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On M. Sato’s Classification of Some Reductive
Prehomogeneous Vector Spaces
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Abstract

Under some condition, M. Sato classified reductive prehomogeneous vector spaces of the
form (G0 × G,Λ1 ⊗ ρ, V (n) ⊗ V ). In this paper, under another condition, we classify
the prehomogeneous vector spaces of the same form. We consider everything over the
complex number field C.
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Introduction

For the definition and basic properties of prehomogeneous vector spaces (abbrev.
PV), see [K2]. Although the classification of irreducible PV’s has been completed in
[SK], to classify all the non-irreducible reductive PV’s still looks almost impossible.

In the 1960s, Professor Mikio Sato considered the reductive PV’s of the form
(G0 × G,Λ1 ⊗ ρ, V (n) ⊗ V ) with a connected semisimple subgroup G0 of SL(n).
Although this form looks special, we show later that any reductive triplet with a
scalar multiplication is PV-equivalent to a triplet of this form. Here ρ : G→ GL(V )
is a d-dimensional representation of a connected reductive algebraic group G. Then
we have ρ = ρ1 + · · · + ρm and V = V1 + · · · + Vm where ρµ : G → GL(Vµ) is an
irreducible representation (1 ≤ µ ≤ m). For each µ, we have Vµ = Vµ1⊗· · ·⊗Vµkµ
where some simple component of G acts on Vµν irreducibly. Put dµ = dimVµ
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and dµν = dimVµν . Then we have d = d1 + · · · + dm and dµ = dµ1 · · · dµkµ .
Here if dµ = 1, we put kµ = 0. If dµ ≥ 2, we have kµ ≥ 1 and we may assume
dµν ≥ 2 (1 ≤ ν ≤ kµ). Now put δ = max{dµν}. We may assume that δ = d11 by
renumbering if necessary. Then k1 = 0 implies that δ = 1.

Professor Mikio Sato proved that if (G0 × G,Λ1 ⊗ ρ, V (n) ⊗ V ) is a PV for
δ ≤ n ≤ d− δ, then k1 must be one of 0, 1, 2, and classified such PV’s when k1 = 2
as follows. Here and throughout, to simplify notation, we write

G×(m) instead of

m︷ ︸︸ ︷
G× · · · ×G,

and similarly for other binary operations in place of ×.

Theorem 0.1 (M. Sato). Assume that (G0 ×G,Λ1 ⊗ ρ, V (n)⊗ V ) is a PV with
δ ≤ n ≤ d− δ and k1 = 2. Then it is one of the following regular PV’s.

(i) (SL(n) × ((GL(2) × SL(2)) × GL(2)×(m−1)),Λ1 ⊗ ((Λ1 ⊗ Λ1) � Λ�(m−1)
1 ),

V (n) ⊗ (V (2) ⊗ V (2) + V (2)+(m−1))) with m ≥ 1 and n = 2 or n = 2m
(= d− 2).

(ii) (SL(n) × ((GL(3) × SL(2)) × GL(3)×(m−1)),Λ1 ⊗ ((Λ1 ⊗ Λ1) � Λ�(m−1)
1 ),

V (n) ⊗ (V (3) ⊗ V (2) + V (3)+(m−1))) with m ≥ 1 and n = 3 or n = 3m
(= d− 3).

(iii) (SL(3)× ((GL(2)× SL(2))×GL(2)),Λ1 ⊗ ((Λ1 ⊗Λ1) � Λ1), V (3)⊗ (V (2)⊗
V (2) + V (2))).

(iv) (SL(n)× ((GL(3)×SL(2))×GL(3)),Λ1⊗ ((Λ1⊗Λ1) � Λ1), V (n)⊗ (V (3)⊗
V (2) + V (3))) (n = 4, 5).

(v) (SL(n)× ((GL(3)×SL(2))×GL(k)×GL(3)×(m−2)),Λ1⊗ ((Λ1⊗Λ1) � Λ1 �

Λ�(m−2)
1 ), V (n)⊗ (V (3)⊗V (2) +V (k) +V (3)+(m−2))) with m ≥ 2; n = 3 or

n = k + 3m− 3 (= d− 3); k = 1 or 2.

(vi) (SL(n)× ((GL(2)×SL(2))×GL(1)×GL(2)×(m−2)),Λ1⊗ ((Λ1⊗Λ1) � Λ1 �

Λ�(m−2)
1 ), V (n)⊗(V (2)⊗V (2)+V (1)+V (2)+(m−2))) with m ≥ 2; and n = 2

or n = 2m− 1 (= d− 2).

Proof. See p. 239 in [K1].

It is easy to see that when k1 = 0, only the triplet (SL(m−1)× (GL(1)×(m)),
Λ1 ⊗ (Λ�(m)

1 ), V (m− 1)⊗ (V (1)+(m))) with m ≥ 3 is a PV.
Hence we shall consider the remaining case k1 = 1 which implies that

(G, ρ1, V1) = ((GL(1)×)Gs, (Λ1⊗)σ, V (δ)) where Gs is a simple algebraic group.
First, we give a complete classification of these PV’s when Gs is an exceptional

simple algebraic group. Our first main result is as follows.
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Theorem 0.2. Assume that T := (G0×G,Λ1⊗ρ, V (n)⊗V ) with k1 = 1 is a PV
with (G, ρ1, V1) = ((GL(1)×)Gs, (Λ1⊗)σ, V (δ)) where Gs is an exceptional simple
algebraic group. Then T is one of the following regular PV’s.

(i) (SL(n)× ((GL(1)×Gs)×GL(δ)×(m−1)),Λ1⊗ ((Λ1⊗ σ) � Λ�(m−1)
1 ), V (n)⊗

(V (δ) + V (δ)+(m−1))) with m ≥ 2; n = δ or n = (m − 1)δ where σ is any
irreducible representation of Gs with deg σ = δ.

(ii) (SL(n)× ((GL(1)× (G2))×GL(t)×GL(7)×(m−2)),Λ1 ⊗ ((Λ1 ⊗ Λ2) � Λ1 �

Λ�(m−2)
1 ), V (n) ⊗ (V (7) + V (t) + V (7)+(m−2)) (m ≥ 3)) with t = 1, 2, 5, 6

where n = 7 or n = t+ 7(m− 2).

(iii) (SL(n) × ((GL(1) × E6) × GL(t) × GL(27)×(m−2)),Λ1 ⊗ ((Λ1 ⊗ Λ1) � Λ1 �

Λ�(m−2)
1 ), V (n)⊗(V (27)+V (t)+V (27)+(m−2))) (m ≥ 3) with t = 1, 2, 25, 26

where n = 27 or n = t+ 27(m− 2).

(iv) (SL(n) × ((GL(1) × E7) × GL(t) × GL(56)×(m−2)),Λ1 ⊗ ((Λ1 ⊗ Λ6) � Λ1 �

Λ�(m−2)
1 ), V (n) ⊗ (V (56) + V (t) + V (56)+(m−2))) (m ≥ 3) with t = 1, 55

where n = 56 or n = t+ 56(m− 2).

The proof of Theorem 0.2 will be given in Section 2. Secondly we give a
classification of the extreme case n = δ or n = d− δ when Gs is a classical simple
algebraic group with Gs 6= SL(δ). This restriction is in a sense natural because the
case Gs = SL(δ) contains all reductive PV’s with a scalar multiplication. Actually
a triplet (GL(1)×H, Λ1⊗σ, V (k)) with k ≥ 3 is a PV if and only if (G0×G,Λ1⊗ρ,
V (n)⊗V ) is a PV where G0 = SL(n) with n = δ = k(k−1)−1 < d−δ = k(k−1)
andG = (GL(1)×SL(δ))×(H×GL(k−1)), ρ = (Λ1⊗Λ1)⊗(1⊗1)+(1⊗1)⊗(σ⊗Λ1).

Our second main result is as follows.

Theorem 0.3. Assume that T := (G0 ×G,Λ1 ⊗ (ρ1 + · · ·+ ρm), V (n)⊗ (V (δ) +
V (d2) + · · · + V (dm)) with n = δ or n = d − δ = d2 + · · · + dm is a PV where
(G, ρ1, V (δ)) = (GL(1) ×Gs,Λ1 ⊗ σ, V (δ)) (6= (GL(δ),Λ1, V (δ))) with a classical
simple algebraic group Gs and each V (dµ) has an independent scalar multiplication.
Then T is one of the following PV’s.

(I) Regular PV’s:

(i) (SL(n)× ((GL(1)×Gs)×GL(δ)×(m−1)),Λ1⊗ ((Λ1⊗ σ) � Λ�(m−1)
1 ), V (n)⊗

(V (δ) + V (δ)+(m−1))) with m ≥ 2; n = δ or n = (m − 1)δ where σ is any
irreducible representation of Gs with deg σ = δ.

(ii) (SL(n)×((GL(1)×Gs)×(GL(1)×Ts)×GL(δ)×(m−2)),Λ1⊗((Λ1⊗σ)�(Λ1⊗τ)
� Λ�(m−2)

1 ), V (n) ⊗ (V (δ) + V (t) + V (δ)+(m−2))) with m ≥ 3, δ > t ≥ 1;
n = δ or n = t + (m − 2)δ where Ts is a simple algebraic group such that
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(GL(1)×Gs×Ts,Λ1⊗σ⊗ τ, V (1)⊗V (δ)⊗V (t)) is a non-trivial irreducible
regular 2-simple PV.

(iii) (SL(n)× ((GL(1)× Sp(t))×GL(u)×GL(v)×GL(2t)×(m−3)),Λ1 ⊗ ((Λ1 ⊗
Λ1) � Λ1 � Λ1 � Λ�(m−3)

1 ), V (n)⊗ (V (2t) +V (u) +V (v) +V (2t)+(m−3))) with
t ≥ 2; n = 2t or n = u+v+2t(m−3) where (u, v) = (1, 1), (1, k) with m ≥ 4,
or (u, v) = (1, 2t − 1), (2t − 1, 2t − 1), (k, 2t − 1) with m ≥ 3. Here k is an
odd integer satisfying 3 ≤ k ≤ 2t− 3.

