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Asymptotic Behaviour of Variation of Pure
Polarized TERP Structure

by

Takuro Mochizuki

Abstract

The purpose of this paper is twofold. One is to give a survey of our study on reductions
of harmonic bundles, and the other is to explain a simple application in the study of
TERP structures. In particular, we investigate the asymptotic behaviour of the “new
supersymmetric index” for variation of pure polarized TERP structure.
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§1. Introduction

In our previous papers [21], [22] and [23], we studied asymptotic behaviour of
tame and wild harmonic bundles. Briefly, one of the main results is the following
sequence of reductions of harmonic bundles:

(1.1)
wild harmonic

bundle (irregular)
=⇒ tame harmonic

bundle (regular)

=⇒ twistor
nilpotent orbit

=⇒ twistor nilpotent orbit
of split type

Although a reduced object is simpler than the original one, it still gives a good
approximation. Moreover, a twistor nilpotent orbit of split type comes from a vari-
ation of polarized pure Hodge structure, whose asymptotic behaviour was deeply
studied by E. Cattani, A. Kaplan, M. Kashiwara, T. Kawai and W. Schmid. Thus,
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we can say that the asymptotic behaviour of wild harmonic bundles is pretty well
understood.

The main purpose of this paper is twofold. One is to give a survey of these
reductions, and the other is to explain a simple application in the study of TERP
structures.

C. Hertling [10] initiated the study of TERP structures inspired by math-
ematical physics and singularity theory. The study was further developed by
Hertling and C. Sevenheck. For example, they investigated the “nilpotent orbit”
[12], asymptotic behaviour of tame variation of TERP structure and classifying
spaces [13]. We refer to the above papers and a survey [14] for more details and
specifications.

Remark 1. The “nilpotent orbit” of [12] is called “HS-orbit” (Hertling–Sevenheck
orbit) in this paper. A nilpotent orbit is a very special kind of variation of po-
larized Hodge structure, which plays an important role in Hodge theory. We can
consider several kinds of generalization in the theory of TERP structures and
twistor structures. One is the HS-orbit. Another one is the twistor nilpotent orbit
studied in [22], which we will mainly use in this paper.

Remark 2. We prefer to regard a TERP structure as an integrable twistor struc-
ture with a real structure and a pairing studied by C. Sabbah. It is called a
twistor-TERP structure in this paper.

We will give an enrichment of the sequence (1.1) with TERP structures or
integrable twistor structures. As an application, we will study the behaviour of the
“new supersymmetric index” of variation of pure polarized TERP structure. Let
∇ be a meromorphic connection on V = O⊕ rP1 admitting a pole at {0,∞} of order
at most two. Let d be the natural connection on V . Then we have the expression
∇ = d + (λ−1U1 − Q − λU2)dλ/λ, where Ui,Q ∈ End(V ). If (V,∇) is equipped
with a real structure and a polarization (see Subsection 2.1.5), there is some more
restriction on them. Anyway, Q is called the new supersymmetric index of (V,∇).
We set X := {(z1, . . . , zn) | |zi| < 1} and D :=

⋃n
i=1{zi = 0}. Let (V, D̃4,S, κ) be

a variation of pure polarized twistor-TERP structure of weight 0 on P1× (X−D).
(See Subsection 2.1.) It is called unramifiedly good wild (resp. tame) if so is the
underlying harmonic bundle (E, ∂E , θ, h). (See Subsection 6.1.) For each point P ∈
X−D, we have the new supersymmetric index QP ∈ End(V4|P1×P ) ' End(E|P ) of

(V4, D̃4)|P1×P , and thus we obtain a C∞-section Q of End(E). We are interested
in the behaviour of Q around (0, . . . , 0). We will show the following:

• In the case of a twistor-TERP nilpotent orbit of split type, the new supersym-
metric index can be easily computed from the data of the corresponding polar-
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ized mixed twistor-TERP structure. In particular, the eigenvalues are constant.
(See Section 3.)

• From a twistor-TERP nilpotent orbit (V, D̃4,S, κ), we obtain a twistor-TERP
nilpotent orbit of split type (V0, D̃40 ,S0, κ0), by taking Gr (graduation) with
respect to the weight filtration. (Precisely, Gr is taken for the corresponding
polarized mixed twistor-TERP structure.) The new supersymmetric index Q of
(V, D̃4) can be approximated by the new supersymmetric index Q0 of (V0, D̃40 )
up to O(

∑
(− log |zi|)−1/2). In particular, the eigenvalues of Q are constant up

to O(
∑

(− log |zi|)−δ) for some δ > 0. (See Section 4.)

• A tame variation of polarized pure twistor-TERP-structure (V, D̃4,S, κ) is re-
duced to a twistor-TERP nilpotent orbit (V0, D̃40 ,S0, κ0). It is associated to the
limit mixed twistor-TERP structure which was essentially considered in [13] as
an enrichment of the limit mixed twistor structure of [22]. We can approximate
the new supersymmetric index Q of (V, D̃4) by the new supersymmetric index
Q0 of (V0, D̃40 ) up to O(

∑
|zi|ε) for some ε > 0. In particular, the eigenvalues of

Q0 approximate those of Q up to O(
∑
|zi|ε

′
) for some ε′ > 0. (See Subsection

7.4 for more precise statements.)

• A wild variation of polarized pure twistor-TERP structure (V, D̃4,S, κ) is re-
duced to a tame one (V0, D̃40 ,S0, κ0), which is Gr with respect to Stokes filtra-
tions. We can approximate the new supersymmetric index Q of (V, D̃4) by the
new supersymmetric index Q0 of (V0, D̃40 ) up to a term with exponential decay.
In particular, the eigenvalues of Q0 approximate those of Q up to exponential
decay. (See Subsection 7.3 for more precise statements.)

In each case, we will construct a C∞-map V0 → V, which does not preserve
but approximates the additional structures. (More precisely, V0 should be twisted.)
It would be interesting to clarify the precise relation between these results and the
celebrated nilpotent orbit theorem for Hodge structures due to W. Schmid [28].
(See also [13].)

As a corollary, we obtain the convergence of the eigenvalues of new super-
symmetric indices of wild harmonic bundles on a punctured disc. In his recent
work (Section 3 of [26]), Sabbah studied the eigenvalues of new supersymmet-
ric indices for polarized wild pure integrable twistor D-modules on curves. Since
wild harmonic bundles are prolonged to polarized wild pure twistor D-modules
[23], we can also deduce the above convergence in the curve case from his re-
sults.

We also show that if a TERP-structure induces an HS-orbit, then it is a
mixed-TERP structure in the sense of [12] by using the reduction from wild to
tame, which was conjectured by Hertling and Sevenheck.
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Outline of this paper. This paper is roughly divided into three parts. In Part I
(Sections 2–4), we give some preliminaries and establish the equivalence between
twistor nilpotent orbit and polarized mixed twistor structure. Part II (Sections
5–6) is a review of some results in [22] and [23], including the sequence (1.1). In
Part III (Sections 7–8), we study the enrichment of (1.1), the approximations, and
their applications.

In Subsection 2.1 we recall integrable pure twistor structures and TERP struc-
tures and their variations in a convenient way; these were originally studied by
Hertling, Sabbah and Sevenheck. We look at some basic examples in Subsec-
tion 2.2. In particular, we introduce the notions of integrable twistor nilpotent
orbit and twistor-TERP nilpotent orbit. In Subsection 2.3, we deduce a conver-
gence of integrable pure twistor structures and new supersymmetric indices. The
result will be used several times. In Subsection 2.4, we consider a variation of po-
larized mixed twistor structure. In Subsection 2.4.2, we explain the reduction from
a polarized mixed twistor structure to a polarized mixed twistor structure of split
type. In Subsection 2.4.3, we give a C∞-splitting of weight filtrations compatible
with nilpotent maps, which is a preparation for Section 4.

In Section 3, we study polarized mixed twistor structures of split type with
some additional structures. It is quite easy to handle. In Section 4, we show the
correspondence between twistor nilpotent orbits and polarized mixed twistor struc-
tures. In [22], a polarized mixed twistor structure was associated to a twistor
nilpotent orbit. The converse was also established in the curve case. The higher
dimensional case is new. The correspondence is easily enriched with integrability
and real structures. We also show that a twistor nilpotent orbit is approximated
by a twistor nilpotent orbit of split type.

In Section 5, we give a review of Stokes structure and reductions for a family
of meromorphic λ-flat bundles, studied in Sections 2 and 3 in [23]. We give some
minor complementary results on connections along the λ-direction and pseudo-
good lattices.

In Section 6, we explain the reduction from unramifiedly good wild harmonic
bundles to polarized mixed twistor structures, studied in [22] and [23]. We give
a review on the prolongation of harmonic bundles in Subsection 6.3. Then, in
Subsection 6.4, we review the reduction from unramifiedly good wild harmonic
bundles to tame harmonic bundles as the Gr with respect to Stokes filtrations,
which is one of the main results in [23]. In Subsection 6.5, we review the reduc-
tion from tame harmonic bundles to polarized mixed twistor structures as the
Gr with respect to KMS-structure, which is one of the main results in [22]. To-
gether with the result in Section 4, we can regard it as the reduction to nilpotent
orbits.
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In Section 7, we establish an enrichment of the reductions with integrability
and real structure. One of the main issues is to obtain a meromorphic extension
of the connection along the λ-direction. For that purpose, we prepare some esti-
mate in Subsection 7.1. Then, it is easy to obtain the meromorphic prolongment
of variations of integrable twistor structure and the enrichment of the sequence of
reductions as in (1.1). We also show that the reduced one gives a good approxi-
mation of the original one. In particular, we obtain results on approximation of
the new supersymmetric indices of wild or tame variation of integrable twistor
structure.

In Section 8, we study the reduction of HS-orbit.

§2. Preliminaries

§2.1. Integrable twistor structure

We recall the notion of integrable twistor structures and TERP structures in a way
convenient for us. See [10], [12] and [25] for the original definitions and for more
details. We also recall twistor structures introduced in [32]. See also [21] and [22].

2.1.1. Some sheaves and differential operators on P1 ×X. Let P1 denote
the one-dimensional complex projective space. We regard it as the gluing of two
complex lines Cλ and Cµ by λ = µ−1. We set C∗λ := Cλ − {0}.

Let X be a complex manifold. We set X := Cλ ×X and X 0 := {0} ×X. Let
Ω̃1,0
X be the C∞-bundle associated to Ω1,0

X (logX 0)⊗OX (X 0). We put Ω̃0,1
X := Ω0,1

X ,
and we define

Ω̃1
X := Ω̃1,0

X ⊕ Ω̃0,1
X , Ω̃•X :=

∧• Ω̃1
X .

The associated sheaves of C∞-sections are denoted by the same symbols. Let D̃fX :
Ω̃•X → Ω̃•+1

X denote the differential operator induced by the exterior differential d.
Let X† denote the conjugate of X. We set X † := Cµ × X†. By the same

procedure, we obtain the C∞-bundles Ω̃•X † with the differential operator D̃† fX .
Their restrictions to C∗λ ×X = C∗µ ×X† are naturally isomorphic:

(Ω̃•X , D̃
f
X)|C∗λ×X = (Ω•C∗λ×X , d) =

(
Ω̃•X † , D̃

† f
X

)
|C∗µ×X†

.

By gluing them, we obtain the C∞-bundles Ω̃•P1×X with a differential operator D̃4X .

Remark 3. D̃fX and D̃† fX are also denoted by d, if there is no risk of confusion.

We have the decomposition Ω̃1
P1×X = ξΩ1

X ⊕ Ω̃1
P1 into the X-direction and

the P1-direction. The restriction of D̃4X to the X-direction is denoted by D4X . The
restriction to the P1-direction is denoted by dP1 . By definition, the (1, 0)-part of
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a section of Ω̃1
P1 is logarithmic along {0,∞} with a pole of order 1 along {0,∞},

at most, and the (0, 1)-part is just a C∞-section of π∗Ω0,1
P1 . Hence, we have the

decomposition
Ω̃1
P1 = π∗Ω1,0

P1 (2 {0,∞})⊕ π∗Ω0,1
P1 ,

into the (1, 0)-part and the (0, 1)-part, where π denotes the projection P1×X → P1.
We have the corresponding decomposition dP1 = ∂P1 + ∂P1 .

Let ν : P1 → P1 be a diffeomorphism. Assume ν satisfies one of the following:

(A1) ν is holomorphic with ν(0) = 0 and ν(∞) =∞.

(A2) ν is anti-holomorphic with ν(0) =∞ and ν(∞) = 0.

In particular, we will often use the maps σ, γ and j:

σ([z0 : z1]) = [−z1 : z0], γ([z0 : z1]) = [z1 : z0], j([z0 : z1]) = [−z0 : z1].

The induced diffeomorphism P1 ×X → P1 ×X is also denoted by ν. In the case
(A1), we have the natural isomorphism Φν : ν∗Ω̃•P1×X ' Ω̃•P1×X of C∞-vector
bundles given by the ordinary pull back. In the case (A2), multiplication of C∞-
functions on ν∗Ω̃•P1×X is twisted as g · ν∗(ω) = ν∗

(
ν∗(g) · ω

)
for any function g

and any section ω of Ω̃•P1×X . Then we have the C∞-isomorphism Φν : ν∗Ω̃•P1×X '
Ω̃•P1×X given by the complex conjugate and the ordinary pull back

Φν(ν∗ω) = ν∗(ω).

It is easy to check that Φν ◦ ν∗(D̃4X) = D̃4X ◦ Φν . Similar relations hold for D4X
and dP1 . If we are given an additional bundle F , the induced isomorphism F ⊗
ν∗(Ω̃•P1×X) ' F ⊗ Ω̃•P1×X is also denoted by Φν .

2.1.2. Definitions and some remarks

Variation of twistor structure. Let V be a C∞-vector bundle on P1 × X.
We use the same symbol to denote the associated sheaf of C∞-sections. A P1-
holomorphic structure of V is defined to be a differential operator

d′′P1,V : V → V ⊗ π∗Ω0,1
P1

satisfying (i) d′′P1,V (f · s) = f · d′′P1,V (s) + ∂P1(f) · s for any C∞-function f and
any section s of V , (ii) d′′P1,V ◦ d′′P1,V = 0. The tuple (V, d′′P1,V ) is then called a P1-

holomorphic vector bundle. A T T̃ -structure on (V, d′′P1,V ) is a differential operator

D4V : V → V ⊗ ξΩ1
X

such that (i) D4V (f · s) = f · D4V (s) + D4X(f) · s for any C∞-function f and any
section s of V , (ii) (d′′P1,V + D4V )2 = 0. The tuple (V, d′′P1,V ,D

4
V ) is then called a
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T T̃ -structure in [10], or a variation of P1-holomorphic vector bundle in [22]. In this
section, we prefer to call it a variation of twistor structure. If X is a point, it is
just a holomorphic vector bundle on P1, and is called a twistor structure.

Remark 4. We will often omit to specify d′′P1,V when we consider P1-holomorphic
bundles or variations of P1-holomorphic bundle (variations of twistor structure).

Variation of integrable twistor structure. A T T̃E-structure on V is a differ-
ential operator

D̃4V : V → V ⊗ Ω̃1
P1×X

satisfying (i) D̃4V (f · s) = D̃4X(f) · s+ f · D̃4V (s) for a C∞-function f and a section
s of V , (ii) D̃4V ◦ D̃

4
V = 0. The tuple (V, D̃4V ) is then called a variation of integrable

twistor structure. Its restriction to (P1 \ {0,∞})×X gives a flat bundle. If X is a
point, it is equivalent to a holomorphic vector bundle V on P1 with a meromorphic
connection ∇ which admits a pole at {0,∞} with order at most 2, i.e.,

∇(V ) ⊂ V ⊗ Ω1(2 · {0,∞}).

In this case, it is simply called an integrable twistor structure.

Morphisms. A morphism of variations of (integrable) twistor structure is defined
to be a morphism of the associated sheaves of C∞-sections, compatible with the
associated differential operators. If X is a point, a morphism of twistor structures
is an OP1-morphism, and a morphism of integrable twistor structures is an OP1 -
morphism compatible with the meromorphic connections.

Some functoriality. Let (V, D̃4V ) be a variation of integrable twistor structure.
Let f : Y → X be a holomorphic map of complex manifolds. Then we have the
naturally induced variation of integrable twistor structure f∗(V, D̃4V ) as in the case
of ordinary connections.

Let ν : P1 → P1 be a diffeomorphism satisfying one of (A1) or (A2) above.
Then ν∗V is naturally equipped with a T T̃E-structure D̃4ν∗V given as follows:

D̃4ν∗V (Φν(ν∗s)) = Φν
(
ν∗(D̃4V (s))

)
.

Here, s denotes a section of V ⊗ Ω̃•X , and Φν : ν∗V ⊗ ν∗Ω̃• ' ν∗V ⊗ Ω̃• is as in
Subsection 2.1.1.

Similarly, we also have the pull back of a variation of twistor structure via f
and ν as above.

Pure and mixed. Let (V, d′′P1,V ) be a P1-holomorphic vector bundle on P1 ×X.
It is called pure of weight w if the restrictions VP := (V, d′′P1,V )|P1×{P} are pure
twistor structures of weight w for any P ∈ X, i.e., VP are isomorphic to direct sums
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of OP1(w). A variation of (integrable) twistor structure is called pure of weight w
if the underlying P1-holomorphic vector bundle is pure of weight w.

Let W be an increasing filtration of V by vector subbundles indexed by in-
tegers. We say that W is P1-holomorphic if each Wn is preserved by d′′P1,V . We
have the induced P1-holomorphic vector bundles GrWn (V, d′′P1,V ). Then (V, d′′P1 ,W )
is called mixed if each GrWn (V, d′′P1,V ) is pure of weight n. When (V, d′′P1) is equipped

with T T̃ -structure D4V (resp. T T̃E-structure D̃4V ), we say that W is D4V -flat (resp.
D̃4V -flat), or more simply flat, if each Wn is preserved by the operator. In that
case, (V, d′′P1,V ,D

4
V ,W ) (resp. (V, D̃4V ,W )) is called mixed if (V, d′′P1 ,W ) is mixed.

New supersymmetric index. Let (V,∇) be a pure integrable twistor structure
of weight 0. We have a global trivialization V ' O⊕rP1 , which is uniquely determined
up to obvious ambiguity. Let d denote the natural connection of O⊕rP1 . Then we
have the decomposition

(2.1) ∇ = d+ (λ−1U1 −Q− λU2)
dλ

λ
,

where U1,U2,Q ∈ H0(P1,End(V )). The operator Q is called the new supersym-
metric index. If (V,∇) is equipped with a polarization (Subsection 2.1.4), then U2

and U1 are adjoint with respect to the induced hermitian metric, as observed by
Hertling and Sabbah.

If we are given a variation of polarized pure integrable twistor structure, we
obtain the family of such operators.

2.1.3. Simple examples. We recall some simplest examples of integrable pure
twistor structures.

Example (Tate object). Let T(w) be a Tate object in the theory of twistor struc-
tures. (See [32] and Subsection 3.3.1 of [22].) It is isomorphic to OP1(−2w), and it
is equipped with the distinguished frames

T(w)|Cλ = OCλ · t
(w)
0 , T(w)|Cµ = OCµ · t(w)

∞ , T(w)|C∗λ = OC∗λ · t
(w)
1 .

The transformation is given by

t
(w)
0 = (

√
−1λ)w · t(w)

1 , t(w)
∞ = (−

√
−1µ)w · t(w)

1 .

In particular, (
√
−1λ)−2wt

(w)
0 = t

(w)
∞ . We have the meromorphic connection ∇T(w)

on T(w) determined by ∇T(w)t
(w)
1 = 0, which implies

∇T(w)t
(w)
0 = t

(w)
0 ·

(
w
dλ

λ

)
, ∇T(w)t

(w)
∞ = t(w)

∞ ·
(
w
dµ

µ

)
.
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In the following, the connection on T(w) is always given as above, and hence we
often omit to specify it explicitly.

We may identify T(w) withOP1(−w·0−w·∞) by the correspondence t(w)
1 ↔ 1,

up to constant multiplication. In particular, we implicitly use the identification of
T(0) with OP1 by t

(0)
1 ↔ 1. We will also implicitly use the identification T(m) ⊗

T(n) ' T(m+ n) given by t(m)
a ⊗ t(n)

a ↔ t
(m+n)
a .

Example. In Subsection 3.3.2 of [22], we considered a line bundle O(p, q) on P1,
which is isomorphic to OP1(p+ q) and equipped with the distinguished frames

O(p, q)|Cλ = OCλ · f
(p,q)
0 , O(p, q)|Cµ = OCµ · f (p,q)

∞ , O(p, q)|C∗λ = OC∗λ · f
(p,q)
1 .

The transformation is given by

f
(p,q)
0 = (

√
−1λ)−p · f (p,q)

1 , f (p,q)
∞ = (−

√
−1µ)−q · f (p,q)

1 .

In particular, (
√
−1λ)p+qf (p,q)

0 = f
(p,q)
∞ . We have the meromorphic connection

∇O(p,q) on O(p, q) determined by ∇O(p,q)f
(p,q)
1 = 0, which implies

∇O(p,q)f
(p,q)
0 = f

(p,q)
0 ·

(
−pdλ

λ

)
, ∇O(p,q)f

(p,q)
∞ = f (p,q)

∞ ·
(
−q dµ

µ

)
.

In the following, the connection on O(p, q) is always given as above, and hence we
will often omit to specify it explicitly.

We may naturally identify O(p, q) with OP1(p·0+q ·∞) by the correspondence
f

(p,q)
1 ↔ 1, up to constant multiplication. We will implicitly use the identification
O(p, q)⊗O(p′, q′) ' O(p+p′, q+q′) given by f (p,q)

a ⊗f (p′,q′)
a ↔ f

(p+p′,q+q′)
a . We will

also implicitly identify T(w) with O(−w,−w) by t(w)
a = f

(−w,−w)
a for a = 0, 1,∞.

Let X be a complex manifold. We have the pull backs of T(w) and O(p, q) via
the map from X to a point. They are denoted by T(w)X and O(p, q)X , respectively.
We will often omit to denote X, if there is no risk of confusion.

2.1.4. Polarization. Recall that we have the isomorphism ([22])

ιT(w) : σ∗T(w) ' T(w),

given by the natural identification σ∗O(−w · 0− w · ∞) ' O(−w · 0− w · ∞) via
σ∗(1)↔ 1, or equivalently,

σ∗t
(w)
1 ↔ t

(w)
1 , σ∗t(w)

∞ ↔ (−1)w · t(w)
0 , σ∗t

(w)
0 ↔ (−1)w · t(w)

∞ .

It preserves the flat connections, i.e., ιT(w) : σ∗(T(w),∇T(w)) ' (T(w),∇T(w)).
For a variation of integrable twistor structure (V, D̃4V ) on P1×X, a morphism

S : (V, D̃4V )⊗ σ∗(V, D̃4V )→ T(−w)X
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is called a pairing of weight w if it is (−1)w-symmetric in the following sense:

ιT(−w) ◦ σ∗S = (−1)wS ◦ exchange : σ∗V ⊗ V → T(−w)X .

Here, exchange denotes the natural morphism σ∗V ⊗ V → V ⊗ σ∗V induced by
the exchange of components. Similarly, we have the notion of pairing of weight w
for variations of twistor structure.

Definition 2.1. Let (V, D̃4V ) be a variation of integrable pure twistor structure of
weight w on P1×X. Let S : (V, D̃4V )⊗σ∗(V, D̃4V )→ T(−w)X be a pairing of weight
w. We say that S is a polarization of (V, D̃4V ) if SP := S|P1×{P} is a polarization
of VP := (V, d′′P1)|P1×{P} for each P ∈ X, that is, the following holds:

• If w = 0, the induced Hermitian pairing H0(SP ) on H0(P1, VP ) is positive
definite.

• In the general case, the induced pairing SP ⊗ S0,−w on VP ⊗ O(0,−w) is a
polarization of the pure twistor structure. (See Example 2 below for S0,−w.)

The notion of polarization for variations of pure twistor structure is defined in a
similar way.

Example 1. The identification ιT(w) induces a flat morphism ST(w) : T(w) ⊗
σ∗T(w)→ T(2w), which is a polarization of T(w) of weight −2w. (See [22].)

Example 2. More generally, a flat isomorphism ι(p,q) : σ∗O(p, q) ' O(q, p) in [22]
is given by the correspondence σ∗f (p,q)

1 7→ (
√
−1)q−pf (q,p)

1 , which implies

σ∗f
(p,q)
0 7→ (

√
−1)p+qf (q,p)

∞ , σ∗f (p,q)
∞ 7→ (−

√
−1)p+qf (q,p)

0 .

Hence, we obtain the morphism Sp,q : O(p, q) ⊗ σ∗O(p, q) → T(−p − q), which is
a polarization of weight p+ q. (See [22].)

2.1.5. Real structure and twistor-TERP structure

Definition 2.2. A real structure on a variation of integrable twistor structure
(V, D̃4V ) is defined to be an isomorphism

κ : γ∗(V, D̃4V ) ' (V, D̃4V )

such that γ∗(κ) ◦ κ = id.

We fix the real structure κT(w) on T(w) given by the correspondence

γ∗t
(w)
1 ↔ t

(w)
1 , γ∗t

(w)
0 ↔ t(w)

∞ , γ∗t(w)
∞ ↔ t

(w)
0 .
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Definition 2.3. Let (V, D̃4V ) be a variation of integrable twistor structure with a
pairing S of weight w and a real structure κ. We say that κ and S are compatible
if the following diagram is commutative:

γ∗V ⊗ γ∗σ∗V γ∗S−−−−→ γ∗T(−w)

κ⊗σ∗κ
y yκT(−w)

V ⊗ σ∗V S−−−−→ T(−w)

That is, κT(−w) ◦ γ∗S = S ◦ (κ ⊗ σ∗κ). In that case, we also say that κ is a real
structure on (V, D̃4V ,S), or that S is a pairing on (V, D̃4V , κ) with weight w.

Definition 2.4. Let (V, D̃4V ) be a variation of integrable twistor structure with a
pairing S of weight w and a real structure κ. The tuple (V, D̃4V ,S, κ,−w) is called a
variation of twistor-TERP structure if (i) S is perfect, (ii) S and κ are compatible.

If X is a point, it is called a twistor-TERP structure.

It is easy to observe that twistor-TERP structure is just an expression of
TERP structure [10] in terms of twistor structures, which we will explain in Sub-
section 2.1.8.

Definition 2.5. A variation of twistor-TERP structure (V, D̃4V ,S, κ, w) is called
pure if (V, D̃4V ) is pure of weight −w. It is called polarized if (V, D̃4V ,S) is polarized.

Remark 5. If a variation of twistor-TERP structure (V, D̃4V ,S, κ,−w) is pure,
we also say that (V, D̃4V ,S, κ) is a variation of pure twistor-TERP structure of
weight w.

Example. A Tate object (T(w),∇T(w),ST(w), κT(w), 2w) is a pure polarized twis-
tor-TERP structure.

2.1.6. Gluing construction

Variation of integrable twistor structure. We can describe a variation of
integrable twistor structure as gluing. We set X := Cλ × X, X 0 := {0} × X,
X † := Cµ ×X† and X †0 := {0} ×X†.

Let V0 be a holomorphic vector bundle on X with a meromorphic flat con-
nection (TE-structure [10])

∇V0 : V0 → V0 ⊗ Ω1,0
X (logX 0)⊗OX (X 0).

We use the same symbol to denote the associated differential operator V0 →
V0 ⊗ Ω̃1

X in the C∞-category. (The holomorphic structure d′′V0
is also included.)
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Let V∞ be a holomorphic vector bundle on X † with a meromorphic flat connection
(T̃E-structure [10])

∇V∞ : V∞ → V∞ ⊗ Ω1,0
X †(logX † 0)⊗OX †(X † 0).

We use the same symbol to denote the associated differential operator V∞ →
V∞ ⊗ Ω̃1

X † in the C∞-category. Assume that we are given an isomorphism Φ of
C∞-flat bundles:

Φ : (V0,∇V0)|C∗λ×X ' (V∞,∇V∞)|C∗µ×X† .

We obtain the C∞-vector bundle V on P1 ×X by gluing V0 and V∞ via Φ. Since
Φ is flat, ∇V0 and ∇V∞ induce the T T̃E-structure D̃4V : V → V ⊗ Ω̃1

P1×X . Thus,
we obtain a variation of integrable twistor structure (V, D̃4V ).

Conversely, we naturally obtain a tuple of (V0,∇V0), (V∞,∇V∞) and Φ as
above from a variation of integrable twistor structure (V, D̃4V ) as the restriction to
X and X †, respectively. In this situation, we set

Glue
(
(V0,∇V0), (V∞,∇V∞),Φ

)
:= (V, D̃4V ).

Pairing and real structure. Note that we have the natural isomorphisms ν∗Ω̃1
X †

' Ω̃1
X and ν∗Ω̃1

X ' Ω̃1
X † for an anti-holomorphic diffeomorphism ν : Cλ → Cµ or

Cµ → Cλ, as in the case of Ω̃1
P1×X . Let V0 be a holomorphic vector bundle on

X with a TE-structure ∇V0 . By the above isomorphisms, γ∗V0 and σ∗V0 are nat-
urally equipped with T̃E-structures ∇γ∗V0 and ∇σ∗V0 . Similarly, if we are given
a holomorphic vector bundle V∞ on X † with T̃E-structure, σ∗V∞ and γ∗V∞ are
naturally equipped with TE-structures. We remark that there exist natural iso-
morphisms

Glue
(
γ∗(V∞,∇V∞), γ∗(V0,∇V0), γ∗Φ−1

)
' γ∗Glue

(
(V0,∇V0), (V∞,∇V∞),Φ

)
,

Glue
(
σ∗(V∞,∇V∞), σ∗(V0,∇V0), σ∗Φ−1

)
' σ∗Glue

(
(V0,∇V0), (V∞,∇V∞),Φ

)
.

A real structure on a variation of integrable twistor structure corresponds to
a pair of isomorphisms

κ0 : γ∗(V∞,∇V∞) ' (V0,∇V0), κ∞ : γ∗(V0,∇V0) ' (V∞,∇V∞)

such that (i) γ∗κ0 = κ−1
∞ , (ii) the following commutativity holds on C∗λ ×X:

γ∗V∞
κ0−−−−→ V0

γ∗Φ−1

y yΦ

γ∗V0
κ∞−−−−→ V∞
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A pairing of weight w corresponds to morphisms

S0 : (V0,∇V0)⊗ σ∗(V∞,∇V∞)→ T(−w)|X ,

S∞ : (V∞,∇V∞)⊗ σ∗(V0,∇V0)→ T(−w)|X †

such that (i) ιT(−w) ◦ σ∗S∞ = (−1)wS0 ◦ exchange, (ii) it is compatible with the
gluing. Compatibility of S and κ means κT(−w) ◦ γ∗S∞ = S0 ◦ (κ0 ⊗ σ∗κ∞).

Variation of twistor structure. The above gluing description is essentially
the same as that for a variation of twistor structure in [32], which we recall in the
following. See also [22]. We have the decomposition Ω̃1

X = ξΩ̃1
X|X⊕Ω̃1

Cλ into the X-
direction and the Cλ-direction. Let dX denote the restriction of the exterior deriva-
tive to the X-direction. Similarly, we have the decomposition Ω̃1

X † = ξΩ̃1
X|X †⊕Ω̃1

Cµ ,

and the restriction of D̃† fX to the X-direction is denoted by dX† . The notions of
Cλ-holomorphic bundles or Cµ-holomorphic bundles are defined as in the case of
P1-holomorphic bundles.

Let (V0, d
′′
Cλ,V0

) be a Cλ-holomorphic bundle on X . A T -structure [10] on V0

is a differential operator

DfV0
: V0 → V0 ⊗ ξΩ1

X|X

satisfying (i) DfV0
(f ·s) = dXf ·s+f ·DfV0

(s) for any function f and any section s of
V , (ii) (d′′Cλ,V0

+ DfV0
)2 = 0. Let (V∞, d′′Cµ,V∞) be a Cµ-holomorphic vector bundle

on X †. A T̃ -structure [10] is defined to be a differential operator

D† fV∞ : V∞ → V∞ ⊗ ξΩ1
X|X †

satisfying conditions similar to (i) and (ii) above. Assume that we are given an
isomorphism

(2.2) Φ : (V0, d
′′
Cλ,V0

,DfV0
)|C∗λ×X ' (V∞, d′′Cµ,V∞ ,D

† f
V∞

)|C∗µ×X† .

We obtain the C∞-vector bundle V on P1 × X by gluing V0 and V∞ via Φ. By
the condition (2.2), d′′Cλ,V0

and d′′Cµ,V∞ give a P1-holomorphic structure d′′P1,V , and

DfV0
and D† fV∞ induce the T T̃ -structure D4V . Thus, we obtain a variation of twistor

structure (V, d′′P1,V ,D
4
V ).

Conversely, we obtain such a tuple of (V0, d
′′
Cλ,V0

,DfV0
), (V∞, d′′Cµ,V∞ ,D

† f
V∞

)

and Φ from a variation of twistor structure (V, d′′P1,V ,D
4
V ) as the restriction to X

and X †, respectively. In this situation, we set

Glue
(
(V0, d

′′
Cλ,,V0 ,

DfV0
), (V∞, d′′Cµ,V∞ ,D

† f
V∞

),Φ
)

:= (V, D̃4V ).
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Remark 6. Let pλ be the projection X → X. Under the natural isomorphism

ξΩ1
X|X = λ−1 · p−1

λ Ω1,0
X ⊕ p

−1
λ Ω0,1

X ' p
−1
λ Ω1,0

X ⊕ p
−1
λ Ω0,1

X = p−1
λ Ω1

X ,

a T -structure DfV0
induces a holomorphic family of flat λ-connections DV0 . Sim-

ilarly, a T̃ -structure on D† fV∞ naturally induces a holomorphic family of flat µ-
connections D†V∞ . Hence, a variation of twistor structure is regarded as the gluing
of families of λ-flat bundles and µ-flat bundles.

2.1.7. Relation to harmonic bundles. We recall a fundamental equivalence
due to Hertling and Sabbah. Let X be a complex manifold. Let (E4, D̃4,S) be
a variation of pure polarized integrable twistor structure of weight 0 on P1 ×X.
By the equivalence between harmonic bundles and variations of pure polarized
twistor structure due to Simpson [32], we have the underlying harmonic bundle
(E, ∂E , θ, h) on X. Note that End(E|Q) (Q ∈ X) is naturally identified with
H0(P1,End(E4|P1×Q)), and hence it is equipped with the endomorphisms UQ :=
U1Q and QQ obtained as in (2.1). They give C∞-sections U and Q of End(E)
satisfying the following equations:

∂EU = 0, [U , θ] = 0, Q = Q†,(2.3)

∂EU − [θ,Q] + θ = 0, ∂EQ+ [θ,U†] = 0.(2.4)

Here, U† and Q† denote the adjoint of U and Q with respect to h, respectively.
Conversely, we obtain a variation of polarized pure integrable twistor structure
(E4, D̃4,S) from a harmonic bundle (E, ∂E , θ, h) with U and Q satisfying (2.3)
and (2.4). Let p : P1 ×X → X be the projection. We set E4 := p−1E on which
we have the natural connection dP1 along the P1-direction. We set

∇λ := dP1 + (λ−1 U −Q− λU†)dλ
λ
.

This gives a flat connection on E4 along the P1-direction. Then we obtain a T T̃E-
structure

D̃4 := (∂E + λθ†) + (∂E + λ−1θ) +∇λ : E4 → E4 ⊗ Ω̃1
P1×X .

The pairing S is induced by S(u⊗ σ∗v) = h(u, σ∗v).
Let us also look at the gluing construction of the above (E4, D̃4,S). Let

(E, ∂E , θ, h,U ,Q) be as above. Let pλ be the projection X → X. Let E be the
holomorphic vector bundle (p−1

λ E, ∂E + λθ† + ∂λ), where ∂λ denotes the natural
λ-holomorphic structure on E . We have the family of flat λ-connections D = ∂E +
λθ† + λ∂E + θ on E . The associated family of flat connections is given by Df =
∂E + λθ† + ∂E + λ−1θ. Then D̃f := Df +∇λ gives a meromorphic flat connection
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on E . Let pµ be the projection X † → X†. Let E† be the holomorphic vector bundle
(p−1
µ E, ∂E+µθ+∂µ), where ∂µ denotes the natural µ-holomorphic structure on E†.

We have the family of flat µ-connections D† = ∂E + µθ + µ∂E + θ† on E†. The
associated family of flat connections is given by D† f = ∂E + µθ + ∂E + µ−1θ†.
Then D̃† f := D† f +∇λ gives a meromorphic flat connection on E†.

We have the induced pairings S0 : E ⊗σ∗E† → OX and S∞ : E†⊗σ∗E → OX †
induced by h. Then (E4, D̃4,S) is obtained as the gluing of (E , D̃f ), (E†, D̃† f ) and
(S0,S∞) by the procedure in Subsection 2.1.6.

