz2(pn)N(p)−2ns.

For a given finite set P∞ of prime divisors of K including all the archimedean
primes in the number field case, the global function M̃(s; z1, z2), which is a holo-
morphic function of (s, z1, z2) on {<(s) > 1/2} × C2, is defined by the Euler
product

(1.2.6) M̃(s; z1, z2) =
∏

p6∈P∞

M̃p(s; z1, z2),

which is absolutely convergent on <(s) > 1/2 in the following sense. For any
given σ0 > 1/2, R > 0, let |z1|, |z2| ≤ R and <(s) ≥ σ0. Then for all but finitely
many primes p, we have |M̃p(s; z1, z2) − 1| < 1, and the sum of log M̃p(s; z1, z2)
(the principal branch) over these p converges absolutely and uniformly. It has a
Dirichlet series expansion

(1.2.7) M̃(s; z1, z2) =
∑

D integral

λz1(D)λz2(D)N(D)−2s (<(s) > 1/2),

where D runs over the integral divisors, i.e., divisors of K of the form D =∏
p6∈P∞ pnp (np ≥ 0, np = 0 for almost all p), and λz(D) =

∏
p 6∈P∞ λz(pnp).

Other expressions. The local function M̃p(s; z1, z2) has an integral expression

(1.2.8) M̃p(s; z1, z2) =
∫

C1
exp
(
i

2
(z1gs,p(t−1) + z2gs,p(t))

)
d×t,
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where gs,p(t) is a continuous function on C1 = {t ∈ C; |t| = 1} defined by

gs,p(t) =


−(logN(p))N(p)−st

1−N(p)−st
(Case 1),

− log(1−N(p)−st) (Case 2),
(1.2.9)

(the principal branch of the logarithm), and d×t is the normalized Haar measure
on C1 (so that the total measure of C1 is 1). It also has the following power series
expansion in z1, z2:

(1.2.10) M̃p(s; z1, z2) = 1 +
∑
a,b≥1

(±i/2)a+bµ
(a,b)
p (s)

za1z
b
2

a!b!
,

where the sign is minus (resp. plus) for Case 1 (resp. Case 2), and

(1.2.11) µ
(a,b)
p (s)

=


(logN(p))a+b

∑
n≥max(a,b)

(
n− 1
a− 1

)(
n− 1
b− 1

)
N(p)−2ns (Case 1),

∑
n≥max(a,b)

δa(n)δb(n)N(p)−2ns (Case 2).

In particular,

µ
(1,1)
p (s) =


(logN(p))2/(N(p)2s − 1) (Case 1),∑
n≥1

n−2N(p)−2ns (Case 2).(1.2.12)

The global function M̃(s; z1, z2), for each s with <(s) > 1/2, has an every-
where absolutely convergent power series expansion in z1, z2:

(1.2.13) M̃(s; z1, z2) = 1 +
∑
a,b≥1

(±i/2)a+bµ(a,b)(s)
za1z

b
2

a!b!
,

with the same choice of the sign as above. Here, each µ(a,b)(s) denotes the following
Dirichlet series which is absolutely convergent on <(s) > 1/2:

(1.2.14) µ(a,b)(s) =
∑

D integral

Λa(D)Λb(D)N(D)−2s,

where Λk(D) (≥ 0) for each integral divisor D is defined by

(1.2.15) Λk(D) =
∑

D=D1...Dk

Λ1(D1) . . .Λ1(Dk),



Arithmetic Functions M̃(s; z1, z2) Associated with Global Fields 267

where

Λ1(D) =

{
logN(p) (Case 1),

1/n (Case 2),
(1.2.16)

if D = pn with some p 6∈ P∞ and n ≥ 1, and Λ1(D) = 0 otherwise. By comparing
the coefficients of z1z2 for M̃p(s; z1, z2) and M̃(s; z1, z2) in the formula (1.2.6), we
obtain the Euler sum expansion (only for (a, b) = (1, 1)):

(1.2.17) µ(s) := µ(1,1)(s) =
∑

p6∈P∞

µ
(1,1)
p (s) (<(s) > 1/2).

Finally, let Mσ(w) (σ > 1/2, w ∈ C) denote the “M -function” defined and
studied in [2] (Case 1) and [5] (Case 2). (In the latter, it is denoted by Mσ(w).)
Then its Fourier dual is M̃σ(z) := M̃(σ; z, z̄). In fact, if ψz1,z2 (z1, z2 ∈ C) denotes
the quasi-character C→ C× defined by

(1.2.18) ψz1,z2(w) = exp
(
i

2
(z1w + z2w)

)
,

and if we put ψz = ψz,z̄ (which is a character C→ C1), then we have

M̃(σ; z1, z2) =
∫
Mσ(w)ψz1,z2(w) |dw|,(1.2.19)

Mσ(w) =
∫
M̃σ(z)ψ−w(z) |dz|,(1.2.20)

where |dw| = dudv/(2π) for w = u + vi, and the integrals are over the whole
complex plane. Both Mσ(w) and M̃σ(z) are continuous functions on C belonging
to L1; hence the Plancherel formula holds. Recall also ([6, §4.2]) that the center
of gravity of Mσ(w) |dw| is 0, and that µ(σ) = µ(1,1)(σ) (σ > 1/2) is equal to the
variance

(1.2.21) µσ := µ(σ) =
∫
Mσ(w)|w|2 |dw|.

It is easy to see (cf. §3 below) that limσ→1/2 µσ = +∞ and limσ→+∞ µσ = 0
(Cases 1, 2).

Now let νσ denote the Plancherel volume of Mσ(w). In connection with Ex-
amples 1, 2, 3 (§1.1), where µν = 1, 1, 8/9 (the minimal possible value) respec-
tively for d = 2, we are interested in studying the product µσνσ. First, some
numerical evidences suggest that µσνσ is often quite close to 1. For example in
Case 1, when K = Q (resp. Q(

√
−1)) and P∞ consists of the unique archimedean

prime of K, then 1 − µ1ν1 = 0.017 . . . (resp. 0.018 . . . ). In §2, we shall study
the limit behaviors of the variance-normalized function µσMσ(µ1/2

σ w) and that of
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µσνσ as σ → 1/2 and σ → ∞ for general cases of (K,P∞). Here, we just add,
without proof (cf. [3] for a sketch of proof) the following

Example 4. Let K = Fq(x) be the rational function field over a finite field Fq
and P∞ = {p∞}, the unique prime at which x =∞. Write µ(q)

σ (resp. ν(q)
σ ) for the

variance (resp. the Plancherel volume) of Mσ(w) |dw|. Then for any fixed σ > 1/2,
at least in Case 1, we have

(1.2.22) lim
q→∞

µ(q)
σ ν(q)

σ = 1.

Is µσνσ related to some invariant with a different origin? Is there a complex
analytic version of νσ?

§2. Limits at σ = 1/2 and σ = +∞

Let M̃(s; z1, z2), Mσ(w), etc. be the functions defined in §1.2 associated with a
given pair (K,P∞) of a global field K and a finite set P∞ of prime divisors of K
including all archimedean primes in the number field case. Let µσ (resp. νσ) denote
the variance (resp. the Plancherel volume; cf. §1.1) of the measure Mσ(w) |dw|
(σ > 1/2) on C (considered as the two-dimensional Euclidean space in the obvious
way). We shall study the limits, first at σ = 1/2, then briefly those at σ = +∞, of
the invariant µσνσ and of the variance-normalized function µσMσ(µ1/2

σ w). In this
section, we shall state the main results, Theorem 2 for σ → 1/2 and Theorem 3
for σ → +∞, and reduce the proof of Theorem 2 to Lemmas A, B and that of
Theorem 3 to Lemmas A′, B′. Lemmas A, A′ concern the limits of

M̃

(
s;

z1

µ(s)1/2
,

z2

µ(s)1/2

)
as s→ 1/2,+∞ respectively, where µ(s) = µ(1,1)(s) is the complex analytic version
of µσ. Lemmas B, B′ are on the rapid decay property as |z| → ∞ of the normalized
Fourier dual M̃σ(z/µ1/2

σ ), when σ belongs to a small neighborhood of 1/2, +∞,
respectively. The proofs of these lemmas will be postponed to later sections, except
for Lemma A′. Because of its introductory nature, we have put this section right
after §1, in spite of its logical dependence on later sections.

§2.1. The main results for σ → 1/2

Theorem 2. (i) As σ → 1/2,

µσ ∼

(2σ − 1)−2 (Case 1),

log
1

2σ − 1
(Case 2),

(2.1.1)

where ∼ means that the ratio of two sides tends to 1.
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(ii) We have

(2.1.2) lim
σ→1/2

µσνσ = 1 (Cases 1, 2).

(iii)1 We have

(2.1.3) lim
σ→1/2

µσMσ(µ1/2
σ w) = 2e−|w|

2
(w ∈ C) (Cases 1, 2).

These answer “the limσ→1/2-version” of the questions raised in [2, Remark
3.11.17].

§2.2. Proof of Theorem 2(i)

This follows directly from (1.2.12) and (1.2.17). But a more economical way is to
rely on a result of §3 below; namely (with the notations of §3.1, §3.3), by the last
assertion of Theorem 4, the difference µ(s) − φ(2κ)(2s) extends to a holomorphic
function on <(s) > 1/4. Hence

(2.2.1) lim
s→1/2

|Arg(2s−1)|<π

µ(s)
φ(2κ)(2s)

= 1;

hence

lim
s→1/2

(2s− 1)2µ(s) = 1 (Case 1),(2.2.2)

lim
s→1/2

|Arg(2s−1)|<π

µ(s)
log 1

2s−1

= 1 (Case 2),(2.2.3)

as desired.
For any s with |2s − 1| � 1 and |Arg(2s − 1)| < π, we define µ(s)1/2 to be

the square root taking positive value when s is real and > 1/2.

§2.3. The Key Lemmas A, B

The first key lemma is Corollary 3.4.8 (§3.4) of Theorem 5, to be proved in §3.

Lemma A. We have

(2.3.1) lim
s→1/2

|Arg(2s−1)|<π

M̃

(
s;

z1

µ(s)1/2
,

z2

µ(s)1/2

)
= exp

(
−z1z2

4

)
,

and the convergence is uniform on |z1|, |z2| ≤ R for any given R > 0.

1The author is grateful to S. Takanobu for helpful discussions which led to this generalized
form of the result.
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The second key lemma states a rapid decay property of the function M̃σ(z) :=
M̃(σ; z, z̄) of z ∈ C, to be proved in §4.6.

Lemma B. Fix any ε with 0 < ε < 1. If (2σ − 1)−1 �ε 1, then

(2.3.2) |M̃σ(z)|2 ≤ exp
(
−1− ε

2
µσ|z|2(1−ε′)

)
for all z ∈ C, where ε′ = ε (resp. 0) for |z| ≥ 1 (resp. |z| < 1).

§2.4. Proofs of Theorem 2(ii)&(iii) assuming Lemmas A, B

Proof of (ii). Note first that

(2.4.1) µσνσ =
∫
|M̃σ(µ−1/2

σ z)|2 |dz|.

