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Abstract

Under some condition, M. Sato classified reductive prehomogeneous vector spaces of the
form (Go x G, A1 ® p,V(n) ® V). In this paper, under another condition, we classify
the prehomogeneous vector spaces of the same form. We consider everything over the
complex number field C.
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Introduction

For the definition and basic properties of prehomogeneous vector spaces (abbrev.
PV), see [K2]. Although the classification of irreducible PV’s has been completed in
[SK], to classify all the non-irreducible reductive PV’s still looks almost impossible.

In the 1960s, Professor Mikio Sato considered the reductive PV’s of the form
(Gop x G, A1 ® p,V(n) ® V) with a connected semisimple subgroup Gg of SL(n).
Although this form looks special, we show later that any reductive triplet with a
scalar multiplication is PV-equivalent to a triplet of this form. Here p : G — GL(V)
is a d-dimensional representation of a connected reductive algebraic group G. Then
we have p=p1+ -+ ppand V=V, +--- +V,,, where p, : G — GL(V,) is an
irreducible representation (1 < u < m). For each p, we have Vi=Vu®---® Vuku
where some simple component of G' acts on V,,, irreducibly. Put d, = dimV,
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and d,, = dimV,,. Then we have d = dy + --- + d,, and d, = dul"'duku-
Here if d, = 1, we put k, = 0. If d, > 2, we have k, > 1 and we may assume
du >2 (1 <v<k,). Now put § = max{d,,}. We may assume that § = di; by
renumbering if necessary. Then k; = 0 implies that § = 1.

Professor Mikio Sato proved that if (G X G,A; ® p,V(n)® V) is a PV for
6 <n <d-—4, then ki must be one of 0, 1,2, and classified such PV’s when k; = 2
as follows. Here and throughout, to simplify notation, we write

m

. /—/\ﬁ
G*(™)  instead of G x---x G,
and similarly for other binary operations in place of x.

Theorem 0.1 (M. Sato). Assume that (Go x G,A1 ® p,V(n) ® V) is a PV with
0<n<d-4§ and ky = 2. Then it is one of the following regular PV’s.

(i) (SL(n) x ((GL(2) x SL(2)) x GL(2)*™=D) A} ® (A1 ® Ay) @ APy,
Vin)® (V(©2) @ V(©2)+ V@)t D)) withm > 1 andn = 2 or n = 2m
(=d—2).

(ii) (SL(n) x ((GL(3) x SL(2)) x GL(3)*(m=D) A1 ® ((A; ® Ay) 8 ATy,
V(n)@ (V3) @ V(2) + V(3)Tm=D)) withm > 1 andn = 3 or n = 3m
(=d—3).

(iii) (SL(S) x ((GL(2) x SL(2)) x GL(2)),A1 ® (A1 @A) BA), V3@ (V(2)®

( GL(S) s

n=k+3m-—3 :d 3),; k=1 0r2

(vi) (SL(n) x ((GL(2) x SL(2)) x GL(1) x GL(2)*(™=2) A1 @ (A, ® A1) BA, ®
AP V(i) @ (V(2)@V(2)+ V(1) +V(2)Tm=2))) with m > 2; and n = 2
orn=2m—1(=d—2).

Proof. See p. 239 in [K1]. O

It is easy to see that when k; = 0, only the triplet (SL(m — 1) x (GL(1)*("™),
A @ (AT Vi(im —1) @ (V(1)+™)) with m > 3 is a PV.

Hence we shall consider the remaining case k; = 1 which implies that
(G, p1,V1) = (GL(1)x)Gs, (A1®)0o,V(0)) where G5 is a simple algebraic group.

First, we give a complete classification of these PV’s when G is an exceptional
simple algebraic group. Our first main result is as follows.
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Theorem 0.2. Assume that T := (Go x G, A1 ®p,V(n)@V) withk; =1 is a PV
with (G, p1, V1) = ((GL(1)x)Gs, (A1®)0, V(§)) where G5 is an exceptional simple
algebraic group. Then T is one of the following regular PV'’s.

(i) (SL(n) x (GL(1) x G5) x GL(8)*™=1) Ay @ (A @ ) 8 AF™ D) V(n) &
(V(8) + V(0)Tm=D)) with m > 2; n =8 or n = (m — 1)8 where o is any
irreducible representation of G5 with dego = 4.

(ii) (SL(n) x ((GL(1) x (G2)) x GL(t) x GL(7)*™=2) A, @ (A, @ Ao) B A, @
AZT2D) ) @ (VI(T) + V() + V(T)Tm=2) (m > 3)) with t = 1,2,5,6
where n =7 orn =t+7(m — 2).

(iii) (SL(n) x ((GL(1) x Eg) x GL(t) x GL(27)*™=2) A @ (A, @ A1) BA; @
AZMTDY ()@ (V(21) + V() + V(27)Hm=2)) (m > 3) with t = 1,2, 25,26
where n =27 orn =t + 27(m — 2).

(iv) (SL(n) x ((GL(1) x E7) x GL(t) x GL(56)*(m=2) A; @ (A, ® Ag) B A; @
AZT2) V() @ (V(56) + V(E) + V(56)T(m=2)) (m > 3) with t = 1,55
where n =56 or n =t 4+ 56(m — 2).

The proof of Theorem will be given in Section 2. Secondly we give a
classification of the extreme case n = ¢ or n = d — 6 when Gy is a classical simple
algebraic group with G4 # SL(§). This restriction is in a sense natural because the
case G = SL(4) contains all reductive PV’s with a scalar multiplication. Actually
atriplet (GL(1)x H, A;®0,V (k)) with k > 3is a PV if and only if (Go x G, A1 ®p,
V(n)®V)isa PV where Gy = SL(n) withn=0 =k(k—1)—1<d—06 =k(k—1)
and G = (GL(1)xSL(0))x (HxGL(k—1)),p = (AM@A)@(101)+(101)@(c@A1).

Our second main result is as follows.

Theorem 0.3. Assume that T := (G X G, A1 @ (p1+ -+ pm), V(n) ® (V(d) +
V(d)+ -+ V(dy)) withn=6 orn=d—8§ =dy+ -+ dy, is a PV where
(G,p1,V(5)) = (GL(1) x G5, A1 ® 0,V (9)) (# (GL(3),A1,V(0))) with a classical
simple algebraic group G and each V(d,,) has an independent scalar multiplication.
Then T is one of the following PV’s.

(I) Regular PV’s:

(i) (SL(n) x (GL(1) x Gy) x GL(8)*™=D) Ay @ (A ® o) 8 AZ™ ) Vin) @
(V(8) + V()T =1)) with m > 2; n =8 orn = (m — 1)6 where o is any
irreducible representation of G with dego = 4.

(ii) (SL(n)x ((GL(1)xG)x (GL(1)xTs) x GL(8)*(m=2)), Ay @((A @0)B(A1®7)
B AT) V() @ (V(6) + V(E) + V() Tm=2)) withm > 3,6 >t > 1;
n=20orn=t+(m—2) where Ts is a simple algebraic group such that
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(GL) xGs xTs, A1 @07, V(1)@ V(§) @ V(1)) is a non-trivial irreducible
reqular 2-simple PV.

(iii) (SL(n) x ((GL(1) x Sp(t)) x GL(u) x GL(v) x GL(2t)*(Mm=3)) A; @ ((A; ®
A sAaA sAT™ ) Vn) @ (V(2L) + V(u) + V(v) + V(26)Tm=3))) with
t>2;n=2t orn=u+v+2t(m—3) where (u,v) = (1,1), (1, k) withm > 4,
or (u,v) = (1,2t — 1), (2t — 1,2t — 1), (k,2t — 1) with m > 3. Here k is an
odd integer satisfying 3 < k < 2t — 3.

(iv) (SL(n) x ((GL(1) x Spin(10)) x GL(u) x GL(u) x GL(16)*(m=3)) A; ®
((A1®a half-spin rep.)B A BA; B A?(m_?’)), V(n) @ (V(16) + V(u) + V(u) +
V(16)+m=3))) with n = 16 or n = 2u+ 16(m — 3) where (u =1 and m > 4)
or (u=15 and m > 3).

(v) ((SL(2t—1) x SL(1)) x ((GL(1) x Sp(t)) x GL(26)*"=D), (A, mAL) @ (A ©
AN s AT (Y2t — 1)+ V(1) @ (V(2t) + V(2t)HMm=D)) with t > 2 and
m > 2.