(iv) (SL(n) × ((GL(1) × Spin(10)) × GL(u) × GL(u) × GL(16)×(m−3)),Λ1 ⊗
((Λ1⊗a half-spin rep.) � Λ1 � Λ1 � Λ�(m−3)

1 ), V (n)⊗ (V (16) + V (u) + V (u) +
V (16)+(m−3))) with n = 16 or n = 2u+ 16(m− 3) where (u = 1 and m ≥ 4)
or (u = 15 and m ≥ 3).

(v) ((SL(2t−1)×SL(1))×((GL(1)×Sp(t))×GL(2t)×(m−1)), (Λ1 �Λ1)⊗((Λ1⊗
Λ1) � Λ�(m−1)

1 ), (V (2t− 1) + V (1))⊗ (V (2t) + V (2t)+(m−1))) with t ≥ 2 and
m ≥ 2.

(II) Non-regular PV’s:

(i) (SL(n)×((GL(1)×Gs)×(GL(1)×Ts)×GL(δ)×(m−2)),Λ1⊗((Λ1⊗σ)�(Λ1⊗τ)
� Λ�(m−2)

1 ), V (n) ⊗ (V (δ) + V (t) + V (δ)+(m−2))) with m ≥ 3, δ > t ≥ 1;
n = δ or n = t + (m − 2)δ where Ts is a simple algebraic group such that
(GL(1)×Gs×Ts,Λ1⊗σ⊗ τ, V (1)⊗V (δ)⊗V (t)) is a non-trivial irreducible
non-regular 2-simple PV.

(ii) (SL(n)×((GL(1)×Sp(t))×GL(2r)×GL(2k+1)),Λ1⊗((Λ1⊗Λ1)�Λ1 �Λ1),
V (n) ⊗ (V (2t) + V (2r) + V (2k + 1))) with t ≥ 2; 2t − 2 ≥ 2r ≥ 2; 2t − 1 ≥
2k + 1 ≥ 1; 2r + 2k + 1 > 2t; n = 2t or n = 2r + 2k + 1.

(iii) (SL(n)×((GL(1)×Sp(t))×GL(2r)×GL(2k+1)×GL(2t)×(m−3)),Λ1⊗((Λ1⊗
Λ1) � Λ1 � Λ1 � Λ�(m−3)

1 ), V (n)⊗ (V (2t)+V (2r)+V (2k+1)+V (2t)+(m−3)))
with t ≥ 2; m ≥ 4; 2t − 2 ≥ 2r ≥ 2; 2t − 1 ≥ 2k + 1 ≥ 1; n = 2t or
n = 2r + 2k + 1 + 2t(m− 3).

(iv) (SL(n) × ((GL(1) × Sp(t)) × GL(u) × GL(v) × GL(w) × GL(2t)×(m−4)),
Λ1 ⊗ ((Λ1 ⊗ Λ1) � Λ1 � Λ1 � Λ1 � Λ�(m−4)

1 ), V (n)⊗ (V (2t) + V (u) + V (v) +
V (w) + V (2t)+(m−4))) with t ≥ 2; n = 2t or n = u + v + w + 2t(m − 4)
where (u, v, w) = (1, 1, 1), (1, 1, k)) with m ≥ 5, or (u, v, w) = (1, 1, 2t − 1),
(1, 2t− 1, 2t− 1), (2t− 1, 2t− 1, 2t− 1), (1, k, 2t− 1), (k, 2t− 1, 2t− 1)) with
m ≥ 4. Here k is an odd integer satisfying 3 ≤ k ≤ 2t− 3.

(v) (SL(n)×((GL(1)×SL(2t+1))×GL(u)×GL(u)×GL(δ)×(m−3)),Λ1⊗((Λ1⊗
Λ2) � Λ1 � Λ1 � Λ�(m−3)

1 ), V (n)⊗ (V (δ) + V (u) + V (u) + V (δ)+(m−3))) with
δ = t(2t + 1), t ≥ 2; n = δ = t(2t + 1) or n = 2u + t(2t + 1)(m − 3) where
(u = 1 and m ≥ 4) or (u = δ − 1 = t(2t+ 1)− 1 and m ≥ 3).
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The proof of Theorem 0.3 will be given in Section 3.

Remark 0.4. In the case of exceptional simple algebraic groups, as we see in
Theorem 0.2, there does not exist a non-extreme PV. However in the classical
case, there exist non-extreme PV’s. See Proposition 3.10.

Remark 0.5. There are other methods of classification of PV’s. See [Kac] and [R].

Notation. We denote by M(m,n) (resp. M(n)) the totality of m×n (resp. n×n)
matrices. For the classical algebraic groups, we denote by GL(n) (resp. SL(n),
Sp(n), SO(n), Spin(n)) the general linear group (resp. the special linear group,
the symplectic group, the special orthogonal group, the spin group).

The exceptional simple algebraic group of rank 2 is denoted by (G2) instead
of G2 to distinguish it from the second group in Gi (i = 1, . . . ,m). We denote by
Ei (resp. F4) the exceptional simple algebraic group of rank i (6 ≤ i ≤ 8) (resp. 4).

Now for the exceptional simple algebraic group Gs = (G2) (resp. F4, E6,

E7, E8), we denote its least representation degree (resp. its next least represen-
tation degree) by δ0 (resp. δ1). Then we have δ0 = 7 (resp. 26, 27, 56, 248) and
δ1 = 14 (resp. 52, 78, 133, 3875). Since dimGs = 14 (resp. 52, 78, 133, 248), we
have dimGs ≤ δ1.

We denote by Λ1 the standard representation of GL(n) on Cn. For a sub-
group H of GL(n), the restriction Λ1|H (= the inclusion H ↪→ GL(n)) is also
simply denoted by Λ1. More generally, Λk (k = 1, . . . , r) denotes the fundamental
irreducible representation of a simple algebraic group of rank r.

Since ⊗ and ⊕ are sometimes difficult to distinguish, we use the notation
+ for the direct sum ⊕. Let ρi : Gi → GLmi be a rational representation of
an algebraic group Gi (i = 1, . . . ,m). Then we denote the representation ρ =
(ρ1 ⊗ 1⊗ · · · ⊗ 1) + · · ·+ (1⊗ · · · ⊗ 1⊗ ρm) of G1 × · · · ×Gm by ρ1 � · · · � ρm.

In general, we denote by ρ∗ the dual representation of a rational representa-
tion ρ. We denote by V (n) an n-dimensional vector space in general. If V (n) and
V (n)∗ appear at the same time, V (n)∗ denotes the dual space of V (n).

§1. Preliminaries

Let (G0×G,Λ1⊗ ρ, V (n)⊗V ) be as in Introduction where ρ = ρ1 + · · ·+ ρm and
V = V1 + · · ·+ Vm. Let Gµ be the image of ρµ : G→ GL(Vµ). Recall that kµ = 0
implies Gµ = GL(1) and dµ = 1. Since G→ G1 × · · · ×Gm is injective, we have

dimG ≤ dimG1 + · · ·+ dimGm.

If (G0 × G,Λ1 ⊗ ρ, V (n) ⊗ V ) is a PV, we have dimG0 + dimG ≥ nd (see p. 41
in [SK]). Since n2 − 1 ≥ dimG0, we have dimG1 + · · ·+ dimGm ≥ n(d− n) + 1.
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If δ ≤ n ≤ d − δ, we have n(d − n) − δ(d − δ) = (d − δ − n)(n − δ) ≥ 0. Hence
dimG1 + · · ·+ dimGm ≥ δ(d− δ) + 1 for δ ≤ n ≤ d− δ. We can express this as

(1) 0 ≥ N1 + · · ·+Nm (δ ≤ n ≤ d− δ)

where N1 = −dimG1 + δ(d1 − δ) + 1 and Nµ = −dimGµ + δdµ (2 ≤ µ ≤ m).
In particular, if k1 = 1 and G1 = GL(1) × Gs with a simple algebraic group

Gs, we have

(2) dimGs ≥ N2 + · · ·+Nm (δ ≤ n ≤ d− δ)

In the case dimG0 ≤ 1
2n(n± 1), put N±1 = −dimG1 + δ(d1 − δ) + 1

2δ(δ∓ 1).
When δ ≤ n ≤ 2d− δ ∓ 1, we can see similarly that

(3) 0 ≥ N±1 + · · ·+Nm (δ ≤ n ≤ 2d− δ ∓ 1).

Lemma 1.1. For 2 ≤ µ ≤ m, we have Nµ ≥ 0.

Proof. If kµ = 0, we have Nµ = −1 + δ ≥ 0. If kµ ≥ 1, we may assume that dµ1 ≥
dµν ≥ 2 (2 ≤ µ ≤ m). Then dimGµ ≤ 1+(d2

µ1−1)+· · ·+(d2
µkµ
−1) ≤ 1+kµ(d2

µ1−1)
and dµ ≥ dµ12kµ−1, and hence Nµ = −dimGµ + δdµ ≥ (2kµ−1−kµ)d2

µ1 + (kµ− 1)
≥ 0.

Proposition 1.2 (M. Sato). Assume that (G0 × G,Λ1 ⊗ ρ, V (n) ⊗ V ) is a PV.
Then we have the following assertions.

(i) If δ ≤ n ≤ d− δ, then k1 ≤ 2.

(ii) If δ ≤ n ≤ 2d− δ − 1 and dimG0 ≤ 1
2n(n+ 1), then k1 ≤ 2.

(iii) If δ ≤ n ≤ 2d− δ + 1 and dimG0 ≤ 1
2n(n− 1), then k1 ≤ 2.

Proof. Under these conditions on n, by (1), (3) and Lemma 1.1, we have 0 ≥
N−1 ≥ N+

1 ≥ N1 = −dimG1 + δ(d1 − δ) + 1 ≥ −k1(δ2 − 1) + δ2(2k1−1 − 1) =
(2k1−1 − 1− k1)δ2 + k1. Hence 2k1−1 − 1− k1 < 0 and k1 ≤ 2.

In the case δ ≤ n ≤ d−δ and k1 = 2, the classification has been completed by
M. Sato (see Theorem 0.1). We shall consider the case δ ≤ n ≤ d− δ and k1 = 1.

Proposition 1.3. (i) For any σ : H → GL(V ) and any n ≥ deg σ = dimV , a
triplet (H ×GL(n), σ ⊗ Λ1, V ⊗ V (n)) is a PV. Such a PV is called trivial.

