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Abstract

We study BPS bound states of D0 and D2 branes on a single D6 brane wrapping a Calabi–
Yau 3-fold X. When X has no compact 4-cycles, the BPS bound states are organized
into a free field Fock space, whose generators correspond to BPS states of spinning M2
branes in M-theory compactified down to 5 dimensions by a Calabi–Yau 3-fold X. The
generating function of the D-brane bound states is expressed as a reduction of the square
of the topological string partition function, in all chambers of the Kähler moduli space.
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§1. Introduction

The topological string theory gives solutions to a variety of counting problems in
string theory and M-theory. From the worldsheet perspective, the A-model topo-
logical string partition function Ztop generates the Gromov–Witten invariants,
which count holomorphic curves in a Calabi–Yau (CY) 3-fold X. On the other
hand, from the target space perspective, Ztop computes the Gopakumar–Vafa
(GV) invariants, which count BPS states of spinning black holes in 5 dimensions
constructed from M2 branes in M-theory on X [9]. Moreover, the absolute-value-
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squared |Ztop|2 has been related to the partition function of BPS black holes
in 4 dimensions, which are bound states of D branes in type II string theory
on X [22].

The topological string partition function Ztop also counts the numbers of D0
and D2 brane bound states on a single D6 brane on X, namely the Donaldson-
Thomas (DT) invariants defined in [6, 27]. The relation between the GV invariants
and DT invariants was suggested and formulated in [13, 16], and its physical
explanation was given in [4] using the 4D/5D connection [8]. More recently, a
mathematical proof of the GV/DT correspondence was given in [17] when X is a
toric CY 3-fold.

However, the number of BPS states has background dependence. As we vary
moduli of the background geometry and cross a wall of marginal stability, the
number can jump [7, 15]. In this paper we will generalize the results of [4] to include
the background dependence of the M-theory computation. We show BPS bound
states are organized into a free field Fock space, whose generators correspond to
BPS states of spinning M2 branes in M-theory compactified down to 5 dimensions
by a Calabi–Yau 3-fold X. This enables us to write the generating function ZBPS

of BPS bound states of D-branes as a reduction of the square of the topological
string partition function,

(1.1) ZBPS = Z2
top|chamber,

in an appropriate sense described in the following, in all chambers of the Kähler
moduli space. Our results apply to the BPS counting for an arbitrary CY (whether
toric or non-toric) without compact 4-cycles.

For the conifold, the change of the numbers of BPS states across a wall of
marginal stability has been studied by physicists in [14, 2] (see also [5]) and math-
ematicians [28, 20]. The case of generalized conifold geometries was studied in [19].
The formula (1.1) derived from the perspective of M-theory reproduces these re-
sults. Our results also provide a simple derivation of the “semi-primitive” wall
crossing formula of Denef and Moore [3], in the present context.

The rest of the paper is organized as follows. In Section 2, we will explain
the basic idea to use M-theory to count bound states of a single D6 brane with
D0 and D2 branes on a CY 3-fold. In Section 3, we will describe the counting
procedure in more detail and derive the generating function for the numbers of
BPS bound states using a free field Fock space in any chamber of the background
Kähler moduli space. In Section 4, we will compare the Fock space picture with
the known results for the the resolved conifold and its generalizations. Finally,
in Section 5 we point out that our results give a derivation of the Denef–Moore
“semi-primitive” wall-crossing formula in the present context.
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§2. The basic idea

In this section we will explain the basic idea. We will apply this idea, in the
following sections, to find a concrete expression for BPS state degeneracies in
various chambers for CY 3-folds with no compact 4-cycles.

We are interested in counting the BPS partition function of one D6 brane
bound to arbitrary number of D2 and D0 branes. The idea is the following: In
M-theory, the D6 brane lifts to the Taub-NUT space with the unit charge. D2
branes are M2 branes transverse to the S1, and D0 branes are gravitons with
Kaluza–Klein momenta along the S1. The Taub-NUT space is an S1 fibration
over R3, and S1 shrinks at the position of D6. Thus the problem of finding bound
states to the D6 brane becomes simply the problem of finding BPS states in the
Taub-NUT geometry. Suppose we have BPS states for flat R4,1 background. Then
for each such BPS state we can consider the corresponding possible BPS states
in the Taub-NUT geometry. For each single particle BPS state we can consider
its normalized wave functions in this geometry. Such states would constitute BPS
states which in the type IIA reduction correspond to BPS particles bound to the
D6 brane. However, this would only constitute single particle BPS states bound
to the D6 brane.