(IT) Non-regular PV’s:

(i) (SL(n)x ((GL(1)xGs)x (GL(1)xT) x GL(6)*(m=2), Ay @((A 1 ®@0)B(A ®7T)
B AT"2) Vin) @ (V(8) + V() + V() Tm=2)) withm > 3,5 >t > 1;
n=24orn=t+(m—2)5 where Ts is a simple algebraic group such that
(GL) xGs xTs, A1 @07, V(1) @V (§) @V (t)) is a non-trivial irreducible
non-reqular 2-simple PV.

(ii) (SL(n)x ((GL(1)x Sp(t)) x GL(2r) x GL(2k+1)), A1 @ (A1 ® A1) BA; BA,),
Vin)@(V(2)+V(2r)+V(2k+1))) witht >2;2t—2>2r >2;2t—1>
2k+1>1;2r+2k+1>2t; n=2t orn=2r+2k+ 1.

(iil) (SL(n)x((GL(1)xSp(t))x GL(2r) x GL(2k+1) x GL(2t)*(™=3)) A1 @ (A1 ®
A)BABABAT ) Vn) @ (V(2t) + V(2r) + V(2 + 1)+ V(2t) Hm=3)))
witht >2;m >4; 26 —2>2 > 22 —1>2k+1>1;n =2t or
n=2r+2k+142t(m-3).

(iv) (SL(n) x ((GL(1) x Sp(t)) x GL(u) x GL(v) x GL(w) x GL(2t)*(m=1),
Mo (MoA)BABABABAT™ ™) V) e (V(2t)+ V() + V() +
V(w) + V()T =D)) with t > 2; n =2t orn = u+ v+ w + 2t(m — 4)
where (u,v,w) = (1,1,1),(1,1,k)) with m > 5, or (u,v,w) = (1,1,2t — 1),
(1,2t — 1,2t — 1), (2t — 1,2t — 1,2t — 1), (1, k, 2t — 1), (k, 2t — 1,2t — 1)) with
m > 4. Here k is an odd integer satisfying 3 < k < 2t — 3.

(v) (SL(n)x ((GL(1) x SL(2t+1)) x GL(u) x GL(u) x GL(8)*™=3), Ay @ (A1 ®
A sA e A 8AT™) Vin) @ (V) + V(u) + V(w) + V(6) =) with

=t(2t+1),t>2;,n=06=¢t2t+1) orn=2u+t(2t + 1)(m — 3) where
(u=landm>4) or(u=6—-1=¢t(2t+1)—1 and m > 3).
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The proof of Theorem [0.3 will be given in Section 3.

Remark 0.4. In the case of exceptional simple algebraic groups, as we see in
Theorem there does not exist a non-extreme PV. However in the classical
case, there exist non-extreme PV’s. See Proposition [3.10

Remark 0.5. There are other methods of classification of PV’s. See [Kac] and [R].

Notation. We denote by M (m,n) (resp. M(n)) the totality of m x n (resp. n x n)
matrices. For the classical algebraic groups, we denote by GL(n) (resp. SL(n),
Sp(n),SO(n), Spin(n)) the general linear group (resp. the special linear group,
the symplectic group, the special orthogonal group, the spin group).

The exceptional simple algebraic group of rank 2 is denoted by (G2) instead
of G4 to distinguish it from the second group in G; (i = 1,...,m). We denote by
E; (resp. Fy) the exceptional simple algebraic group of ranki (6 < i < 8) (resp. 4).

Now for the exceptional simple algebraic group Gs = (Gz) (resp. Fy, Fs,
E;, Eg), we denote its least representation degree (resp. its next least represen-
tation degree) by ¢ (resp. d1). Then we have 6y = 7 (resp. 26,27,56,248) and
01 = 14 (resp. 52,78,133,3875). Since dim G, = 14 (resp. 52,78,133,248), we
have dim G, < 47.

We denote by A; the standard representation of GL(n) on C". For a sub-
group H of GL(n), the restriction Aj|g (= the inclusion H — GL(n)) is also
simply denoted by A;. More generally, A, (k=1,...,7) denotes the fundamental
irreducible representation of a simple algebraic group of rank r.

Since ® and @ are sometimes difficult to distinguish, we use the notation
+ for the direct sum @®. Let p; : G; — GL,,, be a rational representation of
an algebraic group G; (i = 1,...,m). Then we denote the representation p =
el )+ +(1® - ®@1Qpm)of Gy X+ X Gy by pr B -+ B pp.

In general, we denote by p* the dual representation of a rational representa-
tion p. We denote by V(n) an n-dimensional vector space in general. If V(n) and
V(n)* appear at the same time, V' (n)* denotes the dual space of V(n).

81. Preliminaries

Let (Go x G, A1 ® p,V(n)®V) be as in Introduction where p = p; + - - - + p,, and
V=Vi+---+V,. Let G, be the image of p,, : G — GL(V,,). Recall that k, =0
implies G,, = GL(1) and d,, = 1. Since G — G X --- x G, is injective, we have

dimG <dimGq + -+ +dim G,,.

If (Go x G,A1 ® p,V(n)®V) is a PV, we have dim Gy + dim G > nd (see p. 41
in [SK]). Since n? — 1 > dim G, we have dim Gy + - -+ + dim G,,, > n(d —n) + 1.
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If§ <n<d-9, we have n(d —n) — 5(d — ¢

= (d—0—mn)(n—40) > 0. Hence
dimG; + - +dimG,,, > 0(d—9d)+1for 6 <n <

d — §. We can express this as
(1) 0>Ni+--+N,, (6<n<d-9)

where Ny = —dim Gy + 6(dy — )+ 1 and N, = —dim G, +dd, (2 < pp < m).
In particular, if &y = 1 and G; = GL(1) x G5 with a simple algebraic group
Gy, we have

(2) dimGy > No4 -+ Ny (6<n<d—0)

In the case dim Gy < $n(n+1), put N = —dim Gy +(dy — 6) + 16(6F1).
When § < n < 2d— 9§ F 1, we can see similarly that

(3) 0>NE+---4+N,, (<n<2d—6F1).
Lemma 1.1. For 2 < pu < m, we have N, > 0.

Proof. 1f k,, =0, we have N, = =140 > 0. If k, > 1, we may assume that d,; >
dyy > 2 (2 < p<m). Then dim G, < 14(d2; —1)+-- '+(diku_l) < A4k (d2,-1)
and d,, > d,,12"~1, and hence N, = —dim G, +dd,, > (2k~1 - ky)d2y + (ky —1)
> 0.

Proposition 1.2 (M. Sato). Assume that (Go X G,A1 ® p,V(n) ® V) is a PV.

Then we have the following assertions.
(1) If o <n<d-19, then ky <2.
(ii) If 6 <n<2d—3§—1 and dim Gy
(iii) If 6 <n <2d—38§+1 and dim Gy

n(n+ 1), then ky < 2.
n(n — 1), then k; < 2.

N[= N[

<
<

Proof. Under these conditions on n, by (I, and Lemma we have 0
Ny > Nt > Ny = —dimGy +6(dy —6) +1 > —ky (62 — 1) +62(2~1 — 1)
(2k1=1 — 1 — k1)6% + ky. Hence 28171 —1 —k; <0 and ky < 2.

O v

In the case § < n < d—4¢ and ki = 2, the classification has been completed by
M. Sato (see Theorem . We shall consider the case § <n <d-—§ and k1 = 1.

Proposition 1.3. (i) For any o : H — GL(V) and any n > degoc =dimV, a

triplet (H x GL(n),0 @ A1,V @ V(n)) is a PV. Such a PV is called trivial.
(ii) For any o and any n > m = dego, a triplet (G, p,V) is a PV if and only if

(GXGLMN),p@1+0@A,V+V(m)®@V(n)) is a PV.

(iii) For any (G, p,V(n)) and (H,o,V(m)), a triplet (GL(n)x(GxH), Ay ®(pBo),
V(in)®(V(n)+V(m))) is a PV if and only if (G x H,p* ® 0,V (n)* @V (m))
is a PV. Moreover if G is reductive, then it is a PV if and only if (G x H,
p®0o,V(n)®V(m)) is a PV.
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Proof. For (i), see p. 43 in [SK]; and (ii) is obvious from (i). Since the GL(n)-part
of the generic isotropy subgroup at I, of (GL(n) X G, A1 ® p, M(n)) is p*(G), we
have (iii). O

Proposition 1.4. Let G be a reductive algebraic subgroup of GL(n).

