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Asymptotic Behaviour of Variation of Pure
Polarized TERP Structure
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Abstract

The purpose of this paper is twofold. One is to give a survey of our study on reductions
of harmonic bundles, and the other is to explain a simple application in the study of
TERP structures. In particular, we investigate the asymptotic behaviour of the “new
supersymmetric index” for variation of pure polarized TERP structure.
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81. Introduction

In our previous papers [2I], [22] and [23], we studied asymptotic behaviour of
tame and wild harmonic bundles. Briefly, one of the main results is the following
sequence of reductions of harmonic bundles:

(1.1) wild harmonic tame harmonic
' bundle (irregular) bundle (regular)
twistor twistor nilpotent orbit
nilpotent orbit of split type

Although a reduced object is simpler than the original one, it still gives a good
approximation. Moreover, a twistor nilpotent orbit of split type comes from a vari-
ation of polarized pure Hodge structure, whose asymptotic behaviour was deeply
studied by E. Cattani, A. Kaplan, M. Kashiwara, T. Kawai and W. Schmid. Thus,
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we can say that the asymptotic behaviour of wild harmonic bundles is pretty well
understood.

The main purpose of this paper is twofold. One is to give a survey of these
reductions, and the other is to explain a simple application in the study of TERP
structures.

C. Hertling [10] initiated the study of TERP structures inspired by math-
ematical physics and singularity theory. The study was further developed by
Hertling and C. Sevenheck. For example, they investigated the “nilpotent orbit”
[12], asymptotic behaviour of tame variation of TERP structure and classifying
spaces [13]. We refer to the above papers and a survey [I4] for more details and
specifications.

Remark 1. The “nilpotent orbit” of [12] is called “HS-orbit” (Hertling—Sevenheck
orbit) in this paper. A nilpotent orbit is a very special kind of variation of po-
larized Hodge structure, which plays an important role in Hodge theory. We can
consider several kinds of generalization in the theory of TERP structures and
twistor structures. One is the HS-orbit. Another one is the twistor nilpotent orbit
studied in [22], which we will mainly use in this paper.

Remark 2. We prefer to regard a TERP structure as an integrable twistor struc-
ture with a real structure and a pairing studied by C. Sabbah. It is called a
twistor-TERP structure in this paper.

We will give an enrichment of the sequence with TERP structures or
integrable twistor structures. As an application, we will study the behaviour of the
“new supersymmetric index” of variation of pure polarized TERP structure. Let
V be a meromorphic connection on V = Oﬁ'?f admitting a pole at {0, 00} of order
at most two. Let d be the natural connection on V. Then we have the expression
V =d+ (AU — Q — Nhy)d\/\, where U;, Q € End(V). If (V, V) is equipped
with a real structure and a polarization (see Subsection 7 there is some more
restriction on them. Anyway, Q is called the new supersymmetric index of (V, V).
We set X := {(21,...,2n) | |z:] <1} and D := ", {z = 0}. Let (V,D%, S, k) be
a variation of pure polarized twistor-TERP structure of weight 0 on P! x (X — D).
(See Subsection [2.1}) It is called unramifiedly good wild (resp. tame) if so is the
underlying harmonic bundle (E, g, 6, h). (See Subsection ) For each point P €
X — D, we have the new supersymmetric index Qp € End(V@1 . p) ~ End(E|p) of

V2, ]]AjA)“pl « p, and thus we obtain a C*°-section Q of End(FE). We are interested
in the behaviour of Q@ around (0,...,0). We will show the following:

e In the case of a twistor-TERP nilpotent orbit of split type, the new supersym-
metric index can be easily computed from the data of the corresponding polar-
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ized mixed twistor-TERP structure. In particular, the eigenvalues are constant.

(See Section [3])

e From a twistor-TERP nilpotent orbit (V, D2, S, k), we obtain a twistor-TERP
nilpotent orbit of split type (VO,]I~))OA ,So0, ko), by taking Gr (graduation) with
respect to the weight filtration. (Precisely, Gr is taken for the corresponding
polarized mixed twistor-TERP structure.) The new supersymmetric index Q of
v, ﬁA) can be approximated by the new supersymmetric index Qg of (Vy, ﬁ)OA )
up to O(>(—log|z;|)~1/?). In particular, the eigenvalues of Q are constant up
to O(Y_(—log |2;|)~°) for some § > 0. (See Section )

e A tame variation of polarized pure twistor-TERP-structure (V, ]]S)A, S, k) is re-
duced to a twistor-TERP nilpotent orbit (Vy, I[N))(f‘ ,So, ko). It is associated to the
limit mixed twistor-TERP structure which was essentially considered in [I3] as
an enrichment of the limit mixed twistor structure of [22]. We can approximate
the new supersymmetric index Q of (V,D?) by the new supersymmetric index
Q of (VO,HNJ)OA) up to O(>_ |2¢) for some € > 0. In particular, the eigenvalues of
Qy approximate those of Q up to O(3] |z|¢) for some € > 0. (See Subsection
for more precise statements.)

e A wild variation of polarized pure twistor-TERP structure (V,ﬁA,S ,K) is re-
duced to a tame one (Vy, ]]3)()A7 So, ko), which is Gr with respect to Stokes filtra-
tions. We can approximate the new supersymmetric index Q of (V, ]]S)A) by the
new supersymmetric index Qg of (1, ]ivD()A ) up to a term with exponential decay.
In particular, the eigenvalues of Qg approximate those of Q up to exponential
decay. (See Subsection for more precise statements.)

In each case, we will construct a C*°-map Vy — V, which does not preserve
but approximates the additional structures. (More precisely, V should be twisted.)
It would be interesting to clarify the precise relation between these results and the
celebrated nilpotent orbit theorem for Hodge structures due to W. Schmid [28].
(See also [13].)

As a corollary, we obtain the convergence of the eigenvalues of new super-
symmetric indices of wild harmonic bundles on a punctured disc. In his recent
work (Section 3 of [26]), Sabbah studied the eigenvalues of new supersymmet-
ric indices for polarized wild pure integrable twistor D-modules on curves. Since
wild harmonic bundles are prolonged to polarized wild pure twistor D-modules
[23], we can also deduce the above convergence in the curve case from his re-
sults.

We also show that if a TERP-structure induces an HS-orbit, then it is a
mixed-TERP structure in the sense of [12] by using the reduction from wild to
tame, which was conjectured by Hertling and Sevenheck.
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Outline of this paper. This paper is roughly divided into three parts. In Part I
(Sections , we give some preliminaries and establish the equivalence between
twistor nilpotent orbit and polarized mixed twistor structure. Part II (Sections
is a review of some results in [22] and [23], including the sequence (L.1). In
Part IIT (Sections , we study the enrichment of , the approximations, and
their applications.

In Subsection [2.I] we recall integrable pure twistor structures and TERP struc-
tures and their variations in a convenient way; these were originally studied by
Hertling, Sabbah and Sevenheck. We look at some basic examples in Subsec-
tion In particular, we introduce the notions of integrable twistor nilpotent
orbit and twistor-TERP nilpotent orbit. In Subsection we deduce a conver-
gence of integrable pure twistor structures and new supersymmetric indices. The
result will be used several times. In Subsection [2.4] we consider a variation of po-
larized mixed twistor structure. In Subsection [2:4.2] we explain the reduction from
a polarized mixed twistor structure to a polarized mixed twistor structure of split
type. In Subsection 2.4.3] we give a C*°-splitting of weight filtrations compatible
with nilpotent maps, which is a preparation for Section

In Section [3] we study polarized mixed twistor structures of split type with
some additional structures. It is quite easy to handle. In Section [4 we show the
correspondence between twistor nilpotent orbits and polarized mixed twistor struc-
tures. In [22], a polarized mixed twistor structure was associated to a twistor
nilpotent orbit. The converse was also established in the curve case. The higher
dimensional case is new. The correspondence is easily enriched with integrability
and real structures. We also show that a twistor nilpotent orbit is approximated
by a twistor nilpotent orbit of split type.

In Section 5} we give a review of Stokes structure and reductions for a family
of meromorphic A-flat bundles, studied in Sections 2 and 3 in [23]. We give some
minor complementary results on connections along the A-direction and pseudo-
good lattices.

In Section [6] we explain the reduction from unramifiedly good wild harmonic
bundles to polarized mixed twistor structures, studied in [22] and [23]. We give
a review on the prolongation of harmonic bundles in Subsection Then, in
Subsection [6.4] we review the reduction from unramifiedly good wild harmonic
bundles to tame harmonic bundles as the Gr with respect to Stokes filtrations,
which is one of the main results in [23]. In Subsection we review the reduc-
tion from tame harmonic bundles to polarized mixed twistor structures as the
Gr with respect to KMS-structure, which is one of the main results in [22]. To-
gether with the result in Section [} we can regard it as the reduction to nilpotent
orbits.
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In Section [7] we establish an enrichment of the reductions with integrability
and real structure. One of the main issues is to obtain a meromorphic extension
of the connection along the A-direction. For that purpose, we prepare some esti-
mate in Subsection [7.I] Then, it is easy to obtain the meromorphic prolongment
of variations of integrable twistor structure and the enrichment of the sequence of
reductions as in . We also show that the reduced one gives a good approxi-
mation of the original one. In particular, we obtain results on approximation of
the new supersymmetric indices of wild or tame variation of integrable twistor
structure.

In Section [§] we study the reduction of HS-orbit.

82. Preliminaries
§2.1. Integrable twistor structure

We recall the notion of integrable twistor structures and TERP structures in a way
convenient for us. See [10], [12] and [25] for the original definitions and for more
details. We also recall twistor structures introduced in [32]. See also [21] and [22].

2.1.1. Some sheaves and differential operators on P! x X. Let P! denote
the one-dimensional complex projective space. We regard it as the gluing of two
complex lines Cy and C,, by A = p~. We set C5 := C, — {0}.

Let X be a complex manifold. We set X := Cy x X and X° := {0} x X. Let
Q% be the C>-bundle associated to 25°(log X°) © Ox (X°). We put Q%' := Q%'
and we define

QL = Qi‘go & ﬁg_;l, Q3 = A° ﬁ}v
The associated sheaves of C'*°-sections are denoted by the same symbols. Let ﬁ)g( :
ﬁ:\/ — SNI/'Y“ denote the differential operator induced by the exterior differential d.

Let XT denote the conjugate of X. We set Xt := C, x X*t. By the same
procedure, we obtain the C*°-bundles (NZ;(T with the differential operator ﬁ)y .

Their restrictions to C x X =Cj, x X t are naturally isomorphic:

(2, DR)icsxx = (250x0d) = (Bt DY) iy -
By gluing them, we obtain the C'*°-bundles (NZI‘FJ . x With a differential operator HS))A(

Remark 3. ﬁ§ and ﬁ}f are also denoted by d, if there is no risk of confusion.

We have the decomposition ﬁ%lx x = 5(2%( & ?2%,1 into the X-direction and
the P!-direction. The restriction of ]IND)A{ to the X-direction is denoted by Dﬁ. The
restriction to the P!-direction is denoted by dpi. By definition, the (1,0)-part of
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a section of §~2]11m is logarithmic along {0,000} with a pole of order 1 along {0, o0},
at most, and the (0, 1)-part is just a C*-section of W*ng. Hence, we have the
decomposition
Qb = 770p0 (2 {0, 00}) @ 7Y%,
into the (1,0)-part and the (0, 1)-part, where 7 denotes the projection P! x X — P*.
We have the corresponding decomposition dp1 = Op1 + Op1.
Let v : P! — P! be a diffeomorphism. Assume v satisfies one of the following:

(A1) v is holomorphic with v(0) = 0 and v(o0) = occ.
(A2) v is anti-holomorphic with v(0) = co and v(c0) = 0.

In particular, we will often use the maps o, v and j:

O’([ZO : Zﬂ) = [—Zl : ZQ], ’Y([ZO : Zl]) = [21 120}, ]([Z() : Zl}) = [_ZO : Zl].

The induced diffeomorphism P! x X — P! x X is also denoted by v. In the case
(A1), we have the natural isomorphism &, : V*Q]EHXX ~ Q]EHXX of C*°-vector
bundles given by the ordinary pull back. In the case (A2), multiplication of C'*°-
functions on V*ﬁfﬂxx is twisted as ¢ - v*(w) = v* (T@ -w) for any function g
and any section w of ﬁ%l X Then we have the C*°-isomorphism ®,, : 1/”‘@1’FDl ox

Q1 x given by the complex conjugate and the ordinary pull back
D, (v'w) = v*(w).

It is easy to check that &, o v* (]]S))A() = ﬁ)? o ®,. Similar relations hold for D§
and dp1. If we are given an additional bundle F, the induced isomorphism F ®
V(1 )  F @Qp,  is also denoted by @,,.

2.1.2. Definitions and some remarks

Variation of twistor structure. Let V be a C*®-vector bundle on P! x X.
We use the same symbol to denote the associated sheaf of C*-sections. A P!-
holomorphic structure of V is defined to be a differential operator

Ay V= Veray
satisfying (i) dy, ,(f - s) = f - df ,(s) + Op(f) - s for any C*°-function f and
any section s of V, (ii) djj, y, o dj, , = 0. The tuple (V,d}, ,,) is then called a P!-
holomorphic vector bundle. A TT-structure on (V,dy, /) is a differential operator

DSV -V ek

such that (i) ]D)é(f c8) = f- ]Dﬁ(s) + ]D)A((f) - s for any C*°-function f and any
section s of V, (ii) (dp 1 + ]D)ﬁ)2 = 0. The tuple (V, d]’Pfl’V,]D)‘%) is then called a
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TT-structure in [I0], or a variation of P*-holomorphic vector bundle in [22]. In this
section, we prefer to call it a variation of twistor structure. If X is a point, it is
just a holomorphic vector bundle on P!, and is called a twistor structure.

Remark 4. We will often omit to specify dj, , when we consider P!-holomorphic
bundles or variations of P!-holomorphic bundle (variations of twistor structure).

Variation of integrable twistor structure. A TTE-structure on V is a differ-
ential operator
DYV - VeOh,

satisfying (i) ]D)A(f -8) = H~))A((f) s+ f-D5 v () for a C>°-function f and a section
sof V, (ii) D o ]D)V = 0. The tuple (V, D% ) is then called a variation of integrable
twistor structure. Its restriction to (P! \ {0,00}) x X gives a flat bundle. If X is a
point, it is equivalent to a holomorphic vector bundle V on P! with a meromorphic
connection V which admits a pole at {0, 00} with order at most 2, i.e.,

V(V)cVeQ(2-{0,00}).
In this case, it is simply called an integrable twistor structure.

Morphisms. A morphism of variations of (integrable) twistor structure is defined
to be a morphism of the associated sheaves of C'°°-sections, compatible with the
associated differential operators. If X is a point, a morphism of twistor structures
is an Opi-morphism, and a morphism of integrable twistor structures is an Op:-
morphism compatible with the meromorphic connections.

Some functoriality. Let (V, ﬁ)‘% ) be a variation of integrable twistor structure.
Let f: Y — X be a holomorphic map of complex manifolds. Then we have the
naturally induced variation of integrable twistor structure f*(V, ]ﬁ)‘%) as in the case
of ordinary connections.

Let v : P! — P! be a diffeomorphism satisfying one of (A1) or (A2) above.
Then v*V is naturally equipped with a TT E-structure ]D)y .y given as follows:

D2 (@, (17 5)) = @, (¥ (D} (5))).

Here, s denotes a section of V ® Q % and @, vV ® V0 ~ 'V @ Q° is as in
Subsection 2.1.11

Similarly, we also have the pull back of a variation of twistor structure via f
and v as above.

Pure and mixed. Let (V,dp /) be a P!-holomorphic vector bundle on P! x X.
It is called pure of weight w if the restrictions Vp = (V,dj, /) prx{py are pure
twistor structures of weight w for any P € X, i.e., Vp are isomorphic to direct sums
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of Op:(w). A variation of (integrable) twistor structure is called pure of weight w
if the underlying P*-holomorphic vector bundle is pure of weight w.

Let W be an increasing filtration of V' by vector subbundles indexed by in-
tegers. We say that W is P!-holomorphic if each W, is preserved by dﬁ,{l . We
have the induced P'-holomorphic vector bundles Gr," (V, d%, ) Then (V, dPl, W)
is called mized if each Gr (V, dIP,1 «v) is pure of weight n. When (V, dj,) is equipped
with TT-structure Dﬁ (resp. TT E-structure ]]5)‘%), we say that W is ID)‘%— flat (resp.
]ﬁ)é—ﬂat), or more simply flat, if each W,, is preserved by the operator. In that
case, (V, d]’Pﬁly,ID)ﬁ, W) (resp. (V, ]]S)‘A/‘, W) is called mized if (V, dp,, W) is mixed.

New supersymmetric index. Let (V, V) be a pure integrable twistor structure
of weight 0. We have a global trivialization V' ~ OP1 , which is uniquely determined
up to obvious ambiguity. Let d denote the natural connection of (’)[ﬁr. Then we
have the decomposition

(2.1) v=d+(A—1u1—Q—m2)%

where Uy, Uz, ©Q € H°(PY,End(V)). The operator Q is called the new supersym-
metric index. If (V, V) is equipped with a polarization (Subsection , then Uy
and U; are adjoint with respect to the induced hermitian metric, as observed by
Hertling and Sabbah.

If we are given a variation of polarized pure integrable twistor structure, we
obtain the family of such operators.

2.1.3. Simple examples. We recall some simplest examples of integrable pure
twistor structures.

Example (Tate object). Let T(w) be a Tate object in the theory of twistor struc-
tures. (See [32] and Subsection 3.3.1 of [22].) It is isomorphic to Op: (—2w), and it
is equipped with the distinguished frames

T(w)|c, = Oc, 15, T(w)c, = Oc, - &, T(w)|c; = Oc 4,

" o0

The transformation is given by

t(“’) (F}\)w t(w) t(w =(- \/7#)1” t(w

In particular, (v—1A) =2} = ¢{). We have the meromorphic connection VI(w)
on T(w) determined by VT(w) i ) = 0, which implies

d\ d
Vraty” =t5" - ( )\>, Vrw)tss) =5 - <w:>



VARIATION OF TERP STRUCTURE 427

In the following, the connection on T(w) is always given as above, and hence we
often omit to specify it explicitly.

We may identify T(w) with Op: (—w-0—w-00) by the correspondence tgw)

— 1,
up to constant multiplication. In particular, we implicitly use the identification of
T(0) with Op: by ¢ < 1. We will also implicitly use the identification T(m)

T(n) ~ T(m + n) given by tm) @ ¢lr) , yman)

Example. In Subsection 3.3.2 of [22], we considered a line bundle O(p, ¢) on P!,
which is isomorphic to Op: (p + ¢) and equipped with the distinguished frames

Op,d)icy = Oc, - [, O, q)ic, = Oc, - fLP,  Op,q)ic; = Ocy - 177

The transformation is given by

ST = WINPT e = (V=T

In particular, (v/—1 )\)p+qf(§p’q) = fég’q). We have the meromorphic connection

(p,q)
1

Voip.g on O(p,q) determined by Vo, o fF? = 0, which implies

d\ du
V(’)(p,q) ép,q) = fép,q) ' (_p/\>a vO(p,q)fégq) = fég’Q) : (—qu).

In the following, the connection on O(p, q) is always given as above, and hence we
will often omit to specify it explicitly.

We may naturally identify O(p, ¢) with Op:1 (p-0+¢q-o0) by the correspondence
fl(p D 1, up to constant multiplication. We will implicitly use the identification
O(p, )20 .¢') ~ O(p+1', g+¢) given by fi? Q?fép/’q/)(H fépjpl’q“/)- We will

w) fafw,fw

also implicitly identify T(w) with O(—w, —w) by to ' = for a = 0,1, oc.

Let X be a complex manifold. We have the pull backs of T(w) and O(p, ¢) via
the map from X to a point. They are denoted by T(w) x and O(p, q) x, respectively.
We will often omit to denote X, if there is no risk of confusion.

2.1.4. Polarization. Recall that we have the isomorphism ([22])

given by the natural identification 0*O(—w -0 — w - 00) ~ O(—w - 0 — w - 00) via
o*(1) < 1, or equivalently,

O'*tgw) PN tgw), O'*t((:é)) PN (_1)w -tgw), O'*t(()w) PN (_1)11) . t((:é)).

It preserves the flat connections, i.e., tp(y) : 0" (T(w), Vw)) =~ (T(w), Vi)
For a variation of integrable twistor structure (V, ]Dﬁ) on P! x X, a morphism

S (V,Dy) ® o*(V,Dy) — T(—w)x
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is called a pairing of weight w if it is (—1)*-symmetric in the following sense:
Ir(—w) ©0"S = (—=1)"S oexchange : 6"V @ V — T(~w)x.

Here, exchange denotes the natural morphism ¢*V ® V. — V ® ¢*V induced by
the exchange of components. Similarly, we have the notion of pairing of weight w
for variations of twistor structure.

Definition 2.1. Let (V, I’Dv)‘%) be a variation of integrable pure twistor structure of
weight w on P! x X. Let S : (V, ]ﬁé)@a*(v, 156) — T(—w)x be a pairing of weight
w. We say that S is a polarization of (V, f))‘%) if Sp := Sp1x¢py is a polarization
of Vp := (V,dp,)p1x(p} for each P € X, that is, the following holds:

o If w = 0, the induced Hermitian pairing H°(Sp) on H°(P!,Vp) is positive
definite.

o In the general case, the induced pairing Sp ® Sy, —y on Vp ® O(0, —w) is a
polarization of the pure twistor structure. (See Example 2 below for Sp,_.,.)

The notion of polarization for variations of pure twistor structure is defined in a
similar way. O

Example 1. The identification iy, induces a flat morphism Sy, : T(w) ®
o*T(w) — T(2w), which is a polarization of T(w) of weight —2w. (See [22].)

Example 2. More generally, a flat isomorphism ¢, q) : *O(p, q) ~ O(q, p) in [22]
is given by the correspondence o* f*? i (/=1)4=P £{%") which implies

a*fép,q) — (ﬁ)pﬂfggm), a*féf.)”Q) — (7\/771)174’11.}(‘5‘1717)'

Hence, we obtain the morphism S, , : O(p, q) ® c*O(p,q) — T(—p — q), which is
a polarization of weight p + ¢. (See [22].)

2.1.5. Real structure and twistor-TERP structure

Definition 2.2. A real structure on a variation of integrable twistor structure
(v, Dﬁ) is defined to be an isomorphism

K : 7*(V,ﬁ)€) ~ (V,ﬁ)é)
such that v*(k) o k = id.
We fix the real structure sy(,) on T(w) given by the correspondence

() s ) ) o) ) ),
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Definition 2.3. Let (V ]IN))‘A/‘) be a variation of integrable twistor structure with a
pairing S of weight w and a real structure x. We say that x and S are compatible
if the following diagram is commutative:

VV @y V L5 T (—w)

K®U*HJ/ l”T(fw)

Veov — T(—w)
That is, Ky(—w) 0 7*S = So (k® 0*k). In that case, we also say that  is a real
structure on (V, ]D)ﬁ, §), or that S is a pairing on (V, D€7 k) with weight w.

Definition 2.4. Let (V, ﬁﬁ) be a variation of integrable twistor structure with a

pairing S of weight w and a real structure . The tuple (V, lﬁ)ﬁ, S, k,—w) is called a

variation of twistor-TERP structure if (i) S is perfect, (ii) S and k are compatible.
If X is a point, it is called a twistor-TERP structure.

It is easy to observe that twistor-TERP structure is just an expression of
TERP structure [I0] in terms of twistor structures, which we will explain in Sub-

section 2.1.8

Definition 2.5. A variation of twistor-TERP structure (V, ]IND‘A/‘, S, k,w) is called
pure if (V, D‘%) is pure of weight —w. It is called polarized if (V, D‘%, 8) is polarized.

Remark 5. If a variation of twistor-TERP structure (V, ]13)6,8, K,—w) is pure,
we also say that (V, D‘%,S,H) is a variation of pure twistor-TERP structure of
weight w.

Example. A Tate object (T(w), Vr(w); St(w), AT(w), 2w) is a pure polarized twis-
tor-TERP structure.

2.1.6. Gluing construction

Variation of integrable twistor structure. We can describe a variation of
integrable twistor structure as gluing. We set X := Cy x X, &% := {0} x X,
XT:=C, x X" and X170 := {0} x XT.

Let V5 be a holomorphic vector bundle on X with a meromorphic flat con-
nection (T E-structure [10])

Vv, : Vo — Vo @ Q5 (log X°) @ O (X°).

We use the same symbol to denote the associated differential operator Vy —
Vo ® Qf in the C*°-category. (The holomorphic structure df; is also included.)
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Let V4 be a holomorphic vector bundle on XT with a meromorphic flat connection
(T E-structure [10])

Vit Voo = Voo @ Q50 (log X1%) ® O x4 (X19).

We use the same symbol to denote the associated differential operator V,, —
Voo ® O y+ in the C>°-category. Assume that we are given an isomorphism & of
C*-flat bundles:

U (Voavvo)\tc;xx = (Voo,vvm)\czxxf-

We obtain the C*-vector bundle V on P! x X by glulng Vo and Vi, via ®. Since
® is flat, Vy, and Vy,_ induce the TT E-structure ID) VoV eR Q]P,l o x- Thus,
we obtain a variation of integrable twistor structure (V, D% V)

Conversely, we naturally obtain a tuple of (VO,VVO) (VOO,VVOO) and ® as
above from a variation of integrable twistor structure (V, D% v ) as the restriction to
X and X7, respectively. In this situation, we set

Glue((Vo, Vi), (Veo, Vi), @) = (V, D).

Pairing and real structure. Note that we have the natural isomorphisms y*fl}w
~ QL and v*QL, ~ ﬁ}w for an anti-holomorphic diffeomorphism v : Cy — C,, or
C, — C,, as in the case of (NZ}PIX - Let V5 be a holomorphic vector bundle on
X with a T'E-structure Vy,. By the above isomorphisms, v*Vy and o*V; are nat-
urally equipped with T E-structures Vv, and V-, . Similarly, if we are given
a holomorphic vector bundle Vs, on X' with T FE-structure, 0"V, and v*V,, are
naturally equipped with T E-structures. We remark that there exist natural iso-
morphisms

Glue(’-y*(voov va)7’y*(‘/[)a VVO)?W*@_I) =~ 'Y* Glue((MM vVo)? (V007 VVOO)u q))v
Glue(0*(Vao, Vv ), 0*(Vo, Vi), 0¥ @7 1) =~ o* Glue((Vo, Vv ), (Voo, Vv ), @).

oo

A real structure on a variation of integrable twistor structure corresponds to
a pair of isomorphisms

k0 1Y (Voo, Vi) = (V0. Vivg), Koo 17" (Vo, Vi) = (Vio, Vv, )
such that (i) v*ko = ko, (ii) the following commutativity holds on C} x X:
7 Voo e Vo

o] Js

TVo —— Vi
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A pairing of weight w corresponds to morphisms

So: (Vo, Viy) ® 0" (Vio, Vv, ) — T(—w) x5
St Voo, V) @ 0*(Vo, Vg ) — T(—w) a1

such that (i) tp(—w) © 0%See = (—1)"Sp o exchange, (ii) it is compatible with the
gluing. Compatibility of S and x means Kp(_ ) © 7*See = Sp © (Ko ® 0 Koo )-

Variation of twistor structure. The above gluing description is essentially
the same as that for a variation of twistor structure in [3 ] which we recall in the
following. See also [22]. We have the decomposition QL = =¢ Q X|x @Q , into the X-
direction and the Cy-direction. Let dx denote the restriction of the exterior deriva-
tive to the X-direction. Similarly, we have the decomposition Q/w = §Q x|t EBQ

and the restriction of Dkf to the X-direction is denoted by dx+. The notions of
Cx-holomorphic bundles or C,-holomorphic bundles are defined as in the case of
P'-holomorphic bundles.

Let (Vo,dg, v,) be a Cy-holomorphic bundle on X. A T-structure [10] on Vj
is a differential operator

]D)f Vo= W ®§Qx|x
satisfying (i) ID){,O (f-s)=dxf- s+f~]D)f (s) for any function f and any section s of
v, (i) (dg, v, + ]D{/O) = 0. Let (Voo,dg, v, ) be a Cj-holomorphic vector bundle
on XT. A T-structure [10] is defined to be a differential operator

D} Ve — Ve ® £ 21

satisfying conditions similar to (i) and (ii) above. Assume that we are given an
isomorphism

(22) P (VOvd(/[ék,V()?DfVO)Wf\XX = (V007d€C/“,VOC7D}L/i)|C;><XT°

We obtain the C*°-vector bundle V on P! x X by gluing V; and V., via ®. By
the condition 1) ¢, v, a~nd g, v, give a P'-holomorphic structure dg; ,,, and
]D){,O and ]D)I/i induce the T'T-structure D‘%. Thus, we obtain a variation of twistor
structure (V,dy, V,]D)ﬁ).
: Tf
Conversely, we obtain such a tuple of (Vo,dg, v, Vo) (Voo,d(C v Dyl)

and @ from a variation of twistor structure (V. dg y,, é) as the restriction to X
and X'T, respectively. In this situation, we set

Glue((Vo, d¢, . DY), (Voo d:, v DI ), @) := (V,DP).
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Remark 6. Let py be the projection X — X. Under the natural isomorphism
1 11,0 —10,1 ~101,0 —10,1 -
fﬂﬁﬂx =t P 1QX D py 1QX =Py 1QX S py 1QX =Dy Ok,

a T-structure ID){,O induces a holomorphic family of flat A-connections Dy;. Sim-
ilarly, a T-structure on ID)I,i naturally induces a holomorphic family of flat u-
connections IDEOO. Hence, a variation of twistor structure is regarded as the gluing
of families of A-flat bundles and p-flat bundles.

2.1.7. Relation to harmonic bundles. We recall a fundamental equivalence
due to Hertling and Sabbah. Let X be a complex manifold. Let (£2,D%,8) be
a variation of pure polarized integrable twistor structure of weight 0 on P! x X.
By the equivalence between harmonic bundles and variations of pure polarized
twistor structure due to Simpson [32], we have the underlying harmonic bundle
(E,0g,0,h) on X. Note that End(E|g) (Q € X) is naturally identified with
HO(IP’I,End(S@IXQ)), and hence it is equipped with the endomorphisms Ug :=
Ui and Qg obtained as in . They give C*-sections U and Q of End(F)
satisfying the following equations:

(2.3) 0pU =0, U,00=0, Q=9

Here, Ut and QF denote the adjoint of I/ and Q with respect to h, respectively.
Conversely, we obtain a variation of polarized pure integrable twistor structure
(EA,]T))A,S) from a harmonic bundle (E, g, 0,h) with U and Q satisfying
and . Let p : P! x X — X be the projection. We set £2 := p~'E on which
we have the natural connection dp: along the P'-direction. We set

dX
Vai=dp + (AN 'U—-Q — Aw)T

This gives a flat connection on £ along the P!'-direction. Then we obtain a TTE-
structure

D® =@+ M)+ 0+ A1) +Vy: 2 - 20 0L, .

The pairing S is induced by S(u ® o*v) = h(u, c*v).

Let us also look at the gluing construction of the above (£2,D%,S). Let
(E,0p,0,h,U,Q) be as above. Let py be the projection X — X. Let &€ be the
holomorphic vector bundle (p;lE, Op + A0 + 0)), where 9y denotes the natural
A-holomorphic structure on €. We have the family of flat A\-connections D = 9y +
AT 4+ X0 + 0 on £. The associated family of flat connections is given by D/ =
g + 20T + 05 + A\~16. Then Df :=Df + V. gives a meromorphic flat connection
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on &£. Let p,, be the projection Xt — XT. Let £ be the holomorphic vector bundle
(p;lE , Op+ub—+9,,), where 9,, denotes the natural g-holomorphic structure on 1.
We have the family of flat p-connections DT = 0p + uf + pdp + 67 on EF. The
associated family of flat connections is given by D/ = 9g + puf + 0 + p~ 167
Then DT/ := D/ + V, gives a meromorphic flat connection on &°.