2.1.8. TERP and twistor-TERP. Let us check that the notions of TERP
structure and twistor-TERP structure are equivalent. First, let us introduce a
pairing P induced by κ and S. Then we deduce the equivalence in the case that
X is a point, for simplicity. We give a remark for the family case in the end.

The induced pairing P . We set j := γ ◦ σ = σ ◦ γ, which is a holomorphic
involution of P1. We have the induced isomorphisms

σ∗κ : j∗T(w) ' σ∗T(w), j∗κ : σ∗T(w) ' j∗T(w).

We have the following equality:

σ∗κ ◦ j∗κ = j∗
(
γ∗κ ◦ κ

)
= j∗(id) = id .

We will use similar relations implicitly. We also remark the commutativity of the
following diagram, which can be checked by a direct calculation:

j∗T(w)
γ∗ιT(w)−−−−−→ γ∗T(w)

σ∗κT(w)

y yκT(w)

σ∗T(w)
ιT(w)−−−−→ T(w)

The composite j∗T(w)→ T(w) is denoted by ρT(w).
Let (V, D̃4V ,S, κ,−w) be a variation of twistor-TERP structure. We define a

pairing P : V ⊗ j∗V → T(−w) by

(2.5) P := (
√
−1)w · S ◦ (1⊗ σ∗κ).

Lemma 2.1. P is (−1)w-symmetric in the sense that the diagram

j∗V ⊗ V j∗P−−−−→ j∗T(−w)

exchange

y yρT(−w)

V ⊗ j∗V (−1)wP−−−−−→ T(−w)
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is commutative, that is, ρT(−w)◦j∗P = (−1)wP ◦exchange. Here, exchange denotes
the natural morphism exchanging the components.

Proof. We have the following equalities:

ρT(−w) ◦ j∗P = (
√
−1)wκT(−w) ◦ γ∗ιT(−w) ◦ j∗S ◦ (1⊗ j∗σ∗κ)(2.6)

= (
√
−1)wκT(−w) ◦ γ∗ιT(−w) ◦ (γ∗σ∗S) ◦ (1⊗ γ∗κ)

= (
√
−1)wκT(−w) ◦ γ∗(ιT(−w) ◦ σ∗S) ◦ (1⊗ γ∗κ).

By using the compatibility of S and κ, we obtain

(2.7) (−1)wP ◦ exchange = (
√
−1)w(−1)wS ◦ (1⊗ σ∗κ) ◦ exchange

= (
√
−1)w(−1)wS ◦ (κ⊗ σ∗κ) ◦ (γ∗κ⊗ 1) ◦ exchange

= (
√
−1)wκT(−w) ◦ γ∗((−1)wS ◦ exchange) ◦ (1⊗ γ∗κ).

Thus, we are done.

Lemma 2.2. The following diagram is commutative:

γ∗V ⊗ σ∗V γ∗P−−−−→ γ∗T(−w)

κ⊗j∗κ
y yκT(−w)

V ⊗ j∗V (−1)wP−−−−−→ T(−w)

That is, (−1)wP ◦ (κ⊗ j∗κ) = κT(−w) ◦ γ∗P .

Proof. We have the following equalities:

(
√
−1)−wP ◦ (κ⊗ j∗κ) = S ◦ (1⊗ σ∗κ) ◦ (κ⊗ j∗κ)(2.8)

= S ◦ (κ⊗ σ∗κ) ◦ (1⊗ j∗κ),

κT(−w) ◦ γ∗((
√
−1)−wP ) = κT(−w) ◦ γ∗(S ◦ (1⊗ σ∗κ))(2.9)

= κT(−w) ◦ (γ∗S) ◦ (1⊗ j∗κ).

Thus, the claim follows from the compatibility of S and κ.

From twistor-TERP to TERP. Let (V,∇,S, κ,−w) be a twistor-TERP struc-
ture. Let us explain how to associate a TERP structure (H,H ′R,∇, P ′,−w) in the
sense of Hertling (Definition 3.1 in [12]), where (H,∇) is a TE -structure, H ′R is
a real structure on the flat bundle H|C∗λ , and P ′ is a pairing (see below). We set
H := V|Cλ and H ′ := V|C∗λ . In general, for a C-vector bundle U , let U denote the
conjugate of U , i.e., U = U as an R-vector bundle, and multiplication of

√
−1
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on U is given by multiplication of −
√
−1 on U . Note that γ∗(H)|λ for λ 6= 0 is

naturally identified with H |λ−1 .
The following diagram for λ 6= 0 is commutative by the flatness of κ:

(2.10)

H |λ
Πλ−−−−→ H |λ−1

κ|λ−1

y yκ|λ
H|λ−1

Π−1
λ−−−−→ H|λ

Here, Πλ denotes the parallel transport along the segment connecting λ and λ
−1

,
which is frequently used in [10]. A flat isomorphism κ′ : H |C∗λ ' H|C∗λ is given by
the composite κ′|λ := κ|λ ◦Πλ. Because γ∗κ ◦ κ = id, the composite

H |λ
κ|λ−1

−−−−→ H|λ−1
κλ−−→ H |λ

is the identity. Then we can check κ′ ◦ κ′ = id by using the commutativity (2.10),
as follows:

κ′|λ ◦ κ
′
|λ = (κ|λ ◦Πλ) ◦ (Π−1

λ ◦ κ|λ−1) = κ|λ ◦ κ|λ−1 = id .

Hence, κ′ gives a flat real structure on H ′. Thus, we obtain a real flat subbundle
H ′R of H|C∗λ . By restricting P , we obtain a pairing

P|Cλ : H ⊗ j∗H → T(−w)|Cλ = OCλ · (
√
−1λ)−wt(−w)

1 .

By taking the coefficients of t(−w)
1 , we obtain a flat morphism

P ′ : H ′ ⊗ j∗H ′ → OC∗λ

such that λw ·P ′ induces a perfect pairing H ⊗ j∗H → OCλ . By Lemma 2.1, P ′ is
(−1)w-symmetric.

Lemma 2.3. P ′(H ′R ⊗R j∗H ′R) ⊂ (
√
−1)wR.

Proof. Note that κ gives real structures κ|a : H|a ' H|a for a = 1,−1. By Lemma
2.2, we have

(2.11) (
√
−1)wP|1 ◦ (κ|1 ⊗ κ|−1) = (κT(−w))|1 ◦ ((

√
−1)wP|1).

We obtain P ′|1(HR|1⊗HR|−1) ⊂ (
√
−1)wR. Then the claim follows from the flatness

of P ′.
Thus, we obtain a TERP structure (H,H ′R,∇, P ′,−w).
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From TERP to twistor-TERP. Conversely, we obtain a twistor-TERP struc-
ture (V,∇, κ,S,−w) from a TERP structure (H,H ′R,∇, P ′,−w). The following
construction has already essentially appeared in [10]. We set V0 := H and V∞ :=
γ∗H. We have the flat isomorphism

τreal : H|C∗λ ' γ
∗(H|C∗λ),

obtained as the composite of the conjugate with respect to the real structure and
the parallel transport along the segment connecting λ and λ

−1
. By gluing (H,∇)

and γ∗(H,∇) via τreal, we obtain an integrable twistor structure (V,∇).
By construction, we have γ∗(τreal) = τ−1

real, and the following diagram is com-
mutative:

H|C∗λ
τreal−−−−→ γ∗(H|C∗λ)

=

y y=

γ∗(γ∗H|C∗λ)
γ∗τ−1

real−−−−→ γ∗H|C∗λ

Hence, a morphism κ : γ∗(V,∇) ' (V,∇) is given by the gluing of γ∗V∞ ' V0 and
γ∗V0 ' V∞ induced by the identity. Clearly it satisfies γ∗κ◦κ = id. The restriction
κ|C∗λ : γ∗(V )|C∗λ → V|C∗λ is identified with τ−1

real : γ∗H|C∗λ ' H|C∗λ .

Let P0 : V0 ⊗ j∗V0 → OCλ · t
(−w)
0 be given by

P0 = P ′ · t(−w)
1 = P ′ · (

√
−1λ)w · t(−w)

0 .

We have the induced morphism

κT(−w) ◦ γ∗P0 : V∞ ⊗ j∗V∞ → OCµ · t(−w)
∞ .

Because P ′(H ′R⊗R j∗H ′R) ⊂ (
√
−1)wR, we obtain the following equalities for linear

maps H|1 ⊗H|−1 → T(−w)|1:

(
√
−1)wP0|1 ◦ (κ|1 ⊗ κ|−1) = (κT(−w))|1 ◦ ((

√
−1)wP0|1)(2.12)

= (−
√
−1)w(κT(−w))|1 ◦ (γ∗P0|1).

Here, we have used the natural identification P0|1 = (γ∗P0)|1. The first and third
terms in (2.12) are obtained as the restrictions of morphisms (V∞ ⊗ j∗V∞)|C∗λ →
OC∗λ · t

(−w)
1 to the fiber over 1. By flatness, we obtain the following equality on C∗λ:

(2.13) (−1)wP0 ◦ (κ⊗ j∗κ) = κT(−w) ◦ γ∗P0.

Hence, the pairings P0 and (−1)wκT(−w) ◦ γ∗P0 induce P : V ⊗ j∗V → T(−w).
Since P ′ is (−1)w-symmetric, P is also (−1)w-symmetric in the sense of Lemma 2.1.
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From (2.13), we obtain

(2.14) (−1)wP ◦ (κ⊗ j∗κ) = κT(−w) ◦ γ∗P.

The pairing S is constructed from P and κ by the relation (2.5). The compatibility
of κ and S follows from (2.8), (2.9) and (2.14). The pairing S is (−1)w-symmetric,
which follows from (2.6), (2.7) and the compatibility with κ. Thus, we obtain a
twistor-TERP structure (V,∇,S, κ,−w).

Hertling’s vector bundle. Let (H,H ′R,∇, P,−w) be a TERP structure cor-
responding to a twistor-TERP structure (V,∇,S, κ,−w). Recall that Hertling
constructed an integrable twistor structure (Ĥ,∇) from a TERP structure
(H,H ′R,∇, P,−w) by gluing H and γ∗H via a map τ . (See [10].) We do not recall τ
and his construction here, but Ĥ is naturally isomorphic to V ⊗O(0,−w) by the
following correspondence:

H = V0 ↔ V0 ⊗O(0,−w)0, a↔ a⊗ f (0,−w)
0 ,

γ∗H ↔ γ∗V0 ⊗O(0,−w)∞, γ∗b↔ γ∗b⊗ (
√
−1)wf (0,−w)

∞ .

According to [10] and [12], (H,H ′R,∇, P,−w) is defined to be pure if (Ĥ,∇) is
pure of weight 0. They consider the hermitian pairing h on H0(P1, Ĥ) given by
λw · P ′ ◦ (1 ⊗ τ), and (H,H ′R,∇, P,−w) is defined to be polarized if h is positive
definite.

Lemma 2.4. (H,H ′R,∇, P,−w) is pure (resp. polarized) if and only if the corre-
sponding (V,∇,S, κ,−w) is pure (resp. polarized).

Proof. The purity claim is obvious. Let us consider polarizability. We have only
to show that h is the hermitian pairing induced by S̃ := S ⊗ S0,−w, under the
identification of Ĥ and V ⊗O(0,−w).

Let â, b̂ ∈ H0(P1, Ĥ). Under the identification Ĥ|Cλ = H and Ĥ|Cµ = γ∗H, the
sections a and b of H are determined by a := â|Cλ and γ∗b := b̂|Cµ . By definition,

h(â, b̂) = λwP ′(a, j∗b).

Let us look at S̃|Cλ . Under the above identification, the pairing of â and b̂ is given
by

S̃
(
a⊗ f (0,−w)

0 , σ∗(γ∗b⊗ (
√
−1)wf (0,−w)

∞ )
)

= S(a, σ∗(γ∗b)) · t(w)
0

= S(a, j∗b) · t(w)
0 =: S0(a, j∗b).
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Let us compare λwP ′(a, j∗b) and S0(a, j∗b). Since κ|Cµ is equal to the identity
V∞ = γ∗H → γ∗V0 = γ∗H, we have

P|Cλ = (
√
−1)wS ◦ (1⊗ σ∗κ)|Cλ = (

√
−1)wS|Cλ .

Hence,

P ′(a, j∗b) · t(−w)
1 = P (a, j∗b) = S(a, j∗b) · (

√
−1)w(2.15)

= (
√
−1)w · S0(a, j∗b) · t(−w)

0 = λ−wS0(a, j∗b) · t(−w)
1 .

Thus, we obtain λw · P ′(a, j∗b) = S0(a, j∗b). Therefore, S̃ induces h.

Family version. The correspondence is generalized in the family case. Let
(V, D̃4V ,S, κ,−w) be a variation of twistor-TERP structure. We set H := V|Cλ×X .
It is equipped with TE-structure∇ obtained as the restriction of D̃4V . As in the pre-
vious case, we obtain a flat C-anti-linear isomorphism κ′ : H|C∗λ×X ' H|C∗λ×X and
a flat pairing P : H ′ ⊗ j∗H ′ → OC∗λ×X . It is easy to check that (H,H ′R,∇, P,−w)
is a variation of TERP structure. The converse can be constructed similarly. The
correspondence preserves “pure” and “polarized”, for which we have only to check
the case in which X is a point (Lemma 2.4).

§2.2. Basic examples

2.2.1. Example associated to a holomorphic function. Let a be a holomor-
phic function on a complex manifold X. We set

V0 := OCλ×X · e, ∇V0(e) = e · d(λ−1a),

V∞ := OCµ×X† · e
†, ∇V∞(e†) = e† · d(µ−1a).

We put s := exp(−λ−1a) · e and s† := exp(−µ−1a) · e†, which are flat sections of
V0|C∗λ×X and V∞|C∗µ×X† , respectively. A gluing Φ : V0|C∗λ×X ' V∞|C∗µ×X† is given
by Φ(s) = s†, in other words,

Φ(e) = exp(λ−1a− µ−1a) · e†.

Let V be the C∞-bundle obtained as the gluing of V0 and V∞ via Φ, which is
equipped with a T T̃E-structure. For each point P ∈ X, the restriction V|P1×{P}
is isomorphic to OP1 , and hence (V, D̃4V ) is pure of weight 0. A real structure κ is
given by κ(γ∗e†) = e and κ(γ∗e) = e†. We can check that κ actually gives a flat
isomorphism γ∗V ' V . A pairing S of V with weight 0 is given by e⊗σ∗e† 7→ t

(0)
0

and e† ⊗ σ∗e 7→ t
(0)
∞ . It is easy to check that S actually gives a symmetric flat

pairing V ⊗ σ∗V → T(0)X . The compatibility of S and κ can be checked by a
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direct calculation:

κT(0) ◦ γ∗S(γ∗e† ⊗ γ∗σ∗e) = κT(0)(γ∗(S(e† ⊗ σ∗e))) = κT(0)γ
∗t(0)
∞ = t

(0)
0 ,

S ◦ (κ⊗ σ∗κ)(γ∗e† ⊗ σ∗γ∗e) = S(e⊗ σ∗e†) = t
(0)
0 .

Hence, we obtain a variation of twistor-TERP structure denoted by L(a). It is
polarized. The underlying harmonic bundle is given by the line bundle OX · v
with the Higgs field θ · v = v · da and the hermitian metric h(v, v) = 1, where
v := e|{0}×X . The operators U and Q are given by U = −a and Q = 0.

2.2.2. Example associated to unitary flat bundles of rank one. In general,
a variation of pure polarized Hodge structure provides us with an example of a
variation of pure polarized integrable twistor structure. Any unitary flat bundle
naturally gives a variation of pure polarized Hodge structure, and hence a variation
of pure polarized integrable twistor structure.

In particular, we will use the following example. Let X := Cn and D :=⋃`
i=1{zi = 0}. For any a ∈ R`, we have the following unitary flat bundle:

OX−D · e, ∇e = e ·
(
−
∑̀
i=1

ai
dzi
zi

)
.

The associated variation of integrable polarized pure integrable structure is de-
noted by L(a).

More concretely, it is obtained as the gluing of the following meromorphic flat
bundles:

V0 = OCλ×(X−D) · e, ∇V0e = e ·
(
−
∑̀
i=1

ai
dzi
zi

)
,

V∞ = OCµ×(X†−D†) · e†, ∇V∞e† = e† ·
(∑̀
i=1

ai
dzi
zi

)
.

The gluing is given by Φ(e) =
∏`
i=1 |zi|−2ai · e†. The pairing is given by S(e, σ∗e†)

= 1. The underlying harmonic bundle is the line bundle OX−D · v with the Higgs
field θ · v = 0 and the metric h(v, v) =

∏`
i=1 |zi|−2ai , where v := e|{0}×(X−D). The

operators U and Q are 0.

2.2.3. Example induced by nilpotent maps. Let Y be a complex manifold.
We set X := C` × Y , D =

⋃`
i=1{zi = 0} × Y . We put X := Cλ × X and

X † := Cµ × X†. We use the symbols D, Y, D† and Y† in similar meanings. Let
q0 : X → Y and q∞ : X † → Y† denote the naturally defined projections.
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Let (V,D4) be a variation of P1-holomorphic vector bundle on P1×Y with a
tuple f of nilpotent morphisms

fi : V → V ⊗ T(−1), i = 1, . . . , `.

such that (i) [fi, fj ] = 0, (ii) they are P1-holomorphic and D4-flat. We recall a
construction of the variation of P1-holomorphic vector bundle on P1 × (X − D)
associated to (V,f) given in Subsection 3.5.3 of [22] with a minor generalization.
(In [22], we considered the case that Y is a point.)

We regard (V,D4V ) as the gluing of a family of λ-flat bundles (V0,DV0) on Y,
and a family of µ-flat bundles (V∞,D†V∞) on Y†. We obtain a holomorphic vector
bundle V0 := q∗0V0 on X−D with a family of flat λ-connections q∗0DV0 . We naturally
identify T(0)|X−D ' OX−D by the trivialization t

(0)
0 . We also use the natural

identification T(−1)⊗T(1) ' T(0). We have the q∗0DV0 -flat endomorphisms q∗0fi⊗
t
(1)
0 ∈ End(V0). We obtain the family of flat λ-connections on V0 given as follows:

DV0 := q∗0DV0 +
∑̀
i=1

q∗0fi ⊗ t
(1)
0

dzi
zi
.

Similarly, we obtain a holomorphic vector bundle V∞ := q∗∞V∞ on X † −D† with
a family of flat µ-connections q∗∞D

†
V∞

. We have the q∗∞D
†
V∞

-flat endomorphisms

q∗∞fi⊗t
(1)
∞ ∈ End(V∞). Hence, we obtain the following family of flat µ-connections:

D†V∞ := q∗∞D
†
V∞

+
∑̀
i=1

q∗∞fi ⊗ t(1)
∞
dzi
zi
.

Let ΨV : V0|C∗λ×Y ' V∞|C∗µ×Y denote the gluing. Then an isomorphism Ψ :
V0|C∗λ×(X−D) → V∞|C∗µ×(X†−D†) is given as follows:

(2.16) Ψ := ΨV ◦ exp
(∑̀
i=1

log |zi|2 · q∗0fi ⊗
√
−1 t(1)

1

)
By construction, Ψ is holomorphic with respect to λ.

Lemma 2.5. Ψ ◦ DfV0
= D† fV∞ ◦Ψ.

Proof. We have the following expressions:

DfV0
= q∗0D

f
V0

+
∑̀
i=1

q∗0fi ⊗ (
√
−1 t(1)

1 )
dzi
zi
,

D† fV∞ = q∗∞D
† f
V∞

+
∑̀
i=1

q∗∞fi ⊗ (−
√
−1 t(1)

1 )
dzi
zi
.

(2.17)
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Because ΨV ◦ DfV0
= D† fV∞ ◦ΨV , we have

q∗∞D
† f
V∞
◦Ψ−Ψ ◦ q∗0D

f
V0

= ΨV ◦ q∗0D
f
V0

(
exp
(∑̀
i=1

log |zi|2 · q∗0fi ⊗
√
−1 t(1)

1

))
= Ψ ◦

(∑̀
i=1

(
dzi
zi

+
dzi
zi

)
· q∗0fi ⊗

√
−1 t(1)

1

)
.

Thus, the claim of the lemma follows.

Let TNIL(V,D4V ,f) denote the variation of P1-holomorphic bundle on P1 ×
(X −D) obtained as the gluing of (V0,DV0) and (V∞,D†V∞) via Ψ.

Assume (V,D4V ) is equipped with a pairing S : (V,D4V )⊗σ∗(V,D4V )→ T(−w)
of weight w such that S(fi ⊗ id) + S(id⊗σ∗fi) = 0 for any i. Then we have the
induced pairing of weight w:

TNIL(S) : TNIL(V,D4V ,f)⊗ σ∗ TNIL(V,D4V ,f)→ T(−w).

It is obtained as the gluing of the pairings

S0 : V0 ⊗ σ∗V∞ → T(−w)|X−D, S∞ : V∞ ⊗ σ∗V0 → T(−w)|X †−D† ,

which are the pull backs of V0 ⊗ σ∗V∞ → T(−w)|Cλ and V∞ ⊗ σ∗V0 → T(−w)|Cµ .
(See Subsection 3.6.1 of [22].)

Enrichment. Assume that (V,D4V ) is enriched to a variation of integrable twis-
tor structure (V, D̃4V ) such that fj are D̃4V -flat, which is obtained as the gluing
of (V0,∇V0) and (V∞,∇V∞) via ΨV . Then TNIL(V,D4V ,f) is also enriched to
integrable TNIL(V, D̃4V ,f), which can be checked by an obvious enhancement of
the argument in the proof of Lemma 2.5. The TE-structure ∇V0 and the T̃E-
structure ∇V∞ are given by essentially the same formulas as (2.17):

∇V0 := q∗0∇V0 +
∑̀
i=1

q∗0fi ⊗ (
√
−1 t(1)

1 )
dzi
zi
,

∇V∞ := q∗∞∇V∞ +
∑̀
i=1

q∗∞fi ⊗ (−
√
−1 t(1)

1 )
dzi
zi
.

If we are given a pairing S of (V, D̃4V ) with weight w satisfying S ◦ (fj ⊗ id) + S ◦
(id⊗σ∗fj) = 0, we have a naturally induced pairing TNIL(S) on TNIL(V, D̃4V ,f)
with weight w. Assume that we are given a real structure κ on (V, D̃4V ,S) such
that κ ◦ γ∗fi = fi ◦ κ. Because κ0 ◦ γ∗(fi ⊗ t(1)

1 ) = (fi ⊗ t(1)
1 ) ◦ κ0, we obtain the

isomorphisms

κ0 : γ∗(V∞,∇V∞) ' (V0,∇V0), κ∞ : γ∗(V0,∇V0) ' (V∞,∇V0).
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We can observe that the following diagram on C∗λ × (X −D) is commutative:

γ∗V∞
κ0−−−−→ V0

γ∗Ψ−1

y yΨ

γ∗V0
κ∞−−−−→ V∞

To check this, we have only to note that

(2.18) Ψ ◦ κ = ΨV ◦ exp
( n∑
i=1

log |zi(P )|2 · fi ⊗
√
−1 t(1)

1

)
◦ κ

= κ ◦ γ∗Ψ−1
V ◦ exp

(
−

n∑
i=1

log |zi(P )|2 · γ∗(fi ⊗
√
−1 t(1)

1 )
)

= κ ◦ γ∗Ψ−1.

Hence, we obtain an isomorphism

TNIL(κ) : γ∗ TNIL(V, D̃4V ,f) ' TNIL(V, D̃4V ,f).

By construction, it is easy to check γ∗TNIL(κ) ◦ TNIL(κ) = id. It is also easy
to check the compatibility condition if the given S and κ are compatible. There-
fore, we obtain a variation of twistor-TERP structure TNIL(V, D̃4V ,f ,S, κ,−w) on
X−D from a variation of twistor-TERP structure (V, D̃4V ,S, κ,−w) with f = (fi)
as above.

Definition 2.6. Let (V,D4V ,f ,S) be as above. We set

X∗(R) := Y × {(z1, . . . , zn) | 0 < |zi| < R}

for R > 0.

• If there existsR > 0 such that TNIL(V,D4V ,f ,S)|P1×X∗(R) is pure and polarized,
it is called a twistor nilpotent orbit of weight w.

• If moreover (V,D4V ) is enriched to a variation of integrable twistor structure
(V, D̃4V ) such that fj and S are D̃4V -flat, then TNIL(V, D̃4V ,f ,S)|P1×X∗(R) is
called an integrable twistor nilpotent orbit of weight w. (We often omit “inte-
grable” if there is no risk of confusion.)

• If moreover (V, D̃4V ,S) is equipped with a real structure κ such that κ ◦ γ∗fi =
fi ◦ κ, the variation TNIL(V, D̃4V ,S, κ,−w)|P1×X∗(R) is called a twistor-TERP
nilpotent orbit.

Remark 7. The notion of a twistor-TERP nilpotent orbit is different from “nilpo-
tent orbit” defined by Hertling and Sevenheck. Their “nilpotent orbit” is called
HS-orbit in this paper.
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§2.3. Convergence

2.3.1. Complement on convergence of pure polarized twistor structures.
Let (V (i),S(i)) (i = 0, 1) be polarized pure twistor structures with weight 0 of
rank r. Let h(i) be the hermitian metrics on V (i) corresponding to S(i), and let
d(i) denote the associated flat unitary connections of V (i), which are equal to
the natural connection given by holomorphic trivializations V (i) ' O⊕rP1 . Let ∂

(i)

denote the (0, 1)-part of d(i), which is equal to the holomorphic structures of V (i).
We fix a hermitian metric g of Ω1,0

P1 ⊕Ω0,1
P1 . Let | · |h(i),g denote the sup-norms with

respect to the metrics induced by h(i) and g. The symbols | · |h(i) and | · |g are
used in similar meanings. Let Φ : V (0) → V (1) be a C∞-isomorphism such that
the following conditions are satisfied for some ε > 0:

(A1) |Φ∗∂(1) − ∂(0)|h(0),g ≤ ε as a C∞-section of End(V (0))⊗ Ω0,1.

(A2) |Φ∗S(1) − S(0)|h(0) ≤ ε as a C∞-section of Hom(V (0) ⊗ σ∗V (0),T(0)).

(A3) |∂(0)
(Φ∗S(1) − S(0))|h(0),g = |∂(0)

Φ∗S(1)|h(0),g ≤ ε as a C∞-section of

Hom(V (0)⊗σ∗V (0),T(0))⊗Ω0,1
P1 , where ∂

(0)
denotes the induced holomorphic

structure on Hom(V (0) ⊗ σ∗V (0),T(0)).

Lemma 2.6. There exists a constant C0 > 0, independent of ε, with the following
property:

• If B−1 · Φ∗h(1) ≤ h(0) ≤ B · Φ∗h(1) for some B > 1, then

(2.19) |Φ∗d(1) − d(0)|h(0),g ≤ C0B
4ε.

Proof. In the following argument, Ci denote positive constants independent of ε.
Let ∂(i)

h(i) denote the (1, 0)-part of d(i), which is determined by h(i) and ∂
(i)

. To

show (2.19), we have only to estimate |∂(0)

h(0) − Φ∗∂(1)

h(1) |h(0),g.
Let e1, . . . , er be an orthogonal frame of V (0) with respect to h(0). Because

Φ∗h(1)(ei, ej) = Φ∗S(1)(ei ⊗ σ∗ej), we have the following estimate for any i, j:

|∂(Φ∗h(1)(ei, ej))|g = |∂(0)
(Φ∗S(1))(ei ⊗ σ∗ej)|g ≤ C1ε.

Hence, we obtain

(2.20) |∂(Φ∗h(1)(ei, ej))|g ≤ C1ε.

Let ∂(0)

h(1) denote the (1, 0)-operator determined by Φ∗h(1) and ∂
(0)

. As B−1 ·Φ∗h(1)

≤ h(0) ≤ B · Φ∗h(1), and by (2.20), we have

|∂(0)

h(1) − ∂
(0)

h(0) |h(0),g ≤ C2Bε.

Because |Φ∗∂(1) − ∂(0)|h(0) ≤ C3ε and B−1 · Φ∗h(1) ≤ h(0) ≤ B · Φ∗h(1), we have

|Φ∗∂(1) − ∂(0)|Φ∗h(1) ≤ C4B
2ε.
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Hence, we obtain |Φ∗∂(1)

h(1) − ∂
(0)

h(1) |Φ∗h(1) ≤ C4B
2ε, which implies

|Φ∗∂(1)

h(1) − ∂
(0)

h(1) |h(0) ≤ C5B
4ε.

Thus, we obtain (2.19).

Lemma 2.7. There exist positive constants ε0, C10 and C11 such that, for ε ≤ ε0,

|Φ∗h(1) − h(0)|h(0) ≤ C10ε,(2.21)

|Φ∗d(1) − d(0)|h(0) ≤ C11ε.(2.22)

Proof. According to the result in Subsection 11.3 of [23], if ε0 is sufficiently small,
(2.21) holds for some C10. Then we obtain (2.22) from Lemma 2.6.

2.3.2. Approximation of pure polarized integrable twistor structures.
Let (V (i),∇(i),S(i)) (i = 1, 2) be integrable polarized pure twistor structures. Let
h(i) be the hermitian metrics on V (i) corresponding to S(i). We fix a hermitian
metric g̃ on Ω1,0

P1 (2 · {0,∞}) ⊕ Ω0,1
P1 . Let Φ : V (0) → V (1) be a C∞-isomorphism

such that for some ε > 0:

(B1) |Φ∗∇(1) −∇(0)|h(0),eg ≤ ε as a C∞-section of

End(V (0))⊗ (Ω1,0
P1 (2 · {0,∞})⊕ Ω0,1

P1 ).

Note that this implies (A1) in Subsection 2.3.1.

(B2) Conditions (A2) and (A3) are satisfied.

Lemma 2.8. There exists a constant C20 > 0, independent of ε, such that if
B−1 · Φ∗h(1) ≤ h(0) ≤ B · Φ∗h(1) for some B > 1, then

|Φ∗U (1) − U (0)|h(0) ≤ C20B
4ε, |Φ∗Q(1) −Q(0)|h(0) ≤ C20B

4ε.

Proof. In the following argument, Ci denote positive constants independent of ε.
By Lemma 2.7, we have |Φ∗d(1) − d(0)|h(0),eg ≤ C21B

4 ε. We obtain∣∣(λ−1 (Φ∗U (1)−U (0))−(Φ∗Q(1)−Q(0))−λ(Φ∗U (1)†−U (0)†))dλ/λ
∣∣
h(0),eg ≤ C22B

4ε.

Then, it is easy to deduce the claim of the lemma.

Lemma 2.9. There exist positive constants ε0 and C30 such that, for ε ≤ ε0,

|Φ∗h(1) − h(0)|h(0) ≤ C30ε, |Φ∗U (1) − U (0)|h(0) ≤ C30ε,

|Φ∗Q(1) −Q(0)|h(0) ≤ C30ε.

Proof. This can be shown by the argument in the proof of Lemma 2.7.
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§2.4. Variation of polarized mixed twistor structure
and its enrichment

2.4.1. Definitions

Variation of polarized mixed twistor structure. Let X be a complex man-
ifold. Let (V,D4) be a variation of P1-holomorphic vector bundle on P1 × X

equipped with an increasing filtration W indexed by Z in the category of vec-
tor bundles, which is P1-holomorphic and D4-flat. If each GrWn (V ) is a variation
of pure twistor structure of weight n, (V,W,D4) is called a variation of mixed
twistor structure. Assume we are given the following data on (V,W,D4), which
are P1-holomorphic and D4-flat:

• A tuple f of nilpotent morphisms fj : V → V ⊗T(−1) (j = 1, . . . , n) which are
mutually commutative.

• A (−1)w-symmetric pairing S : V ⊗ σ∗V → T(−w).

• For each P ∈ X, the restriction (V,W,f ,S)|P1×{P} is a polarized mixed twistor
structure of weight w in n variables. (See Subsection 3.48 of [22].)

Then the tuple (V,D4,W,f ,S) is called a variation of polarized mixed twistor
structure. Since W is determined by f as the weight filtration of f(n) :=

∑n
j=1 fj

up to shift of indices, we sometimes omit W in notation.

Enrichment. If D4 and the P1-holomorphic structure are extended to a T T̃E-
structure D̃4 for which f and S are flat, (V, D̃4,W,f ,S) is called a variation of
polarized mixed integrable twistor structure of weight w in n variables. Note that
W is automatically D̃4-flat.

If moreover (V, D̃4,S) is equipped with a real structure κ such that κ◦γ∗fj =
fj ◦ κ, then tuple (V, D̃4,W,f ,S, κ,−w) is called a variation of polarized mixed
twistor-TERP structure in n variables.

Remark 8. The notion of polarized mixed twistor-TERP structure is different from
“mixed TERP structure” defined by Hertling and Sevenheck (Section 9 of [12]).

Split type. Let (V,W,D4) be a variation of mixed twistor structure. It is called
of split type if it is equipped with a grading V =

⊕
Vm such that (i) it is P1-

holomorphic and D4-flat, (ii) Wm =
⊕

p≤m Vp. In that case, each (Vm,D4) is
a variation of pure twistor structure of weight m. Note that such a grading is
uniquely determined because H0(P1,OP1(m)) = 0 for any m < 0.

A variation of polarized mixed twistor structure (V,W,D4,f ,S) is called of
split type if the underlying variation of mixed twistor structure (V,W,D4) is of
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split type with a grading V =
⊕
Vm. We can show that:

• fj(Vp) ⊂ Vp−2 ⊗ T(−1).

• The restriction of S to Vp ⊗ σ∗Vq is 0 unless p+ q = 2w.

Similarly, a variation of polarized mixed integrable twistor structure is called of
split type if the underlying variation of polarized mixed twistor structure is of split
type. The grading is flat.

A polarized mixed twistor-TERP structure (V,W,∇,f ,S, κ,−w) is called of
split type if the underlying variation of mixed integrable twistor structure is of
split type. For the grading V =

⊕
Vm, we have κ(γ∗Vm) = Vm.

2.4.2. Reduction. Let (V,W,D4,f ,S) be a variation of polarized mixed twistor
structure of weight w in n variables. We obtain a variation of P1-holomorphic
vector bundle (V (0),D(0)4) := GrW (V,D4), naturally equipped with a grad-
ing V (0) =

⊕
GrWm (V ) and a filtration W

(0)
m =

⊕
p≤m GrWp (V ). We have in-

duced morphisms f
(0)
j : GrWm (V ) → GrWm−2(V ) ⊗ T(−1), and hence f

(0)
j :

V (0) → V (0) ⊗ T(−1). We also obtain induced morphisms S(0) : GrWw−m(V ) ⊗
σ∗GrWw+m(V ) → T(−w), and hence S(0) : V (0) ⊗ σ∗(V (0)) → T(−w). It is
known that (V (0),W (0),f (0),S(0))|P1×{P} are polarized mixed twistor structures
of split type with weight w in n variables. (See [22]. This can be shown directly
and easily.) Hence, (V (0),W (0),D(0)4,f (0),S(0)) is a variation of polarized mixed
twistor structure of split type with weight w in n variables. It is denoted by
GrW (V,W,D4,f ,S).

If (V,W,D4,f ,S) is enriched to an integrable one (V,W, D̃4,f ,S), the asso-
ciated Gr is also integrable. If moreover (V,W, D̃4,f ,S) is enriched to a variation
of polarized mixed twistor-TERP structure, the associated Gr is also enriched to
a variation of polarized mixed twistor-TERP structure of split type.

2.4.3. Splittings

Preliminaries. Let (Vi,W,D4i ) (i = 1, 2) be variations of mixed twistor structure
on P1 ×X with a morphism F : (V1,W,D41 )→ (V2,W,D42 ). We set (V (0)

i ,D(0)4
i )

:= GrW (Vi,D4i ) on which we have the naturally induced filtrations W (0). We also
obtain the induced morphism F (0) : (V (0)

1 ,W (0),D(0)4
1 ) → (V (0)

2 ,W (0),D(0)4
2 ).

The following lemma is standard.

Lemma 2.10. The rank of F|(λ,P ) is independent of (λ, P ) ∈ P1 ×X. The mor-
phism F is strict with respect to the weight filtration. Hence, KerF with the induced
filtration W (KerF ) is a mixed twistor structure, and we have the isomorphism
KerF (0) ' GrW (KerF ).
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Proof. If X is a point, the claims are well known and easy to show. Namely, it
is shown in Lemma 2.20 of [21] that (i) Ker(F ) is a subbundle of V1, (ii) F is
strict with respect to the weight filtrations, i.e., F (Wl(V1)) = F (V1)∩Wl(V2), (iii)
Ker(F ) with the induced weight filtration is a mixed twistor structure. We obtain
the isomorphism KerF (0) ' GrW (KerF ) by strictness.