(ii) For any σ and any n ≥ m = deg σ, a triplet (G, ρ, V ) is a PV if and only if
(G×GL(n), ρ⊗ 1 + σ ⊗ Λ1, V + V (m)⊗ V (n)) is a PV.

(iii) For any (G, ρ, V (n)) and (H,σ, V (m)), a triplet (GL(n)×(G×H),Λ1⊗(ρ�σ),
V (n)⊗ (V (n) +V (m))) is a PV if and only if (G×H, ρ∗⊗σ, V (n)∗⊗V (m))
is a PV. Moreover if G is reductive, then it is a PV if and only if (G ×H,
ρ⊗ σ, V (n)⊗ V (m)) is a PV.
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Proof. For (i), see p. 43 in [SK]; and (ii) is obvious from (i). Since the GL(n)-part
of the generic isotropy subgroup at In of (GL(n)×G,Λ1 ⊗ ρ,M(n)) is ρ∗(G), we
have (iii).

Proposition 1.4. Let G be a reductive algebraic subgroup of GL(n).

(i) If G 6= GL(n), SL(n) and the inclusion Λ1 : G ↪→ GL(n) is an irreducible
representation, then dimG ≤ 1 + 1

2n(n + 1) (= dim(GL(1) × Sp(n′)) with
n = 2n′). Moreover if n is an odd integer, then dimG ≤ 1 + 1

2n(n − 1)
(= dim(GL(1)× SO(n))).

(ii) If G0 is a semisimple algebraic proper subgroup of SL(n) and the inclusion
Λ1 : G0 ↪→ SL(n) is an irreducible representation, then dimG0 ≤ 1

2n(n+ 1).

(iii) If G 6= GL(n) and the inclusion Λ1 : G ↪→ GL(n) is not irreducible, then
dimG ≤ (n− 1)2 + 1.

Proof. For (i) and (ii), see Lemma 17, p. 52 in [SK]. For (iii), we may assume that
G ⊂ GL(k) × GL(n − k) (1 ≤ k ≤ n − 1), and hence dimG ≤ k2 + (n − k)2 ≤
1 + (n− 1)2.

Proposition 1.5. For d2 + d3 ≥ n > d2, d3 and n ≥ δ, the following conditions
are equivalent.

(i) (GL(n)× (H×GL(d2)×GL(d3)),Λ1⊗ (σ� Λ1 � Λ1), V (n)⊗ (V (δ)+V (d2)+
V (d3))) is a PV.

(ii) (H×(GL(n−d2)×GL(n−d3)), σ⊗(Λ1 �Λ1), V (δ)⊗(V (n−d2)+V (n−d3)))
is a PV.

Proof. Since δ ≤ n and (n−d2)+(n−d3) ≤ n, we obtain this result by Theorem 7.8
in [K2].

Proposition 1.6. If (G × GL(n), ρ ⊗ Λ1, V (δ) ⊗ V (n)) with δ > n ≥ 1 is an
irreducible PV, then (G × GL(1), ρ ⊗ Λ1, V (δ) ⊗ V (1)) is also a PV. However if
the former triplet is not irreducible, this conclusion does not hold in general.

Proof. See Proposition 3.2 in [KTK]. A counterexample in the non-irreducible case
is given by Remark 3.3 in [KTK].

Proposition 1.7. Let Gs be an exceptional simple algebraic group.

(i) T1 := (SO(n)×(GL(m1)×GL(m2)),Λ1⊗(Λ1�Λ1), V (n)⊗(V (m1)+V (m2)))
(n > m1 ≥ m2 ≥ 1) is a non-PV.

(ii) T2 := (Gs × (GL(r) × GL(s)), σ ⊗ (Λ1 � Λ1), V (δ) ⊗ (V (r) + V (s))) is a
non-PV for δ > r ≥ s ≥ 1.
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(iii) For a semisimple algebraic subgroup G0 ( SL(δ), a triplet (G0 × (GL(1)×
Gs),Λ1 ⊗ (Λ1 ⊗ σ), V (δ)⊗ V (δ)) is a non-PV.

Proof. The triplet T1 is PV-equivalent to ((SO(m1) × SO(n −m1)) × GL(m2),
(Λ1 � Λ1) ⊗ Λ1, (V (m1) + V (n −m1)) ⊗ V (m2)) (see p. 109 in [SK]). Note that
we may assume n/2 > m1 ≥ m2 ≥ 1 by castling transformation. Thus T1 is PV-
equivalent to (SO(n −m1) × SO(m2),Λ1 ⊗ Λ1, V (n −m1) ⊗ V (m2)), which is a
non-PV (see p. 53 in [SK]).

If the triplet T2 is a PV, then (Gs × GL(1), σ ⊗ Λ1, V (δ)) must be a PV by
Proposition 1.6. Hence by [SK], we have Gs 6= F4, E8, and for Gs = (G2) (resp.
E6, E7), δ = 7 (resp. 27, 56). Since ((G2),Λ2, V (7)) ⊂ (SO(7),Λ1, V (7)) , we obtain
the case for Gs = (G2) by (i). For E6, since (E6 ×GL(t),Λ1 ⊗ Λ1, V (27)⊗ V (t))
is a non-PV for 3 ≤ t ≤ 24, T2 is a non-PV if one of r, s, r + s, 54 − r − s

is in between 3 and 24. However if r, s = 1 or 26, it is a non-PV by [K3]. For
E7, note that (E7 × GL(t),Λ6 ⊗ Λ1, V (56) ⊗ V (t)) is a non-PV for 2 ≤ t ≤ 54.
Hence if one of r, s, r + s, 112 − r − s is in between 2 and 54, then T2 is a non-
PV. However if r, s = 1 or 55, it is a non-PV by [K3]. For (iii), if G0 6= GL(δ)
and the inclusion Λ1 : G0 ↪→ SL(δ) is irreducible, then by Proposition 1.4, we
have dimG0 ≤ 1

2δ(δ + 1). Therefore if (G0 × G1, V (δ) ⊗ V (δ)) is a PV, then
1
2δ(δ + 1) + 1 + dimGs ≥ dimG0 + dimG1 ≥ δ2 and hence δ1 ≥ dimGs ≥
−1 + 1

2δ(δ − 1) ≥ −1 + 1
2δ0(δ0 − 1) > δ1, a contradiction. If the inclusion Λ1 :

G0 ↪→ SL(δ) is not irreducible, we may assume that G0 ⊂ GL(r) × GL(δ − r).
Then by (ii), we obtain our result.

Proposition 1.8. ((GL(m1)×GL(m2))×(GL(n1)×GL(n2)), (Λ1�Λ1)⊗(Λ1�Λ1),
(V (m1) + V (m2))⊗ (V (n1) + V (n2))) is a PV if and only if m1 +m2 6= n1 + n2.

Proof. See Theorem 9.6 in [K1].

Proposition 1.9. (SL(n) × (GL(d1) × GL(d2) × GL(d3) × GL(d4)),Λ1 ⊗ (Λ1 �

Λ1 � Λ1 � Λ1), V (n) ⊗ (V (d1) + V (d2) + V (d3) + V (d4))) is a PV if and only if
d1 + d2 + d3 + d4 6= 2n or n ≤ max{d1, d2, d3, d4}.

Proof. See Theorem 9.10 in [K1].

Proposition 1.10. Assume k1 = 1 and (G, ρ1, V (d1)) = (GL(1) × Gs,Λ1 ⊗ σ,
V (δ)) where Gs is any simple algebraic group. Assume that G0 is a reductive
subgroup of GL(n) such that the inclusion Λ1 : G0 ↪→ GL(n) is not irreducible.
Then T := (G0 ×G,Λ1 ⊗ (ρ1 + · · ·+ ρm), V (n)⊗ (V (δ) + V (d2) + · · ·+ V (dm)))
with n = d2 + · · ·+ dm (= d− δ) and m ≥ 3 is a non-PV.
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Proof. By assumption, we have G0 ⊂ GL(k)×GL(d− δ − k) with 1 ≤ k < d− δ.
If T is a PV, then ((GL(k) × GL(d − δ − k)) × (GL(d2) × GL(d3 + · · · + dm)),
(Λ1 � Λ1)⊗ (Λ1 � Λ1), (V (k) + V (d− δ − k))⊗ (V (d2) + V (d3 + · · ·+ dm))) must
be a PV, which is a contradiction by Proposition 1.8.

Proposition 1.11 (Regularity of PV’s). (i) Assume that G is a reductive alge-
braic group. For m > n ≥ 1, (G×GL(n), ρ⊗1+σ⊗Λ1, V +V (m)⊗V (n)) is a
regular PV if and only if (G×GL(m−n), ρ⊗1+σ∗⊗Λ1, V +V (m)∗⊗V (m−n))
is a regular PV.

(ii) For n = δ or n = t + kδ, (SL(n) × ((GL(1) × Gs) × T × GL(δ)×(k)),Λ1 ⊗
((Λ1 ⊗ σ) � τ � Λ�(k)

1 ), V (n) ⊗ (V (δ) + V (t) + V (δ)+(k))) is a regular PV if
and only if (Gs×T, σ⊗ τ, V (δ)⊗V (t)) is a regular PV where Gs is a simple
algebraic group.

(iii) Let ρ : G → GL(V ) be a representation and σ its restriction to a subgroup
H of G. Assume that (H,σ, V ) is a PV. Then (G, ρ, V ) is a PV. Moreover
if (G, ρ, V ) is a regular PV, then (H,σ, V ) is also a regular PV.

Proof. A reductive PV is regular if and only if the generic isotropy subgroup is
reductive. Since the generic isotropy subgroup is invariant up to isomorphism under
castling transformation, we have (i). For (ii), it is enough to see the case n = δ since
the case n = t+kδ is its castling transform. The generic isotropy subgroup at Iδ of
(SL(δ)× (GL(1)×Gs),Λ1⊗ (Λ1⊗σ),M(δ)) is {(σ∗(A), 1, A) | A ∈ Gs} ∼= Gs, and
for H ⊂ GL(δ), the generic isotropy subgroup at Iδ of (H×GL(δ),Λ1⊗Λ1,M(δ))
is {(h, th−1) | h ∈ H} ∼= H, and we have our result. Note that (Gs × T, σ∗ ⊗ τ,
V (δ)∗⊗V (t)) ∼= (Gs×T, σ⊗τ, V (δ)⊗V (t)) since Gs is reductive. By the definition
of regularity, (iii) is clear.