For each fixed z, when σ → 1/2, the integrand tends to exp(−|z|2/2) by Lemma A.
In order to apply Lebesgue’s convergence theorem to deduce that the limσ→1/2

operation commutes with integration, we only need to show that the integrand is
uniformly bounded near σ = 1/2 (we may thus assume µσ > 1) by an integrable
function of z. But this follows directly from Lemma B. In fact, Lemma B for
ε = 1/2 gives

(2.4.2) |M̃σ(µ−1/2
σ z)|2 ≤ max(exp(−|z|/4), exp(−|z|2/4)),

which is integrable. Therefore,

lim
σ→1/2

µσνσ =
∫

lim
σ→1/2

|M̃σ(µ−1/2
σ z)|2 |dz| =

∫
exp(−|z|2/2) |dz|(2.4.3)

=
∫ ∞

0

e−r
2/2r dr = 1,

as desired.

Proof of (iii). The Fourier inversion formula (1.2.20) gives

(2.4.4) µσMσ(µ1/2
σ w) =

∫
M̃σ(µ−1/2

σ z)ψ−w(z) |dz|.

By Lemma A and (2.4.2), we can also apply Lebesgue’s convergence theorem and
hence obtain

(2.4.5) lim
σ→1/2

µσMσ(µ1/2
σ w) =

∫
exp(−|z|2/4)ψ−w(z) |dz| = 2e−|w|

2
,

as desired.
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§2.5. The main results for σ → +∞
The following numerical invariants of the pair (K,P∞),

α := min
p 6∈P∞

N(p), m := |{p 6∈ P∞; N(p) = α}|

(| | denoting cardinality), and the Bessel function

(2.5.1) J0(x) =
∞∑
n=0

(−1)n

(n!)2

(
x

2

)2n

will be involved. Clearly, α ≥ 2 and m ≥ 1. The main result corresponding to
Theorem 2 is the following:

Theorem 3. (i) As σ → +∞,

µσ ∼

{
(logα)2mα−2σ (Case 1),

mα−2σ (Case 2).
(2.5.2)

(ii) In each of Cases 1, 2,

(2.5.3) lim
σ→+∞

µσνσ = m

∫ ∞
0

J0(x)2mx dx

{
=∞ (m ≤ 2),

<∞ (m ≥ 3).

(iii) In each of Cases 1, 2, at least if m ≥ 5, we have

(2.5.4) lim
σ→+∞

µσMσ(µ1/2
σ w) =

∫ ∞
0

J0(|w|x)J0(x/
√
m)mx dx.

Moreover, the support of this function is compact, being contained in {w ∈ C;
|w| ≤

√
m}.

§2.6. Proof of Theorem 3(i)

We shall prove a slightly stronger result;

lim
σ=<(s)→+∞

α2sµ(s) =

{
(logα)2m (Case 1),

m (Case 2),
(2.6.1)

with the uniformity of convergence with respect to =(s). First, by (1.2.12) and
(1.2.17) we have

(2.6.2) α2sµ(s) = α2s
∑

p6∈P∞

µ
(1,1)
p (s) =

∑
p6∈P∞
n≥1

a(pn)(α/N(p)n)2s,

where a(pn) = (logN(p))2 (resp. 1/n2) for Case 1 (resp. Case 2). Now decompose
the sum into three parts; the first sum, over those (p, n) satisfying N(p) = α
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and n = 1, gives the right hand side of (2.6.1); the second, over N(p) > α, is
� (α/α′)2σ−2, where α′ denotes the second smallest norm of primes outside P∞;
the rest is over N(p) = α, n ≥ 2, which is � α−2σ. Since the latter two partial
sums tend to 0 uniformly with respect to =(s), this proves (2.6.1).

In particular, µ(s) 6= 0 for <(s) sufficiently large. We shall denote by µ(s)1/2

its unique square root that takes positive values when s = σ > 1.

§2.7. The Key Lemmas A′, B′

The counterparts of Lemmas A, B for limσ→+∞ are the following.

Lemma A′. We have

(2.7.1) lim
σ=<(s)→+∞

M̃

(
s;

z1

µ(s)1/2
,

z2

µ(s)1/2

)
= J0

(√
z1z2

m

)m
,

and the convergence is uniform on |z1|, |z2| ≤ R for any given R > 0 and with
respect to =(s).

The proof will be sketched in §2.9.

Lemma B′. There exists a constant C > 0 depending only on (K,P∞) such that

(2.7.2) |M̃σ(µ−1/2
σ z)| ≤ C|z|−m/2

for all σ ≥ 1 and all z ∈ C.

The proof will be postponed to §4.1.

§2.8. Proofs of Theorem 3(ii)&(iii) assuming Lemmas A′, B′

Proof of (ii). The limit formula (2.5.3) for m ≥ 3 can be obtained from Lemmas
A′, B′ exactly in the same manner as in the proof of Theorem 2(ii). For m ≤ 2,
the divergences can be checked easily.

Proof of (iii). When m ≥ 5, there is again no problem. (The term J0(|w|x) appears
as the average of ψ−w(z) over the circle |z| = x.) It is likely that the same equality
holds also for smaller m. But it should be noted that the limit function of w need
not be continuous. Especially when m = 1, the limit is not even a function, but a
hyperfunction with support on the unit circle |w| = 1. This is because in the limit
σ → +∞, only the contribution of the unique prime p with N(p) = α remains.

As for the statement on the support, we can see this in two ways. Firstly, by
construction [2, 5], the support of Mσ(w) for σ > 1 is contained in |w| ≤ ρσ, where

ρσ =

−
d

dσ
log ζK,P∞(σ) ∼ mα−σ logα (Case 1),

log ζK,P∞(σ) ∼ mα−σ (Case 2);
(2.8.1)
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hence limσ→+∞ ρσ/µ
1/2
σ =

√
m. Secondly, from the right hand side of (2.5.4), one

can also see this by a result of Nicholson (cf. [9, §13.46]), which asserts that if
<(ν) > −1, a1, . . . , am > 0, b > a1 + · · ·+ am, then

(2.8.2)
∫ ∞

0

xν(1−m)+1Jν(bx)
m∏
i=1

Jν(aix) dx = 0

(our m corresponds to m−1 in [9]). Apply this for ν = 0, a1 = · · · = am = 1/
√
m,

b = |w|, to see that the right hand side of (2.5.4) vanishes for |w| ≥
√
m.

Remark 2.8.3. As for the value of the right hand side of (2.5.3), i.e.,

(2.8.4) a(m) := m

∫ ∞
0

J0(x)2mx dx,

we have a(3) = 1.01 . . . , a(4) = 0.951 . . . , a(5) = 0.953 . . . , etc., and one can prove
that limm→∞ a(m) = 1. Numerical evidence suggests that limm→∞m(1 − a(m))
= 1/4.

§2.9. Sketch of the proof of Lemma A′

Let <(s) be sufficiently large and choose µ(s)1/2 as at the end of §2.6. The power
series expansion (1.2.13) of M̃(s; z1, z2) gives

(2.9.1) M̃

(
s;

z1

µ(s)1/2
,

z2

µ(s)1/2

)
= 1 +

∑
a,b≥1

(±i/2)a+b µ(a,b)(s)
µ(s)(a+b)/2

za1z
b
2

a!b!
.

Here, as in (1.2.13), the sign of i/2 is minus (Case 1), or plus (Case 2). On the
other hand, the expansion (2.5.1) for J0(x) gives

(2.9.2) J0

((
z1z2

m

)1/2)m
= 1 +

∑
a,b≥1

(−i/2)a+bµ̃(a,b) z
a
1z
b
2

a!b!
,

where

µ̃(a,b) =


0 (a 6= b),

m−k
∑

k=k1+···+km

(
k

k1, . . . , km

)2

(a = b = k ≥ 1).
(2.9.3)

So, it is enough to prove the existence of constants σ0 > 1 and C > 0, each
depending only on (K,P∞), such that

(2.9.4)
µ(a,b)(s)
µ(s)(a+b)/2

− µ̃(a,b) � Ca+b

σ − σ0 − 1
(σ = <(s) > σ0 + 1).

Note that the left hand side of (2.9.4) is 0 when a = b = 1.
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To prove (2.9.4), note first that (1.2.14) gives

α(a+b)sµ(a,b)(s) =
∑

D integral

Λa(D)Λb(D)(αa+b/N(D)2)s(2.9.5)

=
∑′

D integral

Λa(D)Λb(D)(αa+b/N(D)2)s,

where
∑′ denotes the sum over the non-vanishing terms.

Proposition 2.9.6. Let {p1, . . . , pm} be all the distinct primes 6∈ P∞ with
norm α. Let k ≥ 1 and D be any integral divisor. If Λk(D) 6= 0, then N(D) ≥ αk,
and equality holds if and only if D has the form D =

∏m
i=1 pkii with

∑
ki = k.

Moreover, in this case,

(2.9.7) Λk(D) =
(

k

k1, . . . , km

)
(logα)κk,

where κ = 1 (Case 1) or κ = 0 (Case 2).

This is almost obvious. By this proposition, we may rewrite (2.9.5) as I(a,b) +
II(a,b)(s), where

I(a,b) =
∑′

N(D)2=αa+b

Λa(D)Λb(D)

=


0 (a 6= b),( ∑
k=k1+···+km

(
k

k1, . . . , km

)2)
(logα)κ(a+b) (a = b = k),

II(a,b)(s) =
∑′

N(D)2>αa+b

Λa(D)Λb(D)(αa+b/N(D)2)s.

In particular, I(1,1) = m(logα)2κ; hence

(2.9.8) µ̃(a,b) =
I(a,b)

(I(1,1))(a+b)/2
.

Therefore,

(2.9.9)
µ(a,b)(s)
µ(s)(a+b)/2

− µ̃(a,b) =
I(a,b) + II(a,b)(s)

(I(1,1) + II(1,1)(s))(a+b)/2
− I(a,b)

(I(1,1))(a+b)/2
.

In order to estimate the quantity II(a,b)(s), we need the following

Proposition 2.9.10. There exists σ0 > 1 depending only on (K,P∞) such that

(2.9.11) Λk(D) < N(D)σ0

for any D and any k ≥ 1.
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The point is that the present bound is independent of k.

Proof. Since limσ→+∞ (ζ ′K,P∞/ζK,P∞)(σ) = limσ→+∞ log ζK,P∞(σ) = 0, we have

0 <
∑

D integral

Λ1(D)
N(D)σ0

< 1

for sufficiently large σ0 > 1. But then its k-th power is also < 1; hence

(2.9.12)
∑

D integral

Λk(D)
N(D)σ0

< 1.

Since each summand is non-negative, this implies Λk(D) < N(D)σ0 for each D,
as desired.

By using Proposition 2.9.10, we can easily derive

(2.9.13) |II(a,b)(s)| � (ασ0+1)a+b

σ − σ0 − 1
(σ = <(s) > σ0 + 1),

and by combining these we obtain (2.9.4) directly.

