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Gelfand–Zetlin Basis, Whittaker Vectors and a
Bosonic Formula for the sln+1 Principal Subspace

by

B. Feigin, M. Jimbo and T. Miwa

Abstract

We derive a bosonic formula for the character of the principal space in the level k vacuum
module for bsln+1, starting from a known fermionic formula for it. In our previous work, the
latter was written as a sum consisting of Shapovalov scalar products of Whittaker vectors
for Uv±1(gln+1). In this paper we compute these scalar products in bosonic form, using
the decomposition of Whittaker vectors in the Gelfand–Zetlin basis. We show further
that the bosonic formula obtained in this way is the quasi-classical decomposition of the
fermionic formula.
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§1. Introduction

One of the central results in the theory of Kac–Moody algebras is the Weyl formula
for the characters of irreducible representations. This formula can be interpreted
“quasi-classically”. This means the following. Let Lχ be an integrable representa-
tion with highest weight χ. In Lχ there are some special vectors called extremal
vectors. They are labeled by the Weyl group and have the form w · vχ, where vχ is
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a highest weight vector, w is an element of the Weyl group and w · v denotes the
projective action. The Weyl formula reads

chLχ =
∑
w∈W

Cw(χ),

where Cw(χ) is interpreted as the character of Lχ in the vicinity of the extremal
vector w · vχ. In this interpretation we suppose χ is “big”, so that the extremal
vector w · vχ is well-separated from other extremal vectors. To be more precise,
this means that, when χ → ∞, generically the character Lχ in the vicinity of
w · vχ stabilizes and gives Cw(χ). The Weyl formula states that the quasi-classical
decomposition is exact for finite χ. One important point in the decomposition
is that each term Cw(χ) is, up to a simple monomial, the inverse of a (possibly
infinite) product of simple factors.

Now suppose that ĝ is an affine Kac–Moody algebra, and let Lk be the vacuum
representation of level k with highest weight vector vk. Let g = n+⊕h⊕n− be the
Cartan decomposition, and let n̂+ = n+⊗C[t, t−1] ⊂ ĝ be the nilpotent subalgebra.
Set

V k = U(n̂+) · vk ⊂ Lk

and call it the principal subspace in Lk. The quasi-classical formula for the char-
acter of V k can also be written. For example, if g = sl2, we have [FL]

chV k def= TrV k q−dzH/2 =
∞∑
m=0

qkm
2
zkm

(q2m+1z)∞(q)m(q−2m+1z−1)m
,

where d = t ddt is the scaling operator, H is the generator of the Cartan subalgebra,
and (z)m =

∏m
i=1(1 − qi−1z). In this formula the right hand side is understood

as a power series in z. The m = 0, 1, 2, . . . terms are the contributions from the
extremal vectors vk, e−1

kvk, e−3
ke−1

kvk, . . . .
In general

chV k =
∑
γ∈Q+

Cγ(k)

where Q is the root lattice, and the subset Q+ consists of linear combinations of
simple roots with nonnegative integer coefficients.

In [FFJMM1], it was proved that for g = sl3,

(1.1) chV k =
∞∑

d1,d2=0

qk(d
2
1+d

2
2−d1d2)zkd11 zkd22 J̃d1,d2(q, q2d1−d2z1, q2d2−d1z2),
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where

J̃d1,d2(q, z1, z2) =
1

(qz1)∞(qz2)∞(qz1z2)∞
Jd1,d2(q, z−1

1 , z−1
2 ),

Jd1,d2(q, z1, z2) =
(qz1z2)d1+d2

(q)d1(q)d2(qz1)d1(qz2)d2(qz1z2)d1(qz1z2)d2
.

(The Jd1,d2(q, z1, z2) in the present paper is different from Jd1,d2(z1, z2) used in
[FFJMM1].)

The terms in this formula are still factorized but they have nontrivial factors
in the numerators. On the other hand, in [FFJMM1], we have also derived an-
other expression for the same character, in which Jd1,d2(q, q2d1−d2z1, q2d2−d1z2) is
split into 12 terms, each of which is a simple power in q, z1, z2 with a factorized
denominator. We call such a formula a “desingularization”. In general, Cγ(k) is
complicated and cannot be factorized. However, in this paper, we show that at
least a desingularization can be found for the character of the principal subspace
for the vacuum module where g = sln+1 (see Theorem 3.1 and Proposition 2.2).
For g = sl3 we have

(1.2) Jd1,d2(q, z1, z2)

=
min(d1,d2)∑
m=0

(−z1)mq−m(d2−m)+m(m−1)/2 1
(q)m(q)d1−m(q)d2−m

× 1
(qz1)m(qz1z2)m(qz2)d2−m(q−d2+mz1)m(q−d2+2m+1z1)d1−m

.