Let us consider the general case. By using flatness, it is easy to show that
rankF|(1,P ) and rankF (0)

|(1,P ) are independent of the choice of a point P ∈ X.
Hence, the claim of the lemma follows.

Corollary 2.1. Let (Vi,W,D4i ) (i = 0, 1, . . . ,m) be variations of mixed twistor
structure with morphisms Fi : (V0,W,D40 ) → (Vi,W,D4i ) for i = 1, . . . ,m. Then
we have the following natural isomorphism of variations of mixed twistor structure:

GrW
( m⋂
i=1

KerFi
)
'

m⋂
i=1

KerF (0)
i .

Here, F (0)
i denote the induced morphisms V (0)

0 → V
(0)
i .

Local splitting. Let (V,W,D4) be a variation of mixed twistor structure. Let
N = (Nj | j = 1, . . . , `) be a tuple of morphisms Nj : (V,W,D4) → (V,W,D4)⊗
T(−1) which are mutually commutative. Let (V (0),W (0),D(0)4) be as above. Let
N (0) = (N (0)

j | j = 1, . . . , `) be the induced commuting tuple of morphisms N (0)
j :

(V (0),W (0),D(0)4)→ (V (0),W (0),D(0)4)⊗ T(−1).
We set V := Hom(V (0), V ), which is naturally equipped with the operator

D4 and an induced filtration W . Let N j : (V ,W,D) → (V ,W,D) ⊗ T(−1) (j =
1, . . . , `) be the morphisms of mixed twistor structures given by N j(f) = Nj ◦
f − f ◦ N (0)

j . Similarly, we set V
(0)

:= Hom(V (0), V (0)), on which we have the

naturally induced operator D(0)4
, filtration W

(0)
and morphisms of mixed twistor

structures N
(0)

j : (V
(0)
,W

(0)
,D(0)

)→ (V
(0)
,W

(0)
,D(0)

)⊗ T(−1).

We have the natural isomorphism GrW (V ) ' V
(0)

. The induced filtrations
and morphisms coincide. According to Corollary 2.1, we have the following iso-
morphism of variations of mixed twistor structure:

GrW
(⋂

KerN j

)
'
⋂

KerN
(0)

j .

Thus, we obtain the following corollary.

Corollary 2.2. Let (λ, P ) be any point of Cλ×X, and let U be a small neighbour-
hood of (λ, P ). There exists a C∞-morphism F : V (0)

|U → V|U with the following
properties:
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• It preserves the weight filtration, and the induced morphism GrW (V (0)
|U ) →

GrW (V|U ) is the identity.

• F ◦N (0)
j = Nj ◦ F for j = 1, . . . , `.

C∞-splitting. Let (V,W,D4,N) and (V (0),W (0),D(0)4,N (0)) be as above.

Lemma 2.11. There exists a C∞-isomorphism Φ : V (0) → V with the following
properties:

• Φ preserves the weight filtration W , and GrW Φ is the identity GrW (V (0)) =
GrW (V ).

• Φ ◦N (0)
j = Nj ◦ Φ for j = 1, . . . , `.

Proof. Let U ⊂ Cλ be a compact region with U ∪ σ(U) = P1. We take a locally
finite open covering U ×X ⊂

⋃
p∈I Up such that we have C∞-isomorphisms ΦUp :

V
(0)
|Up → V|Up as in Corollary 2.2, i.e., ΦUp ◦N

(0)
j = Nj ◦ΦUp for any j. Similarly, we

take a locally finite open covering σ(U) ×X† ⊂
⋃
q∈J U†q such that we have C∞-

isomorphisms ΦU†q : V (0)

|U†q
' V|U†q as in Corollary 2.2. We take a partition of unity

{χUp , χU†q | p ∈ I, q ∈ J} subordinated to the covering {Up,U†q | p ∈ I, q ∈ J} of
P1 ×X. We obtain the C∞-isomorphism

Φ :=
∑
p∈I

χUp · ΦUp +
∑
q∈J

χU†q · ΦU†q : V (0) → V.

By construction, it has the desired property.

§3. Polarized mixed integrable twistor structure of split type

§3.1. Basic examples in one variable

3.1.1. Rank two. Let us recall a basic example studied in Subsection 3.7.2 of [22]
with a minor enhancement. We set V [2] := O(0,−1)⊕O(1, 0). (See Subsection 2.1.3
for O(p, q).) It is naturally equipped with a meromorphic connection ∇[2], and
(V [2],∇[2]) is an integrable twistor structure. We put

W−2(V [2]) := 0, W−1(V [2]) = W0(V [2]) := O(0,−1), W1(V [2]) := V [2].

Let F [2] : V [2] → V [2] ⊗ T(−1) be given by

f (1,0)
a 7→ f (0,−1)

a ⊗ t(−1)
a , f (0,−1)

a 7→ 0 (a = 0, 1,∞).



Variation of TERP Structure 449

A flat morphism S[2] : V [2] ⊗ σ∗V [2] → T(0) is given by the following correspon-
dence:

S[2](f (1,0)
1 ⊗ σ∗f (0,−1)

1 ) =
√
−1 t(0)

1 , S[2](f (0,−1)
1 ⊗ σ∗f (1,0)

1 ) = −
√
−1 t(0)

1 ,

S[2](f (1,0)
1 ⊗ σ∗f (1,0)

1 ) = 0, S[2](f (0,−1)
1 ⊗ σ∗f (0,−1)

1 ) = 0.

Recall that (V [2],W, F [2], S[2]) is a polarized mixed twistor structure of split type
in one variable with weight 0 (Lemma 3.90 of [22]). It follows that the tuple
(V [2],W,∇[2], F [2], S[2]) is a polarized mixed integrable twistor structure of split
type.

3.1.2. Twist. The bundle V [2] is obtained as the gluing of V [2]
0 := V

[2]
|Cλ and

V
[2]
∞ := V

[2]
|Cµ . We would like to explain a twist of the gluing given in Subsection

3.7.2 of [22], related to the construction in Subsection 2.2.3. Let N := F [2] ⊗ t(1)
1 .

Let v ∈ V [2]
|λ for λ 6= 0,∞. The induced elements of V [2]

0|λ and V
[2]
∞|µ are denoted by

v and v†, respectively. The gluing for V [2] is given by v = v†. For y ∈ C, a vector
bundle Ṽ [2]

y is given by the following twisted gluing:

exp(
√
−1 y ·N) · v = v†.

Since N is flat, we have the naturally induced flat connection ∇[2]
y on Ṽ [2]

y . We also
have the induced pairing S̃[2]

y on (Ṽ [2]
y ,∇[2]

y ) of weight 0.
For y 6= 0, we have a frame of Ṽ [2]

y given as follows:

s̃1 :=
√
−1λ · f (1,0)

0 +
√
−1 y · f (0,−1)

0 = f (1,0)
∞ ,

s̃2 := f
(1,0)
0 = −

√
−1µ · f (1,0)

∞ −
√
−1 y · f (0,−1)

∞ .

In particular, (Ṽ [2]
y ,∇[2]

y ) is a pure integrable twistor structure of weight 0 for any
y 6= 0. If y is a positive real number, S̃[2]

y gives a polarization of (Ṽ [2]
y ,∇[2]

y ) (Lemma
3.91 of [22]). Actually, s̃i (i = 1, 2) give an orthogonal frame:

S̃[2]
y (s̃i, σ∗s̃i) = y (i = 1, 2), S̃[2]

y (s̃1, σ
∗s̃2) = 0.

Note that ∇[2]
y is logarithmic with respect to the lattice Ṽ [2]

y . For any y 6= 0,
we have the decomposition

∇[2]
y = d[2]

y −Q[2]
y

dλ

λ
.

Here, d[2]
y is a natural flat connection on V

[2]
y ' OP1(0)⊕2. Let us calculate Q[2].

By easy calculations, we can check

∇[2]
y s̃1 = 0, ∇[2]

y s̃2 = s̃2 ·
(
−dλ
λ

)
.
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Hence, Q[2] is expressed by the following matrix with respect to the frame s̃1, s̃2:(
0 0
0 1

)
In particular, the eigenvalues are independent of y.

Remark 9. For our application, we essentially need only the case in which y is a
positive real number. Recall that we have considered a twisted isomorphism (2.16).
We will use the above considerations by setting y = −

∑`
i=1 log |zi|2.

3.1.3. Rank `. For any positive integer `, we set

(V [`],∇[`]) := Sym`−1(V [2],∇[2]),

which is equipped with a morphism F [`] : V [`] → V [`] ⊗ T(−1) and a pairing
S[`] : V [`]⊗σ∗V [`] → T(0). For any y ∈ C, we obtain an integrable twistor structure
(Ṽ [`]
y ,∇[`]

y , S̃
[`]
y ) with a pairing of weight 0, by the procedure of Subsection 3.1.2.

It is also obtained as the (`− 1)-th symmetric product of (Ṽ [2]
y ,∇[2]

y , S̃
[2]
y ). Hence,

(Ṽ [`]
y ,∇[`]

y ) is pure with weight 0 for each y 6= 0, and S̃
[`]
y gives a polarization for

each y > 0. We have the decomposition

∇[`]
y = d[`]

y −Q[`] dλ

λ
.

Let y 6= 0. A frame of Ṽ [`]
y is given by symmetric products s̃[`]

p := s̃`−1−p
1 · s̃p2

(p = 0, 1, . . . , `− 1), for which Q[`] is expressed by the diagonal matrix whose p-th
entry is p (p = 0, 1, . . . , `− 1). In particular, the eigenvalues are independent of y.

§3.2. Twistor nilpotent orbits of split type and their
new supersymmetric indices

3.2.1. One variable case. Let (V,W,D4, N, S) be a variation of polarized mixed
twistor structure of split type with weight 0 in one variable on P1 × Y , where Y
is a complex manifold. The following lemma is essentially the same as Corollary
3.97 of [22].

Proposition 3.1. There exist variations of polarized pure twistor structure
(U`,D4` , S`) of weight 0 on P1 × Y for ` ≥ 1 such that (i) (V,D4) '⊕

`≥1(U`,D4` ) ⊗ V [`], (ii) N =
⊕

idU` ⊗F [`] and S =
⊕
S` ⊗ S[`] under the

isomorphism. If (V,W,D4, N, S) is enriched to be integrable, (U`,D4, S`) are also
enriched to be integrable.
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Proof. We have the grading V =
⊕

j∈Z Vj . For each j ≥ 0, we set PVj :=
Ker(N j+1 : Vj → V−j−2 ⊗ T(j + 1)). It is a variation of pure twistor structure
of weight j, and equipped with the induced polarization Sj . For ` ≥ 1, we set
U` := PV`−1 ⊗ O(0,−` + 1), which are naturally variations of polarized pure
twistor structure. Now, it is easy to observe that V has the desired decomposition.
The integrable case is also easy.

Let q : Y ×C∗ → Y denote the projection. We have the variations of polarized
pure twistor structure on P1× (Y ×C∗) obtained as the pull back of (U`,D4` , S`),
denoted by q∗(U`,D4` , S`). Recall the construction of Subsection 2.2.3. We obtain
the following naturally defined isomorphism:

(3.1) TNIL(V,D4, N, S) '
⊕
`

q∗(U`,D4` , S`)⊗ TNIL(V [`],∇[`], F [`], S[`]).

By using the result in Subsection 3.1, we deduce the following:

Proposition 3.2. Set

X+ := Y × {z ∈ C | 0 < |z| < 1}, X− := Y × {z ∈ C | |z| > 1}.

Then TNIL(V,D4, N) is a variation of pure integrable twistor structure on P1 ×
(X+ ∪ X−), and the restriction TNIL(V,D4, N, S)|P1×X+ is a twistor nilpotent
orbit.

Assume that (V,D4) is enriched to integrable (V, D̃4) such that S and N are
D̃4-flat. Let Q and Q[`] be the new supersymmetric indices of TNIL(V, D̃4, N)
and TNIL(V [`],∇[`], F [`]), respectively. We also have the new supersymmetric in-
dex Q` of (U`, D̃4` ). By construction, we have the following equality, under the
isomorphism (3.1):

Q =
⊕
`≥1

(Q` ⊗ id + id⊗Q[`]).

The eigenvalues of Q are easily calculable, once we know those of Q`. In particular,
we obtain the following.

Corollary 3.1. The eigenvalues of Q|q−1(y) are constant for any y ∈ Y , where
q : X+ ∪X− → Y denotes the projection.

3.2.2. Several variables case. Let (V,W,D4V ,N , S) be a variation of polarized
mixed twistor structure of split type with weight 0 in n variables on P1 × Y .
We have the associated variation of twistor structure TNIL(V,D4V ,N , S) with a
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pairing of weight 0 on P1 × (C∗)n × Y . We set

X∗ := {(z1, . . . , zn) ∈ Cn | 0 < |zi| < 1} × Y.

Proposition 3.3. TNIL(V,D4V ,N , S)|P1×X∗ is a twistor nilpotent orbit.

Proof. For any a ∈ Rn>0, we set N(a) :=
∑n
i=1 aiNi. We obtain a varia-

tion of mixed polarized twistor structure (V,W,D4, N(a), S) of split type with
weight 0 in one variable on P1 × Y . Applying the result of Subsection 3.1.3 to
(V,W,D4V , N(a), S), we obtain the desired property of (V,W,D4V ,N , S).

Definition 3.1. An (integrable) twistor nilpotent orbit is called of split type if it
is associated to (integrable) polarized mixed twistor structures of split type.

If (V,W,D4V ,N , S) is enriched to integrable (V,W, D̃4V ,N , S), the associated
twistor nilpotent orbit is also enriched to integrable TNIL(V, D̃4V ,N , S). Let us
consider its new supersymmetric index Q. For any a ∈ Rn>0, we set N(a) :=∑n
i=1 aiNi. According to Proposition 3.1, there exist variations of polarized pure

integrable twistor structure (Ua,`, D̃4a,`) for ` ≥ 1 such that

(V, D̃4V , N(a)) '
⊕
`≥1

(Ua,`, D̃4a,`)⊗ (V [`],∇[`], F [`]).

Lemma 3.1. For any a, b ∈ Rn>0, we have an isomorphism

(Ua,`, D̃4a,`) ' (Ub,`, D̃4b,`).

Proof. Let V =
⊕
Vj be the splitting. For any a ∈ Rn>0 and j ≥ 0, we set

(PVj,a, D̃4) := Ker
(
N(a)j+1 : (Vj , D̃4)→ (V−j−2, D̃4)⊗ T(−j − 1)

)
.

We have only to show that (PVj,a, D̃4) and (PVj,b, D̃4) are isomorphic if b is
sufficiently close to a.

We set (Yj,a, D̃4) = Im
(
N(a) : (Vj+2, D̃4)⊗ T(1)→ (Vj , D̃4)

)
. Then we ob-

tain the flat splittings (Vj , D̃4) = (PVj,a, D̃4)⊕(Yj,a, D̃4). If b is sufficiently close
to a, flat isomorphisms PVj,a → PVj,b are induced by inclusions and projections.
Thus, we are done.

By Lemma 3.1 and the result in Subsection 3.2.1, the eigenvalues of Q are
easily calculable once we know the new supersymmetric indices of (Ua,`, D̃4a,`) for
a ∈ R`>0 and ` ≥ 1. In particular, we obtain the following.

Corollary 3.2. The eigenvalues of Q|q−1(y) are constant for any y ∈ Y , where
q : X∗ → Y denotes the natural projection.
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§4. Integrable twistor nilpotent orbits

§4.1. Statements

4.1.1. Twistor nilpotent orbits and polarized mixed twistor structures.
Let Y be a complex manifold. Let (V,D4V ) be a variation of twistor structure on
P1 × Y equipped with the following P1-holomorphic D4V -flat data:

• A pairing S : V ⊗ σ∗V → T(−w) of weight w.

• A tuple N of nilpotent morphisms Nj : V → V ⊗ T(−1) (j = 1, . . . , n) which
are mutually commutative.

• S(Nj ⊗ id) + S(id⊗ σ∗Nj) = 0 for j = 1, . . . , n.

For simplicity of statement, we assume the following:

• Y is contained in another complex manifold Y ′ as a relatively compact subset,
and (V,D4V , S,N) is extended onto Y ′.

We set X∗(R) := {(z1, . . . , zn) | 0 < |zi| < R} × Y .

Theorem 4.1. (V,D4V ,N , S) is a variation of polarized mixed twistor structure
with weight w in n variables if and only if

TNIL(V,D4V ,N , S)|P1×X∗(R)

is a twistor nilpotent orbit with weight w for some R > 0.

Note that the “if” part follows from Theorem 12.22 of [22]. The “only if” part
immediately follows from Proposition 4.1 below and a result in Subsection 11.3
of [23]. (We apply Proposition 4.1 to each point of Y ′.)

Remark 10. The one-dimensional case was proved in Proposition 3.105 of [22].
Such an equivalence for Hodge structure was established by Cattani–Kaplan–
Schmid and Kashiwara–Kawai.

Corollary 4.1. Let (V,D4V ,N , S) be as above.

• Assume that (V,D4V ) is enriched to integrable (V, D̃4V ) such that N and S

are flat with respect to D̃4V . Then (V, D̃4V ,N , S) is a variation of polarized
mixed integrable twistor structure with weight w in n variables if and only if
TNIL(V, D̃4V ,N , S)|P1×X∗(R) is an integrable twistor nilpotent orbit for some
R > 0.

• Assume moreover that (V, D̃4V , S) is equipped with a real structure κ which is
compatible with N . Then (V, D̃4V ,N , S, κ,−w) is a variation of polarized mixed
twistor-TERP structure if and only if TNIL(V, D̃4V ,N ,S, κ,−w) is a twistor-
TERP nilpotent orbit on X∗(R) for some R > 0.
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Remark 11. As the one variable case of Corollary 4.1, we obtain the correspon-
dence between twistor-TERP nilpotent orbits and polarized mixed twistor-TERP
structures. This is different from the correspondence between mixed TERP struc-
tures and HS-orbits in the regular singular case established by Hertling and Sev-
enheck ([10] and [12]).

4.1.2. Construction of an approximating C∞-isomorphism. Let (V,W,
D4,N , S) be a variation of polarized mixed twistor structure of weight 0 in
n variables on P1 × Y . We obtain a variation of polarized mixed twistor struc-
ture of split type (V (0),W (0),D(0)4,N (0), S(0)) by taking Gr with respect to the
weight filtration, as explained in Subsection 2.4.2. We obtain the families of P1-
holomorphic vector bundles (V4,D4) := TNIL(V,D4,N) and (V(0)4,D(0)4) :=
TNIL(V (0),D(0)4,N (0)) on (C∗)n× Y . They are equipped with the induced pair-
ings S and S(0). By the result in Subsection 3.2.2, (V(0),D(0)4,S(0)) is a variation
of polarized pure twistor structure on P1 ×X∗(1). Let h(0) be the corresponding
pluri-harmonic metric.

We take a C∞-isomorphism Φ : V (0) → V as in Lemma 2.11, i.e., it satisfies
(i) Φ ◦N (0)

i = Ni ◦Φ for i = 1, . . . , n, (ii) Φ preserves the weight filtration W , and
GrW Φ is the identity of GrW (V (0)) = GrW (V ). By the property (i) of Φ and the
construction of V4 and V(0)4, we obtain a naturally induced C∞-isomorphism
Φ̃ : V(0)4 → V4.

Let ∂V4,P1 denote the P1-holomorphic structure of V4. We use the symbol
∂V(0)4,P1 in a similar meaning. We obtain the following C∞-section of End(V(0)4)⊗
Ω0,1
P1 on P1 ×X∗(1):

F := ∂V(0)4,P1 − Φ̃∗(∂V4,P1).

We also obtain the following C∞-morphism:

G := S(0) − Φ̃∗S : V(0)4 ⊗ σ∗V(0)4 → T(0).

We fix a Kähler metric g on P1. Although the following proposition may look
only auxiliary, it means that (V(0)4,D(0)4,S(0)) approximates (V4,D4,S) via Φ̃
around P1 × {0} × Y . We will prove it in Subsection 4.2.1.

Proposition 4.1. For any P ∈ Y , there exist a positive constant RP > 0 and
a neighbourhood UP of P in Y such that the following estimates hold on P1 ×
{(z1, . . . , zn) | 0 < |zj | < RP } × UP :

|F |h(0),g = O
( n∑
j=1

(− log |zj |)−1/2
)
,
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|G|h(0) = O
( n∑
j=1

(− log |zj |)−1/2
)
,

|∂V(0)4,P1G|h(0),g = O
( n∑
j=1

(− log |zj |)−1/2
)
.

4.1.3. Estimate of the new supersymmetric index. Assume (V,D4V ,N , S)
is enriched to integrable (V, D̃4V ,N , S). By taking Gr with respect to the weight
filtration, we obtain a polarized mixed integrable twistor structure of split type
(V (0),D(0)4

V ,N (0), S(0)). According to Corollary 4.1, we have the associated nilpo-
tent orbits:

(V, D̃4,S) = TNIL(V, D̃4V ,N , S)|P1×X∗(R),

(V(0), D̃(0)4,S(0)) = TNIL(V (0), D̃(0)4
V ,N (0), S(0))|P1×X∗(R).

Let Q and h (resp. Q(0) and h(0)) denote the new supersymmetric index and the
pluri-harmonic metric of (V, D̃4,S) (resp. (V(0), D̃(0)4,S(0))). We will prove the
following proposition in Subsection 4.2.2.

Proposition 4.2. Let Φ̃ : V(0) → V be a C∞-isomorphism constructed in Subsec-
tion 4.1.2. For any P ∈ Y , there exist R > 0 and a neighbourhood UP of P in Y

such that the following estimates hold with respect to h(0) on P1 × {(z1, . . . , zn) |
0 < |zj | < R} × UP :

Φ̃∗h− h(0) = O
( n∑
i=1

(− log |zi|)−1/2
)
, Φ̃∗Q−Q(0) = O

( n∑
i=1

(− log |zi|)−1/2
)
.

In particular, the eigenvalues of Q|q−1(y) are constant up to O(
∑

(− log |zi|)−δ) for
some δ > 0, where q : X∗(1)→ Y denotes the natural projection.

§4.2. Proofs

4.2.1. Proof of Proposition 4.1. Let C > 0. Fix P ∈ Y . In the following, we
will shrink Y instead of taking a neighbourhood UP , for simplicity of description.
We set

Z(C) := {(z1, . . . , zn) ∈ (C∗)n | |zi|C ≤ |zi+1| < 1, i = 1, . . . , n− 1} × Y.

It is easy to observe that we only have to estimate F , G and ∂V(0)4,P1G on
P1 × Z(C). For m = 1, . . . , n, we put N (0)(m) :=

∑
i≤mN

(0)
i . Let W (m) de-

note the weight filtration of V (0) induced by N (0)(m). Recall that the filtrations
W (1), . . . ,W (n) are compatible (Lemma 3.116 of [22]).
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We take a compact region U ⊂ Cλ such that the union of the interior parts
of U and σ(U) covers P1. Let v = (vi) be a frame of V (0)

|U×Y compatible with
W (1), . . . ,W (n). For m = 1, . . . , n, we set

km(vi) :=
1
2

degW (m)(vi).

We formally put k0(vi) = 0.

Lemma 4.1. Let A be the matrix-valued (0, 1)-form determined by

−Fv = (Φ−1 ◦ ∂V4,P1Φ)v = v ·A.

Then Ai j = 0 unless km(vi) ≤ km(vj) (m = 1, . . . , n− 1) and kn(vi) < kn(vj).

Proof. By construction, Φ preserves the filtrations W (m) (m = 1, . . . , n), and
GrW (n) Φ is holomorphic. Hence, the claim follows immediately.

Let q0 : Cλ ×X∗(1) → Cλ × Y be the projection. Recall V(0)4
|Cλ×X∗(1) = q∗0V0.

Let ṽi be the section of V(0)4
|U×X∗(1) induced by vi, and put

v′j := ṽj

n∏
m=1

(− log |zm|)−km(vj)+km−1(vj)

= ṽj

n−1∏
m=1

(
− log |zm|
− log |zm+1|

)−km(vj)

(− log |zn|)−kn(vj).

Due to the norm estimate for tame harmonic bundles (Theorem 13.25 of [22]), the
C∞-frame v′ = (v′j) is adapted to the metric h(0) on Z(C), i.e., the hermitian
matrix-valued functions H = (h(v′i, v

′
j)) and H−1 are bounded on Z(C). Let A′

be the matrix-valued function determined by −Fv′ = v′ ·A′. Then we have

A′ij = Aij

n−1∏
m=1

(
− log |zm|
− log |zm+1|

)km(vi)−km(vj)

(− log |zn|)kn(vi)−kn(vj).

Hence, we obtain A′ij = O((− log |zn|)−1/2). This implies the desired estimate
for F on U × Z(C). Similarly, we obtain the estimate on σ(U) × Z(C), and thus
on P1 × Z(C).

Letw be a frame of V|σ(U)×Y † compatible with the filtrations W (1), . . . ,W (n).
For m = 1, . . . , n, we set

km(wi) :=
1
2

degW (m)(wi).

We formally put k0(wi) = 0. We set G0 := S(0) − Φ∗S : V (0) ⊗ σ∗V (0) → T(0).
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Lemma 4.2. G0(vi, σ∗wj) = 0 unless

km(vi) + km(wj) ≥ 0 (m = 1, . . . , n− 1), kn(vi) + kn(wj) > 0.

Proof. By the relation S(Ni ⊗ id) + S(id⊗ σ∗(Ni)) = 0, we have

S(Wp(m)⊗ σ∗Wq(m)) = 0

unless p + q ≥ 0. We have similar vanishings for S(0). Note that Φ preserves the
filtrations W (m) for m = 1, . . . , n, and GrW (n) Φ is compatible with S and S(0).
Thus, we obtain the claim.

Let q∞ : Cµ × X∗(1)† → Cµ × Y † be the projection. Recall V(0)4
|Cµ×X∗(1)†

=

q∗∞V∞. Let w̃j be the section of V(0)4
|σ(U)×X∗(1)†

induced by wj , and put

w′j := w̃j

n−1∏
m=1

(
− log |zm|
− log |zm+1|

)−km(wj)

(− log |zn|)−kn(wj).

Note that

G(v′i, σ
∗w′j) = G0(vi, σ∗wj)

×
n−1∏
m=1

(
− log |zm|
− log |zm+1|

)−km(vi)−km(wj)

(− log |zn|)−kn(vi)−kn(vj).

Hence, we obtain |G|h(0) = O((− log |zn|)−1/2). Similarly, we obtain the estimate
for |∂V(0),P1G|. Thus, the proof of Proposition 4.1, and hence that of Theorem 4.1,
is finished.

4.2.2. Proof of Proposition 4.2. We have the decompositions D̃4 = D4V0
+∇λ

and D̃(0)4 = D(0)4
V0

+∇(0)
λ . By an argument used in the proof of Proposition 4.1,

we can obtain the following estimate with respect to h(0):

Φ̃∗∇λ −∇(0)
λ = O

( n∑
i=1

(− log |zi|)−1/2
)
.

Thus, Proposition 4.2 follows from Lemma 2.9 and Proposition 4.1.

§5. Families of meromorphic λ-flat bundles

We will review some results on families of meromorphic λ-flat bundles mainly
described in Sections 3 and 4 of [23]. See also [20] and [24] for earlier work on
asymptotic analysis of meromorphic flat bundles.
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§5.1. Good lattice on a level

5.1.1. Preliminaries

Good set of irregular values on the level m. Let ∆` denote the `-dimen-
sional multi-disc {(z1, . . . , z`) | |zi| < 1, i = 1, . . . , `}. Put X := ∆` × Y for some
complex manifold Y . Let Di := {zi = 0} and D :=

⋃`
i=1Di be hypersurfaces in X.

Let M(X,D) (resp. H(X)) denote the space of meromorphic (resp. holomorphic)
functions on X whose poles are contained in D. For m = (m1, . . . ,m`) ∈ Z`, we
put zm :=

∏`
i=1 z

mi
i .

Let m ∈ Z`≤0 \ {0}. A finite set of meromorphic functions

I = {a = amz
m} ⊂M(X,D)

is called a good set of irregular values on (X,D) on the level m if the following
holds:

• am are holomorphic functions on X.

• am−bm are nowhere vanishing holomorphic functions on X for any two distinct
a, b ∈ I.

Let i(0) be the integer such that mi(0) < 0. If moreover the following condition
holds, I is called a good set of irregular values on (X,D) on the level (m, i(0)):

• am are independent of the variable zi(0) for any a ∈ I.

Remark 12. The first condition is not essential. If we do not impose it, the third
condition should be replaced with: am − bm are independent of zi(0) for any
a, b ∈ I.

Multi-sectors and orders on good sets of irregular values on the level m.
Let Y , X, Di and D be as above. Let K be a region of Cλ or a point in C∗λ. (For
Definition 5.1, we may admit K = {0}. Since we do not have to consider Stokes
structure in this case, we exclude it in the following.) The product K × X is
denoted by X . We use the symbols such as Y and D in similar meanings. We put
W := D∪ ({0}×X) in the case 0 ∈ K, and W := D otherwise. Let π : X̃ (W )→ X
denote the real blow up of X along W , which means in this paper the fiber product
of the real blow up X̃ (Di) (i = 1, . . . , `) and X̃ ({0} ×X) over X .

In this paper, a sector of a punctured disc ∆∗ means a subset of the form
{z | 0 < |z| < R, θ0 ≤ arg(z) ≤ θ1} for some θ0 < θ1. We do not consider sectors
whose angles are larger than 2π in this paper.
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By a multi-sector of X −W , we mean a subset of the form

U ×
∏̀
i=1

Si × V or Sλ ×
∏̀
i=1

Si × V,

where

• U denotes a compact region in K. (If K is a point, U = K.)

• Sλ denotes a sector of K − {0}. (If 0 6∈ K, we do not consider subsets of the
second type.)

• Si denote sectors of ∆∗zi .

• V denotes a compact region in Y .

For a multi-sector S, let S denote the closure of S in X̃ (W ).

Notation. LetMS(X −W ) denote the set of multi-sectors in X̃ (W ). For any point
P ∈ X̃ (W ), let MS(P,X −W ) denote the set of multi-sectors S such that P is
contained in the interior part of S.

Let I be a good set of irregular values on (X ,D) on the level m. We put
Fa,b := −Re(λ−1(a − b))|λ z−m| for any distinct a, b ∈ I. They determine C∞-
functions on X̃ (W ).

Notation. Let A be any subset of X̃ (W ). We write a <A b for (a, b) ∈ I2 if
Fa,b(Q) < 0 for any Q ∈ A. We write a ≤A b for (a, b) ∈ I2 if either a <A b or
a = b. The relation ≤A gives a partial order on I.

We use the symbol ≤P in the case A = {P}. For a multi-sector S, we prefer
the symbol ≤S to ≤S . We also use ≤λS and ≤λP when we emphasize the twist
by λ−1.

For any point P ∈ π−1(W ), there exists SP ∈ MS(P,X −W ) such that the
relations ≤P and ≤SP coincide. Let MS(P,X −W, I) denote the set of such SP .
(The definition of MS(P,X −W, I) is slightly different from that in [23].)

5.1.2. Good lattice on the level m. Let Y be a complex manifold with a
simple normal crossing divisor D′Y . Let X := ∆k

z × Y , Dz,i := {zi = 0} and
Dz :=

⋃k
i=1Dz,i. We also put DY := ∆k

z × D′Y and D := Dz ∪ DY . Let K be
a point of C∗λ or a compact region in Cλ. We put X := K × X. We use the
symbols Y, Dz, D in similar meanings. Let pλ denote the projection forgetting
the K-component. The completion of X along Dz is denoted by D̂z. (See [1], [2]
and [19] for completion of complex analytic spaces.) We use the symbol D̂ in a
similar meaning. Let dX denote the restriction of the exterior derivative to the
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X-direction. (It will also be denoted just by d frequently, if there is no risk of
confusion.)

Let E be a locally free OX -module with a family of meromorphic flat λ-
connections D : E → E⊗ p∗λΩ1

X(∗D). Let m ∈ Zk<0 and i(0) ∈ k := {1, . . . , k}. We
put m(1) := m+ δi(0).

Definition 5.1. We say that (E,D) is an unramifiedly good lattice of a family
of meromorphic λ-flat bundles on the level (m, i(0)) if there exists a good set of
irregular values I on the level (m, i(0)) on (X ,Dz), and a decomposition

(5.1) (E,D)| bDz =
⊕
a∈I

(Êa, D̂a)

with ord(D̂a−dXa) ≥m(1) in the sense (D̂a−dXa)Êa ⊂ zm(1) ·Êa⊗p∗λΩ1
X(logD).

The decomposition (5.1) is called the irregular decomposition on the level
(m, i(0)) (or simply m). We also often say that (E,D) is a good lattice on the
level (m, i(0)) for simplicity.

Remark. As remarked in Remark 2.6.4 of [23], the definition of the order is slightly
different from that in [23]. The difference is not essential for our purpose.

If 0 ∈ K, we put X 0 := {0}×X and D0
z := {0}×Dz. By shrinking X, we obtain

the decomposition (E,D)|X 0 =
⊕

a∈I(Ea,X 0 ,D0
a) whose completion along D0

z is
equal to the one induced by (5.1). It uniquely extends to the D-flat decomposition
on the completion X̂ 0 of X along X 0:

(E,D)| bX 0 =
⊕
a∈I

(Êa, bX 0 , D̂a).

We put W := X 0 ∪ Dz. Let Ŵ denote the completion along W . We obtain the
decomposition

(5.2) (E,D)|cW =
⊕
a∈I

(Ê
a,cW , D̂a).

The decomposition (5.2) is also called the irregular decomposition on the level
(m, i(0)) in the case 0 ∈ K.

In the following, we formally set W := Dz if 0 6∈ K. Let π : X̃ (W ) → X
denote the real blow up of X along W . Let Oz be the origin of ∆k

z , and put
Z := π−1(Oz × Y). We consider the case that Y = ∆n

ζ and D′Y :=
⋃`
j=1Dζ,j ,

where Dζ,j := {ζj = 0}. The restriction of D to the ∆k
z -direction is denoted by Dz.

Stokes structure on the level m. For any multi-sector S in X−W , let S denote
the closure of S in X̃ (W ), and let Z denote S ∩ π−1(W ). Let Ẑ denote the com-
pletion of X̃ (W ) along Z. (See [24] or Subsection 3.1.2 of [23].) The decomposition
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(5.2) on Ŵ induces the decomposition on Ẑ:

(5.3) (E,D)|bZ =
⊕
a∈I

(Êa, D̂a)|bZ .
We put FZa :=

⊕
b≤Sa Êb|bZ , and then we obtain the filtration FZ of E|bZ indexed

by (I,≤S). We can show the following proposition. (See Subsection 3.6.1 of [23].)

Proposition 5.1. For any point P ∈ Z, there exists S ∈MS(P,X −W, I) such
that:

• There exists a unique D-flat filtration FS of E|S indexed by (I,≤S) such that
FS
|bZ = FZ . Moreover, if a Dz-flat filtration F ′S of E|S indexed by (I,≤S)

satisfies F ′S
|bZ = FZ , then F ′S = FS.

• There exists a Dz-flat splitting of FS on S. Note that if we take such a splitting,
the restriction to Ẑ is the same as (5.3).

We call FS the Stokes filtration of (E,D) on the level m.

Notation. For any P ∈ Z, letMS∗(P,X −W, I) be the set of S ∈MS(P,X −W, I)
as in Proposition 5.1. LetMS∗(X −W, I) denote the union ofMS∗(P,X −W, I)
for P ∈ Z.

The following lemma is clear.

Lemma 5.1. Let S, S′ ∈ MS(P,X − W, I). Assume that (i) S′ ⊂ S, (ii) S ∈
MS∗(P,X −W, I). Then S′ ∈ MS∗(P,X −W, I). The filtration FS′ is the re-
striction of FS.

Remark. We can obtain the Stokes filtration on bigger sectors as in Subsection
4.1.2 of [23].

Compatibility of Stokes filtrations. Let S, S′ ∈MS∗(X −W, I) be such that
S′ ⊂ S. The natural map (I,≤S) → (I,≤S′) is order-preserving. We can easily
show the following lemma by using Proposition 5.1. (See Subsection 3.6.2 of [23].)

Lemma 5.2. The filtrations FS and FS′ are compatible with respect to (I,≤S)
→ (I,≤S′) in the following sense:

• FS′a (E|S′) = FS′<a(E|S′) + FSa (E|S)|S′ .

• The induced morphisms GrF
S

a (E|S)|S′ → GrF
S′

a (E|S′) are isomorphisms.

In particular, FS(E|S)|S′ = FS′(E|S′) if (I,≤S) → (I,≤S′) is an isomorphism.
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Splitting with nice properties. We have the induced morphisms Resj(D) :
E|Dζ,j → zm(1)E|Dζ,j for j = 1, . . . , `. Since FS is D-flat, the restriction FS|Dζ,j is
preserved by Resj(D). If we fix the coordinate, we have the induced family of flat
λ-connections on E|Dζ,j , which is denoted by jD. It also preserves the filtration
FS|Dζ,j . Let jF (j = 1, . . . , `) be filtrations of E|Dζ,j which are preserved by the
endomorphism Resj(D) and the flat connection jD on E|Dζ,j . We can show the
following (Subsection 3.6.3 of [23]).