(i) If G # GL(n),SL(n) and the inclusion Ay : G — GL(n) is an irreducible
representation, then dimG < 1+ In(n+1) (= dim(GL(1) x Sp(n')) with
n = 2n'). Moreover if n is an odd integer, then dimG < 1+ in(n — 1)
(= dim(GL(1) x SO(n))).
(ii) If Gy is a semisimple algebraic proper subgroup of SL(n) and the inclusion
A1 : Go = SL(n) is an irreducible representation, then dim Go < In(n+1).
(i) If G # GL(n) and the inclusion Ay : G — GL(n) is not irreducible, then
dimG < (n—1)2 + 1.

Proof. For (i) and (ii), see Lemma 17, p. 52 in [SK]. For (iii), we may assume that
G C GL(k) x GL(n — k) (1 < k <n—1), and hence dimG < k? + (n — k)? <
1+ (n—1)=% O
Proposition 1.5. For do +ds > n > ds,d3 and n > 0, the following conditions
are equivalent.
(i) (GL(n) x (H x GL(d2) x GL(d3)),A1 ® (cBA1BA;),V(n)®@ (V(6)+V(d2) +
V(ds))) is a PV.
(ii) (Hx(GL(n—d)xGL(n—d3)),c®@(A18BA1),V(0)®(V(n—d2)+V(n—ds)))
15 a PV.

Proof. Since § < n and (n—ds)+(n—ds) < n, we obtain this result by Theorem 7.8
in [K2]. O

Proposition 1.6. If (G x GL(n),p ® A1,V (6) @ V(n)) with § > n > 1 is an
irreducible PV, then (G x GL(1),p ® A1,V (0) ® V(1)) is also a PV. However if

the former triplet is not irreducible, this conclusion does not hold in general.

Proof. See Proposition 3.2 in [KTK]. A counterexample in the non-irreducible case
is given by Remark 3.3 in [KTK]. O

Proposition 1.7. Let G5 be an exceptional simple algebraic group.
(1) T1 = (SO(TL)X(GL(ml)XGL(mQ)),Al(X)(AlEEAl),V(n)@(V(m1)+V(m2)))
(n>my >mg >1) is a non-PV.
(ii) T2 := (Gs x (GL(r) x GL(s)),0 ® (A1 B A1),V () @ (V(r) + V(s))) is a
non-PV for§ >r > s> 1.
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(iii) For a semisimple algebraic subgroup Go € SL(6), a triplet (Go x (GL(1) x
Gs),A\1 ® (A1 ®0),V(§) @ V(3)) is a non-PV.

Proof. The triplet T is PV-equivalent to ((SO(m1) x SO(n — my)) x GL(ms),
(M BA) @A, (V(my) +V(n—my)) @ V(ms)) (see p. 109 in [SK]). Note that
we may assume n/2 > my > ms > 1 by castling transformation. Thus Ty is PV-
equivalent to (SO(n — my) X SO(msg), A1 ® A1,V (n —my) @ V(msz)), which is a
non-PV (see p. 53 in [SK]).

If the triplet T is a PV, then (G5 x GL(1),0 ® A1,V (d)) must be a PV by
Proposition Hence by [SK]|, we have G5 # Fy, Eg, and for G5 = (G3) (resp.
Es,E7),d = 7 (resp. 27,56). Since ((G2), A2, V(7)) C (SO(7),A1,V (7)) , we obtain
the case for G5 = (G2) by (i). For Eg, since (Eg x GL(t), A1 ® A1,V (27) @ V()
is a non-PV for 3 < t < 24, Ty is a non-PV if one of r,s,7 + s,54 —r — s
is in between 3 and 24. However if r,s = 1 or 26, it is a non-PV by [K3]. For
E;, note that (E7 x GL(t), A¢ ® A1,V (56) ® V(¢)) is a non-PV for 2 < t < 54.
Hence if one of r,s,r + 5,112 — r — s is in between 2 and 54, then Ts is a non-
PV. However if r,s = 1 or 55, it is a non-PV by [K3]. For (iii), if Gy # GL(9)
and the inclusion A; : Go — SL(4) is irreducible, then by Proposition we
have dim Gy < 36(6 + 1). Therefore if (G x G1,V () ® V(8)) is a PV, then
%5(5 + 1)+ 1+ dimGy > dimGy + dimG; > 62 and hence 6; > dimGy >
—1+426(6 —1) > =1+ £60(60 — 1) > &1, a contradiction. If the inclusion A; :
Go — SL(J) is not irreducible, we may assume that Go C GL(r) x GL(§ — ).
Then by (ii), we obtain our result. O

Proposition 1.8. ((GL(m1)xGL(m3))x(GL(n1)xGL(ny)), (ABA1)Q(A18BA),
(V(m1) + V(me)) @ (V(n1) + V(na))) is a PV if and only if m1 + ma # n1 + no.

Proof. See Theorem 9.6 in [KIJ. O

Proposition 1.9. (SL(n) x (GL(dy1) x GL(d2) x GL(ds) x GL(d4)), A1 @ (A1 B
A BABA),V(n)® (V(di) +V(de) +V(ds) + V(ds))) is a PV if and only if
di+do+ds+dy 7é 2n orn < maX{dl,dg,d37d4}.

Proof. See Theorem 9.10 in [K1J. O

Proposition 1.10. Assume k1 = 1 and (G,p1,V(d1)) = (GL(1) x G5, A1 ® o,
V(9)) where G is any simple algebraic group. Assume that Go is a reductive
subgroup of GL(n) such that the inclusion Ay : Gy — GL(n) is not irreducible.
Then T = (Go X Gy Ay ® (py + -+ + p), V(1) @ (V(3) + V(da) + -+ + V(dm)))
withn=ds+ -+ +dpn (=d—109) and m > 3 is a non-PV.
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Proof. By assumption, we have Go C GL(k) x GL(d —§ — k) with 1 < k < d—¢.
If T is a PV, then ((GL(k) x GL(d — 6 — k)) x (GL(d2) x GL(d3 + - -+ + dp)),
MBA)®MNBA),(V(E)+V(d—0—k) @ (V(da) +V(dz+ -+ dpn))) must
be a PV, which is a contradiction by Proposition [I.8] O

Proposition 1.11 (Regularity of PV’s). (i) Assume that G is a reductive alge-
braic group. Form >n > 1, (GXGL(n), p@14+0®@A1,V+V(m)V(n)) is a
regular PV if and only if (GxGL(m—n), p@1+0c*@A1, V+V (m)*®@V (m—n))
is a reqular PV.

(ii) Forn =08 orn =t+ ks, (SL(n) x (GL(1) x G,) x T x GL(§)**)), A; ®
(M®o)BTHS AE(k)) V(n) @ (V(8) + V(t) + V(6)T ) is a regular PV if
and only if (Gs xT,o @1,V (6) @V (t)) is a reqular PV where G5 is a simple
algebraic group.

(iii) Let p: G — GL(V) be a representation and o its restriction to a subgroup
H of G. Assume that (H,o,V) is a PV. Then (G,p,V) is a PV. Moreover
if (G,p,V) is a regular PV, then (H,o0,V) is also a regular PV.

Proof. A reductive PV is regular if and only if the generic isotropy subgroup is
reductive. Since the generic isotropy subgroup is invariant up to isomorphism under
castling transformation, we have (i). For (ii), it is enough to see the case n = § since
the case n = t+ k¢ is its castling transform. The generic isotropy subgroup at Is of
(SL(6) x (GL(1) x Gs), A1 ®@ (A1 ®0), M(0)) is {(c*(A),1,A) | A € G5} 2 G, and
for H C GL(4), the generic isotropy subgroup at I5 of (H x GL(5), A1 ® A1, M(5))
is {(h,'h™Y) | h € H} = H, and we have our result. Note that (G5 x T,0* ® T,
V(§)*@V(t) = (GsxT,oT,V(6)®V(t)) since G, is reductive. By the definition
of regularity, (iii) is clear. O

Proposition 1.12. (I) The following triplets are regular PV’s.