We call such a formula a bosonic formula. We note that in [FFJMM1] bosonic
formulas for more general modules over n̂+ are obtained in the case where g = sl3,
in which we used more terms than in the case of the vacuum module in this paper.

Following some geometrical ideas from [BrFi], one naturally expects that in
the desingularization of the sln+1 formula the terms are labeled by some basis in the
Verma modules of Uv(gln+1) where q = v2, actually by the Gelfand–Zetlin basis.
Our proof goes as follows. In [FFJMM2], we managed to rewrite the fermionic for-
mula [FS] for chV k in terms of the eigenfunctions of the quantum difference Toda
Hamiltonian. Such eigenfunctions were written by using the Whittaker vectors in
the Verma modules for Uv(gln+1). In this paper, we decompose the Whittaker vec-
tors in the Gelfand–Zetlin basis. This decomposition produces the decomposition
of the coefficients of the eigenfunctions. Moreover, each term of this decomposition
has a factorized form. As a by-product we get some interesting fermionic formulas
and their quasi-classical decompositions.
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Fermionic formulas are statistical sums over configurations of particles with
color and weight. A configuration of particles is determined by a set of nonnegative
integers m = (mi,t)(i,t)∈S which represents the number of particles with color i
and weight t. Given a function B(m), the fermionic sum is of the form

F (S, B) =
∑
m

qB(m)∏
(i,t)∈S(q)mi,t

.

See (4.2) for the case we study in this paper. Let us discuss the fermionic formula
for the character chV k for g = sl3. In this case we take Sk = {1, 2} × [1, k] for S.
In [FFJMM2] we have shown that the quasi-classical decomposition is valid in the
following sense. Fix (m1,m2, n1, n2) ∈ Z4

≥0, and consider the above sum with the
restriction that ∑

1≤t�k

mi,t = mi,
∑

1�t≤k

mi,t = ni.

In the limit k→∞ this sum approaches some rational function F1,k(m1,m2, n1, n2).
In [FFJMM2] we have shown that for finite k ≥ 0, we have the equality

F (Sk, B) =
∑

m1,m2,n1,n2

F1,k(m1,m2, n1, n2).

We call this equality the quasi-classical decomposition. In this paper we consider
the case where we take

Sk′,k = {(i, t) | 1 ≤ t ≤ kδi,1 + k′δi,2}.

In the limit 1� k′ � k, we have a similar decomposition:

F (Sk′,k, B) =
∑

m1,m2,n1,n2,l1

F1,k′,k(m1,m2, n1, n2, l1).

The restriction for the sum for F1,k′,k(m1,m2, n1, n2, l1) is such that∑
1≤t�k′

mi,t = mi,
∑

1�t≤k′
m1,t +

∑
k′<t�k

m1,t = n1,∑
1�t≤k′

m2,t = n2,
∑

k′�t≤k

m1,t = l1.

There are two remarkable features. First, the decomposition is exact for finite
k ≥ k′ ≥ 1. Therefore, if k = k′, it gives another formula for chV k. Second, each
summand in this decomposition is factorized. In fact, summing up over m1,m2 we
obtain (1.1), (1.2). We will derive such a decomposition for general g = sln+1 by
using Drinfeld Casimir elements of smaller rank.
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Finally, we note that our paper is inspired by [BrFi]. Actually we study the
structure of the singular points on some moduli spaces by using the equivalent
language from the representation theory of affine Lie algebras.

§2. Whittaker vectors for gln+1

In this section we recall some known facts about Whittaker vectors for gln+1

and their Shapovalov scalar product, including the Toda recursion and fermionic
formulas. We give explicit formulas for them using the Gelfand–Zetlin basis of
Verma modules.

§2.1. Gelfand–Zetlin basis

Throughout, we consider the complex Lie algebra gln+1. Let ε0, . . . , εn be a basis
of the Cartan subalgebra orthonormal with respect to the invariant scalar product
( , ). The simple roots and fundamental weights are expressed as αi = εi−1 − εi,
ωi = ε0 + · · · + εi−1, 1 ≤ i ≤ n. We set Q =

⊕n
i=1 Zαi, P =

⊕n
i=0 Zεi, and

ρ =
∑n
i=1 ωi.