§3. Analytic continuations

§3.1. Local formal power series

In connection with the local factors of M̃(s; z1, z2), we consider, in each of Cases
1, 2, the following formal power series F = F (x1, x2; t) in three variables:

(3.1.1) F (x1, x2; t) =
∞∑
n=0

Fn(x1)Fn(x2)tn = 1 +
∞∑
n=1

Fn(x1)Fn(x2)tn,

where each Fn(x) is a polynomial of x of degree n defined by (1.2.3), or equivalently,
by the generating functions

exp
(

xt

1− t

)
=
∞∑
n=0

Fn(x)tn (Case 1),(3.1.2)

exp(−x log(1− t)) = (1− t)−x =
∞∑
n=0

Fn(x)tn (Case 2).(3.1.3)

Note that each monomial xa1x
b
2t
n appearing in F − 1 satisfies 1 ≤ a, b ≤ n, and

has a positive rational coefficient. Define also the formal power series logF by
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∑∞
k=1(−1)k−1(F − 1)k/k, and express it as a power series of x1, x2, t, as

logF (x1, x2; t) =
∑

a,b,n≥1

β(a,b)
n

xa1x
b
2

a!b!
tn (β(a,b)

n ∈ Q)(3.1.4)

=
∑
n≥1

Bn(x1, x2)tn =
∑
a,b≥1

B(a,b)(t)
xa1x

b
2

a!b!
.

Note that β(a,b)
n = 0 if n < max(a, b); hence

Bn(x1, x2) =
∑

1≤a,b≤n

β(a,b)
n

xa1x
b
2

a!b!
,(3.1.5)

B(a,b)(t) =
∑

n≥max(a,b)

β(a,b)
n tn.(3.1.6)

For example,

B(1,1)(t) =


t(1− t)−1 (Case 1),
∞∑
n=1

n−2tn (Case 2);
(3.1.7)

hence β(1,1)
n = 1 (Case 1) and β

(1,1)
n = n−2 (Case 2).

In connection with the local factors of higher logarithmic derivatives of the
zeta function, we also consider the power series

(3.1.8) `(t) = `0(t) = − log(1− t),

and for each k ≥ 0,

(3.1.9) `k(t) =
(
t
d

dt

)k
`(t) =

∞∑
n=1

nk−1tn = t+ · · · .

They have the generating function

(3.1.10) `(teu) =
∞∑
k=0

`k(t)
k!

uk.

Put

κ =

{
1 (Case 1),

0 (Case 2).

For each fixed a, b ≥ 1, {`κ(a+b)(tn)}n=1,2,... forms a Q-linear topological basis
of the power series algebra Q[[t]] equipped with the t-adic topology. Hence there
exists a unique system {γ(a,b)

n }n,a,b≥1 of rational numbers such that
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(3.1.11) B(a,b)(t) =
∑
n≥1

γ(a,b)
n `κ(a+b)(tn)

for any a, b ≥ 1. It is clear from the definition that γ(a,b)
n = 0 if n < max(a, b), and

that

(3.1.12) β(a,b)
m =

∑
n|m

γ(a,b)
n (m/n)κ(a+b)−1

(m = 1, 2, . . . ); hence the Möbius inversion formula gives

(3.1.13) γ(a,b)
n =

∑
d|n

µ(n/d)(n/d)κ(a+b)−1β
(a,b)
d .

For example, γ(1,1)
1 = 1, and for n > 1, γ(1,1)

n =
∏
`|n(1 − `) in Case 1, and n−2

times this quantity in Case 2, where ` runs over all prime factors of n. By (3.1.4)
and (3.1.11), we have the formal equality

(3.1.14) logF (x1, x2; t) =
∑

n,a,b≥1
n≥max(a,b)

γ(a,b)
n `κ(a+b)(tn)

xa1x
b
2

a!b!
.

§3.2. Local analytic functions

We start with the following

Proposition 3.2.1. (i) F (x1, x2; t) defines a holomorphic function of x1, x2, t∈C
on |t| < 1.

(ii) Let R > 0, 0 < r < 1 and |x1|, |x2| ≤ R, |t| ≤ r, and suppose that one of r,R is
fixed and the other is sufficiently small. Then |F (x1, x2; t)− 1| < 1; hence the
(principal branch) logarithm logF (x1, x2; t) is holomorphic on this domain.

Proof. Note first that the equalities (3.1.2) for Case 1 and (3.1.3) for Case 2 are
valid also as formulas for analytic functions of x, t on |t| < 1. Note also that the
coefficients of Fn(x) are non-negative. Thus, for any N ≥ 1 and |x1|, |x2| ≤ R,
|t| ≤ r, we have

(3.2.2)
N∑
n=1

|Fn(x1)Fn(x2)tn| ≤
N∑
n=1

Fn(R)2rn ≤
( N∑
n=1

Fn(R)rn/2
)2

<
( ∞∑
n=1

Fn(R)rn/2
)2

=


(

exp
(

Rr1/2

1− r1/2

)
− 1
)2

(Case 1),

((1− r1/2)−R − 1)2 (Case 2).

The rest is obvious.
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Corollary 3.2.3. (i) For each a, b ≥ 1, the series (3.1.6) converges absolutely on
|t| < 1 and hence defines a holomorphic function B(a,b)(t) on |t| < 1.

(ii) Under the assumptions of Proposition 3.2.1(ii), the three series in (3.1.4) are
absolutely convergent, and the three equalities there are valid as equalities for
analytic functions.

Now let p be any non-archimedean prime divisor of the base field K, and put

(3.2.4) λp = (− logN(p))κ =

− logN(p) (Case 1),

1 (Case 2).

Then it follows directly from the definitions (§1.2) that

(3.2.5) M̃p(s; z1, z2) = F ((iλp/2)z1, (iλp/2)z2;N(p)−2s)

(s, z1, z2 ∈ C, <(s) > 0). For each pair (a, b) of a, b ≥ 1, define the holomorphic
function B(a,b)

p (s) on <(s) > 0 by

(3.2.6) B(a,b)
p (s) = λa+b

p B(a,b)(N(p)−2s).

In the special case a = b = 1, we have, by (1.2.12) and (3.1.7),

B(1,1)
p (s) = µ

(1,1)
p (s) =


(logN(p))2(N(p)2s − 1)−1 (Case 1),
∞∑
n=1

n−2N(p)−2ns (Case 2).
(3.2.7)

Corollary 3.2.8. Let R > 0, α ≥ 2, σ0 > 0, and |z1|, |z2| ≤ R, N(p) ≥ α,
<(s) ≥ σ0. Suppose that two of R,α, σ0 are fixed and the remaining one, if R, is
sufficiently small while if α or σ0, is sufficiently large. Then |M̃p(s; z1, z2)−1| < 1,
and

(3.2.9) log M̃p(s; z1, z2) =
∑
a,b≥1

B(a,b)
p (s)(i/2)a+b z

a
1z
b
2

a!b!
.

Proof. In Case 2, this is obvious by (3.2.5) and Corollary 3.2.3(ii). In Case 1,
the difference between |zν | and |xν | (ν = 1, 2) involves logN(p). But since
(logN(p))N(p)−σ0 is bounded and it tends to 0 when one of α, σ0 tends to∞, the
same proof works.

Now put

(3.2.10) φp(s) = `(N(p)−s) = − log(1−N(p)−s) (<(s) > 0),
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and for k = 0, 1, 2, . . . ,

(3.2.11) φ
(k)
p (s) =

dkφp

dsk
(s) = (− logN(p))k`k(N(p)−s) (<(s) > 0).

In particular, for k = κ(a+ b) and n = 1, 2, . . . ,

(3.2.12) φ
(κ(a+b))
p (2ns) = λa+b

p `κ(a+b)(N(p)−2ns).

The formal equalities (3.1.11), (3.1.14) suggest that the corresponding analytic
equalities

B(a,b)
p (s) =

∑
n≥max(a,b)

γ(a,b)
n φ

(κ(a+b))
p (2ns),(3.2.13)

log M̃p(s; z1, z2) =
∑

a,b,n≥1

γ(a,b)
n φ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z
b
2

a!b!
(3.2.14)

would hold on some suitable domain where M̃p(s; z1, z2) does not vanish. Note
that the coefficients γ(a,b)

n are independent of p, so that under some further con-
ditions the globalization would be possible. Our aim is to establish these results
(Theorems 4, 5).

§3.3. The global analytic functions of s

First, we define the functions B(a,b)(s) (a, b ≥ 1) of s.

Proposition 3.3.1. Let a, b ≥ 1. Then the sum

(3.3.2) B(a,b)(s) :=
∑

p6∈P∞

B(a,b)
p (s)

converges absolutely and uniformly on σ = <(s) ≥ (1 + ε)/(2 max(a, b)) for any
ε > 0, thereby defining a holomorphic function on σ > 1/(2 max(a, b)).

Proof. Since N(p)−2σ ≤ 2−1/max(a,b), and since B(a,b)(t)/tmax(a,b) is holomorphic
on |t| < 1 and hence bounded on |t| ≤ 2−1/max(a,b), we have, by (3.2.6),

|B(a,b)
p (s)| �a,b (logN(p))a+bN(p)−2σmax(a,b) ≤ (logN(p))a+bN(p)−1−ε,

whose sum over p 6∈ P∞ converges.

In the special case a = b = 1, we have, by (1.2.17) and (3.2.7),

(3.3.3) B(1,1)(s) = µ(1,1)(s).

Now we shall define the functions φ(k)(s). Let ζ(s) = ζK,P∞(s) be the zeta
function of K without P∞ factors, defined by the Euler product expansion

(3.3.4)
∏

p6∈P∞

(1−N(p)−s)−1 (<(s) > 1)
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and by analytic continuation on the whole complex plane. Let

(3.3.5) φ(s) = log ζ(s),

where the branch of the logarithm is the one that tends to 0 as <(s) tends to +∞.
It is holomorphic on <(s) > 1 and is a multivalued analytic function on C where
ζ(s) 6= ∞, 0. For each k ≥ 0, φ(k)(s) will denote the kth derivative of φ(s) with
respect to s. Thus, φ(0)(s) = log ζ(s), and for each k ≥ 1,

(3.3.6) φ(k)(s) =
dk−1

dsk−1
(ζ ′(s)/ζ(s))

is a meromorphic function on C. By these definitions we have, for each k ≥ 0,

(3.3.7) φ(k)(s) =
∑

p6∈P∞

φ
(k)
p (s) (<(s) > 1);

hence for each n ≥ 1,

(3.3.8) φ(k)(2ns) =
∑

p6∈P∞

φ
(k)
p (2ns) (<(s) > 1/(2n)).

In particular, if n ≥ max(a, b), then φ(κ(a+b))(2ns) is holomorphic on <(s) >

1/(2 max(a, b)).

Theorem 4. Let a, b ≥ 1. Then the equality

(3.3.9) B(a,b)(s) =
∑

n≥max(a,b)

γ(a,b)
n φ(κ(a+b))(2ns)

holds in the following sense. (i) For any N ≥ max(a, b) − 1 and ε > 0, the sum
over n ≥ N + 1 on the right hand side converges absolutely and uniformly on σ =
<(s) ≥ (1+ε)/(2(N+1)), and (ii) the equality (3.3.9) holds on σ > 1/(2 max(a, b)).

In other words, the holomorphic function

(3.3.10) B(a,b)(s)−
∑
n≤N

γ(a,b)
n φ(κ(a+b))(2ns)

on σ > 1/(2 max(a, b)) extends to a holomorphic function

(3.3.11)
∑

n≥N+1

γ(a,b)
n φ(κ(a+b))(2ns)

on σ > 1/(2(N + 1)). In particular, µ(1,1)(s)− φ(2κ)(2s) extends to a holomorphic
function on σ > 1/4.