We have the induced pairings Sy : EQ0*ET — Oy and Sy : ET®0*E — Oyt
induced by h. Then (£2,D,8) is obtained as the gluing of (€, DY), (&1, D'/) and
(S0, Sx) by the procedure in Subsection

2.1.8. TERP and twistor-TERP. Let us check that the notions of TERP
structure and twistor-TERP structure are equivalent. First, let us introduce a
pairing P induced by « and §. Then we deduce the equivalence in the case that
X is a point, for simplicity. We give a remark for the family case in the end.

The induced pairing P. We set j := 7o o0 = o oy, which is a holomorphic
involution of P'. We have the induced isomorphisms

o'k T(w) ~ oc*T(w), j*k:0*"T(w) = 7*T(w).
We have the following equality:
oc*koj*k=j"(v'kor) =j"(d) =id.

We will use similar relations implicitly. We also remark the commutativity of the
following diagram, which can be checked by a direct calculation:

5 T(w) —" *T(w)
U*KT(W)J, J,KT(W)
o T(w) —“s  T(w)

The composite j*T(w) — T(w) is denoted by pr(y).
Let (V, ]D)‘%, S, k,—w) be a variation of twistor-TERP structure. We define a
pairing P: V ® j*V — T(—w) by

(2.5) P:=(/-1)"-So(1®dc*k).

Lemma 2.1. P is (—1)“-symmetric in the sense that the diagram

-

VeV L T(-w)

exchangel lpw(,w)

veiv S 1w
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is commutative, that is, pp(—.)0j* P = (—1)" Poexchange. Here, exchange denotes

the natural morphism exchanging the components.

Proof. We have the following equalities:
(2.6) Pr(—w) © J P = (V=1)"Kr(—w) 0 Y t1(—w) 05 S0 (1 ® j* 0" k)

(V=1)"Kr(—w) 0 tn(—w) © (Y'07S) 0 (1@ 7"K)
(V=D)"Hr(—w) 7 (tr(-w) © 0" S) 0 (1 & 7"K).

By using the compatibility of S and k, we obtain

003

(2.7) (=1)" P o exchange = (vV—1)"(—1)"S o (1 ® 0*k) o exchange
=(V-1)"(-1)"So (k®0"k) o (7"k ® 1) o exchange

= (V1) "r(—) 07" ((~1)"S o exchange) o (1® 7" 5).

Thus, we are done.

Lemma 2.2. The following diagram is commutative:

*

YV ®o*V o, YT (—w)

n®j*ml l'ﬁr(fw)

veirv TP T
That is, (—1)"Po (k® j*K) = Kr(—w) 0 V" P.
Proof. We have the following equalities:
(2.8) (V)P o (@) = So (1@ 0"k o (v j5)
—So(k@atk)o(1@%),
(2.9) Er(—w) © Y (V=1)TYP) = kipw) 07" (S o (1 ®07k))

= Knwy 0 (1°8) 0 (18 57 K).

Thus, the claim follows from the compatibility of S and .

O

From twistor-TERP to TERP. Let (V,V,S, k,—w) be a twistor-TERP struc-
ture. Let us explain how to associate a TERP structure (H, Hg, V, P/, —w) in the
sense of Hertling (Definition 3.1 in [12]), where (H,V) is a TE-structure, H} is
a real structure on the flat bundle H|c;, and P’ is a pairing (see below). We set
H :=Vj, and H' := Vic; - In general, for a C-vector bundle U, let U denote the
conjugate of U, i.e., U = U as an R-vector bundle, and multiplication of /—1
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on U is given by multiplication of —/—1 on U. Note that v*(H )y for A # 0 is
naturally identified with ﬁ\X’l'
The following diagram for A # 0 is commutative by the flatness of x:

-7 II
Hy —2 H\X_l

(2.10) H‘Tll lﬁ“

-1

H‘X—l —A> H‘)\

—1
Here, II, denotes the parallel transport along the segment connecting A and A
which is frequently used in [I0]. A flat isomorphism &' : FICX ~ H\cy is given by
the composite /@1/\ := K)» o lIx. Because v*x o k = id, the composite

is the identity. Then we can check ' o ¥ = id by using the commutativity (2.10)),
as follows:

HT)\ o /{TA = (kppolly)o (H;l o I{Ix—l) = KoKzt = id.

Hence, k' gives a flat real structure on H'. Thus, we obtain a real flat subbundle
Hy of H\Ci' By restricting P, we obtain a pairing

P, : H®j"H = T(-w)ie, = Oc, - (V=10 "t ™.

_w)

By taking the coeflicients of tg , we obtain a flat morphism

P H' ®j*H — Ocy

such that A" - P’ induces a perfect pairing H ® j*H — Oc,. By Lemma2.1] P’ is
(—=1)*-symmetric.

Lemma 2.3. P'(Hg Qg j*Hg) C (V—1)"R.

Proof. Note that  gives real structures x|, : H7|a ~ H|, for a = 1,—~1. By Lemma
we have
(2.11) (V=1)"Pp o (kp @ K—1) = (Fr(—w))p © (V=1)"Pp1).

We obtain P"l (Hrjp ®Hg)—1) C (V—=1)"R. Then the claim follows from the flatness
of P’. O
Thus, we obtain a TERP structure (H, Hg, V, P, —w).
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From TERP to twistor-TERP. Conversely, we obtain a twistor-TERP struc-
ture (V,V,k,S, —w) from a TERP structure (H, Hy,V, P, —w). The following
construction has already essentially appeared in [I0]. We set V; := H and V, :=
~*H. We have the flat isomorphism

Treal * H|(Cf\ = '7*<H|(C§)a

obtained as the composite of the conjugate with respect to the real structure and
—1

the parallel transport along the segment connecting A and A . By gluing (H, V)

and v*(H, V) via Tyeal, we obtain an integrable twistor structure (V, V).

By construction, we have v*(Tyeal) = TTE;I, and the following diagram is com-
mutative:
Trea. *
Hycy — y*(Hiex)
* * ’Y*Tr;;I *
Y (v Hiey) —= ¥ Hx

Hence, a morphism « : v*(V, V) ~ (V, V) is given by the gluing of v*V,, ~ V and
Y*Vo =~ Vi induced by the identity. Clearly it satisfies v*xox = id. The restriction
Kicy ¢ ’y*(V)‘C; — V|cy is identified with T];;l :

Let Py : Vo @ 5*Vy — Og, -t be given by

’Y*H|(C§\ ~ H‘Ci

Py=P {7 = P (V=IN)" ).
We have the induced morphism
H:']I‘(—w) (e} ’)/*PO . Voo ®j*voo — O(C” . t(()gw)

Because P'(Hg Qg j*Hg) C (vV—1)"R, we obtain the following equalities for linear
maps H7|1® Hi_y = T(-w)p:

(2.12) (V=1)"Pyj1 0 (k1 ® K1) = (K1(—w))j1 © (V=1)"Poy1)
= (—V=1)"(Kr(—w))1 © (v*Poj1)-

Here, we have used the natural identification Py|; = (v*Fp)|1. The first and third
terms in (2.12) are obtained as the restrictions of morphisms (Voo ® j*Vio)icy —

Oc; -tg_w to the fiber over 1. By flatness, we obtain the following equality on C3:
(2.13) (—1)*Pyo(k®j k) = Kr(—w) o7 Po.

Hence, the pairings Py and (—1)" k) 0 v*Fo induce P : V ® j*V — T(-w).
Since P’ is (—1)"-symmetric, P is also (—1)"-symmetric in the sense of Lemma/[2.1]
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From ([2.13)), we obtain
(2.14) (—1)Po (k® j*K) = Fp(—w) 07" P.

The pairing S is constructed from P and x by the relation . The compatibility
of k and S follows from (2.8)), and (2.14). The pairing S is (—1)"-symmetric,
which follows from , and the compatibility with x. Thus, we obtain a
twistor-TERP structure (V,V, S, k, —w).

Hertling’s vector bundle. Let (H, Hg,V,P,—w) be a TERP structure cor-
responding to a twistor-TERP structure (V,V,S,x, —w). Recall that Hertling
constructed an integrable twistor structure (f[ ,V) from a TERP structure
(H,Hg,V, P,—w) by gluing H and v*H via a map 7. (See [10].) We do not recall 7
and his construction here, but His naturally isomorphic to V ® O(0, —w) by the
following correspondence:

H=V, = Vo0, ~w), acaofi"™",
Y H <7 Vo @00, —w)ee, Vb b (V1) fO7w),

According to [10] and [12], (H, H},V, P, —w) is defined to be pure if (H,V) is
pure of weight 0. They consider the hermitian pairing h on HO(P!, H) given by
AV - P'o(1®T), and (H, H},V,P,—w) is defined to be polarized if h is positive
definite.

Lemma 2.4. (H, Hg,V, P, —w) is pure (resp. polarized) if and only if the corre-
sponding (V,V,S, k, —w) is pure (resp. polarized).

Proof. The purity claim is obvious. Let us consider polarizability. We have only
to show that h is the hermitian pairing induced by S =8® So,—w, under the
identification of H and V ® 0(0, —w).

Let 6,3 € HO(P!, ﬁ) Under the identification ﬁ\ck = H and I?IK;“ =~*H, the
sections a and b of H are determined by a := a|c, and y*b := E‘C#. By definition,

~

h(@,b) = A“P(a, j*b).

Let us look at §|CA. Under the above identification, the pairing of @ and b is given
by

S(a® f"7 0" (vb @ (V=1)* f0*))) = S(a, 0" (D)) - ;"
= S(a,j*b) ~téw) =:Sp(a,j*b).
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Let us compare A" P’(a, j*b) and So(a, j*b). Since k¢, is equal to the identity
Voo =v*H — v*Vy = v*H, we have

Py = (V=1)"S 0 (19 0" R)ic, = (V=1)"Sie,.
Hence,

(2.15)  P'(a,j°b) -\ = P(a,j*b) = S(a,j*b) - (vV—1)"
= (V=I)" - Sola, 5*b) - 7 = A" Sy (a, j*b) - {7,

Thus, we obtain A\ - P'(a, j*b) = Sp(a, j*b). Therefore, S induces h. O

Family version. The correspondence is generalized in the family case. Let
(v, ]]3)6, S, k, —w) be a variation of twistor-TERP structure. We set H := V|c, x x-
It is equipped with T'E-structure V obtained as the restriction of HS)‘% Asin the pre-
vious case, we obtain a flat C-anti-linear isomorphism &’ : H\Ci <X H\Ci «x and
a flat pairing P: H' ® j*H' — Ocy xx. It is easy to check that (H, Hp, V, P, —w)
is a variation of TERP structure. The converse can be constructed similarly. The

correspondence preserves “pure” and “polarized”, for which we have only to check
the case in which X is a point (Lemma [2.4)).

§2.2. Basic examples

2.2.1. Example associated to a holomorphic function. Let a be a holomor-
phic function on a complex manifold X. We set

Vo :=0Oc, xx - €, Vy,(e) =e- d()\*la),
Voo :=Oc,xxt €, Vy_(el) =el-d(u"a).

We put s := exp(—A"'a) - e and s’ := exp(—p~'a) - ef, which are flat sections of
Vo\(C;xX and Voo‘(:zxx‘r, respectively. A gluing @ : V()‘@;Xx ~ Voo|<C;><XT is given
by ®(s) = s', in other words,

®(e) = exp(A\ " ta—pta) - el

Let V' be the C'"°°-bundle obtained as the gluing of Vj and V via ®, which is
equipped with a TT E-structure. For each point P € X, the restriction Vipi,(py
is isomorphic to Op:, and hence (V, ]ﬁ)ﬁ) is pure of weight 0. A real structure « is
given by r(v*el) = e and k(y*e) = ef. We can check that x actually gives a flat

isomorphism v*V ~ V. A pairing S of V with weight 0 is given by e ® o*el — t(()o)

and ef @ o*e — té?. It is easy to check that S actually gives a symmetric flat

pairing V ® ¢*V — T(0)x. The compatibility of S and k can be checked by a



VARIATION OF TERP STRUCTURE 439

direct calculation:
KT(0) © ’7*8(’)/*6T ®y*o*e) = k(o) ('y*(&'(eT ®o'e))) = m(o)'y*tgg) = t(()o),

So(k@c*k)(vel @ oy e) = Sle®o*el) = t(()o).

Hence, we obtain a variation of twistor-TERP structure denoted by L(a). It is
polarized. The underlying harmonic bundle is given by the line bundle Ox - v
with the Higgs field 6 - v = v - da and the hermitian metric h(v,v) = 1, where
v := e|{o}xx- The operators U and Q are given by U = —a and Q = 0.

2.2.2. Example associated to unitary flat bundles of rank one. In general,
a variation of pure polarized Hodge structure provides us with an example of a
variation of pure polarized integrable twistor structure. Any unitary flat bundle
naturally gives a variation of pure polarized Hodge structure, and hence a variation
of pure polarized integrable twistor structure.

In particular, we will use the following example. Let X := C" and D :=
Ule{zi = 0}. For any a € R, we have the following unitary flat bundle:

L

dz
Ox_p-e, Veze-(—Zai ZZZ>.
i=1 i

The associated variation of integrable polarized pure integrable structure is de-
noted by L(a).

More concretely, it is obtained as the gluing of the following meromorphic flat
bundles:

dZi
Vo =Oc,x(x-D) "€, VV0€:€‘<—ZCM ),

2
i=1 v

¢
dz;
Voo:O(C“x(XT_DT)'eTy VVMGTZGT- (Zal )

z.
i=1 v

The gluing is given by ®(e) = Hle |z;|=2% - ef. The pairing is given by S(e, o*el)
= 1. The underlying harmonic bundle is the line bundle Ox _p - v with the Higgs
field 6 - v = 0 and the metric h(v,v) = Hle |2i] 72, where v := e|{o}x(x—p)- The
operators U and Q are 0.

2.2.3. Example induced by nilpotent maps. Let Y be a complex manifold.
We set X == C! xY, D = |J_{z = 0} x Y. We put X := Cy x X and
Xt = C. x X1t We use the symbols D, Y, DI and V' in similar meanings. Let
go: X — Y and ¢o : XT — YT denote the naturally defined projections.
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Let (V,D?) be a variation of P!-holomorphic vector bundle on P! x Y with a
tuple f of nilpotent morphisms

fi:VoVRT(-1), i=1,...,L

such that (i) [fi, f;] = 0, (ii) they are P!'-holomorphic and D®-flat. We recall a
construction of the variation of P!-holomorphic vector bundle on P! x (X — D)
associated to (V, f) given in Subsection 3.5.3 of [22] with a minor generalization.
(In [22], we considered the case that Y is a point.)

We regard (V, Dé) as the gluing of a family of A-flat bundles (V;,Dy,) on Y,
and a family of p-flat bundles (Vo, DJ{/OO) on Y. We obtain a holomorphic vector
bundle Vy := ¢3Vp on X —D with a family of flat A\-connections ¢jDy;. We naturally
identify T(0)x—p =~ Ox_p by the trivialization t(()o). We also use the natural
identification T(—1) ® T(1) ~ T(0). We have the ¢}Dy,-flat endomorphisms ¢ f; ®
t(()l) € End(Vy). We obtain the family of flat A-connections on Vy given as follows:

0
% « dZi
]D)Vo = QODVO + ZQOfi ® tél)i'

i=1 :

Similarly, we obtain a holomorphic vector bundle V., := ¢* Vo, on X7 — DI with
a family of flat p-connections q;ODI,OO. We have the q(ﬁoﬂﬂ/oc -flat endomorphisms

as fi®tg) € End(Vs ). Hence, we obtain the following family of flat y-connections:

4 —
. . dz;
D}, =Dl + D akfietld—

i=1 v

Let Wy : Voicxxy = Voo\@;xy denote the gluing. Then an isomorphism ¥ :
VO|(C/*\><(X7D) = Voo|Cz x(X1-Df) is given as follows:

¢
(2.16) U= "Tyo exp(Z log |zi|? - g5 fi @ V-1 tgl)>
i=1

By construction, ¥ is holomorphic with respect to .
Lemma 2.5. ¥oDJ, =D}/ o¥.
Proof. We have the following expressions:
a dz
* * 1 :
DY, = Dty + 3 aih® (VTN
(2.17) =
dz:
* * 1
DY, = gD + Y ahfi® (V=TT

i=1 v
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Because ¥y, o ]D)f = ]D)Ti o Uy, we have

qooDTio\Il ‘I’OQQ]D)V = Uy o gD (exp(Zlog|zZ\2 @ fi ®V— t ))

dzi d?i *
on () wnovi)

i=1 v

Thus, the claim of the lemma follows. O

Let TNIL(V, D‘%, f) denote the variation of P!-holomorphic bundle on P! x
(X — D) obtained as the gluing of (Vy, Dy, ) and (VOO,DLOO) via W.

Assume (V, ]D)ﬁ) is equipped with a pairing S : (V, D‘%) ®c*(V, ]D‘%) — T(—w)
of weight w such that S(f; ® id) + S(id ®c* f;) = 0 for any i. Then we have the
induced pairing of weight w:

TNIL(S) : TNIL(V, D%, f) ® o TNIL(V, DS, f) — T(—w).
It is obtained as the gluing of the pairings
80 : Vo ® U*Voo — T(—U})|X_D, Soo : Voo ® U*VO — T(—U))M{T_DT,

which are the pull backs of Vp ® 0*Vie — T(~w)c, and Voo ® 0¥V — T(~w)|c, -
(See Subsection 3.6.1 of [22].)

Enrichment. Assume that (V, D ) is enriched to a variation of integrable twis-
tor structure (V, ]ﬁﬁ) such that f; are ]D) -flat, which is obtained as the gluing
of (Vo,Vy,) and (Vw,Vy,, ) via Ty. Then TNIL(V, ]Dv,f) is also enriched to
integrable TNIL(V, ]ﬁ)ﬁ, f), which can be checked by an obvious enhancement of
the argument in the proof of Lemma The T E-structure Vy, and the TE-
structure Vy,__ are given by essentially the same formulas as (2.17):
4 de
Vv = @V, + Yo fi© (V1)
i=1 “
I .
Vi = Vv + Y@ fi @ (—v/=Tt{) =
i=1 %
If we are given a pairing S of (V, ]f))ﬁ) with weight w satisfying So (f; ®id) +So
(id®c* f;) = 0, we have a naturally induced pairing TNIL(S) on TNIL(V ID)‘%, )
with weight w. Assume that we are given a real Structure I<L on (V, DV,S) such
that kK o v*f; = f; o k. Because kg o v*(f; ® t(l)) (f ®t ) o Kg, we obtain the
isomorphisms

KoY Voo, V) = (Vo, V) Foo 2 Y (Vo, V) ~ (Veos Viiy)-
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We can observe that the following diagram on C3 x (X — D) is commutative:

Y Veo R Vo

"
YVo —=— Vo

To check this, we have only to note that
2.18 Vokr=UTyoex log |z; (P 2~f—®\/—1t(1) ok
|4 p g 1% 3 1
i=1

=Koy Uyl o exp(— Zlog |zi(P)]? - v*(fi ® V-1 tgl))) = roy UL
i=1

Hence, we obtain an isomorphism
TNIL(k) : v* TNIL(V, D%, f) ~ TNIL(V, D, f).

By construction, it is easy to check v* TNIL(x) o TNIL(k) = id. It is also easy
to check the compatibility condition if the given S and k are compatible. There-
fore, we obtain a variation of twistor-TERP structure TNIL(V, ]ﬁﬁ, f,S,k,—w) on
X — D from a variation of twistor-TERP structure (V, ]136, S, k,—w) with f = (f;)
as above.

Definition 2.6. Let (V, ]D)‘%, f,S) be as above. We set
X*(R) =Y x {(21,...,Zn) ‘ 0< |Z7,| < R}
for R > 0.

o If there exists R > 0 such that TNIL(V, ]D)‘%7 f,S)pr x x+(r) is pure and polarized,
it is called a twistor nilpotent orbit of weight w.

o If moreover (V, Dﬁ) is enriched to a variation of integrable twistor structure
(v, HND‘%) such that f; and S are ]ﬁ)ﬁ—ﬂat, then TNIL(V, ﬁ‘%,f,s)“plxx*(R) is
called an integrable twistor nilpotent orbit of weight w. (We often omit “inte-
grable” if there is no risk of confusion.)

o If moreover (V, I’Dv)‘%, S) is equipped with a real structure x such that x o y* f; =
fi o k, the variation TNIL(V, ]]5)‘%78, K, —w)|pLx x+(r) is called a twistor-TERP
nilpotent orbit. O

Remark 7. The notion of a twistor-TERP nilpotent orbit is different from “nilpo-
tent orbit” defined by Hertling and Sevenheck. Their “nilpotent orbit” is called
HS-orbit in this paper.
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§2.3. Convergence

2.3.1. Complement on convergence of pure polarized twistor structures.
Let (V® 8®) (i = 0,1) be polarized pure twistor structures with weight 0 of
rank 7. Let () be the hermitian metrics on V® corresponding to S, and let
d® denote the associated flat unitary connections of V("  which are equal to
the natural connection given by holomorphic trivializations V#) ~ O]fﬁr. Let 5(1)
denote the (0, 1)-part of d*), which is equal to the holomorphic structures of V(*).
We fix a hermitian metric g of Q]%,’lo &) Q%ll. Let |- |h(,;>7 9 denote the sup-norms with
respect to the metrics induced by A and g. The symbols | - |, and |- |, are
used in similar meanings. Let ® : V(© — V(1) be a C°°-isomorphism such that
the following conditions are satisfied for some € > 0:

(A1) |<I>*5(1) - 5(0)|h<0)7g < € as a C®-section of End(V(?)) @ Q%1

(A2) [2*SM) — SO, ) < € as a C®-section of Hom(V(®) @ ¢*V () T(0)).

(A3) |5(0)(©*S(1) - SO, = |5(0)<I>*S(1)|h<0)7g < € as a C®-section of
Hom(V @ @0*V () T(0)) ®Qg,’ll, where 3 denotes the induced holomorphic
structure on Hom(V®) @ o*V () T(0)).

Lemma 2.6. There exists a constant Cy > 0, independent of €, with the following

property:

o If B~1.d*h() < O < B.®*h() for some B > 1, then

(2.19) |2 dY) — d©,0 , < CoBe.

Proof. In the following argument, C; denote positive constants independent of e.

Let 8(2) denote the (1,0)-part of d?), which is determined by h() and 7. To

show , we have only to estimate |a,§‘23) — <I>*6',(f(f) b g-

Let eq,...,e, be an orthogonal frame of V(© with respect to h(®). Because

d*h M (e, ej) = P*SW(e; ® o*e;), we have the following estimate for any i, j:
9@ WD (i, )]y = [0 (38D (€1 @ 07 ¢))ly < Cre.
Hence, we obtain
(2.20) 10(2*h M (e;,¢5))|, < Cre.
Let 8}(;2) denote the (1,0)-operator determined by ®*h(1) and 7. As B-L.9*p()
<h® < B-®*h(M) and by (2.20)), we have
|8(O) 8,(1?2)) ‘h(U),g S CQBE.

R

P O)

Because |®*0 | < Cse and B~ &*h(1) < p0) < B. ®*h(V) | we have

|(I)*5(1) —5(0) H*h(1) S 04326.
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Hence, we obtain |<I>*6}(LH) — 6}(10(3)

s < C4B%e, which implies
£ a(1 0
12°0\ 1)) — 0% o < CsBe.
Thus, we obtain ([2.19). O
Lemma 2.7. There exist positive constants €y, Chg and Cy1 such that, for e < €,

(2.21) 1&*h) — O], 0y < Choe,
(2.22) |®*dD) — d], ) < Chye.

Proof. According to the result in Subsection 11.3 of [23], if € is sufficiently small,
(2.21) holds for some C1p. Then we obtain (2.22)) from Lemma O

2.3.2. Approximation of pure polarized integrable twistor structures.
Let (V) V@ S®) (i = 1,2) be integrable polarized pure twistor structures. Let
h() be the hermitian metrics on V() corresponding to S®. We fix a hermitian
metric ¢ on Q]%,,}O(Q -{0,00}) ® Q](;,’ll. Let @ : V(© — V(1) be a C*®-isomorphism
such that for some € > O:

(B1) [@*V) — VO], = < € as a C®-section of
End (V) @ (25 (2 {0,00}) & i)

Note that this implies (A1) in Subsection [2.3.1]
(B2) Conditions (A2) and (A3) are satisfied.

Lemma 2.8. There exists a constant Cog > 0, independent of €, such that if
B~1.&*h() < (O < B.®*hV) for some B > 1, then

12 UD — U0, < CooBre,  [@*QW — Q) < CyoBe.

Proof. In the following argument, C; denote positive constants independent of e.
By Lemma we have |<I>*d(1) — d(0)|h(0)7§ < Cq1 B*€e. We obtain

‘()\—1 ((I)*U(l) _u(O)) —((I)*Q(l) — Q(O)) —A((I)*L{(lﬁ _M(O)T))d)\/)\‘h(o) . < CyyBle.
Then, it is easy to deduce the claim of the lemma. O
Lemma 2.9. There exist positive constants eg and Csg such that, for e < €q,

|‘I)*h(1) — h(0)|h<0) < (3¢, |(I)*U(1) — U(O)‘h(o) < C3pe,
|(I)*Q(l) - Q(0)|h(0) S 6306.

Proof. This can be shown by the argument in the proof of Lemma O
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8§2.4. Variation of polarized mixed twistor structure
and its enrichment

2.4.1. Definitions

Variation of polarized mixed twistor structure. Let X be a complex man-
ifold. Let (V,D?) be a variation of P!-holomorphic vector bundle on P! x X
equipped with an increasing filtration W indexed by Z in the category of vec-
tor bundles, which is P'-holomorphic and D*-flat. If each Gr'’ (V') is a variation
of pure twistor structure of weight n, (V,W,D%) is called a variation of mized
twistor structure. Assume we are given the following data on (V, W, DA), which
are P'-holomorphic and D*-flat:

e A tuple f of nilpotent morphisms f; : V — V ®T(-1) (j =1,...,n) which are
mutually commutative.

o A (—1)"-symmetric pairing S: V ® 0"V — T(—w).

e For each P € X, the restriction (V, W, f,S)|p1x(p} is a polarized mixed twistor
structure of weight w in n variables. (See Subsection 3.48 of [22].)

Then the tuple (V,D%, W, f,S) is called a wariation of polarized mized twistor
structure. Since W is determined by f as the weight filtration of f(n) := Z;;l i
up to shift of indices, we sometimes omit W in notation.

Enrichment. If D® and the P!-holomorphic structure are extended to a TTE-
structure D2 for which f and S are flat, (V, IB)A, W, f,S) is called a variation of
polarized mixed integrable twistor structure of weight w in n variables. Note that
W is automatically D2 -flat.

If moreover (V, ﬁA, §) is equipped with a real structure x such that koy* f; =
fj o k, then tuple (V, ﬁA, W, f,S, k, —w) is called a variation of polarized mized
tuistor-TERP structure in n variables.

Remark 8. The notion of polarized mixed twistor-TERP structure is different from
“mixed TERP structure” defined by Hertling and Sevenheck (Section 9 of [12]).

Split type. Let (V,W,D?) be a variation of mixed twistor structure. It is called
of split type if it is equipped with a grading V = @V, such that (i) it is P!-
holomorphic and D*-flat, (i) W,, = @ V,. In that case, each (V;,,D?) is
a variation of pure twistor structure of weight m. Note that such a grading is

p<m

uniquely determined because H?(P, Opi(m)) = 0 for any m < 0.
A variation of polarized mixed twistor structure (V, W,D*, f,S) is called of
split type if the underlying variation of mixed twistor structure (V, W,D?) is of
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split type with a grading V = @ V,,,. We can show that:

o fi(Vp) CVp2 @ T(-1).
e The restriction of S to V,, ® 0*V is 0 unless p + ¢ = 2w.

Similarly, a variation of polarized mixed integrable twistor structure is called of
split type if the underlying variation of polarized mixed twistor structure is of split
type. The grading is flat.

A polarized mixed twistor-TERP structure (V,W,V, f,S, k, —w) is called of
split type if the underlying variation of mixed integrable twistor structure is of
split type. For the grading V = @ V,,, we have k(v*V,,,) = Vi,

2.4.2. Reduction. Let (V,W,D?, f,S) be a variation of polarized mixed twistor
structure of weight w in n variables. We obtain a variation of P!-holomorphic
vector bundle (V@ DO2) .= G (V,D%), naturally equipped with a grad-
ing VO = @Gt (V) and a filtration W,\)) = @D, <,, Gr,/ (V). We have in-
duced morphisms fj(o) . GrY (V) — Grp_o(V) ® T(—1), and hence f;o) :
VO — v @ T(-1). We also obtain induced morphisms S© : Gr!V (V) ®
o*Gry (V) — T(-w), and hence S© : VO @ o*(V(®) — T(-w). It is
known that (V(©) W (©), f(o),S(O))l]plx{p} are polarized mixed twistor structures
of split type with weight w in n variables. (See [22]. This can be shown directly
and easily.) Hence, (V(© W ©) D@2 £0 S0)) s a variation of polarized mixed
twistor structure of split type with weight w in n variables. It is denoted by
GrV(V, W, D2, f,S).

If (V,W,D?, f,S) is enriched to an integrable one (V, W, ﬁA, f,S), the asso-
ciated Gr is also integrable. If moreover (V, W, D2, f,S ) is enriched to a variation
of polarized mixed twistor-TERP structure, the associated Gr is also enriched to
a variation of polarized mixed twistor-TERP structure of split type.

2.4.3. Splittings

Preliminaries. Let (V;, W, ]D)Z-A) (i = 1,2) be variations of mixed twistor structure
on P! x X with a morphism F : (Vi, W,D2) — (Va, W,D5"). We set (V% D{)
=GV, Df) on which we have the naturally induced filtrations W(®). We also
obtain the induced morphism F© : (V9 w© D%y — ([0 w© pO4)y,
The following lemma is standard.

Lemma 2.10. The rank of F p) is independent of (\, P) € P! x X. The mor-
phism F is strict with respect to the weight filtration. Hence, Ker F' with the induced

filtration W(Ker F') is a mized twistor structure, and we have the isomorphism
Ker FO) ~ Gr" (Ker F).
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Proof. If X is a point, the claims are well known and easy to show. Namely, it
is shown in Lemma 2.20 of [2I] that (i) Ker(F') is a subbundle of Vi, (ii) F is
strict with respect to the weight filtrations, i.e., F(W;(V1)) = F(V1) NW;(Va), (iii)
Ker(F') with the induced weight filtration is a mixed twistor structure. We obtain
the isomorphism Ker F(©) ~ Gr'" (Ker F) by strictness.

Let us consider the general case. By using flatness, it is easy to show that
rank Fj;,py and rank F|(((i) p) are independent of the choice of a point P € X.
Hence, the claim of the lemma follows. O

Corollary 2.1. Let (V;, W, DiA) (i =0,1,...,m) be variations of mized twistor
structure with morphisms F; : (Vo, W, DOA) — (V;, W, ]D)iA) fori=1,...,m. Then
we have the following natural isomorphism of variations of mized twistor structure:

Gr" (ﬁ Ker Fi) ~ ﬁ Ker Fi(o).
i=1 i=1

Here, Fi(o) denote the induced morphisms VO(O) — V;(O), O

Local splitting. Let (V,W,D%) be a variation of mixed twistor structure. Let
N = (N;|j=1,...,¢) be a tuple of morphisms N; : (V,W,D?) — (V,W,D?) ®
T(—1) which are mutually commutative. Let (V) W (©) DA) be as above. Let
N©O© = (NJ(O) |j=1,...,¢) be the induced commuting tuple of morphisms N;O) :
(VO WO pOA)y (VO WO DOA) g T(-1).