Let Uv(gln+1) be the corresponding quantum group over K = C(v), with
generators {Ei, Fi}1≤i≤n, {v±εi}0≤i≤n and standard defining relations. We set
Ki = vεi−1−εi . For λ =

∑n
i=0 λiεi ∈ P , let Vλ be the Verma module over Uv(gln+1)

generated by the highest weight vector 1λ with defining relations

Ei1λ = 0 (1 ≤ i ≤ n), vεi1λ = vλi1λ (0 ≤ i ≤ n).

Recall that Vλ has a distinguished basis (known as the Gelfand–Zetlin basis)
relative to the tower of subalgebras

(2.1) A0 ⊂ A1 ⊂ · · · ⊂ An,

where Ak ' Uv(glk+1) (k = 0, . . . , n) denotes the subalgebra of Uv(gln+1) gen-
erated by {Ei, Fi}1≤i≤k and {v±εi}0≤i≤k. Each subspace of Vλ which is jointly
invariant under Ak’s is one-dimensional. Such subspaces are labeled by arrays of
numbers

(2.2) λ =

λ0,n λ1,n · · · λn−1,n λn,n
λ0,n−1 λ1,n−1 · · · λn−1,n−1

. . . . . .
λ0,1 λ1,1

λ0,0
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called Gelfand patterns. Here we set

λk,i = λk −mk,i,(2.3)

and mk,i are nonnegative integers satisfying

(2.4) 0 = mk,n ≤ mk,n−1 ≤ mk,n−2 ≤ · · · ≤ mk,k (0 ≤ k ≤ n).

In particular, we have

λk,n = λk.

For economy of space we shall also write λ as

λ = (λ(n), . . . , λ(0)), λ(i) = λ0,iε0 + · · ·+ λi,iεi.

By choosing an appropriate generator |λ〉 = |λ(n), . . . , λ(0)〉 of each subspace
corresponding to (2.2), the action of Chevalley generators can be described ex-
plicitly. For this purpose it is convenient to extend the base field from K to R

obtained by adjoining all elements of the form
√
f (f ∈ K). We use the same

symbols Uv(gln+1) (resp. Vλ) to denote R⊗KUv(gln+1) (resp. R⊗K Vλ). Then the
Chevalley generators act by the formula [J]

vεi |λ〉 = vhi(λ)−hi−1(λ)|λ〉,(2.5)

Ei|λ〉 =
i−1∑
k=0

ck,i−1(λ)|λ(k,i−1)
+ 〉,(2.6)

Fi|λ〉 =
i−1∑
k=0

ck,i−1(λ(k,i−1)
− )|λ(k,i−1)

− 〉.(2.7)

Here hi(λ) =
∑i
k=0 λk,i, and λ

(k,i−1)
± signifies the Gelfand pattern wherein λk,i−1

is replaced by λk,i−1 ± 1 while keeping all other λl,j ’s unchanged. The coefficients
ck,i−1(λ) have the factorized form

ck,i−1(λ)2 = −
∏

0≤l≤i−2[λl,i−2 − λk,i−1 − l + k − 1]
∏

0≤l≤i[λl,i − λk,i−1 − l + k]∏
0≤l≤i−1
l 6=k

[λl,i−1 − λk,i−1 − l + k − 1][λl,i−1 − λk,i−1 − l + k]
.

Hereafter, we use the symbols [m] = (vm−v−m)/(v−v−1), [m]! = [m][m−1] · · · [1],
and [m]k = [m][m+ 1] · · · [m+ k − 1].

§2.2. Whittaker vectors

The Verma module carries an obvious grading Vλ =
⊕

β∈Q+(Vλ)β where

(2.8) (Vλ)β = {w ∈ Vλ | Kiw = v(αi,λ−β)w (1 ≤ i ≤ n)}.
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A Whittaker vector θλ =
∑
β∈Q+ θλβ is an element of a completion

∏
β∈Q+(Vλ)β of

the Verma module. It is uniquely defined by the conditions that θλ0 = 1λ and

(2.9) EiK
i−1
i θλ =

1
1− v2

θλ (1 ≤ i ≤ n).

Let us give an explicit formula for θλ in terms of the Gelfand–Zetlin basis. For
i = 1, . . . , n and parameters µ = (µ0, . . . , µi), ν = (ν0, . . . , νi−1) satisfying µk − νk
∈ Z≥0, define

(2.10) Ai(µ, ν)2 =
1∏i−1

k=0[µk − νk]!