Proposition 1.12. (I) The following triplets are regular PV’s.

(i) (G2 ×GL(t),Λ2 ⊗ Λ1, V (7)⊗ V (t)) with t = 1, 2, 5, 6.

(ii) (E6 ×GL(t),Λ1 ⊗ Λ1, V (27)⊗ V (t)) with t = 1, 2, 25, 26.

(iii) (E7 ×GL(t),Λ6 ⊗ Λ1, V (56)⊗ V (t)) with t = 1, 55.

(iv) (Sp(t)×(GL(u)×GL(v)),Λ1⊗(Λ1�Λ1), V (2t)⊗(V (u)+V (v))) with (u, v) =
(1, 1), (1, 2t − 1), (2t − 1, 2t − 1), (1, k), (k, 2t − 1) where k is an odd integer
satisfying 3 ≤ k ≤ 2t− 3.

(v) (Spin(10)× (GL(u)×GL(u)), a half-spin rep. ⊗ (Λ1 � Λ1), V (16)⊗ (V (u) +
V (u))) with u = 1, 15.

(II) The following triplets are non-regular PV’s.
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(i) (Sp(t)× (GL(2r)×GL(2k+ 1)),Λ1⊗ (Λ1 � Λ1), V (2t)⊗ (V (2r) +V (2k+ 1))
with t ≥ 2, 2t− 2 ≥ 2r ≥ 2, 2t− 1 ≥ 2k + 1 ≥ 1.

(ii) (Sp(t) × (GL(u) × GL(v) × GL(w)),Λ1 ⊗ (Λ1 � Λ1 � Λ1), V (2t) ⊗ (V (u) +
V (v)+V (w))) with (u, v, w) = (1, 1, 1), (1, 1, 2t−1), (1, 2t−1, 2t−1), (2t−1,
2t−1, 2t−1), (1, 1, k), (1, 2t−1, k), (2t−1, 2t−1, k) where k is an odd integer
satisfying 3 ≤ k ≤ 2t− 3.

(iii) (SL(2t+1)× (GL(u)×GL(u)),Λ2⊗ (Λ1 � Λ1), V (t(2t+1))⊗ (V (u)+V (u)))
with u = 1 or u = t(2t+ 1)− 1.

Proof. Use Proposition 1.11, [Ka] and [KUY].

§2. The exceptional case

In this section, we shall give the proof of Theorem 0.2. We assume that k1 = 1 and
G1 = (Λ1 ⊗ σ)(GL(1) × Gs) where Gs is an exceptional simple algebraic group.
For simplicity, we write G1 = GL(1)×Gs. In this case, we have d1 = δ and hence
N1 = −dimG1 + 1 = − dimGs. We may assume that dµ1 ≥ dµν (1 ≤ ν ≤ kµ)
when kµ ≥ 1. For δ0 and δ1, see Notation in Introduction.

Lemma 2.1. Let Gs be an exceptional simple algebraic group.

(i) If kµ ≥ 3, then Nµ ≥ 4dµ1(δ − dµ1) + d2
µ1 + 2.

(ii) If kµ = 2 and dµ1 ≥ dµ2 ≥ 3, then Nµ ≥ 1 + 2(δ − dµ1)dµ1 + δdµ1 ≥ 3δ.

(iii) If kµ = 2 and dµ2 = 2, then Nµ ≥ (δ − dµ1)dµ1 + (δdµ1 − 3) ≥ 3δ.

Proof. As in the proof of Lemma 1.1, we have dimGµ ≤ 1 + kµ(d2
µ1 − 1) and

dµ ≥ dµ12kµ−1 (2 ≤ µ ≤ m). Hence Nµ = − dimGµ + δdµ ≥ kµ − 1 − kµd2
µ1 +

2kµ−1δdµ1 = 2kµ−1(δ − dµ1)dµ1 + (2kµ−1 − kµ)d2
µ1 + (kµ − 1). If kµ ≥ 3, we have

2kµ−1 ≥ 4 and 2kµ−1 − kµ ≥ 1, and we obtain (i). If kµ = 2, we have dimGµ ≤
1 + (d2

µ1 − 1) + (d2
µ2 − 1) and dµ = dµ1dµ2. Hence Nµ ≥ 1− d2

µ1 − d2
µ2 + δdµ1dµ2.

If dµ1 ≥ dµ2 ≥ 3, we have Nµ ≥ 1 − 2d2
µ1 + 3δdµ1, i.e., (ii). If dµ2 = 2, we

have Nµ ≥ 2δdµ1 − d2
µ1 − 3 ≥ δdµ1 − 3. In particular, Nµ ≥ 4δ − 3 (dµ1 ≥ 4),

Nµ ≥ 6δ−12 (dµ1 = 3), Nµ ≥ 4δ−7 (dµ1 = 2). Since δ ≥ 7, we have Nµ ≥ 3δ.

Proposition 2.2. If G1 = GL1 × Gs with Gs an exceptional simple algebraic
group, then kµ = 0 or kµ = 1 (2 ≤ µ ≤ m).

Proof. For the exceptional simple algebraic groupGs = (G2) (resp. F4, E6, E7, E8),
put t = 4 (resp. 8, 9, 12, 16). By Lemma 2.1, if kµ ≥ 3 and dµ1 ≥ t, then we have
dimGs = 14 (resp. 52, 78, 133, 248) ≥ Nµ ≥ d2

µ1 ≥ t2 = 16 (resp. 64, 81, 144, 256),
a contradiction. If kµ ≥ 3 and t − 1 ≥ dµ1 ≥ 2, we have δ − dµ1 ≥ 4 (resp.



Sato’s Classification of Prehomogeneous Vector Spaces 407

19, 19, 45, 233), and dimGs ≥ Nµ ≥ 4dµ1(δ − dµ1) ≥ 8(δ − dµ1) ≥ 32 (resp.
152, 152, 360, 1864), a contradiction. If kµ = 2, we have dimGs ≥ Nµ ≥ 3δ ≥
3δ0 = 21 (resp. 78, 81, 168, 744), a contradiction. Hence kµ ≤ 1.

By Proposition 2.2, first we shall investigate the prehomogeneity of

(4) (G0 × ((GL(1)×Gs)×G2 × · · · ×Gm),Λ1 ⊗ ((Λ1 ⊗ σ) + ρ2 + · · ·+ ρm),

V (n)⊗ (V (δ) + V (d2) + · · ·+ V (dm)))

with δ ≥ dµ (2 ≤ µ ≤ m) and δ ≤ n ≤ d2 + · · · + dm where Gs is an exceptional
simple algebraic group and each Gµ contains the scalar action GL(1). Then we
shall find the groups ρ(G) ( (GL(1)×σ(Gs))×G2× · · ·×Gm such that (G0×G,
Λ1 ⊗ ρ, V (n)⊗ V (d)) is a PV.

Lemma 2.3. If (4) is a PV with n = d− δ (= d2 + · · ·+ dm), then G0 = SL(n).

Proof. Assume that G0 6= SL(n) and the inclusion Λ1 : G0 ↪→ SL(n) is irreducible;
then by (ii) of Proposition 1.4, we have dimG0 ≤ 1

2n(n + 1). Hence if (4) is a
PV, we have 1

2n(n + 1) + 1 + dimGs + d2
2 + · · · + d2

m ≥ n(δ + n), and hence
δ1 ≥ dimGs ≥ 1

2n(n− 1)− 1 + d2(δ− d2) + · · ·+ dm(δ− dm) ≥ 1
2δ(δ− 1)− 1 > δ1,

a contradiction. If the inclusion Λ1 : G0 ↪→ SL(n) is not irreducible and m ≥ 3,
then by Proposition 1.10, it is a non-PV. If m = 2, then δ ≤ n ≤ d2 ≤ δ implies
that n = δ. Then by (ii) of Proposition 1.7, it is a non-PV.

Lemma 2.4. If (4) is a PV, then 1 ≤ dµ ≤ 3 or δ − 3 ≤ dµ ≤ δ, and only the
following cases are possible for Gs, δ and Gµ (2 ≤ µ ≤ m).

(i) If dµ = δ, then Nµ = 0 and Gµ = GL(δ) for any σ with deg σ = δ.

(ii) If dµ = δ − 1 or dµ = 1, then Nµ = δ − 1, Gµ = GL(dµ) and either δ = δ0,
or δ = δ1 with Gs 6= E8.

(iii) If dµ = δ− 2 or dµ = 2, then Nµ = 2(δ0 − 2), Gµ = GL(dµ) and δ = δ0 with
Gs 6= E8.

(iv) If dµ = δ − 3 or dµ = 3, then Nµ = 3(δ0 − 3), Gµ = GL(dµ) for Gs = (G2)
and E6 with δ = δ0; or Nµ = 77, Gµ = GL(1)× SO(3) for Gs = E6.

Proof. Let Gs = (G2) (resp. F4, E6, E7, E8). For (i), if Gµ 6= GL(δ), then by
Proposition 1.4, we have dimGµ ≤ 1 + 1

2δ(δ + 1) and hence by (2), we have
dimGs = 14 (resp. 52, 78, 133, 248) ≥ Nµ = − dimGµ + δ2 ≥ 1

2δ(δ − 1) − 1 ≥ 20
(resp. 324, 350, 1539, 30627), a contradiction. Hence Nµ = − dimGL(δ) + δdµ = 0.
For (ii), if dµ = δ − 1 and Gµ 6= GL(δ − 1), then similarly we have dimGµ ≤
1 + 1

2δ(δ − 1) and hence dimGs ≥ Nµ ≥ 1
2δ(δ − 1)− 1, a contradiction. It follows
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that Nµ = −dimGL(δ−1) + δ(δ−1) = δ−1. If dµ = 1, then kµ = 0, Gµ = GL(1)
and Nµ = δ − 1. If Gs 6= E8, then dimGs = δ1 ≥ Nµ = δ − 1, and we have
δ = δ0, δ1. If Gs = E8, we have dimGs = δ0 ≥ Nµ = δ − 1 and hence δ = δ0.