(i) (G2 x GL(t),A2 @ A1, V(T) @ V(¢t)) with t = 1,2,5,6.
(il) (Fe x GL(t),A1 ® A1,V (27) @ V(1)) with t = 1,2,25,26.
(ifi) (E7 x GL(t), A¢ ® A1, V(56) @ V() with t = 1,55.
(iv) (Sp(t) % (L) x CL(©)), Ay & (A 8AL), V(26) @ (V () -V (v)) with (u,v) =
(1,1), (1,2t = 1), (2t — 1,2t — 1), (1, k), (k, 2t — 1) where k is an odd integer

satisfying 3 < k < 2t — 3.
(v) (Spin(10) x (GL(u) x GL(u)), a half-spin rep. @ (A1 B A1),V (16) ® (V(u) +
V(w))) with u = 1,15.

(IT) The following triplets are non-regular PV’s.
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(1) (Sp(t) x (GL(2r) x GL(2k+1)),Ai @ (A1 8A1),V(2t) @ (V(2r)+ V(2k+1))
witht>2, 2%4—2>2r>92 2 —1>2%+1> 1.

(ii) (Sp(t) x (GL(u) x GL(v) x GL(w)),A1 @ (A1 BA; BA1),V(2t) @ (V(u) +
V() +V(w))) with (u,v,w) = (1,1,1), (1,1,2t — 1), (1,2t — 1,2t — 1), (2t — 1,
2t—1,2t—1),(1,1,k), (1,2t —1,k), (2t — 1,2t — 1, k) where k is an odd integer
satisfying 3 < k < 2t — 3.

(iii) (SL(2t+1) x (GL(u) x GL(w)),Aa @ (A1 8A1), V((2t+ 1)) @ (V(u) +V(w)))
withu =1 oru=1t(2t+1) — 1.

Proof. Use Proposition [Ka] and [KUY]. O

§2. The exceptional case

In this section, we shall give the proof of Theorem [0.2} We assume that k; = 1 and
G1 = (A ® 0)(GL(1) x G,) where G is an exceptional simple algebraic group.
For simplicity, we write G; = GL(1) x G4. In this case, we have d; = ¢ and hence
Ni = —dimG; + 1 = —dimG,. We may assume that d,; > d,,, (1 < v < k)
when k, > 1. For Jp and ¢, see Notation in Introduction.

Lemma 2.1. Let G4 be an exceptional simple algebraic group.

(i) If k. >3, then N, > 4dyn (6 — dyn) + d2y + 2.
(11) If k# =2 and dﬂl > dug > 3, then NM >1+ 2(5 — dul)dul + (Sd#l > 30.
(111) If k# =2 and dﬂg = 2, then NH > (5 - d,ul)d,ul + (Sdld - 3) > 39.

Proof. As in the proof of Lemma we have dim G, < 1+ k,(d; — 1) and
d, > du12kﬂ_1 (2 < u < m). Hence N, = —dimG, +édd, > k, —1— kudil +
2ku=18d = 2ku=1(§ — dyr)dyn + (28071 — ku)dzy + (ky —1). If ky, > 3, we have
2ku=1 > 4 and 2k»~! — k, > 1, and we obtain (i). If k, = 2, we have dim G, <
1+ (d% — 1)+ (d2g — 1) and d;, = dyndy. Hence N, > 1 —d2) — d2y + 0dy1d,.
If dyy > dyp > 3, we have N, > 1 —2d2; + 30d,, ie., (i). If dp = 2, we
have N, > 20d,; — dil — 3 > dd,1 — 3. In particular, N, > 40 — 3 (dy1 > 4),
N, >60—12 (dy1 =3), N, > 45 —7 (d,1 = 2). Since § > 7, we have N, > 36. O

Proposition 2.2. If G; = GL1 x G5 with G5 an exceptional simple algebraic
group, then k, =0 ork, =1 (2<pu<m).

Proof. For the exceptional simple algebraic group G5 = (Gs2) (resp. Fy, Eg, E7, Eg),
put ¢t = 4 (resp. 8,9,12,16). By Lemma if k, > 3 and d,; > t, then we have
dim G = 14 (resp. 52,78,133,248) > N, > d>; > t* = 16 (resp. 64,81, 144,256),
a contradiction. If k, > 3 and t — 1 > d,; > 2, we have 6 —d,1 > 4 (resp.
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19,19,45,233), and dim G, > N, > 4d,,(5 — dyu1) > 8(6 — dyy) > 32
152,152, 360, 1864), a contradiction. If k, = 2, we have dimG, > N, > 30 >
309 = 21 (resp. 78,81,168,744), a contradiction. Hence k,, < 1. O

By Proposition first we shall investigate the prehomogeneity of

(4) (Go x ((GL(1) x Gg) x Ga x -+ X Gp), A1 @ (A1 @) + pa+ -+ + pm),
V(in)®@ V() +V(de)+--+V(dn)))

with 6 > d, (2<pu<m)and d <n <dy+---+dy where Gy is an exceptional
simple algebraic group and each G, contains the scalar action GL(1). Then we
shall find the groups p(G) € (GL(1) X 0(Gs)) X G2 X -+ - X Gy, such that (Go x G,
A ®p,V(n)®@V(d)) is a PV.

Lemma 2.3. If isa PVwithn=d—06 (=da+---+dn), then Go = SL(n).

Proof. Assume that G # SL(n) and the inclusion A : Go < SL(n) is irreducible;
then by (ii) of Proposition we have dim Gy < in(n + 1). Hence if is a
PV, we have in(n + 1) + 1+ dimG, + d3 + -~ + d2, > n(5 + n), and hence
61 >dimGy > tn(n—1)—1+do(6 —do) + - +dm(6 —dp) > 36(6—1) —1 > 6y,
a contradiction. If the inclusion Ay : Gg — SL(n) is not irreducible and m > 3,
then by Proposition [I.10] it is a non-PV. If m = 2, then § < n < dy < § implies
that n = . Then by (ii) of Proposition it is a non-PV. O

Lemma 2.4. If is a PV, then 1 <d, <3 ord—3<4d, <9, and only the
following cases are possible for G, 6 and G, (2 < p <m).

(i) Ifd, =0, then N, =0 and G, = GL(6) for any o with dego = 4.
(i) Ifd,=6—-1ord, =1, then N, =96 —1, G, = GL(d,) and either § = dy,
or d =61 with G4 # Eg.
(iii) Ifd, =0—2 ord, =2, then N, = 2(60 —2), G, = GL(d,) and § = 6y with
Gs # Es.
(iv) Ifd, =0 —3 ord, =3, then N, = 3(80 — 3), G, = GL(d,,) for Gs = (G2)
and Eg with § = 6g; or N, =77, G, = GL(1) x SO(3) for G; = Es.

Proof. Let Gy = (G2) (resp. Fy, Es, E7, Eg). For (i), if G, # GL(6), then by
Proposition we have dimG, < 1+ £6(0 + 1) and hence by (2)), we have
dim G, = 14 (resp. 52,78,133,248) > N, = —dim G, + 6% > 36(6 —1) =1 > 20
(resp. 324,350, 1539, 30627), a contradiction. Hence N, = —dim GL(6) + dd,, = 0.
For (ii), if d, = 0 — 1 and G, # GL(0 — 1), then similarly we have dimG, <
1+ $6(6 — 1) and hence dim G > N, > £6(8 — 1) — 1, a contradiction. It follows
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that N, = — dim GL(§—1)+8(6—1) = 6 — 1. If d, = 1, then k, = 0,G,, = GL(1)
and N, = 6§ — 1. If G5 # Eg, then dimGs = 61 > N, = § — 1, and we have
0 =dp,601. If G5 = Eg, we have dim G, = §p > N, = § — 1 and hence § = do.
Now if Gy = Eg with § — 2 > d,, > 2, we have 248 > N, > d,,(6 — d,) >
d,(248 — d,,) > 248, a contradiction. Hence we assume that Gy # Eg so that
dim Gs = §;. Assume that § —2 > d, > 2. Then § = Jp since dimG, = 6; >
N, > d,(6 —d,) > 6 if and only if (6 + /02 — 481) > d,, > 3(6 — V02 — 48,),
and if § > &1, we have é(é—i—M) >6-2>d,>2> %(5—M)
Thus § = 09 and if 69 — 4 > d, > 4, then %((504—\/(53—4(51) >0 —4>d, >
4 > %(50 — /03 — 461) since 46y > 6, + 16. This implies that dim G, = §; >
N, > d, (0o —d,) > 61, a contradiction. It follows that dg > d, > dp — 3 or
d, = 1,2,3. If G5 = F, (resp. E7) with d, = dy — 3 or 3, then dimG, = 26
(resp. 56) > N, > 3(dp — 3) = 69 (resp. 159) > 26 (resp. 133), a contradiction.
Hence if d, = 6 — 3 or 3, then G, = (G2) or Eg with 6 = dy. Assume that
d, = 69 — 2 (resp. 6o — 3) with G, # GL(d,). Then by Proposition we
have dimG,, < 1+ $(6 — 2)(do — 1) (resp. 1 + (6o — 3)(6p — 2)) and hence
dim G, =6 > N, > —1-3(80—2) (80— 1)+80(80—2) = —1+%(80—2)(60+1) (resp.
—141(60—3)(60+2)) > 61, a contradiction, and hence G,, = GL(d,,) for d,, = 69—2
or 6o — 3. If d, = 2, then G, must be GL(2). If d, = 3 and G, # GL(3),
then G, = GL(1) x SO(3). For G; = (G2), we have dim(Gy) = 14 > N, =
—dim(GL(1) x SO(3)) + 39 = 17, a contradiction. O