Proposition 5.2. Let P ∈ Z. There exist S ∈ MS∗(P,X − W, I) and a Dz-
flat splitting of the filtration FS whose restriction to S ∩ Dζ,j is compatible with
Resj(D) and the filtrations jF for j = 1, . . . , `.

Under some more assumption, we can take a D-flat splitting. (See Subsection
3.6.3 of [23].)

Proposition 5.3. Assume that K is a point or a compact region in C∗λ. Assume
that the eigenvalues α, β of Resj(Df )|Dj×{λ} satisfy α − β 6∈ Z − {0} for any
j = 1, . . . , ` and for any λ ∈ K. Then we have a D-flat splitting of FS whose
restriction to Dζ,j is compatible with jF for each j = 1, . . . , `.

Some functoriality of Stokes filtrations. We describe functoriality of Stokes
filtrations. See Subsection 3.6.4 of [23] for more details.

In general, when we are given vector spaces U ⊂ V , let U⊥ denote the sub-
space of the dual V ∨ given by U⊥ = {f ∈ V ∨ | f(U) = 0}. This is naturally
generalized for vector bundles. Let (E,D, I) be an unramifiedly good lattice of a
family of meromorphic λ-flat bundles on the level (m, i(0)) on (X ,Dz), and let
S ∈MS∗(X −W, I). We have the following for any a ∈ I∨ := {−b | b ∈ I}:

FSa (E∨|S) =
( ∑

c∈I
c6≥S−a

FSc (E|S)
)⊥
.

Let (Ep,Dp, Ip) (p = 1, 2) be good lattices of families of meromorphic λ-flat
bundles on the level (m, i(0)). We assume that I1 ⊗ I2 := {a1 + a2 | ap ∈ Ip} is a
good set of irregular values on the level (m, i(0)). Let S ∈

⋂
p=1,2MS∗(X−W, Ip).

For each a ∈ I1 ⊗ I2 we have

FSa ((E1 ⊗ E2)|S) =
∑

a1+a2≤Sa

FSa1
(E1|S)⊗FSa2

(E2|S).

Assume that I1 ⊕ I2 := I1 ∪ I2 is a good set of irregular values on the level
(m, i(0)). Let S ∈

⋂
p=1,2MS∗(X −W, Ip). For each a ∈ I1 ⊕ I2 we have

FSa ((E1 ⊕ E2)|S) = FSa (E1|S)⊕FSa (E2|S).
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Let F : (E1,D1) → (E2,D2) be a flat morphism. For simplicity, we assume
that I1 ∪ I2 is a good set of irregular values on the level (m, i(0)).

Lemma 5.3. Let S ∈
⋂
p=1,2MS∗(X −W, Ip). The restriction F|S preserves the

Stokes filtrations. As a result, we obtain the following.

• If the restriction of F to X−D is an isomorphism, then I1 = I2 and FSa (E1|S\D)
= FSa (E2|S\D).

• In particular, the Stokes filtration FS depends only on the family of meromorphic
λ-flat bundles (E(∗D),D) in the sense that it is independent of the choice of an
unramifiedly good lattice E ⊂ E(∗D) on the level (m, i(0)).

The associated graded bundle on the level m. For each S ∈MS∗(X−W, I)
and each a ∈ I, we obtain the bundle Grma (E|S) on S associated to the Stokes
filtration FS on the level m. By varying S and gluing Grma (E|S), we obtain the

bundle Grma (E|eV(W )) on Ṽ(W ) with the induced family of flat λ-connections Da,

where V denotes some neighbourhood of Oz ×Y, and Ṽ(W ) denotes the real blow
up of V along W ∩ V. It is known that we have the descent of Grma (E|eV(W )) to V,
i.e., there exists a locally free sheaf Grma (E) on V with a family of meromorphic
flat λ-connections Da such that

π−1(Grma (E),Da) ' (Grma (E|eV(W )),Da), (Grma (E),Da)|cW∩V ' (Êa, D̂a)|cW∩V .
(See Subsection 3.6.5 of [23].) If we set D′a := Da − dXa, we have D′aEa ⊂ zm(1) ·
Ea ⊗ p∗λΩ1

X(logD).
Let us give some statements on functoriality. See Subsections 3.6.5 of [23] for

more details.
By taking Gr of the Stokes filtrations of (E∨,D∨, I∨), we obtain the associated

graded bundle Grm(E∨) =
⊕

a∈I∨ Grma (E∨). We have a natural flat isomorphism

(5.4) Grma (E∨) ' Grm−a(E)∨.

Actually, by construction, we have such an isomorphism on the real blow up, which
induces (5.4).

Let (Ep,Dp, Ip) (p = 1, 2) be unramifiedly good lattices of families of mero-
morphic λ-flat bundles on the level (m, i(0)). Assume I1 ⊗ I2 is a good set of
irregular values on the level (m, i(0)). We have the following natural isomorphism
for each a ∈ I1 ⊗ I2:

(5.5) Grma (E1 ⊗ E2) '
⊕

(a1,a2)∈I1×I2
a1+a2=a

Grma1
(E1)⊗Grma2

(E2).
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Assume I1 ⊕ I2 is a good set of irregular values on the level (m, i(0)). For each
a ∈ I1 ⊕ I2, we obviously have

Grma (E1 ⊕ E2) ' Grma (E1)⊕Grma (E2).

Lemma 5.4. Let F : (E1,D1)→ (E2,D2) be a flat morphism. Assume I1 ⊕I2 is
a good set of irregular values on the level (m, i(0)). We have the naturally induced
morphism Grma (F ) : Grma (E1) → Grma (E2). If the restriction E1|X−D → E2|X−D
is an isomorphism, so is the induced morphism

Grma (E1)⊗O(∗D)→ Grma (E2)⊗O(∗D).

Hence, the associated meromorphic flat bundles (Grma (E) ⊗ O(∗D),Da) are well
defined for the meromorphic flat bundle (E(∗D),D).

A characterization of sections of E. Let wa be a frame of Grma (E). Let
S ∈ MS∗(X −W, I), and let E|S =

⊕
Ea,S be a Dz-flat splitting of the Stokes

filtration FS . By the natural isomorphism Ea,S ' Grma (E)|S , we take a lift wa,S

of wa. Thus, we obtain a frame wS = (wa,S) of E|S . The following proposition is
clear; it implies a characterization of sections of E by growth order with respect
to the frames wS (S ∈MS∗(X −W, I)).

Proposition 5.4. Let v be a frame of E, and let GS be determined by v|S =
wS ·GS. Then GS and G−1

S are bounded on S.

Complement on the induced flat connection along the λ-direction. As-
sume that we are given a connection along the λ-direction ∇λ : E → E⊗Ω1

K(∗W )
such that Df +∇λ is a meromorphic flat connection on E.

Lemma 5.5. The Stokes filtrations are flat with respect to ∇λ, and we have the
induced meromorphic flat connection ∇λ along the λ-direction on Grma (E).

Proof. Take N such that λN∇λ(∂λ)E ⊂ E ⊗ OX (∗D). Let wS = (wa,S) be a
frame of E|S as above. Let A be the matrix-valued holomorphic function on S

determined by λN∇(∂λ)wS = wS · A. We have the decomposition into blocks
A = (Aa,b) determined by λN∇(∂λ)wb,S = wa,S ·Aa,b. By using Proposition 5.4,
we can show that Aa,b are of polynomial order.

Let Ba be the matrix-valued meromorphic one-forms determined by

Da,zwa = wa · (dza +Ba).

Note that z−m(1)Ba is logarithmic. By the commutativity [Df ,∇λ] = 0, we obtain
the following relation for a 6= b:

(5.6) λ · dzAa,b + (dz(a− b)) ·Aa,b + (Aa,bBb −BaAa,b) = 0.
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By applying the results in Subsection 20.3 of [23] to (5.6), we obtain Aa,b = 0
unless a ≤S b, which implies the first claim. Since Aa,a is of polynomial order, the
induced connection along the λ-direction is meromorphic.

Prolongment of morphisms. Let (Ep,Dp, Ip) (p = 1, 2) be good lattices on
the level (m, i(0)). Assume that I1 ∪ I2 is a good set of irregular values on the
level (m, i(0)). Assume that we are given a flat morphism F : (E1,D1)|X−Dz →
(E2,D2)|X−Dz with the following properties:

• For each small sector S ∈ MS(X − Dz, I1 ∪ I2), the Stokes filtrations are
preserved by F|S .

• The induced maps Grma (F ) : Grma (E1)|X−Dz → Grma (E2)|X−Dz extend to
Grma (E1)→ Grma (E2) for any a ∈ I1 ∪ I2.

Lemma 5.6. F extends to a morphism E1 → E2.

Proof. Let wp,S = (wp,a,S) be frames of Ep|S as above. Let A = (Aa,b) be deter-
mined by F (w1,S) = w2,S A. By assumption, Aa,b = 0 unless a ≤S b, and Aa,a is
bounded. By applying an argument in the proof of Lemma 5.5 to Aa,b for a <S b,
and by shrinking X, we obtain Aa,b = O(exp(−ε|λ−1zm|)) on S ∩ (X − Dz) for
some ε > 0. Then the claim follows from Proposition 5.4.

5.1.3. Pseudo-good lattice on the level m. Let Y be a complex manifold.
Let X := ∆k

z × Y , Dz,i := {zi = 0} and D :=
⋃k
i=1Dz,i. (We consider only the

case DY = ∅, for simplicity.) Let E be a locally free OX -module. For simplicity,
we consider a meromorphic flat connection ∇ : E → E ⊗ Ω1

X(∗D) instead of a
family of meromorphic flat λ-connections. Let m ∈ Zk<0 and i(0) ∈ k. We put
m(1) := m+ δi(0).

Definition 5.2. We say that (E,∇) is an unramifiedly pseudo-good lattice on the
level (m, i(0)) if there exists an unramifiedly good lattice E′ ⊃ E of (E(∗D),∇)
with the irregular decomposition (E′,∇)| bD =

⊕
a∈I(Ê′a, ∇̂a) on the level (m, i(0))

such that

(5.7) E| bD =
⊕
a∈I

(Ê′a ∩ E| bD).

The decomposition (5.7) is called the irregular decomposition of (E,D) on the level
(m, i(0)).

It is easy to observe that Êa := Ê′a ∩E| bD in (5.7) is independent of the choice
of a good lattice E′ ⊃ E on the level m. We have straightforward generalizations
of the results in Subsection 5.1.2. We naturally identify X with {1}×X ⊂ Cλ×X
when we consider the order ≤S for a multi-sector S ⊂ X −D.
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Construction of Gr. We take an unramifiedly good lattice E′ ⊃ E on the level
(m, i(0)). By shrinking X around Oz ×Y , we have the vector bundle Grma (E′) on
X with a meromorphic flat connection ∇a for each a ∈ I. Recall that we have the
natural isomorphism Grma (E′)| bD ' Ê′a. Hence, we have the sublattice of Grma (E′)

corresponding to Êa ⊂ Ê′a, which is denoted by Grma (E). It is equipped with a
meromorphic flat connection ∇a. By construction, we have the isomorphism

(5.8) (Grma (E),∇a)| bD ' (Êa, ∇̂a).

Lemma 5.7. Let (Ei,∇i) (i = 1, 2) be pseudo-good lattices on the level (m, i(0)).
Let F : (E1,∇1)→ (E2,∇2) be a flat morphism. Assume I1 ⊕ I2 is a good set of
irregular values on the level (m, i(0)). We have the naturally induced morphism
Grma (F ) : Grma (E1)→ Grma (E2).

Proof. We can take good lattices (E′i,∇i) on the level (m, i(0)) such that Ei ⊂
E′i and F (E′1) ⊂ E′2. By Lemma 5.4, we have the induced morphism Grma (F ) :
Grma (E′1)→ Grma (E′2). By considering the completion, it is easy to observe that a
morphism Grma (E1)→ Grma (E2) is induced.

Flat splitting and Stokes filtration. Let π : X̃(D) → X be the real blow
up. Let S ∈ MS∗(X −D, I). Let S denote the closure of S in X̃(D), and let Z
denote S∩π−1(D). We have the Stokes filtration FS of E′|S , and we can take a flat

splitting E′|S =
⊕
E′a,S such that E′

a,S|bZ = π−1(Ê′a). Because E|X−D = E′|X−D, it
induces a flat decomposition of E|S .

Lemma 5.8. The above decomposition extends to a decomposition E|S =
⊕
Ea,S

such that Ea,S|bZ = π−1(Êa).

Proof. Let wa and w′a be frames of Grma (E) and Grma (E′). Let Ga be determined
by wa = w′a ·Ga. They induce frames ŵa and ŵ′a of Êa and Ê′a, respectively.

By the isomorphism E′a,S ' Grma (E′)|S , we obtain frames w′a,S of E′a,S . Then
wa,S := w′a,S · Ga gives a tuple of sections of E′a,S , and we can observe that
wa|bZ = π−1(ŵa). Let Ea,S be generated by wa,S ; thus we obtain the desired
decomposition E =

⊕
Ea,S .

Let wS = (wa,S) be as above. Let v be a frame of E on X. Let GS be
determined by v|S = wS ·GS . Both v|bZ and wS|bZ give the frame of E|bZ , and we
obtain the following.

Proposition 5.5. GS and G−1
S are bounded on S.

Proposition 5.6. The flat subbundles FSa (E|S) :=
⊕

b≤SaEb,S are independent

of the choice of a flat decomposition E|S =
⊕

a∈I Ea,S such that Ea,S|bZ = π−1Êa.
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Proof. Let E|S =
⊕

a∈I Ea,S be another flat decomposition such that Ea,S|bZ =

π−1Êa. We take a frame wa,S of Ea,S such that wa,S|bZ = ŵa. We set w′a :=

wa · G−1
a . Then w′

a|bZ = π−1ŵ′a. Let E
′
a be generated by w′a. Then we obtain a

flat decomposition E′|S =
⊕
E
′
a, which has to be a splitting of the Stokes filtration

FS(E′|S). Because E
′
a|S = Ea|S , the filtration is well defined.

Thus, we obtain the filtration FS of E|S , which is called the Stokes filtration.

Lemma 5.9. We have a natural isomorphism GrF
S

a (E|S) ' Gra(E)|S.

Proof. We use the notation in the proof of Lemma 5.8. By the comparison of wa

and wa,S , we obtain Ea,S ' Gra(E)|S . By the construction of the Stokes filtration,

we have a natural isomorphism GrF
S

a (E|S) ' Ea,S . Thus, the claim is clear.

5.1.4. A comparison. Let Y be a complex manifold. Let X := ∆k
z ×Y , Dz,i :=

{zi = 0} and D :=
⋃k
i=1Dz,i. Let K̃ be a compact region in Czk+1 . We set X̃ :=

K̃ ×X. We use the symbol D̃ in a similar meaning. We set W̃ := D̃ ∪ ({0} ×X).
Let I ⊂M(X,D) be a good set of irregular values on the level (m, i(0)). We

set m̃ := (m,−1) ∈ Zk+1
<0 . We put ã := z−1

k+1a for a ∈ I, and we set

Ĩ := {ã | a ∈ I} ⊂M(X̃ , W̃ ).

This is a good set of irregular values on the level (m̃, i(0)).
Let Ẽ be a holomorphic vector bundle on X̃ with a meromorphic flat connec-

tion ∇ : Ẽ → Ẽ ⊗ Ω1eX (∗W̃ ) such that (Ẽ,∇) is an unramifiedly good lattice on

the level (m̃, i(0)) on (X̃ , W̃ ) with the irregular decomposition

(5.9) (Ẽ,∇)
|cfW =

⊕
ea∈eI

( ̂̃Eea, ∇̂ea).

Applying the general theory of Subsection 5.1.3, we obtain a holomorphic vector
bundle Grfmea (Ẽ) on X̃ with the induced meromorphic flat connection ∇ea for each
ã ∈ Ĩ.

By setting λ = zk+1, we obtain the isomorphism Czk+1 ' Cλ. Let K ⊂ Cλ be
the image of K̃. We put X := K×X and we use the symbol D in a similar meaning.
We set W := D∪({0}×X). We have the natural isomorphism ι : (X ,D)→ (X̃ , D̃).
The pull back of Ẽ is denoted by E. Let Df denote the restriction of ι∗∇ to the
X-direction. We set D := λ · Df . Note the following:

• D(E) ⊂ E ⊗ p∗λΩ1
X(∗D), i.e., D gives a family of meromorphic λ-connections

on E.
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• (E,D) is a good lattice on the level (m, i(0)) on (X ,W ), and (5.9) naturally
induces the irregular decomposition of (E,D)|cW .

By applying the general theory explained in Subsection 5.1.2, for each a ∈ I, we
obtain Grma (E,D).

Let S̃ be a small sector in X̃ − W̃ . We have the Stokes filtration F eS of Ẽ
|eS

on the level m̃ indexed by (Ĩ,≤eS) (Proposition 5.6). For S := ι−1(S̃), we have
the Stokes filtration FS of E|S on the level m indexed by (I,≤S). We remark the
following.

Lemma 5.10. Under the natural identification Ĩ = I, the orders ≤eS and ≤S are
the same. Under the natural isomorphism E ' ι∗Ẽ, the filtrations FS and F eS are
the same.

Proof. For the order ≤eS , we use the identification X̃ = {1} × X̃ ⊂ Cλ × X̃ .
Thus, the first claim is clear. Note that both ι∗F̃ eS and FS satisfy the condition
in Proposition 5.1. Hence, they are the same.

Corollary 5.1. We have a natural isomorphism ι∗Grfmea (Ẽ) ' Grma (E), and Da

is induced by ι∗∇ea via the above procedure.

Proof. Lemma 5.10, yields the isomorphism j : ι∗Grfmea (Ẽ)|X−W ' Grma (E)|X−W ,
on which Da is induced by ∇a via the above procedure. Since j extends on X̃ (W ),
it extends on X .

5.1.5. Stokes filtration of the associated flat bundle on the real blow
up. We use the setting in Subsection 5.1.3. Let I ⊂ M(X,D) be a good set of
irregular values on the level (m, i(0)). Let E be a holomorphic vector bundle on X
with a meromorphic flat connection ∇ : E → E ⊗ Ω1

X(∗D) such that (E,∇) is a
pseudo-good lattice on the level (m, i(0)). (In other words, we consider a family of
meromorphic λ-flat bundles on {1} × (X,D).) Let π : X̃(D) → X be a real blow
up of X along D. The flat bundle E|X−D naturally extends to a flat bundle V on
X̃(D).

We set Z := π−1(Oz × Y ). For each P ∈ Z, we take a small sector S ∈
MS(P,X−D, I) on which we have the Stokes filtration FS of E|S . The filtration
naturally extends to a flat filtration of V|S . By restricting it to the fiber V|P , we
obtain a filtration FP indexed by (I,≤P ). It is easy to observe that FP is well
defined.

If Q ∈ π−1(Z) is sufficiently close to P , the map (I,≤P )→ (I,≤Q) preserves
the orders, and the filtrations FP and FQ are compatible under the identification
V|P ' V|Q given by the parallel transport in SP . In particular, we have FP = FQ
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if≤P = ≤Q. We have the functoriality of the filtrations FP for dual, tensor product
and direct sum as in the case of FS . We also have the functoriality for morphisms
as follows.

Lemma 5.11. Let F : (E1,∇1) → (E2,∇2) be a flat morphism. For simplicity,
assume that I1 ∪ I2 is a good set of irregular values on the level (m, i(0)). The
induced morphism F|P : V1|P → V2|P preserves the Stokes filtrations FP .

Remark 13. We considered two vector bundles on X̃(D). One is π−1(E) and the
other is V. We should emphasize that they are different in general. The bundle V

depends only on the flat bundle (E,∇)|X−D, and π−1(E) depends on the prolong-
ment (E,∇).

Let us look at the simplest example E = O · e with ∇(e) = e · d(z−1).
A trivialization of π−1(E) is given by π−1(e). A trivialization of V is induced by
exp(−z−1) · e.

§5.2. Unramifiedly good lattices of a family of
meromorphic λ-flat bundles

5.2.1. Preliminaries

Good set of irregular values. We use the partial order ≤Zn on Zn given by
a ≤Zn b ⇔ ai ≤ bi (∀i). We write a <Zn b if ai < bi for any i, and a �Zn b

if a ≤Zn b and a 6= b. Let δj denote the element (

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0), and let 0

denote the zero in Zn. We also use 0n when we wish to indicate the dependence
on n. For a positive integer `, we put ` := {1, . . . , `}.

Let Y be a complex manifold. Put X := ∆` × Y . Let Di := {zi = 0} × Y
and D :=

⋃`
i=1Di be the hypersurfaces of X. We also put D` =

⋂`
i=1Di, which

is naturally identified with Y .
For any f ∈M(X,D), we have the Laurent expansion

f =
∑
m∈Z`

fm(y)zm.

Here fm are holomorphic functions on D`. We often use the following identification
implicitly:

(5.10) M(X,D)
/
znH(X) ' {f ∈M(X,D) | fm = 0, ∀m ≥ n}.

For any f ∈ M(X,D), let ord(f) denote the minimum of the set {m ∈ Z` |
fm 6= 0} ∪ {0} with respect to ≤Z` , if it exists. It is always contained in Z`≤0, if it
exists.
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For any a ∈ M(X,D)/H(X), we take any lift ã to M(X,D), and we set
ord(a) := ord(ã) if the right hand side exists. If ord(a) exists in Z`≤0 \ {0}, ãord(a)

is independent of the choice of a lift ã, and is denoted by aord(a).

Definition 5.3. A finite subset I ⊂M(X,D)
/
H(X) is called a good set of irreg-

ular values on (X,D) if the following conditions are satisfied:

• ord(a) exists for each a ∈ I, and aord(a) is nowhere vanishing on D` for a 6= 0.

• For any two distinct a, b ∈ I, ord(a− b) exists in Z`≤0 \ {0}, and (a− b)ord(a−b)

is nowhere vanishing on D`.

• The set T (I) := {ord(a − b) | a, b ∈ I} is totally ordered with respect to the
partial order on Z`.

The condition in Definition 5.3 does not depend on the choice of a holomorphic
coordinate such that D =

⋃`
i=1{zi = 0}.

Remark 14. The third condition in Definition 5.3 is stronger than that in [24]. It
is a little more convenient for our inductive argument. However, it is not essential,
because such conditions can be satisfied after birational transformation, once we
have decompositions as in (5.12).

We will use the following lemma implicitly.

Lemma 5.12. The set {ord(a) | a ∈ I} is totally ordered. In particular, the
minimum

m(0) := min{ord(a) | a ∈ I}
exists. Moreover, m(0) ≤Z` m for any m ∈ T (I).

Proof. Let a, b ∈ I. Assume ord(a) 6≤ ord(b) and ord(a) 6≥ ord(b). Then ord(a−b)
does not exist, which contradicts the second condition of Definition 5.3. Hence, we
obtain the first claim of the lemma. For any m ∈ T (I), there exists a ∈ I such
that am 6= 0. Hence, m(0) ≤Z` m.

Remark 15. It is often convenient to use a coordinate such that T (I)∪ {m(0)} ⊂∐`
i=0 Zi<0 × 0`−i.

Auxiliary sequence. Let I be a good set of irregular values on (X,D). Since
the set T (I) is totally ordered by ≤Z` , we can take a sequence

M := (m(0),m(1), . . . ,m(L),m(L+ 1)) ⊂ Z`≤0

with the following property:

• T (I) ⊂M and m(L+ 1) = 0`.

• We have 1 ≤ h(i) ≤ ` such that m(i+ 1) = m(i) + δh(i) for each i ≤ L.
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Such a sequence is called an auxiliary sequence for I. It is not uniquely determined
by I. It is convenient for an inductive argument.

Truncation. Let I be a good set of irregular values. We take an auxiliary se-
quence for I, and let ηm(0) : I →M(X,D)/H(X) be given as follows:

ηm(0)(a) :=
∑

n6≥m(1)

anz
n

Its image is a good set of irregular values on the level (m(0), i(0)). More generally,
ηm(j) is defined as follows:

ηm(j)(a) :=
∑

n 6≥m(j+1)

anz
n.

We have ηm(L)(a) = a. We set ζm(0)(a) := ηm(0)(a) and ζm(j)(a) := ηm(j)(a)
− ηm(j−1)(a) for j = 1, . . . , L. Then we have the decomposition ηm(i)(a) =∑
j≤i ζm(j)(a).

Let I(m(i)) denote the image of ηm(i) : I →M(X,D)/H(X).

Lemma 5.13. If we shrink X appropriately, I(m(0)) is a good set of irregular
values on the level (m(0), h(0)).

Proof. If ηm(0)(a − b) 6= 0 for a, b ∈ I, then we have ord(a − b) = m(0) and
(z−m(0)ηm(0)(a− b))|D` is nowhere vanishing, so z−m(0) ηm(0)(a− b) is nowhere
vanishing on X provided X is shrinked appropriately. Similarly, (z−m(0)ηm(0)(a))
may be nowhere vanishing on X provided X is shrinked appropriately.

We can use the following lemma for inductive arguments.

Lemma 5.14. For any b ∈ I(m(0)), fix any element a(0) ∈ η−1
m(0)(b). Then the

set

{a− a(0) | ηm(0)(a) = b}

is also a good set of irregular values.

Example. We give some examples. Set

a(1) := z−1
1 z−1

2 , a(2) := z−1
1 , a(3) := 0.

An auxiliary sequence is unique in this case, and given as follows:

(5.11) m(0) = (−1,−1), h(0) = 2, m(1) = (−1, 0), h(1) = 1, m(2) = (0, 0).
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The truncations are given as follows:

ηm(0)(a
(1)) = a(1), ηm(0)(a

(2)) = 0, ηm(0)(a
(3)) = 0,

ηm(1)(a
(1)) = a(1), ηm(1)(a

(2)) = a(2), ηm(1)(a
(3)) = a(3).

The image of I via ηm(0) is {a(1), 0}.
Let us consider the set which consists of the following:

b(1) = z−1
1 z−1

2 + az−1
2 + bz−1

1 , b(2) = z−1
1 .

An auxiliary sequence is given by (5.11). The truncation is given as follows:

ηm(0)(b
(1)) = z−1

1 z−1
2 + az−1

2 , ηm(0)(b
(2)) = 0.

We have the following pictures in mind for truncation:

m(5)

m(4)

m(3)m(2)m(1)

m(0)

ηm(0)

ζm(1) ζm(2)

ζm(3)

ζm(4)

L = 4, m(0) = (−2,−3), m(1) = (−2,−2), m(2) = (−1,−2),
m(3) = (0,−2), m(4) = (0,−1), m(5) = (0, 0).

5.2.2. Unramifiedly good lattices of a family of meromorphic λ-flat
bundles. Let X be a complex manifold, and let D be a normal crossing divi-
sor of X. Let K be a point or a compact region in Cλ. Let X and D denote K×X
and K×D, respectively. For λ ∈ K, we set X λ := {λ}×X and Dλ := {λ}×D. Let
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(E ,D) be a family of meromorphic λ-flat bundles on (X ,D), i.e., E is an OX (∗D)-
coherent sheaf with a holomorphic family of flat λ-connections D : E → E ⊗Ω1

X/K.
The restriction to (X λ,Dλ) is denoted by (Eλ,Dλ).

Remark 16. If K is a point, “family” can be omitted.

Let E be an OX -locally free lattice of (E ,D). Let P be any point of D. We
can take a holomorphic coordinate (U , λ, z1, . . . , zn) around P such that DU :=
D ∩ U =

⋃`
i=1DU,i, where DU,i := {zi = 0}. We put DU,I :=

⋂
i∈I DU,i and

DU (I) :=
⋃
i∈I DU,i. For any subset I ⊂ `, we put Ic := `− I. The completion of

X along DU,I (resp. DU (I)) is denoted by D̂U,I (resp. D̂U (I)).

Definition 5.4. We say that E is unramifiedly good at P if the following holds:

• We are given a good set of irregular values S ⊂M(U ,DU )/H(U).

• For any ∅ 6= I ⊂ `, we have the decomposition

(5.12) (E,D)| bDU,I =
⊕

a∈S(I)

(IÊa,
ID̂a).

Here S(I) denotes the image of S via the map

M(U ,DU )
/
H(U)→M(U ,DU )

/
M(U ,DU (Ic)).

• (Da−da)(IÊa) is contained in IÊa⊗(Ω1
X/K(logDU (I))+Ω1

X/K(∗DU (Ic))), where
a is lifted to M(U ,DU ). This condition is independent of the choice of a lift.

The property is independent of the choice of the coordinate (U , λ, z1, . . . , zn).
We say that (E,D) is unramifiedly good if it is unramifiedly good at any point.

See Subsection 2.3 of [23] for a simplified definition.
The decomposition (5.12) is called the irregular decomposition of E| bDU,I . The

set S is uniquely determined if `Ea 6= 0 for each a ∈ S. So, it is denoted by
Irr(D, P ). The restriction of E to {λ} ×X is denoted by Eλ.

If E is an unramifiedly good lattice of (E ,D), we have the well defined endo-
morphism Resi(D) of E|Di for each irreducible component Di of D. It is called the
residue of D at Di with respect to the lattice E. If K 6= {0}, the eigenvalues of
Resi(D) are constant on Dλi for each λ ∈ K.

Remark 17. We have the notion of good lattice which is locally a descent of an
unramifiedly good lattice. See [23] and Definition 5.5 below.
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Irregular decompositions on the level m(j). In the following, let X := ∆n,
Di := {zi = 0} and D :=

⋃`
i=1Di. We set D(≤p) :=

⋃
i≤pDi. Let (E,D) be an

unramifiedly good lattice of a family of meromorphic λ-flat bundles on (X ,D) with
the good set Irr(D) = Irr(D, O). We assume that the coordinate is as in Remark 15
for Irr(D). Let Irr(D, p) and Irr′(D, p) denote the images of Irr(D) under the natural
maps

πp : M(X ,D)/H(D)→M(X ,D)/M(X ,D(≤ p− 1)),

π′p : M(X ,D)/H(D)→M(X ,D)/M(X ,D( 6=p)).

Note that the naturally induced map Irr(D, p)→ Irr′(D, p) is bijective, permitting
one to identify them.

Take an auxiliary sequence m(0), . . . ,m(L) for the good set Irr(D). De-
note by Irr(D,m(j)) the image of Irr(D) under ηm(j). Let k(j) denote the num-

ber determined by the condition m(j) ∈ Zk(j)
<0 × 0`−k(j). The map Irr(D, p) →

M(X ,D)/M(X ,D(≤ p − 1)) induced by ηm(j) is denoted by ηm(j),p. As in Sub-
section 2.4.3 of [23], we obtain the following decomposition on the completion
D̂(≤k(j)) along D(≤k(j)):

(E,D)| bD(≤k(j)) =
⊕

b∈Irr(D,m(j))

(Êm(j)
b ,Db) where

Ê
m(j)

b| bDp =
⊕

c∈Irr(D,p)
ηm(j),p(c)=πp(b)

pÊc (p ≤ k(j)).(5.13)

The decomposition (5.13) is called the irregular decomposition on the level m(j).

Remark 18. We do not have the irregular decomposition on the level m(j) on D̂

in general, as remarked by Sabbah [24] for the surface case.

The associated graded bundles with a family of meromorphic flat λ-
connections. Assume K 6= {0}. We set W := X 0 ∪ D(≤k(0)). It is easy to ob-
serve that (E,D) is an unramifiedly good lattice on the level (m(0), i(0)) with the
decomposition (5.13) for j = 0. The set of irregular values on the level (m(0), i(0))
is Irr(D,m(0)).

As stated in Subsection 5.1.2, we obtain the holomorphic bundle Grm(0)
a (E)

with a family of meromorphic flat λ-connections Dm(0)
a on (V,V ∩ D) for

each a ∈ Irr(D,m(0)), where V denotes a neighbourhood of
⋂

1≤i≤k(0)Di. Let

Grm(0)
a (E,D) := (Grm(0)

a (E),Dm(0)
a ). We obtain the following isomorphisms for

any a ∈ Irr(D,m(0)) from (5.8):

Grm(0)
a (E,D)|cW ' (Êm(0)

a ,Da)
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In particular, Grm(0)
a (E,D) are unramifiedly good lattices whose set of irregular

values is Irr(Dm(0)
a ) = η−1

m(0)(a).
Let Irr(D,m(j)) denote the image of ηm(j) : Irr(D) → M(X,D)/H(X) for

any j. Let us consider the case in which Irr(D,m(j − 1)) consists of a unique
element. We take any element a(1) ∈ Irr(D). Let L(±a(1)) be a line bundle OX · e
with a family of meromorphic flat λ-connections De = e·(±da(1)). Then (E′,D′) :=
(E,D)⊗ L(−a(1)) is an unramifiedly good lattice with the good set

Irr(D′) = {a− a(1) | a ∈ Irr(D)}.

The sequence m(j),m(j + 1), . . . ,m(L) gives an auxiliary sequence for Irr(D′).
Applying the above procedure to (E′,D′) and shrinking X, we obtain the asso-
ciated Grm(j)

c (E′,D′) for each c ∈ Irr(D′,m(j)). For any b ∈ Irr(D,m(j)), we
define

Grm(j)
b (E,D) := Grm(j)

b−ηm(j)(a
(1))

(E′,D′)⊗ L(a(1)).

It is independent of the choice of a(1) up to canonical isomorphisms. (We may avoid
tensor products.) It is easy to observe that Grm(j)

b (E,D) are also unramifiedly
good lattices with the good sets of irregular values Irr(Dm(j)

b ) = η−1
m(j)(b). By

construction, Irr(Dm(j)
b ,m(j)) consists of the unique element b.

In the general case, let ηm(j−1),m(j) : Irr(D,m(j))→ Irr(D,m(j − 1)) be the
induced map. For any a ∈ Irr(D,m(j)), we inductively define

Grm(j)
a (E,D) := Grm(j)

a Grm(j−1)
ηm(j−1),m(j)(a)(E,D).

For each a ∈ Irr(D), we set Grfull
a (E,D) := Grm(L)

a (E,D), which is called the full
reduction. By construction, Grfull

a (E,D)⊗ L(−a) is logarithmic.
We have functoriality as in Subsection 5.1.2.

Deformation. Assume 0 6∈ K. We would like to regard (E,D) as a prolongment of
(E,D)|X−D(≤k(0)). For a given holomorphic function T = T (λ) with Re(T (λ)) > 0,
we have another prolongment (E(T ),D(T )) of (E,D)|X−D(≤k(0)), which is also an
unramifiedly good lattice with the set of irregular values

Irr(E(T ),D(T )) := {T (λ) a | a ∈ Irr(D)}.

We refer to Subsections 4.4–4.5 of [23] for the construction. We mention some
properties:

(D1) E(T1·T2) ' (E(T1))(T2) if Re(Ti) > 0 and Re(T1 · T2) > 0.

(D2) (E(T ),D(T ))| bDI0 '
⊕

a∈I(I0Êa,
I0D̂a + (T − 1)da), where we put I0 :=

{1, . . . , k(0)}. Briefly, the deformation does not change the regular part.
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We give some statements on functoriality. Let (Ep,Dp) (p = 1, 2) be unrami-
fiedly good. We have the following natural isomorphisms:

(E1⊕E2)(T ) ' E(T )
1 ⊕E(T )

2 , (E1⊗E2)(T ) ' E(T )
1 ⊗E(T )

2 , (E∨)(T ) ' (E(T ))∨.

Here, we have assumed that (E1,D1)⊕(E2,D2) and (E1,D1)⊗(E2,D2) are unram-
ifiedly good. Moreover, let F : (E1,D1) → (E2,D2) be a flat morphism. Assume
I1 ∪ I2 is a good set of irregular values on the level (m, i(0)). Then we have the
naturally induced morphism (E(T )

1 ,D(T )
1 )→ (E(T )

2 ,D(T )
2 ).

§5.3. Smooth divisor case

Let X := ∆n and D := {z1 = 0}. Let K ⊂ Cλ. Let (E,D) be an unramifiedly
good lattice of a family of meromorphic λ-bundles on (X ,D) with a good set of
irregular values Irr(D) = Irr(D, O). We have the formal decomposition (E,D)| bD =⊕

a∈Irr(D)(Êa, D̂a), where D̂a − da id bEa
are logarithmic. We set W := D ∪ X 0 if

0 ∈ K, and W := D otherwise. We obtain the decomposition on Ŵ :

(5.14) (E,D)|cW =
⊕

a∈Irr(D)

(Êa, D̂a).

Full Stokes filtration. In this case, it is also easy and convenient to consider
full Stokes filtrations. (See Subsection 3.2 of [23] for the general case.) We explain
this in the following. Let π : X̃ (W ) → X denote the real blow up of X along W .
We put Z := π−1(D).