We set V := Hom(V(O),V), which is naturally equipped with the operator
D” and an induced filtration . Let N;: (V,W,D) — (V,W,D)®T(-1) (j =
1,...,¢) be the morphisms of mixed twistor structures given by N;(f) = N, o
f—1fo N;O). Similarly, we set v = Hom (V) V() on which we have the

naturally induced operator E(O)A, filtration W(O) and morphisms of mixed twistor
structures W;-O) : (V(O),W(O),ﬁ(o)) — (V(O),W(O),@(O)) @ T(-1).

We have the natural isomorphism GrW(V) ~ V. The induced filtrations
and morphisms coincide. According to Corollary we have the following iso-

morphism of variations of mixed twistor structure:

GrW(ﬂ Ker Nj) ~ ﬂ Kerﬁgo).
Thus, we obtain the following corollary.

Corollary 2.2. Let (\, P) be any point of Cxx X, and let U be a small neighbour-

hood of (A, P). There exists a C°°-morphism F : Vlg)) — Vig with the following

properties:



448 T. MOCHIZUKI

o [t preserves the weight filtration, and the induced morphism GrW(V‘S))) —
GrW(WU) is the identity.
o FoN!” =NjoF forj=1,...,L O

C>-splitting. Let (V,W, D2, N) and (V@ , W© DOA NO) pe as above.

Lemma 2.11. There exists a C™-isomorphism ® : V©) — V with the following
properties:

o & preserves the weight filtration W, and Gr'V @ is the identity GrW(V(O)) =
ar'(v).

¢ 2o N =Njod forj=1,...,L.

Proof. Let U C Cy be a compact region with U U o(U) = PL. We take a locally

finite open covering U x X C UpE 1 Uy such that we have C*°-isomorphisms &, :

Vll(/?p) — Vi, as in Corollary ie., Dy, ON;O) = Njo®y, for any j. Similarly, we
take a locally finite open covering o(U) x X' C {J, ., U] such that we have C>°-
isomorphisms (I)uj : V\Z(/ZT) o~ V\u; as in Corollary [2.2l We take a partition of unity
{Xup’xu;f | p €I, g € J} subordinated to the covering {Z/{p,L{;f |pel, ge J} of
P! x X. We obtain the C*°-isomorphism

qeJ

=) X, Py, ) xyp Py VO -V
p€El qeJ

By construction, it has the desired property. O

83. Polarized mixed integrable twistor structure of split type
§3.1. Basic examples in one variable

3.1.1. Rank two. Let usrecall a basic example studied in Subsection 3.7.2 of [22]
with a minor enhancement. We set V12 := 0(0, —1)20O(1,0). (See Subsectionm
for O(p,q).) Tt is naturally equipped with a meromorphic connection V2!, and
(V12 V) is an integrable twistor structure. We put

W_o(VEY =0, W_ (VE) =w,o(vE) .= 0(0,-1), W (vE).=vEL
Let FPI: VP — vI2l @ T(—1) be given by

FO = 0V, ST =0 (a=0,1,0).



VARIATION OF TERP STRUCTURE 449

A flat morphism S : V2l @ o*VI2 — T(0) is given by the following correspon-
dence:
SPUAM @ ot 07D = V=T, SPIAY T ot (1) = -1,
SEH O 2ot f (M) =0, SPU(FOTV 2ot fO7Y) =0,

Recall that (V ,W,FPl s [2]) is a polarized mixed twistor structure of split type
in one variable with weight 0 (Lemma 3.90 of [22]). It follows that the tuple
(V[Q]J/V, VR FRlLS [2]) is a polarized mixed integrable twistor structure of split
type.

3.1.2. Twist. The bundle V[? is obtained as the gluing of V[Q] = V[Z] and
Vo[g] = V. We would like to explain a twist of the glulng given in Subsectlon

IC,.

3.7.2 of [22], related to the construction in Subsectlon 3l Let N := Fll t(l)
Let v € V[ ! for A # 0, 00. The induced elements of V, |>\ and V[ ] are denoted by

v and UT, respectively. The gluing for V[2 is given by v = vf. For y € C, a vector

bundle ‘77}2] is given by the following twisted gluing:
exp(vV—1ly-N)-v=

Since N is flat, we have the naturally induced flat connection Vg[,z] on ‘7?,[2]. We also

have the induced pairing 5,52] on (‘73,[2], VLZ]) of weight 0.

For y # 0, we have a frame of Vy[z]

= V= S Ty g0 f“)%
fl‘”:—ﬁwféio)—\ﬁy'fég

In particular, (Vy[Q], V[ ]) is a pure integrable twistor structure of weight 0 for any

given as follows:

y # 0. If y is a positive real number, §1[12] gives a polarization of (‘N/ym , V?[f ]) (Lemma
3.91 of [22]). Actually, 8; (i = 1,2) give an orthogonal frame:

PG o) =y (=12, SPGEL0"5) =0

Note that Vg[f] is logarithmic with respect to the lattice ‘734[2]. For any y # 0,
we have the decomposition

jdA

2 2
Vg = - o

Here, dg] is a natural flat connection on Vy[z] ~ Op1(0)%2. Let us calculate Q2.
By easy calculations, we can check

dx
vz =0, VPR =% <A> .
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Hence, QP! is expressed by the following matrix with respect to the frame 37, 3s:

(1)

In particular, the eigenvalues are independent of .

Remark 9. For our application, we essentially need only the case in which y is a
positive real number. Recall that we have considered a twisted isomorphism ([2.16]).
We will use the above considerations by setting y = — Zle log | 2;]?.

3.1.3. Rank /. For any positive integer £, we set
(V[e]7v[£]) . Symgil(V[Z],V[Q]),

which is equipped with a morphism FI¥ : VI — VI @ T(-1) and a pairing
St vId®e* V4 — T(0). For any y € C, we obtain an integrable twistor structure
(E}”,vgf ],gl[f}) with a pairing of weight 0, by the procedure of Subsection
It is also obtained as the (¢ — 1)-th symmetric product of (XN/y[Q], Vg],g?[f]). Hence,
(Vy[é},vgf ]) is pure with weight 0 for each y # 0, and 5?[,@] gives a polarization for
each y > 0. We have the decomposition

qdA

vid — dgf] — gl .

Yy
S =5 E
(p=0,1,...,£—1), for which Q¥ is expressed by the diagonal matrix whose p-th
entry is p (p =0,1,...,¢—1). In particular, the eigenvalues are independent of y.

Let y # 0. A frame of ‘N/ym is given by symmetric products

§3.2. Twistor nilpotent orbits of split type and their
new supersymmetric indices

3.2.1. One variable case. Let (V,W,D*, N, S) be a variation of polarized mixed
twistor structure of split type with weight 0 in one variable on P! x Y, where YV’

is a complex manifold. The following lemma is essentially the same as Corollary
3.97 of [22].

Proposition 3.1. There exist variations of polarized pure twistor structure
(Ug,DZA,S@) of weight 0 on P! x Y for £ > 1 such that (i) (V,D?) =~
@DI(U@DZA) @ VWU () N = @idy, F¥ and S = @S, @ S under the
isomorphism. If (V,W,D?, N, S) is enriched to be integrable, (U, D>, Sy) are also
enriched to be integrable.
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Proof. We have the grading V = @jeZVj. For each j > 0, we set PV; :=
Ker(N7™1 . V; — V_;_o @ T(j + 1)). It is a variation of pure twistor structure
of weight j, and equipped with the induced polarization S;. For £ > 1, we set
Up == PVy_1 ® O(0,—¢ + 1), which are naturally variations of polarized pure
twistor structure. Now, it is easy to observe that V' has the desired decomposition.
The integrable case is also easy. 0

Let g : Y xC* — Y denote the projection. We have the variations of polarized
pure twistor structure on P! x (Y x C*) obtained as the pull back of (Uy, Df, Se),
denoted by q*(Ug,DZA, S¢). Recall the construction of Subsection m We obtain
the following naturally defined isomorphism:

(3.1)  TNIL(V,D*,N,S) ~ D q¢*(Us, D2, Sp) ® TNIL(VI, vl pl gy,
4

By using the result in Subsection [3.1) we deduce the following:
Proposition 3.2. Set
X =Y x{zeC|O0<|z| <1}, X_=Yx{zeC]||z|>1}.

Then TNIL(V,D®, N) is a variation of pure integrable twistor structure on P! x
(X4 UX_), and the restriction TNIL(V,D?, N, S)prxx, 15 a twistor nilpotent
orbit. O

Assume that (V,D2) is enriched to integrable (V, D) such that S and N are
D2 flat. Let Q and QY be the new supersymmetric indices of TNIL(V, ]ﬁ)A,N )
and TNIL(V[Z]7 vl F [4])7 respectively. We also have the new supersymmetric in-
dex Qy of (U(,]ﬁ)eA). By construction, we have the following equality, under the
isomorphism :
0=P(Q@id+ide).
>1

The eigenvalues of Q are easily calculable, once we know those of Q,. In particular,
we obtain the following.

Corollary 3.1. The eigenvalues of Q)4-1(y) are constant for any y € Y, where
q: X+ UX_ —Y denotes the projection. O

3.2.2. Several variables case. Let (V, W, ]D‘%, N, S) be a variation of polarized
mixed twistor structure of split type with weight 0 in n variables on P! x Y.
We have the associated variation of twistor structure TNIL(V, D‘%,N ,S) with a
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pairing of weight 0 on P* x (C*)" x Y. We set
X i ={(z1,...,2) €C" |0 < |z| <1} x Y.

Proposition 3.3. TNIL(V, ]D‘%, N, S)prxx+ is a twistor nilpotent orbit.

n

Proof. For any a € RZ,, we set N(a) := > ., a; N;. We obtain a varia-
tion of mixed polarized twistor structure (V, W,D*, N(a), S) of split type with
weight 0 in one variable on P! x Y. Applying the result of Subsection to
(V, W, ]D)‘%, N(a), S), we obtain the desired property of (V, W, ]D)‘%, N, S). O

Definition 3.1. An (integrable) twistor nilpotent orbit is called of split type if it
is associated to (integrable) polarized mixed twistor structures of split type.

It (V, W, ]D)ﬁ, N, S) is enriched to integrable (V, W, ﬁ)‘%, N, S), the associated
twistor nilpotent orbit is also enriched to integrable TNIL(V, ]ﬁ)‘%,N ,S). Let us
consider its new supersymmetric index Q. For any a € RZ;, we set N(a) :=
Z?Zl a; N;. According to Proposition there exist variations of polarized pure
integrable twistor structure (Ug ¢, ]ﬁ)ﬁe) for ¢ > 1 such that

(V.DE, N(@) ~ @ (Uar, D) © (v, V1, FlO),
>1

Lemma 3.1. For any a,b € RY,, we have an isomorphism
(Ua,fvﬁ)ﬁe) = (Ub,€v®§£)~
Proof. Let V = @V} be the splitting. For any a € RZ; and j > 0, we set
(PVjq,D%) := Ker(N(a)’™ : (V;,D?) — (V_;_2,D®) @ T(—j — 1)).

We have only to show that (PVjq,D?) and (PVjp,D?) are isomorphic if b is
sufficiently close to a.

We set (Yjq,D%) = Im(N(a) : (Vjy2,D%) @ T(1) — (V;,D*)). Then we ob-
tain the flat splittings (V;, D) = (PVj.q,D%)® (Y} .4, D). If b is sufficiently close
to a, flat isomorphisms PV , — PVj are induced by inclusions and projections.
Thus, we are done. O

By Lemma and the result in Subsection the eigenvalues of Q are
easily calculable once we know the new supersymmetric indices of (Ug, ¢, Dﬁ p) for
ac Réo and ¢ > 1. In particular, we obtain the following.

Corollary 3.2. The eigenvalues of Q|q-1(y) are constant for any y € Y, where
q: X* —Y denotes the natural projection. O
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84. Integrable twistor nilpotent orbits
84.1. Statements

4.1.1. Twistor nilpotent orbits and polarized mixed twistor structures.
Let Y be a complex manifold. Let (V, D‘%) be a variation of twistor structure on
P! x Y equipped with the following P!-holomorphic D‘%—ﬂat data:

e A pairing S: V ® 0*V — T(—w) of weight w.

e A tuple N of nilpotent morphisms N; : V — V@ T(-1) (j = 1,...,n) which
are mutually commutative.

e S(N; ®id) +S(id®o*N;) =0for j=1,...,n.

For simplicity of statement, we assume the following:

e Y is contained in another complex manifold Y’ as a relatively compact subset,
and (V, Dﬁ S, N) is extended onto Y.

We set X*(R) :={(z1,-..,2n) |0 < |z;| <R} X Y.

Theorem 4.1. (V, ID)‘%, N, S) is a variation of polarized mized twistor structure
with weight w in n variables if and only if

TNIL(V, D}, N, S) et x+(R)
is a twistor nilpotent orbit with weight w for some R > 0.

Note that the “if” part follows from Theorem 12.22 of [22]. The “only if” part
immediately follows from Proposition below and a result in Subsection 11.3
of [23]. (We apply Proposition [4.1] to each point of Y”.)

Remark 10. The one-dimensional case was proved in Proposition 3.105 of [22].
Such an equivalence for Hodge structure was established by Cattani—Kaplan—
Schmid and Kashiwara—Kawai.

Corollary 4.1. Let (V, D‘%,N, S) be as above.

o Assume that (V, D‘%) is enriched to integrable (V, ]ﬁ)ﬁ) such that N and S
are flat with respect to f))é Then (V, ]ﬁ)ﬁ,N,S) is a wvariation of polarized
mized integrable twistor structure with weight w in n variables if and only if
TNIL(V, ]]Aj)‘%,N,S)‘Plxx*(R) is an integrable twistor nilpotent orbit for some
R >0.

o Assume moreover that (V, ]ﬁ)‘%, S) is equipped with a real structure x which is
compatible with N. Then (V, ]ﬁ)‘%, N, S, k,—w) is a variation of polarized mized
twistor-TERP structure if and only if TNIL(V, HND‘%,N,S,/@, —w) is a twistor-
TERP nilpotent orbit on X*(R) for some R > 0. O
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Remark 11. As the one variable case of Corollary .1} we obtain the correspon-
dence between twistor-TERP nilpotent orbits and polarized mixed twistor-TERP
structures. This is different from the correspondence between mixed TERP struc-
tures and HS-orbits in the regular singular case established by Hertling and Sev-
enheck ([I0] and [12]).

4.1.2. Construction of an approximating C°-isomorphism. Let (VW
D®,N,S) be a variation of polarized mixed twistor structure of weight 0 in
n variables on P! x Y. We obtain a variation of polarized mixed twistor struc-
ture of split type (V@ , W © DOA N© §0)) by taking Gr with respect to the
weight filtration, as explained in Subsection We obtain the families of P*-
holomorphic vector bundles (V&,D?) := TNIL(V,D?, N) and (V2 DO2) .=
TNIL(V©® DO2 N©) on (C*)" x Y. They are equipped with the induced pair-
ings S and S By the result in Subsection (VO DOA S0)) 5 a variation
of polarized pure twistor structure on P* x X*(1). Let h(®) be the corresponding
pluri-harmonic metric.

We take a C*°-isomorphism ® : V(®© — V as in Lemma i.e., it satisfies
(i) ®o Ni(o) =N;o®fori=1,...,n, (ii) ® preserves the weight filtration W, and
Gr" @ is the identity of Gr™ (V) = G+ (V). By the property (i) of ® and the
construction of V2 and V(O% we obtain a naturally induced C*°-isomorphism
P YOS ps,

Let EVA’PI denote the P'-holomorphic structure of V2. We use the symbol
Oy a p1 in a similar meaning. We obtain the following C*-section of End(VO%)®
Q%’ll on P x X*(1):

F = 0pwa pr — O (Dya p1).

We also obtain the following C'°°-morphism:
G =80 — S : V02 ¢ o PO24 _ T(0).

We fix a Kihler metric g on P!. Although the following proposition may look
only auxiliary, it means that (V@2 D% SO)) approximates (V&, D%, S) via ®
around P! x {0} x Y. We will prove it in Subsection [4.2.1]

Proposition 4.1. For any P € Y, there exist a positive constant Rp > 0 and
a neighbourhood Up of P in'Y such that the following estimates hold on P! x
{(z1,-.-,20) | 0 < ‘Zj| < Rp} x Up:

n

Fluo g = 0 (D (= log|z)1/2),

=1
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-

Gluor = O (~Tog |2 7/2).

<
Il
—

-

[Bywrs p1Gluo,g = O3 (~log|z1) /).

<
I
—

4.1.3. Estimate of the new supersymmetric index. Assume (V, ]D)ﬁ,N,S)
is enriched to integrable (V, ﬁ)‘%,N, S). By taking Gr with respect to the weight
filtration, we obtain a polarized mixed integrable twistor structure of split type
(VO ]DS))A, NO S()). According to Corollary we have the associated nilpo-
tent orbits:

(V,D%,8) = TNIL(V, Dy, N, S) i x+(R)»
V@, D@4 sy = TNIL(V @, DV N© SO 51 v ).

Let Q and h (resp. Q) and h(o)) denote the new supersymmetric index and the
pluri-harmonic metric of (V,D%,8) (resp. (V(©, D@4 S©)). We will prove the
following proposition in Subsection [4.2.2

Proposition 4.2. Let : VO SV peaC™® -isomorphism constructed in Subsec-
tion [f.1.2] For any P € Y, there exist R > 0 and a neighbourhood Up of P in'Y
such that the following estimates hold with respect to h(® on P! x {(z1,...,2,) |
0 < |zj| < R} x Up:

n

> h — O = O(Z(—log \zi|)*1/2), Q-0 = O(i(—log |zi|)*1/2>.

i=1 i=1
In particular, the eigenvalues of Qiq-1(y) are constant up to O(>_(—log|z])~°) for

some § > 0, where q : X*(1) — Y denotes the natural projection.

84.2. Proofs

4.2.1. Proof of Proposition Let C > 0. Fix P € Y. In the following, we
will shrink Y instead of taking a neighbourhood Up, for simplicity of description.
We set

Z2(0) = {(z1, ..., 22) € (C)" | || < |ziga] < 1,i=1,...,n— 1} x V.

It is easy to observe that we only have to estimate F', G and 5};(0)A7P1G on
P! x Z(C). For m = 1,...,n, we put NO(m) := >, Ni(o). Let W(m) de-
note the weight filtration of V() induced by N (m). Recall that the filtrations
W(1),...,W(n) are compatible (Lemma 3.116 of [22]).
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We take a compact region U C C, such that the union of the interior parts
of U and o(U) covers PL. Let v = (v;) be a frame of V\é{ y compatible with
W(@@),...,W(n). For m=1,...,n, we set

Fm (Vi) 1= % deg™ ™ (v;).
We formally put kq(v;) = 0.
Lemma 4.1. Let A be the matriz-valued (0,1)-form determined by
—Fv= (2" 00ya m®v=v-A
Then A;; = 0 unless ky(v;) < knm(vj) (m=1,...,n—1) and k,(v;) < ky(vj).

Proof. By construction, ® preserves the filtrations W(m) (m = 1,...,n), and
GV @ ig holomorphic. Hence, the claim follows immediately. O

Let go : Cy x X*(1) — Cy x Y be the projection. Recall Vl(tgléX*(l) = q;Vo.
Let v; be the section of V‘(L(;LAx*(l) induced by v;, and put

=T [ (~log|zg])m (2a)Hom1(3)

33
LI

—log |zm41|

—1 —km (vj)
_ H< 0g|2 ‘ > (_10g|zn|)*/€n(vj).

Due to the norm estimate for tame harmonic bundles (Theorem 13.25 of [22]), the
C*>-frame v’ = (v}) is adapted to the metric R on Z(C), i.e., the hermitian

matrix-valued functions H = (h(vj,v})) and H~! are bounded on Z(C). Let A’

be the matrix-valued function determined by —Fv’ = v’ - A’. Then we have

k),n Vi k:m Vj
= Ay H( e ) T g0t
log |z 1]

Hence, we obtain A}, = O((—1log|z,|)~1/?). This implies the desired estimate
for F on U x Z(C). Similarly, we obtain the estimate on o(U) x Z(C), and thus
on P! x Z(C).

Let w be a frame of V|, /) xy+ compatible with the filtrations W (1), ..., W(n).
Form=1,...,n, we set

1 m
ko (w;) 1= 3 deg"" ™ (w;).

We formally put ko(w;) = 0. We set G := S —d*S: VO @ ¢*V(© — T(0).
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Lemma 4.2. Go(v;,0%*w;) = 0 unless
Em(vi) + km(w;) >0 (m=1,...,n—=1), ky(v;) + kn(w;) > 0.
Proof. By the relation S(NV; ® id) + S(id ® o*(N;)) = 0, we have
S(Wy(m) © "W, (m)) = 0

unless p + ¢ > 0. We have similar vanishings for S(°). Note that ® preserves the
filtrations W (m) for m = 1,...,n, and G ™ @ is compatible with S and S(©).
Thus, we obtain the claim. O

A
€ x X* (1)

+ induced by wj;, and put

Let goo : C, x X*(1)T — C, x YT be the projection. Recall p

q% Voo Let w; be the section of V\a(u)xx*(l)

—km (w;
_ H —log |Zm| ( )(_ log | —kn (w;)
=W g |znl) .

—log |Zm+1|

Note that

G(vj, 0" w}) = Go(vi, 0" wy)

" H( —log |zm|

_kn(vi)_kn(vj).
log [z 41|

—kom (Ui)*km (wj)
) (—log |2a)

Hence, we obtain |G|, = O((—log|2,|)~'/2). Similarly, we obtain the estimate
for |5v(0),p>1 G|. Thus, the proof of Proposition and hence that of Theorem
is finished.

4.2.2. Proof of Proposition We have the decompositions DA = Dﬁ) +Va
and DO2 = ]D)E,Oo)A + VE\O). By an argument used in the proof of Proposition
we can obtain the following estimate with respect to h(®):

n

v, — v = O(Z(— log |zi|)_1/2).

i=1

Thus, Proposition [4.2] follows from Lemma [2.9) and Proposition [£.1] O

85. Families of meromorphic A-flat bundles

We will review some results on families of meromorphic A-flat bundles mainly
described in Sections 3 and 4 of [23]. See also [20] and [24] for earlier work on
asymptotic analysis of meromorphic flat bundles.
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85.1. Good lattice on a level
5.1.1. Preliminaries

Good set of irregular values on the level m. Let A’ denote the /-dimen-
sional multi-disc {(z1,...,2¢) | |z| <1,i=1,...,£}. Put X := A’ x Y for some
complex manifold Y. Let D; := {z; =0} and D := Ule D; be hypersurfaces in X.
Let M(X, D) (resp. H(X)) denote the space of meromorphic (resp. holomorphic)
functions on X whose poles are contained in D. For m = (my,...,my) € Z¢, we
put z™ := Hle Z

Let m € Z%, \ {0}. A finite set of meromorphic functions
I={a=a,z"}C M(X,D)

is called a good set of irreqular values on (X, D) on the level m if the following
holds:

e a,, are holomorphic functions on X.

® a,, —b,, are nowhere vanishing holomorphic functions on X for any two distinct
a,bel.

Let i(0) be the integer such that m;py < 0. If moreover the following condition
holds, 7 is called a good set of irreqular values on (X, D) on the level (m,i(0)):

e a,, are independent of the variable z;() for any a € 7.

Remark 12. The first condition is not essential. If we do not impose it, the third
condition should be replaced with: a,;, — by, are independent of z;q) for any
a,bel.

Multi-sectors and orders on good sets of irregular values on the level m.
Let Y, X, D; and D be as above. Let K be a region of Cy or a point in C}. (For
Definition we may admit I = {0}. Since we do not have to consider Stokes
structure in this case, we exclude it in the following.) The product K x X is
denoted by X. We use the symbols such as ) and D in similar meanings. We put
W := DU ({0} x X) in the case 0 € K, and W := D otherwise. Let 7 : X (W) — X
denote the real blow up of X along W, which means in this paper the fiber product
of the real blow up X(D;) (i = 1,...,¢) and X ({0} x X) over X.

In this paper, a sector of a punctured disc A* means a subset of the form
{z]0< |z| <R, 6y <arg(z) <6} for some 0y < 6;. We do not consider sectors
whose angles are larger than 27 in this paper.
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By a multi-sector of X — W, we mean a subset of the form

L 14
Ux[][SixV or Sxx][][8ixV.
=1

i=1
where

e U denotes a compact region in K. (If K is a point, U = K.)

e S, denotes a sector of X — {0}. (If 0 ¢ K, we do not consider subsets of the
second type.)

e S; denote sectors of A7 .

e V denotes a compact region in Y.

For a multi-sector S, let S denote the closure of S in X (W).

Notation. Let MS(X —W) denote the set of multi-sectors in X'(W). For any point
P e X(W), let MS(P,X — W) denote the set of multi-sectors S such that P is
contained in the interior part of S.

Let Z be a good set of irregular values on (X,D) on the level m. We put
Fup := —Re(A"(a — b))|]A2~™| for any distinct a,b € Z. They determine C>°-

functions on X (W).

Notation. Let A be any subset of X(W). We write a <4 b for (a,b) € Z2 if
Foup(Q) <0 for any Q € A. We write a <4 b for (a,b) € Z? if either a <4 b or
a = b. The relation <4 gives a partial order on Z.

We use the symbol <p in the case A = {P}. For a multi-sector S, we prefer
the symbol <g to <g. We also use Sg and §f‘3 when we emphasize the twist
by A~

For any point P € 7—1(W), there exists Sp € MS(P, X — W) such that the
relations <p and <g, coincide. Let MS(P, X — W, T) denote the set of such Sp.
(The definition of MS(P,X — W,T) is slightly different from that in [23].)

5.1.2. Good lattice on the level m. Let Y be a complex manifold with a
simple normal crossing divisor D}. Let X := A* x Y, D,;, := {z = 0} and
D, = Ule D, ;. We also put Dy := AF x Dy and D := D, U Dy. Let K be
a point of C§ or a compact region in Cy. We put X := K x X. We use the
symbols Y, D,, D in similar meanings. Let p) denote the projection forgetting
the K-component. The completion of X along D, is denoted by D,. (See [1], [2]
and [19] for completion of complex analytic spaces.) We use the symbol D in a
similar meaning. Let dx denote the restriction of the exterior derivative to the
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X-direction. (It will also be denoted just by d frequently, if there is no risk of
confusion.)

Let E be a locally free Ox-module with a family of meromorphic flat A-
connections D : E — E®@p;Q% (xD). Let m € Z ) and i(0) € k== {1,...,k}. We
put m(1) :=m + 6.

Definition 5.1. We say that (F,D) is an unramifiedly good lattice of a family
of meromorphic A-flat bundles on the level (m,i(0)) if there exists a good set of
irregular values Z on the level (m,i(0)) on (X,D,), and a decomposition

(5.1) (E,D)5. = EP(Fa;Da)
ac€l
with ord(Dg —dxa) > m(1) in the sense (Dg—dxa)E, C 2™V E,@pi 0k (log D).
The decomposition (5.1) is called the irregular decomposition on the level

(m,i(0)) (or simply m). We also often say that (F,D) is a good lattice on the
level (m,i(0)) for simplicity.

Remark. Asremarked in Remark 2.6.4 of [23], the definition of the order is slightly
different from that in [23]. The difference is not essential for our purpose.

If0 € K, we put X0 := {0} x X and DY := {0} x D,. By shrinking X, we obtain
the decomposition (E,D)jxo = @yez(Fa x0, DY) whose completion along DY is
equal to the one induced by . It uniquely extends to the D-flat decomposition
on the completion X° of X along X°:

(E7D)|;?0 = @(Ea’;?m]])a)
acl
We put W := XU D,. Let W denote the completion along W. We obtain the
decomposition

(5.2) (E,D) 5 = B (E, 7 Da).

a€l
The decomposition is also called the irregular decomposition on the level
(m,i(0)) in the case 0 € K.

In the following, we formally set W := D, if 0 ¢ K. Let © : X(W) — X
denote the real blow up of X along W. Let O. be the origin of A¥ and put
3 = 7'(0. x ¥). We consider the case that Y = A} and Dy := U;}‘.:l De ;,
where D¢ ; := {¢; = 0}. The restriction of D to the A¥-direction is denoted by D,.

Stokes structure on the level m. For any multi-sector S in X —W, let S denote
the closure of S in X(W), and let Z denote SN 7~1(W). Let Z denote the com-
pletion of X (W) along Z. (See [24] or Subsection 3.1.2 of [23].) The decomposition
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1) on W induces the decomposition on 7

(5.3) (EaD)|Z = @(Eaa]ﬁ)u)|2'
ac€Z

We put F7 = @y« ., Eb\Z’ and then we obtain the filtration 77 of E 5 indexed
by (Z,<g). We can show the following proposition. (See Subsection 3.6.1 of [23].)

Proposition 5.1. For any point P € 3, there exists S € MS(P,X —W,I) such
that:

o There exists a unique D-flat filtration F° of EI§ indexed by (Z,<g) such that
_7-"52 = FZ. Moreover, if a D,-flat filtration F'S of Eg indezed by (Z,<s)
satisfies }"’ZS = FZ, then F'S = F5.

o There exists a D, -flat splitting of F° on S. Note that if we take such a splitting,
the restriction to Z is the same as lb

We call F° the Stokes filtration of (E,D) on the level m. O

Notation. For any P € 3,let MS*(P, X —W,T) be theset of S € MS(P, X —-W,T)
as in Proposition Let MS*(X — W, T) denote the union of MS*(P,X — W, TI)
for P € 3.

The following lemma is clear.

Lemma 5.1. Let 5,58 € MS(P,X — W,TI). Assume that (i) 8" C S, (ii)) S €
MS*(P,X — W,I). Then S' € MS*(P,X — W,T). The filtration F5  is the re-
striction of F3. O

Remark. We can obtain the Stokes filtration on bigger sectors as in Subsection
4.1.2 of [23].

Compatibility of Stokes filtrations. Let S, 5" € MS*(X —W,Z) be such that
S’ C S. The natural map (Z,<g) — (Z,<g) is order-preserving. We can easily
show the following lemma by using Proposition (See Subsection 3.6.2 of [23].)

Lemma 5.2. The filtrations F° and FS" are compatible with respect to (Z,<g)
— (Z,<g) in the following sense:

o 7Y (Ejg) = }—gla(E\E’) +]:aS(E\§)\§"

a
e The induced morphisms Grfs (Eis)|sr — Grfs (E‘S/) are isomorphisms.
In particular, ‘FS(E@)I?’ = .TS,(ES/) if (Z,<s) — (Z,<s') is an isomorphism.
O
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Splitting with nice properties. We have the induced morphisms Res;(D) :
Ep,, — zm (1) Eip,, for j=1,...,L Since F*5 is D-flat, the restriction ]—"‘D is
preserved by Res; (D ) If we fix the coordinate, we have the induced family of flat
A-connections on Ep, ., which is denoted by iD. It also preserves the filtration
]:ISDc,j' Let /F (j = 1,...,{) be filtrations of Ejp_, which are preserved by the
endomorphism Res;(D) and the flat connection /D on Ejp, . We can show the
following (Subsection 3.6.3 of [23]).

Proposition 5.2. Let P € 3. There exist S € MS*(P,X — W,Z) and a D,-
flat splitting of the filtration F° whose restriction to S N D ; is compatible with
Res; (D) and the filtrations 'F for j =1,...,L. O

Under some more assumption, we can take a D-flat splitting. (See Subsection
3.6.3 of [23].)

Proposition 5.3. Assume that K is a point or a compact region in C3. Assume
that the eigenvalues a, 8 of Resj(ID)f)|D].X{)\} satisfy o — 8 & Z — {0} for any
j=1,....0 and for any X\ € K. Then we have a D-flat splitting of F° whose
restriction to D¢ ; is compatible with F for each j =1,... (. O

Some functoriality of Stokes filtrations. We describe functoriality of Stokes
filtrations. See Subsection 3.6.4 of [23] for more details.