Proposition 2.5. If is a PV, then only the following cases are possible.

(i) Ga =+ =Gy = GL(9) for any o with dego = 4.
(ii) Go = GL(6 — 1) or GL(1); G35 = -+- = Gy, = GL(0) with 6 = &g, or § = &,
with G4 # Eg.
(ili) G2,G3 = GL(6g — 1) or GL(1); G4 = --- = Gy, = GL(d¢) with § = §y and
Gs # Eg.
(iv) Go = GL(60g — 2) or GL(2); G3 = --- = G, = GL(8y) with 6 = &y and

G, # Es.
(V) G2 = GL((;Q — 3) or GL(3), G3
Gy = (G2) or Eg.

- = Gy = GL(6y) with § = 6y and

(vi) G2 =GL(1) x SO(3); G = -+- = G, = GL(27) with G4 = E.
Proof. Use and Lemma O

Lemma 2.6. Let Gs be any simple algebraic group, and Gy a semisimple alge-
braic subgroup of SL(n). For 6 < n < (m —1)d, let T := (Gp x ((GL1 x G;) x
GLE) "D, A @ (A @ 0) B AT ), V(n) @ (V(6)0™)).
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(i) Ifn =246, then'T is a PV if and only if (Gox (GL(1)xGs), A1 ®(A1®0),V(§)®
V(9)) is a PV. In particular if Go = SL(n), then T is always a PV.

(ii) If G5 is an exceptional simple algebraic group and n = §, then T is a PV if
and only if Go = SL(n).

(iii) If n=4ké (2<k <(m—2)), then T is a non-PV.

(iv) If n = (m —1)6 with m > 3, then T is a PV if and only if Go = SL(n).

(v) If T is a PV with 6 <n < (m — 1)d, then (GL(1) x G5, A1 ® 0,V (0)) must
be a PV.

Proof. By (ii) of Proposition we obtain (i). We obtain (ii) by (ii) of Proposi-
tion[L.7] For (iii), if T is a PV for n = k¢, it is also a PV when Gy = GL(k§). Then
by (iii) of Proposition [1.3} it is PV-equivalent to ((GL(8)*™*)) x ((GL(1) x Gy)
x GL(8)*m=1=R)) (A" & (A @0) + AP D) V(k§) @V ((m—k)S)). In par-
ticular ((GL(8) x GL(8)) x (GL(8) x GL(9)), (A1 BA1) @ (A1 8A1), (V(O)+V(9))®
(V(6) + V(6))) is a PV, but it is a non-PV by Proposition a contradic-
tion. For (iv), if Gy # SL(n), it is a non-PV by Lemma If Go = SL(n),
then by castling transformation, T reduces to (i). For (v), we may assume that
k6 <n < (E+1)0 (1 <k <m-—2) by (ili). Then (GL(n) x ((GL(1) x Gs) %
GL(5) M), Ay @ (A @ o) BATH) V(n) @ (V(5) + V(5)*®)) must be a PV. By
castling transformation, we have n — n’ = (k+1)d —n = 6 — (n — k). Hence
(Gs x GL(n'),0 @ A1,V () @ V(n')) with § > n’ > 1 must be an irreducible PV.
Hence by Proposition we have (v). O

Proposition 2.7. Form >3 and § <n < (m—1)5, T := (Go x ((GL(1) x G;) X
GLG)*m=1) Ay @ (A ® o) 8 AZ™ ) V(n) @ (V(8) + V(6)H™mD)) is a PV
if and only if Go = SL(n) with n =0 or n = (m — 1)d.

Proof. By (ii) and (iv) of Lemma we have the case n = § or n = (m — 1)4.
For § < n < (m —1)4, by (v) of Lemma T is a non-PV for G4, = F; and
Es. For G5 = (G2) (resp. Eg, E7), if it is a PV, then § = 7 (resp. 27,56), and
n#kd (2 <k < (m—2)) by (iii) and (v) of Lemmal[2.6] Hence there is ¢ satisfying
3<t<mand (t—2)§ <n < (t—1)4, ie,d < (n =) td —n < 2§ and
(GL(n) x (G x GL(3)*¢D) Ay @ (0 AZEV) V(n) @ (V(5)T®)) is a PV. By
castling transformation, we have n — n’ = t6 —n with § < n’ < 24, and since t — 1
> 2, (GL(n') x (Gs x GL(0) x GL(9)), A1 @ (cm A1 BA,), V(n') @ (V(§) + V(5) +
V(§))) must be a PV which is PV-equivalent to (G5 X (GL(n' — §) x GL(n' —§)),
oA BA), V()@ (V(n —68)+V(n —9))) with 1 <n'—§ < § by Proposition
However it is a non-PV by Proposition a contradiction. O



410 T. KIMURA ET AL.

Proposition 2.8. Let do = 1,6 — 1 with § = 0g,61. For m > 3 and 6 < n <
dy + (m — 2)6, we have the following assertions.

(i) T := (Go x ((GL(1) x Gy) x GL(d3) x GL(6)*™=2) Ay @ (A ® o) B
Ay AR V(n) @ (V(8) + V(dy) + V(§)Tm=2)) is a PV if and only if
Go = SL(n) withn = 0y or n =da + (m — 2)dy for Gs = (G2), Eg, E7.

(ii) T 4s a non-PV for G, = F4 and Eg.

Proof. 1f T is a PV with n = 4, then by (ii) of Lemma [2.6] we have Gy = SL(n).
Then by (ii) and (iii) of Proposition[L.3] T is PV-equivalent to (Gsx GL(ds), 0 ®Ay,
V(§)®V(d2)) with d2 = 1,0 —1, which is a PV if and only if G5 = (G2), Es, F7. By
castling transformation, we have the result for n = dy+ (m —2)d and Gy = SL(n).
T is a non-PV for n = dy + (m — 2)0 and Gy # SL(n) by Lemma Assume
that 6 <n <dy+ (m—2)§ and m > 4. If § <n < (m — 2)d, then T is a non-PV
by Proposition So assume that (m —2)d < n < dy + (m — 2)d. To prove the
non-prehomogeneity, it is enough to assume that Go = GL(n). Then by castling
transformation, we have n — (6 <)n’ = da+(m—1)0—n = (d2+0)—(n—(m—2)4) <
da+0d < (m—2)d, and hence T is a non-PV. Finally assume that m =3 and § <n <
ds 4+ 6. Then ds # 1 and d2 = § — 1. Hence by Proposition T is PV-equivalent
to (Gs X (GL(n—0+1)xGL(n—9¢)),0@(A18BA1), V()@ (V(n—0+1)+V(n—0)))
with § >n—90+1>n—3§ > 1. By Proposition the latter is a non-PV. O

Proposition 2.9. Let ds,d3 =1 ord —1. Form > 3 and § < n < dy +d3 +
(m —3)8, T := (Go x ((GL(1) x Gy) x GL(d2) x GL(d3) x GL(6)*™=3) Ay ®
(M @o)@Ay A AT Vin) @ (V(6) + V(dy) + V(ds) + V(5) M=) is
a non-PV.