The proof will be given in §3.7 after some preliminaries.
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§3.4. The analytic continuation of M̃(s; z1, z2)

Theorem 5. (i) For any N ≥ 0, the holomorphic function

(3.4.1) M̃(s; z1, z2) exp
(
−

∑
1≤a,b≤n≤N

γ(a,b)
n φ(κ(a+b))(2ns)(i/2)a+b z

a
1z
b
2

a!b!

)
of (s, z1, z2) on <(s) > 1/2 extends to <(s) > 1/(2(N+1)). In particular (N = 1),

(3.4.2) M̃(s; z1, z2) exp
(

1
4
φ(2κ)(2s)z1z2

)
extends to a holomorphic function of s, z1, z2 on the domain defined by σ > 1/4.
(ii) Let σ0 > 1/2, R > 0, and <(s) ≥ σ0, |z1|, |z2| ≤ R. Suppose that either σ0 is
fixed and R is sufficiently small, or R is fixed and σ0 is sufficiently large. Then
the two series ∑

a,b≥1

B(a,b)(s)(i/2)a+b z
a
1z
b
2

a!b!
,(3.4.3)

∑
a,b,n

n≥max(a,b)

γ(a,b)
n φ(κ(a+b))(2ns)(i/2)a+b z

a
1z
b
2

a!b!
(3.4.4)

both converge absolutely and uniformly to log M̃(s; z1, z2). In Case 2, this means
that M̃(s; z1, z2) has an absolutely convergent infinite product expansion

(3.4.5) M̃(s; z1, z2) =
∞∏
n=1

ζ(2ns)Rn(z1,z2) (<(s) ≥ σ0, |z1|, |z2| ≤ R)

(σ0, R as above), where

(3.4.6) Rn(z1, z2) =
n∑

a,b=1

γ(a,b)
n (i/2)a+b z

a
1z
b
2

a!b!
.

The proof will be given in §3.8 after the preliminary subsections.
For example, let K = Fq(x) and P∞ = {p∞} be as in Example 4 (§1.2). Then

ζK,P∞(s) is simply = (1− q1−s)−1; hence

(3.4.7) M̃(s; z1, z2) =
∞∏
n=1

(1− q1−2ns)−Rn(z1,z2).

Corollary 3.4.8 (Lemma A, §2.3). We have

(3.4.9) lim
s→1/2

|Arg(2s−1)|<π

M̃

(
s;

z1

µ(s)1/2
,

z2

µ(s)1/2

)
= exp

(
−z1z2

4

)
,

and the convergence is uniform on |z1|, |z2| ≤ R for any given R > 0.



282 Y. Ihara

Proof. The above theorem shows in particular that

(3.4.10) f(s; z1, z2) := M̃(s; z1, z2) exp
(
φ(2κ)(2s)

4
z1z2

)
extends to a holomorphic function of (s, z1, z2) on <(s) > 1/4. Clearly, f(s, 0, 0)
= 1, f(s, z1, z2) is continuous at (1/2, 0, 0), and lims→1/2 µ(s)−1/2 = 0. Therefore,

(3.4.11) f(s; z1/µ(s)1/2, z2/µ(s)1/2)

= M̃(s; z1/µ(s)1/2, z2/µ(s)1/2) exp
(
φ(2κ)(2s)

4µ(s)
z1z2

)
tends uniformly to 1 as s→ 1/2 (on |z1|, |z2| ≤ R). But by (2.2.1), the exponential
factor tends uniformly to exp(z1z2/4). These together prove the corollary.

Now let

(3.4.12) D = {s ∈ C; <(s) > 0, ζ(2ns) 6= 0,∞ (n = 1, 2, . . . )},

where ζ(s) = ζK,P∞(s). (In the number field case, the condition ζ(2ns) 6=∞ is of
course equivalent to s 6= 1/(2n).) Then Theorem 5 gives directly:

Corollary 3.4.13. M̃(s; z1, z2) extends to a single-valued (Case 1) or multi-valued
(Case 2) analytic function of (s, z1, z2) on D × C2.

As regards Case 2, if s0 is a point with <(s0) > 0, s0 6∈ D, and s encircles
s0 in its small neighborhood in the positive direction (z1, z2 being fixed), then
M̃(s; z1, z2) is multiplied by

(3.4.14) exp
(

2πi
r∑

ν=1

kνRnν (z1, z2)
)
.

Here, (nν)rν=1 are the distinct positive integers such that ζ(2nνs0) = 0 or ∞,
and kν is the order of ζ(s) at s = 2nνs0. Thus, M̃(s; z1, z2) can be regarded as
a univalent analytic function on Durab × C2, where Durab denotes the maximal
unramified abelian covering of D. Moreover, although M̃(s; z1, z2) is multi-valued,
its divisor on D×C2 is well-defined. Note also that for y1, y2 ∈ R, |M̃(s, iy1, iy2)|
is a univalent function on D × R2 (because Rn(iy1, iy2) ∈ R).

Now each local factor M̃p(s; z1, z2) is a holomorphic function on {<(s) > 0}
×C2, having a non-trivial zero divisor. It is clear from the Euler product expansion

(3.4.15) M̃(s; z1, z2) =
∏

p6∈P∞

M̃p(s; z1, z2) (<(s) > 1/2)
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(cf. §1.2) that the zero divisor of M̃(s; z1, z2) on {<(s) > 1/2} × C2 is simply the
sum of the zero divisors of the local factors. But moreover, we have

Corollary 3.4.16. The zero divisor of M̃(s; z1, z2) on D × C2 is the sum of the
zero divisors of M̃p(s; z1, z2) (restricted to D × C2) for all p 6∈ P∞.

This will be proved in the course of the proof of Theorem 5(i) (in §3.8).

§3.5. Preliminaries for the proofs of Theorems 4, 5; Some estimates

A main point in the proofs is the exchangeability of the order of (various) summa-
tions, over p, n, (a, b). To justify this, we need the absolute convergence of various
sums over all p, n, (a, b), and for this, some estimates of each summand will be
needed. In this subsection, we shall estimate |B(a,b)(t)|, |β(a,b)

n | and |γ(a,b)
n |.

Proposition 3.5.1. Let |t| < 1. Then

(3.5.2) |B(a,b)(t)| ≤ (2 min(a, b))a+b|t|max(a,b)(1− |t|1/2)−2(a+b).

Proposition 3.5.3.1 We have

(i) |β(a,b)
n | < (4en)a+b−1 (Cases 1, 2),

(ii)
∑
a,b,n

(
β

(a,b)
n

3a+ba!b!

)2

<
1
2

(Case 2).

Proposition 3.5.4. We have

(i) |γ(a,b)
n | < (4en)a+b (Case 1),

(ii) |γ(a,b)
n | < 3a+ba!b! (Case 2).

Before proving these propositions, we need several basic remarks. First, by
(1.2.3), the coefficient of xa1x

b
2t
n in F (x1, x2; t) =

∑
n≥0 Fn(x1)Fn(x2)tn for n ≥

max(a, b) is given by
(
n−1
a−1

)(
n−1
b−1

)
/(a!b!) in Case 1 and by δa(n)δb(n)/a!b! in Case 2,

and is 0 for n < max(a, b); hence F (x1, x2; t) may be rewritten as

(3.5.5) F (x1, x2; t) = 1 +
∑
a,b≥1

f (a,b)(t)
xa1x

b
2

a!b!
,

1Since so many positive absolute constants appear, instead of denoting them C1, C2, etc.,
we shall simply give an explicit choice for each (e.g., 4e in (i) below). Later arguments will not
depend on these specific choices.
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where

(3.5.6) f (a,b)(t) =


∑

n≥max(a,b)

(
n− 1
a− 1

)(
n− 1
b− 1

)
tn (Case 1),

∑
n≥max(a,b)

δn(a)δn(b)tn (Case 2).

Therefore,

(3.5.7) logF (x1, x2; t) =
∞∑
k=1

(−1)k−1

k

(∑
a,b≥1

f (a,b)(t)
xa1x

b
2

a!b!

)k
;

hence the coefficient B(a,b)(t) of xa1x
b
2

a!b! in (3.5.7) is given by

(3.5.8) B(a,b)(t)

=
min(a,b)∑
k=1

(−1)k−1

k

∑
a=a1+···+ak
a1,...,ak≥1

∑
b=b1+···+bk
b1,...,bk≥1

(
a

a1, . . . , ak

)(
b

b1, . . . , bk

) k∏
ν=1

f (aν ,bν)(t).

(A priori, the outer sum is over all k ≥ 1, but the inner sum is 0 unless k ≤
min(a, b).)

For any formal power series f and g with non-negative real coefficients, f ≤cf g

will denote the coefficientwise inequality ≤. Note that this inequality is preserved
by additions and multiplications. By (3.1.6) and (3.5.8), we have

(3.5.9)
∑

n≥max(a,b)

|β(a,b)
n |tn

≤cf

min(a,b)∑
k=1

1
k

∑
a=a1+···+ak
a1,...,ak≥1

∑
b=b1+···+bk
b1,...,bk≥1

(
a

a1, . . . , ak

)(
b

b1, . . . , bk

) k∏
ν=1

f (aν ,bν)(t).

We shall need the following two ≤cf inequalities:

(3.5.10) f (a,b)(u2) ≤cf


(u(1− u)−1)a+b,(

max(a, b)− 1
min(a, b)− 1

)
(u(1− u)−1)2 max(a,b).
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To verify these we may assume a ≥ b. By (1.2.4) and (3.5.6),

f (a,b)(u2) ≤cf

∑
n≥a

(
n− 1
a− 1

)(
n− 1
b− 1

)
u2n(3.5.11)

≤cf

(∑
n≥a

(
n− 1
a− 1

)
un
)(∑

n≥a

(
n− 1
b− 1

)
un
)
.

But

(3.5.12)
∑
n≥a

(
n− 1
a− 1

)
un = (u(1− u)−1)a,

and hence

(3.5.13)
∑
n≥a

(
n− 1
b− 1

)
un ≤cf


(u(1− u)−1)b(
a− 1
b− 1

)
(u(1− u)−1)a.

(The first is obvious by (3.5.12) and b ≤ a; the second is by (3.5.12) and
(
n−1
b−1

)
≤
(
n−b
a−b
)(
n−1
b−1

)
=
(
a−1
b−1

)(
n−1
a−1

)
). Therefore, (3.5.10) follows directly from (3.5.11)–

(3.5.13).

Proof of Proposition 3.5.3(i). By (3.5.9) and the first inequality of (3.5.10), we
obtain

∑
n≥max(a,b)

|β(a,b)
n |u2n ≤cf

min(a,b)∑
k=1

ka+b−1(u(1− u)−1)a+b(3.5.14)

≤cf min(a, b)a+b(u(1− u)−1)a+b.

Therefore, by (3.5.12),

|β(a,b)
n | ≤ min(a, b)a+b

(
2n− 1
a+ b− 1

)
≤ (a+ b− 1)a+b (2n− 1)a+b−1

(a+ b− 1)!
.