For any multi-sector S in X −W , the order ≤S on Irr(D) is defined as follows:

• a ≤S b if and only if −Re(λ−1a(λ, z)) ≤S −Re(λ−1b(λ, z)) for any z ∈ S such
that |z1| is sufficiently small.

Let S denote the closure of S in X̃ (W ), and let Z denote S∩π−1(W ). The irregular
decomposition (5.14) on Ŵ induces the decomposition on Ẑ:

(5.15) (E,D)|bZ =
⊕

a∈Irr(D)

(Êa, D̂a)|bZ .

We put FZa :=
⊕

b≤Sa Êb|bZ , and thus we obtain the filtration FZ indexed by
(Irr(D),≤S). By using Proposition 5.1 and Lemma 5.2 successively (or more clas-
sical results), we obtain the following.

Proposition 5.7. For any point P ∈ Z, there exists S ∈ MS(P,X −W ) such
that:

• There exists a unique D-flat filtration F̃S of E|S indexed by (Irr(D),≤S) such

that F̃S
|bZ = FZ .
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• There exists a D-flat splitting of F̃S on S.

We call F̃S the full Stokes filtration of (E,D). For S′ ⊂ S, the filtrations F̃S′ and
F̃S satisfy the compatibility condition as in Lemma 5.2.

The following lemma is clear from the definition of full Stokes filtrations.

Lemma 5.15. Let S, S′ ∈ MS(P,X −W ). Assume (i) S′ ⊂ S, (ii) E|S has the

full Stokes filtration F̃S as above. Then the restriction of F̃S to S
′

is the full Stokes
filtration of E|S′ .

We have functoriality of full Stokes filtrations as in the case of Stokes filtra-
tions on the level (m, i(0)).

The associated graded bundle. For any sectors S and each a ∈ Irr(D), we
obtain the bundle Grfull

a (E|S) on S associated to the full Stokes filtration F̃S . By
varying S and gluing Grfull

a (E|S), we obtain the bundle Grfull
a (E|eV(W )) on Ṽ(W )

with the induced family of flat λ-connections Da, where V denotes some neigh-
bourhood of D, and Ṽ(W ) denotes the real blow up of V along W ∩V. As in Sub-
section 5.1.2, we can show that Grfull

a (E|eV(W )) has descent to V, i.e., there exists a

locally free sheaf Grfull
a (E) on V with a family of meromorphic flat λ-connections

Da such that

π−1(Grfull
a (E),Da) ' (Grfull

a (E|eV(W )),Da),

(Grfull
a (E),Da)|cW∩V ' (Êa,Da)|cW∩V .

By construction, Da − da is logarithmic for each a ∈ Irr(D).
As in the case of Gr with respect to Stokes filtrations on the level (m, i(0)),

we have the following isomorphisms:

Grfull
a (E∨) ' Grfull

−a (E)∨,

Grfull
a (E1 ⊗ E2) '

⊕
ai∈Irr(Di)
a1+a2=a

Grfull
a1

(E1)⊗Grfull
a2

(E2),

Grfull
a (E1 ⊕ E2) ' Grfull

a (E1)⊕Grfull
a (E2).

Here, we have assumed that (E1,D1) ⊗ (E2,D2) and (E1,D1) ⊕ (E2,D2) are un-
ramifiedly good lattices.

Lemma 5.16. Let (Ep,Dp) (p = 1, 2) be unramifiedly good lattices on (X ,D).
Assume I1 ∪ I2 is a good set of irregular values. Let F : (E1,D1) → (E2,D2) be
a morphism. We have the naturally induced morphism Grfull

a (F ) : Grfull
a (E1) →

Grfull
a (E2).
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A characterization of sections of E. Let wa be a frame of Grfull
a (E). Let S be

a small multi-sector, and let E|S =
⊕
Ea,S be a D-flat splitting of the full Stokes

filtration F̃S . By the natural isomorphism Ea,S ' Grfull
a (E)|S , we take a lift wa,S

of wa. Thus, we obtain the frame wS = (wa,S) of E|S . The following proposition
implies a characterization of sections of E by growth order with respect to the
frames wS for small multi-sectors S.

Proposition 5.8. Let v be a frame of E, and let GS be determined by v|S =
wS ·GS. Then GS and G−1

S are bounded on S.

Deformation. When |arg(T )| is sufficiently small, we have a more direct local
construction of the deformation (E,D)(T ). We explain it in the smooth divisor
case.

We take a covering X − D =
⋃N
i=1 S

(i) by sectors S(i) on which we have the
full Stokes filtrations. Assume that |arg(T )| is so small that

• a ≤S(i) b ⇔ Ta ≤S(i) Tb for any a, b ∈ Irr(D) and for any S(i).

We take frames wa of Grfull
a (E). For each S = S(i), we take a D-flat splitting

E|S =
⊕
Ea,S of the full Stokes filtration. Let wS = (wa,S) be as above. We put

w
(T )
a,S := wa,S · exp((T − 1)λ−1 a) and w(T )

S := (w(T )
a,S). Let f be a holomorphic

section of E|X−D. We have the corresponding decomposition f =
∑
fa,S on each S.

We have the expression fa,S =
∑
f

(T )
a,S,j · w

(T )
a,S,j . We put fa,S := (f (T )

a,S,j).

Lemma 5.17. f gives a section of E(T ) if and only if f (T )

a,S(i) is bounded for each
S(i) and wS(i) . (See Subsection 4.5.3 of [23].)

Prolongation of a flat morphism. Let (Ep,Dp) (p = 1, 2) be unramifiedly
good lattices on (X ,D). Assume Irr(D1)∪ Irr(D2) is a good set of irregular values.
Let F : (E1,D1)|X−D → (E2,D2)|X−D be a flat morphism.

Lemma 5.18. If F preserves the full Stokes filtrations F̃S for each small sector S,
then F extends to a morphism F : E1(∗D)→ E2(∗D).

Proof. We have only to consider the case 0 6∈ K according to the Hartogs theorem.
Then the claim follows from Theorem 4.3.1 of [23]. As another argument, letw(i)

S be
frames of Ei|S as in Proposition 5.8. We can directly show that F|S is of polynomial

order with respect to the frames w(i)
S .

Complement on a connection along the λ-direction. Put X := ∆n, Di :=
{zi = 0} and D :=

⋃`
i=1Di. Let K ⊂ C∗λ be a compact region. Let (E,D) be

an unramifiedly good lattice of a family of meromorphic λ-flat bundles on (X ,D)
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with a good set Irr(D). Assume that E is equipped with a meromorphic connection
along the λ-direction ∇λ : E → E ⊗ Ω1

K(∗D) such that Df +∇λ is flat.

Lemma 5.19. ∇λ naturally induces a meromorphic connection on E(T ) along the
λ-direction.

Proof. It is easy to observe that we have only to consider the case in which D

is smooth and |arg(T )| is sufficiently small. For S = S(i), let wS = (wa,S) be
a frame of E|S as above. We use an argument in the proof of Lemma 5.5. Let
AS = (AS,a,a′) be the matrix-valued holomorphic function on S determined by
∇λ(∂λ)wS = wS · AS . Let Ba be the matrix-valued holomorphic function on X
determined by Da(z1∂1)wa = wa · (z1∂1a + Ba). Because [Df ,∇λ] = 0, we have
the following relation in the case a 6= b:

λ · z1∂1AS,a,b + (z1∂1(a− b)) ·AS,a,b + (AS,a,bBb −BaAS,a,b) = 0.

Hence, AS,a,b = 0 unless a ≤S b, and we obtain the estimate

AS,a,b · exp(λ−1(a− b)) = O(exp(C|λ−1| · log |z−1
1 |))

for some C > 0 in the case a <S b.
Let A

(T )
S be the matrix-valued holomorphic function on S determined by

∇(∂λ)w(T )
S = w

(T )
S ·A(T )

S . We have A(T )
S,a,b = 0 unless a ≤S b. If a <S b, we have

A
(T )
S,a,b exp(λ−1T (a− b)) = AS,a,b exp(λ−1(a− b)) = O(exp(C|λ−1| log |z−1

1 |)).

Therefore, A(T )
S,a,b = O(exp(−ε|z−1

1 |)) for some ε > 0. By a direct calculation, we

obtain A
(T )
S,a,a = AS,a,a + ∂λ(λ−1(1 − T )a), which is of polynomial order. Hence,

the claim of the lemma follows from Lemma 5.17.

§5.4. Family of good filtered λ-flat bundles

Pull back of a filtered bundle via a ramified covering. The notion of filtered
bundle was introduced in [30] (dimension 1), and studied in [22] (arbitrary dimen-
sion). It was polished in [4], [5], [13] and [15]. Let X be a complex manifold, and
let D be a simple normal crossing hypersurface with the irreducible decomposition
D =

⋃
i∈I Di. A filtered bundle on (X,D) is defined to be a sequence of locally free

sheaves E∗ = (aE | a ∈ RI) such that (i) aE ⊂ bE for a ≤ b and aE is the inter-
section of bE for b > a, (ii) aE|X−D = bE|X−D, (iii) aE ⊗O(

∑
niDi) = a−nE,

where n = (ni) ∈ ZI . In [22], we imposed some additional compatibility condition,
which is slightly complicated to state. Later, Iyer and Simpson [15] introduced the
notion of locally abelian condition, which is equivalent to our compatibility con-
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dition. Then Borne and Hertling–Sevenheck ([4], [5], [13]) showed that such an
additional compatibility condition is implied by the above three conditions.

Let us recall the pull back of a filtered bundle via a ramified covering. See [15]
for a more systematic treatment. See also Subsection 2.5.3 of [23]. Put X := ∆n

z ,
D :=

⋃`
i=1{zi = 0}, X̃ := ∆n

w and D̃ :=
⋃`
j=1{wj = 0}. Let ϕe : X̃ → X be a

ramified covering ϕe(w1, . . . , wn) = (we1, . . . , w
e
` , w`+1, . . . , wn). For b ∈ R`, we put

S(b) := {(a,n) ∈ R` × Z`≥0 | e · a + n ≤ b}. For a given filtered bundle E∗ on
(X,D), we set

bẼ =
∑

(a,n)∈S(b)

w−n · ϕ∗e(aE).

Then it is easy to show that Ẽ∗ is also a filtered bundle. Let Gal(X̃/X) denote
the Galois group of the ramified covering. We can reconstruct E∗ from Ẽ∗ with
the natural Gal(X̃/X)-action, and hence E∗ is called the descent of Ẽ∗. Since the
construction is independent of the choice of coordinates, it can be globalized.

Family of good filtered λ-flat bundles. We use the notation of Subsection 5.2.
A family of filtered λ-flat bundles on (X ,D) is defined to be a filtered bundle E∗
on (X ,D) with a family of meromorphic flat λ-connections D on E =

⋃
aE.

Definition 5.5. Let (E∗,D) be a family of filtered λ-flat bundles on (X ,D).

• We say that (E∗,D) is unramifiedly good if cE are unramifiedly good lattices
for any c ∈ R`.

• Let P ∈ D. We say that (E∗,D) is good at P if there exists a ramified covering
ϕe : (Ũ , D̃U ) → (U ,DU ) such that (Ẽ∗, ϕ∗eD) on (Ũ , D̃U ) is unramifiedly good.
Here, U is a coordinate neighbourhood of P , ϕe is a ramified covering, and Ẽ∗
is induced by ϕ and E∗ as above.

• We say that (E∗,D) is good if it is good at any point P ∈ D.

Induced filtrations. Let (E∗,D) be a good family of filtered λ-flat bundles. Let
iF denote the induced filtration of cE|Di . We set iGrFa (cE) := iFa

/
iF<a. It can

be shown that (i) we have the well defined residue endomorphism GrFa Resi(D)
of iGrFa (cE) on Di for each i ∈ `, (ii) it preserves the induced filtrations jF

of iGrFa (cE)|Di∩Dj . (See Subsection 2.5.2 of [23]. The residues are well defined
as endomorphisms of cE|Di in the non-ramified case, and as endomorphisms of
iGrFa (cE) even in the ramified case.) In the following, GrFa Resi(D) are often de-
noted by Resi(D) for simplicity.

Let I be a subset of `. We set DI :=
⋂
i∈I Di. For a ∈ RI , we put

IFa(cE|DI ) :=
⋂
i∈I

iFai(cE|DI ),
IGrFa (cE) :=

IFa(cE|DI )∑
b�a

IFb(cE|DI )
.
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We often consider the following sets:

Par(cE, I) := {a ∈ RI | IGrFa (cE) 6= 0}, Par(E∗, I) :=
⋃
c∈R`
Par(cE, I).

We have the induced endomorphisms Resi(D) (i ∈ I) of IGrFa (cE), which are
mutually commutative.

KMS-structure for fixed λ. Let us consider the case in which K is a point {λ}.
In this case, we prefer the symbol Dλ to D. If λ 6= 0, the eigenvalues of Resi(Dλ)
are constant. Hence, we have the generalized eigendecomposition IGrFa (cE) =⊕
α
IGrF,E(a,α)(cE), where the eigenvalues of GrF Resi(Dλ) on IGrF,E(a,α)(cE) are the

i-th components of α. We put

KMS(cE,Dλ, I) := {(a,α) | IGrF,E(a,α)(cE) 6= 0},

KMS(E∗,Dλ, I) :=
⋃
c∈RS

KMS(cE,Dλ, I),

Sp(cE,Dλ, I) := {α ∈ CI | ∃a ∈ RI , (a,α) ∈ KMS(cE,Dλ, I)},

Sp(E∗,Dλ, I) :=
⋃
c∈RS

Sp(cE,Dλ, I).

Each element of KMS(E∗,Dλ, I) is called a KMS-spectrum of (E∗,Dλ) at DI .
Even in the case λ = 0, a similar definition makes sense if the eigenvalues of

Resi(Dλ) are constant. It is satisfied when we consider wild harmonic bundles.

KMS-structure around λ0. Assume that K is a neighbourhood of λ0 ∈ C,
and we regard that (E∗,D) is given around {λ0} ×X. In this case, we prefer the
symbols iF (λ0) to iF . Let p(λ) : R × C → R and e(λ) : R × C → C be given as
follows:

p(λ, (a, α)) = a+ 2 Re(λ · α), e(λ, (a, α)) = α− a · λ− α · λ2.

The induced map R× C→ R× C is denoted by k(λ).

Definition 5.6. We say that (E∗,D) has the KMS-structure at λ0 indexed by
T (i) ⊂ R× C (i ∈ S) if:

• Par(E∗, i) is the image of T (i) via the map p(λ0).

• For each a ∈ Par(E∗, i), we put K(a, i) := {u ∈ T (i) | p(λ0, u) = a}.
Then the restrictions of Resi(D) to iGrF

(λ0)

a (cE)|Dλi have the eigenvalues e(λ, u)
(u ∈ K(a, i)).
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Assume (E∗,D) has the KMS-structure at λ0. We have the decomposition

(5.16) iGrF
(λ0)

a (cE) =
⊕

u∈K(a,i)

iG(λ0)
u (cE),

such that (i) it is preserved by Resi(D), (ii) the restriction of Resi(D)− e(λ, u) to
iG(λ0)
u (cE) is nilpotent. More generally, we have the decomposition on DI

(5.17) IGrF
(λ0)

a (cE) =
⊕

u∈
Q
K(ai,i)

IG(λ0)
u (cE),

such that (i) it is preserved by Resi(D) (i ∈ I), (ii) the restrictions of Resi(D)
− e(λ, ui) (i ∈ I) are nilpotent, where ui denotes the i-th component of u. Note
IG(λ0)
u (cE) can be 0.

The following lemma is standard. (See Subsection 2.8.3 of [23].)

Lemma 5.20. Let (E1 ∗,D1) and (E2 ∗,D2) be good filtered λ-flat bundles on
(X ,D) which have the KMS-structures at λ0. An isomorphism ϕ : (E1,D1) '
(E2,D2) of families of meromorphic λ-flat bundles induces the isomorphism ϕ :
(E1 ∗,D1) ' (E2 ∗,D2) of families of filtered λ-flat bundles.

We say that (E,D) has the KMS-structure at λ0 if there exists a good filtered
λ-flat bundle (E∗,D) which has the KMS-structure at λ0 such that E =

⋃
aE.

This makes sense by the above lemma.
Pick c ∈ RS such that ci 6∈ Par(E∗, i) for each i ∈ S. Assume that K is

a sufficiently small neighbourhood of λ0. Take λ1 ∈ K, and let U(λ1) ⊂ K be
a neighbourhood of λ1. We set X (λ1) := U(λ1) × X. We use the symbols D(λ1)

i

and D(λ1) in similar meanings. Let πi,a denote the projection iF
(λ0)
a (cE|Di) →

iGrF
(λ0)

a (cE) for any a ∈ Par(cE, i). Let b ∈ ]ci − 1, ci]. If p(λ1, v) = b for some
v ∈ K(a, i), we put, on D(λ1)

i ,
iF

(λ1)
b :=

∑
u∈K(a,i)
p(λ1,u)≤b

π−1
i,a (iG(λ0)

u (cE)).

Otherwise, let b0 := max{p(λ1, v) < b | v ∈ K(a, i)}, and set iF
(λ1)
b := iF

(λ1)
b0

.
Thus, we obtain the filtration iF (λ1) of cE|D(λ1)

i

. It induces a family of filtered λ-flat

bundles (E(λ1)
∗ ,D) on (X (λ1),D(λ1)). By construction, Resi(D)− e(λ, u) are nilpo-

tent on iGrF
(λ1)

p(λ1,u)(cE). Namely, (E(λ1)
∗ ,D) has the KMS-structure at λ1 indexed

by T (i). Hence, if (E,D) has the KMS-structure at λ0, it has the KMS-structure
at any λ sufficiently close to λ0, and the index set is independent of λ. For each
λ ∈ K, we put Eλ

∗ := (E(λ)
∗ )|Xλ , which is a good filtered λ-flat bundle. The set

KMS(Eλ
∗ , i) is the image of T (i) via the map k(λ). Note KMS(E0

∗, i) = T (i) if
0 ∈ K. We often identify them.
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Deformation. Let T (λ) be a holomorphic function with Re(T (λ)) > 0. We obtain
the deformation (E(T )

∗ ,D). If (E∗,D) is unramified, the set of irregular values is
given by

Irr(D, E(T )) := {T · a | a ∈ Irr(D)}.

Since the regular part of the completion is unchanged, the set of KMS-spectra is
unchanged.

§6. Wild harmonic bundles

§6.1. Definition of wild harmonic bundle

Local condition for Higgs fields. Let (E, ∂E , θ) be a Higgs bundle on X −D,
where X is a complex manifold, and D is a normal crossing divisor of X. We would
like to explain some conditions on the Higgs field θ. First, let us consider the case
X = ∆n = {z = (z1, . . . , zn) | |zi| < 1}, Di = {zi = 0} and D =

⋃`
i=1Di. We

have the expression

θ =
∑̀
j=1

Fj
dzj
zj

+
n∑

j=`+1

Gjdzj .

We have the characteristic polynomials det(T id − Fj(z)) =
∑
Aj,k(z)T k and

det(T id − Gj(z)) =
∑
Bj,k(z)T k, where T is just a formal variable. The coeffi-

cients Aj,k and Bj,k are holomorphic on X −D.

• We say that θ is tame if the following conditions are satisfied:

(T1) Aj,k and Bj,k are holomorphic on X for any k.

(T2) The restriction of Aj,k to Dj is constant for any j = 1, . . . , ` and any k.
In other words, the roots of

∑
Aj,k(z)T k are independent of z ∈ Dj .

• We say that θ is unramifiedly good if there exists a good set of irregular values
Irr(θ) ⊂M(X,D)

/
H(X) and a decomposition

(E, θ) =
⊕

a∈Irr(θ)

(Ea, θa)

such that θa − da · idEa are tame.

• We say that θ is good if ϕ∗e(θ) is unramifiedly good for some e ∈ Z>0, where ϕe
is the covering given by ϕe(z1, . . . , zn) = (ze1, . . . , z

e
` , z`+1, . . . , zn).

Global condition for Higgs fields. Let us consider the case in which X is a
general complex manifold. Let D be a normal crossing hypersurface of X, and let
(E, θ) be a Higgs bundle on X −D.
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• We say that θ is (unramifiedly) good at P ∈ D if it is (unramifiedly) good on
some holomorphic coordinate neighbourhood of P .

• We say that θ is (unramifiedly) good if it is (unramifiedly) good at any point
P ∈ D.

Let Z be a closed analytic subset of X, and let (E, θ) be a Higgs bundle on
X − Z. The Higgs field θ is called wild if there exists a regular birational map
ϕ : X ′ → X such that (i) ϕ−1(D) is normal crossing, (ii) ϕ−1θ is good.

Remark 19. Even if Z is a normal crossing divisor, a wild θ is not necessarily good.

Conditions for harmonic bundles. Let X be a complex manifold. Let D be a
normal crossing hypersurface of X, and let (E, ∂E , θ, h) be a harmonic bundle on
X −D.

• It is called tame if θ is tame.

• It is called an (unramifiedly) good wild harmonic bundle if θ is (unramifiedly)
good.

Let Z be a closed analytic subset of X. A harmonic bundle (E, ∂E , θ, h) on X −Z
is called wild if θ is wild.

Remark. We give some remarks on the condition (T2) for tameness.

1. If θ comes from a harmonic bundle (E, ∂E , θ, h), (T2) is implied by (T1). (See
Lemma 8.2 of [22].)

2. Let (E, ∂E , θ, h) be a harmonic bundle with a good set of irregular values
Irr(θ) and a decomposition (E, ∂E , θ) =

⊕
a∈Irr(θ)(Ea, ∂Ea , θa) such that θ̃a :=

θa − da · idEa satisfy the condition (T1). The author does not know whether
(T2) for θ̃a is automatically satisfied or not. But, if moreover (E, ∂E , θ, h) under-
lies a variation of polarized pure integrable twistor structure, (T2) is satisfied.
Actually, the roots of the polynomials are 0. (See Lemma 7.3 below.)

§6.2. Simpson’s main estimate

The first fundamental result is an estimate of Higgs field, so called Simpson’s main
estimate. For later use, we recall it in the case that D is smooth. (See Subsections
7.2 and 7.3 of [23] for the general case.) Let X := ∆n and D := {z1 = 0}. Let
(E, ∂E , θ, h) be an unramifiedly good wild harmonic bundle on X − D. We will
be interested in the behaviour around O. Hence, by shrinking X, we may assume
that there exists a holomorphic decomposition (E, θ) =

⊕
(a,α)∈Irr(θ)×C(Ea,α, θa,α)

satisfying the following condition:
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• For the expression

θa,α − (α · dz1/z1 + da) · idEa,α = F1
dz1

z1
+

n∑
j=2

Gj dzj ,

the coefficients of det(T − F1) and det(T − Gj) are holomorphic on X, and
det(T − F1)|D = T rankEa,α .

For each (a, α), let πa,α denote the projection onto Ea,α with respect to the decom-
position. We also set Ea :=

⊕
α∈CEa,α, and let πa denote the projection onto Ea

with respect to the decomposition E =
⊕

a∈Irr(θ)Ea.

Truncation. For any a ∈ Irr(θ), we have the expression a =
∑
j≤−1 ajz

j
1. We put

ηp(a) :=
∑
j≤p ajz

j
1 and Irr(θ, p) := {ηp(a) | a ∈ Irr(θ)}. For each b ∈ Irr(θ, p),

let E(p)
b denote the direct sum of Ea (a ∈ Irr(θ), ηp(a) = b), and let π(p)

b denote
the projection onto E(p)

b with respect to the decomposition E =
⊕

b∈Irr(θ,p)E
(p)
b .

We have Irr(θ,−1) = Irr(θ) and Ea = E
(−1)
a . We have the induced maps ηq,p :

Irr(θ, p)→ Irr(θ, q) for q ≤ p.

Asymptotic orthogonality. We take total orders ≤′ on Irr(θ, p) for p ≤ −1
which are preserved by ηq,p. For each b ∈ Irr(θ, p), we set F (p)

b (E) :=
⊕

a≤′bE
(p)
a .

Let E(p)′
b be the orthogonal complement of F (p)

<b (E) in F
(p)
b (E). We obtain an

orthogonal decomposition E =
⊕

a∈Irr(θ,p)E
(p)′
a . Let π(p)′

a denote the orthogonal

projection onto E(p)′
a .

We take a total order ≤′ on C. Then we obtain the lexicographic order on
Irr(θ)×C. We obtain the orthogonal decomposition E =

⊕
E′a,α by the procedure

as above, and let π′a,α denote the orthogonal projection onto E′a,α.

Proposition 6.1. We have the following estimates with respect to h.

• π(p)
a − π(p)′

a = O(exp(−ε|zp1 |)) for some ε > 0. In particular, the decomposition
E =

⊕
E

(p)
b is O(exp(−ε|zp1 |))-asymptotically orthogonal in the sense that there

exists A > 0 such that

|h(u, v)| ≤ A · |u|h · |v|h · exp(−ε|z1(Q)|p)

for any Q ∈ X −D, u ∈ Ea|Q and v ∈ Eb|Q (a 6= b).

• πa,α − π′a,α = O(|z1|ε) for some ε > 0. In particular, the decomposition E =⊕
Ea,α is O(|z1|ε)-asymptotically orthogonal.

Estimate of Higgs field. We set θ̃ := θ −
⊕

a,α(da + α · dz1/z1)πa,α. Let gp
denote the Poincaré metric on X − D. The estimates in Subsection 7.2 of [23]
imply the following.
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Proposition 6.2. θ̃ is bounded with respect to h and gp.

Estimate of curvatures. As mentioned in Subsection 2.1.7, we obtain a holo-
morphic vector bundle Eλ = (E, ∂E+λθ†) on X−D. The curvature of the unitary
connection associated to (Eλ, h) equals −(1 + |λ|2) [θ, θ†].

Proposition 6.3. [θ, θ†] is bounded with respect to h and gp. In particular, (Eλ, h)
is acceptable, i.e., the curvature of (Eλ, h) is bounded with respect to h and gp.

§6.3. Prolongation of unramifiedly good wild harmonic bundles

6.3.1. Prolongment PEλ. Let (E, ∂E , θ, h) be a good wild harmonic bundle
on X − D, where X is a complex manifold and D is a normal crossing divisor.
As mentioned in Subsection 2.1.7, we obtain a holomorphic vector bundle Eλ =
(E, ∂E + λθ†) on X −D for each complex number λ. It is important to prolong it
to a good filtered λ-flat bundle on (X,D). For simplicity, we explain it assuming
the following. (The general case can be easily reduced to this case.)

• X = ∆n and D =
⋃`
i=1{zi = 0}.

• (E, ∂E , θ, h) is unramifiedly good wild, and the underlying Higgs bundle has a
decomposition

(6.1) (E, θ) =
⊕

a∈Irr(θ)

α∈C`

(Ea,α, θa,α)

such that (i) θ̃a,α = θa,α − (da +
∑`
j=1 αjdzj/zj) idEa,α are tame, (ii) we have

det(T id − Fj)|Dj = T rankEa,α for the expression θ̃a,α =
∑`
j=1 Fjdzj/zj +∑n

j=`+1Gjdzj .

For any open subset U ⊂ X and a ∈ R`, we set

PaEλ(U) :=
{
f ∈ Eλ(U \D) | |f |h = O

(∏̀
i=1

|zi|−ai−ε
)
∀ε > 0

}
.

Thus, by sheafification, we obtain an increasing sequence of OX -modules P∗Eλ :=
(PaEλ | a ∈ R`). We obtain an OX(∗D)-module PEλ :=

⋃
a PaEλ.

Proposition 6.4.

• (Subsection 7.4 of [23]) (P∗Eλ,Dλ) is an unramifiedly good filtered λ-flat bundle.
The set of irregular values is given by

Irr(Dλ,PEλ) = {(1 + |λ|2) a | a ∈ Irr(θ)}.
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• (Subsection 8.2 of [23]) k(λ) induces a bijection

KMS(E0, i)→ KMS(Eλ, i)

for each i. We also have dim iGrF,Ea,α(PE0) = dim iGrF,Ek(λ,(a,α))(PE
λ).

Take an auxiliary sequence for Irr(θ). Let Irr(θ,m(0)) denote the image of
Irr(θ) via ηm(0). If λ 6= 0, for each small sector S in {λ} × (X −D), we have the
Stokes filtration FS on the level m(0), indexed by the ordered set {(1 + |λ|2)a |
a ∈ Irr(θ,m(0))} with ≤S . We have the following characterization of the filtration
by the growth order of the norms of flat sections with respect to h. (See Subsection
7.4.1 of [23] for more details.)

Proposition 6.5. Assume λ 6= 0. Let f be a flat section of Eλ|S. We have f ∈
FS(1+|λ|2)b for b ∈ Irr(θ,m(0)) if and only if

|f · exp((λ−1 + λ) b)|h = O
(

exp(C |zm(1)|)
∏

k(1)<j≤`

|zj |−N
)

for some C > 0 and N > 0, where k(1) is determined by the condition m(1) ∈
Zk(1)
<0 × 0`−k(1).

6.3.2. Prolongment P(λ0)
∗ E. It is important to consider families of λ. In the

tame case, the family
⋃
λ PEλ gives a regular family of meromorphic λ-flat bundles.

More precisely, if we consider the sheaf of holomorphic sections of E of polynomial
growth, then (i) it is a locally free OX (∗D)-module, (ii) the specialization at each
{λ} × X is naturally isomorphic to PEλ. (We need some more considerations to
take nice lattices.)

However, the naive family
⋃
λ PEλ does not give a nice meromorphic object

in the non-tame case, as suggested by the fact that the sets

Irr(PEλ,Dλ) = {(1 + |λ|2)a | a ∈ Irr(θ)}

depend on λ in a non-holomorphic way. We consider an auxiliary family of mero-
morphic λ-flat bundles P(λ0)E . We explain it in the above setting.

Let πa,α denote the projection onto Ea,α in (6.1). We set

g(λ) :=
∏
a,α

exp
(
λ(a +

∑
αj log |zj |2)

)
πa,α.

Let U(λ0) denote a small neighbourhood of λ0 ∈ C. We set X (λ0) := U(λ0) ×X
and D(λ0) := U(λ0)×D. We also set X λ := {λ} ×X and Dλ := {λ} ×D. Let pλ
be the projection of X (λ0) −D(λ0) onto X −D. We consider the hermitian metric

P(λ0)h := g(λ− λ0)∗h
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on p−1
λ E over X (λ0)−D(λ0). Let a ∈ R`. For any open subset V of X (λ0), we define

P(λ0)
a E(V ) :=

{
f ∈ E(V ∗)

∣∣∣ |f |P(λ0)h = O
(∏̀
j=1

|zj |−aj−ε
)
, ∀ε > 0

}
where V ∗ := V \ D(λ0). Thus, by sheafification, we obtain an increasing sequence
P(λ0)
∗ E = (P(λ0)

a E | a ∈ R`) of OX (λ0)-modules. We put P(λ0)E :=
⋃
a∈R` P

(λ0)
a E .

The restrictions to X λ are denoted by P(λ0)
∗ Eλ and P(λ0)Eλ.

Proposition 6.6.

• (Subsections 9.1 and 9.2 of [23]) (P(λ0)
∗ E ,D) is an unramifiedly good family of

filtered λ-flat bundles. The set of irregular values is given by

Irr(P(λ0)E ,D) = {(1 + λλ0) a | a ∈ Irr(θ)}.

• (Subsection 9.2.1 of [23]) We have the deformation mentioned in Subsections
5.2.2 and 5.4, for which (P(λ0)Eλ,Dλ) is isomorphic to (PEλ,Dλ)T (λ) with
T (λ) = (1 + |λ|2)−1(1 + λλ0).

• (Subsection 9.2.3 of [23]) Let U(λ1) ⊂ U(λ0) be small, and set X (λ1) :=
U(λ1) × X. Then (P(λ1)E ,D) on X (λ1) is isomorphic to the deformation
(P(λ0)E ,D)(T (λ0,λ1))

|X (λ1) with T (λ0, λ1) = (1 + λλ0)−1(1 + λλ1).

We should remark that P(λ0)h 6= h even in the tame case, and hence P(λ0)
a E

are different from aE in [22] in the tame case. We can avoid using P(λ0)
a E by

considering KMS-structure in the tame case.
By the property (D2) of the deformation (Subsection 5.2.2) and the corre-

spondence between KMS(PEλ, i) and KMS(PE0, i), we can show the following.

Lemma 6.1. (P(λ0)
∗ E ,D) has the KMS-structure at λ0 indexed by KMS(PE0, i)

(i = 1, . . . , `).

6.3.3. Prolongment Q(λ0)
∗ E and QE. Applying the deformation procedure to

(P(λ0)
∗ E ,D) with T = (1 + λλ0)−1, we obtain a family of good filtered λ-flat

bundles (Q(λ0)
∗ E ,D) on (X (λ0),D(λ0)). Then Q(λ0)

a E is an unramifiedly good lattice
of Q(λ0)E with the good set of irregular values Irr(Q(λ0)E ,D) = Irr(θ). By using
the property (D1) of the deformation described in Subsection 5.2.2, we obtain the
following. (See Subsection 11.1 of [23] for more details.)

Lemma 6.2. The restriction (Q(λ0)E ,D)|Xλ is naturally isomorphic to the defor-
mation (PEλ,Dλ)(T1(λ)) with T1(λ) = (1 + |λ|2)−1 > 0.
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By the property (D1) of deformation, we have Q(λ0)E|X (λ1) = Q(λ1)E . Hence,
we obtain the global family of meromorphic λ-flat bundles (QE ,D) on Cλ×(X,D).
By using the property (D2) of deformation and Lemma 6.1, we can show the
following.

Lemma 6.3. (QE ,D) has the KMS-structure at each λ0 indexed by KMS(PE0, i)
(i = 1, . . . , `).

Let S be a small sector in {λ}×(X−D). By Lemma 6.2, the Stokes filtrations
of QEλ and PEλ on the level m(0) are related as follows:

FSa (QEλ|S) = FS(1+|λ|2)a(PEλ|S), a ∈ Irr(θ,m(0)).

Hence, we have the characterization of the Stokes filtrations of Q on the level m(0)
by the growth order of the norms of flat sections with respect to h. (See Subsection
11.1 of [23] for more details.)

Proposition 6.7. Let f be a flat section of Eλ|S. We have f ∈ FSb (QEλ|S) for
b ∈ Irr(θ,m(0)) if and only if

|f · exp((λ−1 + λ)b)|h = O
(

exp(C|zm(1)|)
∏

k(1)<j≤`

|zj |−N
)

for some C > 0 and N > 0, where k(1) is determined by the condition m(1) ∈
Zk(1)
<0 × 0`−k(1).

We obtain an unramifiedly good lattice (Grm(0)
a (QE),Da) by taking Gr with

respect to the Stokes filtration FS on the level m(0) explained in Subsection 5.2.2.
In the case that D is smooth, we have the following characterization of the

full Stokes filtration F̃S (Subsection 11.1 of [23]).

Proposition 6.8. Let f be a flat section of Eλ|S. We have f ∈ F̃Sb (QEλ|S) for
b ∈ Irr(θ) if and only if

|f exp((λ−1 + λ)b)|h = O(|z1|−N )

for some N > 0.

Remark 20. We have a characterization of full Stokes filtrations or more general
Stokes filtrations on the level m(i), even in the general normal crossing case.

§6.4. Reduction from wild to tame

LetX,D and (E, ∂E , θ, h) be as in Subsection 6.3. By following the same procedure
for (E, ∂E , θ†, h) on X†−D†, we obtain the family of meromorphic µ-flat bundles
(QE†,D†) on Cµ × (X†, D†).
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Lemma 6.4. The correspondence (a, α)↔ (−a, α) induces a bijection

KMS(PE0, i) ' KMS(PE† 0, i).

We also have the bijection Irr(θ) ' Irr(θ†) given by a↔ a.

Proof. The claim for Irr(θ) and Irr(θ†) is clear. See Corollary 11.12 of [22] for the
correspondence between KMS(PE0, i) and KMS(PE† 0, i).

One step reduction I. Since both the Stokes filtrations of (QEλ,Dλ) and
(QE†µ,D†µ) are characterized by the growth order of the norms of flat sections
with respect to h, we have the induced isomorphisms of the associated graded
family of flat bundles for a ∈ Irr(θ,m(0)):

(Grm(0)
a QE ,Dfa)|C∗λ×(X−D) ' (Grm(0)

a QE†,D† fa )|C∗µ×(X−D).

Hence, they give a variation of P1-holomorphic vector bundle which is denoted by
Grm(0)

a (E4,D4) on P1 × (X −D).
We can show that the pairing S : (E ,D)⊗ σ∗(E4,D4)→ OX−D extends to

QE ⊗ σ∗QE† → OCλ×X(∗(Cλ ×D)).

(See Subsection 11.1.3 of [23].) By functoriality of Gr with respect to Stokes struc-
tures, we obtain

Grm(0)
a (QE ,D)⊗ σ∗Grm(0)

a (QE†,D†)→ OCλ×X(∗(Cλ ×D)).