Now consider multiple such particles in the Taub-NUT background. This prob-
lem may sound formidable, because now we will have to consider the interaction
of such particles with each other and even their potentially forming new bound
states. We will now make the following two assumptions:

Assumption 1. We can choose the background moduli of CY as well as the chem-
ical potential so that a maximal set of BPS states have parallel central charge and
thus exert no force on one another. Therefore, at far away separation, the bound
states correspond to single particle wave functions in the Taub-NUT geometry.

Assumption 2. The only BPS states in 5D are particles. In other words there are
no compact 4-cycles in the CY and thus we can ignore BPS string states obtained
by wrapping 5 branes around 4-cycles.

Assumption 1 can be satisfied as follows: Consider the Euclidean geometry
of M-theory in the form of Taub-NUT times S1, where we have compactified the
Euclidean time on the circle. The BPS central charge for M2 branes wrapping
2-cycles of CY, but with no excitation along the Taub-NUT, is given by

Z(M2) = iA(M2)− C(M2),

where A(M2) denotes the area of the M2 brane and C(M2) corresponds to the
coupling of the M2 brane to the 3-form potential turned on along the CY 2-cycles
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as well as the S1 of the Taub-NUT. However we need to include excitations along
the Taub-NUT. As discussed in [4] these are given by the momenta along the Taub-
NUT circle. Let us denote the total momentum along the circle by n (as we will
review in Section 3, this can arise both due to internal spin as well as the orbital
spin in the SU(2)L ⊂ SO(4)rotation). Let us denote the radius of the Taub-NUT
circle by R. In this case the central charge of the BPS M2 brane becomes1

Z(M2, n) = iA(M2)− C(M2)− n/R.

To satisfy Assumption 1, we need to make sure that differently wrapped M2
branes all have the same phase for Z. This in particular means that we need to
choose the Kähler classes so that the 2-cycles of CY have all shrunk to zero size, i.e.
A(M2) = 0 for all the classes. Even though this may sound singular and it could
lead to many massless states, by turning on the C(M2) we can avoid generating
massless states in the limit. The condition that different states have the same
central charge is simply that

(2.1) C(M2) + n/R > 0.

Note that, in going to type IIA, this condition is simply the statement that the B
fields are turned on along 2-cycles of CY and the M2 branes wrapping them will
have B(D2) 0 branes induced. Moreover n translates to a D0 brane charge since
it is the momentum along the Taub-NUT. Thus, these states correspond to BPS
states of the same type, i.e., preserving the same supersymmetry, as long as the
net number of 0 branes is positive.

Now we are ready to put together all these mutually BPS states as a gas of
particles in the Taub-NUT geometry. By the fact that they are mutually BPS,
they will exert no force on one another. Moreover, as long as they are far away,
we can simply consider the product of the individual wave functions. One may
worry what happens if they come close together. Indeed they can form bound
states, but that is already accounted for by including all single particle bound

1Note that C(M2) is periodic with period 1/R. To see this, note that we can view it as a
holonomy of the gauge field obtained by reducing the 3-form on the 2-cycle of CY, around the
Taub-NUT circle. The holonomy of a gauge field on a circle of radius R is periodic, with period
1/R. In terms of the IIA quantities, we have

C(M2) = B(D2)/R,

where B(D2) is the NS-NS B-field through the 2-cycle in IIA on the CY wrapped by the cor-
responding D2 brane (which has periodicity B → B + 1). Since the central charge of the D0
and D2 brane is in general complex, there is an overall complex number multiplying 1/R. For
simplicity of notation, we will supress this overall complex number in the following, but this fact
has to be kept in mind. Note also that relative to [14] we are keeping the D6 brane charge fixed
(for example, to Z(D6) = 1), and varying the D0 and D2 brane central charges.
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states of M2 brane. Here is where Assumption 2 becomes important: If we in
addition had 4-cycles, then wrapped M5 branes along 4-cycles, which also wrap
the S1 of Taub-NUT can now form new bound state with the gas of M2 brane
particles on the Taub-NUT. But in the absence of 4-cycles of CY, we can simply
take the single particle wave functions (taking their statistics into account) and
write the total degeneracy of such BPS states, by taking suitable bosonic/fermionic
creation operators, one for each state satisfying C(M2) + n/R > 0. Finally, while
Assumption 1 is satisfied only for special backgrounds where A(M2) vanishes, the
degeneracies are guaranteed to be the same everywhere within a given chamber,
and independent of this choice. This is all we need to compute all the degeneracies
of BPS states in various chambers as we will show in the following sections.