By using n! > e−nnn and a+ b− 1 ≤ 2a+b−1, we obtain

|β(a,b)
n | < (a+ b− 1)ea+b−1(2n− 1)a+b−1 < (4en)a+b−1,

as desired.

Proof of Proposition 3.5.1. We use the second inequality of (3.5.10), and proceed
similarly. The only difference is that we finally turn to “real inequalities” by using
|t| < 1 and a+ b ≥

∑
ν max(aν , bν) ≥ max(a, b).
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Proof of Proposition 3.5.3(ii). This is more delicate. In Case 2, by (3.1.1) and
(1.2.3), our F (x1, x2; t) is nothing but the Gauss hypergeometric series

(3.5.15) F (a, b; c; t) = 1 +
a · b
1 · c

t+
a(a+ 1)b(b+ 1)
1 · 2 · c(c+ 1)

t2 + · · · ,

for a = x1, b = x2, c = 1;

(3.5.16) F (x1, x2; t) = F (x1, x2; 1; t).

When <(c) > 0 and <(c− a− b) > 0, the series (3.5.15) converges also for t = 1,
and the Gauss formula

(3.5.17) F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

holds. In particular, F (1/3, 1/3; 1) = Γ(1/3)Γ(2/3)−2 = 1.461 . . . < 3/2. There-
fore, when |x1|, |x2| ≤ 1/3, |t| < 1, we have

(3.5.18) |F (x1, x2; t)− 1| ≤
∑
n≥1

Fn(1/3)2 = F (1/3, 1/3; 1)− 1 < 1/2.

Note now the following. For any α1, α2, . . . ∈ C, if we define the formal power
series

(3.5.19)
∑
n≥1

βnt
n = log

(
1 +

∑
n≥1

αnt
n
)
,

then for any sequence {an}n≥1 of non-negative real numbers with |αn| ≤ an, the
coefficientwise inequality

(3.5.20)
∑
n≥1

|βn|tn ≤cf − log
(

1−
∑
n≥1

ant
n
)

holds. Apply this for αn = Fn(x1)Fn(x2) (for |x1|, |x2| ≤ 1/3), an = Fn(1/3)2 and
βn = Bn(x1, x2), to obtain

(3.5.21)
∑
n≥1

|Bn(x1, x2)|tn ≤cf − log
(

1−
∑
n≥1

Fn(1/3)2tn
)
.

This of course carries over to an actual inequality for any t with 0 ≤ t < 1.
Therefore, by letting t→ 1 and by using (3.5.18) and Abel’s theorem, we obtain

(3.5.22)
∑
n≥1

|Bn(x1, x2)| ≤ log 2 (|x1|, |x2| ≤ 1/3);

hence

(3.5.23)
∑
n≥1

|Bn(x1, x2)|2 ≤ (log 2)2 < 1/2 (|x1|, |x2| ≤ 1/3).
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Now by (3.1.5) and the orthogonality relation we obtain

(3.5.24)
∫
|x1|=|x2|=1/3

|Bn(x1, x2)|2 d×x1 d
×x2 =

n∑
a,b=1

(
β

(a,b)
n

a!b!

(
1
3

)a+b)2

,

where d×xν (ν = 1, 2) denotes the normalized Haar measure on the circle |xν | =
1/3 (note that β(a,b)

n are rational and hence real). Summing over all n, we obtain

(3.5.25)∑
n,a,b

(
β

(a,b)
n

a!b!

(
1
3

)a+b)2

=
∫
|x1|=|x2|=1/3

∞∑
n=1

|Bn(x1, x2)|2 d×x1 d
×x2 < 1/2,

as desired.

Proof of Proposition 3.5.4. (Case 1) By (3.1.13), we have

γ(a,b)
n = na+b−1

∑
d|n

µ(n/d)d1−a−bβ
(a,b)
d ,

and by Proposition 3.5.3(i), we have d1−a−b|β(a,b)
d | < (4e)a+b−1; hence

|γ(a,b)
n | < (4en)a+b−1

∑
d|n

1 ≤ (4e)a+b−1na+b.

(Case 2) In this case,

γ(a,b)
n =

1
n

∑
d|n

µ(n/d)dβ(a,b)
d ;

hence

(3.5.26) |γ(a,b)
n | ≤ 1

n

∑
d|n

d|β(a,b)
d | ≤ 1

n

((∑
d|n

d2
)(∑

d|n

|β(a,b)
d |2

))1/2

.

By Proposition 3.5.3(ii) we have

(3.5.27)
∑
d|n

|β(a,b)
d |2 < (3a+ba!b!)2/2

for each a, b ≥ 1, and on the other hand, n−2
∑
d|n d

2 <
∑
m≥1m

−2 = π2/6; hence

(3.5.28) |γ(a,b)
n | < π√

12
3a+ba!b! < 3a+ba!b!,

as desired.
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Remark 3.5.29. From (3.5.16) and (3.5.17) and the power series expansion

(3.5.30) log Γ(1− x) = γx+
∞∑
n=2

ζQ(n)
n

xn (|x| < 1)

(γ the Euler constant, ζQ(s) the Riemann zeta function), we obtain, in Case 2 for
|x1|, |x2| < 1/2,

(3.5.31) logF (x1, x2; 1) = log Γ(1− x1 − x2)− log Γ(1− x1)− log Γ(1− x2)

=
∞∑
n=2

ζQ(n)
n

((x1 + x2)n − xn1 − xn2 ) =
∑
a,b≥1

(a+ b− 1)!ζQ(a+ b)
xa1x

b
2

a!b!
,

and hence

(3.5.32) B(a,b)(1) = (a+ b− 1)!ζQ(a+ b) (a, b ≥ 1) (Case 2).

§3.6. Further estimates and convergences

Proposition 3.6.1. Fix a, b ≥ 1, 0 < r < 1 and let |t| ≤ r. Then the series

(3.6.2)
∑

n≥max(a,b)

γ(a,b)
n `κ(a+b)(tn)

is absolutely and uniformly convergent, and has B(a,b)(t) as its limit. Moreover,

(3.6.3)
∣∣∣B(a,b)(t)−

N∑
n=max(a,b)

γ(a,b)
n `κ(a+b)(tn)

∣∣∣�a,b,r (N + 1)κ(a+b)+1|t|N+1

for any N ≥ max(a, b)− 1.

The above inequality will be needed for globalization.

Proof. Since (a, b) is fixed, |γ(a,b)
n | � nκ(a+b) by Proposition 3.5.4; and clearly,

|`k(t)| �k,r |t| for |t| ≤ r. Thus,

(3.6.4) |γ(a,b)
n `κ(a+b)(tn)| �a,b,r n

κ(a+b)rn.

Therefore, (3.6.2) is absolutely and uniformly convergent. Now, by definitions,

(3.6.5) Coeff
(
B(a,b)(t)−

N∑
n=max(a,b)

γ(a,b)
n `κ(a+b)(tn), tm

)
= β(a,b)

m −
∑
n≤N
n|m

γ(a,b)
n (m/n)κ(a+b)−1,
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where Coeff(·, tm) stands for the coefficient of tm. This is = 0 when m ≤ N , and
is �a,b m

κ(a+b)+1 for m ≥ N + 1, by Propositions 3.5.3 and 3.5.4. Therefore, the
left hand side of (3.6.3) is

�a,b

∑
m≥N+1

mκ(a+b)+1|t|m �a,b,r (N + 1)κ(a+b)+1|t|N+1,

as desired.

By (3.2.6) and (3.2.12), this gives:

Corollary 3.6.6. The holomorphic function B(a,b)
p (s) on <(s) > 0 can be ex-

pressed as an absolutely (and uniformly on <(s) ≥ ε > 0) convergent series

(3.6.7) B(a,b)
p (s) =

∑
n≥max(a,b)

γ(a,b)
n φ

(κ(a+b))
p (2ns).

Proposition 3.6.8. Let |x1|, |x2| ≤ R, |t| ≤ r < 1, and consider the triple series

(3.6.9)
∑

n,a,b≥1

γ(a,b)
n

xa1x
b
2

a!b!
`κ(a+b)(tn).

If one of R, r is fixed and the other is sufficiently small, then (3.6.9) converges
absolutely and uniformly to logF (x1, x2; t). Moreover, for any given 0 < c < 1, if
R, r are such that re8eR ≤ c, then

(3.6.10)
∑
a,b,n

n≥N+1

∣∣∣∣γ(a,b)
n

xa1x
b
2

a!b!
`κ(a+b)(tn)

∣∣∣∣�c (N+1)2(re8eR)N+1 (for all N ≥ 0).

Proof. We shall first prove (3.6.10).
(Case 1) By Proposition 3.5.4 and (3.1.10) (which holds analytically for

|t|, |teu| < 1), the left hand side of (3.6.10) is

≤
∑

n≥N+1

∑
k≥2

∑
a+b=k

1≤a,b≤n

(4enR)k

a!b!
`k(rn) ≤

∑
n≥N+1

(∑
k≥0

1
k!

(8enR)k`k(rn)
)

=
∑

n≥N+1

`((re8eR)n)�c

∑
n≥N+1

(re8eR)n �c (re8eR)N+1,

provided that re8eR ≤ c < 1.
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(Case 2) Since `(rn) = − log(1− rn) ≤ rn(1− rn)−1 ≤ rn(1− r)−1, Proposi-
tion 3.5.4(ii) gives

n∑
a,b=1

|γ(a,b)
n

xa1x
b
2

a!b!
`(tn)| ≤

n∑
a,b=1

(3R)a+brn(1− r)−1(3.6.11)

�r

(3R)2n2rn (3R < 1),

(3R)2nn2rn (3R ≥ 1).

But since (aR)2/2 < eaR (a > 0) and hence (3R)2 ≤ e3
√

2R < e8eR, this gives
(3R)2 < e8eRn and also (3R)2n < e8eRn (n ≥ 1); hence the left hand side of
(3.6.10) in this case is�c (N +1)2(re8eR)N+1 if re8eR ≤ c, as desired. This settles
the proof of (3.6.10) for both cases.

By (3.6.10), the series (3.6.9) converges absolutely and uniformly, as long as
re8eR ≤ c. Therefore, we may change the order of summation. Since we already
know by Proposition 3.6.1 that

(3.6.12)
∑
n≥1

γ(a,b)
n `κ(a+b)(tn) = B(a,b)(t) (|t| < 1),

and by Corollary 3.2.3 that

(3.6.13)
∑
a,b≥1

B(a,b)(t)
xa1x

b
2

a!b!
= logF (x1, x2; t)

holds when one of r,R is fixed and the other is sufficiently small, we conclude that
(3.6.9) tends to logF (x1, x2; t) for such r,R.

Corollary 3.6.14. Let σ0, R > 0, and <(s) ≥ σ0, |z1|, |z2| ≤ R. Suppose that
either σ0 is fixed and R is sufficiently small, or R is fixed and σ0 is sufficiently
large. Then for any non-archimedean prime p, log M̃p(s; z1, z2) (cf. Corollary 3.2.8)
can be expressed as an absolutely convergent series

(3.6.15) log M̃p(s; z1, z2) =
∑

n,a,b≥1
n≥max(a,b)

γ(a,b)
n φ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z
b
2

a!b!
.