· 1∏
0≤k<l≤i−1[νk − νl − k + l + 1]µk−νk

· 1∏
0≤k<l≤i[νk − µl − k + l]µk−νk

.

Proposition 2.1. In the Gelfand–Zetlin basis (2.2), the Whittaker vector θλ has
the following representation:

(2.11) θλ =
∑
λ

(
1

1− v2

)ht(λ) n∏
i=1

Ci(λ(i), λ(i−1))|λ〉.

Here we have set

ht(λ) =
∑

0≤k≤i≤n−1

(λk,n − λk,i),

Ci(λ(i), λ(i−1)) = vpi(λ
(i),λ(i−1))Ai(λ(i), λ(i−1)),

pi(λ(i), λ(i−1)) = (i− 1)
(i−1∑
k=0

λk,i−1

(i−1∑
k=0

λk,i−1 −
i∑

k=0

λk,i

)
−

∑
0≤k<l≤i−1

λk,i−1λl,i−1 +
∑

0≤k<l≤i

λk,iλl,i

)

−
i−1∑
k=1

k(i− k)(λk,i−1 − λk,i).

The sum ranges over all Gelfand patterns (2.2)–(2.4) with fixed λ0, . . . , λn.

Proof. The proof is a direct calculation using formulas (2.5), (2.6) for the action
of Ei,Ki. The defining relations (2.9) reduce to the identities

i∑
l=0

∏i−1
k=0[ak − bl]∏i
k=0
k 6=l

[bk − bl]
v
−

Pi−1
k=0 ak+

Pi
k=0
k 6=l

bk

= 1.
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§2.3. Scalar product

The main object of our interest is the scalar product of the Whittaker and the
dual Whittaker vectors. To define the latter, we consider the quantum group
Uv−1(gln+1) with parameter v−1. Its generators are denoted by {Ēi, F̄i}1≤i≤n,

{v̄±εi}0≤i≤n. Let V
λ

be the Verma module over Uv−1(gln+1) generated by the
highest weight vector 1̄λ with defining relations

Ēi1̄λ = 0 (1 ≤ i ≤ n), v̄εi 1̄λ = v−λi 1̄λ (0 ≤ i ≤ n).

The dual Whittaker vector is defined similarly as an element θ̄λ ∈
∏
β∈Q+(V̄λ)β ,

imposing θ̄λ0 = 1̄λ and

(2.12) ĒiK̄
i−1
i θ̄λ =

1
1− v−2

θ̄λ (1 ≤ i ≤ n)

in place of (2.9).
Let σ be the R-linear anti-isomorphism of algebras given by

(2.13) σ : Uv(gln+1)→ Uv−1(gln+1), Ei 7→ F̄i, Fi 7→ Ēi, Ki 7→ K̄−1
i .

There is a unique nondegenerate R-bilinear pairing ( , ) : Vλ × V
λ → R such that

(1λ, 1̄λ) = 1 and

(2.14) (xw,w′) = (w, σ(x)w′)

for all x ∈ Uv(gln+1) and w ∈ Vλ, w′ ∈ V
λ
. We call (2.14) the Shapovalov pairing.

The Gelfand–Zetlin basis {|λ〉} of Vλ and {|λ〉} of V
λ

are orthonormal with respect
to the Shapovalov pairing: (|λ〉, |λ′〉) = δλ,λ′ .

In [FFJMM2], we considered the scalar product

(2.15) Jλβ = Jλβ [0,∞) = v−(β,β)/2+(λ,β)(θλβ , θ̄
λ
β).

We set Jλβ = 0 unless β ∈ Q+. The notation Jλβ [0,∞) comes from the fact that
the corresponding fermionic formula is related to the interval [0,∞) (see Theorem
3.2 in [FFJMM2] and Proposition 2.4 below).

In what follows, we choose the variables1 zi = q−(λ+ρ,αi) and write

(2.16) Jd1,...,dn
(q, z1, . . . , zn) = Jλβ [0,∞) for β =

n∑
i=1

diαi.

These are rational functions in q = v2 and z1, . . . , zn.

1The present definition for zi is different from [FFJMM2] where zi = q−(λ,αi) was used.
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The explicit formula (2.11) (and for its dual) yields the following expression
for (2.16). Set

zk,l =
l∏

j=k+1

zj .