Similarly, we get Grm(0)
a (QE†,D†) ⊗ σ∗Grm(0)

a (QE ,D) → OCµ×X†(∗(Cµ × D†)).
They give a morphism of variations ofP1-holomorphic vector bundle onP1×(X−D):

Grm(0)
a (S) : Grm(0)

a (E4,D4)⊗ σ∗Grm(0)
a (E4,D4)→ T(0).

One of the main results in the study of wild harmonic bundles is the following.
(See Subsection 11.2 of [23] for more details.)

Proposition 6.9. If we shrink X appropriately, the following holds:

• Grm(0)
a (E4,D4,S) is a variation of pure polarized twistor structure.

• For a ∈ Irr(θ,m(0)), let (Ea, ∂a, ha, θa) denote the underlying harmonic bundle.
By construction, the Higgs bundle (Ea, θa) is naturally isomorphic to⊕

b∈Irr(θ)
ηm(0)(b)=a

⊕
α

(Eb,α, θb,α).

(Recall the decomposition (6.1).) In particular, the harmonic bundle is unram-
ifiedly good wild. The set of irregular values is η−1

m(0)(a).



Variation of TERP Structure 491

• Let (QEa,Da) be the family of meromorphic λ-flat bundles on Cλ × (X,D) as-
sociated to (Ea, ∂a, ha, θa). Then we have a natural isomorphism

(QEa,Da) ' Grm(0)
a (QE ,D).

• Similarly, let (QE†a ,D
†
a) denote the associated family of meromorphic µ-flat

bundles on Cµ × (X,D). Then we have a natural isomorphism (QE†a ,D
†
a) '

Grm(0)
a (QE†,D†).

One step reduction II. Let Irr(θ,m(j)) denote the image of Irr(θ) via ηm(j). For
each a ∈ Irr(θ,m(j)), we obtain a variation of P1-holomorphic bundle with a pair-
ing Grm(j)

a (E4,D4,S), naturally isomorphic to Grm(j)
a Grm(j−1)

ηm(j−1)(a)(E
4,D4,S).

We now explain how to apply Proposition 6.9 in this situation.
Let us consider the case in which Irr(θ,m(j− 1)) consists of one element. We

take any a ∈ Irr(θ). Let L(−a) be the variation of polarized pure twistor structure
as in Subsection 2.2.1. The underlying harmonic bundle is also denoted by L(−a).
We set (E′, ∂E′ , θ′, h′) := (E, ∂E , θ, h)⊗L(−a). Note Irr(θ′) := {a′−a | a′ ∈ Irr(θ)},
and hencem(j),m(j+1), . . . ,m(L) give an auxiliary sequence for Irr(θ′). We have
the natural isomorphisms of the associated variation of polarized pure twistor
structure:

(E4,D4,S) ' (E ′4,D′4,S ′)⊗ L(a).

For each b ∈ Irr(θ,m(j)), we have the natural isomorphism

Grm(j)
b (E4,D4,S) ' Grm(j)

b−ηm(j)(a)(E
′4,D′4,S ′)⊗ L(a).

Hence, by shrinking X appropriately, we deduce that Grm(j)
b (E4,D4,S) is also a

variation of pure twistor structure, due to Proposition 6.9.

Full reduction. Let us consider the general case. By using the above result in-
ductively, we see that Grm(j)

a (E4,D4,S) are variations of polarized pure twistor
structure for any a ∈ Irr(θ,m(j)). The underlying Higgs field is⊕

b∈Irr(θ)
ηm(j)(b)=a

⊕
α

(Eb,α, θb,α).

For any a ∈ Irr(θ), we set Grfull
a (E ,D4,S) := Grm(L)

a (E ,D4,S); these are called
the full reductions. Let (Ea, ∂a, ha) be the underlying harmonic bundles. Then
(Ea, ∂a, ha)⊗L(−a) are tame. This procedure is the reduction from wild harmonic
bundles to tame harmonic bundles.
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§6.5. Reduction from tame to twistor nilpotent orbit

Let X := ∆n, Di = {zi = 0} and D :=
⋃`
i=1Di. Let (E, ∂E , θ, h) be a tame

harmonic bundle on X −D. The family of λ-flat bundles (E ,D) is prolonged to a
family of meromorphic λ-flat bundle (QE ,D), which has the KMS-structure at λ0

indexed by KMS(PE0, i) (i = 1, . . . , `) for each λ0 ∈ Cλ. For later use, we recall
how to obtain the limiting mixed twistor structure. For simplicity, we assume
KMS(E0, i) ⊂ R × {0}. See Section 11 of [22] for the general case. See also an
account due to Hertling and Sevenheck in [13] for this case.

In a neighbourhood U(λ0) of λ0, we set

G(λ0)
(a,0)(E) := `G(λ0)

(a,0)(Q
(λ0)E)|U(λ0)×{O}

for a ∈ Par(PE0, `). (See (5.17) for the right hand side. In this simpler case, we
have only to take Gr with respect to parabolic filtrations.) By varying λ0 ∈ Cλ
and gluing them, we obtain the vector bundle G(a,0)(E) on Cλ. It is endowed with
the nilpotent maps Ni (i = 1, . . . , `), which are the nilpotent part of the residues
Resi(D). By applying the same procedure to (E, ∂E , θ†, h) on X† −D†, we obtain
the vector bundle G†(−a,0)(E) on Cµ with nilpotent endomorphisms N †i induced

by residues Resi(D†). We would like to glue G(a,0)(E) and G†(−a,0)(E), to obtain a
vector bundle Scan

(a,0)(E) on P1.
We have the D-flat decomposition Q0E|C∗λ×X =

⊕
a∈Par(P0E0,`) G(a,0)E with

the following property:

• Let Mi be the family of the monodromy endomorphisms along the path
(z1, . . . , e

2π
√
−1 θzi, . . . , zn) (0 ≤ θ ≤ 1) with respect to Df . Then the restriction

of Mi to G(a,0)E has a unique eigenvalue exp(2π
√
−1 ai).

• G(a,0)E|C∗λ×O ' G(a,0)(E)|C∗λ .

For λ 6= 0, let H(Eλ) be the space of multi-valued flat sections of (Eλ,Dλ). We
have the holomorphic vector bundle H(E) on C∗λ whose fiber over λ is H(Eλ). We
have the decomposition

H(E) =
⊕

a∈Par(P0E0,`)

G(a,0)H(E)

such that (i) it is preserved by the monodromy Mi, (ii) the restriction of Mi to
G(a,0)H(E) has a unique eigenvalue exp(2π

√
−1 ai).

Let U ⊂ C∗λ, and let s be a section of G(a,0)H(E) on U . We regard s as a
multi-valued flat section of G(a,0)E . It is expressed as a finite sum:

s =
∑

fm ·
∏̀
i=1

exp(ai log zi) · (log zi)mi .
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Here, fm are holomorphic sections of G(a,0)E|U×X . We set Φcan
(a,0)(s) = f0|U×O, and

thus we obtain an isomorphism

Φcan
(a,0) : G(a,0)H(E)→ G(a,0)E|C∗λ×O = G(a,0)(E)|C∗λ .

Let δ = (1, . . . , 1) ∈ R`. We have the D†-flat decomposition Q<δE†|C∗λ×X =⊕
a∈Par(P0E0,`) G(−a,0)E† with the following properties:

• The restriction of M−1
i to G(−a,0)E† has a unique eigenvalue exp(−2π

√
−1 ai).

(Because the base space is the complex conjugate X† −D†, the direction of the
loop is reversed.)

• G(−a,0)E†|C∗µ×O ' G
†
(−a,0)(E)|C∗µ .

Similarly, let H†(E) be the holomorphic vector bundle on C∗µ whose fiber over
µ is the space of multi-valued flat sections of (E†µ,D†µ). We have the decomposi-
tion

H†(E) =
⊕

a∈Par(P0E0,`)

G(−a,0)H†(E)

such that the restriction of M−1
i to G(−a,0)H†(E) has a unique eigenvalue

exp(−2π
√
−1 ai). For a section s of G(−a,0)H†(E)|U , we have an expression

s =
∑

f†m
∏̀
i=1

exp(−ai log zi) · (log zi)mi ,

where f†m are sections of QE†|U×X . We set Φcan †
(a,0)(s) = f†0|U×O, and thus we obtain

an isomorphism

Φcan †
(a,0) : G(−a,0)H†(E)→ G(−a,0)E†|C∗µ×O = G†(−a,0)(E)|C∗µ .

By construction, we have the natural isomorphism G(a,0)H(E) ' G(−a,0)H†(E)
under the identification of C∗λ = C∗µ via µ = λ−1. Thus, we obtain the vector
bundle Scan

(a,0)(E) by gluing G(a,0)(E) and G†(−a,0)(E). Under the gluing, we have
the relation

λ−1Ni = −µ−1N †i .

Thus, Ni t(−1)
0 and N∞ t

(−1)
∞ give a morphism

N4i : Scan
(a,0)(E)→ Scan

(a,0)(E)⊗ T(−1).

The tuple of these morphisms is denoted by N4.
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The morphism S0 : E ⊗ σ∗E† → OX−D extends to Q0E ⊗ σ∗Q<δE† → OX .
Similarly, we have Q<δE† ⊗ σ∗Q0E → OX † . They induce the following pairings:

G(a,0)(E)⊗ σ∗G†(−a,0)(E)→ OCλ ,

G†(−a,0)(E)⊗ σ∗G(a,0)(E)→ OCµ ,

G(−a,0)H†(E)⊗ σ∗G(a,0)H(E)→ OC∗λ .

They are preserved by the above isomorphisms. Hence, we obtain

S(a,0) : Scan
(a,0)(E)⊗ σ∗Scan

(a,0)(E)→ T(0).

Theorem 12.22 of [22] implies the following.

Proposition 6.10. The tuple (Scan
(a,0)(E),N4,S) is a polarized mixed twistor

structure of weight 0 in ` variables.

By Theorem 4.1, a polarized mixed twistor structure induces a nilpotent orbit.
This is the reduction from tame harmonic bundles to nilpotent orbits.

Remark 21. The construction explained in this subsection is the same as that
in [22], although the notation is changed. In the tame case, QE is equal to the
sheaf of holomorphic sections whose norms with respect to h are of polynomial
growth order. We also remark the uniqueness in Lemma 5.20.

Family version. The construction can be done for families on D` :=
⋂`
i=1Di. As

in the construction of G(a,0)(E), we obtain the vector bundle `G(a,0)(QE) on D` :=
Cλ × D`, as the gluing of `G(λ0)

(a,0)(Q
(λ0)E). They are equipped with the nilpotent

maps Ni (i = 1, . . . , `). By applying the nearby cycle functors for R-modules
along zi (i = 1, . . . , `), or by a direct consideration as in Subsection 8.8.3 of [22],
we obtain the induced family of flat λ-connections Da,0 of `G(a,0)(QE) for which
Ni are flat. Similarly, we obtain a family of µ-flat bundles (`G(−a,0)(QE†),D†−a,0)
on Cµ ×D†` with flat nilpotent maps N †i .

Let q : X − D → D` be the projection. We naturally obtain a holomorphic
vector bundle H̃(E) on C∗λ × D`, whose fiber over (λ, P ) is the space of multi-
valued flat sections of (Eλ,Dλ)|q−1(P ). It has the generalized eigendecomposition
H̃(E) =

⊕
`G(a,0)H̃(E) with respect to the monodromy endomorphisms aroundDi

(i = 1, . . . , `). It is naturally equipped with the family of flat connections Dfa,0.
By using the family of flat bundles (G(a,0)E ,Dfa,0), we obtain flat isomorphisms

Φcan
(a,0) : `G(a,0)H̃(E)→ `G(a,0)(QE)|C∗λ×D` .
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Similarly, we obtain flat isomorphisms

Φcan
(a,0) : `G(a,0)H̃(E)→ `G(−a,0)(QE†)|C∗µ×D†` .

As the gluing, we obtain a variation of twistor structure (`E4a,0,D
4
a,0) with a

tuple N4 of flat nilpotent morphisms

N4i : `E4a,0 → `E4a,0 ⊗ T(−1) (i = 1, . . . , `).

We also have the induced flat symmetric pairing S : `E4a,0 ⊗ σ∗`E
4
a,0 → T(0). By

Proposition 6.10, (`E4a,0,N
4,D4a,0,Sa,0) is a variation of polarized mixed twistor

structure of weight 0 in ` variables. (See Subsection 2.4.1.)

§7. Prolongation and reductions in the integrable case

§7.1. Preliminary estimate

7.1.1. Statements. Let X := ∆n and D := {z1 = 0}. Let (E, ∂E , θ, h) be an
unramifiedly good wild harmonic bundle on X−D. For simplicity, we assume that
there exists a holomorphic decomposition

(7.1) (E, θ) =
⊕

a∈Irr(θ)

(Ea, θa)

such that each θa − da · idEa is tame. Let πa denote the projection onto Ea with
respect to the decomposition (7.1).

Remark 22. Since (E, ∂E , θ, h) is assumed to be unramifiedly good, such a decom-
position exists on a neighbourhood of each point of D. Because we are interested
in the behaviour around O, we may assume such a decomposition exists globally
by replacing X with a small neighbourhood of O.

Let U be a holomorphic section of End(E) on X − D such that [θ,U ] = 0.
Let Q be a C∞-section of End(E) on X −D such that Q = Q†. We assume the
following equations hold:

∂EU − [θ,Q] + θ = 0,(7.2)

∂EQ+ [θ,U†] = 0.(7.3)

We set Ũ := U +
∑

a∈Irr(θ) aπa. We will prove the following proposition in Subsec-
tions 7.1.2–7.1.6.

Proposition 7.1. Ũ = O(1) and Q = O((− log |z1|)M ) for some M > 0 with
respect to h.
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Remark 23. Eventually, we conclude that Q is bounded. (See Corollaries 7.2 and
7.3.) See Corollary 7.1 for the boundedness of Ũ in the case that D is normal
crossing.

We set girr(λ) := exp(
∑
λa · πa). Let λ0 ∈ C, and let U(λ0) be a small

neighbourhood of λ0 in C. Let pλ be the projection of U(λ0) × (X − D) onto
X −D. We consider the hermitian metric

(7.4) P(λ0)
irr h := girr(λ− λ0)∗h

on p−1
λ E over U(λ0)×(X−D). We regard U and Q as C∞-sections of End(p−1

λ E).
We will prove the following proposition in Subsection 7.1.7.

Proposition 7.2. Assume U(λ0) is sufficiently small. Then Ũ = O(1) and Q =
O((− log |z1|)M ) with respect to P(λ0)

irr h.

7.1.2. Preliminary. We take orthogonal decompositions E =
⊕
E′a,α =

⊕
E′a

as in Subsection 6.2. For any f ∈ End(E), we have the decompositions

f =
∑

f ′a,b, f ′a,b ∈ Hom(E′b, E
′
a),

f =
∑

f ′(a,α),(b,β), f ′(a,α),(b,β) ∈ Hom(E′b,β , E
′
a,α).

We have similar decompositions for sections of End(E)⊗Ωp,q. The following lemma
is easy to show by using Proposition 6.1.

Lemma 7.1. Let f be a C∞-section of End(E) such that f commutes with θ.

• If a 6= b, we have |f ′a,b|h = O(exp(−ε|z1|ord(a−b))) · |f |h for some ε > 0.

• If α 6= β, we have |f ′(a,α),(a,β)|h = O(|z1|ε) · |f |h for some ε > 0.

7.1.3. Step 1. Let θ1 denote the dz1-component of θ.

Lemma 7.2. We have the following estimate with respect to h:

[θ†1,U ] = O

(
dz1

|z1| (− log |z1|)

)
· |U|h.

Proof. In the following, εi denote some positive constants. We have the decompo-
sition

[θ†1,U ] =
∑
a,b,c

(θ†′1,a,b ◦ U
′
b,c − U ′a,b ◦ θ

†′
1,b,c).

By the estimates in Subsection 7.2 of [23] (see Subsection 6.2), we have the fol-
lowing estimates for a 6= b:

θ†′1,a,b = O(exp(−ε1|z1|ord(a−b)) · dz1).
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Because U and θ are commutative, we have the following estimate for a 6= b due
to Lemma 7.1:

U ′a,b = O(exp(−ε2|z1|−1)) · |U|h.

Hence, we have the following estimate with respect to h:

[θ†1,U ] =
∑

a

[θ†′1,a,a, U ′a,a] +O(exp(−ε3|z1|−1) · dz1) · |U|h.

Similarly, we have the following estimates for α 6= β, by Theorem 7.2.4 of [23] and
Lemma 7.1:

θ†′1,(a,α),(a,β) = O(|z1|ε4) · dz1

z1
, U ′(a,α),(a,β) = O(|z1|ε4).

By Proposition 6.2, θ†′(a,α),(a,α) − (da + α · dz1/z1) · π′a,α is bounded with respect
to h and Poincaré metric on X −D. Hence, we obtain

[θ†1,U ] =
∑
a,α

[θ†′1,(a,α),(a,α),U
′
(a,α),(a,α)] +O(|z1|ε5)

dz1

z1
|U|h

= O

(
dz1

|z1|(− log |z1|)

)
· |U|h.

7.1.4. Step 2. Let ∂1 denote the dz1-components of ∂E and ∂. Similarly, let ∂1

denote the dz1-component of ∂E and ∂. Then

∂1|U|2h = (U , ∂1U)h = (U , [θ1,Q]− θ1)h = − tr(U [θ†1,Q])− tr(Uθ†1)

= − tr([U , θ†1]Q)− tr(Uθ†1).

Hence, we obtain

∂1|U|2h = O

(
dz1

|z1| (− log |z1|)

)
· |U|h · |Q|h +O

(
dz1

|z1|N

)
· |U|h.

We also have

∂1|Q|2h = −(Q, [θ1,U†])h + ([θ†1,U ],Q)h = O

(
dz1

|z1| (− log |z1|)

)
· |U|h · |Q|h.

Therefore,

(7.5) ∂1(|U|2h + |Q|2h) = O

(
dz1

|z1|(− log |z1|)

)
· |U|h · |Q|h +O

(
dz1

|z1|N

)
· |U|h.

We set r := |z1| and F := (|U|2h + |Q|2h + 1)1/2. We use the polar coor-
dinates (r, arg(z1), z2, . . . , zn). We consider the estimate on a simply connected
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region Z(ϑ0, ϑ1) := {ϑ0 < arg(z1) < ϑ1} for some fixed ϑ0 < ϑ1. We obtain the
following estimate from (7.5):

∂

∂r
F 2 = G1 · F 2 +G2 · F, G1 = O

(
1

r (− log r)

)
, G2 = O

(
1
rN

)
.

We take a solution H 6= 0 of the differential equation

∂

∂r
H = −G1 ·H.

Note log |H1| = O(log(− log r)). Since Z(ϑ0, ϑ1) is simply connected, we can take
H1/2. Then we have

∂

∂r
(H · F 2) = G2 ·H · F = (G2 ·H1/2) · (H1/2 · F ).

Because G2 · H1/2 = O(r−M1), we obtain H · F 2 = O(r−M2), and hence F =
O(r−M3). Thus, we obtain the following estimates on Z(ϑ0, ϑ1) for some M4 > 0:

(7.6) |U|h = O(r−M4), |Q|h = O(r−M4).

By varying ϑ0 and ϑ1, we obtain the estimates (7.6) on X −D. In particular, we
obtain the following estimate on X −D for a 6= b:

U ′a,b = O(exp(−ε|z1|ord(a−b))).

7.1.5. Step 3. We have [θ1,U†] = [θ1, Ũ†] +O(exp(−ε|z1|−1) · dz1) with respect
to h. By an argument in the proof of Lemma 7.2, we obtain the following estimate
with respect to h:

(7.7) [θ1,U†] = O

(
dz1

|z1| (− log |z1|)

)
· |Ũ |h +O(exp(−ε|z1|−1) · dz1).

According to an estimate in Subsection 7.5.2 of [23], we have

∂1U = ∂1Ũ −
∑

a∈Irr(θ)

∂1a · πa +O(exp(−ε|z1|−1) · dz1).

We set θ̃ := θ −
∑

a∈Irr(θ) da · πa. We obtain the following estimates with respect
to h:

∂1Ũ − [θ1,Q] + θ̃1 = O(exp(−ε|z1|−1)),(7.8)

∂1Q+ [θ1, Ũ†] = O(exp(−ε|z1|−1)).(7.9)

We set F̃ := (|Ũ |2h + |Q|2h + 1)1/2. As in Step 2, we consider the estimates on
Z(ϑ0, ϑ1). By using an argument in Subsection 7.1.4, we obtain

∂

∂r
F̃ 2 = G̃1 · F̃ 2 + G̃2 · F̃ , G̃1 = O

(
1

r(− log r)

)
, G̃2 = O

(
1
r

)
.
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We take a solution H̃1 6= 0 of the differential equation

∂

∂r
H̃1 = −G̃1 · H̃1.

Note log |H̃1| = O(log(− log r)). By choosing H̃1/2
1 , we obtain

∂

∂r
(H̃1 · F̃ 2) = (G̃2 · H̃1/2

1 ) · (H̃1/2
1 · F̃ ).

Because G̃2 · H̃1/2
1 = O(r−1 (− log r)M5) for some M5 > 0, we obtain H̃1 · F̃ 2 =

O((− log r)M6) for some M6 > 0, and thus F̃ = O((− log r)M7) for some M7 > 0.
Therefore, we obtain the following estimates with respect to h:

(7.10) Ũ = O((− log r)M7), Q = O((− log r)M7).

7.1.6. Step 4. By (7.10), Ũ is a holomorphic section of P0 End(E). Because
[θ, Ũ ] = 0, we obtain the boundedness of |Ũ |h by an estimate in Subsection 7.7
of [23]. Thus, the proof of Proposition 7.1 is finished.

Remark 24. From (7.7) and (7.9), we also have the following estimate:

∂1Q = O

(
dz1

|z1| (− log |z1|)

)
.

Hence, we actually obtain Q = O(log(− log |z1|)). However, we will obtain the
boundedness later.

7.1.7. Proof of Proposition 7.2. For an endomorphism f of E, we have

(7.11) |f |P(λ0)
irr h

= |girr(λ− λ0) ◦ f ◦ girr(λ− λ0)−1|h.

Hence, the claim for Ũ is clear from [Ũ , girr(λ−λ0)] = 0. We have the decomposition
P0E0 =

⊕
P0E0

a extending E =
⊕
Ea. Let v = (va) be a holomorphic frame of

P0E0 compatible with the decomposition. Let C be the matrix-valued function
determined by ∂1v = v · C · dz1. We have the decomposition C = (Ca,b) into
blocks, corresponding to the decomposition v = (va). According to an estimate in
Subsection 7.5.2 of [23], there exists ε1 > 0 such that, for a 6= b,

Ca,b = O(exp(−ε1|z1|ord(a−b))).

Let A be the matrix-valued function determined by Uv = v · A. Note A is block-
diagonal, i.e., A =

⊕
Aa,a. We have (∂1U)v = v · (∂1A + [C,A] dz1). We set

B dz1 := ∂1A + [C,A] dz1 = (Ba,b dz1). Then there exists ε2 > 0 such that, for
a 6= b,

(7.12) Ba,b = Ca,bAb,b −Aa,aCa,b = O(exp(−ε2|z1|ord(a−b))).
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For any section f of End(E)⊗ Ω1,0, we have the decomposition

f =
∑

fa,b, fa,b ∈ Hom(Eb, Ea)⊗ Ω1,0.

From the relation ∂1U− [θ1,Q]+θ1 = 0, we obtain the following equality for a 6= b:

(∂1U)a,b − ∂1(a− b)Qa,b − (θ1,a − ∂1a)Qa,b +Qa,b (θ1,b − ∂1b) = 0.

Note that (see Propositions 6.1 and 6.2)

(7.13) ∂(a− b)/∂z1 ∼ |zord(a−b)−1
1 |, |θ1,a − ∂1a|h = O(dz1/z1).

The estimate (7.12) implies

(7.14) |(∂1U)a,b| = O(exp(−ε2|z1|ord(a−b))).

Due to (7.13) and (7.14), there exists ε3 > 0 such that, for a 6= b,

|Qa,b|h = O(exp(−ε3|z1|ord(a−b))).

By using (7.11), we obtain the desired estimate for Q with respect to P(λ0)h, if
U(λ0) is sufficiently small.

7.1.8. Complement for the normal crossing case. Let X := ∆n and D :=⋃`
i=1{zi = 0}. Let (E, ∂E , θ, h) be an unramifiedly good wild harmonic bundle on

X−D. Let U be a holomorphic section of End(E) onX−D such that [θ,U ] = 0. Let
Q be a C∞-section of End(E) onX−D such thatQ† = Q. Assume that they satisfy
the equations (7.2) and (7.3). We also assume that there exists a holomorphic
decomposition (E, θ) =

⊕
a∈Irr(θ)(Ea, θa) such that each θa−da · idEa is tame. Let

πa denote the projection onto Ea with respect to the above decomposition, and
set Ũ := U +

∑
a∈Irr(θ) a · πa.

Corollary 7.1. Ũ is bounded with respect to h.

Proof. This follows from Proposition 7.1 above and the estimate in Subsection 7.7
of [23].

§7.2. Prolongation of a variation of integrable twistor structure

7.2.1. Statements. Let X be a complex manifold, and let D be a simple normal
crossing divisor of X. Let (E4, D̃4,S) be a variation of pure polarized integrable
twistor structure of weight 0 on P1 × (X −D). We have the underlying harmonic
bundle (E, ∂E , θ, h) on X −D.
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Definition 7.1.

• We say that (E4, D̃4,S) is tame (wild, good wild, unramifiedly good wild) if
(E, ∂E , θ, h) is tame (wild, good wild, unramifiedly good wild).

• If we are given a real structure κ of (E4, D̃4,S), we say that the variation of
polarized pure twistor-TERP structure (E4, D̃4,S, κ, 0) is tame (wild, good wild,
unramifiedly good wild) if (E4, D̃4,S) is tame (wild, good wild, unramifiedly
good wild).

Note that “wild” does not imply “good wild” as remarked in Remark 19.

Assume that (E, ∂E , θ, h) is good wild. We will show the following proposition
later. (The tame case was shown in [13].)

Lemma 7.3. The sets KMS(PE0, i) are contained in R× {0}.

We use the notation in Subsection 2.1.7. As explained in Subsection 6.3, (E ,D)
is prolonged to the family of meromorphic λ-flat bundles (QE ,D) on Cλ× (X,D),
and (E†,D†) is prolonged to the family of meromorphic µ-flat bundles (QE†,D†)
on Cµ × (X†, D†).

Theorem 7.1.

• D̃f (resp. D̃† f ) gives a meromorphic flat connection of QE (resp. QE†).

• If a real structure κ of (E4, D̃4,S) is given, κ0 : γ∗E† ' E extends to an
isomorphism γ∗QE† ' QE. Similarly, κ∞ : γ∗E ' E† extends to γ∗QE ' QE†.

For the proof of Lemma 7.3 and Theorem 7.1, we may and will assume (i) D
is smooth, i.e., ` = 1, (ii) (E, ∂E , θ, h) is unramified.

Remark 25. Such a prolongment was studied in [13] for the tame case, which can
be done without an estimate as in Proposition 7.1.

Remark 26. As a result of Lemma 7.3, p(λ,u) for u ∈ KMS(PE0, i) is indepen-
dent of λ. Thus, we obtain a family of good filtered λ-flat bundles (Q∗E ,D) on
Cλ×(X,D). Similarly, we obtain a family of good filtered µ-flat bundles (Q∗E†,D†)
on Cµ × (X†, D†).

7.2.2. Meromorphic connection on P(λ0)E. Let λ0 ∈ Cλ, and let U(λ0) be
a small neighbourhood of λ0 in Cλ. We set X (λ0) := U(λ0) × X and D(λ0) :=
U(λ0)×D. Recall that we have a family of meromorphic λ-flat bundles (P(λ0)E ,D)
on (X (λ0),D(λ0)), as explained in Subsection 6.3. Note that P(λ0)E is identified with
the sheaf of holomorphic sections of E of polynomial order with respect to P(λ0)

irr h,
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because P(λ0)
irr h and P(λ0)h are mutually bounded up to polynomial orders. (See

(7.4) for P(λ0)
irr h. They are different in general.)

Proposition 7.3. D̃f gives a meromorphic flat connection on P(λ0)E.

Proof. We have only to show λ2∇λ(∂λ)P(λ0)E ⊂ P(λ0)E . As mentioned in Subsec-
tion 2.1.7, we have the induced holomorphic section U of End(E) on X −D such
that [θ,U ] = 0, and the C∞-section Q of End(E) such that Q† = Q, determined
by

∇λ = dλ + (λ−1U −Q− λU†)dλ
λ
,

where dλ denotes the naturally induced flat connection on p−1
λ E along the λ-

direction. They satisfy the equations (7.2) and (7.3).
Let v = (va) be a holomorphic frame of P0E0 compatible with the decom-

position P0E0 =
⊕

a P0E0
a . Corresponding to the decomposition v = (va), the

identity matrix is decomposed into
⊕

a∈Irr(θ) Ia. We regard v as a C∞-frame of
E|X (λ0)−D(λ0) , and we set

ṽ = girr(λ− λ0)−1v = v ·
( ⊕

a∈Irr(θ)

exp(−(λ− λ0) a) · Ia
)
.

Let H(P(λ0)
irr h, ṽ) denote the Hermitian matrix-valued function whose (i, j)-entry

is given by P(λ0)
irr h(ṽi, ṽj). Then it is clear that H(P(λ0)

irr h, ṽ) and its inverse are of
polynomial order. We also have the following relation:

dλṽ = ṽ ·A, A := −
⊕

adλ · Ia.

Let w be a holomorphic frame of P(λ0)
a E . Let H(P(λ0)

irr h,w) denote the Hermi-
tian matrix-valued function whose (i, j)-entry isP(λ0)

irr h(wi, wj). ThenH(P(λ0)
irr h,w)

and its inverse are of polynomial order. (See Subsection 9.1.2 of [23], for example.)
Let G be the matrix-valued function determined by w = ṽ ·G. Then G and G−1

are of polynomial order. We have

dλw = ṽ · (AG+ dλG) = w · (G−1AG+G−1dλG).

Since ṽ and w are λ-holomorphic, G is λ-holomorphic. Hence, dλG and G−1AG+
G−1dλG are of polynomial order.

Let B be determined by λ2∇λ(∂λ)w = w ·B. Then B is of polynomial order
due to Proposition 7.2, and hence meromorphic. Thus, the proof of Proposition 7.3
is finished.
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We have the irregular decomposition

(7.15) (P(λ0)
a E ,D)| bD(λ0) =

⊕
a∈Irr(θ)

(P(λ0)
a Êa, D̂a).

Lemma 7.4.

• λ2∇λ(∂λ) preserves the decomposition (7.15).

• If λ0 6= 0, then (7.15) is the irregular decomposition for (P(λ0)E , D̃f ), and P(λ0)
a E

is an unramifiedly good lattice of P(λ0)E.

Proof. Since this can be shown by a standard argument, we give only an outline.
Let v̂ = (v̂a) be a frame of P(λ0)

a E| bD compatible with the decomposition (7.15). Let

A =
∑
Ab,a be determined by λ2∇λ(∂λ)v̂ = v̂ ·A. For a 6= b, let Fb,a : P(λ0)

a Êa →
P(λ0)
a Êb be given by Fb,av̂a = v̂b · Ab,a. Because [λ2∇λ(∂λ),Df ] = 0, we deduce

that Fb,a is flat. However, such a flat section has to be 0 in the case b 6= a. Thus,
we obtain the first claim.

Let us show the second claim. Let Ba be determined by

Df (z1∂1)v̂a = v̂a · ((λ−1 + λ0) · z1∂1a +Ba).

Then Ba is regular. For a = 0, the following holds:

λ2∂λB0 +A0,0B0 −B0A0,0 − z1∂1A0,0 = 0.

We have the expansions B0 =
∑
m≥0B0;m z

m
1 and A0,0 =

∑
m≥N A0,0;m z

m
1 . We

assume N < 0 and A0,0;N 6= 0. We obtain the relation [B0;0, A0,0;N ]−NA0,0;N = 0
on D(λ0). Note that the eigenvalues of B0;0 are of the form λ−1e(λ, u), where
u ∈ KMS(PE0) and a− 1 < p(λ0, u) ≤ a. This implies that the difference of two
distinct eigenvalues of B0;0 cannot be N . Therefore, we obtain A0,0;N = 0, which
contradicts our assumption. Hence, N ≥ 0.

Let d denote the exterior derivative on X (λ0). By considering a twist with
a meromorphic flat line bundle given by ∇e = e · d((λ−1 + λ0) a), we find that
D̃f = Df +∇λ on P(λ0)E| bD(λ0) is of the form

D̃f =
⊕

a∈Irr(θ)

(d((λ−1 + λ0) a) + D̃f
P(λ0) bE,a),

where D̃f
P(λ0) bE,a are logarithmic with respect to P(λ0)Êa. Thus, the proof of Lemma

7.4 is finished.

7.2.3. Proof of Lemma 7.3 and Theorem 7.1. By Lemma 7.4, the eigenvalues
of Res(D̃f ) on P(λ0)

b E|D(λ0) are constant. On the other hand, the eigenvalues of
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Res(Df ) = Res(D̃f ) on P(λ0)
b E|D(λ0) have to be of the form λ−1α − a − λα for

(a, α) ∈ KMS(PE0) by Lemma 6.1. Hence, α = 0 for any (a, α) ∈ KMS(PE0),
i.e., KMS(PE0) ⊂ R× {0}. Thus, Lemma 7.3 is proved.

Let us show Theorem 7.1. The first claim follows from Lemma 5.19, Propo-
sition 7.3 and the definition of QE in Subsection 6.3.3. To show the second
claim, we remark that κ is flat and preserves the pluri-harmonic metrics for
(E4,D4,S) and γ∗(E4,D4,S). We also remark that we have only to con-
sider the case in which D is smooth. We have Irr(Dλ,QEλ) = Irr(θ) and
Irr(D†λ,QE†λ) = Irr(θ†) = {a | a ∈ Irr(θ)}. Hence, we have the natural iden-
tification Irr(Dλ,QEλ) = Irr(γ∗D†λ, γ∗QE†λ). Since the full Stokes filtrations are
characterized by growth order of the norms of flat sections with respect to the
pluri-harmonic metrics (Proposition 6.8), the full Stokes filtrations are preserved
by κ. Thus, the second claim of Theorem 7.1 follows from Lemma 5.18.

Remark 27. Because KMS(PE0) ⊂ R×{0}, it turns out that any λ 6= 0 is generic,
which we will use implicitly.

§7.3. Reduction from wild to tame

7.3.1. Construction of the reductions. Let X := ∆n and D :=
⋃`
i=1{zi = 0}.

Let (E4, D̃4,S) be an unramifiedly good wild variation of pure polarized integrable
twistor structure of weight 0 on P1 × (X −D). We have the underlying harmonic
bundle (E, ∂E , θ, h). We take an auxiliary sequenceM = (m(0),m(1), . . . ,m(L))
for Irr(θ) as in Subsection 5.2.1.

For each a ∈ Irr(θ,m(0)), we obtain the variation of pure polarized twistor
structure Grm(0)

a (E4,D4,S) by taking Gr with respect to Stokes filtrations on the
level m(0), as explained in Subsection 6.4. By Theorem 7.1 and Lemma 5.5, it is
enriched to integrable Grm(0)

a (E4, D̃4,S). If a real structure κ of (E4, D̃4,S) is
given, κ0 and κ∞ preserve the Stokes filtration on the level m(0), which follows
from Theorem 7.1 and Lemma 5.3. Hence, we also have the induced real struc-
ture Grm(0)

a (κ) of Grm(0)
a (E4, D̃4,S), and we obtain a pure polarized variation of

twistor-TERP structure Grm(0)
a (E4, D̃4,S, κ, 0) for each a ∈ Irr(D,m(0)).

Applying the above procedure inductively, Grm(j)
a (E4,D4,S) are enriched

to integrable Grm(j)
a (E4, D̃4,S) for any a ∈ Irr(θ,m(j)). (See the argument in

Subsection 6.4.) If a real structure κ is provided, the reductions are also equipped
with induced real structures, and we obtain a variation of twistor-TERP structure
Grm(j)

a (E4, D̃4,S, κ, 0). In the case m(L), we use the symbols Grfull
a (E4, D̃4,S)

and Grfull
a (E4, D̃4,S, κ, 0). They are called the full reductions.

For any a ∈ Irr(θ), we have the harmonic bundles L(−a) as in Subsection 6.4.
The associated variation of polarized pure twistor structure is also denoted by the
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same symbol L(−a). As explained in Subsection 2.2.1, it is naturally enriched to
a variation of pure twistor-TERP structure of weight 0. The underlying harmonic
bundle of Grfull

a (E4, D̃4,S) ⊗ L(−a) is tame for each a ∈ Irr(θ). This procedure
is the reduction “from wild to tame” in the integrable case. We have a similar
reduction in the twistor-TERP case.