Proof. Again, in Case 2, this follows immediately from the above proposition. In
Case 1, we may take r = N(p)−2σ0 , but R is replaced by (logN(p))R/2; hence
re8eR will be replaced by N(p)4eR−2σ0 . The exponent 4eR − 2σ0 is ≤ −σ0 if and
only if 4eR ≤ σ0; which is satisfied under our assumptions on σ0 and R. Hence
this case is also settled.
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§3.7. Proof of Theorem 4

Write σ = <(s). Fix N ≥ max(a, b) − 1 and ε > 0. We shall prove first that the
double sum

(3.7.1)
∑

n≥N+1
p6∈P∞

|γ(a,b)
n φ

(κ(a+b))
p (2ns)|

is finite and bounded on σ ≥ (1 + ε)/(2(N + 1)). First, φ
(κ(a+b))
p (2ns) =

λa+b
p `κ(a+b)(N(p)−2ns) by (3.2.12). But |γ(a,b)

n | �a,b n
κ(a+b) ≤ na+b (by Proposi-

tion 3.5.4), |λp| ≤ logN(p), `κ(a+b)(t) �a,b,r |t| for |t| ≤ r < 1, and N(p)−2σn ≤
2−2σ(N+1) ≤ 2−1−ε < 1/2; hence (3.7.1) is

(3.7.2) �a,b

∑
n≥N+1

na+b
∑

p6∈P∞

(logN(p))a+bN(p)−2nσ.

Put α = minp6∈P∞ N(p). Then since 2nσ ≥ 1 + ε and αN(p)−1 ≤ 1, we have
(αN(p)−1)2nσ ≤ (αN(p)−1)1+ε; hence

(3.7.3) α2nσ
∑

p6∈P∞

(logN(p))a+bN(p)−2nσ

≤ α1+ε
∑

p6∈P∞

(logN(p))a+bN(p)−1−ε �a,b,ε 1;

hence (3.7.2) is

(3.7.4) �a,b,ε

∑
n≥N+1

na+bα−2nσ ≤
∑

n≥N+1

na+b(α−(1+ε)/(N+1))n �a,b,ε,N 1,

as desired.
Since the sum

(3.7.5) φ(k)(2ns) =
∑

p6∈P∞

φ
(k)
p (2ns)

is absolutely convergent, because 2nσ ≥ 2(N + 1)σ ≥ 1 + ε, the convergence of
(3.7.1) implies that the global sum

(3.7.6)
∑

n≥N+1

γ(a,b)
n φ(κ(a+b))(2ns)

is also absolutely and uniformly convergent on σ ≥ (1 + ε)/(2(N + 1)); whence (i).
To prove (ii), let σ > 1/(2 max(a, b)). By Proposition 3.3.1 and Corollary 3.6.6,

(3.7.7) B(a,b)(s) =
∑

p6∈P∞

B(a,b)
p (s) =

∑
p6∈P∞

∑
n≥max(a,b)

γ(a,b)
n φ

(κ(a+b))
p (2ns),
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which, by the absolute convergence of (3.7.1) (for N = 0) can be reordered as

(3.7.8)
∑

n≥max(a,b)

γ(a,b)
n

∑
p6∈P∞

φ
(κ(a+b))
p (2ns) =

∑
n≥max(a,b)

γ(a,b)
n φ(κ(a+b))(2ns)

(cf. (3.3.8)), as desired. This completes the proof of Theorem 4.

§3.8. Proof of Theorem 5

Proof of (i). Fix N ≥ 0 and R ≥ 1, and assume |z1|, |z2| ≤ R. We may remove
any finite set of prime components p from both M̃(s; z1, z2) and φ(κ(a+b))(2ns)
in proving Theorem 5. So we may assume N(p) is so large that the following
conditions (a) and (b) are satisfied;

(a) N(p)−1/(2(N+1)) ≤ 1/2, and more strongly, 4eR(logN(p))N(p)−1/(2(N+1))

≤ 1/2;

(b) α = min(N(p)) is so large that the assumption of Corollary 3.2.8 is satisfied
for σ0 = 1/(2(N + 1)) (and for the above R).

Thus, |M̃p(s; z1, z2)− 1| < 1 and

(3.8.1) log M̃p(s; z1, z2) =
∑
a,b≥1

B(a,b)
p (s)(i/2)a+b z

a
1z
b
2

a!b!

(<(s) ≥ σ0, |z1|, |z2| ≤ R)

(absolutely convergent). Write

(3.8.2) log M̃p(s; z1, z2)−
∑

1≤a,b≤n≤N

γ(a,b)
n φ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z
b
2

a!b!
= Ip+IIp,

with

Ip =
N∑

a,b=1

(
B(a,b)

p (s)−
N∑

n=max(a,b)

γ(a,b)
n φ

(κ(a+b))
p (2ns)

)
(i/2)a+b z

a
1z
b
2

a!b!
,(3.8.3)

IIp =
∑

max(a,b)≥N+1

B(a,b)
p (s)(i/2)a+b z

a
1z
b
2

a!b!
.(3.8.4)

Note that Ip is a finite sum. Let I?p (resp. II?p ) denote the modifications of the
sums (3.8.3) (resp. (3.8.4)) where each outer summand is replaced by its absolute
value.

First, when <(s) > 1/2, we have

(3.8.5)
∑

p

log M̃p(s; z1, z2) = log M̃(s; z1, z2) (absolute convergence),
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by the argument of [6, §4] applied to the present situation, and also

(3.8.6)
∑

p

φ
(κ(a+b))
p (2ns) = φ(κ(a+b))(2ns) (absolute convergence).

Hence the sum over p of the left hand side of (3.8.2) for <(s) > 1/2 converges to

(3.8.7) log M̃(s; z1, z2)−
∑
a,b,n

1≤a,b≤n≤N

γ(a,b)
n φ(κ(a+b))(2ns)(i/2)a+b z

a
1z
b
2

a!b!
.

In order to prove Theorem 5(i) and Corollary 3.4.16, it suffices to show that
(3.8.7) extends to a holomorphic function on σ > 1/(2(N + 1)), and for this it
remains to prove that

∑
p I

?
p and

∑
p II

?
p are finite and uniformly bounded on

σ ≥ (1 + ε)/(2(N + 1)).
As for I?p , by Proposition 3.6.1,

I?p ≤
N∑

a,b=1

∣∣∣B(a,b)
p (s)−

∑
max(a,b)≤n≤N

γ(a,b)
n φ

(κ(a+b))
p (2ns)

∣∣∣ (R/2)a+b

a!b!

�N,ε

N∑
a,b=1

(N + 1)κ(a+b)+1(logN(p))a+bN(p)−2σ(N+1) (R/2)a+b

a!b!

�N,ε,R (logN(p))2NN(p)−1−ε;

hence
∑

p I
?
p �

∑
p(logN(p))2NN(p)−1−ε � 1.

As for II?p , we first estimate this by using Proposition 3.5.1, which together
with (3.2.6) gives

(3.8.8) |B(a,b)
p (s)|
≤ (logN(p))a+b(2 min(a, b))a+bN(p)−2σmax(a,b)(1−N(p)−σ)−2(a+b).

But since N(p)−σ < N(p)−1/(2(N+1)) ≤ 1/2 (by the assumption (a) above) and
min(a, b)a+b ≤ aabb ≤ ea+ba!b!, we obtain

(3.8.9)
1
a!b!
|B(a,b)

p (s)| ≤ (8e logN(p))a+bN(p)−2σmax(a,b).

Since a + b ≤ 2 max(a, b) and R ≥ 1, by reordering the sum using ν = max(a, b)
we obtain

II?p ≤
∑

max(a,b)≥N+1

(4eR logN(p))2 max(a,b)N(p)−2σmax(a,b)(3.8.10)

≤ 2
∑

ν≥N+1

ν

(
4eR logN(p)

N(p)σ

)2ν

.
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By the assumption (a) for N(p), we have 4eR(logN(p))N(p)−σ ≤ 1/2; hence

(3.8.11) II?p �N

(
4eR logN(p)

N(p)σ

)2(N+1)

≤ (4eR logN(p))2(N+1)

N(p)1+ε
,

because 2(N + 1)σ ≥ 1 + ε. Therefore,
∑

p II
?
p �N,R,ε 1.

This settles the proof of (i) and Corollary 3.4.16.

Proof of (ii). First, we shall prove the statement relating to (3.4.3). By Corol-
lary 3.2.8, we have |M̃p(s; z1, z2)− 1| < 1 and

(3.8.12) log M̃p(s; z1, z2) =
∑
a,b≥1

B(a,b)
p (s)(i/2)a+b z

a
1z
b
2

a!b!
.

Moreover, by the finiteness of
∑

p II
?
p for N = 0 shown above, the double sum

(3.8.13)
∑

p

∑
a,b

B(a,b)
p (s)(i/2)a+b z

a
1z
b
2

a!b!

is absolutely convergent. Therefore, we may interchange the summation order, and
since σ0 > 1/2, we have

log M̃(s; z1, z2) =
∑

p

log M̃p(s; z1, z2) =
∑

p

∑
a,b

B(a,b)
p (s)(i/2)a+b z

a
1z
b
2

a!b!
(3.8.14)

=
∑
a,b

(∑
p

B(a,b)
p (s)

)
(i/2)a+b z

a
1z
b
2

a!b!

=
∑
a,b

B(a,b)(s)(i/2)a+b z
a
1z
b
2

a!b!
,

as desired.
As regards (3.4.4), by Corollary 3.6.14,

(3.8.15) log M̃p(s; z1, z2) =
∑
n,a,b

γ(a,b)
n φ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z
b
2

a!b!

for all p. Put

(3.8.16) IIIp =
∑
n,a,b

∣∣∣∣γ(a,b)
n φ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z
b
2

a!b!

∣∣∣∣.
We shall show, by using Proposition 3.6.8, that

∑
p IIIp < ∞. In Case 1, r =

N(p)−2σ0 , and R should be replaced by (R/2) logN(p). Hence re8eR in Proposi-
tion 3.6.8 isN(p)−2σ0+4eR. Hence if either σ0 �R 1 or R�σ0 1, then−2σ0+4eR <



Arithmetic Functions M̃(s; z1, z2) Associated with Global Fields 295

−1 − ε; hence by (3.6.10) for N = 0, IIIp � N(p)−1−ε; hence
∑

p IIIp < ∞. In
Case 2, the same conclusion follows more directly. Therefore, we may interchange∑

p with
∑
n,a,b in (3.8.15) and use (3.3.8) to conclude the convergence of (3.4.4)

to log M̃(s; z1, z2). This settles the proof of (ii), and hence completes that of The-
orem 5.

§4. Rapid decay of |M̃σ(z)|

The main purpose of §4 is to give some reasonably strong estimates of |M̃σ(z)|2, for
M̃σ(z) = M̃(σ; z, z̄) (σ > 1/2, z ∈ C). The main results are Theorem 6 (§4.3) and
Theorem 7C (§4.6). The proofs of Lemmas B resp. B′ of §2 will also be supplied
(cf. Theorem 7C, resp. Corollary 4.1.6).