In general, when we are given vector spaces U C V, let U+ denote the sub-
space of the dual VV given by U+ = {f € VV | f(U) = 0}. This is naturally
generalized for vector bundles. Let (E,D,7) be an unramifiedly good lattice of a
family of meromorphic A-flat bundles on the level (m,i(0)) on (X,D,), and let
S € MS*(X — W,I). We have the following for any a € ZV := {-b | b € I}:

sy = (Y FE)

ccl
cts—a

Let (E,, Dy, Z,) (p = 1,2) be good lattices of families of meromorphic A-flat
bundles on the level (m,i(0)). We assume that 7y ® Zy := {a; +az |a, € Z,} is a
good set of irregular values on the level (m,i(0)). Let S € (,_; , MS* (X =W, I,).
For each a € 77 ® 7o we have

Fi (B ® Es)iz) = Z Eys ®fi(E2|§)-
ai+ax<ga
Assume that 71 ® I := 77 UZs is a good set of irregular values on the level

(m,i(0)). Let S € (,_; o, MS™(X — W,I,). For each a € T; & I, we have
F(Er @ Ba)jg) = F3 (Byj5) & 73 (Byyg)-
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Let F : (F1,D1) — (E2,D3) be a flat morphism. For simplicity, we assume
that 73 UZ; is a good set of irregular values on the level (m,(0)).

Lemma 5.3. Let S € (), , MS™(X — W, I,,). The restriction Iz preserves the
Stokes filtrations. As a result, we obtain the following.

o [f the restriction of F' to X —D is an isomorphism, then T; = Iy and ff(E”S\D)
= T2 (Eys\p)-

e In particular, the Stokes filtration F° depends only on the family of meromorphic
A-flat bundles (E(xD), D) in the sense that it is independent of the choice of an
unramifiedly good lattice E C E(xD) on the level (m,i(0)). O

The associated graded bundle on the level m. For each S € MS*(X—-W,I)
and each a € Z, we obtain the bundle Gry*(E5) on S associated to the Stokes
filtration F° on the level m. By varying S and gluing Gry*(Eg), we obtain the

bundle GTT(E\T;(W)) on V(W) with the induced family of flat A-connections D,

where V denotes some neighbourhood of O, x ), and ]N/(W) denotes the real blow
up of V along W N V. It is known that we have the descent of Grgn(E‘g(W)) to V,
i.e., there exists a locally free sheaf Gr7*(E) on V with a family of meromorphic
flat A-connections D, such that

T HGIT(E), Do) = (Gry* (Bjppy)s Do)y (Gr7*(E), Da) Eq,Dy)

Wy = ( [Wny*

(See Subsection 3.6.5 of [23].) If we set D, := D, — dxa, we have D, E, C z™1) .
Eq @ p3Q (log D).

Let us give some statements on functoriality. See Subsections 3.6.5 of [23] for
more details.

By taking Gr of the Stokes filtrations of (£, DY, Z"), we obtain the associated
graded bundle Gr™(EY) = @ c7v Gry*(EY). We have a natural flat isomorphism
(5.4) GrM(EY) ~ Gr™

—a

(E)".

Actually, by construction, we have such an isomorphism on the real blow up, which
induces (|5.4)).

Let (E,, Dy, Z,) (p = 1,2) be unramifiedly good lattices of families of mero-
morphic A-flat bundles on the level (m,i(0)). Assume 77 ® Z is a good set of
irregular values on the level (m,i(0)). We have the following natural isomorphism
for each a € 77 ® Zs:

(5.5) G B2 B)~ P Gii(E) @G (E).

((11,[12)611 XZo
a;+daz=a
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Assume 7y @ T, is a good set of irregular values on the level (m,i(0)). For each
a € I, & Iy, we obviously have

Gr™(Ey @ Ey) ~ Gr™(E1) & Gr™(Ey).

Lemma 5.4. Let F: (E1,D1) — (E2,D2) be a flat morphism. Assume Iy &Iy is
a good set of irreqular values on the level (m,i(0)). We have the naturally induced
morphism Gry"(F) : Gry*(E1) — Gry*(E2). If the restriction Ey\x_p — Eox—p
is an 1somorphism, so is the induced morphism

Gr™(Ey) ® O(+D) — Gr™(Es) ® O(+D).

Hence, the associated meromorphic flat bundles (Gr7*(E) ® O(xD),Dy) are well
defined for the meromorphic flat bundle (E(xD),D). O

A characterization of sections of E. Let w, be a frame of Grj*(E). Let
S € MS*(X —W,I), and let E|§ = P Eq s be a D,-flat splitting of the Stokes
filtration F°. By the natural isomorphism E,s ~ Gr;”(E)lg, we take a lift w, g
of wg. Thus, we obtain a frame wg = (wq,g) of Elg. The following proposition is
clear; it implies a characterization of sections of E by growth order with respect
to the frames wg (S € MS*(X — W,1)).

Proposition 5.4. Let v be a frame of E, and let Gg be determined by v|s =
wg - Gg. Then Gg and Ggl are bounded on S. O

Complement on the induced flat connection along the A-direction. As-
sume that we are given a connection along the A-direction V : E — E ® Qi (xW)
such that D/ + V, is a meromorphic flat connection on E.

Lemma 5.5. The Stokes filtrations are flat with respect to V., and we have the
induced meromorphic flat connection Vy along the A-direction on Gry'(E).

Proof. Take N such that ANV \(0\)E C E ® Ox(xD). Let wg = (wgy5) be a
frame of EI§ as above. Let A be the matrix-valued holomorphic function on S
determined by AVV(9))ws = wg - A. We have the decomposition into blocks
A = (Aqp) determined by ANV(0))wp s = wa, s - Aa,p. By using Proposition
we can show that Aqp are of polynomial order.

Let B, be the matrix-valued meromorphic one-forms determined by

Dq wq = wq - (da+ By).

Note that z2=™") B, is logarithmic. By the commutativity [Df, V] = 0, we obtain
the following relation for a # b:

(56) - dzAa,b + (dZ<Cl — b)) 'Aa)b + (Aa,bBb — BaAa,b) =0.
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By applying the results in Subsection 20.3 of [23] to (5.6, we obtain A = 0
unless a <g b, which implies the first claim. Since A4 4 is of polynomial order, the
induced connection along the A-direction is meromorphic. O

Prolongment of morphisms. Let (E,,D,,Z,) (p = 1,2) be good lattices on
the level (m,i(0)). Assume that Z; U Zy is a good set of irregular values on the
level (m,i(0)). Assume that we are given a flat morphism F : (E1,D1)jx—p, —
(E2,D2)x—p, with the following properties:

e For each small sector S € MS(X — D,, 77 U Iy), the Stokes filtrations are
preserved by Fis.

e The induced maps Grg"(F) : Gry*(E1)jx—p, — Gry'(E2)x_p, extend to
Gr*(E1) — Gri*(Es) for any a € 73 U Z,.

Lemma 5.6. F extends to a morphism E; — Fs.

Proof. Let wp s = (Wp,a,5) be frames of £,z as above. Let A = (Aq) be deter-
mined by F(wi g) = wa g A. By assumption, Aqp = 0 unless a <g b, and Aq 4 is
bounded. By applying an argument in the proof of Lemma to Aqp for a <g b,
and by shrinking X, we obtain A,p = O(exp(—€[]A™12™])) on SN (X — D,) for
some € > 0. Then the claim follows from Proposition [5.4 O

5.1.3. Pseudo-good lattice on the level m. Let Y be a complex manifold.
Let X :== A* xY, D,; :={z =0} and D := Ule D, ;. (We consider only the
case Dy = (), for simplicity.) Let FE be a locally free Ox-module. For simplicity,
we consider a meromorphic flat connection V : E — E @ Q% (xD) instead of a
family of meromorphic flat A-connections. Let m € Z%, and i(0) € k. We put
m(l) =m + 61(0)

Definition 5.2. We say that (E, V) is an unramifiedly pseudo-good lattice on the
level (m,4(0)) if there exists an unramifiedly good lattice E' D E of (E(xD), V)
with the irregular decomposition (E’, V)|5 =@, . (E:, V) on the level (m,i(0))

such that
(5.7) Ep=EPENEp).
aez
The decomposition (5.7)) is called the irregular decomposition of (E,D) on the level
(m,i(0)).
It is easy to observe that Ea = E"l N E| 5 in 1} is independent of the choice
of a good lattice E’ D E on the level m. We have straightforward generalizations

of the results in Subsection We naturally identify X with {1} x X C Cy x X
when we consider the order <g for a multi-sector S C X — D.

acl
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Construction of Gr. We take an unramifiedly good lattice E’ D F on the level
(m,i(0)). By shrinking X around O, x Y, we have the vector bundle Gr7*(E’) on
X with a meromorphic flat connection V, for each a € Z. Recall that we have the
natural isomorphism Grg*(E’) 5 =~ E!. Hence, we have the sublattice of Gr™(E")

corresponding to E, C Eu, which is denoted by Gr*(E). It is equipped with a
meromorphic flat connection V4. By construction, we have the isomorphism

(5.5) (G (E), Va) = (Eay Ta).

Lemma 5.7. Let (E;,V;) (i = 1,2) be pseudo-good lattices on the level (m,i(0)).

Let F : (E1,V4) — (E3,V2) be a flat morphism. Assume I1 @ I is a good set of
irregular values on the level (m,i(0)). We have the naturally induced morphism

GET(F) : G (By) — G (E).

Proof. We can take good lattices (E!, V;) on the level (m,i(0)) such that F; C
E! and F(FE}) C Ej. By Lemma we have the induced morphism Gry*(F) :
Gr*(E}) — Gr*(EY). By considering the completion, it is easy to observe that a
morphism Gry*(E;) — Gry*(Es) is induced. O

Flat splitting and Stokes filtration. Let 7 : X(D) — X be the real blow
up. Let S € MS*(X — D,T). Let S denote the closure of S in X (D), and let Z
denote SN7~!(D). We have the Stokes filtration F* of E’_, and we can take a flat

EX
splitting E‘ = £, 5 such that E'

5 = ﬂ_l(Eé). Because E|x_p = E it
induces a flat decomposition of Ejg.

/
S|Z |X-D>
Lemma 5.8. The above decomposition extends to a decomposition E|§ =@E.s

such that E 5 > = T 1(E,).

Proof. Let w, and w!, be frames of Gr7*(E) and Gr7*(E’). Let G4 be determined
by wy = w/, - Gy. They induce frames w, and @), of E, and E’, respectively.
By the isomorphism Ej ¢ ~ Grg*(E )‘g, we obtain frames wj, g of E} g. Then

Wq,g = me G, gives a tuple of sections of E"LS, and we can observe that

Wz = 71 (w,). Let E4s be generated by w,s; thus we obtain the desired

decomposition £ = P Eq g. O
Let wg = (wgy,s) be as above. Let v be a frame of E on X. Let Gg be

determined by v|s = ws - Gs. Both vz and Wg 7 give the frame of E‘Z, and we

obtain the following.

Proposition 5.5. Gg and G;l are bounded on S. O

Proposition 5.6. The flat subbundles ]-"f(E‘g) = ®b<saEbaS are independent

of the choice of a flat decomposition EI§ = @®,.c7 Fa.s such that Fu 512 = 7T_1Ea.

acl
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Proof. Let El§ = Dacr Ea,S be another flat decomposition such that Ea,s|2 =

W’lﬁ We take a frame w, g of Eu,S such that w_ sz = wy. We set w), :=

W, - G,'. Then W’ gz = 7T71’l/1\)/ Let E/ be generated by w). Then we obtain a
flat decomposition E =& E «» Which has to be a splitting of the Stokes filtration
Fo (EI/E) Because Ea\s = u‘s, the filtration is well defined. O

Thus, we obtain the filtration F° of Elg, which is called the Stokes filtration.

Lemma 5.9. We have a natural isomorphism Grfs (Ejg) ~ Gra(E)5

Proof. We use the notation in the proof of Lemma [5.8 By the comparison of w,
and w, g, we obtain By g =~ Grq(F )‘S. By the construction of the Stokes filtration,

we have a natural isomorphism Grfs (Elg) ~ E, s. Thus, the claim is clear. O

5.14. A comparlson Let Y be a complex manifold. Let X := A¥ x Y, DZ i =
{zi =0} and D := UZ 1 D Let K be a compact region in n C, . We set X =
K x X. We use the symbol D in a similar meaning. We set W := D U ({0} x X).

Let T C M(X, D) be a good set of irregular values on the level (m,i(0)). We
set m:= (m,—1) € Z’i‘gl. We put a := zk_ila for a € Z, and we set

IT:={a|acI}cMX,W).

This is a good set of irregular values on the level (m,i(0)).

Let F be a holomorphlc vector bundle on X with a meromorphic flat connec-
tionV:E — E® Q;?(*W) such that (E, V) is an unramifiedly good lattice on
the level (m2,i(0)) on (X, W) with the irregular decomposition
(5.9) (£, V)@ = P(Es Va).

ael

Applying the general theory of Subsection [5.1.3] we obtain a holomorphic vector
bundle Grg* (~) on X with the induced meromorphic flat connection V; for each
ael

By setting A = 211, we obtain the isomorphism C, ., ~ C,. Let K C C, be
the image of K. We put X := K x X and we use the symbol D in a similar meaning.
We set W := DU({0} x X). We have the natural isomorphism ¢ : (X, D) — (X, D).
The pull back of E is denoted by E. Let Df denote the restriction of t*V to the
X-direction. We set I := X - D/. Note the following:

e D(E) C E ® piQ%(xD), i.e., D gives a family of meromorphic A-connections
on F.
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e (E,D) is a good lattice on the level (m,i(0)) on (X,W), and (5.9) naturally

induces the irregular decomposition of (E, D)|W'

By applying the general theory explained in Subsection for each a € Z, we
obtain Gr7*(E,D).

Let S be a small sector in X — . We have the Stokes filtration F° of E‘g
on the level m indexed by (Z, <gz) (Proposition . For S := +71(S), we have
the Stokes filtration F* of Ej5 on the level m indexed by (Z, <g). We remark the
following.

Lemma 5.10. Under the natural identification 7= Z, the orders <g and <g are

the same. Under the natural isomorphism E ~ L*E, the filtrations F° and FS are
the same.

Proof. For the order <z, we use the identification X = {1} x X € Cy x X.

_S7 e
Thus, the first claim is clear. Note that both (*F° and F*° satisfy the condition
in Proposition Hence, they are the same. O

Corollary 5.1. We have a natural isomorphism ¢* Gr%ﬁ(E) ~ Gri*(E), and Dy,
is induced by 1*Vg via the above procedure.

Proof. Lemma , yields the isomorphism j : ¢* Gr?(E)‘X,W ~ Gry*(E)|jx—w,
on which Dy is induced by V, via the above procedure. Since j extends on X (W),
it extends on X. O

5.1.5. Stokes filtration of the associated flat bundle on the real blow
up. We use the setting in Subsection Let Z ¢ M(X,D) be a good set of
irregular values on the level (m,i(0)). Let E be a holomorphic vector bundle on X
with a meromorphic flat connection V : E — E @ Q% (D) such that (E,V) is a
pseudo-good lattice on the level (m,i(0)). (In other words, we consider a family of
meromorphic A-flat bundles on {1} x (X, D).) Let 7 : X(D) — X be a real blow
up of X along D. The flat bundle F|y_p naturally extends to a flat bundle U on
X(D).

We set 3 := 71O, x Y). For each P € 3, we take a small sector S €
MS(P, X — D, T) on which we have the Stokes filtration F* of E|g. The filtration
naturally extends to a flat filtration of Q]|§. By restricting it to the fiber Up, we
obtain a filtration F¥ indexed by (Z,<p). It is easy to observe that F¥ is well
defined.

If Q € 7= 1(3) is sufficiently close to P, the map (Z,<p) — (Z, <) preserves
the orders, and the filtrations F¥ and F© are compatible under the identification
V| p =~ Y| given by the parallel transport in Sp. In particular, we have F¥ = F@
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if <p = <. We have the functoriality of the filtrations F P for dual, tensor product
and direct sum as in the case of . We also have the functoriality for morphisms
as follows.

Lemma 5.11. Let F : (E1,V1) — (E2,Va2) be a flat morphism. For simplicity,
assume that Iy U Zy is a good set of irreqular values on the level (m,i(0)). The
induced morphism Fip : Uy p — Uy p preserves the Stokes filtrations Fr. ]

Remark 13. We considered two vector bundles on X (D). One is 7—1(E) and the
other is 2U. We should emphasize that they are different in general. The bundle U
depends only on the flat bundle (E, V)| x_p, and 7~ Y(E) depends on the prolong-
ment (E,V).

Let us look at the simplest example E = O - e with V(e) = e - d(z71).
A trivialization of 7=1(E) is given by m~1(e). A trivialization of U is induced by
exp(—z71) -e.

85.2. Unramifiedly good lattices of a family of
meromorphic A\-flat bundles

5.2.1. Preliminaries

Good set of irregular values. We use the partial order <z» on Z" given by

a <zn b a; <b; (Vi). We write a <z» b if a; < b; for any 4, and a <z~ b
PRI

if @ <z» b and a # b. Let §; denote the element (0,...,0,1,0,...,0), and let 0

denote the zero in Z™. We also use 0,, when we wish to indicate the dependence

on n. For a positive integer ¢, we put £:={1,...,(}.

Let Y be a complex manifold. Put X := A* x Y. Let D; := {z; = 0} x Y
and D := Ule D; be the hypersurfaces of X. We also put Dy, = ﬂle D;, which
is naturally identified with Y.

For any f € M(X, D), we have the Laurent expansion

f = Z fm(y)zm'
meZt
Here f,, are holomorphic functions on D,. We often use the following identification
implicitly:
(5.10) M(X,D)/z"H(X):{fEM(X,D)|fm:0,Vm2n}.

For any f € M(X, D), let ord(f) denote the minimum of the set {m € Z* |
fm # 0} U {0} with respect to <z, if it exists. It is always contained in Zegm if it
exists.
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For any a € M(X,D)/H(X), we take any lift a to M(X, D), and we set
ord(a) := ord(a) if the right hand side exists. If ord(a) exists in Zzgo \ {0}, dord(a)
is independent of the choice of a lift @, and is denoted by aged(a)-

Definition 5.3. A finite subset Z C M (X, D)/H(X) is called a good set of irreg-

ular values on (X, D) if the following conditions are satisfied:

e ord(a) exists for each a € Z, and a,q(q) is nowhere vanishing on D, for a # 0.

e For any two distinct a,b € Z, ord(a — b) exists in Zéo \ {0}, and (a — b)ora(a—s)
is nowhere vanishing on D,.

e The set 7(Z) := {ord(a — b) | a,b € T} is totally ordered with respect to the
partial order on Z°.

The condition in Definition[5.3]does not depend on the choice of a holomorphic
coordinate such that D = Ule{zi = 0}.

Remark 14. The third condition in Definition is stronger than that in [24]. It
is a little more convenient for our inductive argument. However, it is not essential,
because such conditions can be satisfied after birational transformation, once we

have decompositions as in ((5.12)).

We will use the following lemma implicitly.

Lemma 5.12. The set {ord(a) | a € I} is totally ordered. In particular, the
minImum

m(0) := min{ord(a) |a € T}
exists. Moreover, m(0) <z m for any m € T(I).
Proof. Let a,b € Z. Assume ord(a) € ord(b) and ord(a) # ord(b). Then ord(a—b)
does not exist, which contradicts the second condition of Definition [5.3] Hence, we

obtain the first claim of the lemma. For any m € 7(Z), there exists a € Z such
that a,,, # 0. Hence, m(0) <z m. O

Remark 15. Tt is often convenient to use a coordinate such that 7(Z)U{m(0)} C
Z .

[Tizo Z%g x 0p—i.

Auxiliary sequence. Let Z be a good set of irregular values on (X, D). Since

the set 7(Z) is totally ordered by <z, we can take a sequence

M = (m(0),m(1),...,m(L),m(L+1)) C Zzgo
with the following property:

e T(I) c M and m(L+ 1) = 0y.
e We have 1 < b(i) < £ such that m(i 4 1) = m(i) + &y ;) for each i < L.
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Such a sequence is called an auziliary sequence for Z. It is not uniquely determined
by Z. It is convenient for an inductive argument.

Truncation. Let Z be a good set of irregular values. We take an auxiliary se-
quence for Z, and let 7y, (o) : Z — M (X, D)/H(X) be given as follows:

Moy () == Z anz"

Its image is a good set of irregular values on the level (m(0),4(0)). More generally,
Thm(j) 1s defined as follows:

ﬁm(])(a) = Z anz".

nZm(j+1)

We have 7,y (@) = a. We set (m(0)(@) := Moy (@) and Cm()(a) = Ty () (@)
= Mm(j—1)(@) for j = 1,...,L. Then we have the decomposition 7, (a) =

ngi Cm(j)(a>'
Let Z(m(i)) denote the image of 7,,,(;) : Z — M (X, D)/H(X).

Lemma 5.13. If we shrink X appropriately, Z(m(0)) is a good set of irreqular
values on the level (m(0),5(0)).

Proof. 1f N 0y(a — b) # 0 for a,b € Z, then we have ord(a — b) = m(0) and
(z_m(o)ﬁm(o)(a —b))|p, is nowhere vanishing, so z=™(® Tim(0) (@ — b) is nowhere
vanishing on X provided X is shrinked appropriately. Similarly, (z_m(o)ﬁm(o) (a))
may be nowhere vanishing on X provided X is shrinked appropriately. O

We can use the following lemma for inductive arguments.

Lemma 5.14. For any b € Z(m(0)), fizx any element a0 € ﬁ:nl(o)(b). Then the
set

{a—al? | N0y (a) = b}
18 also a good set of irreqular values. O
Example. We give some examples. Set
a® = 21_122_1, a® .= Zl_l, a® .= 0.

An auxiliary sequence is unique in this case, and given as follows:

(5.11)  m(0) = (=1,—1), h(0) =2, m(1)=(=1,0), h(1) =1, m(2) = (0,0).
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The truncations are given as follows:

ﬁm(o)(a(l)) =a®, ﬁm(o)(a@)) =0, ﬁm(o)(a@)) =0,
ﬁm(l) (a(l)) = a(l)a ﬁm(l)(a@)) = Cl(2), ﬁm(l)(a(?))) = Cl(3).

The image of Z via 7,,, (o is {a™), 0}.
Let us consider the set which consists of the following:

bW =27t fazy P4 b2y, 6P =27t
An auxiliary sequence is given by (5.11). The truncation is given as follows:
Ty (01) = 27" 25" + a2yt W) (6%)) = 0.

We have the following pictures in mind for truncation:

Sm)| | [ m@)| | [[TTT]] émea)
LI Smea
LT Aoy [T

L=4,m(0)=(-2,-3), m(1) = (-2,-2), m(2) = (—1,-2),
m(3) = (0’ _2)7 m(4) = (O’ _1)7 m(5) = ( 70)

5.2.2. Unramifiedly good lattices of a family of meromorphic A-flat
bundles. Let X be a complex manifold, and let D be a normal crossing divi-
sor of X. Let I be a point or a compact region in Cy. Let X and D denote K x X
and K x D, respectively. For A € KC, we set X* := {\} x X and D* := {\} x D. Let
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(€,D) be a family of meromorphic A-flat bundles on (X, D), i.e., £ is an Oy (¥D)-
coherent sheaf with a holomorphic family of flat A-connections D : £ — £ @ QY /K
The restriction to (X*, D) is denoted by (£}, D).

Remark 16. If K is a point, “family” can be omitted.

Let E be an Ox-locally free lattice of (£,D). Let P be any point of D. We
can take a holomorphic coordinate (U, A, 21, ..., 2,) around P such that Dy :=
DNU = Ule Dy,i, where Dy ; = {z; = 0}. We put Dy; = ();c; Du,s and
Dy(I) := U;c; Du,i- For any subset I C £, we put I¢:= £ — I. The completion of
X along Dy 1 (resp. Dy (I)) is denoted by ﬁu,_[ (resp. ﬁu(I))

Definition 5.4. We say that E is unramifiedly good at P if the following holds:

e We are given a good set of irregular values S C M (U, Dy)/H(U).
e For any ) # I C £, we have the decomposition

(5.12) (E,D)5, , = P (E..'Dy).
aeS(I)

Here S(I) denotes the image of S via the map

e (D, —da)(IEa) is contained in 'E, @ (Qﬁf/,C (log Dy (1)) +Q£(/K(*DM(IC))), where
a is lifted to M (U, Dy). This condition is independent of the choice of a lift.

The property is independent of the choice of the coordinate (U, A, z1, ..., z,).
We say that (E,D) is unramifiedly good if it is unramifiedly good at any point.

See Subsection 2.3 of [23] for a simplified definition.

The decomposition is called the irreqular decomposition of E‘ﬁz“. The
set S is uniquely determined if £E, # 0 for each a € S. So, it is denoted by
Irr(D, P). The restriction of E to {\} x X is denoted by E*.

If F is an unramifiedly good lattice of (£,D), we have the well defined endo-
morphism Res; (D) of E|p, for each irreducible component D; of D. It is called the
residue of D at D; with respect to the lattice E. If K # {0}, the eigenvalues of

Res; (D) are constant on D} for each A € K.

Remark 17. We have the notion of good lattice which is locally a descent of an
unramifiedly good lattice. See [23] and Definition [5.5| below.
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Irregular decompositions on the level m(j). In the following, let X := A™,
D; == {z = 0} and D := J'_, D;. We set D(<p) := U,., Di. Let (E,D) be an
unramifiedly good lattice of a family of meromorphic A-flat bundles on (X, D) with
the good set Irr(D) = Irr(D, O). We assume that the coordinate is as in Remark [15]
for Irr(D). Let Irr(ID, p) and Irr’ (D, p) denote the images of Irr(ID) under the natural
maps

1<p

T : M(X,D)/H(D) — M(X,D)/M(X,D(< p— 1)),
7« M(X,D)/H(D) — M(X,D)/M(X,D(+p)).

Note that the naturally induced map Irr(D, p) — Irr’ (DD, p) is bijective, permitting
one to identify them.

Take an auxiliary sequence m(0),...,m(L) for the good set Irr(D). De-
note by Irr(D,m(j)) the image of Irr(ID) under Tm(j)- Let k(j) denote the num-
ber determined by the condition m(j) € Zi(g) X 0yp—_(j)- The map Irr(D,p) —
M(X,D)/M(X,D(< p — 1)) induced by 7,,(;) is denoted by 7,y ,- As in Sub-
section 2.4.3 of [23], we obtain the following decomposition on the completion
D(<k(j)) along D(<k(j)):

(E,D)5(<r(sy) = @ (E;nman) where
belrr(D,m(5))
5.13 s N .
o = @ R w<kO).
celrr(D,p)

Tm(j),p(€)=7p(b)

The decomposition (5.13) is called the irreqular decomposition on the level m(yj).

Remark 18. We do not have the irregular decomposition on the level m(j) on D
in general, as remarked by Sabbah [24] for the surface case.

The associated graded bundles with a family of meromorphic flat -
connections. Assume K # {0}. We set W := X0 U D(<k(0)). It is easy to ob-
serve that (E,D) is an unramifiedly good lattice on the level (m(0),:(0)) with the
decomposition for j = 0. The set of irregular values on the level (m(0),(0))
is Irr(D, m(0)).

As stated in Subsection we obtain the holomorphic bundle Gr™® (E)
with a family of meromorphic flat A-connections ]D);n(o) on (V,V N D) for
each a € Irr(D,m(0)), where V denotes a neighbourhood of Mi<i<k(o) Di- Let

G O(E, D) = (GrT(O)(E),DT(O)). We obtain the following isomorphisms for
any a € Irr(D, m(0)) from (5.8):

Gr™ O (E D) (E™” D)

w =
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In particular, GrT(O)(E,]D)) are unramifiedly good lattices whose set of irregular
values is Irr(]D):n(O)) = ﬁ:nl(o)(a).

Let Trr(D, m(j)) denote the image of 7,,;) : Irr(D) — M(X,D)/H(X) for
any j. Let us consider the case in which Irr(D,m(j — 1)) consists of a unique
element. We take any element a") € Trr(D). Let £(+a")) be a line bundle Oy - e
with a family of meromorphic flat A-connections De = e-(+da(!)). Then (E', D) :=
(E,D) ® £L(—aM) is an unramifiedly good lattice with the good set

Irr(D') = {a — aV) | a € Irr(D)}.

The sequence m(j), m(j + 1),...,m(L) gives an auxiliary sequence for Irr(D").
Applying the above procedure to (E’,D’) and shrinking X, we obtain the asso-
ciated Gr™Y) (B, ) for each ¢ € Irr(D,m(5)). For any b € Irr(D, m(j)), we
define

Gr'Y(E,D) = Gr;'i(%zn(j) (aan (B, D) @ L(aM).

It is independent of the choice of a¥) up to canonical isomorphisms. (We may avoid
tensor products.) It is easy to observe that Gr;n(] )(E,ID)) are also unramifiedly
good lattices with the good sets of irregular values Irr(D;n(] )) = ﬁ;nl(j)(b) By
construction, H(]Dzn(j ), m(j)) consists of the unique element b.

b T (j—1),m(j) * Irr(D, m(5)) — Irr(D, m(j — 1)) be the
induced map. For any a € Irr(D, m(5)), we inductively define

In the general case, let 7,

Gr™9) (B, D) := G0 Gy (E,D).

Tm (5 -1),m(5) (@)
For each a € Irr(D), we set Gr'''(E, D) := Gr™)(E, D), which is called the full
reduction. By construction, Gr'™(E, D) ® £(—a) is logarithmic.

We have functoriality as in Subsection [5.1.2

Deformation. Assume 0 ¢ K. We would like to regard (F, D) as a prolongment of
(E,D)|x—p(<k(0))- For a given holomorphic function T' = T'(A) with Re(T'(\)) > 0,
we have another prolongment (E™) D)) of (E,D)|x—p(<k(0)), Which is also an
unramifiedly good lattice with the set of irregular values

e (BT D)) .= {T(\) a| a € Irr(D)}.
We refer to Subsections 4.4-4.5 of [23] for the construction. We mention some
properties:

(D1) ETT2) ~ (E(T))(T2) if Re(T;) > 0 and Re(T) - Tz) > 0.
(D2) (ED,DD) 5~ @eer("Ea, "D + (T — 1)da), where we put I :=
{1,...,k(0)}. Briefly, the deformation does not change the regular part.
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We give some statements on functoriality. Let (E,,D,) (p = 1,2) be unrami-
fiedly good. We have the following natural isomorphisms:

(BroE) D ~ BN e’ (Biok)" ~EeE’, (BV)® ~ED).

Here, we have assumed that (E7,D1)®(E2, Do) and (E7,D1)® (Es, Do) are unram-
ifiedly good. Moreover, let F' : (E1,D1) — (E2,D3) be a flat morphism. Assume
7y UZs is a good set of irregular values on the level (m,i(0)). Then we have the
naturally induced morphism (E;T), ID)&T)) — (EéT), ]D)éT)).

§5.3. Smooth divisor case

Let X := A™ and D := {z; = 0}. Let £ C C,. Let (E,D) be an unramifiedly
good lattice of a family of meromorphic A-bundles on (X, D) with a good set of
irregular values Irr(D) = Irr(ID, O). We have the formal decomposition (E,D) 5 =
Dacire()(La; Da), where Dg — da id ~are logarithmic. We set W := D U X0 if
0 € K, and W := D otherwise. We obtain the decomposition on W

(5.14) (E,D)= D (Ea,Da).
aclrr(D)

Full Stokes filtration. In this case, it is also easy and convenient to consider
full Stokes filtrations. (See Subsection 3.2 of [23] for the general case.) We explain
this in the following. Let 7 : /f(W) — X denote the real blow up of X along W.
We put 3 := 7~ (D).
For any multi-sector S in X — W, the order <g on Irr(DD) is defined as follows:
e a <g b if and only if —Re(Ata(}, z)) <s —Re(A71b(), 2)) for any z € S such
that |z1] is sufficiently small.