Proposition 2.2. We have

(2.17) Jd1,...,dn
(q, z1, . . . , zn) =

∑
m0,i−1+...+mi−1,i−1=di

1≤i≤n

(−1)
Pn

i=1 di−
Pn−1

i=0 mi,i

× qp(m)
n∏
j=1

z
Pj−1

k=0

Pn
i=j+1mk,i−1

j

×
∏

0≤k<i≤n

1
(q)mk,i−1−mk,i

×
∏

0≤k<l<i≤n

1
(qmk,i−ml,i−1zk,l)mk,i−1−mk,i

×
∏

0≤k<l≤i≤n

1
(qmk,i−ml,i+1zk,l)mk,i−1−mk,i

,

where

p(m) = −
∑

0≤k<l≤i≤n−1

mk,iml,i +
∑

0≤k<l<i≤n−1

mk,iml,i−1

+
1
2

∑
0≤k<i≤n−1

mk,i(mk,i − 1).

The sum is taken over all nonnegative integers mk,i satisfying (2.4) and∑i−1
k=0mk,i−1 = di.

Example. We have, for n = 1,

Jd1(q, z1) =
1

(q)d1(qz1)d1
,

and for n = 2,

Jd1,d2(q, z1, z2) =
min(d1,d2)∑
m=0

(−z1)mq−m(d2−m)+m(m−1)/2 1
(q)m(q)d1−m(q)d2−m

× 1
(qz1)m(qz1z2)m(qz2)d2−m(q−d2+mz1)m(q−d2+2m+1z1)d1−m

.

The second formula can be further simplified to

Jd1,d2(q, z1, z2) =
(qz1z2)d1+d2

(q)d1(q)d2(qz1)d1(qz2)d2(qz1z2)d1(qz1z2)d2
.
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The existence of a factorized form is a specific (and rather accidental) feature of
n = 1, 2. It does not hold for n ≥ 3.

§2.4. Toda Hamiltonian and fermionic formula

The quantity Jd1,...,dn
(q, z1, . . . , zn) admits, besides the explicit formula (2.17),

other ways of characterization. For completeness, we quote these facts from the
literature adapting them to the present notation.

The first is through the quantum difference Toda Hamiltonian of type A. It
is a q-difference operator which acts on functions f(y1, . . . , yn):

(2.18) Hf =
n∑
i=0

D−1
i Di+1(zi,n(1− yi)f).

Here Di stands for the q-shift operator (Dif)(y1, . . . , yi, . . . , yn) = f(y1, . . . , qyi,
. . . , yn), and we set y0 = 0, D0 = Dn+1 = 1.

Proposition 2.3 ([Sev, Et]). The generating series

(2.19) F (q, y1, . . . , yn; z1, . . . , zn) =
∑

d1,...,dn≥0

Jd1,...,dn
(q, z1, . . . , zn)yd11 · · · ydn

n

is an eigenfunction of the Toda Hamiltonian

HF =
( n∑
i=0

zi,n

)
F.

The second way is the fermionic formula. Here we restrict the general con-
sideration in [FFJMM2] to the Cartan matrix of type A. For a (possibly infinite)
interval [r, s], consider the sum2

(2.20) Id1,...,dn
(q, z1, . . . , zn|r, s)

=
∑

lr,i+···+ls,i=di
1≤i≤n

q
Ps

t,t′=r
min(t,t′)(

Pn
i=1 lt,ilt′,i−

Pn−1
i=1 lt,ilt′,i+1)

∏n
i=1 z

Ps
t=r tlt,i

i∏n
i=1

∏s
t=r(q)lt,i

.

Then we have

Proposition 2.4 ([FFJMM2]). The following formula holds:

Jd1,...,dn
(q, z1, . . . , zn) = Id1,...,dn

(q, z1, . . . , zn|0,∞).

2The definition is modified from that of [FFJMM2, (2.3)], in order to match the change of
the definition of zi.
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§3. Character of the principal subspace

Consider the affine Lie algebra ŝln+1 = sln+1[t, t−1] ⊕ Cc ⊕ Cd. Let Mk be the
integrable highest weight vacuum module of level k ∈ Z≥0. Namely Mk is the
irreducible highest weight ŝln+1-module generated by the highest weight vector w
such that

(x⊗ tj)w = 0 (x ∈ sln+1, j ≥ 0),

and the canonical central element c acts as the scalar k. Let n̂+ = n+⊗C[t, t−1] be
the current algebra over the nilpotent subalgebra n+ of sln+1. The n̂+-submodule
generated by w,

V k = U(n̂+)w ⊂Mk,

is called the principal subspace of Mk.
The following fermionic formula is known [FS] (see also [FJMMT]):

(3.1) chV k =
∑
lt,i≥0

q
Pk

t,t′=1 min(t,t′)(
Pn

i=1 lt,ilt′,i−
Pn−1

i=1 lt,ilt′,i+1)
∏n
i=1 z

Pk
t=1 tlt,i

i∏n
i=1

∏k
t=1(q)lt,i

.