§4.1. Local estimates; large |z|

For any non-archimedean prime p of K and a positive real number σ, write as
before

(4.1.1) µσ,p := µ
(1,1)
p (σ) =


(logN(p))2/(N(p)2σ − 1) (Case 1),∑
n≥1

n−2N(p)−2nσ (Case 2),

(cf. (1.2.12)), and put

(4.1.2) M̃σ,p(z) = M̃p(σ; z, z̄) =
∫

C1
exp(i<(zgσ,p(t−1))) d×t

(cf. (1.2.8)). Note that

(4.1.3) |M̃σ,p(z)| ≤ 1.

A basic universal estimate of |M̃σ,p(z)| is the following:

Lemma C. Fix any σ0 > 0. Then

(4.1.4) |M̃σ,p(z)|2 �σ0 (µ1/2
σ,p |z|)−1 (σ ≥ σ0),

where �σ0 depends only on σ0.

Proof. Roughly speaking, this follows from the integral expression (4.1.2) and
classical analysis: if f(θ) (θ ∈ R/(2π)) is a real-valued C2-function such that f ′(θ),
f ′′(θ) are “sufficiently close” to trigonometric functions sin θ, cos θ respectively,
then ∫ 2π

0

ei|z|f(θ) dθ � |z|−1/2.
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But to save space, we shall just reduce its proof for each Case to an established
result.

In Case 1, this is proved in [2, §3.3]. (In fact, by (3.3.12), |M̃σ,p(z)|2 =
|Hσ,p(z)|2 �σ0 (rσ,p|z|)−1, but r−1

σ,p = (N(p)σ − N(p)−σ)/logN(p) < µ
−1/2
σ,p .) In

Case 2, this follows directly from [8, §7 Theorem 13], applied to F (z) = − log(1−z)
in which case we can take ρ0 = 1 (cf. the first paragraph of [8, §10]). This asserts
that for any ρ1 < 1,

(4.1.5)
1

2π

∫ 2π

0

exp{−i<(z̄ log(1− reiθ))} dθ �ρ1 r
−1/2|z|−1/2 (0 < r ≤ ρ1).

Since the left hand side of (4.1.5) for r = N(p)−σ gives M̃σ,p(z), and since
µσ,pN(p)2σ �σ0 1 (σ ≥ σ0), (4.1.5) gives M̃σ,p(z) �σ0 µ

−1/4
σ,p |z|−1/2, and hence

the desired result.

Corollary 4.1.6 (Lemma B′ of §2.7). As in §2.5, put α = minp6∈P∞ N(p) and
m = |{p 6∈ P∞;N(p) = α}|. Then there exists a constant C > 0 depending only on
(K,P∞) such that

(4.1.7) |M̃σ(µ−1/2
σ z)| ≤ C|z|−m/2

for all σ ≥ 1 and all z ∈ C.

Proof. By (4.1.1) we have µσ,p � N(p)−2σ; hence

(4.1.8) µ
−1/2
σ,p � N(p)σ,

and Theorem 3(i) (§2) gives α2σµσ �K 1 for σ ≥ 1; hence by (4.1.3) and Lemma C,

|M̃σ(µ−1/2
σ z)|2 ≤

∏
p6∈P∞
N(p)=α

|M̃σ,p(µ−1/2
σ z)|2 �

∏
p6∈P∞
N(p)=α

(µ1/2
σ,p |µ−1/2

σ z|)−1(4.1.9)

� (ασ|µ−1/2
σ z|−1)m = (α2σµσ)m/2|z|−m � |z|−m,

as desired.

§4.2. Local estimates; relatively small |z|

Since we always have (4.1.3), the bound (4.1.4) is effective only when µ1/2
σ,p |z| � 1.

If we fix both z ∈ C and σ > 0, then µ
1/2
σ,p z tends to 0 as N(p) → ∞. For small

µ
1/2
σ,p |z|, the following estimate will be useful.

Lemma D. There exists an absolute constant q0 > 1 such that

(4.2.1) |M̃σ,p(z)|2 ≤ exp
(
−µσ,p

2
|z|2
)

holds whenever N(p)σ ≥ q0 and µ1/2
σ,p |z| ≤ 2.
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Proof. Put t = N(p)−σ. Then (4.1.1) gives a power series expansion of µσ,p in t2

starting with λ2
pt

2, where λp = logN(p) (resp. = 1) for Case 1 (resp. Case 2). Note
that this power series is nowhere vanishing on |t| < 1 (in Case 1 this is obvious; in
Case 2 note only that

∑
n≥2 n

−2 = π2/6− 1 < 1). Thus, µ1/2
σ,p = λpt+ · · · extends

to a holomorphic and nowhere vanishing function of t on |t| < 1. We shall first
show that for any ϑ ∈ R/(2π),

(4.2.1)
∣∣∣∣M̃σ,p

(
reiϑ

µ
1/2
σ,p

)∣∣∣∣2 − J0(r)2

extends to a holomorphic function of (r, t) on |t| < 1 whose Taylor series at (0, 0)
is divisible by t2r4 (in the ring of power series of r, t). By (1.2.10),

(4.2.2) M̃σ,p

(
reiϑ

µ
1/2
σ,p

)
= 1 +

∑
a,b≥1

(±i/2)a+b µ
(a,b)
σ,p

(µ1/2
σ,p )a+b

ra+b

a!b!
cos((a− b)ϑ),

where µ(a,b)
σ,p = µ

(a,b)
p (σ). On the other hand, by (1.2.11) we see easily that

(4.2.3)
µ

(a,b)
σ,p

(µ1/2
σ,p )a+b

≡

{
0 mod t|b−a| (a 6= b),

1 mod t2 (a = b).

Note also that this quotient is a power series of t depending only on Cases and
(a, b). Therefore, the real (resp. imaginary) part f1(r, t) (resp. f2(r, t)) of (4.2.2)
(for r > 0, ϑ ∈ R/(2π)) are:

f1(r, t) = 1 +
∑
a≥1

(−1)a
µ

(a,a)
σ,p

(µσ,p)a
(r/2)2a

a!2
(4.2.4)

+ 2
∑
b>a≥1

b≡amod 2

(−1/4)(a+b)/2 µ
(a,b)
σ,p

(µ1/2
σ,p )a+b

ra+b

a!b!
cos((a− b)ϑ)

≡ J0(r) mod t2r4,

f2(r, t) =±
∑
b>a≥1

b≡a+1 mod 2

(−1/4)(a+b−1)/2 µ
(a,b)
σ,p

(µ1/2
σ,p )a+b

ra+b

a!b!
cos((a− b)ϑ)(4.2.5)

≡ 0 mod tr3.

Hence f2
1 + f2

2 − J0(r)2 ≡ 0 mod t2r4, as desired. Therefore, the quotient

(4.2.6) (f2
1 + f2

2 − J0(r)2)/(t2r4)
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is bounded on |t| ≤ 1/
√

2 and |r| ≤ 2 (say), independent of the continuous param-
eter ϑ ∈ R/(2π). Call an upper bound c1, so that

(4.2.7) |M̃σ,p(µ−1/2
σ,p w)|2 − J0(|w|)2 ≤ c1N(p)−2σ|w|4 (N(p)σ ≥

√
2, |w| ≤ 2).

Now we shall verify another inequality

(4.2.8) exp(−|w|2/2)− J0(|w|)2 ≥ c2|w|4 (|w| ≤ 2),

where c2 is another positive absolute constant. These two combined will give
Lemma D; indeed, if q0 ≥

√
2 and q2

0 > c1/c2, then c1N(p)−2σ ≤ c1q
−2
0 < c2;

hence by (4.2.7) and (4.2.8),

(4.2.9) |M̃σ,p(µ−1/2
σ,p w)|2 ≤ J0(|w|)2 + c2|w|4 ≤ exp(−|w|2/2).

Verification of (4.2.8). First, the power series expansion at r = 0 gives

(4.2.10) exp(−r2/2)−J0(r)2 ≡
(

1− r
2

2
+
r4

8

)
−
(

1− r
2

4
+
r4

64

)2

≡ r4

32
mod r6;

hence

(4.2.11)
1
r4

(exp(−r2/2)− J0(r)2) > 0 (0 ≤ r ≤ r0)

with some r0 > 0. That we may take r0 = 2.72 can be checked by computer. That
we may take r0 = 2 (which is what we need here) can also be shown as follows.
Put f(r) = exp(r2/4)J0(r). Then f(0) = 1, and

f ′(r) =
(
r

2
J0(r)− J1(r)

)
exp(r2/4) = −r

2
J2(r) exp(r2/4).

But J0(r) > 0 for r < 2.4, and J2(r) > 0 for r < 5.1; hence for 0 < r < 2.4,
we have f(r) > 0 and f ′(r) < 0; hence f(r) < f(0) = 1; hence f(r)2 < 1, i.e.,
J0(r)2 < exp(−r2/2) on this region. Therefore, (4.2.11) takes a positive minimal
value c2 on 0 ≤ r ≤ 2. This settles the proof of (4.2.8) and hence that of Lemma D.

§4.3. Global estimates; large |z|

Here and in what follows, all primes p considered are those outside P∞; in partic-
ular,

∑
p6∈P∞ will be abbreviated as

∑
p. An easy consequence of Lemma C and

the prime number theorems (on “π(x)” and “ψ(x)”) is:

Theorem 6. For any fixed σ1 > 1/2, δ > 0, a > 0, there exists R = Rσ1,δ,a > 0
such that

(4.3.1) |M̃σ(z)|2 < exp(−a|z|1/(σ+δ)) (1/2 < σ ≤ σ1, |z| ≥ R).
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Remark 4.3.2. The exponent 1/(σ + δ) (< 2) of |z| cannot be replaced by 2.
This is because for each fixed σ > 1/2 the Fourier dual Mσ(w) satisfies Mσ(w)�
e−λ|w|

2
for any given λ > 0 (cf. [6, §5.2]). By Hardy’s theorem,1 this implies that

there cannot exist any c > 0 such that M̃σ(z)� e−c|z|
2
.

Proof of Theorem 6. We may assume |z| > 1. For each y > 1, write

(4.3.3) Py = {p; N(p) ≤ y}, M̃σ,Py (z) =
∏

p∈Py

M̃σ,p(z),

so that |M̃σ(z)| ≤ |M̃σ,Py (z)|. By Lemma C (for, say, σ0 = 1/2) and (4.1.8),
|M̃σ,p(z)|2 ≤ CN(p)σ|z|−1 holds with some C > 1; hence

(4.3.4) |M̃σ,Py (z)|2 ≤ C |Py|
( ∏

p∈Py

N(p)
)σ
|z|−|Py|.

Choose

(4.3.5) y = |z|1/(σ+δ/2).

Since σ ≤ σ1, |z| � 1 implies y � 1. We shall give a proof in the number field case;
the function field case can be treated with minor modifications. For any ε > 0, we
have

(1− ε)y/log y ≤ |Py| ≤ (1 + ε)y/log y,(4.3.6) ∑
p∈Py

logN(p) ≤ (1 + ε)y(4.3.7)

for y �ε 1. Hence by (4.3.4) (including log 0 = −∞ in the inequality)

(4.3.8) log(|M̃σ,Py (z)|2) ≤ y((1 + ε) logC/log y + (1 + ε)σ − (1− ε) log |z|/log y)

= |z|1/(σ+δ/2)(I + II),
with

I ≤ (1 + ε)(σ1 + δ/2)(logC)/log |z|,(4.3.9)

II = (1 + ε)σ − (1− ε)(σ + δ/2) ≤ −δ/2 + ε(2σ1 + δ/2).(4.3.10)

But I < δ/8 for |z| � 1, and if we take ε that satisfies ε(2σ1 + δ/2) = δ/8, then
I + II < −δ/4. Therefore,

(4.3.11) log(|M̃σ,Py (z)|2) < −δ
4
|z|1/(σ+δ/2) ≤ −a|z|1/(σ+δ)

for |z| �a,δ,σ1 1, as desired.