Now if Gs = E8 with δ − 2 ≥ dµ ≥ 2, we have 248 ≥ Nµ ≥ dµ(δ − dµ) ≥
dµ(248 − dµ) > 248, a contradiction. Hence we assume that Gs 6= E8 so that
dimGs = δ1. Assume that δ − 2 ≥ dµ ≥ 2. Then δ = δ0 since dimGs = δ1 ≥
Nµ ≥ dµ(δ − dµ) > δ1 if and only if 1

2 (δ +
√
δ2 − 4δ1) > dµ >

1
2 (δ −

√
δ2 − 4δ1),

and if δ ≥ δ1, we have 1
2 (δ +

√
δ2 − 4δ1) > δ − 2 ≥ dµ ≥ 2 > 1

2 (δ −
√
δ2 − 4δ1).

Thus δ = δ0 and if δ0 − 4 ≥ dµ ≥ 4, then 1
2 (δ0 +

√
δ20 − 4δ1) ≥ δ0 − 4 > dµ ≥

4 > 1
2 (δ0 −

√
δ20 − 4δ1) since 4δ0 > δ1 + 16. This implies that dimGs = δ1 ≥

Nµ ≥ dµ(δ0 − dµ) > δ1, a contradiction. It follows that δ0 ≥ dµ ≥ δ0 − 3 or
dµ = 1, 2, 3. If Gs = F4 (resp. E7) with dµ = δ0 − 3 or 3, then dimGs = 26
(resp. 56) ≥ Nµ ≥ 3(δ0 − 3) = 69 (resp. 159) > 26 (resp. 133), a contradiction.
Hence if dµ = δ − 3 or 3, then Gs = (G2) or E6 with δ = δ0. Assume that
dµ = δ0 − 2 (resp. δ0 − 3) with Gµ 6= GL(dµ). Then by Proposition 1.4, we
have dimGµ ≤ 1 + 1

2 (δ0 − 2)(δ0 − 1) (resp. 1 + 1
2 (δ0 − 3)(δ0 − 2)) and hence

dimGs = δ1 ≥ Nµ ≥ −1− 1
2 (δ0−2)(δ0−1)+δ0(δ0−2) = −1+ 1

2 (δ0−2)(δ0+1) (resp.
−1+ 1

2 (δ0−3)(δ0+2)) > δ1, a contradiction, and henceGµ = GL(dµ) for dµ = δ0−2
or δ0 − 3. If dµ = 2, then Gµ must be GL(2). If dµ = 3 and Gµ 6= GL(3),
then Gµ = GL(1) × SO(3). For Gs = (G2), we have dim(G2) = 14 ≥ Nµ =
−dim(GL(1)× SO(3)) + 3δ0 = 17, a contradiction.

Proposition 2.5. If (4) is a PV, then only the following cases are possible.

(i) G2 = · · · = Gm = GL(δ) for any σ with deg σ = δ.

(ii) G2 = GL(δ − 1) or GL(1); G3 = · · · = Gm = GL(δ) with δ = δ0, or δ = δ1
with Gs 6= E8.

(iii) G2, G3 = GL(δ0 − 1) or GL(1); G4 = · · · = Gm = GL(δ0) with δ = δ0 and
Gs 6= E8.

(iv) G2 = GL(δ0 − 2) or GL(2); G3 = · · · = Gm = GL(δ0) with δ = δ0 and
Gs 6= E8.

(v) G2 = GL(δ0 − 3) or GL(3); G3 = · · · = Gm = GL(δ0) with δ = δ0 and
Gs = (G2) or E6.

(vi) G2 = GL(1)× SO(3); G3 = · · · = Gm = GL(27) with Gs = E6.

Proof. Use (2) and Lemma 2.4.

Lemma 2.6. Let Gs be any simple algebraic group, and G0 a semisimple alge-
braic subgroup of SL(n). For δ ≤ n ≤ (m − 1)δ, let T := (G0 × ((GL1 × Gs) ×
GL(δ)×(m−1),Λ1 ⊗ ((Λ1 ⊗ σ) � Λ�(m−1)

1 ), V (n)⊗ (V (δ)+(m))).
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(i) If n = δ, then T is a PV if and only if (G0×(GL(1)×Gs),Λ1⊗(Λ1⊗σ), V (δ)⊗
V (δ)) is a PV. In particular if G0 = SL(n), then T is always a PV.

(ii) If Gs is an exceptional simple algebraic group and n = δ, then T is a PV if
and only if G0 = SL(n).

(iii) If n = kδ (2 ≤ k ≤ (m− 2)), then T is a non-PV.

(iv) If n = (m− 1)δ with m ≥ 3, then T is a PV if and only if G0 = SL(n).

(v) If T is a PV with δ < n < (m − 1)δ, then (GL(1) ×Gs,Λ1 ⊗ σ, V (δ)) must
be a PV.

Proof. By (ii) of Proposition 1.3, we obtain (i). We obtain (ii) by (ii) of Proposi-
tion 1.7. For (iii), if T is a PV for n = kδ, it is also a PV when G0 = GL(kδ). Then
by (iii) of Proposition 1.3, it is PV-equivalent to ((GL(δ)×(k)) × ((GL(1) × Gs)
×GL(δ)×(m−1−k)), (Λ�(k)

1 )⊗((Λ1⊗σ)+Λ�(m−k−1)
1 ), V (kδ)⊗V ((m−k)δ)). In par-

ticular ((GL(δ)×GL(δ))× (GL(δ)×GL(δ)), (Λ1 �Λ1)⊗ (Λ1 �Λ1), (V (δ)+V (δ))⊗
(V (δ) + V (δ))) is a PV, but it is a non-PV by Proposition 1.8, a contradic-
tion. For (iv), if G0 6= SL(n), it is a non-PV by Lemma 2.3. If G0 = SL(n),
then by castling transformation, T reduces to (i). For (v), we may assume that
kδ < n < (k + 1)δ (1 ≤ k ≤ m − 2) by (iii). Then (GL(n) × ((GL(1) × Gs) ×
GL(δ)×(k)),Λ1 ⊗ ((Λ1 ⊗ σ) � Λ�(k)

1 ), V (n)⊗ (V (δ) + V (δ)+(k))) must be a PV. By
castling transformation, we have n 7→ n′ = (k + 1)δ − n = δ − (n − kδ). Hence
(Gs ×GL(n′), σ ⊗ Λ1, V (δ)⊗ V (n′)) with δ > n′ ≥ 1 must be an irreducible PV.
Hence by Proposition 1.6, we have (v).

Proposition 2.7. For m ≥ 3 and δ ≤ n ≤ (m−1)δ, T := (G0× ((GL(1)×Gs)×
GL(δ)×(m−1)),Λ1 ⊗ ((Λ1 ⊗ σ) � Λ�(m−1)

1 ), V (n) ⊗ (V (δ) + V (δ)+(m−1))) is a PV
if and only if G0 = SL(n) with n = δ or n = (m− 1)δ.

Proof. By (ii) and (iv) of Lemma 2.6, we have the case n = δ or n = (m − 1)δ.
For δ < n < (m − 1)δ, by (v) of Lemma 2.6, T is a non-PV for Gs = F4 and
E8. For Gs = (G2) (resp. E6, E7), if it is a PV, then δ = 7 (resp. 27, 56), and
n 6= kδ (2 ≤ k ≤ (m−2)) by (iii) and (v) of Lemma 2.6. Hence there is t satisfying
3 ≤ t ≤ m and (t − 2)δ < n < (t − 1)δ, i.e., δ < (n′ =) tδ − n < 2δ and
(GL(n)× (Gs ×GL(δ)×(t−1)),Λ1 ⊗ (σ � Λ�(t−1)

1 ), V (n)⊗ (V (δ)+(t))) is a PV. By
castling transformation, we have n 7→ n′ = tδ−n with δ < n′ < 2δ, and since t−1
≥ 2, (GL(n′)× (Gs×GL(δ)×GL(δ)),Λ1⊗ (σ � Λ1 � Λ1), V (n′)⊗ (V (δ) + V (δ) +
V (δ))) must be a PV which is PV-equivalent to (Gs × (GL(n′ − δ)×GL(n′ − δ)),
σ⊗ (Λ1 � Λ1), V (δ)⊗ (V (n′ − δ) + V (n′ − δ))) with 1 ≤ n′ − δ < δ by Proposition
1.4. However it is a non-PV by Proposition 1.7, a contradiction.
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Proposition 2.8. Let d2 = 1, δ − 1 with δ = δ0, δ1. For m ≥ 3 and δ ≤ n ≤
d2 + (m− 2)δ, we have the following assertions.

(i) T := (G0 × ((GL(1) × Gs) × GL(d2) × GL(δ)×(m−2)),Λ1 ⊗ ((Λ1 ⊗ σ) �

Λ1 � Λ�(m−2)
1 ), V (n)⊗ (V (δ) + V (d2) + V (δ)+(m−2))) is a PV if and only if

G0 = SL(n) with n = δ0 or n = d2 + (m− 2)δ0 for Gs = (G2), E6, E7.

(ii) T is a non-PV for Gs = F4 and E8.

Proof. If T is a PV with n = δ, then by (ii) of Lemma 2.6, we have G0 = SL(n).
Then by (ii) and (iii) of Proposition 1.3, T is PV-equivalent to (Gs×GL(d2), σ⊗Λ1,

V (δ)⊗V (d2)) with d2 = 1, δ−1, which is a PV if and only if Gs = (G2), E6, E7. By
castling transformation, we have the result for n = d2 +(m−2)δ and G0 = SL(n).
T is a non-PV for n = d2 + (m − 2)δ and G0 6= SL(n) by Lemma 2.3. Assume
that δ < n < d2 + (m− 2)δ and m ≥ 4. If δ < n < (m− 2)δ, then T is a non-PV
by Proposition 2.7. So assume that (m − 2)δ ≤ n < d2 + (m − 2)δ. To prove the
non-prehomogeneity, it is enough to assume that G0 = GL(n). Then by castling
transformation, we have n 7→ (δ <)n′ = d2+(m−1)δ−n = (d2+δ)−(n−(m−2)δ) ≤
d2+δ < (m−2)δ, and hence T is a non-PV. Finally assume thatm = 3 and δ < n <

d2 + δ. Then d2 6= 1 and d2 = δ− 1. Hence by Proposition 1.5, T is PV-equivalent
to (Gs×(GL(n−δ+1)×GL(n−δ)), σ⊗(Λ1 �Λ1), V (δ)⊗(V (n−δ+1)+V (n−δ)))
with δ > n− δ + 1 > n− δ ≥ 1. By Proposition 1.7, the latter is a non-PV.