In the notation of (2.20), we have

chV k =
∑

d1,...,dn≥0

Id1,...,dn
(z1, . . . , zn|1, k).

The main result of the present note is the following bosonic formula, which
generalizes a result of [FFJMM1] for n = 2.

Theorem 3.1. The character of the principal subspace of the level k vacuum mod-
ule over ŝln+1 is given by

chV k =
∑

d1,...,dn≥0

qk(
Pn

i=1 d
2
i−

Pn−1
i=1 didi+1)zkd11 · · · zkdn

n

× J̃d1,...,dn
(q, q2d1−d2z1, q−d1+2d2−d3z2, . . . , q

−dn−1+2dnzn),

where

J̃d1,...,dn
(q, z1, . . . , zn) =

1∏
0≤i<j≤n(qzi,j)∞

· Jd1,...,dn
(q, z−1

1 , . . . , z−1
n ),

and Jd1,...,dn
(q, z1, . . . , zn) is given by (2.17).

Proof. Writing (q)β = (q)d1 · · · (q)dn
for β = d1α1 + · · · + dnαn, let us introduce

the notation

Jλβ [r, s] =
∑

Ps
t=r γt=β

q(1/2)
P

r≤t,t′≤s min(t,t′)(γt,γt′ )−(λ+ρ,
Ps

t=r tγt)∏s
t=r(q)γt

.(3.2)
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Then (2.20) can be written as

Id1,...,dn
(q, z1, . . . , zn|r, s) = Jλ0ε0+···+λnεn

d1α1+···+dnαn
[r, s],

and hence
chV k =

∑
β∈Q+

Jλβ [1, k].

The following formula was proved in [FFJMM2, (4.26), Theorem 4.13]:

Jλβ [0, k] =
∑
α∈Q+

Jα−λ−2ρ
α [0,∞)Jλ−αβ−α [0,∞)× qk((α,α)/2−(λ+ρ,α)).

Using the relation

Jλβ [r + 1, s+ 1] = q(β,β)/2−(λ+ρ,β)Jλβ [r, s],

we deduce that

(3.3) Jλβ [1, k] =
∑
α∈Q+

Jα−λ−2ρ
α [0,∞)Jλ−αβ−α [1,∞)× qk((α,α)/2−(λ+ρ,α)).

On the other hand, in the limit k →∞ the formula (3.1) reduces to∑
γ∈Q+

Jλγ [1,∞) =
1∏

0≤i<j≤n(qzi,j)∞
.

Summing (3.3) over β, setting α =
∑n
i=1 diαi and noting that q−(λ−α+ρ,αi) =

q(α,αi)zi, we obtain the desired formula.

Remark. The formula for the character of the principal subspace is a quasi-classical
decomposition in the sense that it is written as a sum over the positive root lattice.
Each term represents an asymptotic behavior when k is large. In this sense the
formula is quasi-classical. However, a remarkable fact is that the formula is exact
for finite k. Moreover, each summand is desingularized in the sense that it is a
sum of factorized terms (2.17).

§4. Quasi-classical expansion

In this section we extend the fermionic formula (2.20) to the setting corresponding
to the tower of subalgebras (2.1), and discuss its ‘quasi-classical’ decomposition.
In the following, we indicate by subscript k the quantities associated with the
subalgebra Ak ' Uv(glk+1): for instance, Pk =

⊕k
i=0 Zεi and Q+

k =
⊕k

i=1 Z≥0αi.
Let −∞ ≤ r1 ≤ · · · ≤ rn ≤ ∞ be a non-decreasing sequence of integers

(possibly including ±∞), and set I = [r1,∞). Generalizing (3.2), we define, for
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λ ∈ Pn and β ∈ Q+
n ,

J

(
r1, r2
Q+

1

∣∣∣∣· · · ∣∣∣∣rn,∞Q+
n

∣∣∣∣λ, β) =
∑
{γt}t∈I

1∏
t∈I(q)γt

qB({γt}|λ),(4.1)

B({γt}|λ) =
1
2

∑
t,t′∈I

min(t, t′)(γt, γt′)−
(
λ+ ρ,

∑
t∈I

tγt

)
.(4.2)

The sum in (4.1) is taken over γt ∈ Q+
n (t ∈ I) such that∑

t∈I
γt = β, γt ∈ Q+

i for ri ≤ t < ri+1 (i = 1, . . . , n).