Proof. To prove non-prehomogeneity, we may assume that Go = GL(n). If n =4,
by (ii) and (iii) of Proposition[I.3] T is PV-equivalent to (G x (GL(d2) x GL(ds)),
o® (A BA), V(S ® (V(de) + V(d3))) with 1 < da,d3 < ¢, which is a non-PV
by Proposition [I.7] Hence by castling transformation, T is a non-PV for n =
dy + ds + (m — 3)3. Therefore we may assume that § < n < ds + d3 + (m — 3)¢
with do < d3. By Proposition T is a non-PV for § < n < d3z + (m — 3)0.
Hence we may assume that ds + (m — 3)0 < n < da + d3 + (m — 3)d. By castling
transformation, we have n +— n' = da+ ds + (m — 2)6 —n with § < n’ < dy + 0.
Hence if n’ < ds+8 < d3+(m—3)d,i.e., m>b5orm =4 withds =1 <d3 =d—1,
then T is a non-PV. Assume that m = 4 and ds = d3. If § <n/ <d3+6, T is
a non-PV. If n = d3 + 6, then T is a non-PV by Proposition If m = 3, then
§ < n < dy+ds gives dy = d3 = §—1, and by Proposition[I.5 T is PV-equivalent to
(Gsx (GL(n—30+1)XGL(n—0+1)),0@(A18BA1), V(§)R(V(n—d+1)+V (n—+1)))
with 6 > n — 3§+ 1> 1. The latter is a non-PV by Proposition O
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Proposition 2.10. Let dy = 2,3,00 — 3 or §p — 2 with 6 = &y. For m > 3 and
0o <n <ds+ (m—2)dy, we have the following assertions.

(i) T := (Go x ((GL(1) x Gy) x GL(dg) x GL(50)*™ ), A1 ® (A, @ o) B
Ay 8 AZT2) Vi (n) @ (V(So) + V(da) + VI(5)T™=2)) is a PV if and only
if Go = SL(n) with n = dg,da + (m — 2)dg and da = 2,60 — 2 for G5 = (G2)
and Eg.

(ii) T is a non-PV for Gy = Fy, E; and Es.

Proof. Assume that n = . Then by (ii) of Proposition T is PV-equivalent to
(Gox ((GL(1) x G) x GL(d2)), A1 ® (A1 ® ) B A1), V(do) ® (V(do) +V (d2))). By
the proof of (ii) of Lemma it is a non-PV when Gg # SL(d). If Go = SL(dp),
then by (iii) of Proposition T is PV-equivalent to (G5 x GL(d3),0 ® Ay,
V(o) ® V(dz2)) which is a PV if and only if G5 = (G2), E¢ and da = 2,00 — 2.
Hence by castling transformation, we have the same result when Gy = SL(n) with
n=dy+(m—2)d. If n =dy+ (m—2)dy and Gy # SL(n), then T is a non-PV by
Lemma Now assume that dy < n < dg + (m —2)do with m > 4. By Proposition
T is a non-PV for g < n < (m — 2)dp. So we may assume that (m — 2)dy <
n < dg 4+ (m — 2)dp. To prove the non-prehomogeneity, it is enough to assume that
Go = GL(n). Then by castling transformation, we have n +— n’ = do+(m—1)dp—n
with §yp < n’ < dy + §y < (m — 2)dp, and hence T is a non-PV. Finally assume
that m = 3 and dg < n < dg + dg. Again to prove the non-prehomogeneity, it is
enough to assume that Gy = GL(n). Then by Proposition T is PV-equivalent
to (Gsx (GL(n—d3) x GL(n—3ap)), c®(A18A1), V (50)R(V (n—dz)+V (n—dp))) with
1 < n—ds,n—0p < dp, which is a non-PV by Proposition[I.7] Finally note that since
case GL(d2) = GL(3) is a non-PV, case (vi) in Proposition isanon-PV. 0O

Now we shall give the proof of Theorem By Propositions 2.7] to the
triplets appearing in (i)—(iv) of Theorem are PV’s and it is enough to find the
group G of those (GL(1) x G4) x Ga % -+ - X Gy, such that (SL(n)xG, A1 ®p,V(n)®
V(d)) is a PV. By castling transformation, we may assume that n = ¢ (resp. § =
7,27,56). If we restrict GL(d) to SL(d) (resp. GL(1) x G5 to G5), then the triplet
becomes a non-PV since (SL(§) X SL(0), A1 @A, V(0)®@V(d)) is a non-PV. Now if
we restrict (GL(8) x GL(0), A1 BA1,V(§)+V(5)) to (GL(0), A1 + A1, V() +V(3))
and if it is still a PV, then (SL(0) x ((GL(1) x G4) x GL(§)),A1 ® (A1 ® o) B
(A1+A1)), V(6 @(V(6)+V(6)+V(d))) must be a PV. Then by (iii) of Proposition
[L.3] it is PV-equivalent to (G5 x GL(8),0 ® (A1 4+ A1),V (8) @ (V () +V(8))) which
is also PV-equivalent to (Gs,0 ® *,V(§) ® V(6)*) which is a non-PV for dimen-
sional reasons, a contradiction. Thus any proper restriction of the group gives a
non-PV. By Propositions and these PV’s are regular.
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83. The extreme case for classical simple algebraic groups

In this section, we shall give the proof of Theorem[0.3] Let (GoxG, Ay ®p, V (n)®V')
with § < n < d — 6 be as in Introduction. The remaining case is k; = 1 so that
(G,p1,V1) = (GL(1) x G5, Ay ® 0,V (1) ® V(0)) where G, is a simple algebraic
group. Note that V(1) ® V' 2 V in general. In this section, we deal with the
extreme case n = § or n = d—¢§ when G is a classical simple algebraic group with
(G,p1,V1) # (GL(8),A1,V(5)). First we assume that Go = SL(n) with n = §
orn=d—46and p(G) = Gi X --- x Gy, (see Preliminaries) where each V(d,,)
(1 < u < m) has an independent scalar action. Then by castling transformation, it
is enough to consider the case n = §. After the classification of this case, we shall
classify (Go x G, A1 ® p,V(n) @ V) for Gy € SL(n) and p(G) C Gy X -+ X Gp;
or Gy = SL(n) and p(G) € Gy x - -+ X Gy, where each V(d,) (1 < p < m) has an
independent scalar action.

Lemma 3.1. Under the above assumption, (Gox G, A1 ®p,V(n)@V) = (SL(J) x
((GLy x G5) x Ga X - X Gp)y, A1 @ (A1 @ o) Bpa B8 pp), V(0) @ (V(I) +
V(da)+ -4+ V(dn))) is PV-equivalent to

(5) (Gsx (G2x -+ xGp),o@ (p2 B Bpp), V()@ (V(dz)+ -+ V(dn)))

with § < dg + -+ + d,, where Gy is a classical simple algebraic group # SL(J).

Proof. Use (iii) of Proposition [1.3] O
Therefore we shall investigate the prehomogeneity of the triplet .

Proposition 3.2. If m = 2, then is a PV if and only if (G2, p2,V(d2)) =
(GL(0), A1,V (6)).

Proof. If ko = 0, then 3 < § < dy = 1, a contradiction. If ko = 1, then (§ <) dy < ¢
and hence dy = §. Thus (G5 x G2,0 ® p2,V(0) ® V(4)) must be an irreducible
PV, and by [SK], we have (G, p2,V(8)) = (GL(d), A1, V(5)). In this case, is a
trivial regular PV. Finally assume that ko > 2. If (5]) is reduced, by [SK], it must be
an irreducible trivial PV. Then Gy = GL(N) x H and V(dy) = V(N)® V (h) with
d > N > 6h (> 0), a contradiction. Hence (5]) is not reduced. Assume that SL(M)
has the highest rank among the simple factors of G5. Note that § > M. Then
(GsxGa,0®p2, V(§)@V(0)) = (Gs XGL(M)X K, 0 @A 1@k, V(§)Q@V(M)RV (k))
is reduced since §k — M (> 26 — M) > M, a contradiction, and hence ks # 2. O

Note that Proposition corresponds to (i) of Lemma with m = 2 and
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Now consider with m > 3. If it is a PV, then for any p; and po with
2 S p1 < p2 S m, (G9 X (G,UJ X Guz)’ o (pln B p/l&)’ V(é) b2y (V(dﬂl) + V(dﬂ2)))
must be a 2-irreducible PV.