Proposition 2.9. Let d2, d3 = 1 or δ − 1. For m ≥ 3 and δ ≤ n ≤ d2 + d3 +
(m − 3)δ, T := (G0 × ((GL(1) × Gs) × GL(d2) × GL(d3) × GL(δ)×(m−3)),Λ1 ⊗
((Λ1 ⊗ σ) � Λ1 � Λ1 � Λ�(m−3)

1 ), V (n)⊗ (V (δ) + V (d2) + V (d3) + V (δ)+(m−3))) is
a non-PV.

Proof. To prove non-prehomogeneity, we may assume that G0 = GL(n). If n = δ,
by (ii) and (iii) of Proposition 1.3, T is PV-equivalent to (Gs×(GL(d2)×GL(d3)),
σ ⊗ (Λ1 � Λ1), V (δ) ⊗ (V (d2) + V (d3))) with 1 ≤ d2, d3 < δ, which is a non-PV
by Proposition 1.7. Hence by castling transformation, T is a non-PV for n =
d2 + d3 + (m − 3)δ. Therefore we may assume that δ < n < d2 + d3 + (m − 3)δ
with d2 ≤ d3. By Proposition 2.8, T is a non-PV for δ < n < d3 + (m − 3)δ.
Hence we may assume that d3 + (m− 3)δ ≤ n < d2 + d3 + (m− 3)δ. By castling
transformation, we have n 7→ n′ = d2+ d3 + (m − 2)δ − n with δ < n′ ≤ d2 + δ.
Hence if n′ ≤ d2 +δ < d3 +(m−3)δ, i.e., m ≥ 5 or m = 4 with d2 = 1 < d3 = δ−1,
then T is a non-PV. Assume that m = 4 and d2 = d3. If δ < n′ < d3 + δ, T is
a non-PV. If n = d3 + δ, then T is a non-PV by Proposition 1.9. If m = 3, then
δ < n < d2+d3 gives d2 = d3 = δ−1, and by Proposition 1.5, T is PV-equivalent to
(Gs×(GL(n−δ+1)×GL(n−δ+1)), σ⊗(Λ1�Λ1), V (δ)⊗(V (n−δ+1)+V (n−δ+1)))
with δ > n− δ + 1 > 1. The latter is a non-PV by Proposition 1.7.
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Proposition 2.10. Let d2 = 2, 3, δ0 − 3 or δ0 − 2 with δ = δ0. For m ≥ 3 and
δ0 ≤ n ≤ d2 + (m− 2)δ0, we have the following assertions.

(i) T := (G0 × ((GL(1) × Gs) × GL(d2) × GL(δ0)×(m−2)),Λ1 ⊗ ((Λ1 ⊗ σ) �

Λ1 � Λ�(m−2)
1 ), V (n)⊗ (V (δ0) + V (d2) + V (δ0)+(m−2))) is a PV if and only

if G0 = SL(n) with n = δ0, d2 + (m− 2)δ0 and d2 = 2, δ0 − 2 for Gs = (G2)
and E6.

(ii) T is a non-PV for Gs = F4, E7 and E8.

Proof. Assume that n = δ0. Then by (ii) of Proposition 1.3, T is PV-equivalent to
(G0× ((GL(1)×Gs)×GL(d2)),Λ1⊗ ((Λ1⊗σ) � Λ1), V (δ0)⊗ (V (δ0)+V (d2))). By
the proof of (ii) of Lemma 2.6, it is a non-PV when G0 6= SL(δ0). If G0 = SL(δ0),
then by (iii) of Proposition 1.3, T is PV-equivalent to (Gs × GL(d2), σ ⊗ Λ1,

V (δ0) ⊗ V (d2)) which is a PV if and only if Gs = (G2), E6 and d2 = 2, δ0 − 2.
Hence by castling transformation, we have the same result when G0 = SL(n) with
n = d2 + (m−2)δ0. If n = d2 + (m−2)δ0 and G0 6= SL(n), then T is a non-PV by
Lemma 2.3. Now assume that δ0 < n < d2 +(m−2)δ0 with m ≥ 4. By Proposition
2.7, T is a non-PV for δ0 < n < (m − 2)δ0. So we may assume that (m − 2)δ0 ≤
n < d2 + (m−2)δ0. To prove the non-prehomogeneity, it is enough to assume that
G0 = GL(n). Then by castling transformation, we have n 7→ n′ = d2+(m−1)δ0−n
with δ0 < n′ < d2 + δ0 < (m − 2)δ0, and hence T is a non-PV. Finally assume
that m = 3 and δ0 < n < d2 + δ0. Again to prove the non-prehomogeneity, it is
enough to assume that G0 = GL(n). Then by Proposition 1.5, T is PV-equivalent
to (Gs×(GL(n−d2)×GL(n−δ0)), σ⊗(Λ1�Λ1), V (δ0)⊗(V (n−d2)+V (n−δ0))) with
1 ≤ n−d2, n−δ0 < δ0, which is a non-PV by Proposition 1.7. Finally note that since
case GL(d2) = GL(3) is a non-PV, case (vi) in Proposition 2.5 is a non-PV.

Now we shall give the proof of Theorem 0.2. By Propositions 2.7 to 2.10, the
triplets appearing in (i)–(iv) of Theorem 0.2 are PV’s and it is enough to find the
group G of those (GL(1)×Gs)×G2×· · ·×Gm such that (SL(n)×G,Λ1⊗ρ, V (n)⊗
V (d)) is a PV. By castling transformation, we may assume that n = δ (resp. δ =
7, 27, 56). If we restrict GL(δ) to SL(δ) (resp. GL(1)×Gs to Gs), then the triplet
becomes a non-PV since (SL(δ)×SL(δ),Λ1⊗Λ1, V (δ)⊗V (δ)) is a non-PV. Now if
we restrict (GL(δ)×GL(δ),Λ1 �Λ1, V (δ)+V (δ)) to (GL(δ),Λ1 +Λ1, V (δ)+V (δ))
and if it is still a PV, then (SL(δ) × ((GL(1) × Gs) × GL(δ)),Λ1 ⊗ ((Λ1 ⊗ σ) �

(Λ1+Λ1)), V (δ)⊗(V (δ)+V (δ)+V (δ))) must be a PV. Then by (iii) of Proposition
1.3, it is PV-equivalent to (Gs×GL(δ), σ⊗ (Λ1 +Λ1), V (δ)⊗ (V (δ)+V (δ))) which
is also PV-equivalent to (Gs, σ ⊗ σ∗, V (δ)⊗ V (δ)∗) which is a non-PV for dimen-
sional reasons, a contradiction. Thus any proper restriction of the group gives a
non-PV. By Propositions 1.11 and 1.12, these PV’s are regular.
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§3. The extreme case for classical simple algebraic groups

In this section, we shall give the proof of Theorem 0.3. Let (G0×G,Λ1⊗ρ, V (n)⊗V )
with δ ≤ n ≤ d − δ be as in Introduction. The remaining case is k1 = 1 so that
(G, ρ1, V1) = (GL(1) × Gs,Λ1 ⊗ σ, V (1) ⊗ V (δ)) where Gs is a simple algebraic
group. Note that V (1) ⊗ V ∼= V in general. In this section, we deal with the
extreme case n = δ or n = d−δ when Gs is a classical simple algebraic group with
(G, ρ1, V1) 6= (GL(δ),Λ1, V (δ)). First we assume that G0 = SL(n) with n = δ

or n = d − δ and ρ(G) = G1 × · · · × Gm (see Preliminaries) where each V (dµ)
(1 ≤ µ ≤ m) has an independent scalar action. Then by castling transformation, it
is enough to consider the case n = δ. After the classification of this case, we shall
classify (G0 × G,Λ1 ⊗ ρ, V (n) ⊗ V ) for G0 ( SL(n) and ρ(G) ⊂ G1 × · · · × Gm;
or G0 = SL(n) and ρ(G) ( G1 × · · · ×Gm where each V (dµ) (1 ≤ µ ≤ m) has an
independent scalar action.

Lemma 3.1. Under the above assumption, (G0×G,Λ1⊗ρ, V (n)⊗V ) = (SL(δ)×
((GL1 × Gs) × G2 × · · · × Gm),Λ1 ⊗ ((Λ1 ⊗ σ) � ρ2 � · · · � ρm), V (δ) ⊗ (V (δ) +
V (d2) + · · ·+ V (dm))) is PV-equivalent to

(5) (Gs × (G2 × · · · ×Gm), σ ⊗ (ρ2 � · · · � ρm), V (δ)⊗ (V (d2) + · · ·+ V (dm)))

with δ ≤ d2 + · · ·+ dm where Gs is a classical simple algebraic group 6= SL(δ).

Proof. Use (iii) of Proposition 1.3.

Therefore we shall investigate the prehomogeneity of the triplet (5).

Proposition 3.2. If m = 2, then (5) is a PV if and only if (G2, ρ2, V (d2)) =
(GL(δ),Λ1, V (δ)).

Proof. If k2 = 0, then 3 ≤ δ ≤ d2 = 1, a contradiction. If k2 = 1, then (δ ≤) d2 ≤ δ
and hence d2 = δ. Thus (Gs × G2, σ ⊗ ρ2, V (δ) ⊗ V (δ)) must be an irreducible
PV, and by [SK], we have (G2, ρ2, V (δ)) = (GL(δ),Λ1, V (δ)). In this case, (5) is a
trivial regular PV. Finally assume that k2 ≥ 2. If (5) is reduced, by [SK], it must be
an irreducible trivial PV. Then G2 = GL(N)×H and V (d2) = V (N)⊗V (h) with
δ ≥ N ≥ δh (> δ), a contradiction. Hence (5) is not reduced. Assume that SL(M)
has the highest rank among the simple factors of G2. Note that δ ≥ M . Then
(Gs×G2, σ⊗ρ2, V (δ)⊗V (δ)) = (Gs×GL(M)×K,σ⊗Λ1⊗κ, V (δ)⊗V (M)⊗V (k))
is reduced since δk−M (≥ 2δ −M) ≥M , a contradiction, and hence k2 � 2.