7.3.2. Approximating map and estimate of the new supersymmetric
index. Let (E4, D̃4,S) and (E, ∂E , θ, h) be as above. Let ∂P1,E4 denote the λ-
holomorphic structure of E4.

One step reduction. By the one step reduction in Subsection 7.3.1, we have
obtained the unramifiedly good wild variation of polarized pure integrable twistor
structure

(E40 , D̃
4
0 ,S0) :=

⊕
a∈Irr(θ,m(0))

Grm(0)
a (E4, D̃4,S).

Let (E0, ∂E0 , θ0, h0) be the underlying harmonic bundle. Let ∂P1,E40 denote the λ-

holomorphic structure of E40 . We fix a hermitian metric gP1 on Ω0,1
P1 ⊕Ω1,0

P1 (2{0,∞}).
We will prove the following proposition in Subsection 7.3.3.

Theorem 7.2. There exists a C∞-map Φ : E40 → E4 such that the following
holds for some ε > 0 with respect to h0 and gP1 :

Φ∗S − S0 = O(exp(−ε|zm(0)|)),
∂P1,E40

(Φ∗S − S0) = O(exp(−ε|zm(0)|)),
(7.16)

Φ∗∇λ −∇λ,0 = O(exp(−ε|zm(0)|)).(7.17)

In fact, the estimates can be improved to O(exp(−ε(|λ|+ |λ−1|)|zm(0)|)). We
give a consequence. Let Q0 denote the new supersymmetric index of (E40 , D̃

4
0 ,S0).

Corollary 7.2. We have the following estimates for some ε > 0 with respect to h0:

|Φ∗h− h0|h0 = O(exp(−ε|zm(0)|)), |Φ∗Q−Q0|h0 = O(exp(−ε|zm(0)|)).

Proof. This follows from Lemma 2.9.

Full reduction. By taking the full reduction in Subsection 7.3.1, we have ob-
tained the unramifiedly good wild variation of polarized pure integrable twistor
structure

(E41 , D̃
4
1 ,S1) :=

⊕
a∈Irr(θ)

Grfull
a (E4, D̃4,S).

Let (E1, ∂E1 , θ1, h1) be the underlying harmonic bundle, and let Q1 denote the
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new supersymmetric index for (E41 ,D
4
1 ). By applying Theorem 7.2 and Corollary

7.2 inductively (see Subsection 6.4 for an inductive use), we obtain a C∞-map
Φ1 : E41 → E4 such that the following holds for some ε > 0 with respect to h1:

|Φ∗1h− h1|h1 = O(exp(−ε|zm(L)|)), |Φ∗1Q−Q1|h1 = O(exp(−ε|zm(L)|)).

Note that the new supersymmetric index is unchanged after taking the tensor
product with L(−a). (See Subsection 2.2.1.) Hence, the study of the asymptotic
behaviour of the new supersymmetric index reduces to the study in the tame case,
up to decay with exponential orders.

7.3.3. Construction of an approximating map. We assume that the co-
ordinate is as in Remark 15 for the good set Irr(θ). Let k be determined by
m(0) ∈ Zk<0 × 0`−k. Let λ0 ∈ Cλ. Let U(λ0) denote a small neighbourhood
of λ0. We set X (λ0) := U(λ0)×X and D(λ0)(≤k) := U(λ0)×D(≤k). We also use
the symbol D(λ0)

i in a similar meaning. We set W := D(λ0)(≤k) if λ0 6= 0, and
W := D(λ0)(≤k) ∪ ({0} × X). Let σ : Cλ → Cµ be given by σ(λ) = −λ, which
induces an anti-holomorphic map Cλ×X → Cµ×X†. We set X † (−λ0) := σ(X (λ0)).

From (E, ∂E , θ, h), we obtain the vector bundle P(λ0)
0 E on X (λ0) with a mero-

morphic flat connection D̃f := Df +∇λ. Similarly we obtain P(λ0)
0 E0 with D̃f0 =

Df0 +∇λ,0 from (E0, ∂E0 , θ0, h0).
We also obtain the vector bundle P(µ0)

0 E† with the meromorphic flat connec-
tion D̃† f = D† f +∇µ on X (µ0) from (E, ∂E , θ, h), and the vector bundle P(µ0)

0 E†0
with the meromorphic flat connection D̃† f0 = D† f0 +∇µ,0 from (E0, ∂E0 , θ0, h0).

Let D≤k denote the restriction of D to the (z1, . . . , zk)-direction.

Preliminaries. Let S be a small multi-sector of X (λ0) −W . By Proposition 5.2,
we can take a D≤k-flat splitting

P(λ0)
0 E|S =

⊕
a∈Irr(θ)

P(λ0)
0 Ea,S

of the Stokes filtration on the level m(0) such that the restrictions to D(λ0)
j ∩ S

(j = k+1, . . . , `) are compatible with Resj(D) and the filtrations jF (λ0). If λ0 6= 0,
we may assume that it is Df -flat by Proposition 5.3 and Lemma 7.3. (Note that
the Df -flatness implies the compatibility with the residues and the parabolic filtra-
tions.) By construction of Grm(0), it induces an isomorphism (P(λ0)

0 E0,D0,≤k)|S
∼→

(P(λ0)
0 E ,D≤k)|S . Let ΦpS (p=0, . . . ,m) be such isomorphisms. Let ap (p = 0, . . . ,m)

be non-negative C∞-functions on S such that (i)
∑
ap = 1, (ii) ∂iap and ∂λap

are O(|λ|−C
∏k
i=1 |zi|−C) for some C > 0. We set ΦS :=

∑
ap ΦpS . We also set

G := (Φ0
S)−1 ◦ ΦS and Gp := (Φ0

S)−1 ◦ ΦpS .
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Lemma 7.5. We have the following estimates with respect to h0 for some ε > 0:

Gp − id = O(exp(−ε|λ−1zm(0)|)),(7.18)

(Φ0
S)−1 ◦ (λ2∇λ(∂λ)) ◦ Φ0

S − λ2∇λ,0(∂λ) = O(exp(−ε|λ−1zm(0)|)).(7.19)

Proof. Let G be the left hand side of (7.18) or (7.19). It is flat with respect to D0,≤k,
and strictly decreases the Stokes filtration on the level m(0). Moreover, G|D(λ0)

i ∩S

preserves the filtrations iF (λ0) and the residues Resj(D) for j = k+ 1, . . . , `. Then
we obtain the desired estimate by using the estimate in Subsection 9.3 of [23]. (It
is also easy to show it directly.)

Hence, we have |G − id |h0 = O(exp(−ε|λ−1zm(0)|)). We set Φ∗S∇λ(∂λ) :=
Φ−1
S ◦ (∇λ(∂λ)) ◦ ΦS . We use the symbol (Φ0

S)∗∇λ(∂λ) in a similar meaning. By
the previous lemma, we have the following estimate for some ε > 0 with respect
to h0:

(Φ0
S)∗∇λ(∂λ)−∇λ,0(∂λ) = O(exp(−ε|λ−1zm(0)|)).

Lemma 7.6. The following estimate holds for some ε > 0 with respect to h0:

Φ∗S∇λ(∂λ)−∇λ,0(∂λ) = O(exp(−ε|λ−1zm(0)|)).

Proof. We have the following equalities:

(7.20) Φ∗S∇λ(∂λ)−∇λ,0(∂λ)

= (Φ−1
S ◦ Φ0

S) ◦ (Φ0
S)∗∇λ(∂λ) ◦ ((Φ0

S)−1 ◦ ΦS)−∇λ,0(∂λ)

= G−1 ◦ ((Φ0
S)∗∇λ(∂λ)−∇λ,0(∂λ)) ◦G+G−1 ◦ ∇λ,0(∂λ) ◦G−∇λ,0(∂λ)

= G−1 ◦ ((Φ0
S)∗∇λ(∂λ)−∇λ,0(∂λ)) ◦G+G−1 · (∇λ,0(∂λ)G).

Moreover,

∇λ,0(∂λ)G =
∑ ∂ap

∂λ
·Gp =

∑ ∂ap
∂λ
· (Gp − id) = O(exp(−ε|λ−1zm(0)|)).

Thus, we obtain the conclusion.

Assume we are also given morphisms on multi-sectors σ(S) of X †(−λ0) −W †,

Φ† qσ(S) : (P(−λ0)E†0 ,D
†
0)|σ(S) → (P(−λ0)E†,D†)|σ(S) (q = 0, . . . ,m′),

induced by D†≤k-flat splittings of the Stokes filtration on the level m(0) such that

the restriction to σ(S) ∩ D†(−λ0)
j (j = k + 1, . . . , `) is compatible with the residue

Resj(D†) and the filtration jF (−λ0). If λ0 6= 0, we may assume that the splittings
are D†-flat. Let bq (q = 0, . . . ,m′) be non-negative C∞-functions on σ(S) satisfying
similar conditions for ap. We set Φ†σ(S) :=

∑
bq Φ† qσ(S).
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Lemma 7.7. Set H := S ◦ (ΦS ⊗ σ∗Φ†σ(S)) − S0. Then we have the following
estimates with respect to h0 for some ε > 0:

H = O(exp(−ε|λ−1zm(0)|)), ∂E40 ,P1
H = O(exp(−ε|λ−1zm(0)|)).

Proof. We set Hp,q := S ◦ (ΦpS ⊗ σ∗Φ† qσ(S)) − S0. According to an estimate in
Subsection 11.4.2, we have

Hp,q = O(exp(−ε|λ−1zm(0)|))

with respect to h0 for some ε > 0. We also have ∂E40 ,P1Hp,q = 0. Thus, the claim
follows.

Construction. We take a compact region K of Cλ such that the union of the
interior parts of K and σ(K) covers P1. We take a covering of

(K ×X)− ((K ×D(≤k)) ∪ ({0} ×X))

by multi-sectors Si (i = 1, . . . , N) such that Si are sufficiently small as in Pre-
liminaries above. Then P1 =

⋃
Si ∪

⋃
σ(Si). We take a partition (χSi , χσ(Si) |

i = 1, . . . , N) of unity on P1 subordinated to this covering. We assume that ∂jχSi
and ∂λχSi are O(|λ|−C ·

∏k
i=1 |zi|−C) for some C > 0. We assume similar conditions

for ∂jχσ(Si) and ∂µχσ(Si).
For each Si ⊂ X (λ0) −W , we take isomorphisms

ΦSi : (P(λ0)
0 E0,D0)|Si ' (P(λ0)

0 E ,D)|Si ,

Φ†σ(Si)
: (P(−λ0)

0 E†0 ,D
†
0)|σ(Si)

' (P(−λ0)
0 E†,D†)|σ(Si)

induced by D≤k-flat or D†≤k-flat splittings of Stokes filtrations as above. If λ0 6= 0,
we assume Df -flatness and D† f -flatness. We set

Φ :=
N∑
i=1

χSiΦSi +
N∑
i=1

χσ(Si)Φσ(Si).

It is easy to check that Φ satisfies the desired estimates (7.16) and (7.17), by
using Lemmas 7.6 and 7.7. Note that a D-flat splitting of the Stokes filtration of
P(λ0)E|S on the levelm(0) naturally gives a D†-flat splitting of the Stokes filtration

of P(λ−1
0 )E†

|S′
on the level m(0), where S′ is the corresponding multi-sector of

X †(λ
−1
0 ) −W †, which follows from the characterization of the Stokes filtrations by

the growth order of the norms of flat sections. Thus, we obtain Theorem 7.2.
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§7.4. Reduction from tame to twistor nilpotent orbit

7.4.1. Reduction. Let X := ∆n, Di := {zi = 0}, D :=
⋃`
i=1Di and D` =⋂`

i=1Di. Let (E4, D̃4,S) be a tame variation of pure polarized integrable twistor
structure of weight 0 on P1 × (X −D). We have the underlying harmonic bundle
(E, ∂E , θ, h). As explained in Subsection 6.5, we have the limiting polarized mixed
twistor structure (Scan

a,0 (E),N ,Sa,0) associated to (E, ∂E , θ, h). We also have the
variation of polarized mixed twistor structure (`E4a,0,N

4,D4a,0,Sa,0) of weight 0
in ` variables. Hertling and Sevenheck observed the following (see [13]).

Proposition 7.4. (Scan
a,0 (E),N ,Sa,0) can be naturally enriched to an integrable

one (Scan
a,0 (E),∇,N ,Sa,0). Similarly, (`E4a,0,N

4,D4a,0,Sa,0) can be naturally en-
riched to an integrable one (`E4a,0,N

4, D̃4a,0,Sa,0).
If (E4, D̃4,S) has a real structure κ, the enrichments are also equipped with

induced real structures.

7.4.2. Approximating maps. For 0 < R < 1, we set

X∗(R) := {(z1, . . . , zn) | 0 < |zi| < R, i = 1, . . . , n},
D`(R) := {(z`+1, . . . , zn) | |zi| < R}.

By the natural projection X∗(R) → D`(R), we regard X∗(R) as D`(R) ×
{(z1, . . . , z`) | 0 < |zi| < R}. Due to Theorem 4.1, we have the integrable twistor
nilpotent orbit TNIL(E4a,0, D̃

4
a,0,N ,Sa,0) on X∗(R) for some R. Thus, we obtain

a tame variation of pure polarized integrable twistor structure:

(E40 , D̃
4
0 ,S0) :=

⊕
a∈Par(P0E0,`)

TNIL(E4a,0, D̃
4
a,0,N ,Sa,0)⊗ L(a).

(See Subsection 2.2.2 for L(a).) We have the underlying tame harmonic bundle

(E0, ∂E0 , θ0, h0) =
⊕

(Ea, ∂a, θa, ha).

We would like to explain that we can approximate the original (E4, D̃4,S) with
(E40 , D̃

4
0 ,S0).

Let ∂P1,E40 denote the λ-holomorphic structure of E40 . We fix a hermitian

metric gP1 on Ω0,1
P1 ⊕ Ω1,0

P1 (2{0,∞}). For a permutation σ of {1, . . . , `} and for
C > 0, we set

Z(σ,C) := {(z1, . . . , zn) ∈ X∗(R) | |zσ(i−1)|C < |zσ(i)|, i = 1, . . . , `− 1}.

If we take a sufficiently large C > 0, we have X∗(R) =
⋃
σ Z(σ,C). For any

ε > 0, we set Λ0(ε) :=
∑`
i=1 |zi|ε. We will prove the following statement in Sub-

section 7.4.3.
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Theorem 7.3. There exists a C∞-map Φσ : E40 → E4 such that the following
estimates hold for some ε > 0 with respect to h0 and gP1 on P1 × Z(σ,C):

(7.21)
Φ∗σS − S0 = O(Λ0(ε)), ∂P1,E40

(Φ∗σS − S0) = O(Λ0(ε)),

Φ∗σ∇λ −∇λ,0 = O(Λ0(ε)).

Before going into the proof, we give a consequence. Let Q0 and Q denote the
new supersymmetric indices of (E40 , D̃

4
0 ) and (E4, D̃4). By using Lemma 2.9, we

obtain the following estimates on Z(σ,C) for some ε > 0 with respect to h0:

(7.22) |Φ∗σh− h0|h0 = O(Λ0(ε)), |Φ∗σQ−Q0|h0 = O(Λ0(ε)).

Corollary 7.3. The eigenvalues of Q and Q0 are equal up to O(Λ0(ε)) for some
ε > 0.

Proof. By using (7.22), we obtain the estimate on Z(σ,C). Because X∗(R) =⋃
Z(σ,C), the claim of the corollary follows.

We also give a more rough but global estimate, for which the proof is much
simpler. For M > 0 and ε > 0, we set

Λ(M, ε) :=
∏̀
i=1

(− log |zi|)M
∑̀
i=1

|zi|ε.

Theorem 7.4. There exists a C∞-map Φ : E40 → E4 such that the following
holds for some ε > 0 and M > 0 with respect to h0 and gP1 :

(7.23)
Φ∗S − S0 = O(Λ(M, ε)), ∂P1,E40

(Φ∗S − S0) = O(Λ(M, ε)),
Φ∗∇λ −∇λ,0 = O(Λ(M, ε)).

Note that Φ∗h and h0 are mutually bounded up to log order, which follows
from the weak norm estimate for acceptable bundles. (See Lemma 7.19 below.)
Hence, we obtain the following estimate for some M ′ > 0 and ε′ > 0 by using
Lemma 2.8:

|Φ∗Q−Q0|h0 = O(Λ(M ′, ε′)).

In the one-dimensional case, the estimates in the two propositions are not so
different. We also remark that Φσ in Theorem 7.3 also satisfies the estimates (7.23).

7.4.3. Proof of Theorem 7.3. For the proof, we have only to consider the case
that σ is the identity. We use the symbol Z(C) instead of Z(id, C). Instead of
considering X∗(R), we will shrink X around the origin.
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Decomposition. For any subset I ⊂ `, let m(I) be determined by the condition
m(I) := min{m ∈ I |m+ 1 6∈ I}, in other words, {1, . . . ,m(I)} ⊂ I but m(I) + 1
6∈ I. Let qI : Par(P0E0, `)→ Par(P0E0, I) and rm(I) : Z` → Zm(I) be the natural
projections. Let λ0 ∈ Cλ. Let K denote a small neighbourhood of λ0 in Cλ. We
set X := K ×X. We use the symbols Di, DI , D, etc., in similar meanings.

We have the induced filtrations iF (i ∈ I) of Q0E|DI . For any i ∈ I, we
have the residue endomorphisms Resi(D) on IGrb(Q0E|DI ), which have the unique
eigenvalues −bi·λ. Hence, the nilpotent partNi is well defined. For i ≤ m(I), we set
N (i) :=

∑
j≤iNj . Recall that the conjugacy classes of N (i)|(λ,P ) are independent

of (λ, P ) ∈ DI (Lemma 12.47 of [22]). By considering the weight filtration of N (i),
we obtain the filtration W (i) of IGrb(Q0E|DI ) indexed by Z in the category of
vector bundles on DI .

Lemma 7.8. We have a decomposition

(7.24) Q0E|X =
⊕

a∈Par(P0E0,`)
k∈Z`

Ua,k

with the following property:

• For any subset I ⊂ `, b ∈ Par(P0E0, I) and h ∈ Zm(I), put

IUb,h =
⊕

a∈q−1
I (b)

k∈r−1
m(I)(h)

Ua,k and IUb =
⊕

h∈Zm(I)

IUb,h.

Then, for any c ∈ RI ,

(7.25)
⊕
b≤c

IUb|DI =
⋂
i∈I

iFci(Q0E|DI ).

Moreover, the following holds for any n ∈ Zm(I) under the identification IUb|DI
' IGrb(Q0E) induced by (7.25):⊕

h≤n

IUb,h|DI =
⋂

1≤i≤m(I)

Wni(i)(
IGrb(Q0E|DI )).

Proof. Although this is essentially Corollary 4.47 of [22], we recall an outline for
later use. The theorems and the definitions referred to in this proof are from [22].
By Theorem 12.43, the tuple (iF,N (j) | i, j ∈ `) is sequentially compatible in the
sense of Definition 4.43. Hence, (iF,W (j) | i, j ∈ `) is compatible in the sense
of Definition 4.39, as remarked in Lemma 4.44. By Proposition 4.41, there exists
a splitting of (iF,W (j) | i, j ∈ `) in the sense of Definition 4.40. By applying
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Lemma 2.16, we can take a frame compatible with splittings. It is easy to take a
decomposition as in (7.24) by using such a compatible frame.

Let (QEa,D) be the prolongment of (Ea, ∂a, θa, ha). Similarly, we have a
decomposition

(7.26) Q0Ea|X =
⊕
k∈Z`

U0,a,k

satisfying a similar condition. By our construction of (E40 , D̃
4
0 ,S0), we are given

an isomorphism, for each a ∈ Par(P0E0, `),

νa : ` Gra(Q0E) ' Q0Ea|D` .

Lemma 7.9. We may assume that νa is compatible with the decompositions⊕
k U0,a,k|D` and

⊕
k Ua,k|D` .

Proof. In Proposition 4.41 of [22], the construction of a splitting is given in a
descending inductive way, and we can take any splitting of ` Gra(QE) of the fil-
trations W (j) (j = 1, . . . , `) at the beginning. Thus, we obtain the conclusion.

Let νa,k denote the induced map U0,a,k|D` ' Ua,k|D` .

Norm estimate. We recall the norm estimate for tame harmonic bundles. We
take a C∞-frame h′a,k of Ua,k in (7.24). We set

h
(1)
a,k := h′a,k

∏̀
j=1

|zj |−2aj (− log |zj |)kj−kj−1

= h′a,k
∏̀
p=1

|zp|−2ap

`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj
(− log |z`|)k` .

(We formally set k0 := 0.) We obtain a C∞-hermitian metric h(1) =
⊕
h

(1)
a,k on

QE|X−D. Theorem 13.25 of [22] implies the following lemma.

Lemma 7.10. h and h(1) are mutually bounded on K × Z(C).

An estimate

Lemma 7.11. Let f be a holomorphic endomorphism of Q0E0 satisfying the fol-
lowing conditions:

• It preserves the filtrations iF (i = 1, . . . , `).
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• For each b ∈ RI , the induced endomorphism IGrFb (f) of
⊕

qI(a)=bQ0Ea|DI pre-
serves the weight filtrations W (j) (j = 1, . . . ,m(I)).

• For each a ∈ R`, the induced endomorphism ` GrFa (f) of Q0Ea|D` is 0.

Then |f |h0 = O(Λ0(ε)) for some ε > 0 on K × Z(C).

Proof. We take decompositions (7.26) for any a. Applying Lemma 7.10 to (Ea, ∂a,
θa, ha) with the decomposition (7.26), we take a C∞-hermitian metric h

(1)
0,a =⊕

h
(1)
0,a,k on Q0Ea|X−D and h

(1)
0 :=

⊕
h

(1)
0,a on Q0E0|X−D as above. We have the

decomposition

f =
∑

f(a,k),(a′,k′), f(a,k),(a′,k′) ∈ Hom(U0,a′,k′ , U0,a,k).

We have only to show

(7.27) |f(a,k),(a′,k′)|h(1)
0

= O(Λ0(ε))

for any (a,k) and (a′,k′) on K × Z(C). Note that the induced metrics on
Hom(U0,a′,k′ , U0,a,k)|X−D are of the form

(7.28) g(a,k),(a′,k′)

∏̀
j=1

|zj |2(−aj+a′j)
`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj−k′j
(− log |z`|)k`−k

′
` ,

where g(a,k),(a′,k′) are C∞-metrics on Hom(U0,a′,k′ , U0,a,k) over X .
(I) Let us consider the case a 6= a′. We define

I+ := {i | ai > a′i}, I− := {i | ai < a′i}, I0 := {i | ai = a′i}.

Let m be the number determined by {1, . . . ,m} ⊂ I0 and m + 1 6∈ I0. Since
the parabolic filtrations are preserved, we have f(a,k),(a′,k′)|Di = 0 for any i ∈ I+.
Hence, there exists a holomorphic section f ′(a,k),(a′,k′) of Hom(U0,a′,k′ , U0,a,k) such
that

(7.29) f(a,k),(a′,k′) = f ′(a,k),(a′,k′)

∏
i∈I+

zi.

We have the following inequality for some ε > 0:

(7.30)
∏
i∈I+

|zi|1−ai+a
′
i

∏
i∈I−

|zi|−ai+a
′
i ≤

∏
i∈I+∪I−

|zi|ε ≤ |zm+1|ε.

Let us consider the set S = {p ≤ m | kp > k′p}. If S is not empty, let p be
its minimum. Note that kt ≤ k′t for any t < p and kp > k′p by our choice.
Since the weight filtrations W (j) (j = 1, . . . , p) are preserved on p GrF , we
have f ′(a,k),(a′,k′)|Dp = 0. Hence, there exist holomorphic sections f ′′t,(a,k),(a′,k′)
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(t = 1, . . . , p) of Hom(U0,a′,k′ , U0,a,k) such that

(7.31) f ′(a,k),(a′,k′) =
p∑
t=1

zt · f ′′t,(a,k),(a′,k′).

We remark that for any t ≤ p,

(7.32) |zt|
`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj−k′j
(− log |z`|)k`−k

′
`

≤ |zt|
t−1∏
j=1

Ckj−k
′
j

`−1∏
j=t

(
− log |zj |
− log |zj+1|

)kj−k′j
(− log |z`|)k`−k

′
` = O(|zt|1/2).

By using (7.28)–(7.32), we obtain |f(a,k),(a′,k′)|h(1)
0

=
∑p
t=1O(|zt|1/2)=O(Λ0(1/2)).

If S is empty, we have kj ≤ k′j for j = 1, . . . ,m. Hence,

(7.33) |zm+1|ε
`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj−k′j
(− log |z`|)k`−k

′
`

≤ |zm+1|ε
m∏
j=1

Ckj−k
′
j

`−1∏
j=m+1

(
− log |zj |
− log |zj+1|

)kj−k′j
(− log |z`|)k`−k

′
` = O(|zm+1|ε/2).

By using (7.28)–(7.30) and (7.33), we obtain (7.27).
(II) Let us consider the case a = a′. By the third assumption on f , there

exist holomorphic sections fi,a,(k,k′) of Hom(U0,a,k′ , U0,a,k) such that

(7.34) f(a,k),(a,k′) =
∑̀
i=1

zi · fi,a,(k,k′).

Let us consider the set S = {p | kp > k′p}. If S is not empty, let p be its minimum.
Note that kt ≤ k′t for any t < p and kp > k′p by our choice. Since the weight filtra-
tions W (j) (j = 1, . . . , p) are preserved on p GrF , we have fi,a,(k,k′)|Dp = 0. Hence,
there exist holomorphic sections f ′t,i,a,(k,k′) (t = 1, . . . , p) of Hom(U0,a,k′ , U0,a,k)
such that

(7.35) fi,a,(k,k′) =
p∑
t=1

zt · f ′t,i,a,(k,k′).

By using (7.32) and (7.35), we obtain |fi,a,(k,k′)|h(1)
0

= O(Λ0(1/2)).
If S is empty, we have kj ≤ k′j for j = 1, . . . , `. Hence,

(7.36)
`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj−k′j
(− log |z`|)k`−k

′
` = O(1).
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Consequently, |fi,a,(k,k′)|h(1)
0

= O(1). By using (7.34), we obtain (7.27). Thus, the
lemma follows.

Local isomorphism with a nice property

Lemma 7.12. There exists a holomorphic isomorphism

ΦK : Q0E0|X → Q0E|X

with the following properties:

• It preserves the filtrations iF (i = 1, . . . , `).

• For each b ∈ RI , the induced map
⊕

qI(a)=bQ0Ea|DI → IGrFb (Q0E|DI ) preserves
the weight filtrations W (j) (j = 1, . . . ,m(I)).

• For each a ∈ R`, the induced map Q0Ea|D` → ` GrFa (Q0E|D`) is equal to νa.

Proof. We take decompositions (7.24) and (7.26) as in Lemma 7.9. We take an
isomorphism ν̃a,k : U0,a,k ' Ua,k such that ν̃a,k|D` = νa,k. We set ΦK :=

∑
ν̃a,k.

It is easy to check that ΦK has the desired property.

By the norm estimate (Lemma 7.10), ΦK and Φ−1
K are bounded on K×Z(C).

Lemma 7.13. We have the following estimate for some ε > 0 with respect to h0

and gP1 on K × Z(C):

(7.37) Φ∗K∇λ −∇λ,0 = O(Λ0(ε)).

Proof. We put F := Φ∗K∇λ(λ2∂λ) − ∇λ,0(λ2∂λ). It is easy to observe that F
satisfies the conditions in Lemma 7.11. Hence, the lemma follows from Lemma
7.11.

Let ΦK and Φ′K be morphisms as in Lemma 7.12. We set G := Φ−1
K ◦ Φ′K.

Lemma 7.14. We have the following estimates for some ε > 0 on K × Z(C):

|G− id |h0 = O(Λ0(ε)), |∇λ,0(λ2∂λ)G|h0 = O(Λ0(ε)).

Proof. We have only to apply Lemma 7.11 to G− id and ∇λ,0(λ2∂λ)G.

Let σ : Cλ → Cµ given by σ(λ) = −λ. The induced map Cλ ×X → Cµ ×X†

is also denoted by σ.

Lemma 7.15. We can take a holomorphic isomorphism

Φ†σ(K) : Q<δE†0|σ(X ) → Q<δE
†
|σ(X )

satisfying the conditions: (i) it preserves the filtrations iF (i = 1, . . . , `), (ii) the in-
duced morphisms on IGrF−a preserve the weight filtrations W (j) (j = 1, . . . ,m(I)),
(iii) the induced morphism on ` GrF−a is equal to the given one.
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Proof. This can be shown by the argument in the proof of Lemma 7.12. More
directly, we have the isomorphisms Q<δE†0|σ(X ) ' σ∗(Q0E0|X )∨ and Q<δE†|σ(X ) '
σ∗(Q0E|X )∨, and σ∗(ΦK)∨ satisfies the conditions.

Lemma 7.16. Let ΦK and Φ†σ(K) satisfy the above conditions. Set

H := S0 − S(ΦK ⊗ σ∗Φ†σ(K)) : Q0E0|X ⊗ σ∗(Q<δE†0|σ(X ))→ OX .

Then H = O(Λ0(ε)) with respect to h0 for some ε > 0 on K × Z(C).

Proof. If Φ†σ(K) is given by σ∗Φ∨K, we have H = 0. Hence, we have only to show

that the property is independent of the choice of Φ†σ(K).

Let Φ†i,σ(K) (i = 1, 2) be as in Lemma 7.15. Note that h and h0 are mutu-

ally bounded through Φ†1,σ(K) on σ(K) × Z(C). By using Lemma 7.14, we obtain

Φ†1,σ(K) − Φ†2,σ(K) = O(Λ0(ε)) for some ε > 0 with respect to h and h0. It follows

that S ◦ (ΦK ⊗ σ∗(Φ†1,σ(K) − Φ†2,σ(K))) = O(Λ0(ε)) with respect to h0. Thus, the
proof is finished.

Local C∞-isomorphisms. Let ΦpK (p = 0, . . . ,m) be as in Lemma 7.12, and let
ap (p = 0, . . . ,m) be non-negative C∞-functions on K such that

∑
ap = 1. We set

ΦK :=
∑m
p=0 ap ΦpK. We also set G := (Φ0

K)−1 ◦ ΦK and Gp := (Φ0
K)−1 ◦ ΦpK. By

Lemma 7.14, |Gp − id |h0 = O(Λ0(ε)), and hence |G − id |h0 = O(Λ0(ε)) for some
ε > 0 on K × Z(C).

Lemma 7.17. The following estimate holds for some ε > 0 with respect to h0 on
K × Z(C):

Φ−1
K ◦ ∇λ(λ2∂λ) ◦ ΦK −∇λ,0(λ2∂λ) = O(Λ0(ε)).

Proof. We have the following equalities:

(7.38) Φ−1
K ◦ ∇λ,0(∂λ) ◦ ΦK −∇λ,0(∂λ)

= (Φ−1
K ◦ Φ0

K) ◦ (Φ0
K)−1 ◦ ∇λ(∂λ) ◦ (Φ0

K) ◦ ((Φ0
K)−1 ◦ ΦK)−∇λ,0(∂λ)

= G−1 ◦ ((Φ0
K)∗∇λ(∂λ)−∇λ,0(∂λ)) ◦G+G−1∇λ,0(∂λ)G.

By Lemma 7.13, (Φ0
K)∗∇λ(λ2∂λ)−∇λ,0(λ2∂λ) = O(Λ0(ε)). We also have

∇λ,0(λ2∂λ)G =
∑

λ2 ∂ap
∂λ

(Gp − id) = O(Λ0(ε)).

Thus, we obtain the lemma.

Let Φ† qσ(K) (q = 0, 1, . . . ,m′) be as in Lemma 7.15, and let bq be non-negative

C∞-functions on σ(K) such that
∑
bq = 1. Put Φ†σ(K) :=

∑
bq Φ† qσ(S).
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Lemma 7.18. Set H := S(ΦK ⊗ σ∗(Φ†σ(K))) − S0. Then we have the following
estimates on K × Z(C) with respect to h0 for some ε > 0:

H = O(Λ0(ε)), ∂E40 ,P1
H = O(Λ0(ε)).

Proof. This follows from Lemma 7.16.

Construction of an approximating map. We take 0 < R1 < R2 < 1. We set
K1 := {λ | |λ| ≤ R2} and K2 := {λ | R1 ≤ |λ| ≤ R−1

1 }. We take a partition of
unity (χK1 , χK2 , χσ(K1)) on P1 subordinated to {K1,K2, σ(K1)}.

We take a holomorphic isomorphism ΦK1 : Q0E0|K1×X → Q0E|K1×X as in
Lemma 7.12. Similarly, we take a holomorphic isomorphism Φ†σ(K1) : Q<δE†0|σ(K)×X†

→ Q<δE†|σ(K)×X† as in Lemma 7.15.
We can take a flat isomorphism

ΦK2 : (E0, D̃f0 )|K2×(X−D) → (E , D̃f )|K2×(X−D).

We may assume that ΦK2 is extended to isomorphisms Q0E0|K2×X ' Q0E|K2×X
and Q<δE†0|K2×X† ' Q<δE

†
|K2×X† with the property in Lemmas 7.12 and 7.15. We

set

Φ := χK1ΦK1 + χK2ΦK2 + χσ(K1)Φ
†
σ(K1).

By using Lemmas 7.17 and 7.18, we can check that Φ satisfies the estimates in
(7.21). Thus, the proof of Theorem 7.3 is finished.

7.4.4. Proof of Theorem 7.4

Decomposition. We have a decomposition

(7.39) Q0EX =
⊕

a∈Par(P0E0,`)

Ua

with the following property:

• For any subset I ⊂ ` and b ∈ Par(P0E0, I), put IUb =
⊕
a∈q−1

I (b) Ua. Then, for
any c ∈ RI ,

(7.40)
⊕
b≤c

IUb|DI =
⋂
i∈I

iFci(Q0E|DI ).

Weak norm estimate. We take a C∞-frame h′a of Ua in (7.39). We set h(2)
a :=

h′a
∏`
j=1 |zj |−2aj . We obtain a C∞-hermitian metric h(2) =

⊕
h

(2)
a on QE|X−D.

Proposition 8.70 of [22] implies the following lemma.



518 T. Mochizuki

Lemma 7.19. h and h(2) are mutually bounded up to log order, namely,

h(2) · C−1
(∑̀
i=1

− log |zi|
)−N

≤ h ≤ h(2) · C
(∑̀
i=1

− log |zi|
)N

for some C > 0 and N > 0.

An estimate

Lemma 7.20. Let f be a holomorphic endomorphism of Q0E0 satisfying the fol-
lowing conditions:

• It preserves the filtrations iF (i = 1, . . . , `).

• For each a ∈ R`, the induced endomorphism ` GrFa (f) of QEa|D` is 0.

Then |f |h0 = O(Λ(M, ε)) for some M > 0 and ε > 0.

Proof. We take a decomposition of Q0E0 like (7.39). Applying the weak norm esti-
mate to (Ea, ∂a, θa, ha) with the decomposition (7.26), we choose a C∞-hermitian
metric h(2)

a on QEa|X−D, and h
(2)
0 =

⊕
h

(2)
a on QE0|X−D. We have the decompo-

sition
f =

∑
fa,a′ , fa,a′ ∈ Hom(U0,a′ , U0,a).

We have only to show |fa,a′ |h(2)
0

= O(Λ(M, ε)) for any a and a′. Assume a 6= a′.
We define

I+ := {i | ai > a′i}, I− := {i | ai < a′i}, I0 := {i | ai = a′i}.

Since the parabolic filtrations are preserved, we have fa,a′|Di = 0 for any i ∈ I+.
Hence, there exists a holomorphic section f ′a,a′ such that fa,a′ = f ′a,a′

∏
i∈I+ zi.

We have the inequality as in (7.30). Thus, we obtain the desired estimate for fa,a′
in the case a 6= a′.

If a = a′, then fa,a|D` = 0. Hence, there are holomorphic sections ft,a of
Hom(Q0Ea,Q0Ea) such that fa,a =

∑
zt ft,a. Because

|ft,a|h0 = O
(∑̀
i=1

(− log |zi|)N
)
,

we obtain the desired estimate.

Local isomorphism with a nice property. We can show the following lemma
by the argument in the proof of Lemma 7.12.

Lemma 7.21. There exists a holomorphic isomorphism

ΦK : QE0|X → QE|X
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such that (i) it preserves the filtrations iF (i = 1, . . . , `), (ii) for each a ∈ R`, the
induced map QEa|D` → ` GrFa (QE|D`) is equal to νa.