Let S denote the closure of S in X(W), and let Z denote SNx—1(W). The irregular
decomposition 1) on W induces the decomposition on Z:

(5.15) (E,D)z= €D (Ea,Do)-
aclrr(D)
We put FZ := @bgsaﬁb@, and thus we obtain the filtration Z indexed by

(Irr(D), <g). By using Proposition [5.1] and Lemma [5.2] successively (or more clas-
sical results), we obtain the following.

Proposition 5.7. For any point P € 3, there exists S € MS(P,X — W) such
that:

o There exists a unique D-flat filtration FS of EI§ indexed by (Irr(D), <g) such

s _ rZ
that}"lZ—]: .
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e There exists a D-flat splitting of FS on'S.

We call FS the full Stokes filtration of (E,D). For S’ C S, the filtrations F5' and
F*S satisfy the compatibility condition as in Lemma . O

The following lemma is clear from the definition of full Stokes filtrations.

Lemma 5.15. Let 5,5 € MS(P,X —W). Assume (i) S' C S, (ii) Eg has the
full Stokes filtration FS as above. Then the restriction of]-:S to S is the full Stokes
filtration of Elg/. O

We have functoriality of full Stokes filtrations as in the case of Stokes filtra-
tions on the level (m,i(0)).

The associated graded bundle. For any sectors S and each a € Irr(D), we
obtain the bundle Gri““(E‘S) on S associated to the full Stokes filtration . By
varying S and gluing Grﬁuu(Elg), we obtain the bundle Grfuu(Elg(W)) on V(W)

a
with the induced family of flat A-connections D,, where V denotes some neigh-

bourhood of D, and V(W) denotes the real blow up of V along W N V. As in Sub-

full

section m we can show that Grg

full
a

(E|\7(W)) has descent to V, i.e., there exists a
locally free sheaf Gr
D, such that

(E) on V with a family of meromorphic flat A\-connections

n (G (B), Da) = (Grg" (B

p(w))> Da);
(Grfaun(E)>Da)|17V\mv = (EaaDu)|Wm;-
By construction, Dy — da is logarithmic for each a € Irr(D).
As in the case of Gr with respect to Stokes filtrations on the level (m,4(0)),

we have the following isomorphisms:

Grf(BY) ~ G ()

a

Grflull(El ® EQ) ~ @ Grfull(El) ® Grf““(EQ),

az az
a; EIrr(D;)
ai+az=a

Gr™(B, @ By) ~ Gr™(B)) @ Gr\(B).

Here, we have assumed that (E1,D1) ® (Eq,D3) and (Eq1,D1) @ (E2,Ds) are un-
ramifiedly good lattices.

Lemma 5.16. Let (E,,D,) (p = 1,2) be unramifiedly good lattices on (X, D).
Assume IT; UZy is a good set of irregular values. Let F : (E1,Dq) — (F2,D3) be

a morphism. We have the naturally induced morphism Gri™(F) : Gr™(E;) —

Gri(E,). O
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A characterization of sections of E. Let w, be a frame of Gr(E). Let S be

a small multi-sector, and let E‘g =P E, s be a D-flat splitting of the full Stokes

full
a

of wy. Thus, we obtain the frame wg = (wq,g) of E‘g. The following proposition

filtration F5. By the natural isomorphism E, g ~ Gr (E)lg, we take a lift wq g
implies a characterization of sections of E by growth order with respect to the
frames wg for small multi-sectors S.

Proposition 5.8. Let v be a frame of E, and let Gs be determined by v|s =
wg - Gg. Then Gs and Ggl are bounded on S. O

Deformation. When |arg(T")| is sufficiently small, we have a more direct local
construction of the deformation (F,D)(™). We explain it in the smooth divisor
case.

We take a covering X — D = UiV:1 S by sectors S on which we have the
full Stokes filtrations. Assume that |arg(T)| is so small that

e a<g b e Ta<gu Tb for any a,b € Irr(D) and for any S,

We take frames w, of Gr'™(E). For each § = S we take a D-flat splitting

a
E|s = @ E,,s of the full Stokes filtration. Let ws = (wa,5) be as above. We put
wiTS) = wq s - exp((T— 1) A"1a) and w(ST) = (ngS?) Let f be a holomorphic
section of K| x_p. We have the corresponding decomposition f = fs 5 on each S.

We have the expression fo.g¢ =) fc(l,:,:q),j ngS)] We put f, s := (fc(l:[:g)])

Lemma 5.17. [ gives a section of ET) if and only if ngS)U) s bounded for each
SO and wge) . (See Subsection 4.5.3 of [23].) O

Prolongation of a flat morphism. Let (E,,D,) (p = 1,2) be unramifiedly
good lattices on (X, D). Assume Irr(D;) UIrr(Dy) is a good set of irregular values.
Let F': (E1,D1)jx—p — (F2,D2)jx—p be a flat morphism.

Lemma 5.18. If I preserves the full Stokes filtrations FS for each small sector S,
then F extends to a morphism F' : E1(¥D) — Es(xD).

Proof. We have only to consider the case 0 ¢ KC according to the Hartogs theorem.
Then the claim follows from Theorem 4.3.1 of [23]. As another argument, let 'wg) be

frames of E; 5 as in Proposition We can directly show that Fjg is of polynomial

i

order with respect to the frames wg). O

Complement on a connection along the A-direction. Put X := A™ D, :=
{z; = 0} and D := Ule D;. Let £ C Cj be a compact region. Let (E,D) be
an unramifiedly good lattice of a family of meromorphic A-flat bundles on (X, D)
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with a good set Irr(DD). Assume that E is equipped with a meromorphic connection
along the A-direction V : E — E ® Qk(+D) such that Df + V is flat.

Lemma 5.19. V, naturally induces a meromorphic connection on ET) along the
A-direction.

Proof. 1t is easy to observe that we have only to consider the case in which D
is smooth and |arg(T)| is sufficiently small. For S = S@, let wg = (wqs) be
a frame of E‘g as above. We use an argument in the proof of Lemma Let
Ags = (Agq,a) be the matrix-valued holomorphic function on S determined by
V() ws = wg - Ag. Let By be the matrix-valued holomorphic function on X
determined by Dg(2101)w, = wq - (21010 + By). Because [Df, V,] = 0, we have
the following relation in the case a # b:

A-2101As5,0,6 + (2101(a — b)) - Asap + (As,a,6Be — BaAs,ap) = 0.
Hence, Ag 4,5 = 0 unless a <g b, and we obtain the estimate
Asap - exp(A~ (a = b)) = Oexp(CIA - log [z, 1]))

for some C > 0 in the case a <g b.
Let AgT) be the matrix-valued holomorphic function on S determined by
V(@A)wg) = ng) -AgT). We have Agg’b =0 unless a <g b. If a <g b, we have

A exp(ATIT(a — b)) = Ag ap exp(A " (a — b)) = Oexp(CIA " log |7])).

a

Therefore, AA(S'Y,B,b = O(exp(—¢|z; ') for some ¢ > 0. By a direct calculation, we
obtain A(STga = Ag.aa + (A7 (1 — T)a), which is of polynomial order. Hence,
the claim of the lemma follows from Lemma [5.17] ]

§5.4. Family of good filtered A-flat bundles

Pull back of a filtered bundle via a ramified covering. The notion of filtered
bundle was introduced in [30] (dimension 1), and studied in [22] (arbitrary dimen-
sion). It was polished in [], [B], [13] and [I5]. Let X be a complex manifold, and
let D be a simple normal crossing hypersurface with the irreducible decomposition
D = ;¢; Di- A filtered bundle on (X, D) is defined to be a sequence of locally free
sheaves E, = (o F | a € RY) such that (i) o F C pE for a < b and ,F is the inter-
section of pE for b > a, (ii) a Bjx—p = vE|x—p, (iii) « E @ O 1 D;) = a-nFE,
where n = (n;) € Z. In [22], we imposed some additional compatibility condition,
which is slightly complicated to state. Later, Iyer and Simpson [I5] introduced the
notion of locally abelian condition, which is equivalent to our compatibility con-
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dition. Then Borne and Hertling—Sevenheck ([4], [5], [I3]) showed that such an
additional compatibility condition is implied by the above three conditions.

Let us recall the pull back of a filtered bundle via a ramified covering. See [15]
for a more systematic treatment. See also Subsection 2.5.3 of [23]. Put X := A7,
D = Ule{zi =0}, X := A" and D := Uﬁzl{wj = 0}. Let g : X — X be a
ramified covering ¢, (w1, ..., w,) = (w§, ..., w§, wei1,. .., wy). For b € RY, we put
S(b) := {(a,n) € R* xZ%, | e- a+n < b}. For a given filtered bundle E, on
(X, D), we set -

bE = Z w "ol (aE).
(a;n)ES(b)
Then it is easy to show that E, is also a filtered bundle. Let Gal(X/X) denote
the Galois group of the ramified covering. We can reconstruct E, from E, with
the natural Gal(X /X)-action, and hence E, is called the descent of E,. Since the
construction is independent of the choice of coordinates, it can be globalized.

Family of good filtered A-flat bundles. We use the notation of Subsection [5.2)
A family of filtered A-flat bundles on (X, D) is defined to be a filtered bundle E,
on (X, D) with a family of meromorphic flat A-connections D on E = |J,E.

Definition 5.5. Let (E.,D) be a family of filtered A-flat bundles on (X, D).

e We say that (E.,D) is unramifiedly good if .F are unramifiedly good lattices
for any ¢ € RY.

o Let P € D. We say that (E.,D) is good at P if there exists a ramified covering
@e : (U, Dy) — (U, Dy) such that (E,, ©:D) on (U, Dy) is unramifiedly good.
Here, U is a coordinate neighbourhood of P, ¢, is a ramified covering, and E,
is induced by ¢ and E, as above.

o We say that (E.,D) is good if it is good at any point P € D.

Induced filtrations. Let (E,.,D) be a good family of filtered A-flat bundles. Let
‘F denote the induced filtration of .Ejp,. We set iGrE(LE) = Fa/Feq. 1t can
be shown that (i) we have the well defined residue endomorphism Gr’ Res;(ID)
of ‘Grf(.E) on D; for each i € ¢, (ii) it preserves the induced filtrations /F
of iGraF(CE)|DimD_7. (See Subsection 2.5.2 of [23]. The residues are well defined
as endomorphisms of .E|p, in the non-ramified case, and as endomorphisms of
iGrY(.E) even in the ramified case.) In the following, Grt Res;(ID) are often de-
noted by Res;(D) for simplicity.

Let I be a subset of £. We set Dy :=(),.; D;. For a € R!, we put

el

IF ( E|D ) L mlF ( E|D ) IGI‘F( E) . IFQ(CE\DI)
ale = a;i\e s c = .
! iel ! “ Zbﬁa IFb(CE|DI)



VARIATION OF TERP STRUCTURE 481

We often consider the following sets:

Par(E, 1) :={a c R | 1GrE(.E) #0}, Par(E.,I):= U Par(E,I).
ceR’

We have the induced endomorphisms Res;(D) (i € I) of Grk (.E), which are
mutually commutative.

KMS-structure for fixed A. Let us consider the case in which K is a point {A}.
In this case, we prefer the symbol D* to D. If A # 0, the eigenvalues of Res;(D*)
are constant. Hence, we have the generalized eigendecomposition GrZ (. E) =
D. IGerI,Ea)(cE), where the eigenvalues of Gr’” Res;(D*) on IGer]:Ea) (cF) are the
i-th components of . We put

KMS(E, D, 1) i={(a,a) | "Gr (" (cE) # 0},
KMS(E.,.DM 1) := | ] KMS(E, D, 1),
ceRS
Sp(E,DN 1) := {a € C" | 3a € R, (a,a) € KMS(.E,D 1)},
Sp(E. DN 1) = | ) Sp(cE. D 1).

ceRS

Each element of KMS(E.,D*, I) is called a KMS-spectrum of (E.,D*) at Dy.
Even in the case A = 0, a similar definition makes sense if the eigenvalues of
Res; (D) are constant. It is satisfied when we consider wild harmonic bundles.

KMS-structure around ). Assume that I is a neighbourhood of )y € C,
and we regard that (E.,D) is given around {A\o} x X. In this case, we prefer the
symbols ‘F(*) to 'F. Let p(\) : R x C — R and ¢(\) : R x C — C be given as
follows:

p(\ (a,0)) =a+2Re(X-@), e\ (a,0)=a—a-\—a-\
The induced map R x C — R x C is denoted by €()\).

Definition 5.6. We say that (E.,D) has the KMS-structure at Xy indexed by
T(i) CR x C (i € S) if:

e Par(E.,i) is the image of T'(i) via the map p(Ag).

e For each a € Par(E.,i), we put K(a,i) = {u € T(i) | p(ho,u) = a}.
Then the restrictions of Res;(D) to iGrf(AO) (cE)|p» have the eigenvalues (A, u)
(u € K(a,1)). 1
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Assume (E.,D) has the KMS-structure at A\g. We have the decomposition

(5.16) Gl By = @ 6N (E),

wek(ai)
such that (i) it is preserved by Res;(ID), (ii) the restriction of Res;(D) — e(\, u) to
igff")(cE) is nilpotent. More generally, we have the decomposition on Dy

(5.17) ol Mer) = D 1),
u€el] K(ai,i)
such that (i) it is preserved by Res;(D) (¢ € I), (ii) the restrictions of Res;(D)
—e(X,u;) (¢ € I) are nilpotent, where u; denotes the i-th component of u. Note
IQ&AO)(CE) can be 0.
The following lemma is standard. (See Subsection 2.8.3 of [23].)

Lemma 5.20. Let (E1.,D1) and (E3.,D3) be good filtered A-flat bundles on
(X, D) which have the KMS-structures at \g. An isomorphism ¢ : (E1,Dq) ~

(E2,D2) of families of meromorphic A-flat bundles induces the isomorphism ¢ :
(E14,D1) = (B2, D) of families of filtered A-flat bundles. O

We say that (E, D) has the KMS-structure at g if there exists a good filtered
A-flat bundle (E.,D) which has the KMS-structure at \g such that E = (4 E.
This makes sense by the above lemma.

Pick ¢ € RY such that ¢; ¢ Par(E,,i) for each i € S. Assume that K is
a sufficiently small neighbourhood of Ag. Take Ay € K, and let U(A;) C K be
a neighbourhood of \;. We set X*) := U()\;) x X. We use the symbols DZ(’\l)
and D) in similar meanings. Let 7, denote the projection Z'F,g’\o)(cE‘Di) —
iGrf(XO)(cE) for any a € Par(.E,i). Let b € |¢; — 1,¢;]. If p(A1,v) = b for some
v € K(a,i), we put, on DEAI),

FM = Y ma (G0 CE)).

weK(ai)

p(A1,u)<b
Otherwise, let by := max{p(A1,v) < b | v € K(a,i)}, and set in(Al) = in(:‘l).
Thus, we obtain the filtration ‘F(*) of CE‘DQ\I). It induces a family of filtered \-flat
bundles (E?) D) on (X)), DAY, By construction, Res; (D) — e(\, u) are nilpo-
tent on iGerllj)u)(cE). Namely, (E?*), D) has the KMS-structure at A; indexed
by T'(i). Hence, if (E,D) has the KMS-structure at Ag, it has the KMS-structure
at any A sufficiently close to \g, and the index set is independent of \. For each
A\ e K, we put E) := (Eff‘))wx, which is a good filtered A-flat bundle. The set
KMS(E2,i) is the image of T(i) via the map €()\). Note KMS(E®, i) = T(i) if
0 € K. We often identify them.



VARIATION OF TERP STRUCTURE 483

Deformation. Let T'(\) be a holomorphic function with Re(T'(\)) > 0. We obtain
the deformation (E), D). If (E,,D) is unramified, the set of irregular values is

given by

Irr(D, ET)) := {T-a|a € Irr(D)}.
Since the regular part of the completion is unchanged, the set of KMS-spectra is
unchanged.

86. Wild harmonic bundles
86.1. Definition of wild harmonic bundle

Local condition for Higgs fields. Let (E,dg,) be a Higgs bundle on X — D,
where X is a complex manifold, and D is a normal crossing divisor of X. We would
like to explain some conditions on the Higgs field 6. First, let us consider the case
X =A"={z=(21,...,2n) | lzi| <1}, D; = {z = 0} and D = |J_, D;. We
have the expression
0 dzs n
0=Y F,— + Gjdz;.
12—21 17 j;rl A

We have the characteristic polynomials det(7'id — Fj(z)) = > A;jx(z)T* and
det(Tid — G;(2)) = Y. Bj () T*, where T is just a formal variable. The coeffi-
cients A;, and B;; are holomorphic on X — D.

e We say that 6 is tame if the following conditions are satisfied:

(T1) A, and B, are holomorphic on X for any k.

(T2) The restriction of A;j to D; is constant for any j = 1,...,¢ and any k.
In other words, the roots of 3 A; x(2) T* are independent of z € D;.

o We say that 0 is unramifiedly good if there exists a good set of irregular values
Irr(#) € M(X,D)/H(X) and a decomposition

(E,@) = @ (Euaaa)
a€lrr(0)
such that 0, — da - idg, are tame.
e We say that 6 is good if ©%(0) is unramifiedly good for some e € Zq, where @,

is the covering given by e (21,...,2n) = (25, .., 25, Ze41, - - -, Zn)-

Global condition for Higgs fields. Let us consider the case in which X is a
general complex manifold. Let D be a normal crossing hypersurface of X, and let
(E,0) be a Higgs bundle on X — D.
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o We say that 0 is (unramifiedly) good at P € D if it is (unramifiedly) good on
some holomorphic coordinate neighbourhood of P.

e We say that 6 is (unramifiedly) good if it is (unramifiedly) good at any point
PeD.

Let Z be a closed analytic subset of X, and let (EF,6) be a Higgs bundle on
X — Z. The Higgs field 6 is called wild if there exists a regular birational map
¢ : X" — X such that (i) ¢~(D) is normal crossing, (ii) ¢ =16 is good.

Remark 19. Even if Z is a normal crossing divisor, a wild 6 is not necessarily good.

Conditions for harmonic bundles. Let X be a complex manifold. Let D be a
normal crossing hypersurface of X, and let (E,dg, 6, h) be a harmonic bundle on
X —D.

e It is called tame if 0 is tame.

o It is called an (unramifiedly) good wild harmonic bundle if 6 is (unramifiedly)
good. O

Let Z be a closed analytic subset of X. A harmonic bundle (E,dg,0,h) on X — Z
is called wild if 6 is wild.

Remark. We give some remarks on the condition (T2) for tameness.

1. If § comes from a harmonic bundle (E, 0,8, h), (T2) is implied by (T1). (See
Lemma 8.2 of [22].)

2. Let (E,0p,0,h) be a harmonic bundle with a good set of irregular values
Irr(f) and a decomposition (E,dg,0) = @aelrr(é)(Engu?ea) such that 6, :=
0q — da - idg, satisfy the condition (T1). The author does not know whether
(T2) for 0, is automatically satisfied or not. But, if moreover (F, 9, 0, h) under-
lies a variation of polarized pure integrable twistor structure, (T2) is satisfied.
Actually, the roots of the polynomials are 0. (See Lemma below.)

§6.2. Simpson’s main estimate

The first fundamental result is an estimate of Higgs field, so called Simpson’s main
estimate. For later use, we recall it in the case that D is smooth. (See Subsections
7.2 and 7.3 of [23] for the general case.) Let X := A™ and D := {z; = 0}. Let
(E,0p,0,h) be an unramifiedly good wild harmonic bundle on X — D. We will
be interested in the behaviour around O. Hence, by shrinking X, we may assume
that there exists a holomorphic decomposition (E, §) = EB(u,a)eIrr(e)x(C(Emav Oa,0)
satisfying the following condition:
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e For the expression

d n
Ouo — (- dz1 /21 +da) -idp, . = 2+ G dz,
, 0
the coefficients of det(T — Fy) and det(T — G,) are holomorphic on X, and
det(T — F1)|D = Trankana.

For each (a, o), let 74 , denote the projection onto Ey o with respect to the decom-
position. We also set Eq := @, ¢
with respect to the decomposition £ = @aem(e) FE,.

Eq o, and let m, denote the projection onto Eg

Truncation. For any a € Irr(), we have the expressiona =}, , a;2]. We put
mp(a) =3 <, 0521 and Irr(0,p) == {np(a) | a € Irr(d)}. For each b € Irr(0, p),
let Eép ) denote the direct sum of E, (a € Irr(d), np(a) = b), and let w[(]p ) denote
) with respect to the decomposition E = EBbeIrr(o,p) Eép)

We have Irr(6,—1) = Irr(f) and E; = ES™. We have the induced maps Ngp
Trr (6, p) — Irr(6, q) for ¢ < p.

the projection onto Eép

Asymptotic orthogonality. We take total orders <’ on Irr(6,p) for p < —1
which are preserved by 7, ,. For each b € Irr(6, p), we set Fb(p)(E) = Dacrp EP.

Let Egp)/ be the orthogonal complement of Fipb)(E) in Fép) (E). We obtain an

orthogonal decomposition £ = @ )Ec(lp V' Let wg” )" denote the orthogonal

a€lrr(6,p
projection onto Eép)/.

We take a total order <’ on C. Then we obtain the lexicographic order on
Irr(0) x C. We obtain the orthogonal decomposition £ =  Ej , by the procedure
as above, and let 7 , denote the orthogonal projection onto £y .

Proposition 6.1. We have the following estimates with respect to h.

o 7P — PV = O(exp(—e€|zl])) for some € > 0. In particular, the decomposition

E=6¢ Eép) is O(exp(—el|zl]))-asymptotically orthogonal in the sense that there
exists A > 0 such that

[h(u,v)] < A-[ulp - [v]n - exp(—€]z1(Q)[7)
forany @ € X — D, u € Eqq and v € Eyg (a #b).

® Taa — Tao = O(21]) for some € > 0. In particular, the decomposition E =
D Ea.o is O(|z1]9)-asymptotically orthogonal. O

Estimate of Higgs field. We set § := 6 — D, (da+ a-dz1/z1)7qq. Let gp
denote the Poincaré metric on X — D. The estimates in Subsection 7.2 of [23]
imply the following.
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Proposition 6.2. 9 is bounded with respect to h and gp. O

Estimate of curvatures. As mentioned in Subsection [2.1.7] we obtain a holo-
morphic vector bundle £ = (E,0g +\0') on X — D. The curvature of the unitary
connection associated to (€2, h) equals —(1 + |A|?) [0, 67].

Proposition 6.3. [0,01] is bounded with respect to h and gp. In particular, (EX, h)
is acceptable, i.e., the curvature of (EX, h) is bounded with respect to h and g,. [

§6.3. Prolongation of unramifiedly good wild harmonic bundles

6.3.1. Prolongment PE*. Let (E,0g,0,h) be a good wild harmonic bundle
on X — D, where X is a complex manifold and D is a normal crossing divisor.
As mentioned in Subsection we obtain a holomorphic vector bundle £* =
(E,0p + M) on X — D for each complex number \. It is important to prolong it
to a good filtered A-flat bundle on (X, D). For simplicity, we explain it assuming
the following. (The general case can be easily reduced to this case.)

e X =A"and D = Ule{zi = 0}.
e (E,0p,0,h) is unramifiedly good wild, and the underlying Higgs bundle has a

decomposition
(6.1) (E,0)= P (Eaabaa)
a€lrr(0)
acC’

such that (i) ga,a =040 — (da+ Zle a;dz;/z) idEi,a are tame, (ii) we have
det(Tid — Fj)p, = Tk Fee for the expression g = Z§:1 Fjdzj/z; +
E;:EJrl Gjdz;.

For any open subset U C X and a € R, we set
‘
Pal(U) i= {f € XU\ D) | Ifln = O(T] 1zil ) ve > 0}.
i=1
Thus, by sheafification, we obtain an increasing sequence of O x-modules P, :=
(Pa&? | @ € RY). We obtain an Ox (xD)-module PEA := |, Pal?.

Proposition 6.4.

e (Subsection 7.4 of [23]) (P.EA, D) is an unramifiedly good filtered A-flat bundle.
The set of irreqular values is given by

Irr (DY, PEN) = {(1 + |\?) a | a € Trr(6)}.
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e (Subsection 8.2 of [23]) €(\) induces a bijection
KMS(E%)i) — KMS(EX, i)

for each i. We also have dim *Gr} % (PE?) = dimiGrﬁz’f (a a))(Pé')‘). O

Take an auxiliary sequence for Irr(f). Let Irr(f, m(0)) denote the image of
Irr(0) via My, (0)- If A # 0, for each small sector S in {A} x (X — D), we have the
Stokes filtration F° on the level m(0), indexed by the ordered set {(1 + |A|>)a |
a € Irr(0, m(0))} with <g. We have the following characterization of the filtration
by the growth order of the norms of flat sections with respect to h. (See Subsection
7.4.1 of [23] for more details.)

Proposition 6.5. Assume X # 0. Let f be a flat section of 5|>‘S. We have f €
F(Sl+|)\‘2)b for b € Irr(0, m(0)) if and only if

[ exp(A + 0 B)l = O(exp(C =™ T 127Y)
k(1)<j<e
for some C > 0 and N > 0, where k(1) is determined by the condition m(1) €
ZE) x 0 O
<0 X Ye—k(1)-

6.3.2. Prolongment PiA")S. It is important to consider families of A. In the
tame case, the family [, PE A gives a regular family of meromorphic A-flat bundles.
More precisely, if we consider the sheaf of holomorphic sections of £ of polynomial
growth, then (i) it is a locally free O (¥D)-module, (ii) the specialization at each
{A} x X is naturally isomorphic to PE*. (We need some more considerations to
take nice lattices.)

However, the naive family (J, PE A does not give a nice meromorphic object
in the non-tame case, as suggested by the fact that the sets

Irr(PEX, DY) = {(1 + |\*)a | a € Irr(0)}

depend on A in a non-holomorphic way. We consider an auxiliary family of mero-
morphic A-flat bundles P(0)E. We explain it in the above setting.
Let mq o denote the projection onto E, o in (6.1). We set

g(A) = Hexp()\(ﬁJr Zaj log |zj|2))7ra,a.

Let U()\o) denote a small neighbourhood of \g € C. We set X*0) := U()\g) x X
and DP0) := U()\g) x D. We also set X* := {\} x X and D* := {\} x D. Let py
be the projection of X(*0) — DR) onto X — D. We consider the hermitian metric

PRI = g(A — Ao)*h
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on p;lE over X(*0) — Do) Let a € RY. For any open subset V of X*0), we define
¢
PRIEW) = {f € €V*) |Iflpown = O(TL 11~), Ve > 0}
j=1

where V* := V \ D), Thus, by sheafification, we obtain an increasing sequence
Pi’\o)g = (7351)‘0)5 | @ € RY) of Ox)-modules. We put PRo)g = Uacre 7390)5.
The restrictions to X* are denoted by Pi/\o)g)‘ and PPro)gA,

Proposition 6.6.

e (Subsections 9.1 and 9.2 of [23]) (PiAO)E,D) is an unramifiedly good family of
filtered \-flat bundles. The set of irregular values is given by

Irr(PPOE D) = {(1+ AXo)a | a € Irr(6)}.

e (Subsection 9.2.1 of [23]) We have the deformation mentioned in Subsections
and for which (PAIEXN D) is isomorphic to (PEX,DMTXN with
T(A) = (1+ A1 (1+ AXo).

e (Subsection 9.2.3 of [23]) Let U(\1) C U(Xo) be small, and set XP1) =
U(M) x X. Then (PME D) on XA s isomorphic to the deformation
(POIE, ) TASM with TN, M) = (14 Xho)"H(1 + Aha). O

We should remark that P(*0)p =# h even in the tame case, and hence 73,1)‘0)5
are different from o€ in [22] in the tame case. We can avoid using pE by
considering KMS-structure in the tame case.

By the property (D2) of the deformation (Subsection and the corre-
spondence between KMS(PEA, i) and KMS(PEL, i), we can show the following.

Lemma 6.1. ( 90)871[))) has the KMS-structure at Ao indexed by KMS(PEY, 1)
(i=1,....,0). O

6.3.3. Prolongment QiAO)S and QE. Applying the deformation procedure to
(73*()‘0)5,]1)) with T = (1 + A)\o)~!, we obtain a family of good filtered A-flat
bundles (Qg)“’)é’, D) on (X)) D)) Then 9)€ is an unramifiedly good lattice
of Q)€ with the good set of irregular values Irr(Q*0) €, D) = Irr(d). By using
the property (D1) of the deformation described in Subsection we obtain the
following. (See Subsection 11.1 of [23] for more details.)

Lemma 6.2. The restriction (Q(’\U)E,D)Wx is naturally isomorphic to the defor-
mation (PEN, DN TN with Ty(X) = (14 [A\[2)~ > 0. O
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By the property (D1) of deformation, we have Q()\O)S‘X(Al) = QW)€ Hence,
we obtain the global family of meromorphic A-flat bundles (Q&,D) on Cy x (X, D).
By using the property (D2) of deformation and Lemma we can show the
following.

Lemma 6.3. (Q€,D) has the K M S-structure at each \g indexed by KMS(PEC, 1)
(i=1,...,0). O

Let S be a small sector in {A} x (X — D). By Lemmal6.2] the Stokes filtrations
of Q&* and PE on the level m(0) are related as follows:
ff(g%) = ngMZ)a(Pel%), a € Trr(6, m(0)).

Hence, we have the characterization of the Stokes filtrations of Q on the level m(0)
by the growth order of the norms of flat sections with respect to h. (See Subsection
11.1 of [23] for more details.)

Prog)sition 6.7. Let f be a flat section of ‘S|):S" We have f € ft,S(QS‘))S) for
b € Irr (0, m(0)) if and only if
7 -exp((A 4 No)la = O(exp(Clz) T 1=417)
k(l)<j<t
for some C > 0 and N > 0, where k(1) is determined by the condition m(1) €
Zi(ol) X Oéfk(l)- O

We obtain an unramifiedly good lattice (Gr™® (Q€&),D,) by taking Gr with
respect to the Stokes filtration F° on the level m(0) explained in Subsection

In the case that D is smooth, we have the following characterization of the
full Stokes filtration F5 (Subsection 11.1 of [23]).

Proposition 6.8. Let f be a flat section of Sl):sv. We have f € ﬁbs(QS‘):g) for
b € Irr() if and only if

|fexp((A™" + A)b)
for some N > 0. O

n=0(lz|™)

Remark 20. We have a characterization of full Stokes filtrations or more general
Stokes filtrations on the level m(i), even in the general normal crossing case.

86.4. Reduction from wild to tame

Let X, D and (E, 0,0, h) be as in Subsection By following the same procedure
for (E,0g,07,h) on XT — DT we obtain the family of meromorphic u-flat bundles
(QET, D) on C,, x (X1, DT).
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Lemma 6.4. The correspondence (a,a) <« (—a, @) induces a bijection
KMS(PE®, i) ~ KMS(PET?, ).
We also have the bijection Trr(0) ~ Irr(61) given by a < .

Proof. The claim for Trr(9) and Irr(67) is clear. See Corollary 11.12 of [22] for the
correspondence between KMS(PE, i) and KMS(PETC, ). O

One step reduction I. Since both the Stokes filtrations of (Q&*,D*) and
(QETH D) are characterized by the growth order of the norms of flat sections
with respect to h, we have the induced isomorphisms of the associated graded
family of flat bundles for a € Irr(6, m(0)):

(Gr™® Q€. D) 5 x(x ) = (Gr” Q€N DL s w(x - ).

Hence, they give a variation of P'-holomorphic vector bundle which is denoted by
GrmO (g4 DAY on P! x (X — D).
We can show that the pairing S : (£,D) ® 0*(£2,D%) — Ox_p extends to

QE @ 0*QET — Oc, xx(*(Cy x D)).

(See Subsection 11.1.3 of [23].) By functoriality of Gr with respect to Stokes struc-
tures, we obtain

G0 (€, ) @ 0" G (QET, DY) — Oc,wx (+(Ch x D)).