Note that Proposition 3.2 corresponds to (i) of Lemma 2.6 with m = 2 and
G0 = SL(n).
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Now consider (5) with m ≥ 3. If it is a PV, then for any µ1 and µ2 with
2 ≤ µ1 < µ2 ≤ m, (Gs × (Gµ1 ×Gµ2), σ ⊗ (ρµ1 � ρµ2), V (δ)⊗ (V (dµ1) + V (dµ2)))
must be a 2-irreducible PV.

Lemma 3.3. If (Gs × (Gµ1 × Gµ2), σ ⊗ (ρµ1 � ρµ2), V (δ) ⊗ (V (dµ1) + V (dµ2)))
is a PV with (Gµi , ρµi , V (dµi)) 6= (GL(δ),Λ1, V (δ)) (i = 1, 2), then it is castling
equivalent to one of the following PV’s.

(i) (Sp(t)× (GL(2k+ 1)×GL(2r)),Λ1⊗ (Λ1 � Λ1), V (2t)⊗ (V (2k+ 1) +V (2r)))
with t ≥ 2r ≥ 2 and t ≥ 2k + 1 ≥ 1.

(ii) (Sp(t)× (GL(2k+ 1)×GL(1)),Λ1 ⊗ (Λ1 � Λ1), V (2t)⊗ (V (2k+ 1) + V (1)))
with t ≥ 2 and t ≥ 2k + 1 ≥ 1.

(iii) (Spin(10)× (GL(1)×GL(1)), a half-spin rep.⊗ (Λ1 � Λ1), V (16)⊗ (V (1) +
V (1))).

(iv) (SL(2t+ 1)× (GL(1)×GL(1)),Λ2⊗ (Λ1 � Λ1), V (t(2t+ 1))⊗ (V (1) +V (1)))
with t ≥ 2.

Proof. Use [Ka]. Note that (5) is not the unsolved case of [Ka]. If it is of trivial
type, then (Gµi , ρµi , V (dµi)) = (GL(δ),Λ1, V (δ)) for some i = 1, 2.

Proposition 3.4. If (5) with m ≥ 3 is a PV, then it is one of the following PV’s.

(i) (Gs × (GL(δ)×(m−1)), σ ⊗ (Λ�(m−1)
1 ), V (δ)⊗ (V (δ)+(m−1))).

(ii) (Gs×((GL(1)×Ts)×GL(δ)×(m−2)), σ⊗((Λ1⊗τ)�Λ�(m−2)
1 ), V (δ)⊗(V (t)+

V (δ)+(m−2))) with δ > t ≥ 1 where Ts is a simple algebraic group such that
(GL(1)×Gs×Ts,Λ1⊗σ⊗ τ, V (1)⊗V (δ)⊗V (t)) is a non-trivial irreducible
2-simple PV.

(iii) (Sp(t)× (GL(u)×GL(v)×GL(2t)×(m−3)),Λ1⊗ (Λ1 � Λ1 � Λ�(m−3)
1 ), V (2t)⊗

(V (u) + V (v) + V (2t)+(m−3))) with t ≥ 2 where (u, v) = (1, 1), (1, k) with
m ≥ 4, or (u, v) = (1, 2t− 1), (2t− 1, 2t− 1), (k, 2t− 1) with m ≥ 3. Here k
is an odd integer satisfying 3 ≤ k ≤ 2t− 3.

(iv) (Sp(t) × (GL(u) × GL(v) × GL(w) × GL(2t)×(m−4)),Λ1 ⊗ (Λ1 � Λ1 � Λ1 �

Λ�(m−4)
1 ), V (2t) ⊗ (V (u) + V (v) + V (w) + V (2t)+(m−4))) with t ≥ 2 where

(u, v, w) = (1, 1, 1), (1, 1, k) with m ≥ 5, or (u, v, w) = (1, 1, 2t − 1), (1, 2t −
1, 2t − 1), (2t − 1, 2t − 1, 2t − 1), (1, k, 2t − 1), (k, 2t − 1, 2t − 1) with m ≥ 4.
Here k is an odd integer satisfying 3 ≤ k ≤ 2t− 3.

(v) (Sp(t)× (GL(2r)×GL(2k+ 1)),Λ1⊗ (Λ1 � Λ1), V (2t)⊗ (V (2r) +V (2k+ 1)))
with t ≥ 2, t− 1 ≥ r ≥ 1, 2t− 1 ≥ 2k + 1 ≥ 1 and 2r + 2k + 1 > 2t.
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(vi) (Sp(t)× (GL(2r)×GL(2k + 1)×GL(2t)×(m−3)),Λ1 ⊗ (Λ1 � Λ1 � Λ�(m−3)
1 ),

V (2t)⊗ (V (2r) +V (2k+ 1) +V (2t)+(m−3))) with t ≥ 2, m ≥ 4, t−1 ≥ r ≥ 1
and 2t− 1 ≥ 2k + 1 ≥ 1.

(vii) (Spin(10)× (GL(u)×GL(u)×GL(16)×(m−3)), a half-spin rep.⊗ (Λ1 � Λ1 �

Λ�(m−3)
1 ), V (16) ⊗ (V (u) + V (u) + V (16)+(m−3))) with (u = 1 and m ≥ 4)

or (u = 15 and m ≥ 3).

(viii) (SL(2t + 1) × (GL(u) × GL(u) × GL(δ)×(m−3)),Λ2 ⊗ (Λ1 � Λ1 � Λ�(m−3)
1 ),

V (δ) ⊗ (V (u) + V (u) + V (δ)+(m−3))) with t ≥ 2, (u = 1 and m ≥ 4) or
(u = δ − 1 = t(2t+ 1)− 1 and m ≥ 3).

Proof. Put M = {µ | (Gµ, ρµ, Vµ) 6= (GL(δ),Λ1, V (δ)), 2 ≤ µ ≤ m}. If M = ∅,
then (5) is a PV by Proposition 1.3 and we obtain (i). If ]M = 1, we may assume
that M = {2} and by Proposition 1.3, (5) is PV-equivalent to (Gs × G2, σ ⊗ ρ2,

V (δ)⊗ V (d2)). If this is a PV, then by Proposition 3.2, we have δ > d2 ≥ 1. Since
(Gs, σ, V (δ)) 6= (SL(δ),Λ1, V (δ)), this is a non-trivial irreducible PV. Then by the
list of [SK], we see that this is a 2-simple PV, and we obtain (ii) where we put
G2 = GL(1)×Ts and d2 = t. When ]M ≥ 2, we may assume that M = {2, 3, . . . , r}
with r ≥ 3. Then (5) is PV-equivalent to

(6) (Gs × (G2 × · · · ×Gr), σ ⊗ (ρ2 � · · · � ρr), V (δ)⊗ (V (d2) + · · ·+ V (dr)))

with (Gµ, ρµ, V (dµ)) 6= (GL(δ),Λ1, V (δ)) (2 ≤ µ ≤ r) and r ≥ 3. Then by Lemma
3.3, (Gs, σ, V (δ)) must be one of (Sp(t),Λ1, V (2t)) (t ≥ 2), (Spin(10), a half-spin
rep., V (16)), (SL(2t+1),Λ2, V (t(2t+1))) (t ≥ 2). First assume that (Gs, σ, V (δ)) =
(Sp(t),Λ1, V (2t)) (t ≥ 2). Since (Sp(t),Λ1, V (2t)) = (Sp(t),Λ∗1, V (2t)∗), we may
assume that each (Sp(t) × Gµ,Λ1 ⊗ ρµ, V (2t) ⊗ V (dµ)) is reduced by castling
transformations. Then by Lemma 3.3, we may assume that (Gµ, ρµ, V (dµ)) =
(GL(dµ),Λ1, V (dµ)) with d2 ≤ · · · ≤ dr ≤ t. Now assume that all dµ are odd.
Then by Lemma 3.3, we have (d2, . . . , dr) = (1, . . . , 1) or (1, . . . , 1, k) where k is
odd satisfying 3 ≤ k ≤ t. When (d2, . . . , dr) = (1, . . . , 1), by [K3], we have r = 3
or r = 4. This gives (iii) and (iv) related with 1 and 2t − 1. When (d2, . . . , dr) =
(1, . . . , 1, k), by [KKIY], it is a PV (resp. non-PV) for r = 3 and 4 (resp. r ≥ 5)
by Theorem 2.24 (resp. Lemma 2.22) in [KKIY]. This gives (iii) and (iv) related
with k. If there is an even number among (d2, . . . , dr), it is unique by Lemma
3.3. By Lemma 2.20 in [KKIY] and Lemma 3.27 in [KUY], we have r = 3. If
m = 3 (resp. m ≥ 4), this gives (v) (resp. (vi)). Next assume that (Gs, σ, V (δ)) =
(Spin(10), a half-spin rep.,V (16)). By [K3], we have r = 3 and we obtain (vii).
Finally assume that (Gs, σ, V (δ)) = (SL(2t+ 1),Λ2, V (t(2t+ 1))) (t ≥ 2). In this
case, we have (viii) similarly.
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By Lemma 3.1, Proposition 3.2 and Proposition 3.4, we obtain the case for
G0 = SL(n) and ρ(G) = G1 × · · · × Gm. Now we shall classify (G0 × G,Λ1 ⊗
ρ, V (n) ⊗ V ) for G0 = SL(n) and ρ(G) ( G1 × · · · × Gm; or G0 ( SL(n) and
ρ(G) ⊂ G1 × · · · ×Gm where each V (dµ) (1 ≤ µ ≤ m) has an independent scalar
action.

Lemma 3.5. Let Gss be a semisimple proper algebraic subgroup of SL(δ) and
σ : Gs → GL(δ) an irreducible representation of a simple algebraic group Gs.
Then T := (GL(1) ×Gss ×Gs,Λ1 ⊗ Λ1 ⊗ σ, V (1) ⊗ V (δ) ⊗ V (δ)) is a PV if and
only if (Gss,Λ1, V (δ)) = (SL(2t − 1) × SL(1),Λ1 � Λ1, V (2t − 1) + V (1)) and
(Gs, σ, V (δ)) = (Sp(t),Λ1, V (2t)) with t ≥ 2.