In the new notation we have Jλβ [r, s] = J( r,s
Q+

n
|λ, β).

Remark. If −∞ < r ≤ s < ∞, the fermionic sum Jλβ (r, s) is a finite sum and
it is a rational function in z1, . . . , zn and q. If [r, s] = [r,∞] with r > −∞, or
[r, s] = [−∞, s] with s <∞, the fermionic sum is a Laurent series with coefficients
which are rational functions in q. However, as discussed in [FFJMM2, Section
2.2], the Laurent series is well-defined as a rational function in z1, . . . , zn and q. If
[r, s] = [−∞,∞], we split the interval [−∞,∞] into [−∞,−1] t [0,∞] and define
the fermionic sum as a sum of products where each summand is the product of
two rational functions, one corresponding to [−∞,−1] and the other to [0,∞].

Recall that in the completion of Uv(gln+1) there is an element u which satisfies

Kiu = uKi, Eiu = uK2
i Ei, Fiu = uFiK

−2
i for all i = 1, . . . , n.

Up to multiplication by a simple factor, u is the Drinfeld Casimir element. On each
weight component Vλβ of the Verma module, u acts as the scalar q−(β,β)/2+(λ+ρ,β).
In [FFJMM2], the fermionic formula (2.20) was derived by inserting u in the
scalar product (2.15) which defines the Whittaker vectors and calculating it in two
different ways. The fermionic formula thus obtained is equivalent to the following
recursive formula for Jλβ = J

(
0,∞
Q+

n

∣∣∣λ, β):

Jλβ =
∑
γ

1
(q)β−γ

q(γ,γ)/2−(λ+ρ,γ)Jλγ .

The same calculation can be repeated using a ‘partial’ Drinfeld Casimir element.
Namely let uk denote the counterpart of u corresponding to the subalgebra Ak,
k = 1, . . . , n.

Proposition 4.1. Let r1 ≤ · · · ≤ rn ≤ 0, and set rn+1 = 0. Then

v−(β,β)/2+(λ,β)
( n∏
k=1

u
−rk+rk+1
k · θλβ , θ̄λβ

)
= J

(
r1, r2
Q+

1

∣∣∣∣· · · ∣∣∣∣rn,∞Q+
n

∣∣∣∣λ, β).(4.3)
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Proof. The calculation is the same as in [FFJMM2, Theorem 3.1], and the proof
following it.

For each k = 1, . . . , n−1, the Whittaker vector (2.15) admits a decomposition
in terms of those for the lower rank subalgebra Ak:

θλβ =
∑

λ(n−1),...,λ(k)

(1− q)−
Pn

i=k+1
Pi−1

l=0 (λl,n−λl,i−1)−
Pk

l=0(k−l)(λl,n−λl,k)

×
n∏

i=k+1

Ci(λ(i), λ(i−1)) · θ(λ(n), . . . , λ(k)|β(k)),

(4.4)

θ(λ(n), . . . , λ(k)|β(k)) =
∑

λ(k−1),...,λ(0)

(1− q)−
Pk

i=1
Pi−1

l=0 (λl,k−λl,i−1)

×
k∏
i=1

Ci(λ(i), λ(i−1)) · |λ(n), . . . , λ(0)〉.

(4.5)

Here β(i) are defined by

β(n) = β,(4.6)

(λ(i+1) − β(i+1))|Pi
= λ(i) − β(i) (β(i) ∈ Q+

i , i = 1, . . . , n− 1),(4.7)

where εk|Pi
=
∑i
j=0 δj,kεk is the projection to Pi. Note that from (4.7) we see that

β(i) − β(i−1) = (λ0,i − λ0,i−1)(α1 + · · ·+ αi) + (λ1,i − λ1,i−1)(α2 + · · ·+ αi)

+ · · ·+ (λi−1,i − λi−1,i−1)αi.

Therefore, the sum
∑
λ(n−1),...,λ(1) is equivalent to the sum over a partition of β,

β = γ(1) + · · ·+ γ(n)

where

γ(i) = β(i) − β(i−1)

∈ R+
i

def= Z≥0(α1 + · · ·+ αi)⊕ Z≥0(α2 + · · ·+ αi)⊕ · · · ⊕ Z≥0αi.