Similarly, we get Gr"®(Q€T, DY) ® % Gr™?(QE, D) — O, x 1 (*(C, x D1)).
They give a morphism of variations of P!-holomorphic vector bundle on P! x (X —D):

Gr™O0(8) : GO (€4, D) @ o* Gr™(O (€4, D4) — T(0).

One of the main results in the study of wild harmonic bundles is the following.
(See Subsection 11.2 of [23] for more details.)

Proposition 6.9. If we shrink X appropriately, the following holds:

. GrT(O) (E4,D4,8) is a variation of pure polarized twistor structure.

e Fora & Irr(6,m(0)), let (Eq,Oq, ha,04) denote the underlying harmonic bundle.
By construction, the Higgs bundle (Eq,04) is naturally isomorphic to

P PEoabon)

belrr(0) o
Mm(0)(b)=a

(Recall the decomposition (6.1).) In particular, the harmonic bundle is unram-
ifiedly good wild. The set of irreqular values is ﬁ:nl(o)(a).
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o Let (QEy,Dy) be the family of meromorphic A-flat bundles on Cy x (X, D) as-
sociated to (Eqy, O, ha,04). Then we have a natural isomorphism

(Q&4, D) ~ Gr™Y(Q€ ).

o Similarly, let (Qé’g, ID)E) denote the associated family of meromorphic u-flat
bundles on C, x (X, D). Then we have a natural isomorphism (QS;,]D);) ~
ar™9(get, ph. O

One step reduction IT. Let Irr(6, m(j)) denote the image of Irr () via 7j,y, ;). For
each a € Irr(0, m(j)), we obtain a variation of P!-holomorphic bundle with a pair-
ing Gr™U) (€2 DA, S), naturally isomorphic to Gr™) Gr%"(jfl)(a) (E4,D4,S).
We now explain how to apply Proposition in this Situautiov;l(.]i1>

Let us consider the case in which Irr(6, m(j — 1)) consists of one element. We
take any a € Irr(0). Let L(—a) be the variation of polarized pure twistor structure
as in Subsection The underlying harmonic bundle is also denoted by L(—a).
Weset (E',0p,0',h') := (E,0p,0,h)®L(—a). Note Irr(¢') := {a’—a | o’ € Irr(0)},
and hence m(j), m(j+1),...,m(L) give an auxiliary sequence for Irr(6’). We have
the natural isomorphisms of the associated variation of polarized pure twistor

structure:
(E2,D,8) ~ (2, D2, 8) @ La).

For each b € Irr(6, m(j)), we have the natural isomorphism

Grt9(E4 D2, 8) ~ Grgl_%m(u)(e'ﬂ, D'2,8") @ L(a).

Hence, by shrinking X appropriately, we deduce that Grzn(j )(E A DA, S) is also a
variation of pure twistor structure, due to Proposition

Full reduction. Let us consider the general case. By using the above result in-
ductively, we see that Gr™U )(£2, DA, S) are variations of polarized pure twistor
structure for any a € Irr(6,m(j)). The underlying Higgs field is

@ @(Eb,aaab,a)~

belrr(9) «
Nm () (0)=0a

For any a € Irr(f), we set Gri(&, D2, 8) := Gr™B)(£,D2,S); these are called
the full reductions. Let (Eq,0q,hq) be the underlying harmonic bundles. Then
(Eq, 04, ha) ® L(—a) are tame. This procedure is the reduction from wild harmonic
bundles to tame harmonic bundles.
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86.5. Reduction from tame to twistor nilpotent orbit

Let X := A", D; = {2 = 0} and D := |J._, D;. Let (E,dg,0,h) be a tame
harmonic bundle on X — D. The family of A-flat bundles (£, D) is prolonged to a
family of meromorphic A-flat bundle (Q&, D), which has the KMS-structure at Ag
indexed by KMS(PEY i) (i = 1,...,¢) for each \g € C,. For later use, we recall
how to obtain the limiting mixed twistor structure. For simplicity, we assume
KMS(£E°,i) € R x {0}. See Section 11 of [22] for the general case. See also an
account due to Hertling and Sevenheck in [I3] for this case.
In a neighbourhood U(Ag) of Ao, we set

A A
g((a?o))(E) = ég((a,oo))(Q(AO)E)\U()\())X{O}

for a € Par(PE® L). (See (5.17) for the right hand side. In this simpler case, we

have only to take Gr with respect to parabolic filtrations.) By varying A\g € Cy

and gluing them, we obtain the vector bundle G4 )(E) on Cy. It is endowed with
the nilpotent maps N; (i = 1,...,£), which are the nilpotent part of the residues

Res; (D). By applying the same procedure to (E,dg,07,h) on XT — DT, we obtain

the vector bundle g([a 0) (E) on C, with nilpotent endomorphisms J\fj induced

by residues Res; (D). We would like to glue G(q,0)(E) and Qg_am (E), to obtain a

vector bundle Sf&% (E) on P'.

We have the D-flat decomposition QOS‘CXX;( = @aepar(%sﬂ,@ G(a,0)€ with
the following property:

e Let M, be the family of the monodromy endomorphisms along the path
(z1,---, e2mV=16,. z,) (0 < 6 < 1) with respect to D/. Then the restriction
of M; to G(q,0)€ has a unique eigenvalue exp(2mv/—1a;).

® G(a.0€cix0 = G(a,0)(E)cx -

For \ # 0, let H(E*) be the space of multi-valued flat sections of (£*,D*). We

have the holomorphic vector bundle H(E) on C% whose fiber over A is H(E*). We
have the decomposition

H(E) = @ Gla.0)H(E)
a€Par(PoEO,L)

such that (i) it is preserved by the monodromy M;, (ii) the restriction of M; to
G(a,0)H(E) has a unique eigenvalue exp(2myv/—1a;).

Let U C Cj, and let s be a section of G4,0)H(E) on U. We regard s as a
multi-valued flat section of G(4,0)€. It is expressed as a finite sum:

¢
s= me . Hexp(ai log z;) - (log z;)™:.
i=1
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Here, fm are holomorphic sections of G4 0)&rxx- We set CIDfZ‘,‘O)(s) = fojuxo, and

thus we obtain an isomorphism
a0y 9@ H(E) = Ga.nfic; xo = G(a,0)(E)cs-

Let 6 = (1,...,1) € RY. We have the Df-flat decomposition Q<58‘qux =

@aePar(POEO,g) Q(_Q,O)ST with the following properties:

e The restriction of Mi_1 to Q(,G)O)ET has a unique eigenvalue exp(—27v/—1a;).
(Because the base space is the complex conjugate X — DT, the direction of the
loop is reversed.)

* G-a0)€lesx0 = Gl—a0)(E)ic;-

Similarly, let H'(E) be the holomorphic vector bundle on C;, whose fiber over
p is the space of multi-valued flat sections of (£7# Df#). We have the decomposi-
tion

H(E)= B  GranH(E)

acPar(Po€EO,L)

such that the restriction of Mi—1 to g(,a’o)HT (E) has a unique eigenvalue
exp(—2my/—1a;). For a section s of Q(,G’O)HT (E)|u, we have an expression

‘
s=> i ][ exp(—ailogz) - (logz:)™,
=1

can

where f;[n are sections of QE‘TUX - We set <I>(a 0)

(s) = f(;flUxo, and thus we obtain
an isomorphism

can f T _cf
(I)(a,O) : g(—ayo)HT(E) - g(—mo)g\c;xo = g(fa,o)(E)ICﬂ

By construction, we have the natural isomorphism Gq,0)H(E) =~ Q(_mo)HT(E)
under the identification of C} = Cj, via p = A~L. Thus, we obtain the vector
bundle SFEY) (E) by gluing G(q,0)(£) and Q(T_avo)(E). Under the gluing, we have
the relation

AN = —,ufl./\/j.
Thus, N; t(()_l) and Noo t55 give a morphism
A can can
'A/i : S(a,O) (E) - (a,O)(E) ® T(_l)

The tuple of these morphisms is denoted by IN A,
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The morphism Sy : £ ® 0*ET — Ox_p extends to QpE ® 0*QsET — Ox.
Similarly, we have Q_5€T ® 0* Qo€ — Ox+. They induce the following pairings:

g(a,O) (E) ® U*gg—a,o) (E) - OC/\v
G- 00y (B) © 0" Gla) (E) = O,
g(—&o)HT (E)® U*g(a,O)H(E) — Oc; .

They are preserved by the above isomorphisms. Hence, we obtain
S(a.,0) : S(a0) (E) ® 07555, (E) — T(0).
Theorem 12.22 of [22] implies the following.

Proposition 6.10. The tuple (ng?o)(ELNA,S) is a polarized mized twistor
structure of weight 0 in ¢ variables. O

By Theorem[4.1] a polarized mixed twistor structure induces a nilpotent orbit.
This is the reduction from tame harmonic bundles to nilpotent orbits.

Remark 21. The construction explained in this subsection is the same as that
n [22], although the notation is changed. In the tame case, Q€ is equal to the
sheaf of holomorphic sections whose norms with respect to h are of polynomial
growth order. We also remark the uniqueness in Lemma [5.20

Family version. The construction can be done for families on D, := ﬂle D;. As
in the construction of G4 y(E), we obtain the vector bundle ﬁg(a,o) (QE) on Dy :=
Cx x Dy, as the gluing of ﬁg((;\?o))(Q(’\O)é‘). They are equipped with the nilpotent
maps N; (i = 1,...,£). By applying the nearby cycle functors for R-modules
along z; (i =1,...,¢), or by a direct consideration as in Subsection 8.8.3 of [22],
we obtain the induced family of flat A-connections Dg o of 5Q(a,0)(Q€ ) for which
N are flat. Similarly, we obtain a family of y-flat bundles (£G(_q.0)(QET), ]I))T_mo)
on C, x Dg with flat nilpotent maps /\/;-T.

Let ¢ X —-D— D, be the projection. We naturally obtain a holomorphic
vector bundle H(E) on C; x Dy, whose fiber over (A, P) is the space of multi-
\Exlued flat sec‘cions~ of (5’\,]]])/\)|q_1( p)- It has the generalized eigendecomposition
H(E) = @G (q4,0)H(E) with respect to the monodromy endomorphisms around D;
(i=1,...,¢). It is naturally equipped with the family of flat connections D£,0~

By using the family of flat bundles (G(q,0)&, D£,0)> we obtain flat isomorphisms

) “Gla0y H(E) = “G(a,0)(QE)c;x -
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Similarly, we obtain flat isomorphisms
@0+ @0 H(E) = G-a.0) (9N c. v ;-

As the gluing, we obtain a variation of twistor structure (ﬁé'ﬁ O,Dﬁo) with a
tuple IV A of flat nilpotent morphisms

NP LDy — 8,0 T(-1)  (i=1,...,0).

We also have the induced flat symmetric pairing S : ﬁgﬁo ® o*%’ﬁo — T(0). By
Proposition , (ﬁé’ﬁo, NA, Dﬁo, Sa,0) is a variation of polarized mixed twistor

structure of weight 0 in ¢ variables. (See Subsection [2.4.1})

87. Prolongation and reductions in the integrable case
§7.1. Preliminary estimate

7.1.1. Statements. Let X := A" and D := {z; = 0}. Let (E,dg,0,h) be an
unramifiedly good wild harmonic bundle on X — D. For simplicity, we assume that
there exists a holomorphic decomposition

(7'1) (Eva) = @ (Euaea)
aclrr(6)

such that each 6, — da - idg, is tame. Let m, denote the projection onto E, with
respect to the decomposition ([7.1)).

Remark 22. Since (E, g, 0,h) is assumed to be unramifiedly good, such a decom-
position exists on a neighbourhood of each point of D. Because we are interested
in the behaviour around O, we may assume such a decomposition exists globally
by replacing X with a small neighbourhood of O.

Let U be a holomorphic section of End(E) on X — D such that [6,U] = 0.
Let Q be a C*-section of End(E) on X — D such that Q = Qf. We assume the
following equations hold:
(7.2) OpU —[6,9]+ 60 =0,
opQ+[0,U'] = 0.

We set U := U + ZuGIrr(é‘) am,. We will prove the following proposition in Subsec-
tions [/.1.2H7.1.0l

Proposition 7.1. U = O(1) and Q = O((—log|z1|)M) for some M > 0 with
respect to h.
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Remark 23. Eventually, we conclude that Q is bounded. (See Corollaries and
) See Corollary ﬂ for the boundedness of U/ in the case that D is normal
crossing.

We set gir(A) = exp(3_Aa - mq). Let A\g € C, and let U()\g) be a small
neighbourhood of Ag in C. Let py be the projection of U(XAg) x (X — D) onto
X — D. We consider the hermitian metric

(7.4) POVh = gir(A — Ao)*h

irr

on py 'E over U(X\g) x (X — D). We regard U and Q as C*°-sections of End(p; ' E).
We will prove the following proposition in Subsection [7.1.7}

Proposition 7.2. Assume U()o) is sufficiently small. Then U = O(1) and Q =
O((—log |z1)™) with respect to Pi(ri‘))h.

7.1.2. Preliminary. We take orthogonal decompositions ' = @ E; , = D E;
as in Subsection For any f € End(F), we have the decompositions
f:chll,b’ fap € Hom(Ey, E7),
f= famwo  faanws € Hom(F s B o).

We have similar decompositions for sections of End(E)®€?9. The following lemma
is easy to show by using Proposition

Lemma 7.1. Let f be a C*°-section of End(E) such that f commutes with 6.

e Ifa#b, we have |fg o|n = O(exp(—e|z1[*4E@=0)) - | f|, for some € > 0.
o Ifa# B, we have |f{; ) @ gln =02 - [fln for some e > 0. O

7.1.3. Step 1. Let 0; denote the dz;-component of 6.

Lemma 7.2. We have the following estimate with respect to h:
dz,
01, U] = 0() 7
LU= O\ o) !
Proof. In the following, €; denote some positive constants. We have the decompo-
sition
[01[7[/{] = Z(Qifa,b Oul/‘l,c - u;,b © gifb,c)‘

a,b,c
By the estimates in Subsection 7.2 of [23] (see Subsection [6.2), we have the fol-
lowing estimates for a # b:

01, p = Olexp(—€r|z1 7)) - dzy).
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Because U and 6 are commutative, we have the following estimate for a # b due
to Lemma [T.T}

oo = Olexp(—ez|z1|™")) - U]n.
Hence, we have the following estimate with respect to h:
07,U) = 1010 s Us, o] + Olexp(—eslza| ™) - dz1) - Ul
a

Similarly, we have the following estimates for aw # 3, by Theorem 7.2.4 of [23] and
Lemma [T T}

ey, 471 e
O e = O 25 Yo = O]

By Proposition 02;7(1)7(070) —(da+ a-dz/z) - T, is bounded with respect
to h and Poincaré metric on X — D. Hence, we obtain

e\ dZ1
[91,2/1] = Z[aif(a,a),(a,a)’u(/a,a),(a,oz)} + O(|21| ‘“’)a|u|h

a,x

dzy
=0 —— | - |{U]3. O
<|zl<—log|z1|>> 4]

7.1.4. Step 2. Let 0; denote the dZ;-components of O and 0. Similarly, let 0,
denote the dz;-component of g and 0. Then
UL, = U, 0UU)n = U, (01, Q] = 01)n = — tr(U[6], Q)) — tx(U6])
= —tr([U, 011Q) — tr(U6]).

Hence, we obtain
— dfl dzl
31/{2—0<)~L{ -9 +O()~L{.
1| |h ‘Zl|(_10g|zll) | ‘h | |h |231|N | |h
We also have

dz;

91Qf7 = —(Q, [0, U)n + (10],U], Q) = O<|Z1(_1Og|zl|)

) Ul - QI
Therefore,

— dz dz
(7.5)  BUL +128) = O(Zl) Ul - 120 + o(zl) Ul

|21/(—log |z1) B

We set r := |z and F := ([U|? + |Q|? + 1)'/2. We use the polar coor-
dinates (r,arg(z1), 22,...,2n). We consider the estimate on a simply connected
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region Z (Yo, Y1) := {¥p < arg(z1) < Y1} for some fixed Jy < ;. We obtain the
following estimate from ([7.5)):

0 1 1
ZF? @G, F? .F -0 ——— =0 —=].
or G TG F G O(r(—logr))7 G O(TN)
We take a solution H # 0 of the differential equation
0
—H=-G, - H.
or G

Note log|H;| = O(log(—logr)). Since Z(dy,v1) is simply connected, we can take
H'/?. Then we have
aﬁ(H “F2)=Gy-H-F=(Gy-HY? . (H'Y?.F).
r

Because Gy - HY/? = O(r—M1), we obtain H - F? = O(r~™2), and hence F =
O(r—Ms). Thus, we obtain the following estimates on Z (0, 1) for some My > 0:
(7.6) Ul =O(=M), |Qln = O ™).

By varying ¥ and 11, we obtain the estimates (|7.6) on X — D. In particular, we
obtain the following estimate on X — D for a # b:

Us

& = O(exp(—e|z14=)).

7.1.5. Step 3. We have [01,U'] = [01, U] + O(exp(—e|z1|~1) - dz1) with respect
to h. By an argument in the proof of Lemma|[7.2] we obtain the following estimate
with respect to h:

(77 [6nLul] = 0(|Zl( dz1

R . ~ B 1 .
10g|21|)> [U|p + Olexp(—e€lz1| ™) - dzy).

According to an estimate in Subsection 7.5.2 of [23], we have

U=0U—- > a-mq+O(exp(—elz| ™) - dz).

aclrr(6)
We set 6 := 60 — Zuehr(e) da - mq. We obtain the following estimates with respect
to h:
(7.8) U — (61, Q] + 61 = O(exp(—e|z1| ™)),
(7.9) 01 Q + [01,UT] = Ofexp(—e|z1| ™).

We set F := (|L~{\%L +1QJ2 + 1)'/2. As in Step 2, we consider the estimates on
Z(99,71). By using an argument in Subsection we obtain
O~y o~ oy o~~~ 1 - 1
—F?=G, - F*+Gy-F, G =0(——], G2=0[-).
or r(—logr) r
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We take a solution Hj # 0 of the differential equation
0

O~ G 0.
67“ 1 1 1

Note log |H:| = O(log(—logr)). By choosing ﬁll/Q, we obtain

o ~ ~ ~ o~ ~
5y L F) = (Go- H?) - (B, - F).

Because Go - ﬁ11/2 = O(r~* (—logr)Ms) for some M5 > 0, we obtain H; - F2 =
O((—logr)Ms) for some Mg > 0, and thus F' = O((—logr)™7) for some M7 > 0.
Therefore, we obtain the following estimates with respect to h:

(7.10) U=0(—logr)M), Q=0((—logr)M).

7.1.6. Step 4. By (7.10), U is a holomorphic section of Py End(E). Because
[0,U] = 0, we obtain the boundedness of ||, by an estimate in Subsection 7.7
of [23]. Thus, the proof of Proposition is finished. O

Remark 24. From ([7.7) and (7.9)), we also have the following estimate:

d21
019 =0 ———MMmM— ).
1Q <zl|<—1og|zl|>)

Hence, we actually obtain @ = O(log(—log|z1])). However, we will obtain the
boundedness later.

7.1.7. Proof of Proposition For an endomorphism f of E, we have
(7.11) [flpoor, = 1gir(A = Ao) © f © gixr (X = Xo) ™1

Hence, the claim for U is clear from [2/7 , girr(A—X0)] = 0. We have the decomposition
PoE’ = P PoEY extending E = @ E,. Let v = (v,) be a holomorphic frame of
PoEY compatible with the decomposition. Let C' be the matrix-valued function
determined by 01v = v - C - dz;. We have the decomposition C' = (Cqs) into
blocks, corresponding to the decomposition v = (v,). According to an estimate in
Subsection 7.5.2 of [23], there exists €1 > 0 such that, for a # b,

Cap = O(exp(—eq |21 =))).

Let A be the matrix-valued function determined by v = v - A. Note A is block-
diagonal, i.e., A = @ Ay q. We have (O1lf)v = v - (1A + [C, Aldz1). We set
Bdz = 1A+ [C,Aldz = (Bq,pdz1). Then there exists e > 0 such that, for
a#b,

(7.12) Bab = CapAep — Ag,aCap = O(exp(—62|zl|°rd(“_b))).
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For any section f of End(E) ® Q%9 we have the decomposition

F=Y fas: fap € Hom(Ey, Ey) @ Q0.
From the relation 01U —[01, Q]+ 61 = 0, we obtain the following equality for a # b:
(O1U)ap —01(a—0) Qap — (01,4 —010) Qap + Qa,b (B1,6 —O1b) = 0.
Note that (see Propositions and
(7.13) A(a—1b)/0z ~ |27 0, — daln = O(dz1/z1).
The estimate implies
(7.14) (01U )a6| = O(exp(—ez|21|T 7).
Due to and , there exists e3 > 0 such that, for a # b,
|Qa6ln = O(exp(—ea|z |4 ~))).

By using 1) we obtain the desired estimate for Q with respect to PAo)h, if
U(Xo) is sufficiently small. O

7.1.8. Complement for the normal crossing case. Let X := A™ and D :=
Ule{zi = 0}. Let (E,0g, 0, h) be an unramifiedly good wild harmonic bundle on
X —D. Let U be a holomorphic section of End(E) on X —D such that [,U] = 0. Let
Q be a C™-section of End(E) on X — D such that QT = Q. Assume that they satisfy
the equations and . We also assume that there exists a holomorphic
decomposition (E,0) = @ ycrye(g)(Eas Ua) such that each 6, —da-idp, is tame. Let
m, denote the projection onto E, with respect to the above decomposition, and
set U :=U + 2 actin(0) @ Ta-

Corollary 7.1. U is bounded with respect to h.

Proof. This follows from Proposition 7.1 above and the estimate in Subsection 7.7
of [23]. O

§7.2. Prolongation of a variation of integrable twistor structure

7.2.1. Statements. Let X be a complex manifold, and let D be a simple normal
crossing divisor of X. Let (€ A,]ﬁ)A‘, S) be a variation of pure polarized integrable
twistor structure of weight 0 on P! x (X — D). We have the underlying harmonic
bundle (E,0g,0,h) on X — D.
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Definition 7.1.

e We say that (SA,fDA,S) is tame (wild, good wild, unramifiedly good wild) if
(E,0p,0,h) is tame (wild, good wild, unramifiedly good wild).

e If we are given a real structure x of (€2,D%,S), we say that the variation of
polarized pure twistor-TERP structure (£2, lﬁ)A‘, S, k,0) is tame (wild, good wild,
unramifiedly good wild) if (EA,]EA,S) is tame (wild, good wild, unramifiedly
good wild).

Note that “wild” does not imply “good wild” as remarked in Remark [I9]

Assume that (E,0g, 0, h) is good wild. We will show the following proposition
later. (The tame case was shown in [13].)

Lemma 7.3. The sets KMS(PEL, i) are contained in R x {0}.

We use the notation in Subsection[2.1.7] As explained in Subsection (€,D)
is prolonged to the family of meromorphic A-flat bundles (Q&,D) on Cy x (X, D),
and (£, D) is prolonged to the family of meromorphic u-flat bundles (QET, DT)
on C, x (X, D).

Theorem 7.1.

o D/ (resp. D) gives a meromorphic flat connection of QE (resp. QET).
o If a real structure k of (EA,ﬁ)A,S) is given, ko : YV*ET ~ £ extends to an
isomorphism v*QEY ~ QE. Similarly, koo : v*E ~ EV extends to v QE ~ QET.

For the proof of Lemma and Theorem [7.1) we may and will assume (i) D
is smooth, i.e., £ =1, (ii) (E,dg, 0, h) is unramified.

Remark 25. Such a prolongment was studied in [I3] for the tame case, which can
be done without an estimate as in Proposition 7.1

Remark 26. As a result of Lemma p(\,u) for u € KMS(PEL,i) is indepen-
dent of A. Thus, we obtain a family of good filtered A-flat bundles (Q.&,D) on
Cxx (X, D). Similarly, we obtain a family of good filtered y-flat bundles (Q.ET, D)
on C, x (X, D).

7.2.2. Meromorphic connection on PA0)E. Let \g € Cy, and let U()\g) be
a small neighbourhood of Ay in Cy. We set X(*0) .= U(X) x X and DRo) =
U(Xo) x D. Recall that we have a family of meromorphic A-flat bundles (P(*0) D)
on (X(0) D)) “as explained in Subsection Note that P*0) € is identified with

the sheaf of holomorphic sections of £ of polynomial order with respect to Pi(rio)h,
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because Pi(rio)h and PPk are mutually bounded up to polynomial orders. (See
l} for PO h, They are different in general.)

rr

Proposition 7.3. D/ gives a meromorphic flat connection on PAOE.

Proof. We have only to show A2V (9y)PP0)g ¢ PPo)E. As mentioned in Subsec-
tion we have the induced holomorphic section ¢ of End(E) on X — D such
that [0,U] = 0, and the C™®-section Q of End(E) such that Qf = Q, determined
by

dA

N

where dy denotes the naturally induced flat connection on pglE along the A-

direction. They satisfy the equations ((7.2)) and (7.3).
Let v = (vq) be a holomorphic frame of PyE® compatible with the decom-

Va=dx+ MU —-Q—-ub

position PoE® = P, Po&. Corresponding to the decomposition v = (vg), the

identity matrix is decomposed into € 0) I,. We regard v as a C°°-frame of

aclrr(
5|X<A0>_D(AO>, and we set

v =gin(A— o) lv=10- ( @ exp(—(A — o) @) - Iu>.
aclrr(0)

Let H (Pi(ri‘O)h, v) denote the Hermitian matrix-valued function whose (4, j)-entry

is given by P(’\O)h('ﬁi, 0;). Then it is clear that H (7?.(’\0)h7 v) and its inverse are of

rr rr
polynomial order. We also have the following relation:

v =74, A:=-Pad\ I,

Let w be a holomorphic frame of P &. Let H (P~(>‘°)h, w) denote the Hermi-

tian matrix-valued function whose (4, j)-entry is Pi(r?‘)) h(w;,w;). Then H(Pi(;;o)h, w)
and its inverse are of polynomial order. (See Subsection 9.1.2 of [23], for example.)
Let G be the matrix-valued function determined by w = ¥ - G. Then G and G~!

are of polynomial order. We have
dw =7 (AG+d\G) =w- (G AG + G71d\G).

Since ¥ and w are A-holomorphic, G is A-holomorphic. Hence, dyG and G~ A G+
G~1d\G are of polynomial order.

Let B be determined by A2V (9))w = w - B. Then B is of polynomial order
due to Proposition[7.2] and hence meromorphic. Thus, the proof of Proposition [7-3]
is finished. O
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We have the irregular decomposition

(715) (PéAO)87D)|ﬁ<)\0) = @ (Pzg,)\())ga:ﬁa)'
a€lrr(6)

Lemma 7.4.

o A2V, (0y) preserves the decomposition ((7.15)).
o If )y #0, then 1D is the irreqular decomposition for (P(AO)E,HNJ)JC), and P €
is an unramifiedly good lattice of PA0)E.

Proof. Since this can be shown by a standard argument, we give only an outline.
Let © = (v,) be a frame of 73,1)\0)5@ compatible with the decomposition lj Let
A =73 Ay be determined by A2V (9x)8 = 5+ A. For a # b, let Fy o : PV E, —
éAO)gb be given by Fy (Uq = Up - Ap.q. Because [A2V(0y),Df] = 0, we deduce
that Fy o is flat. However, such a flat section has to be 0 in the case b # a. Thus,
we obtain the first claim.
Let us show the second claim. Let B, be determined by

]D)f(zlal)ﬁu = %u . ((/\71 +X0) . 2’181CL+ Bu).
Then B, is regular. For a = 0, the following holds:
)\28)\30 + AO’O Bo - BO AO,O — 2161140,0 =0.

We have the expansions By = )~ Boym 21" and Ago = >,,~ n Ao,0im 27" We
assume N < 0 and Ag o,n 7# 0. We obtain the relation [Bo.o, Ao,o;_N] —NAgon =0
on D). Note that the eigenvalues of By, are of the form A~'e(\, u), where
u € KMS(PE®) and a — 1 < p(Ag,u) < a. This implies that the difference of two
distinct eigenvalues of By,p cannot be N. Therefore, we obtain Ay o.x = 0, which
contradicts our assumption. Hence, N > 0.

Let d denote the exterior derivative on X(*0). By considering a twist with
a meromorphic flat line bundle given by Ve = e - d((A™' + Xg) a), we find that
Df =Df + Vy on POIE 5, is of the form

D/ = @ (d«)‘_l +X0) a) + D;(Ao)g’a)a
aclrr(6)
where ]ﬁD;; (o) £ o ATC logarithmic with respect to ’P()“’)Ea. Thus, the proof of Lemma
[T4 is finished. O

7.2.3. Proof of Lemmal|7.3]and Theorem[7.1l By Lemmal7.4] the eigenvalues
of Res(D/) on 7315’\0)6]@@0) are constant. On the other hand, the eigenvalues of
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Res(D/) = Res(Df) on PZSAO)EW@O) have to be of the form A\™law — a — \& for
(a,a) € KMS(PE®) by Lemma Hence, a = 0 for any (a,a) € KMS(PEY),
i.e., KMS(PE®) C R x {0}. Thus, Lemma [7.3]is proved.

Let us show Theorem The first claim follows from Lemma Propo-
sition [7.3] and the definition of Q& in Subsection [6.3.3 To show the second
claim, we remark that x is flat and preserves the pluri-harmonic metrics for
(E4,D?,8) and *(£%,D%,S). We also remark that we have only to con-
sider the case in which D is smooth. We have Irr(D* Q&) = Irr(f) and
Irr(Df*, Q€YY = Trr(0T) = {@ | a € Irr(0)}. Hence, we have the natural iden-
tification Irr(D*, Q€*) = Irr(v*D, 4*QETY). Since the full Stokes filtrations are
characterized by growth order of the norms of flat sections with respect to the
pluri-harmonic metrics (Proposition , the full Stokes filtrations are preserved
by x. Thus, the second claim of Theorem follows from Lemma [5.18 O

Remark 27. Because CMS(PE®) C Rx {0}, it turns out that any \ # 0 is generic,
which we will use implicitly.

§7.3. Reduction from wild to tame

7.3.1. Construction of the reductions. Let X := A" and D := Ule{zi = 0}.
Let (€4, HS)A7 §) be an unramifiedly good wild variation of pure polarized integrable
twistor structure of weight 0 on P! x (X — D). We have the underlying harmonic
bundle (E,dg, 0, h). We take an auxiliary sequence M = (m(0), m(1),...,m(L))
for Irr(6) as in Subsection 5.2.1.

For each a € Irr(6,m(0)), we obtain the variation of pure polarized twistor
structure Gr:ln(o)(é'A7 D%, S) by taking Gr with respect to Stokes filtrations on the
level m(0), as explained in Subsection By Theorem and Lemma it is
enriched to integrable Gr;“(o) (EA,ﬁA,S). If a real structure x of (SA,ﬁA,S) is
given, kg and Ko preserve the Stokes filtration on the level m(0), which follows
from Theorem [7.1] and Lemma [5.3] Hence, we also have the induced real struc-
ture Gr:‘n(o)(li) of GrT(O)(EA, I[N))A7 S), and we obtain a pure polarized variation of
twistor-TERP structure Gr™® (€4, DA, 8, k,0) for each a € Irr(D, m(0)).

Applying the above procedure inductively, Gr™") (€4, D4, S) are enriched
to integrable Gr;"(j)(é’A,ﬁA,S) for any a € Irr(6,m(5)). (See the argument in
Subsection ) If a real structure x is provided, the reductions are also equipped
with induced real structures, and we obtain a variation of twistor-TERP structure
Gr;”(j)(EA,HN))A,S, k,0). In the case m(L), we use the symbols Grﬂ”“(SA,]ﬁ)A,S)
and Grflun(EA, D2, S, k, 0). They are called the full reductions.