Proof. First assume that the inclusion Λ1 : Gss ↪→ SL(δ) is irreducible. Then T
is irreducible and reduced since otherwise Gss = SL(r)×H,V (δ) = V (r)⊗ V (h)
with δ > h ≥ 2 and r > hδ − r ≥ 2δ − r > r, a contradiction. Then by [SK], T is
a non-PV. Next assume that the inclusion Λ1 : Gss ↪→ SL(δ) is non-irreducible.
Then by Lemma 3.3 and Proposition 3.4, the only possible case is (Gss,Λ1, V (δ)) =
(SL(2t−1)×SL(1),Λ1�Λ1, V (2t−1)+V (1)) and (Gs, σ, V (δ)) = (Sp(t),Λ1, V (2t))
with t ≥ 2. By (20) in p. 97 of [K3], (Sp(t)×(GL(1)×GL(1)),Λ1⊗(Λ1�Λ1), V (2t)+
V (2t)) is a PV with one irreducible relative invariant. It is castling equivalent to
(Sp(t)× (GL(2t− 1)×GL(1)),Λ∗1 ⊗Λ1⊗ 1 + Λ1⊗ 1⊗Λ1),M(2t, 2t− 1) +V (2t)).
Since Λ∗1 = Λ1 for Sp(t), (Sp(t)× (GL(2t−1)×GL(1)),Λ1⊗ (Λ1 �Λ1),M(2t)) is a
PV with unique irreducible relative invariant f(X) = detX (X ∈ M(2t)). Hence
T is a PV (see Proposition 2.12 in [K2]).

Lemma 3.6. T := ((SL(2t−1)×SL(1))× ((GL(1)×Sp(t))×GL(d2)), (Λ1 � Λ1)
⊗((Λ1⊗Λ1)�Λ1), (V (2t−1)+V (1))⊗(V (2t)+V (d2))) is a non-PV for 2t > d2 ≥ 1
and t ≥ 2.

Proof. One can easily check that the SL(2t−1)-part of a generic isotropy subgroup
of ((SL(2t − 1) × SL(1)) × (GL(1) × Sp(t)), (Λ1 � Λ1) ⊗ (Λ1 ⊗ Λ1), (V (2t − 1) +
V (1)) ⊗ V (2t)) at the identity matrix I2t ∈ M(2t) = (V (2t − 1) + V (1)) ⊗ V (2t)
is isomorphic to A =

(
Sp(t−1) 0

0 1

)
(⊂ SL(2t− 1)). Therefore T is PV-equivalent to

((A× SL(1))×GL(d2)), (Λ1 � Λ1)⊗Λ1, (V (2t− 1) + V (1))⊗ V (d2)) ∼= (Sp(t− 1)
×GL(d2),Λ1⊗Λ1 + 1⊗Λ1 + 1⊗Λ1). By castling transformation, we may assume
that 1 ≤ d2 ≤ t. If d2 is even and t ≥ 3, then 2t − 2 > t ≥ d2 and by (10),
p. 396 in [KKIY], this space has two irreducible relative invariants, so that this
is a non-PV due to lack of GL(1). If d2 is even and t = 2, then d2 = 2 and
dim(Sp(1)×GL(2)) = 7 < 8 = deg(Λ1⊗Λ1+1⊗Λ1+1⊗Λ1), hence it is a non-PV.
If d2 is odd (= 2r+1), by p. 102 in [SK], it is PV-equivalent to

((
Sp(r) ∗

0 ∗

)
,Λ1+Λ1

)
,

which is PV-equivalent to
((

Sp(r) 0
0 1

)
,Λ1

)
, which is a non-PV.
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Lemma 3.7. The following triplets are non-PV’s.

(i) (GL(r)×GL(r),Λ1 ⊗ (Λ1 + Λ(∗)
1 ),M(r) +M(r)) with r ≥ 2.

(ii) ((GL(1)×Sp(t))×GL(2t−1), (Λ1⊗Λ1)⊗ (Λ1 + Λ(∗)
1 ),M(2t, 2t−1) +M(2t,

2t− 1)) with t ≥ 2.

(iii) ((GL(1)×Spin(10))×GL(15), (Λ1⊗a half-spin rep.)⊗(Λ1+Λ(∗)
1 ),M(16, 15)+

M(16, 15)).

(iv) (GL(2t+ 1)×GL(t(2t+ 1)− 1),Λ2 ⊗ (Λ1 + Λ(∗)
1 ),M(δ, δ− 1) +M(δ, δ− 1))

with δ = t(2t+ 1) and t ≥ 2.

Here (G, ρ(∗)) implies (G, ρ) or (G, ρ∗).

Proof. By [KKTI], we have (i), and by [KKIY], we have (ii)–(iv).

Lemma 3.8. Let σ : Gs → GL(δ) (δ ≥ 3) be an irreducible representation of
a simple algebraic group Gs such that σ(Gs) ( SL(δ). For δ ≥ d2 ≥ 1 and
m ≥ 3, let Gss be a semisimple algebraic proper subgroup of SL((m − 2)δ + d2)
such that the inclusion Λ1 : Gss ↪→ SL((m − 2)δ + d2) is irreducible. Put G =
Gss× ((GL(1)×Gs)×GL(d2)×GL(δ)×(m−2)), ρ = Λ1⊗ ((Λ1⊗σ)�Λ1 �Λ�(m−2)

1 )
and V = V ((m− 2)δ+ d2)⊗ (V (δ) + V (d2) + V (δ)+(m−2)). Then dimG < dimV .
In particular (G, ρ, V ) is a non-PV.

Proof. By (ii) of Proposition 1.4, we have dimGs ≤ 1
2δ(δ + 1) and dimGss ≤

1
2 ((m− 2)δ + d2)((m− 2)δ + d2 + 1). Since dimG = dimGss + 1 + dimGs + d2

2 +
(m− 2)δ2 and dimV = ((m− 2)δ+ d2)((m− 1)δ+ d2), we have dimV − dimG ≥
1
2 (m− 1)(m− 3)δ2 + 1

2 (2d2− 1)(m− 1)δ− 1
2d2(d2 + 1)− 1 ≥ 1

2 (2d2− 1)(m− 1)δ−
1
2d2(d2 + 1)− 1 (= A). If d2 = 1, then A = 1

2 (m− 1)δ − 2 ≥ δ − 2 ≥ 1. If d2 ≥ 2,
then A ≥ 1

2 (3d2
2 − 3d2 − 2) ≥ 2. Hence dimV > dimG.

Lemma 3.9. (i) dim(GL(r) × GL(s)) < dimGL(r + s) for 1 ≤ r ≤ s < r + s

≤ δ.
(ii) dim(GL(r)×GL(s)) < dim(GL(r+s−δ)×GL(δ)) for 1 ≤ r ≤ s < δ < r+s.

Proof. For (i), we have dimGL(r+s)−dim(GL(r)×GL(s)) = 2rs > 0. For (ii), we
have dim(GL(r+s− δ)×GL(δ))−dim(GL(r)×GL(s)) = 2(δ− r)(δ−s) > 0.

Now we shall prove Theorem 0.3. For the case G0 = SL(n) and ρ(G) =
G1×· · ·×Gm, by Lemma 3.1, Proposition 3.2 and Proposition 3.4, we have (I)(i)–
(iv) and (II)(i)–(v) of Theorem 0.3. Next we shall consider the case G0 ( SL(n)
with n = δ. By Lemmas 3.5 and 3.6, only the restriction of (I)(i) of Theorem 0.3 is
possible and we obtain (I)(v) of Theorem 0.3. If n = δ and ρ(G) ( G1× · · ·×Gm,
T is a non-PV by Lemma 3.7. Now assume that n = d− δ. Since we may assume
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that n 6= δ, we assume that m ≥ 3. If Gss ( SL(d − δ) and the inclusion Λ1 :
Gss ↪→ SL(d − δ) is irreducible, then by Lemma 3.9, we can reduce cases (I)(i)–
(iv) and (II)(i)–(v) to the case of Lemma 3.8, and hence T is a non-PV. If the
inclusion Λ1 : Gss ↪→ SL(d− δ) is not irreducible, then by Proposition 1.10, T is
a non-PV. Finally assume that it is a PV when ρ(G) ( G1 × · · · × Gm. Then it
is also a PV when G0 = GL(d − δ), and hence by castling transformation, it is a
PV for G0 = GL(δ). Since we assume that each V (dµ) has an independent scalar
action, T is still a PV for G0 = SL(δ), a contradiction. The regularity follows from
Propositions 1.11 and 1.12. Hence we obtain our result.

According to Remark 0.4, we shall give some examples of non-extreme PV’s.

Proposition 3.10. For t ≥ 2, δ = 2t ≥ 2r ≥ 2, δ = 2t > 2s + 1 ≥ 1 and
2t < n < 2r + 2s+ 1, the triplet

T := (SL(n)×((GL(1)×Sp(t))×GL(2r)×GL(2s+1)),Λ1⊗((Λ1⊗Λ1)�Λ1 �Λ1))

is a PV of the non-extreme case. For example, (SL(35) × ((GL(1) × Sp(16)) ×
GL(18)×GL(19)),Λ1 ⊗ ((Λ1 ⊗Λ1) � Λ1 � Λ1), V (35)⊗ (V (32) + V (18) + V (19)))
is a PV.

Proof. Note that T is PV-equivalent to (GL(n) × (Sp(t) × GL(2r) × GL(2s +
1)),Λ1 ⊗ (Λ1 � Λ1 � Λ1), V (n)⊗ (V (2t) + V (2r) + V (2s + 1)). Then it is castling
equivalent to (GL(n)× (Sp(t)×GL(n− 2r)×GL(n− 2s− 1)),Λ1 ⊗Λ1 ⊗ 1⊗ 1 +
Λ∗1 ⊗ 1 ⊗ (Λ1 � Λ1), V (n) ⊗ V (2t) + V (n)∗ ⊗ (V (n − 2r) + V (n − 2s − 1)). Since
2t < n and (n−2r)+(n−2s−1) < n, by Theorem 7.8 in [K2], T is PV-equivalent
to (Sp(t)× (GL(n− 2r)×GL(n− 2s− 1)),Λ1 ⊗ (Λ1 � Λ1), V (2t)⊗ (V (n− 2r) +
V (n − 2s − 1)). Since 2t > n − 2r ≥ 1 and 2t > n − 2s − 1 ≥ 1, it is a PV (see
(149), p. 197 in [KUY]).
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