Lemma 3.3. If (Gé X (Gm x Guz)’a ® (pM1 i pﬂz)’ V((S) ® (V(dm) + V(dﬂz)))
is a PV with (G, pu,,V(dy,)) # (GL(0), A1,V (0)) (i = 1,2), then it is castling
equivalent to one of the following PV’s.

(i) (Sp(t) x (GL(2k+1)xGL(2r)), A1 @ (A18A,), V(2t) @ (V(2k+1)+V(2r)))

witht>2r>2andt >2k+1>1.

(i) (Sp(t) x (GL(2k+1) x GL(1)),A1 ® (A1 BA,),V(2t) ® (V(2k + 1)+ V(1))
witht>2 and t > 2k+1>1.

(iii) (Spin(10) x (GL(1) x GL(1)), a half-spin rep. ® (A1 B A1),V (16) @ (V (1) +
V(1)))-

(iv) (SL(2t+1) x (GL(1) x GL(1)),As @ (A1 B A1), V(t(2t+1)) @ (V(1) + V(1))
with t > 2.

Proof. Use [Kal]. Note that is not the unsolved case of [Ka]. If it is of trivial
type, then (G, pu., V(dy,)) = (GL(6), A1,V (6)) for some i = 1,2. O

Proposition 3.4. If withm > 3 is a PV, then it is one of the following PV’s.

(i) (G x (GLE)* )00 (AL V), V(§) @ (V(§) ).

(i) (Gsx ((GL(1)x Ty) x GL(8)*™m=2) o (A, @7) @A™ ™) V(§) @ (V (1) +
V(0)Tm=2)) with § >t > 1 where T, is a simple algebraic group such that
(GL) xGs xTs, A1 @07, V(1)@ V(§) @ V(1)) is a non-trivial irreducible
2-simple PV.

(ifi) (Sp(t) x (GL(u) x GL(v) x GL(2t)*(m=3) Ay @ (A8 A 8 AT ) V2t @
(V(u) + V(v) + V(2t)Tm=3)) with t > 2 where (u,v) = (1,1), (1, k) with
m >4, or (u,v) = (1,2t — 1), (2t — 1,2¢ — 1), (k, 2t — 1) with m > 3. Here k
1s an odd integer satisfying 3 < k < 2t — 3.

(iv) (Sp(t) x (GL(u) x GL(v) x GL(w) x GL(2t)*™= ) Ay @ (A, @A, BA; @
AZ=Y V2t @ (V(u) + V(v) + Vi(w) + V(26)Hm=D)) with t > 2 where
(u,v,w) = (1,1,1), (1,1, k) with m > 5, or (u,v,w) = (1,1,2t — 1), (1,2t —
1,2t — 1), (2t — 1,2t — 1,2t — 1), (1,k, 2t — 1), (k, 2t — 1,2t — 1) with m > 4.
Here k is an odd integer satisfying 3 < k < 2t — 3.

(v) (Sp(t) x (GL(2r) x GL(2k+1)),A1 @ (A1BA1),V(2t)@ (V(2r)+ V(2k+1)))
witht>2,t—1>r>1,2t—1>2%+1>1 and 2r + 2k +1 > 2t.
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(vi) (Sp(t) x (GL(2r) x GL(2k + 1) x GL(2t)*™m=3)) Ay @ (Ay @ Ay B AT,
V(e (V(2r)+V(2k+1)+V(2t)T0m— 3>)) witht>2, m>4,t—1>r>1
and 2t —1>2k+1>1.

(vii) (Spin(10) x (GL(u) x GL(u) X GL(16)*(m=3)) q half-spin rep. ® (A, @A, B
AP 1 (16) @ (V(u) 4+ V(u) + V(16)H™m=3)) with (u = 1 and m > 4)
or (u=15 and m > 3).

(vill) (SL(2t + 1) x (GL(u) x GL(u) x GL(8)*M=3) Ay @ (Ay @ Ay B AT,
V() ® (V(u) + V(u) + V(§)Tm=3)) with t > 2, (u = 1 and m > 4) or
(u=06—-1=t2t+1)—1 and m > 3).

Proof Put M = {u | (Gu,pu, Vi) # (GL(0),A1,V(9)), 2 < p <m}. f M =0,
then (5)) is a PV by Proposition [1.3]and we obtain (i). If )/ = 1, we may assume
that M = {2} and by Proposition [1.3]| () is PV-equivalent to (G5 X Ga,0 ® pa,
V(0) ® V(ds)). If this is a PV, then by Proposition we have § > dy > 1. Since
(Gs,0,V(8)) # (SL(5), A1,V (6)), this is a non-trivial irreducible PV. Then by the
list of [SK], we see that this is a 2-simple PV, and we obtain (ii) where we put
G2 = GL(1)xTs and do = t. When §M > 2, we may assume that M = {2,3,...,r}
with » > 3. Then is PV-equivalent to

(6) (Gsx(Gax:-xGr)o@(p2B---Bp,),V(6) @ (V(d2) + -+ V(dr)))

with (G, pu, V(dy)) # (GL(6), A1,V (6)) (2 < p <r)and r > 3. Then by Lemma
(Gs,0,V(d)) must be one of (Sp(t), A1,V (2t)) (t > 2), (Spin(10), a half-spin
rep., V(16)), (SL(2t+1), A2, V(#(2t+1))) (¢ > 2). First assume that (Gg, 0,V (9)) =

(Sp(t), A1,V (2t)) (t > 2). Since (Sp(t), A1,V (2t)) = (Sp(t), AT,V (2t)*), we may
assume that each (Sp(t) x G, A1 ® p,,V(2t) ® V(d,)) is reduced by castling
transformations. Then by Lemma we may assume that (G, pu, V(d,)) =
(GL(d,), A1,V (d,)) with do < --- < d, < t. Now assume that all d,, are odd.
Then by Lemma we have (dg,...,d,) = (1,...,1) or (1,...,1,k) where k is
odd satistying 3 < k < t. When (do,...,d,) = (1,...,1), by [K3], we have r = 3
or r = 4. This gives (iii) and (iv) related with 1 and 2¢ — 1. When (ds, ..., d,) =
(1,...,1,k), by [KKIY], it is a PV (resp. non-PV) for » = 3 and 4 (resp. r > 5)
by Theorem 2.24 (resp. Lemma 2.22) in [KKIY]. This gives (iii) and (iv) related
with k. If there is an even number among (ds,...,d,), it is unique by Lemma
By Lemma 2.20 in [KKIY] and Lemma 3.27 in [KUY], we have r = 3. If
m = 3 (resp. m > 4), this gives (v) (resp. (vi)). Next assume that (Gg, 0,V (8)) =
(Spin(10), a half-spin rep.,V(16)). By [K3], we have r = 3 and we obtain (vii).
Finally assume that (G4, 0,V (8)) = (SL(2t + 1), A2, V(#(2t + 1))) (¢ > 2). In this
case, we have (viii) similarly. O
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By Lemma [3.I} Proposition [3.2] and Proposition [3:4] we obtain the case for
Go = SL(n) and p(G) = Gy x -+ X Gy,. Now we shall classify (Gp x G,A1 ®
0, V(n) @ V) for Gy = SL(n) and p(G) € Gy X -+ X Gp; or Gg € SL(n) and

p(G) C Gy x --- x Gy, where each V(d,) (1 < u < m) has an independent scalar
action.

Lemma 3.5. Let Gy be a semisimple proper algebraic subgroup of SL(J) and
o : Gy — GL(6) an irreducible representation of a simple algebraic group Gi.
Then T := (GL(1) x G5 X G5, A1 ® Ay ® 0, V(1) @ V(§) @ V(§)) is a PV if and
only if (Gss, A1,V (6)) = (SL(2t — 1) x SL(1),A1 B A1,V (2t — 1) + V(1)) and
(Gs,0,V(8)) = (Sp(t), A1,V (2t)) with t > 2.