For any a € Irr(¢), we have the harmonic bundles L(—a) as in Subsection [6.4]
The associated variation of polarized pure twistor structure is also denoted by the
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same symbol L(—a). As explained in Subsection m it is naturally enriched to
a variation of pure twistor-TERP structure of weight 0. The underlying harmonic
bundle of Gr'''(£4,D4,8) ® L(—a) is tame for cach a € Irr(). This procedure
is the reduction “from wild to tame” in the integrable case. We have a similar
reduction in the twistor-TERP case.

7.3.2. Approximating map and estimate of the new supersymmetric
index. Let (£2,D%,S) and (E,0g,0,h) be as above. Let 5[@175A denote the A-
holomorphic structure of £2.

One step reduction. By the one step reduction in Subsection we have
obtained the unramifiedly good wild variation of polarized pure integrable twistor
structure

(&5.D5So) = P Gr0ER DAS).
a€Trr(0,m(0))
Let (Eo, g,, 00, ho) be the underlying harmonic bundle. Let 05, g2 denote the A-

holomorphic structure of EOA . We fix a hermitian metric gp1 on Q%ll EBQ;,’P (2{0, 00}).
We will prove the following proposition in Subsection [7.3.3}

Theorem 7.2. There exists a C*°-map P : EOA — &% such that the following
holds for some € > 0 with respect to hg and gp::

d*S - Sy = O(exp(—~s|zm(0)|))7

(7.16) = 0
By g (S — So) = Ofexp(—elz™O))),
(7.17) *V, — Va0 = O(exp(—e[z™))).

In fact, the estimates can be improved to O(exp(—e(|A| + [A71])[z™0)])). We
give a consequence. Let Qy denote the new supersymmetric index of (SOA , ID)OA ,S0).

Corollary 7.2. We have the following estimates for some e > 0 with respect to hg:
|9*h = holn, = Olexp(—e[z™ ), [#*Q = Qoln, = O(exp(—e|z™))).
Proof. This follows from Lemma [2.9 O

Full reduction. By taking the full reduction in Subsection [7.3.1} we have ob-
tained the unramifiedly good wild variation of polarized pure integrable twistor
structure

(E0.DP,S) = P GelM(EnDAS).
a€lr(9)

Let (E1,0g,,01,h1) be the underlying harmonic bundle, and let Q; denote the
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new supersymmetric index for (51A , ]D)lA). By applying Theorem and Corollary
inductively (see Subsection for an inductive use), we obtain a C'°°-map
(OIS 51A‘ — £ such that the following holds for some € > 0 with respect to hy:

|9h — |, = O(exp(—e[z™ ), [2]Q — Qiln, = Ofexp(—e|z™)])).

Note that the new supersymmetric index is unchanged after taking the tensor
product with L(—a). (See Subsection [2.2.1]) Hence, the study of the asymptotic
behaviour of the new supersymmetric mdex reduces to the study in the tame case,
up to decay with exponential orders.

7.3.3. Construction of an approximating map. We assume that the co-
ordinate is as in Remark for the good set Irr(f). Let k be determined by
m(0) € ZE) x 0y_k. Let \g € Cy. Let U(\g) denote a small neighbourhood
of Ag. We set X(A0) := U(\g) x X and D) (<E) := U(A\g) x D(<k). We also use
the symbol Dg)‘O) in a similar meaning. We set W := D) (<k) if \g # 0, and
W = DO (<k) U ({0} x X). Let o : C, — C, be given by o(\) = —\, which
induces an anti-holomorphic map Cy x X — C, x XT. We set X (=R0) .= g (X)),

From (E,dg, 0, h), we obtain the vector bundle PSAO)S on X0 with a mero-
morphic flat connection Df := D/ + V. Similarly we obtain Pé/\‘))é'o with ]ﬁ)g =
]D)(J; + Vo from (Eg, g, , 00, ho).

We also obtain the vector bundle 73((,“0)5 T with the meromorphic flat connec-
tion D/ = DI/ + V, on X o) from (E,dg,0,h), and the vector bundle Pé”")é'g
with the meromorphic flat connection ﬁ%f = ]D%f + V0 from (Eo, dg,, 0o, ho).

Let D<y denote the restriction of D to the (21, ..., zx)-direction.

Preliminaries. Let S be a small multi-sector of X*) — W. By Proposition
we can take a D<-flat splitting

Ao)gl @ P(Ao)g

aclrr(6)

of the Stokes filtration on the level m(0) such that the restrictions to D§A°) ns
(j =k+1,...,¢) are compatible with Res;(ID) and the filtrations IFQ0) Tf Ny # 0,
we may assume that it is Df-flat by Proposition and Lemma (Note that
the Df-flatness implies the compatibility with the residues and the parabolic filtra-

~

tions.) By construction of Gr™© it induces an isomorphism (Pé/\‘))é'o, Do,gk)‘g =
(73((3‘0)5 D<) 5. Let % (p=0,...,m) besuch isomorphisms. Let a, (p = 0,...,m)
be non-negative Coo—functlons on S such that (i) > a, = 1, (ii) d;a, and dxa,
are O(|A|~ CHi:l |2;]=C) for some C' > 0. We set ®g := Y a, ®%. We also set
G:= (DY)t odg and GP := (®L) "' o DL,
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Lemma 7.5. We have the following estimates with respect to hg for some € > 0:

(7.18) G? —id = O(exp(—e[A"12™O)|)),
(7.19) (@)1 0 (A2V2(9h)) 0 BL — A2V 0(8x) = O(exp(—e[A~1z™O))).

Proof. Let G be the left hand side of (7.18)) or ([7.19). It is flat with respect to Do <,
and strictly decreases the Stokes filtration on the level m(0). Moreover, g\DQO) s
preserves the filtrations F(*) and the residues Res;(D) for j = k+1,...,¢. Then
we obtain the desired estimate by using the estimate in Subsection 9.3 of [23]. (It

is also easy to show it directly.) O
Hence, we have |G — id |, = O(exp(—e|]A712™O))). We set ®5V)\(0y) =
0 (VA(0y)) o 5. We use the symbol ($2)*V,(9,) in a similar meaning. By
the previous lemma, we have the following estimate for some ¢ > 0 with respect
to ho:
(2%)"VA(92) — Va0(9x) = Olexp(—¢[ A~ z™O))).

Lemma 7.6. The following estimate holds for some € > 0 with respect to hy:
DEVA(O) — Vao(d2) = O(exp(—e A~ 2™0))).

Proof. We have the following equalities:

(7.20) @gw@) — V0(8))

)

(
= (5" 0 ®%) 0 (BL)* V5 (9r) o ((2%) ' o dg) — Vi,0(0y)

=G! (( 0)*V)\(8)\) Vi o(aA))OG+G71OvAvo(aA)OG—V,\’o(a)\)
=G o ((B%)*Va(9r) = Vao(Dr) 0 G+ G- (Va0(00)G).
Moreover,
Oap. GP = %. P _id) = —el\—1,m(0)
V0(0x)G = Z I\ (GP —id) = O(exp(—€|A™ "z ).
Thus, we obtain the conclusion. O

Assume we are also given morphisms on multi-sectors o(S) of X H(=20) wt,
ity (PUNELDY) ) — (PUNELDY 5 (¢=0,...,m),

induced by ]DDJ[S w-flat splittings of the Stokes filtration on the level m(0) such that

the restriction to o(S) N DT( 2o0) (j=k+1,...,¢) is compatible with the residue

Res;(D') and the filtration IF(=20) Tf ) = 0, we may assume that the splittings
are Df-flat. Let b, (¢ =0,...,m’) be non—negative C*°-functions on o(S) satisfying
similar conditions for a,,. We set <I> =0 <I>a( )
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Lemma 7.7. Set H := So (s ® O'*(I)l(s)) — Sp. Then we have the following

estimates with respect to hy for some e > 0:

H = O(exp(—e/A"1z™O)), 8 H = O(exp(—e|A~tz™O)))),

£8Pt

Proof. We set Hy, := So (?¢ ® a*@i?s)) — 8. According to an estimate in
Subsection 11.4.2, we have

Hyq = Oexp(—e]A12™0)))

with respect to hg for some € > 0. We also have 586 p1Hpq = 0. Thus, the claim
follows. O

Construction. We take a compact region I of Cy such that the union of the
interior parts of K and o (k) covers P'. We take a covering of

(K x X) = ((K x D(<k)) U ({0} x X))

by multi-sectors S; (¢ = 1,..., N) such that S; are sufficiently small as in Pre-
liminaries above. Then P* = |JS; U |Jo(S;). We take a partition (xs,,Xo(s,) |
i=1,...,N) of unity on P! subordinated to this covering. We assume that d;xs,
and Oy xs, are O(|)\\_C~Hf:1 |z;| =€) for some C' > 0. We assume similar conditions

for 0jxo(s,) and O, Xo(s,)-
For each S; ¢ X(*0) — W, we take isomorphisms
®s, : (P V€0, Do) s, = (P €. D),
EY -
(I)L(Si,) : (’P(g 0)53’]1])8)'0(?1,) ~ (’P(g 0)5T’DT)IU(§i)

induced by D<-flat or ]D)TS o-flat splittings of Stokes filtrations as above. If Ag # 0,
we assume D7-flatness and D f-flatness. We set

N N
P = Z XSi(bSi + Z Xg(si)‘ba(siy
i=1 =1

It is easy to check that ® satisfies the desired estimates (7.16|) and (7.17)), by
using Lemmas [7.6] and [7.7] Note that a D-flat splitting of the Stokes filtration of
’P(’\O)€|§ on the level m(0) naturally gives a D-flat splitting of the Stokes filtration

of PXo 1)5‘%, on the level m(0), where S’ is the corresponding multi-sector of

xt0ah - W, which follows from the characterization of the Stokes filtrations by
the growth order of the norms of flat sections. Thus, we obtain Theorem O
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§7.4. Reduction from tame to twistor nilpotent orbit

7.4.1. Reduction. Let X := A", D; := {2 = 0}, D := |J'_, D; and D, =
ﬂle D;. Let (€4, ]]S)A, S) be a tame variation of pure polarized integrable twistor
structure of weight 0 on P! x (X — D). We have the underlying harmonic bundle
(E,0p,0,h). As explained in Subsection we have the limiting polarized mixed
twistor structure (Sg%3(E), N, Sa,0) associated to (E,dp, 0, h). We also have the
variation of polarized mixed twistor structure (ﬁé’ﬁ 0 IV A ]D)ﬁo, Sa,0) of weight 0

in £ variables. Hertling and Sevenheck observed the following (see [13]).

can

Proposition 7.4. (S5 (E), N,Sa,0) can be naturally enriched to an integrable
one (S0 (E),V,N,Say0). Similarly, (55ﬁ07NA,DaA70,Sa7O) can be naturally en-
Ll 0, N2, D5 o, Sa)-

riched to an integrable one ( .0’

If (EA,ﬁ)A,S) has a real structure K, the enrichments are also equipped with
induced real structures. O
7.4.2. Approximating maps. For 0 < R < 1, we set

X*(R) :={(z1,..-,2n) | 0< |z| < R, i=1,...,n},

Dy(R) :={(ze41,---,2n) | |2| < R}.
By the natural projection X*(R) — Dy(R), we regard X*(R) as Dy(R) X
{(21,...,2¢) | 0 < |z;] < R}. Due to Theorem we have the integrable twistor
nilpotent orbit TNIL(£2,, D5 o, N, Sa0) on X*(R) for some R. Thus, we obtain

a,00 a0
a tame variation of pure polarized integrable twistor structure:

(E8, D5, Sp) = P  TNILES, DLy,
acPar(PoEY,L)

(See Subsection for L(a).) We have the underlying tame harmonic bundle
(EOa 5E(J ) 603 ho) = @(Eaa gaa oaa ha)

N, Sa,O) ® L(a)

We would like to explain that we can approximate the original (£ A,ﬁA,S) with
(€52 D5, So).

Let 5]},,1’5[)& denote the A-holomorphic structure of SOA . We fix a hermitian
metric gp1 on Qg,’ll @ Q;,’lo(2{07oo}). For a permutation o of {1,...,¢} and for
C > 0, we set

Z(0,C) :={(z1,...,2n) € X"(R) | |zg(i,1)|c < ‘ZU(Z-)|, i=1,...,0—1}

If we take a sufficiently large C' > 0, we have X*(R) = (J, Z(0,C). For any
e > 0, we set Ag(e) := Ele |z;]¢. We will prove the following statement in Sub-
section [T.4.3]
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Theorem 7.3. There exists a C>®-map P, : EOA — £ such that the following
estimates hold for some € > 0 with respect to hg and gp on Pt x Z(o,C):

@23 — 80 = O(A0(€)), 6P17g$ (CDZS — 30) = O(A0(€)),

(7.21)
OIVN—Vio= O(Ap(e)).

Before going into the proof, we give a consequence. Let Qp and Q denote the
new supersymmetric indices of (SOA,ID)OA) and (£4,D%). By using Lemma we
obtain the following estimates on Z(o, C') for some € > 0 with respect to hy:

(7.22) [@5h = holn, = O(Ao(e)),  |25Q = Qolny = O(Ao(e))-

Corollary 7.3. The eigenvalues of Q and Qg are equal up to O(Ag(€)) for some
e> 0.

Proof. By using (7.22)), we obtain the estimate on Z(o,C). Because X*(R) =
U Z(0,C), the claim of the corollary follows. O

We also give a more rough but global estimate, for which the proof is much
simpler. For M > 0 and € > 0, we set

L L

A(M,e) := H(—10g|zi|)M Z |2:]°.

i=1 i=1

Theorem 7.4. There exists a C*°-map P : EOA‘ — E% such that the following
holds for some € > 0 and M > 0 with respect to hg and gp::

D°5 — 8y = OA(M,€)),  Byu g (B*S = Sp) = O(A(M, ),

(7.23) *V) — Vo = O(A(M,e)).

Note that ®*h and hg are mutually bounded up to log order, which follows
from the weak norm estimate for acceptable bundles. (See Lemma below.)
Hence, we obtain the following estimate for some M’ > 0 and ¢ > 0 by using
Lemma 2.8

|2*Q — Qoln, = O(A(M', €)).
In the one-dimensional case, the estimates in the two propositions are not so

different. We also remark that @, in Theorem|7.3|also satisfies the estimates (7.23).

7.4.3. Proof of Theorem For the proof, we have only to consider the case
that o is the identity. We use the symbol Z(C) instead of Z(id,C). Instead of
considering X*(R), we will shrink X around the origin.
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Decomposition. For any subset I C £, let m(I) be determined by the condition
m(I) := min{m € I|m + 1 ¢ I}, in other words, {1,...,m(I)} C I but m(I) + 1
¢ 1. Let g : Par(PoE0,£) — Par(Po€’, 1) and 1y : Z¢ — Z™D be the natural
projections. Let A\g € Cy. Let I denote a small neighbourhood of Ay in Cy. We
set X := IC x X. We use the symbols D;, Dy, D, etc., in similar meanings.

We have the induced filtrations ‘F (i € I) of Qu&p,. For any i € I, we
have the residue endomorphisms Res; (D) on ! Gry(Qo€|p, ), which have the unique
eigenvalues —b;-\. Hence, the nilpotent part N; is well defined. For i < m([I), we set
N (i) := 37, <; Nj. Recall that the conjugacy classes of NV(i)|(»,p) are independent
of (A, P) € Dy (Lemma 12.47 of [22]). By considering the weight filtration of N (i),
we obtain the filtration W (i) of 'Gry(Qo&|p,) indexed by Z in the category of
vector bundles on Dj.

Lemma 7.8. We have a decomposition

(7.24) Q05|X = @ Ua,k
acPar(PoE,L)
kez!

with the following property:
e For any subset I C £, b € Par(Po&°,I) and h € 7 | put

IUb7h: @ Ua,k: and IUb: @ IUb,h.

aeqfl(b) hezm )
ker, ;) (h)

Then, for any c € R,

(7.25) B Vo, =[] 'Fe.(Q€p,)-

b<c iel

Moreover, the following holds for any n € Z™Y) under the identification IUb|’D,

~ IGryp(QoE) induced by (7.25):
@ "Uynip, = ﬂ Wi, (i) (! Gro(Qo€)p,))-

h<n 1<i<m(I)

Proof. Although this is essentially Corollary 4.47 of [22], we recall an outline for
later use. The theorems and the definitions referred to in this proof are from [22].
By Theorem 12.43, the tuple (°F, N(j) | i, € £) is sequentially compatible in the
sense of Definition 4.43. Hence, ("F,W(j) | 4,7 € £) is compatible in the sense
of Definition 4.39, as remarked in Lemma 4.44. By Proposition 4.41, there exists
a splitting of ("F,W(j) | 4,j € £) in the sense of Definition 4.40. By applying
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Lemma 2.16, we can take a frame compatible with splittings. It is easy to take a
decomposition as in (7.24) by using such a compatible frame. O

Let (Q&4,D) be the prolongment of (Eg,0q,0a,hq). Similarly, we have a
decomposition

(7.26) Qolajx = @ Uo,a.k

keZt

satisfying a similar condition. By our construction of (50A ,ﬁ)OA ,Sp), we are given
an isomorphism, for each a € Par(Py&?, Y1),

Va : £Grqa(Q0€) ~ Qo&aip,-

Lemma 7.9. We may assume that v is compatible with the decompositions

Dr Vo,akp, and Dy Uq kD, -

Proof. In Proposition 4.41 of [22], the construction of a splitting is given in a
descending inductive way, and we can take any splitting of £ Grq (QE) of the fil-
trations W(j) (j = 1,...,£) at the beginning. Thus, we obtain the conclusion.

O

Let vq k denote the induced map Up o,k D, =~ Uqa kD, -

Norm estimate. We recall the norm estimate for tame harmonic bundles. We
take a C°°-frame h;k of Uqg  in 1) We set

L
1 —2a; i—kj—
h, = By g [T 125172 (— log ;)% ~Fo-
j=1

¢ -1 “loglz;] \M
—tn Tl TL( S L) o
’kpl;[l ? E —log|zj 1]
We formally set ko := 0.) We obtain a C°°-hermitian metric h(!) = A on
( a.k
Q& x—p- Theorem 13.25 of [22] implies the following lemma.
Lemma 7.10. h and hV) are mutually bounded on K x Z(C). O
An estimate

Lemma 7.11. Let f be a holomorphic endomorphism of Qo&y satisfying the fol-
lowing conditions:

e It preserves the filtrations 'F (i =1,...,/).
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e For each b € R!, the induced endomorphism 'Gry (f) of ®q1(a):b Qo&a|p, pre-
serves the weight filtrations W (j) (j =1,...,m(I)).

e For each a € RY, the induced endomorphism éGrg(f) of Qo€aip, 15 0.
Then | fln, = O(Ao(€)) for some e >0 on K x Z(C).

Proof. We take decompositions (7.26) for any a. Applying Lemma-to 2, O0a,
Oa,ha) with the decomposition 1.] we take a C°°-hermitian metric h(()l =

@h&hk on Qo€ x—p and hé ) = @h(lt)l on Qo€ x—p as above. We have the
decomposition

f= Zf(a,k),(a’,k/)v fla.k),(a' k) € Hom(Up ar k, Uo.a k)

We have only to show

(7.27) | fta.k).(ar k)]0 = O(Ao(€))

for any (a,k) and (a’,k’) on K x Z(C). Note that the induced metrics on
Hom(Up,a k' Uo,a,k)|x—p are of the form

-1

—log |z;| ik Y
7.28 z;[Haitay) < 2 —log |z¢])keHe,
(728)  gan, H| e I (ppty) el
where g(q.k),(a’,k") are C°-metrics on Hom(Up g/ k', Uo,a,k) Over X.
(I) Let us consider the case a # a’. We define

Io={ila;>a}}, I1-:={ila;<a}, Io:={i|a;=a}.

Let m be the number determined by {1,...,m} C Iy and m + 1 ¢ Iy. Since
the parabolic filtrations are preserved, we have f(q4 k), (a’,k)p;, = 0 for any i € I.
Hence, there exists a holomorphic section f(’akk) (@’ k) of Hom(Up o/ k', Uo,a,k) such
that

(7.29) fak) @) = Ha k)@ ) H i
el
We have the following inequality for some € > 0:
(7.30) H || it H |z "t < H 12i|€ < |2Zm41 ]
il iel_ i€l Ul

Let us consider the set S = {p < m | k, > k,}. If S is not empty, let p be
its minimum. Note that k; < ki for any ¢ < p and k, > k;, by our choice.
Since the weight filtrations W(j) (j = 1,...,p) are preserved on LGr?, we
have f(/a,k:),(a’,k’)|D£ = 0. Hence, there exist holomorphic sections ft’f(a7k)7(a/7k,)
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(t=1,...,p) of Hom(Up q k', Up,a,k) such that

p
(7.31) Flak) (k) = Zzt S ake) (@ k)
t=1

We remark that for any ¢t < p,

,k’,
—log |z J s
(7.32) |Zt|H< e ) (— log |z¢|)*e*e

10g [27+1]

£—1

. _10 Z5 kj_k‘; Y
<|zt|H0’“ . H(gH) (—log |z}~ = O(|=4]/2).

—log [zj41]

By using 1»1; we obtain |f(a,k) (a0 =37 O0(]z|V?)=0(Ao(1/2)).

If S is empty, we have k; <k for j =1,...,m. Hence,

-1 —k’
—log |z 7 ke—k)
(7.33)  |zm41| ( 4 (—log [z¢])™ "
N ey
-1 ki—k'
el TTE5 ™ T (S2EEBLY Clog eyt = Oz
= —log|zj 1] m
j=1 j=m+1 I+

By using (7.28)—(7.30)) and (7.33)), we obtain (|7.27]).

(IT) Let us consider the case a = a’. By the third assumption on f, there

exist holomorphic sections f; o, (k,k) of Hom(Up gk, Uo,a,k) such that

¢
(7.34) flak) (ak’) = Z 2 fia, (k')

i=1
Let us consider the set S = {p | k, > k}. If S is not empty, let p be its minimum.
Note that k; < ki for any ¢ < p and k, > k;, by our choice. Since the weight filtra-

tions W(j) (j = 1,...,p) are preserved on 2Gr’, we have fi.a,(kk')D, = 0. Hence,
there exist holomorphic sections ft/,i,a,(k,k/) (t=1,...,p) of Hom(Uio’a}k/, Uo,a k)
such that
P
(7.35) fia (k') = Zzt : ft/,i,a,(k,k’)'
t=1

By using |j and 1) we obtain |fi7a,(k,k/)|hém = 0(Ao(1/2)).

If S is empty, we have k; <k for j =1,..., /. Hence,

— _kg_ ,
(7.36) H( —log || > (—log |ze])¥~* = O(1).

log |2j41]
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Consequently, |f; a, k.|, = O(1). By using 1) we obtain 1) Thus, the
lemma follows. ’ O

Local isomorphism with a nice property

Lemma 7.12. There exists a holomorphic isomorphism
i+ Qolojx — Loélx

with the following properties:

e [t preserves the filtrations 'F (i = 1,...,f).

e For each b € R, the induced map @ql(a):b Qo&alp, — IGrf(Qoé’mI) preserves
the weight filtrations W (j) (j = 1,...,m(I)).

e For each a € RY, the induced map Qo&aip, — 4Gr§(Qo<€|D£) is equal to V.

Proof. We take decompositions ([7.24) and (7.26]) as in Lemma We take an

isomorphism Vg k : Up.a.k = Uak such that vy gp, = Va k. We set @ 1= Vq k.

It is easy to check that ®x has the desired property. O

By the norm estimate (Lemma|7.10), ®x and ®;.' are bounded on K x Z(C).

Lemma 7.13. We have the following estimate for some € > 0 with respect to hg
and gpr on KK x Z(C):

(737) q)]*CV)\ - VA,O = O(Ao(e))

Proof. We put F := ®5V(A20y) — Va0(A?0y). Tt is easy to observe that F
satisfies the conditions in Lemma [7.11] Hence, the lemma follows from Lemma

[C11l O
Let ®x and @} be morphisms as in Lemma We set G := &' o ¥

Lemma 7.14. We have the following estimates for some € > 0 on KL x Z(C):
|G —id[n, = O(Ao(€),  [Va0(A?0x)Gln, = O(Ao(e)).
Proof. We have only to apply Lemma to G —id and V, ¢(A\?0,)G. O

Let o : Cy — C, given by o()\) = —\. The induced map C) x X — C, x X|
is also denoted by o.

Lemma 7.15. We can take a holomorphic isomorphism
T . T T
o)+ Q<oojo() — L<oblo ()

satisfying the conditions: (i) it preserves the filtrations ‘'F (i = 1,...,£), (ii) the in-

duced morphisms on 'Gr" | preserve the weight filtrations W) (G=1,...,m(I)),

F

(iii) the induced morphism on £Gr’, is equal to the given one.
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Proof. This can be shown by the argument in the proof of Lemma [7.12] More
directly, we have the isomorphisms Q<553|0(X) ~ 0*(Qo&yjx)" and Q<55|]:7(X) ~
0*(Qo€x)", and o*(Px)" satisfies the conditions.

Lemma 7.16. Let O and @Z(K) satisfy the above conditions. Set
H:=8) = S(@x @ 0! 1)) : Qolojx @ 0*(Qes€] (1) = Ox-
Then H = O(Ao(€)) with respect to hg for some € >0 on K x Z(C).

Proof. 1f @L(K) is given by o*®Y., we have H = 0. Hence, we have only to show
that the property is independent of the choice of @L(K).

Let (I)ZT o(K) (i = 1,2) be as in Lemma m Note that h and hy are mutu-
ally bounded through <I>J{ (k) On o(K) x Z(C). By using Lemma , we obtain

@I,U(K) - @;,U(K) = O(Ao(e)) for some € > 0 with respect to h and hg. It follows
that S o (P ® a*(cb‘; oK) — <I>; U(K))) = O(Ap(€)) with respect to hg. Thus, the
proof is finished. O

Local C*°-isomorphisms. Let ®}. (p =0,...,m) be as in Lemma and let
ap (p=0,...,m) be non-negative C*°-functions on K such that )" a, = 1. We set
D = Y " ap Py We also set G = (BF) ™ o @ and GP := (PR)~' o B} By
Lemma [7.14] |G? —id |5, = O(Ag(€)), and hence |G — id |, = O(Ag(€)) for some
e>0on K x Z(C).

Lemma 7.17. The following estimate holds for some € > 0 with respect to hg on
K x Z(C):
it 0 VA(A20)) 0 D — Vi 0(A205) = O(Ao(e)).

Proof. We have the following equalities:

(7.38) @' 0V 0(dh) 0 P — Va0(0n)
= (P 0 ®F) 0 (D) 0 Va(r) 0 (BR) o ((BR) ™" 0 Px) — Vi 0(Dn)
=G o ((PL)*VA(0x) — Va0(0r)) 0 G+ GV, 0(01)G.

By Lemma [7.13] (®%)*V(A20)) — Vx,0(A20)) = O(Ag(€)). We also have
Oa
2 _ 2 P p —
Vao(0)G = 3RS (G — id) = O(Ao(0))

Thus, we obtain the lemma. O]

Let @L?,C) (g=0,1,...,m’) be as in Lemma and let b, be non-negative

C*-functions on ¢(K) such that Y b, = 1. Put D) k) = by <I>L‘(IS).
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Lemma 7.18. Set H := §(Px ® U*((I)L(IC))) — Sp. Then we have the following
estimates on K x Z(C') with respect to hg for some € > 0:

H=0(hofe)), T puH = O(hol0).
Proof. This follows from Lemma [7.16] O

Construction of an approximating map. We take 0 < Ry < Ry < 1. We set
K1 :={\| |\ < Ry} and K3 := {\ | Ry < |\ < R;'}. We take a partition of
unity (xi,» XKz Xo(xy)) on P! subordinated to {Kq, Kz, 0(K1)}.

We take a holomorphic isomorphism ®x, @ Qoo xx — Qoix,xx as in
Lemma Similarly, we take a holomorphic isomorphism @Z(Kl) : Q<5gg|a(/C)xXT
— Q<55\a(lc)xXT as in Lemma |7.15

We can take a flat isomorphism

B, 1 (£0, DY) jicox(x—p) — (E:DF) ks (x—D)-

We may assume that @i, is extended to isomorphisms Qoojic,x x ~ o€k, xx
7.15

and Q<5€g|lC2XXT ~ Q<5‘€|Trc2><xf with the property in Lemmas and We
set

Q= x, Pry + Xk, P, + Xo(lcl)q’jf()cl)-

By using Lemmas and we can check that @ satisfies the estimates in
(7.21)). Thus, the proof of Theorem is finished. O

7.4.4. Proof of Theorem [7.4]

Decomposition. We have a decomposition

(7.39) Qéx= P U

a€Par(PoEO,L)
with the following property:
e For any subset I C £ and b € Par(PyE°, I), put Uy = @aEqI—l(b) U,. Then, for
any c € RY,

(7.40) @IUMDI = ﬂtii(Qoé]DI)-

b<c iel

Weak norm estimate. We take a C°-frame h/, of U, in lb We set hid) =
hl, Hle |2j|72%. We obtain a C*°-hermitian metric h(?) = @hff) on Q& x_p.
Proposition 8.70 of [22] implies the following lemma.
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Lemma 7.19. h and h? are mutually bounded up to log order, namely,

1 _N ¢ N
h . C’l(z —log \zi|) <h<h®. C(Z “log |zz-|)

i=1 i=1

for some C >0 and N > 0. O
An estimate

Lemma 7.20. Let f be a holomorphic endomorphism of Qo&y satisfying the fol-
lowing conditions:

e It preserves the filtrations 'F (i = 1,...,/).
o For each a € R, the induced endomorphism gGrf(f) of Q€aip, 15 0.

Then |f|n, = O(A(M,¢€)) for some M >0 and € > 0.

Proof. We take a decomposition of Qp&y like ((7.39). Applying the weak norm esti-
mate to (Ea,5a7 Oa, he) with the decomposition {i we choose a C'°°-hermitian
metric hff) on Q& x_p, and héQ) =6 h,(f) on Q&) x_p- We have the decompo-
sition

f=Y faa faa €Hom(Upar,Uga)-
We have only to show |fa7a/|h[()2) = O(A(M,e¢)) for any a and a’. Assume a # a’.
We define

Ip:={ila;>al}, I-:={ilai<a)}, Io:={i|a;=a,}.

Since the parabolic filtrations are preserved, we have fg o/p, = 0 for any i € 1.
Hence, there exists a holomorphic section f,, ,, such that fo.a = fg o Hiebr %
We have the inequality as in . Thus, we obtain the desired estimate for fq o/
in the case a # a’'.

If @ = a/, then fq qp, = 0. Hence, there are holomorphic sections f;q of
Hom(Qp&a, Qo€a) such that fa,a = 2t fr.a- Because

14

no = O (D (= log|)™),

i=1

|ft,a

we obtain the desired estimate. O

Local isomorphism with a nice property. We can show the following lemma
by the argument in the proof of Lemma [7.12

Lemma 7.21. There exists a holomorphic isomorphism

Qe : Q& x — Q1w
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such that (i) it preserves the filtrations 'F (i = 1,...,£), (ii) for each a € RY, the
induced map QEqp, — ﬁGrf(QaDé) is equal to vg.
Similarly, we can find a holomorphic isomorphism (DLUC) : Q<553|0(X) —

Q<55\Tg(2() such that (i) it preserves the filtrations ‘F (i = 1,..., /), (iii) the induced

F

morphism on £Gr” , is equal to the given one. O

By the weak norm estimate, ®x and @,21 are bounded up to log order. We
can show the following lemma by using Lemma [7.20]

Lemma 7.22. We have @V — Vi o = O(A(M,€)) for some € >0 and M >0
with respect to hg and gp1 . O

Let ®x and @) be morphisms as in Lemma We set G := &' o ¥
Lemma 7.23. We have the following estimates for some positive € and M :
G —id[n, = OAM, ), [Va0(X203)Gln, = O(A(M, €)).
Proof. This follows from Lemma [7.20 O

Lemma 7.24. Let Ok and (I)i(ic) satisfy the above conditions. Set

H:=8)—S(Px @ J*@L(,C)) : QoEox ® a*(Q<5sglg(X)) — Oy.
Then H = O(A(M, €)) with respect to ho for some € >0 and M > 0.