Similarly, we can find a holomorphic isomorphism Φ†σ(K) : Q<δE†0|σ(X ) →
Q<δE†|σ(X ) such that (i) it preserves the filtrations iF (i = 1, . . . , `), (iii) the induced

morphism on ` GrF−a is equal to the given one.

By the weak norm estimate, ΦK and Φ−1
K are bounded up to log order. We

can show the following lemma by using Lemma 7.20.

Lemma 7.22. We have Φ∗K∇λ −∇λ,0 = O(Λ(M, ε)) for some ε > 0 and M > 0
with respect to h0 and gP1 .

Let ΦK and Φ′K be morphisms as in Lemma 7.21. We set G := Φ−1
K ◦ Φ′K.

Lemma 7.23. We have the following estimates for some positive ε and M :

|G− id |h0 = O(Λ(M, ε)), |∇λ,0(λ2∂λ)G|h0 = O(Λ(M, ε)).

Proof. This follows from Lemma 7.20.

Lemma 7.24. Let ΦK and Φ†σ(K) satisfy the above conditions. Set

H := S0 − S(ΦK ⊗ σ∗Φ†σ(K)) : Q0E0|X ⊗ σ∗(Q<δE†0|σ(X ))→ OX .

Then H = O(Λ(M, ε)) with respect to h0 for some ε > 0 and M > 0.

Proof. This can be shown by the argument in the proof of Lemma 7.16.

Local C∞-isomorphisms. Let ΦpK (p = 0, . . . ,m) be as in Lemma 7.21, and
let ap (p = 0, . . . ,m) be non-negative C∞-functions on K such that

∑
ap = 1. We

set ΦK :=
∑m
p=0 ap ΦpK, G := (Φ0

K)−1 ◦ ΦK and Gp := (Φ0
K)−1 ◦ ΦpK. By Lemma

7.23, |Gp− id |h0 = O(Λ0(ε)), and hence |G− id |h0 = O(Λ0(ε)) for some ε > 0 and
M > 0.

We can show the following estimate by using an argument in the proof of
Lemma 7.17 together with Lemma 7.22:

(7.41) Φ−1
K ◦ ∇λ(λ2∂λ) ◦ ΦK −∇λ,0(λ2∂λ) = O(Λ(M, ε)).

Let Φ† qσ(K) (q = 0, 1, . . . ,m′) be as in Lemma 7.15, and let bq be non-negative

C∞-functions on σ(K) such that
∑
bq = 1. We set Φ†σ(K) :=

∑
bq Φ† qσ(S) and

H := S(ΦK ⊗ σ∗(Φ†σ(K))) − S0. Then we can show the following estimates with
respect to h0 and gP1 for some positive ε and M , by using Lemma 7.24:

(7.42) H = O(Λ(M, ε)), ∂E40 ,P1
H = O(Λ(M, ε)).
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Construction. We take 0 < R1 < R2 < 1. We set K1 := {λ | |λ| ≤ R2} and
K2 := {λ | R1 ≤ |λ| ≤ R−1

1 }. We take a partition of unity (χK1 , χK2 , χσ(K1)) on P1

subordinated to {K1,K2, σ(K1)}.
We take holomorphic isomorphisms

ΦK1 : QE0|K1×X → QE|K1×X , Φ†σ(K1) : Q<δE†0|σ(K1)×X† → Q<δE
†
|σ(K1)×X†

as in Lemma 7.21. We can take a flat isomorphism

ΦK2 : (E0, D̃f0 )|K2×(X−D) → (E , D̃f )|K2×(X−D).

We set Φ := χK1 ΦK1 + χK2 ΦK2 + χσ(K1) Φ†σ(K1). By using (7.41) and (7.42), we
can check that Φ satisfies the estimates in (7.23). Thus, the proof of Theorem 7.4
is finished.

§8. An application to HS-orbits

§8.1. Preliminaries

8.1.1. Compatibility of real structure and Stokes structure. Let X be a
complex manifold. We set X := Cλ × X and X 0 := {0} × X. Let (H,H ′R,∇) be
a TER structure on X . (TER structure means TERP structure minus a pairing.)
We say that H is unramifiedly pseudo-good if the following holds:

• We are given a good set of irregular values Irr(∇) ⊂ M(X ,X 0)/H(X ) on the
level −1. Namely, (i) every element a of Irr(∇) is of the form a = λ−1a′ for
some holomorphic function a′ on X, (ii) a′−b′ is nowhere vanishing for distinct
λ−1a′, λ−1b′ ∈ Irr(∇).

• H has the formal decomposition

(H,∇)| bX 0 =
⊕

a∈Irr(∇)

(Ĥa, ∇̂a)

such that ∇̂a− da is regular. Note that they are not assumed to be logarithmic.

(See also Subsection 5.1.3.) If X is a point, this means that H requires no ramifi-
cation in the sense of [12].

By a classical theory (see also Subsection 5.1.3), we have the Stokes filtra-
tion FS indexed by (Irr(∇),≤S) for each small sector S of X − X 0. We say that
the real structure and the Stokes structure are compatible if the Stokes filtration
on any small sector S comes from a flat filtration of H ′R|S . (See [18].)

By taking Gr of (H,∇) with respect to the Stokes filtrations, we obtain a
TE -structure Gra(H,∇) for a ∈ Irr(∇). As observed in [12], if the real structure
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and the Stokes structure are compatible, Gra(H,∇) is enriched to a TER struc-
ture denoted by Gra(H,H ′R,∇). If (H,H ′R,∇) is enriched to a TERP structure
(H,H ′R,∇, P, w), Gra(H,H ′R,∇) is also naturally enriched to a TERP structure
denoted by Gra(H,H ′R,∇, P, w).

Another formulation. In [12], a compatibility of real structure and Stokes struc-
ture is formulated in a slightly different way. Let us check that it is equivalent to
the above. For simplicity, we consider the case in which X is a point.

Let H be a vector bundle on Cλ with a meromorphic flat connection ∇ : H →
H ⊗ Ω1

Cλ(∗0) such that H requires no ramification with the good set of irregular
values Irr(∇) ⊂ λ−1C. Take θ0 ∈ R such that Re(a − b)(re

√
−1 θ0) 6= 0 for any

distinct a, b ∈ Irr(∇). Take a sufficiently small ε > 0, and consider the sector

S := {re
√
−1 θ | θ0 − ε ≤ θ ≤ θ0 + π + ε}.

Let S denote the closure of S in the real blow up C̃λ(0) → Cλ along 0. Let
Z := S ∩ π−1(0). As a version of the Hukuhara–Turrittin theorem, it is well
known that we have a unique flat decomposition

(8.1) (H,∇)|S =
⊕

a∈Irr(∇)

(Ha,S ,∇a,S)

such that the restriction of (8.1) to Ẑ is the same as the pull back of the irregular
decomposition of H|b0.

Assume that the flat bundle (H,∇)|C∗λ is equipped with a real structure, i.e.,
a C-anti-linear flat involution κ : H → H. In other words, (H,∇, κ) is a TER
structure. In Section 8 of [12], the real structure and the Stokes structure are
defined to be compatible if κ(Ha,S) = Ha,S for any a ∈ Irr(∇) and any S as
above.

If a small sector S is contained in S, the restriction of (8.1) to S gives a
splitting of FS . Hence, if Ha,S are preserved by κ for any a, the filtration FS is
also preserved by κ. Let S1 and S2 be small sectors containing the rays {re

√
−1 θ0 |

r > 0} and {−re
√
−1 θ0 | r > 0}, respectively. Then a ≤S1 b if and only if a ≥S2 b.

By the parallel transport on S, the flat bundle H|S is trivialized, and we can
observe that Ha,S = FS1

a ∩ FS2
a . Hence, if FSia (i = 1, 2) are preserved by κ, Ha,S

is also preserved by κ. The equivalence of the two notions of compatibility follows
from these considerations.

8.1.2. Two Stokes filtrations of integrable twistor structures. Let (V, D̃4)
be a variation of integrable twistor structure over P1 × X. It is obtained as the
gluing of a TE -structure (V0, D̃f0 ) on X := Cλ ×X and a T̃E-structure (V∞, D̃† f∞ )
on X † := Cµ ×X†. We set X 0 := {0} ×X ⊂ X and X † 0 := {0} ×X† ⊂ Cµ ×X†.
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Definition 8.1. We say that (V, D̃4) is unramifiedly pseudo-good if both (V0, D̃f0 )
and (V∞, D̃† f∞ ) are unramifiedly pseudo-good. In that case, let Irr(D̃f0 ) and Irr(D̃† f∞ )
denote the sets of irregular values of D̃f0 and D̃† f∞ , respectively.

If X is a point, we also say that (V, D̃4) requires no ramification.

Definition 8.2. Assume (V, D̃4) is unramifiedly pseudo-good.

• We say that the sets of irregular values of (V, D̃4) are compatible if Irr(D̃f0 ) and
Irr(D̃f∞) bijectively correspond by a↔ γ∗a.

• We say that (V, D̃4) has compatible Stokes structures if the following holds:

– The sets of irregular values of (V, D̃4) are compatible.

– For a small sector S of X −X 0, we have the Stokes filtration FS of (V0, D̃f0 ).
We also have the Stokes filtration Fγ(S) of (V∞, D̃f∞), where we regard γ(S)
as a small sector of X † − X † 0. Then FS and Fγ(S) are the same under the
parallel transport along any rays connecting S and γ(S).

Remark 28. In the above definition, a ray means a line

{(te
√
−1ϕ, P ) | 0 < t <∞}

in C∗λ × {P} ⊂ C∗λ ×X. We say that it connects S and γ(S) if (i) (te
√
−1ϕ, P ) is

contained in S for any sufficiently small t, (ii) (te
√
−1ϕ, P ) is contained in γ(S) for

any sufficiently large t.

Lemma 8.1. If (V, D̃4) is equipped with either a real structure κ or a perfect
pairing S of weight w, then the irregular values of D̃f0 and D̃f∞ are compatible.

Proof. We have Irr(γ∗D̃f∞) = {γ∗a
∣∣ a ∈ Irr(D̃f∞)}. If (V, D̃4) is equipped with a

real structure, γ∗(V∞, D̃f∞) ' (V0, D̃f0 ). Hence, the irregular values of D̃f0 and D̃f∞
are compatible.

We have Irr(σ∗D̃f∞) = {σ∗a | a ∈ Irr(D̃f∞)}. Note that every a ∈ Irr(D̃f∞) is of
the form µ−1a′, where a′ is a holomorphic function on X†. Hence, σ∗a = −γ∗a. If
(V, D̃4f ) is equipped with a perfect pairing, (V0, D̃f0 ) is isomorphic to the dual of
σ∗(V∞, D̃f∞). Therefore, the irregular values of D̃f0 and D̃f∞ are compatible.

If (V, D̃4) is unramifiedly pseudo-good, by taking Gr with respect to the
Stokes filtrations, we obtain a TE -structure Gra(V0, D̃f0 ) on X for a ∈ Irr(D̃f0 ), and
a T̃E-structure Grb(V∞, D̃f∞) on X † for b ∈ Irr(D̃f∞). If (V, D̃4) has compatible
Stokes structures, we have the naturally induced isomorphism

Gra(V0, D̃f0 )|X−X 0 ' Grγ∗a(V∞, D̃f∞)|X †−X † 0 .
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Hence, we obtain a variation of integrable twistor structure Gra(V, D̃4) for each
a ∈ Irr(D̃f0 ) as their gluing. We have the following functoriality (Lemma 5.7).

Lemma 8.2. Let (V (a), D̃(a)4) be unramifiedly pseudo-good. Assume that
(i) (V (a), D̃(a)4) (a = 1, 2) have compatible Stokes filtrations, (ii) the union I :=
Irr(D̃(1) f

0 ) ∪ Irr(D̃(2) f
0 ) is good. Then a morphism (V (1), D̃(1)4) → (V (2), D̃(2)4)

induces Gra(V (1), D̃(1)4)→ Gra(V (2), D̃(2)4) for each a ∈ I.

We have the natural isomorphisms

γ∗Gra(V, D̃4) ' Gra(γ∗(V, D̃4)), σ∗Gra(V, D̃4) ' Gr−a(σ∗(V, D̃4)).

The following lemma follows from functoriality.

Lemma 8.3. Assume that (V, D̃4) has compatible Stokes structures. If (V, D̃4) is
equipped with a real structure (resp. a perfect pairing of weight w), each Gra(V, D̃4)
is also equipped with an induced real structure (resp. an induced perfect pairing of
weight w).

Lemma 8.4. Let (H,H ′R,∇, P ′, w) be a variation of TERP structure, and let
(V, D̃4,S, κ, w) be the corresponding variation of twistor-TERP structure. (See
Subsection 2.1.8.) Assume that (H,H ′R,∇, P ′, w) is unramifiedly pseudo-good, or
equivalently, (V, D̃4,S, κ, w) is unramifiedly pseudo-good.

• The real structure and the Stokes structure of (H,∇) are compatible if and only
if (V, D̃4) has compatible Stokes structures.

• Assume that the real structures and the Stokes structures are compatible. Then
Gra(V, D̃4,S, κ, w) is the variation of twistor-TERP structure corresponding to
Gra(H,H ′R,∇, P ′, w).

Proof. Note that the Stokes filtration of γ∗(H,∇) on γ∗(S) is given by the com-
posite of the conjugate with respect to H ′R and the parallel transport along the
rays connecting S and γ(S), with the change of the index sets from Irr(∇) to
{γ∗a | a ∈ Irr(∇)}. Hence, the first claim follows.

Let us consider the second claim. We may assume that (H,H ′R,∇, P ′, w) is
obtained from (V,∇,S, κ, w) by the procedure explained in Subsection 2.1.8. By
construction, we have Gra(H,∇) = Gra(V0,∇0). For comparison of induced real
structures and pairings, we have only to consider the case in which X is a point.

Let us compare the induced real structures. The flat real structure of H ′ is
obtained as the composite

H |λ
parallel transport−−−−−−−−−−−→ H |λ−1

κ|λ−−→ H|λ.
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Hence, we have the following factorization of the real structure on Gra(H)|λ ob-
tained as Gr of the Stokes filtration:

Gra(H)|λ
parallel transport−−−−−−−−−−−→ Gra(H)|λ−1

Gra(κ)|λ−−−−−−→ Gra(H)|λ.

It is the same as the real structure induced by Gra(κ) on Gra(V,∇).
Let P : H ⊗ j∗H → OCλ be the pairing induced by κ and S as in (2.5),

whose restriction to H ′ is P ′. Let S be a small sector in C∗λ. We have the following
factorization of (

√
−1)−wP|S :

FSa (H)⊗ j∗F j(S)
b (H) = FSa (V0)⊗ σ∗γ∗F j(S)

b (V0)
1⊗σ∗κ−−−−→ FSa (V0)⊗ σ∗Fσ(S)

γ∗(b)
(V∞) S−→ OS .

The restriction to FSa (H)⊗j∗F j(S)
b (H) is 0 unless a−b ≥S 0. The induced pairing

(
√
−1)−wPa for Gra(V0) is factorized as follows:

Gra(V0)|S⊗j∗Gra(V0)|j(S)
1⊗σ∗ Gra κ−−−−−−−→ Gra(V0)|S⊗σ∗Gr

γ∗(a)
(V∞)|σ(S)

Gra S−−−−→ OS .

Hence, it is the same as the pairing induced by Gra(V,∇,S, κ). Thus, the proof of
Lemma 8.4 is finished.

8.1.3. Preliminaries on pull back. We set X := Cz, D = {0}, X := Cλ ×X,
D := Cλ × D and W := D ∪ ({0} × X). Let π : X̃ (W ) → X be a real blow up
of X along W . Let π1 : C̃λ(0) → Cλ be the real blow up of Cλ along {0}. Let
φ0 : X → Cλ be given by φ0(λ, z) = λ z. It induces a map φ̃0 : X̃ (W )→ C̃λ(0).

Let H be a vector bundle on Cλ with a meromorphic flat connection ∇ :
H → H ⊗ Ω1

Cλ(∗0) such that (H,∇) requires no ramification with the good set
of irregular values I ⊂ λ−1C. Let V denote the flat bundle on C̃λ(0) associated
to H|C∗λ . For each Q ∈ π−1

1 (0), we have the Stokes filtration FQ of V|Q for the
meromorphic prolongment H. (See Subsection 5.1.5.) We can naturally regard φ̃∗0V
as the flat bundle on X̃ (W ) associated to (φ∗0H)|X−W .

Lemma 8.5.

• φ∗0(H,∇) is unramifiedly pseudo-good on the level m = (−1,−1). (See Subsec-
tion 5.1.3.) The set of irregular values is φ∗0I := {φ∗0a | a ∈ I}.

• For each P ∈ π−1(W ), the Stokes filtration FP of φ̃∗0(V)|P for φ∗0H is the pull
back of the Stokes filtration of V|eφ0(P ).

• We have the natural isomorphism φ∗0 Gra(H) ' Grφ∗0a(φ∗0H).

Proof. We have the decomposition (H,∇)|b0 =
⊕

a∈I(Ha, ∇̂a), where ∇̂a − da are
regular. It induces the decomposition of φ∗0(H,∇)|cW . Hence, the first claim is clear.
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We set Q := φ̃0(P ). Note that the orders ≤Q and ≤P are the same under
the identification I ' φ∗0I. Let H1 ⊃ H be an unramifiedly good lattice. Thus,
φ∗0H1 is an unramifiedly good lattice. We take a small sector SQ ∈MS(Q,C∗λ, I)
such that there exists the Stokes filtration FSQ of H1|SQ . We take a small multi-
sector SP ∈ MS(P,X −W,φ∗0I) such that φ0(SP ) ⊂ SQ. Thus, we obtain the
filtration φ̃∗0FSQ of φ∗0(H1)|SP indexed by (φ∗0I,≤P ). It gives the Stokes filtration
of φ∗0(H1)|SP , which follows from the characterization in Proposition 5.1. Since the

filtration of φ̃∗0(V)|P induced by φ̃∗0FSQ is the same as the pull back of FQ on V|Q,
we obtain the second claim. Note also that the Stokes filtration of φ∗0(H)|SP is given
by the pull back of the Stokes filtration of H|SQ .

Let SP be a small multi-sector as above. By the above compatibility of the
Stokes filtrations and Lemma 5.9, we obtain the natural isomorphisms

(8.2) φ∗0(Gra(H))|SP ' Grφ∗0a(φ∗0H)|SP .

By varying SP and gluing them, we obtain

φ∗0(Gra(H))|eU(W ) ' Grφ∗0a(φ∗0H)|eU(W ),

where U is a neighbourhood of W , and Ũ(W ) denotes the real blow up of U
along W . By using flatness, this isomorphism extends to φ∗0(Gra(H))| eX (W ) '
Grφ∗0a(φ∗0H)| eX (W ). Hence, we obtain an isomorphism on X .

8.1.4. Rescaling and HS-orbits. We recall a rescaling construction from [10]
and [12]. See also [26]. We set X := Cz, D = {0} and X∗ := X−D. For R > 0, we
set X(R) := {z ∈ X | |z| < R} and X∗(R) := X(R)∩X∗. We set X := Cλ×X. We
use the symbols X ∗, D, X (R) and X ∗(R) in similar meanings. Let φ0 : X → Cλ
be given by φ0(λ, z) = λz. The restriction to X ∗ is denoted by ψ0.

TERP structure. We consider only TERP structures of weight 0. Hence, we
do not specify weights. Let (H,H ′R,∇, P ) be a TERP structure. Hertling and
Sevenheck studied the variation of TERP structure ψ∗0(H,H ′R,∇, P ) on X∗. If
there exists an R > 0 such that ψ∗0(H,H ′R,∇, P )|X∗(R) is pure and polarized, the
variation is called an HS-orbit (Hertling–Sevenheck orbit), and we say in this paper
that (H,H ′R,∇, P ) induces an HS-orbit.

Remark 29. An HS-orbit is called a “nilpotent orbit” in [12]. We use “HS-orbit” to
distinguish it from twistor nilpotent orbit. It corresponds to their term “Sabbah-
orbit”.

Lemma 8.6. Assume (i) (H,∇) requires no ramification, (ii) the Stokes structure
and the real structure of (H,H ′R,∇) are compatible. Then:
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• ψ∗0(H,∇) is unramifiedly pseudo-good. The set of irregular values is given by
{ψ∗0a | a ∈ Irr(∇)}.

• The real structure and the Stokes structure of ψ∗0(H,∇) are compatible.

• We have a natural isomorphism

ψ∗0 Gra(H,H ′R,∇, P ) ' Grψ∗0a ψ
∗
0(H,H ′R,∇, P ).

Proof. The first two claims follow from Lemma 8.5. To show the third claim, we
have only to compare the induced flat pairings. This can be done directly, or by
considering the restriction to Cλ × {1}.

The lemma means in particular that an HS-orbit is wild. Note that there is a
non-wild variation of pure polarized TERP structure on X∗(R). For example, con-
sider the example in Subsection 2.2.1 with a transcendental holomorphic function
a on X∗(R).

Integrable twistor structure. We set X † := Cµ ×X†, D† := Cµ ×D†, X ∗ † :=
X †−D† and W † := D†∪({0}×X†). Let φ∞ : X † → Cµ be given by φ∞(µ, z) = µz.
The restriction to X ∗ † is denoted by ψ∞.

Let (V,∇) be an integrable twistor structure on P1 which requires no ramifica-
tion. It is obtained as the gluing of (V0,∇0) and (V∞,∇∞). The gluing is denoted
by g : V0|C∗λ ' V∞|C∗µ , which is flat with respect to ∇.

We set HS(V )0 := ψ∗0(V0) and HS(V )∞ := ψ∗∞(V∞). They are naturally
equipped with a TE -structure HS(∇)0 and a T̃E-structure HS(∇)∞. Note that
HS(V,∇)0 and HS(V,∇)∞ are unramifiedly pseudo-good. Let us construct a
flat isomorphism Φ between HS(V,∇)0|C∗λ×X∗ and HS(V,∇)∞|C∗µ×X†∗ . The fibers
HS(V )0|(λ,z) and HS(V )∞|(µ,z) are naturally identified with V0|λ z and V∞|µz, re-
spectively. If λ = µ−1, we have (λz)−1 = µz|z|−2. Hence, we have an isomorphism
Φ(λ,z) : HS(V )0|(λ,z) ' HS(V )∞|(λ−1,z) induced by the gluing g with the parallel
transport along the segments connecting λ−1 z and λ−1z|z|−2. Thus, we obtain
the isomorphism Φ as desired.

Let HS(V,∇) denote the variation of integrable twistor structure obtained as
the gluing of HS(V,∇)0 and HS(V,∇)∞. The following lemma is clear from the
construction and the functoriality (Lemma 5.7).

Lemma 8.7.

• Let F : (V (1),∇(1)) → (V (2),∇(2)) be a morphism of integrable pure twistor
structures. Then we have the induced morphism

HS(F ) : HS(V (1),∇(1))→ HS(V (2),∇(2)).
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• Let f be γ or σ. Then HS ◦f∗(V,∇) is naturally isomorphic to the pull back
f∗HS(V,∇).

By the above lemma, a real structure κ of (V,∇) induces a real structure
HS(κ) of HS(V,∇). Since we have the natural isomorphism HS(T(0)) ' T(0)X∗ , a
paring S of (V,∇) with weight 0 induces a pairing HS(S) of HS(V,∇) with weight 0.
Hence, an integrable twistor structure with a pairing (V,∇,S) induces HS(V,∇,S)
on P1 ×X∗, and if (V,∇,S) is equipped with a real structure, HS(V,∇,S) is also
equipped with a naturally induced real structure.

Lemma 8.8. If (V,∇) has compatible Stokes structures, HS(V,∇) also has com-
patible Stokes structures, and we have the natural isomorphism

(8.3) HS Gra(V,∇) ' Grψ∗0a HS(V,∇).

If (V,∇) is equipped with a pairing of weight 0 (resp. a real structure), (8.3) pre-
serves the induced pairings (resp. real structures).

Proof. This follows from Lemma 8.5.

Lemma 8.9. Let (H,H ′R,∇, P ′) be a TERP structure, and (V,∇,S, κ) be the
corresponding twistor-TERP structure. Then HS(V,∇,S, κ) is the variation of
twistor-TERP structure corresponding to ψ∗0(H,H ′R,∇, P ′).

Proof. By construction, we have the natural isomorphism HS(V,∇)0 ' (H,∇).
We have only to compare the induced real structures and pairings on them. Since
they are flat, we have only to compare them on the fiber over z = 1. Then the
claim is clear.

If there exists an R > 0 such that HS(V,∇,S)|P1×X∗(R) is pure and polarized,
it is called a twistor HS-orbit, and we say that (V,∇,S) induces a twistor HS-orbit.

§8.2. Reduction of wild HS-orbits

8.2.1. Statement. We use the notation in Subsection 8.1.4. Let (V,∇) be an
integrable twistor structure with a perfect pairing S of weight 0, which requires no
ramification. Assume that (V,∇,S) induces a twistor HS-orbit on P1 ×X∗(R) for
some R > 0. We obtain the underlying unramifiedly good wild harmonic bundle
(E, ∂E , θ, h) on X∗(R) of HS(V,∇,S)|P1×X∗(R), which is unramifiedly good. Let I
denote the set of irregular values of (V,∇) at 0. It is easy to see that

Irr(θ) = {(λ · a(λz))|λ=0 | a(λ) ∈ I} = {a(z) | a(λ) ∈ I} ' I.

Note that any a ∈ I is of the form α/λ for some α ∈ C. We will not distinguish
them in the following.
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Let (E4,D4,SE) denote the variation of polarized pure twistor structure
associated to (E, ∂E , θ, h). It is enriched to an integrable one (E4, D̃4,SE). Al-
though it is naturally isomorphic to HS(V,∇,S), it is non-trivial that the natural
meromorphic extensions QE0 and φ∗0(V0)⊗OX (∗D) are isomorphic. Hence, we use
the symbol (E4, D̃4,SE) for distinction. By applying the construction in Subsec-
tion 7.3.1 to (E4, D̃4,SE), we obtain a wild variation of pure polarized integrable
twistor structure Gra(E4, D̃4,SE) for each a ∈ I. We will prove the following
theorem in Subsection 8.2.2.

Theorem 8.1.

• (V,∇) has compatible Stokes structures.

• HS Gra(V,∇,S) is naturally isomorphic to Gra(E4, D̃4,SE) for each a ∈ I. In
particular, Gra(V,∇,S) induces a twistor HS-orbit.

Before going into the proof, we give a consequence.

Corollary 8.1. Let (H,H ′R,∇, P, 0) be a TERP structure which requires no ram-
ification. If (H,H ′R,∇, P, 0) induces an HS-orbit, it is a mixed-TERP structure in
the sense of Definition 9.1 of [12].

Proof. Thanks to Theorem 9.3 of [12], (H,H ′R,∇, P, 0) is a mixed-TERP struc-
ture if and only if (i) the real structure and the Stokes structure of (H,H ′R,∇)
are compatible, (ii) Gra(H,H ′R,∇, P, 0) induces an HS-orbit for each a ∈ Irr(∇).
Hence, this corollary follows from Theorem 8.1, Lemma 8.4 and Lemma 8.9.

The claim of the corollary was established by Hertling and Sevenheck [12] in
the case that (H,∇) has regular singularity. They also showed the converse of the
claim in general.

Remark 30. In their study of the case that (H,∇) has regular singularity, Hertling
and Sevenheck closely investigated the limiting object. In particular, they showed
that the limiting TERP structure is generated by elementary sections, for which
the eigenvalues of the new supersymmetric index can be described in terms of the
Hodge filtrations of the corresponding mixed Hodge structure.

Even in the irregular case, the limiting object can be obtained from the re-
duced regular one. Hence, the limit of the eigenvalues of the new supersymmetric
index of φ∗0(H,H ′R,∇, P ) can be described in terms of their mixed Hodge struc-
tures.

8.2.2. Proof of Theorem 8.1. We have the natural identifications

HS(V,∇)0 ' (E , D̃f ), HS(V,∇)∞ ' (E†, D̃† f ).
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We have the locally free OX (∗D)-module

HS(V )0 := φ∗0(V0)⊗OX (∗D).

We also have the locally free OX †(∗D†)-module

HS(V )∞ := φ∗∞(V∞)⊗OX †(∗D†).

Comparison of QE and HS(V )0. We would like to show that QE and HS(V )0

are naturally isomorphic. We set W := D ∪ ({0} × X). Let π : X̃ (W ) → X be
the real blow up of X along W . Let V be the flat bundle on X̃ (W ) associated to
(E , D̃f )|X−W . We set φ∗0I := {φ∗0a | a ∈ I}.

As remarked in Lemma 8.5, φ∗0H is an unramifiedly pseudo-good lattice of
HS(V )0 ⊗OX (∗W ) on the level m = (−1,−1).

Lemma 8.10. Q0E ⊂ QE ⊗ OX (∗W ) is an unramifiedly pseudo-good lattice on
the level m = (−1,−1) around (λ, z) = (0, 0).

Proof. We have the meromorphic flat bundle Gra(QE)(∗W ) with the induced
connection D̃fa on (X ,W ) for each a ∈ Irr(θ). Put ∇0

a := D̃fa − d(a(z)/λ). The
restriction of (Gra(QE)(∗W ), ∇0

a) to X − ({0} × X) is regular singular by con-
struction. The restriction to X −D is also regular singular by Lemma 7.4. Hence,
(Gra(QE)(∗W ),∇0

a) is regular singular.
We have the decomposition

(Q0E ,D)|cW =
⊕
a∈I

(Q0Êa, D̂a)

such that D̂a − dXa are logarithmic. Because we have a natural isomorphism
Q0Êa(∗W ) ' Gra(QE)(∗W ), the claim of the lemma follows.

Let P ∈ π−1(0, 0). We have the Stokes filtration FP1 of V|P corresponding
to the meromorphic prolongment QE ⊗ OX (∗W ), and the Stokes filtration FP2
of V|P corresponding to the meromorphic prolongment HS(V )0 ⊗ OX (∗W ). (See
Subsection 5.1.5 for such filtrations in the pseudo-good case.)

Lemma 8.11. FP1 = FP2 .

Proof. Let SP ∈ MS(P,X − W,φ∗0I) be a small sector such that the Stokes
filtrations FSP1 of QE|SP and FSP2 of φ∗0(H)|SP both exist. We can take Q ∈
SP ∩π−1(W \D) such that the orders ≤Q and ≤P on I are the same. We have the
filtrations FQi (i = 1, 2) of V|Q corresponding to the meromorphic prolongments
QE(∗W ) and HS(V )0(∗W ). Because HS(V,∇)0 ' (E , D̃f ), we have FQ1 = FQ2 .
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Let us show that FPi is obtained as the parallel transport of FQi , which implies
FP1 = FP2 . We take SQ ∈MS(Q,X −W,φ∗0I) such that the Stokes filtrations FSQ1

of QE|SQ and FSQ2 of φ∗0(H)|SQ exist. By using the characterization in Proposition

5.6, we obtain (FSPi )|SQ = FSQi . Hence, we can conclude that FPi are obtained as

the parallel transport of FQi .

Lemma 8.12. The isomorphism E ' HS(V )0 on X − D extends to an isomor-
phism QE ' HS(V )0 on X .

Proof. Let P ∈ π−1(0, 0). We take a small multi-sector SP ∈ MS(P,X −W, I)
such that we have the Stokes filtrations FSP for Q0E|SP and φ∗0(H)|SP . By
Lemma 8.11, their restrictions to SP are the same. We take a flat splitting
E|SP =

⊕
a∈I Ea,SP , which extends to the decompositions

QE|SP =
⊕
a∈I
QEa,SP , φ∗0(H)|SP =

⊕
a∈I

φ∗0(H)a,SP .

Let L̃(−a) be a line bundle OX (∗W ) · e with ∇e = e · (−d(λ−1a(z))). Because
Gra(φ∗0H) ⊗ L̃(−a) and Gra(QE) ⊗ L̃(−a) have regular singularity along W , the
isomorphism on X −W naturally extends to an isomorphism Gra(φ∗0H)⊗L̃(−a) '
Gra(QE) ⊗ L̃(−a). Since the restrictions of Gra(φ∗0H) ⊗ O(∗D) and Gra(QE) to
X −D are naturally isomorphic, we obtain an isomorphism Gra(φ∗0H)⊗O(∗D) '
Gra(QE).

Let wa and va be frames of Gra(φ∗0H)⊗O(∗D) and Gra(QE), respectively. We
have the relation wa = va ·Aa, where Aa are meromorphic along D. We take lifts
wa,S and va,S to Ea,S by using the above splittings for any small sector in X −W .
We have the relation wa,S = va,S ·Aa. Then the isomorphism E ' HS(V )0 extends
to QE|U ' HS(V )0|U on some small neighbourhood U of (0, 0), which follows from
Proposition 5.5. (We may apply Lemma 5.6. But, since φ∗0V0 and Q0E may not
be good lattices, we replace them with an unramifiedly good lattice, or we use a
variant of Lemma 5.6 for a pseudo-good lattice.) Then it is easy to observe that
the isomorphism extends to QE ' HS(V )0 by using the Hartogs theorem. (Sabbah
also independently obtained an argument to extend such isomorphisms in this kind
of situation.)

Similarly, E† ' HS(V )∞ on X † − D† extends to an isomorphism QE† '
HS(V )∞ on X †.

Proof of the first claim. Let X̃4 denote the real blow up of P1 × X along
(P1 ×D) ∪ ({0} ×X) ∪ ({∞} ×X). Let π† : X̃ †(W †)→ X † denote the real blow
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up of Cµ ×X† along W † = D† ∪ ({0} ×X†). We have

X̃4 = X̃ (W ) ∪ X̃ †(W †).

Let V4 denote the flat bundle on X̃4 associated to (E , D̃f )|C∗λ×(X−D).
We have the C∞-map X −W → (R≥ 0 × S1)2 given by

(λ, z) 7→
(
(|λ|, λ/|λ|), (|z|, z/|z|)

)
It induces the natural identification X̃ (W ) ' (R≥ 0 × S1)2. We set

P0 =
(
(0, exp(

√
−1ϕ)), (1, 1)

)
∈ π−1((0, 1)) ⊂ X̃ (W ).

Similarly, we identify X̃ †(W †) with (R≥ 0 × S1)2 via the map induced by

(µ, z) 7→
(
(|µ|, µ/|µ|), (|z|, z/|z|)

)
.

We set Q0 :=
(
(0, exp(−

√
−1ϕ)), (1, 1)

)
∈ (π†)−1((0, 1)) ⊂ X̃ †(W †). Note that

we can identify (V,∇) with HS(V,∇)|P1×{1}. Hence, we have only to compare the
Stokes filtrations FP0(V4|P0

) and FQ0(V4|Q0
) under the parallel transport along the

ray
(
(s, exp(

√
−1ϕ)), (1, 1)

)
(s ∈ R≥ 0∪{+∞}) connecting P0 and Q0. (Note that

the signature of the arguments are reversed by the coordinate change λ−1 = µ.)
Let us consider the map G : [0, 1]× [0, 1]→ X̃ (W ) given by

G(s, t) =
(
(s, exp(

√
−1ϕ)), (t, 1)

)
.

Note G(0, 1) = P0. We set P1 := G(1, 0) and P2 := G(1, 1). The image of Γ0 :=
([0, 1]×{0})∪({0}×[0, 1]) is contained in π−1(W ). The orders ≤P are independent
of P ∈ G(Γ0). Hence, the Stokes filtrations are unchanged along G(Γ0).

Similarly, let us consider the map G† : [0, 1]× [0, 1]→ X̃ †(W †) given by

G†(s, t) =
(
(s, exp(−

√
−1ϕ)), (t, 1)

)
.

Note G†(0, 1) = Q0. We set Q1 := G†(1, 0) and Q2 := G†(1, 1). The image of
Γ∞ := ([0, 1] × {0}) ∪ ({0} × [0, 1]) is contained in (π†)−1(W †). The orders ≤Q
are independent of the choice of Q ∈ G†(Γ∞). Hence, the Stokes filtrations are
unchanged along G†(Γ∞).

Under the identification X − W = X † − W †, we have P2 = Q2, and the
union of the paths G([0, 1] × {1}) and G†([0, 1] × {1}) is the ray connecting P0

and Q0. Hence, for the comparison of FP0 and FQ0 , we have only to show that
FP1(V0|P1) of V|P1 and FQ1(V∞|Q1) of V|Q1 are the same. This follows from the
characterization of the Stokes filtrations of (QE ,D) and (QE†,D†) by growth order
of the norms of flat sections with respect to the metric h. (See Subsection 6.3.)
Thus, we obtain the first claim of Theorem 8.1.
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Proof of the second claim. By using Corollary 5.1 and Lemma 8.8, we obtain
the isomorphisms on P1 ×X∗(R) for some R > 0:

Gra(E4, D̃4,SE) ' Grψ∗0a HS(V,∇,S) ' HS Gra(V,∇,S).

Thus, the second claim is also proved.
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de comparaison, Manuscripta Math. 6 (1972), 207–244. Zbl 0231.32004 MR 0301231
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