Note that λ(n) = λ and other λ(i) are determined by

λ(i) = (λ(i+1) − γ(i+1))|Pi
.(4.8)

Here θ(λ(n), . . . , λ(k)|β(k)) is a weight component of a Whittaker vector with re-
spect to the subalgebra Ak ' Uv(glk+1) and its Verma module with highest
weight λ(k). It is so normalized that the coefficient of the vector |λ(n), . . . , λ(0)〉
satisfying λl,k = λl,k−1 = · · · = λl,l for all 0 ≤ l ≤ k − 1 is 1.
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Lemma 4.2. Formula (4.1) can be decomposed as

(4.9) J

(
r1, r2
Q+

1

∣∣∣∣· · · ∣∣∣∣rn,∞Q+
n

∣∣∣∣λ, β)
=

∑
λ(n−1),...,λ(1)

J

(
r1,∞
Q+

1

∣∣∣∣λ(1), γ(1)

) n∏
i=2

d(λ(i), γ(i)|ri)Ai(λ(i), λ(i−1))2,

where Ai(µ, ν) is given in (2.10). The coefficients d(µ, ν|r) have the factorized form

d(µ, ν|r) = v−(ν,ν)/2+(µ,ν)qr((ν,ν)/2−(µ+ρ,ν))((1− q)(1− q−1))−(ρ,ν).(4.10)

Proof. The action of
∏n
k=1 u

−rk+rk+1
k can be calculated by using the decomposition

(4.4) and

ukθ(λ(n), . . . , λ(k)|β(k)) = q−(β(k),β(k))/2+(λ(k)+ρ,β(k))θ(λ(n), . . . , λ(k)|β(k)).

Taking the scalar product with θ̄λβ and simplifying the result, we obtain the asser-
tion.

Lemma 4.3. We have

J

(
−∞, r
Q+
n−1

∣∣∣∣r,∞Q+
n

∣∣∣∣λ(n), γ(n)

)
= d(λ(n), γ(n)|r)An(λ(n), λ(n−1))2.(4.11)

Proof. Consider the decomposition (4.4) with k = n−1 and apply u−rn−1+rn

n−1 u−rn
n .

By the same computation as in the previous lemma, we find

J

(
rn−1, rn
Q+
n−1

∣∣∣∣rn,∞Q+
n

∣∣∣∣λ(n), β(n)

)
=

∑
γ(n)∈R+

n , β(n−1)=β(n)−γ(n)≥0

J

(
rn−1,∞
Q+
n−1

∣∣∣∣λ(n−1), β(n−1)

)
× d(λ(n), γ(n)|rn)An(λ(n), λ(n−1))2.

Now let rn−1 → −∞. In this limit, only one term β(n−1) = 0 in the sum con-
tributes. With this choice the factor J on the right hand side is 1 and β(n) = γ(n),
hence we obtain the desired result.

Substituting (4.11) (with n replaced by i = 2, . . . , n) back into (4.9), we arrive
at the following result.
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Theorem 4.4. Notation being as in (4.7), we have

(4.12) J

(
r1, r2
Q+

1

∣∣∣∣· · · ∣∣∣∣rn,∞Q+
n

∣∣∣∣λ, β)
=

∑
γ(1)+···+γ(n)=β,γ(i)∈R+

i

J

(
r1,∞
Q+

1

∣∣∣∣λ(1), γ(1)

)
×

n∏
i=2

J

(
−∞, ri
Q+
i−1

∣∣∣∣ri,∞Q+
i

∣∣∣∣λ(i), γ(i)

)
.

This theorem has the following interpretation. In formula (4.1), let us con-
sider the limiting situation where r1 � · · · � rn. Imagine that we take the sum
separately over the variables γt taking t to be ‘in the vicinity’ Ii of each end point
ri, i = 1, . . . , n. Then the contribution to (4.2) would become

n∑
i=1

Bi+
n−1∑
i=1

(∑
t∈Ii

tγt,
∑
j>i

∑
t′∈Ij

γt′
)

where Bi stands for (4.2) with t, t′ ∈ Ii. The corresponding sum, with
∑
t∈Ii

γt
= γ(i) being fixed, gives a summand on the right hand side of (4.12). Theorem 4.4
tells us that this ‘quasi-classical decomposition’ in fact gives an exact answer.
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