Proof. This can be shown by the argument in the proof of Lemma [7.16] O

Local C*°-isomorphisms. Let ®¢. (p = 0,...,m) be as in Lemma and
let a, (p =0,...,m) be non-negative C*°-functions on K such that )" a, = 1. We
set B = D" g ap P, G = (D)~ o O and GP = (Pf) "' o P By Lemma
|GP —id |p, = O(Ag(€)), and hence |G —id |, = O(Ag(€)) for some € > 0 and
M > 0.

We can show the following estimate by using an argument in the proof of

Lemma together with Lemma
(7.41) D! 0o Va(N20)) 0 B — Vi 0(A20)) = O(A(M,e)).

Let @‘;‘(IK) (g = 0,1,...,m') be as in Lemma and let b, be non-negative
C°-functions on ¢(K) such that > b, = 1. We set CIDJ;(K) = > b, @l(qs) and
H = S§(®c ® O'*(CDZ_(,C))) — Sp. Then we can show the following estimates with
respect to ho and gp: for some positive € and M, by using Lemma [7.24}

(7.42) H=0(MM,€), Bge puH = O(A(M,e)).
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Construction. We take 0 < Ry < Ry < 1. We set K1 := {A | |\| < Ra} and
Ko :={X| Ry < |\ < Ry}, We take a partition of unity (xic,, Xk, Xo(kcy)) on P!
subordinated to {K1, Ko, 0(K1)}.

We take holomorphic isomorphisms

i, Qojicixx — QEcixxs Bl Qo€ ieyxt — Qo€ e,y ex

as in Lemma We can take a flat isomorphism

B, 1 (€0, D) 1kax(x—) = (€, D) jxcux(x—D)-

We set @ := xx, Pk, + XK Pry + Xo(k1) <I>L K1) By using (7.41)) and (7.42), we
can check that ® satisfies the estimates in ([7.23)). Thus, the proof of Theorem
is finished. O

88. An application to HS-orbits
§8.1. Preliminaries

8.1.1. Compatibility of real structure and Stokes structure. Let X be a
complex manifold. We set X := C, x X and x° := {0} x X. Let (H, H},V) be
a TER structure on X. (TER structure means TERP structure minus a pairing.)
We say that H is unramifiedly pseudo-good if the following holds:

e We are given a good set of irregular values Irr(V) C M(X,X°)/H(X) on the
level —1. Namely, (i) every element a of Irr(V) is of the form a = A~'a’ for
some holomorphic function a’ on X, (ii) ' — b’ is nowhere vanishing for distinct
At AT € I (V).

e H has the formal decomposition

(H7V)‘;?o = @ (ﬁaaﬁa)
aclrr(V)

such that @u — da is regular. Note that they are not assumed to be logarithmic.

(See also Subsection [5.1.3]) If X is a point, this means that H requires no ramifi-
cation in the sense of [12].

By a classical theory (see also Subsection , we have the Stokes filtra-
tion F¥ indexed by (Irr(V), <g) for each small sector S of X — X°. We say that
the real structure and the Stokes structure are compatible if the Stokes filtration
on any small sector S comes from a flat filtration of Hp ¢. (See [18].)

By taking Gr of (H,V) with respect to the Stokes filtrations, we obtain a
TE-structure Gry(H,V) for a € Irr(V). As observed in [12], if the real structure
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and the Stokes structure are compatible, Gr,(H,V) is enriched to a TER struc-
ture denoted by Grq(H, Hg, V). If (H, Hg, V) is enriched to a TERP structure
(H,Hy,V, P,w), Grq(H, Hg, V) is also naturally enriched to a TERP structure
denoted by Grq(H, Hg, V, P,w).

Another formulation. In [I2], a compatibility of real structure and Stokes struc-
ture is formulated in a slightly different way. Let us check that it is equivalent to
the above. For simplicity, we consider the case in which X is a point.

Let H be a vector bundle on Cy with a meromorphic flat connection V : H —
H® Q}CA (x0) such that H requires no ramification with the good set of irregular
values Irr(V) € A~ C. Take 6y € R such that Re(a — b)(reVY=1%) = 0 for any
distinct a, b € Irr(V). Take a sufficiently small € > 0, and consider the sector

S::{rem9|90—e§9§90+ﬂ+6}-

Let S denote the closure of S in the real blow up ((NIA(O) — C, along 0. Let
Z = SN 10). As a version of the Hukuhara-Turrittin theorem, it is well
known that we have a unique flat decomposition

(8.1) (HV)s= €P (Hus Vas)
a€lrr(V)

such that the restriction of 1D to Z is the same as the pull back of the irregular
decomposition of H, 0"

Assume that the flat bundle (H, V)‘Ci is equipped with a real structure, i.e.,
a C-anti-linear flat involution x : H — H. In other words, (H,V,k) is a TER
structure. In Section 8 of [12], the real structure and the Stokes structure are
defined to be compatible if k(Hq,s) = Hqs for any a € Irr(V) and any S as
above.

If a small sector S is contained in &, the restriction of to S gives a
splitting of F°. Hence, if H a,s are preserved by x for any a, the filtration F S s
also preserved by k. Let S and S be small sectors containing the rays {re\/jw“ |
r> 0} and {—reV=1% | r > 0}, respectively. Then a <g, b if and only if a >, b.
By the parallel transport on S, the flat bundle Hs is trivialized, and we can
observe that H, s = F51' N F22. Hence, if F2i (i = 1,2) are preserved by , Hq s
is also preserved by k. The equivalence of the two notions of compatibility follows
from these considerations.

8.1.2. Two Stokes filtrations of integrable twistor structures. Let (V, D)
be a variation of integrable twistor structure over P! x X. It is obtained as the
gluing of a TE-structure (Vo,Df) on X := Cy x X and a T E-structure (Vao, DfJ)
on XT:=C, x XT. Weset X :={0} x X C X and XT%:= {0} x XT Cc C, x XT.
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Definition 8.1. We say that (V Iﬁ)A) is unramifiedly pseudo-good if both (VO,HN))(’;)
and (Voo ]INDLJ) are unramifiedly pseudo-good. In that case, let Irr(ﬁ){; ) and Irr(I[N))lof)
denote the sets of irregular values of Iﬁ)g and Iﬁ)lof, respectively.

If X is a point, we also say that (V ]ﬁ)A) requires no ramification.

Definition 8.2. Assume (V, HBA) is unramifiedly pseudo-good.

e We say that the sets of irregular values of (V,D2) are compatible if Irr(]ﬁ{;) and
Irr(Df,) bijectively correspond by a < y*a.
e We say that (V,D?) has compatible Stokes structures if the following holds:

— The sets of irregular values of (V, fDA) are compatible.

— For a small sector S of X — X°, we have the Stokes filtration F* of (Vp, IB){;)
We also have the Stokes filtration F(5) of (V, ﬁgo), where we regard v(.9)
as a small sector of XT — X1 Then F° and F7(%) are the same under the
parallel transport along any rays connecting S and (S5). O

Remark 28. In the above definition, a ray means a line
{(teV=T%.P) |0 < t < o0}

in C% x {P} C C; x X. We say that it connects S and ~(S) if (i) (teV=1%, P) is
contained in S for any sufficiently small ¢, (ii) (teV~1#, P) is contained in ~(S) for
any sufficiently large ¢.

Lemma 8.1. If (V, ]I~))A) 1s equipped with either a real structure k or a perfect
pairing S of weight w, then the irreqular values of ]Dg and Df_ are compatible.

Proof. We have Irr(v*]ﬁ){;) = {v*a ’ ae Irr(]ﬁ){;)}. It (V, ]INJDA) is equipped with a
real structure, v*(V, ]I~))£O) ~ (W, ]ﬁ(’;) Hence, the irregular values of ]ﬁg and ]ﬁ{o
are compatible.

We have Irr(o*DZ) = {o7a | a € Irr(D£,)}. Note that every a € Irr(Df) is of

the form p~'a’, where o’ is a holomorphic function on XT. Hence, o¥a = —7*a. If

(v, IBD?) is equipped with a perfect pairing, (%,ﬁg ) is isomorphic to the dual of
0* (Voo ﬁg;) Therefore, the irregular values of ﬁ)g and ]]3)3;0 are compatible. O

It (V, ﬁA) is unramifiedly pseudo-good, by taking Gr with respect to the
Stokes filtrations, we obtain a TE-structure Gr,(Vp, ]ﬁg) on X fora € Irr(]ﬁ)é), and
a TE-structure Gry(Vao, DL) on X1 for b € Irr(DL). If (V,D2) has compatible
Stokes structures, we have the naturally induced isomorphism

Gra(‘/o,]ﬁ)g)\xfxo & GTW(Vw,ﬁgo)\xpmo-
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Hence, we obtain a variation of integrable twistor structure Grq(V,D2) for each
ac Irr(Dg ) as their gluing. We have the following functoriality (Lemma .

Lemma 8.2. Let (V(“),ﬁ(a)A) be wunramifiedly pseudo-good. Assume that
(i) (V@ D@2 (¢ = 1,2) have compatible Stokes filtrations, (i) the union T :=
Irr(]INJ)((Jl)f) u Irr(]INJ)((f)f) is good. Then a morphism (V) DWA) — (V2 D@ A)
induces Grg(V®D DM ) — Grg (VR , D@2 for each a € I. O

We have the natural isomorphisms
v* Gro(V,D?) ~ Gra(7*(V,D?)), 0" Gra(V,D?) ~ Gr_o(c*(V,D?)).
The following lemma follows from functoriality.

Lemma 8.3. Assume that (V, IB)A) has compatible Stokes structures. If (V, ﬁA) is
equipped with a real structure (resp. a perfect pairing of weight w), each Grq(V, ﬁ)A)
is also equipped with an induced real structure (resp. an induced perfect pairing of
weight w). O

Lemma 8.4. Let (H,Hy,V,P',w) be a variation of TERP structure, and let
(v, ]ﬁ)A,S,n,w) be the corresponding variation of twistor-TERP structure. (See
Subsection 2.1.8) Assume that (H, Hg,V, P’ ,w) is unramifiedly pseudo-good, or
equivalently, (V, ]]S)A,S7 K,w) is unramifiedly pseudo-good.

o The real structure and the Stokes structure of (H,V) are compatible if and only
if (V,D?) has compatible Stokes structures.

e Assume that the real structures and the Stokes structures are compatible. Then
Grq(V,D?, S, k,w) is the variation of twistor-TERP structure corresponding to
Grq(H, H,, V, P w).

Proof. Note that the Stokes filtration of v*(H, V) on v*(S) is given by the com-
posite of the conjugate with respect to Hp and the parallel transport along the
rays connecting S and v(S5), with the change of the index sets from Irr(V) to
{v*a | a € Irr(V)}. Hence, the first claim follows.

Let us consider the second claim. We may assume that (H, Hg,V,P’,w) is
obtained from (V,V,S, k,w) by the procedure explained in Subsection m By
construction, we have Grq(H,V) = Grq(Vp, Vj). For comparison of induced real
structures and pairings, we have only to consider the case in which X is a point.

Let us compare the induced real structures. The flat real structure of H’ is
obtained as the composite

-_ parallel transport

H,y

H N H
‘X—l e |)\.
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Hence, we have the following factorization of the real structure on Grq(H)| ob-
tained as Gr of the Stokes filtration:

TN arallel transport ————57+ Grq (k)
Grq(H),, ———— Gra(H) 51 T2, Gro(H)pa
It is the same as the real structure induced by Grq (k) on Gre(V, V).
Let P : H® j*H — Oc, be the pairing induced by « and S as in (2.5)),
whose restriction to H' is P’. Let S be a small sector in C}. We have the following
factorization of (v/—1)""Pjg:

Fo(H) @ R = FF (Vo) © 0™y 7 (Vo)
¥k % 0 S
LT FE (V) @ 0" FLO (Vo) - 0.
The restriction to F5 (H) ®j*.7-"g(s) (H) is 0 unless a—b >g 0. The induced pairing
(vV—1)""P, for Grqe(Vp) is factorized as follows:

1®c™* Grq K
— %5

o * Grq S
Gl"a(Vo)‘SQ@] Gra(VO)\j(S) Gra(%)|s®0’ GTW(Voo)\a(S) — = QOg.

Hence, it is the same as the pairing induced by Gr,(V, V.S, k). Thus, the proof of
Lemma B4 is finished. O

8.1.3. Preliminaries on pull back. We set X :=C,, D = {0}, X :=C, x X,
D:=CyxDand W := DU ({0} x X). Let 7 : X(W) — X be a real blow up
of X along W. Let m; : C5(0) — C, be the real blow up of Cy along {0}. Let
oo : X — Cy be given by ¢g(A, z) = Az. It induces a map 50 : )?(W) — ((NIA(O).

Let H be a vector bundle on C, with a meromorphic flat connection V :
H — H ® Qg (x0) such that (H,V) requires no ramification with the good set
of irregular values Z C A~ C. Let 2 denote the flat bundle on Cy (0) associated
to Hic;. For each Q € 71 (0), we have the Stokes filtration @ of U for the
meromorphic prolongment H. (See Subsection) We can naturally regard (EE%
as the flat bundle on X (W) associated to (GoH )| x—w-

Lemma 8.5.
o ¢5(H,V) is unramifiedly pseudo-good on the level m = (—1,—1). (See Subsec-
tion [5.1.3]) The set of irreqular values is ¢3Z = {pfa | a € T}.

e For each P € 7= (W), the Stokes filtration F¥ of QNSS(Q])‘p for ¢$H is the pull
back of the Stokes filtration of QT‘(;D(P).

e We have the natural isomorphism ¢f Gra(H) ~ Grgso(¢gH).

Proof. We have the decomposition (H, V)‘ﬁ = P 7 (Ha, %a), where V4 — da are
regular. It induces the decomposition of ¢f(H, V)|W' Hence, the first claim is clear.
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We set Q = go(P). Note that the orders <gp and <p are the same under
the identification 7 ~ ¢{Z. Let H; D H be an unramifiedly good lattice. Thus,
¢4 Hy is an unramifiedly good lattice. We take a small sector Sg € MS(Q,C3,7)
such that there exists the Stokes filtration F°2 of Hlng. We take a small multi-
sector Sp € MS(P, X — W, ¢{T) such that ¢o(Sp) C Sg. Thus, we obtain the
filtration ¢fF5 of ¢ (H1) g, indexed by (#Z, <p). It gives the Stokes filtration
of ¢§(H1)z5,,, which follows from the characterization in Proposition Since the
filtration of qgé (), p induced by 53.7:3‘9 is the same as the pull back of < on U)o,
we obtain the second claim. Note also that the Stokes filtration of ¢g(H) 5, IS given
by the pull back of the Stokes filtration of H 5o

Let Sp be a small multi-sector as above. By the above compatibility of the
Stokes filtrations and Lemma we obtain the natural isomorphisms

(8.2) ¢o(Gra(H)) 5, =~ Groza(¢o) s, -

By varying Sp and gluing them, we obtain
¢E§(Gra(H))|ﬁ(W) = Gr¢3a(¢3H)‘a(W),

where U is a neighbourhood of W, and u (W) denotes the real blow up of U
along W. By using flatness, this isomorphism extends to qSB(Gra(H))‘)?(W) ~
Gr¢3a(¢8H)|5g(W)~ Hence, we obtain an isomorphism on X. O

8.1.4. Rescaling and HS-orbits. We recall a rescaling construction from [10]
and [12]. See also [26]. We set X :=C,, D = {0} and X* := X —D. For R > 0, we
set X(R) :=={z¢€ X ||2|] < R} and X*(R) := X(R)NX"*. Weset X :=Cy\xX. We
use the symbols X*, D, X(R) and X*(R) in similar meanings. Let ¢g : X — C,
be given by ¢o(A, z) = Az. The restriction to X'* is denoted by g.

TERP structure. We consider only TERP structures of weight 0. Hence, we
do not specify weights. Let (H, Hg,V,P) be a TERP structure. Hertling and
Sevenheck studied the variation of TERP structure ¢§(H, Hg,V,P) on X*. If
there exists an R > 0 such that ¢ (H, Hg, V, P)|x+(r) is pure and polarized, the
variation is called an HS-orbit (Hertling—Sevenheck orbit), and we say in this paper
that (H, Hg, V, P) induces an HS-orbit.

Remark 29. An HS-orbit is called a “nilpotent orbit” in [12]. We use “HS-orbit” to
distinguish it from twistor nilpotent orbit. It corresponds to their term “Sabbah-
orbit”.

Lemma 8.6. Assume (i) (H, V) requires no ramification, (ii) the Stokes structure
and the real structure of (H, Hg, V) are compatible. Then:
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o Y} (H,V) is unramifiedly pseudo-good. The set of irregular values is given by
{Y§a|aelrr(V)}.
o The real structure and the Stokes structure of g (H, V) are compatible.

o We have a natural isomorphism
g Gro(H, Hy, V, P) ~ Gryza o (H, Hi,V, P).

Proof. The first two claims follow from Lemma [835] To show the third claim, we
have only to compare the induced flat pairings. This can be done directly, or by
considering the restriction to Cy x {1}. O

The lemma means in particular that an HS-orbit is wild. Note that there is a
non-wild variation of pure polarized TERP structure on X*(R). For example, con-
sider the example in Subsection [2.2.1] with a transcendental holomorphic function
aon X*(R).

Integrable twistor structure. We set X1 := C, x Xt pt .= C, x Dt x*f .=
XT—DTand W' := DTU({0} x XT). Let ¢ : XT — C,, be given by ¢oo (11, 2) = piZ.
The restriction to X*T is denoted by ¥sc.

Let (V, V) be an integrable twistor structure on P! which requires no ramifica-
tion. It is obtained as the gluing of (Vp, Vo) and (Vao, V). The gluing is denoted
by g : Voo =~ Voo\((:;;, which is flat with respect to V.

We set HS(V)o = 9¢§(Vo) and HS(V)eo = 9% (V). They are naturally
equipped with a TE-structure HS(V)o and a T E-structure HS(V)s. Note that
HS(V,V)o and HS(V,V) are unramifiedly pseudo-good. Let us construct a
flat isomorphism ® between HS(V, V)g|cy xx+ and HS(V, V)OO‘(CZX)(T*. The fibers

HS(V)o(r,z) and HS(V)so|(n,2) are naturally identified with V), and Vi,
1

iz, Te-
spectively. If A = =1, we have (A\2)~! = pz|z|~2. Hence, we have an isomo‘rphism
Qxz) + HS(V)oy(a,2) = HS(V)se(a-1,2) induced by the gluing g with the parallel
transport along the segments connecting A=!Z and A~!z|z|72. Thus, we obtain
the isomorphism ® as desired.

Let HS(V, V) denote the variation of integrable twistor structure obtained as
the gluing of HS(V,V)o and HS(V, V). The following lemma is clear from the

construction and the functoriality (Lemma [5.7).
Lemma 8.7.

o Let F : (V) VW) — (VR V)Y be a morphism of integrable pure twistor
structures. Then we have the induced morphism

HS(F) : HS(V®), vy — HS(V®) v@),
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o Let f be vy or . Then HSof*(V,V) is naturally isomorphic to the pull back
f*HS(V, V). O

By the above lemma, a real structure x of (V,V) induces a real structure
HS(k) of HS(V, V). Since we have the natural isomorphism HS(T(0)) ~ T(0)x~, a
paring S of (V, V) with weight 0 induces a pairing HS(S) of HS(V, V) with weight 0.
Hence, an integrable twistor structure with a pairing (V, V, S) induces HS(V, V, S)
on P! x X* and if (V,V,S) is equipped with a real structure, HS(V, V,S) is also
equipped with a naturally induced real structure.

Lemma 8.8. If (V,V) has compatible Stokes structures, HS(V, V) also has com-
patible Stokes structures, and we have the natural isomorphism

(8.3) HS Gra(V, V) = Grys o HS(V, V).

If (V,V) is equipped with a pairing of weight O (resp. a real structure), (8.3)) pre-
serves the induced pairings (resp. real structures).

Proof. This follows from Lemma [8.5 O

Lemma 8.9. Let (H,H,,V,P’) be a TERP structure, and (V,V,S,k) be the
corresponding twistor-TERP structure. Then HS(V,V,S,k) is the variation of
twistor-TERP structure corresponding to y&(H, Hg, V, P').

Proof. By construction, we have the natural isomorphism HS(V,V), ~ (H, V).
We have only to compare the induced real structures and pairings on them. Since
they are flat, we have only to compare them on the fiber over z = 1. Then the
claim is clear. O

If there exists an R > 0 such that HS(V, V,S)p1 x x+(r) is pure and polarized,
it is called a twistor HS-orbit, and we say that (V, V,S) induces a twistor HS-orbit.

88.2. Reduction of wild HS-orbits

8.2.1. Statement. We use the notation in Subsection Let (V,V) be an
integrable twistor structure with a perfect pairing S of weight 0, which requires no
ramification. Assume that (V, V,S) induces a twistor HS-orbit on P! x X*(R) for
some R > 0. We obtain the underlying unramifiedly good wild harmonic bundle
(E,0g,0,h) on X*(R) of HS(V, V, S)|p1 x x+(r), Which is unramifiedly good. Let 7
denote the set of irregular values of (V, V) at 0. It is easy to see that

Irr(0) = {(A-a(Xz))x=0 | a(A) € Z} = {a(2) | a(N) € T} ~ T.

Note that any a € Z is of the form a/\ for some a € C. We will not distinguish
them in the following.
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Let (£2,D%,Sg) denote the variation of polarized pure twistor structure
associated to (E,dg,0,h). It is enriched to an integrable one (EA,ﬁA,SE). Al-
though it is naturally isomorphic to HS(V, V,S), it is non-trivial that the natural
meromorphic extensions Q& and ¢§(Vy) ® Ox (D) are isomorphic. Hence, we use
the symbol (£2, D2, Sg) for distinction. By applying the construction in Subsec-
tion to (€2, ﬁ)A, SE), we obtain a wild variation of pure polarized integrable
twistor structure Gra(SA,]ﬁA,SE) for each a € Z. We will prove the following
theorem in Subsection B.2.21

Theorem 8.1.

e (V,V) has compatible Stokes structures.
e HSGr,(V,V,S) is naturally isomorphic to Gra(SA,ﬁA,SE) for eacha €. In
particular, Gry(V,V,S) induces a twistor HS-orbit.

Before going into the proof, we give a consequence.

Corollary 8.1. Let (H, Hp,V,P,0) be a TERP structure which requires no ram-
ification. If (H, Hy,V, P,0) induces an HS-orbit, it is a mized-TERP structure in
the sense of Definition 9.1 of [12].

Proof. Thanks to Theorem 9.3 of [12], (H, Hg, V, P,0) is a mixed-TERP struc-
ture if and only if (i) the real structure and the Stokes structure of (H, Hg, V)
are compatible, (ii) Grq(H, Hg, V, P,0) induces an HS-orbit for each a € Irr(V).
Hence, this corollary follows from Theorem Lemma [84 and Lemma 89 O

The claim of the corollary was established by Hertling and Sevenheck [12] in
the case that (H, V) has regular singularity. They also showed the converse of the
claim in general.

Remark 30. In their study of the case that (H, V) has regular singularity, Hertling
and Sevenheck closely investigated the limiting object. In particular, they showed
that the limiting TERP structure is generated by elementary sections, for which
the eigenvalues of the new supersymmetric index can be described in terms of the
Hodge filtrations of the corresponding mixed Hodge structure.

Even in the irregular case, the limiting object can be obtained from the re-
duced regular one. Hence, the limit of the eigenvalues of the new supersymmetric
index of ¢§(H, Hg, V, P) can be described in terms of their mixed Hodge struc-
tures.

8.2.2. Proof of Theorem [8.1l We have the natural identifications

HS(V,V)o ~ (£,DF), HS(V,V)s ~ (T, D).
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We have the locally free Oy (¥D)-module

HS(V)o = ¢ (Vo) @ Ox (+D).
We also have the locally free Oyt (¥DT)-module
HS(V)oo := 6% (Vo) @ Ot (¥D1).

Comparison of Q€ and HS(V),. We would like to show that Q€ and HS(V )
are naturally isomorphic. We set W := D U ({0} x X). Let 7 : X(W) — X be
the real blow up of X along W. Let U be the flat bundle on )?(W) associated to
(€,D) | x_w. We set 37 := {¢a | ac T}

As remarked in Lemma ¢pH is an unramifiedly pseudo-good lattice of
HS(V)o ® Ox(xW) on the level m = (—1,—1).

Lemma 8.10. Q€ C QE ® Ox(xW) is an unramifiedly pseudo-good lattice on
the level m = (—1,—1) around (A, z) = (0,0).

Proof. We have the meromorphic flat bundle Gry(QE)(*W) with the induced
connection DY on (X, W) for each a € Irr(6). Put VO := D] — d(a(z)/)). The
restriction of (Grq(QE)(xW), VV) to X — ({0} x X) is regular singular by con-
struction. The restriction to X — D is also regular singular by Lemma Hence,
(Gra(QE)(xW), V) is regular singular.

We have the decomposition

(QO‘%DNW = @(Qoé\uaﬁ)a)

acl

such that Iﬁ)a — dxa are logarithmic. Because we have a natural isomorphism
Qo (¥W) =~ Gra(QE) (xW), the claim of the lemma follows. O

Let P € m=*(0,0). We have the Stokes filtration F{ of U|p corresponding
to the meromorphic prolongment Q€ ® Oy (*W), and the Stokes filtration FI°
of U|p corresponding to the meromorphic prolongment HS(V)g @ Ox (xW). (See
Subsection for such filtrations in the pseudo-good case.)

Lemma 8.11. 7' = 7.

Proof. Let Sp € MS(P,X — W, ¢§Z) be a small sector such that the Stokes
filtrations F,* of Qfg, and F5F of ¢5(H) 5, both exist. We can take Q €
SpNa~Y(W\ D) such that the orders <¢ and <p on Z are the same. We have the

filtrations .EQ (i = 1,2) of Vjq corresponding to the meromorphic prolongments
QE(xW) and HS(V)o(+W). Because HS(V, V) ~ (€,Df), we have F& = FL.
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Let us show that F7 is obtained as the parallel transport of fiQ , which implies
FP = FF. We take Sg € MS(Q, X —W, ¢¢T) such that the Stokes filtrations ]_-15Q
of Q€5 and ]-"25 < of ¢f(H )IgQ exist. By using the characterization in Proposition
we obtain (F°7 )GQ = .7-'Z-SQ. Hence, we can conclude that F are obtained as

K3

the parallel transport of ]-"ZQ . O

Lemma 8.12. The isomorphism £ ~ HS(V)o on X — D extends to an isomor-
phism Q€ ~ HS(V)g on X.

Proof. Let P € 71(0,0). We take a small multi-sector Sp € MS(P,X — W, 1)
such that we have the Stokes filtrations F°7 for Qo€z, and ¢§(H)z,. By
Lemma their restrictions to Sp are the same. We take a flat splitting
E13p = @ucz Ea,5p, which extends to the decompositions

Qg|§p = @ Qfa,sp, ¢8(H)|§p = @¢S(H)U;SP'

acT acT

Let £(—a) be a line bundle Ox (W) - e with Ve = e- (—d(A~'a(z))). Because
Gro(¢5H) ® L(—a) and Gra(QE) ® L(—a) have regular singularity along W, the
isomorphism on X — W naturally extends to an isomorphism Gr,(¢§H) ® E(—a) ~
Grq(Q&) ® L(—a). Since the restrictions of Grq(¢5H) @ O(xD) and Gra(QE) to
X — D are naturally isomorphic, we obtain an isomorphism Gry (¢4 H) ® O(xD) ~
Grq(QE).

Let w, and v, be frames of Grq(¢5H)®O(xD) and Grq(QE), respectively. We
have the relation w, = v, - A, where A, are meromorphic along D. We take lifts
wg,s and vy g to &, s by using the above splittings for any small sector in X — W.
We have the relation wq g = vq,5- Aq. Then the isomorphism £ ~ HS(V')( extends
to Q& ~ H78(V)0|u on some small neighbourhood U of (0, 0), which follows from
Proposition (We may apply Lemma But, since ¢§Vp and Qo€ may not
be good lattices, we replace them with an unramifiedly good lattice, or we use a
variant of Lemma for a pseudo-good lattice.) Then it is easy to observe that
the isomorphism extends to Q€ ~ HS(V) by using the Hartogs theorem. (Sabbah
also independently obtained an argument to extend such isomorphisms in this kind
of situation.) O

Similarly, €7 ~ HS(V)s on XT — DI extends to an isomorphism Q&' ~
HS(V)so on XT.

Proof of the first claim. Let X2 denote the real blow up of P! x X along
(P! x D)U ({0} x X) U ({0} x X). Let 7T : XT(WT) — XT denote the real blow
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up of C, x Xt along Wt =D U ({0} x XT). We have
x5 =xwyuxtwh.

Let U2 denote the flat bundle on X2 associated to (&, ]ﬁ)f)\th\x(X—D)'
We have the C*°-map X — W — (R x S1)? given by

(A, 2) = ((IALAIAD, (2], 2/12D)

It induces the natural identification X (W) ~ (R>o x S1)2. We set
Py = ((0,exp(v=T¢)), (1,1)) € 7~1((0,1)) C X(W).

Similarly, we identify XT(W1) with (R>¢ x S1)? via the map induced by

(1> 2) = ((lpels /12l (121, 2/2])) -

We set Qo := ((0,exp(—v—1¢)),(1,1)) € (z1)71((0,1)) ¢ XT(WT). Note that
we can identify (V, V) with HS(V, V) p1(1}. Hence, we have only to compare the
Stokes filtrations F70 (SU‘APO) and F@o (‘B@O) under the parallel transport along the
ray ((s,exp(v/=1¢)), (1,1)) (s € R>qU{+00}) connecting Py and Q. (Note that
the signature of the arguments are reversed by the coordinate change A\~ = p.)

Let us consider the map G : [0,1] x [0,1] — X (W) given by
G(s,t) = ((s,exp(V=19)), (t,1)).

Note G(0,1) = Py. We set P, := G(1,0) and P; := G(1,1). The image of I'g :=

([0,1]x {0})U({0} x[0,1]) is contained in 7~(W). The orders <p are independent

of P € G(I'y). Hence, the Stokes filtrations are unchanged along G(Ty).
Similarly, let us consider the map G : [0,1] x [0,1] — XT(W1) given by

GT(S, t) = ((5, exp(—v—1¢)), (t, 1))

Note Gt(0,1) = Qo. We set Q; := GT(1,0) and Qo := GT(1,1). The image of
I'o := ([0,1] x {0}) U ({0} x [0,1]) is contained in (w1)~1(WT). The orders <g
are independent of the choice of Q € Gt(I'y,). Hence, the Stokes filtrations are
unchanged along GT(T's,).

Under the identification X — W = Xt — W', we have P, = Q, and the
union of the paths G([0,1] x {1}) and GT([0,1] x {1}) is the ray connecting P
and Q. Hence, for the comparison of 7 and F%°, we have only to show that
Fh (Vo) p,) of Vp, and F@ (Vo|@,) of Vjo, are the same. This follows from the
characterization of the Stokes filtrations of (Q&, D) and (QET, DT) by growth order
of the norms of flat sections with respect to the metric h. (See Subsection [6.3])
Thus, we obtain the first claim of Theorem |8.1
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Proof of the second claim. By using Corollary [5.1] and Lemma [8-8] we obtain
the isomorphisms on P! x X*(R) for some R > 0:

Gra(£2,D%,8p) ~ Gry: o HS(V, V,S) ~ HS Gr,(V, V, S).

Thus, the second claim is also proved. O
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