1Recall that in the one-dimensional case, it asserts that f(x)� e−a|x|
2/2, f∧(ξ)� e−b|ξ|

2/2

(a, b > 0) with ab > 1 implies f ≡ 0. Apply this to f(x) = (1/
√

2π)
R∞
−∞Mσ(x+ yi) dy, f∧(ξ) =

M̃σ(ξ).
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§4.4. Small |z|, large (2σ − 1)−1

An easy consequence of Lemma D is:

Theorem 7A. Fix any ε, R with 0 < ε < 1, R > 0. If |z| ≤ R and (2σ − 1)−1

�ε,R 1, then

(4.4.1) |M̃σ(z)|2 ≤ exp
(
−1− ε

2
µσ|z|2

)
.

Proof. Take a finite set P of primes such that if p 6∈ P then N(p) is so large
that both µ

1/2
1/2,pR ≤ 2 and N(p)1/2 ≥ q0 (the constant in Lemma D) hold. Then

µ
1/2
σ,p |z| ≤ 2 whenever p 6∈ P , |z| ≤ R, σ > 1/2. Thus, Lemma D gives

|M̃σ(z)|2 ≤ exp
(
−|z|

2

2

∑
p6∈P

µσ,p

)
(4.4.2)

≤ exp
(
|z|2

2

(∑
p∈P

µ1/2,p − µσ
))

(|z| ≤ R).

Since limσ→1/2 µσ =∞, this gives

(4.4.3) |M̃σ(z)|2 ≤ exp
(
−1− ε

2
µσ|z|2

)
for |z| ≤ R and (2σ − 1)−1 �ε,R 1.

§4.5. Large |z|, large (2σ − 1)−1

Theorem 7B. Fix any ε with 0 < ε < 1. If |z| �ε 1 and (2σ − 1)−1 �ε 1, then

(4.5.1) |M̃σ(z)|2 ≤ exp
(
−µσ

2
|z|2(1−ε)

)
.

The proof requires some global estimate, Lemma E below in §4.7.

§4.6. Large (2σ − 1)−1, all |z|

Now, Theorems 7A, 7B combined give immediately:

Theorem 7C (Lemma B, §2.3). Fix any ε with 0 < ε < 1. If (2σ − 1)−1 �ε 1,
then

(4.6.1) |M̃σ(z)|2 ≤ exp
(
−1− ε

2
µσ|z|2(1−ε′)

)
for all z ∈ C, where ε′ = ε (resp. 0) for |z| ≥ 1 (resp. |z| < 1).
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In fact, Theorem 7B shows that (4.5.1) and hence also (4.6.1) holds for |z|
≥Rε with some Rε≥1. Now take R=Rε in Theorem 7A and let (2σ−1)−1�ε,Rε 1.
Then (4.4.1) and hence also (4.6.1) holds for |z| ≤ Rε too. Thus, Theorem 7C is
reduced to Theorem 7B.

§4.7. Key Lemma E

The key points for the proof of Theorem 7B are Lemma D and the following global
estimate from below of the error term for sums over primes.

Lemma E. Fix any ε with 0 < ε < 1/2. If (2σ − 1)−1 �ε 1 and T �ε 1, then

∑
N(p)≥T

µσ,p >

(1− ε)µσT 1−2σ (Case 1),

(1− ε)µσT 1−2σ/log T (Case 2).

Proof. We shall give a proof for the number field case. The function field case can
be treated with minor modifications.

(Case 1) By (4.1.1), we have µσ,p > (logN(p))2/N(p)2σ. As usual, set

(4.7.1) π(T ) =
∑

N(p)≤T

1 ∼ T/log T, ψ(T ) =
∑

N(p)≤T

logN(p) ∼ T,

and also set

(4.7.2) ψ2(T ) =
∑

N(p)≤T

(logN(p))2 ∼ T log T.

The last estimate follows from the first two by using only the trivial inequalities
ψ2(T ) ≤ (log T )ψ(T ) and ψ2(T )/π(T ) ≥ (ψ(T )/π(T ))2 (the Schwarz inequality).
By partial summation and by (4.7.2), we easily obtain, for T �ε 1,

(4.7.3)
∑

N(p)≥T

µσ,p > −(1 + ε)T 1−2σ log T + (1− ε)
∫ ∞
T

log t
t2σ

dt

for any σ > 1/2. But since the last integral can be explicitly given by

(4.7.4)
(

1
(2σ − 1)2

+
log T

2σ − 1

)
T 1−2σ,

we obtain∑
N(p)≥T

µσ,p > (1− ε)
(

T 1−2σ

(2σ − 1)2
+
(

1
2σ − 1

− 1 + ε

1− ε

)
T 1−2σ log T

)
(4.7.5)

> (1− ε) T 1−2σ

(2σ − 1)2
> (1− 2ε)µσT 1−2σ

for σ sufficiently close to 1/2, by Theorem 2(i) (§2.1). This settles Case 1.
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(Case 2) In this case, where µσ,p > N(p)−2σ, we first obtain easily

(4.7.6)
∑

N(p)≥T

µσ,p > −(1 + ε)
T 1−2σ

log T
+ (1− ε)

∫ ∞
T

dt

t2σ log t
.

But a more delicate treatment of the integral

(4.7.7)
∫ ∞
T

dt

t2σ log t
=
∫ ∞

(2σ−1) log T

e−uu−1 du

is required.

Sublemma 4.7.8. For any b > 0,∫ ∞
b

e−uu−1du=−γ + log(1/b) +
∫ b

0

1− e−t

t
dt(4.7.9)

≥

{
c0(log(1/b) + 1) (0 < b ≤ 2),

(b+ 1)−1e−b−1 (all b > 0),
(4.7.10)

where γ is the Euler constant γ = 0.5772 . . . , and c0 is an absolute positive con-
stant.

Proof. As for the first equality, the derivatives d/db of the two sides are equal, and
the formula for b = 1 can be found, e.g., in [10, §12.2 Ex. 4]. When 0 < b ≤ 2, so
that log(1/b) + 1 > 1/4, the quotient

(4.7.11)
(∫ ∞

b

e−uu−1 du

)/
(log(1/b) + 1)

is a continuous positive-valued function, which, by the equality (4.7.9) tends to 1
as b→ 0. Therefore, (4.7.11) attains a positive minimal value c0 > 0 on 0 < b ≤ 2.
The second inequality is obvious, because∫ ∞

b

e−uu−1 du >

∫ b+1

b

e−uu−1 du > e−b−1(b+ 1)−1.

Corollary 4.7.12.

(4.7.13) ey/x
∫ ∞
y/x

e−uu−1du > (1 + log x)/y (x, y � 1).

Proof. Put b = y/x. Let LHS (resp. RHS ) be the left (resp. right) hand side of
(4.7.13). First, let 0 < b ≤ 2. Then 1 + log(1/b) > 1/4, and by Sublemma 4.7.8,

LHS > ebc0(log(1/b) + 1) > c0(log(1/b) + 1).
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If y is so large that 1/y < c0/2 and (log y)/y < c0/8, then

RHS = (1 + log(1/b) + log y)/y <
c0
2

(1 + log(1/b)) +
c0
8
.

But since 1/4 < 1 + log(1/b), this is < LHS .
Now let b ≥ 2. Then (b+ 1)−1 ≥ (2/3)b−1; hence by Sublemma 4.7.8,

LHS > eb(b+ 1)−1e−b−1 ≥ 2/(3eb).

On the other hand, if x is so large that (1 + log x)/x < 2/(3e), then

RHS = (1 + log x)/(bx) < 2/(3eb) < LHS .

Now by (4.7.6), (4.7.7) and Corollary 4.7.12 applied to x = (2σ − 1)−1 and
y = log T (hence ey/x = T 2σ−1), we obtain

(4.7.14)
∑

N(p)≥T

µσ,p > −(1 + ε)
T 1−2σ

log T
+ (1− ε)T

1−2σ

log T

(
1 + log

1
2σ − 1

)

=
T 1−2σ

log T

(
(1− ε) log

1
2σ − 1

− 2ε
)
>
T 1−2σ

log T

(
(1− 2ε) log

1
2σ − 1

)
,

since we may assume log(1/(2σ − 1)) > 2. Since µσ − log(1/(2σ − 1)) is bounded
near σ = 1/2 (say, by Theorem 4 of §3.3), this is

>
T 1−2σ

log T
((1− 3ε)µσ).

This settles the proof of Lemma E also for Case 2.

§4.8. Proof of Theorem 7B

Let z ∈ C with |z| > 1 and put

T = Tz =

{
(2|z| log |z|)2 (Case 1),

|z|2 (Case 2).

It is easy to see that if |z| � 1 (depending only on (K,P∞)) and if N(p) ≥ Tz then
the assumptions N(p)σ ≥ q0 and µ

1/2
σ,p |z| ≤ 2, both for any σ > 1/2, of Lemma D

are satisfied and hence we have

(4.8.1) |M̃σ,p(z)|2 ≤ exp
(
−µσ,p

2
|z|2
)
.

(Note only that x ≥ 2y log y and y � 1 implies (x − 1)/log x > y, and that
µσ,p < µ1/2,p.)
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(Case 1) Let 0 < ε < 1, and |z| �ε 1, (2σ − 1)−1 �ε 1. Then by the above
claim and Lemmas D, E, we have, for T = Tz as above,∏

N(p)≥T

|M̃σ,p(z)|2 ≤
∏

N(p)≥T

exp
(
−µσ,p

2
|z|2
)

(4.8.2)

≤ exp
(
−1− ε

2
µσT

1−2σ|z|2
)
.

But if 2σ − 1 < ε/2 and |z| �ε 1, then T 1−2σ > T−ε/2 = (2|z| log |z|)−ε >
(1− ε)−1|z|−2ε; hence

(4.8.3) |M̃σ(z)|2 ≤
∏

N(p)≥T

|M̃σ,p(z)|2 ≤ exp
(
−µσ

2
|z|2(1−ε)

)
,

as desired.
(Case 2) In this case, T = |z|2, and we obtain, similarly,

(4.8.4)
∏

N(p)≥T

|M̃σ,p(z)|2 ≤ exp
(
−1− ε

2
µσ
T 1−2σ

log T
|z|2
)
.

But

T 1−2σ/log T =
1
2
|z|2(1−2σ)/log |z| > 1

2
|z|−ε/log |z| > (1− ε)−1|z|−2ε

for 2σ−1 < ε/2 and |z| �ε 1; hence (4.8.4) is ≤ exp(−(µσ/2)|z|2(1−ε)) also in this
case. This completes the proof of Theorem 7B.
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