Proof. First assume that the inclusion Ay : Gs5 — SL(6) is irreducible. Then T
is irreducible and reduced since otherwise G5 = SL(r) x H,V(§) = V(r) @ V(h)
with 6 > h > 2 and r > hd —r > 20 — r > r, a contradiction. Then by [SK], T is
a non-PV. Next assume that the inclusion A; : G55 — SL(J) is non-irreducible.
Then by Lemma[3.3|and Proposition[3.4] the only possible case is (G55, A1, V(4)) =
(SL(2t—1)xSL(1), A1BA1,V(2t—1)+V (1)) and (Gs, 0,V (9)) = (Sp(t), A1, V(2t))
with ¢ > 2. By (20) in p. 97 of [K3], (Sp(t) x (GL(1)x GL(1)), A1 ®@(A18A1), V(2t)+
V(2t)) is a PV with one irreducible relative invariant. It is castling equivalent to
(Sp(t) x (GL(2t —1) x GL(1)),AT @A @1+ A @1®Ay), M(2t,2t — 1) 4V (2t)).
Since AT = A; for Sp(t), (Sp(t) x (GL(2t—1) x GL(1)), A1 @ (A1 8A1), M(2t)) is a
PV with unique irreducible relative invariant f(X) = det X (X € M (2t)). Hence
T is a PV (see Proposition 2.12 in [K2]). O

Lemma 3.6. T := ((SL(2t—1) x SL(1)) x ((GL(1) x Sp(t)) x GL(d2)), (A1 B A1)
R((A1®@A1)BAL), (V(2t—1)+V (1))@ (V(2t)+V (d2))) is a non-PV for 2t > ds > 1
and t > 2.

Proof. One can easily check that the SL(2t—1)-part of a generic isotropy subgroup
of ((SL(2t — 1) x SL(1)) x (GL(1) x Sp(t)),(A1BA1) ® (Ay @ A1), (V(2t — 1) +
V(1)) ® V(2t)) at the identity matrix Io; € M (2t) = (V(2t — 1) + V(1)) ® V(2t)
is isomorphic to A = (Sp(é_l) (1)) (C SL(2t —1)). Therefore T is PV-equivalent to
((Ax SL(1)) x GL(d2)),(AMiBA) @A, (V(2t— 1)+ V(1)) @V (d2)) = (Sp(t —1)
X GL(d2),A1 @ A1 + 1® A1 +1®A;). By castling transformation, we may assume
that 1 < dy < t. If dy is even and t > 3, then 2t — 2 > t > ds and by (10),
p. 396 in [KKIY], this space has two irreducible relative invariants, so that this
is a non-PV due to lack of GL(1). If dg is even and ¢t = 2, then do = 2 and
dim(Sp(1)xGL(2)) =7 < 8 =deg(A1 @A +1®A1+1®Aq), hence it is a non-PV.
If dy is odd (= 2r+1), by p. 102 in [SK], it is PV-equivalent to (( SPO(T) *),A1+Ay),

*

which is PV-equivalent to (( Spo(r) (1)),A1)7 which is a non-PV. O
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Lemma 3.7. The following triplets are non-PV’s.

(i) (GL(r) x GL(r), Ay ® (Ay + AS), M(r) + M (r)) with r > 2.
(i) ((GL(1) x Sp(t)) x GL(2t — 1), (A; ® A1) @ (Ay + ALY, M (2¢, 2t — 1) + M (2t,
2t — 1)) with t > 2.
(ifi) ((GL(1)xSpin(10))x GL(15), (A, ®a half-spin rep.)@(A +A), M(16,15)+
M(16,15)).
(iv) (GL(2t+1) x GL(t(2t+1) — 1), Ao ® (A1 + AY), M(6,6 — 1) + M (5,6 — 1))
with § =t(2t 4+ 1) and t > 2.

Here (G, p™)) implies (G, p) or (G, p*).
Proof. By [KKTI|, we have (i), and by [KKIY], we have (ii)—(iv). O

Lemma 3.8. Let 0 : G; — GL(d) (6 > 3) be an irreducible representation of
a simple algebraic group G such that o(Gs) C SL(6). For § > ds > 1 and
m > 3, let Gss be a semisimple algebraic proper subgroup of SL((m — 2)6 + da)
such that the inclusion Ay : Gss — SL((m — 2)§ + ds) is irreducible. Put G =
Gas x ((GL(1) x G4) x GL(d2) x GL(8)*™=2) p = A1 @ (A, @ o) B A, BAT™ )
and V =V ((m —2)6 +do) @ (V(0) + V(da) + V(6)T(™=2)). Then dimG < dim V.
In particular (G, p, V) is a non-PV.

Proof. By (ii) of Proposition we have dimG, < 26(6 + 1) and dim Gy <
2((m —2)6 + d2)((m — 2)6 + dg + 1). Since dim G = dim G5 + 1 + dim G, + d3 +
(m —2)6% and dim V = ((m — 2)§ +da)((m — 1)§ +ds), we have dim V — dim G >
$(m—1)(m—3)6*+ 3(2d2 — 1)(m —1)6 — 2da(d2 +1) =1 > $(2dy — 1)(m — 1)6 —
2da(de+1) =1 (= A). Ifdy=1,then A=3(m—-1)§—-2>06-2>1.1fdy > 2,
then A > 1(3d3 — 3d; — 2) > 2. Hence dim V' > dim G. O

Lemma 3.9. (i) dim(GL(r) x GL(s)) < dimGL(r+s) for 1 <r<s<r+s
<4.

(ii) dim(GL(r) x GL(s)) < dim(GL(r+s—90)xGL())) for1 <r < s < § < r-+s.

Proof. For (i), we have dim GL(r+s)—dim(GL(r) x GL(s)) = 2rs > 0. For (ii), we
have dim(GL(r+s—0) x GL(J)) —dim(GL(r) x GL(s)) = 2(0 —r)(d —s) > 0. O

Now we shall prove Theorem For the case Go = SL(n) and p(G) =
G1 % -+ + X Gy, by Lemma[3.1] Proposition [3.2]and Proposition [3.4] we have (I)(i)-
(iv) and (IT)(i)—(v) of Theorem 0.3. Next we shall consider the case Gy C SL(n)
with n = §. By Lemmas 3.5 and 3.6, only the restriction of (I)(i) of Theorem 0.3 is
possible and we obtain (I)(v) of Theorem 0.3. If n = ¢ and p(G) C Gy X -+ X G,
T is a non-PV by Lemma Now assume that n = d — J. Since we may assume
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that n # ¢, we assume that m > 3. If G4 C SL(d — ¢) and the inclusion A; :
Gss — SL(d — ¢) is irreducible, then by Lemma we can reduce cases (I)(i)—
(iv) and (IT)(i)—(v) to the case of Lemma and hence T is a non-PV. If the
inclusion A; : G45 < SL(d — d) is not irreducible, then by Proposition T is
a non-PV. Finally assume that it is a PV when p(G) € G1 X -+ X G,,. Then it
is also a PV when Gy = GL(d — 0), and hence by castling transformation, it is a
PV for Gy = GL(0). Since we assume that each V(d,) has an independent scalar
action, T is still a PV for Go = SL(), a contradiction. The regularity follows from
Propositions and Hence we obtain our result.

According to Remark we shall give some examples of non-extreme PV’s.

Proposition 3.10. Fort > 2, 6 = 2t > 2r > 2,0 =2t > 2s+1 > 1 and
2t < n < 2r+ 2s+ 1, the triplet

T := (SL(n) x ((GL(1) x Sp(t)) x GL(2r) x GL(25+1)), A @ (A, @ A1) BA, BA,))

is a PV of the non-extreme case. For example, (SL(35) x ((GL(1) x Sp(16)) x
is a PV.

Proof. Note that T is PV-equivalent to (GL(n) x (Sp(t) x GL(2r) x GL(2s +
1), A @A BABA),V(n)® (V(2t) + V(2r) + V(25 4+ 1)). Then it is castling
equivalent to (GL(n) x (Sp(t) x GL(n —2r) x GL(n—2s—-1)),AMi @AM ®@1® 1+
A1 A1BA),V(n)@V(2t)+V(n)*® (V(n—2r)+ V(n—2s—1)). Since
2t <nand (n—2r)+(n—2s—1) < n, by Theorem 7.8 in [K2], T is PV-equivalent
to (Sp(t) x (GL(n —2r) x GL(n —2s —1)),A1 @ (A1 8B A1), V(2t) @ (V(n—2r) +
V(n—2s—1)). Since 2t >n—2r > 1and 2t >n—2s—1>1, it is a PV (see
(149), p. 197 in [KUY]).

O
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