§3. BPS state counting and wall crossing

We will use this section to spell out, in a little more detail, how to use M-theory
to compute the degeneracies of one D6 brane on X bound to D2 branes wrapping
2-cycles in X and D0 branes. The D6-D2-D0 partition function is the Witten
index2

Tr[(−1)F e−εH ]

of the theory on
X × R3 × S1

t ,

where we have compactified the Euclidian time on a circle of radius ε. The type
IIA geometry with one D6 brane lifts to M-theory on

X × Taub-NUT× S1
t ,

where the asymptotic radius of the Taub-NUT circle R is related to IIA string
coupling. Since the D6 brane is geometrized, the computation of the BPS bound
states of D2 branes and D0 branes with D6 brane lifts to a question of computing
the degeneracies of M2 branes with momentum around the Taub-NUT circle.

Suppose we know the degeneracies of M-theory in the

X × R4 × S1.

This corresponds to taking the R → ∞ limit, where the Taub-NUT just be-
comes R4. As is clear from the previous section, at fixed B the degeneracies are un-
changed by varying R since no states decay in the process—all the central charges

2 Here we are ignoring the fermionic zero modes in the 4 non-compact directions. Otherwise,
additional factors need to be inserted to absorb these.
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simply get rescaled. Thus, the knowledge of these allows us to compute the degen-
eracies on X×Taub-NUT×S1 background as well.

The Kaluza–Klein momentum around the Taub-NUT circle gets identified, in
terms of the theory in the R → ∞ limit, with the total spin of the M2 brane.
This can be understood by comparing the isometries of the finite and the infinite
R theory, as explained in [4]. We can view taking R to infinity as zooming in to
the origin of the Taub-NUT. The isometry group is the rotation group SO(4) =
SU(2)L×SU(2)R about the origin of R4. The SU(2)R is identified with the SO(3)
that rotates the sphere at infinity of the R3 base of the Taub-NUT. Moreover, the
rotations around the S1 of the Taub-NUT end up identified with the

U(1) ⊂ SU(2)L.

Thus, the Kaluza–Klein momentum is identified with the total JLz spin of the M2
brane on R4.

Now, let

N
(mL,mR)
β

be the degeneracy of the 5-dimensional BPS states of M2 branes of charge β and
spin the intrinsic (2jzL, 2j

z
R) = (mL,mR) (where the spin refers to the spin of the

highest state of the multiplet). To get an index, we will be tracing over the SU(2)R
quantum numbers, so we get a net number

NmL
β =

∑
mR

(−1)mRN (mL,mR)
β

of 5D BPS states, of the fixed SU(2)L spin mL.
Each such 5D BPS particle can in addition have excitations on R4. Namely,

for each 5D particle we get a field

Φ(z1, z2)

on R4 with z1,2 as the complex coordinates. In the usual way, the modes of this
field

Φ(z1, z2) =
∑
`1,`2

α`1,`2z
`1
1 z

`2
2

correspond to the ground-state wave functions of the particle with different mo-
menta on R4. (We are suppressing a Gaussian factor that ensures the wave func-
tions are normalizable.) Since U(1) ∈ SU(2)L acts on z1, z2 with charge 1, the
particle corresponding to

α`1,`2
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carries, in addition to the M2 brane charge β and intrinsic momentum m, a total
angular momentum3

n = `1 + `2 +m.

Which of these 1-particle states are mutually BPS? The answer depends on the
background, and a priori, we need to consider particles in four dimensions coming
from both the M2 branes and the anti-M2 branes in M-theory. Along the slice in
the moduli space we have been considering, the central charge of the particle with
M2 brane charge β and total spin n is

Z(β, n) = βC + n/R = (βB + n)/R.

The states with

(3.1) Z(β, n) > 0

all preserve the same supersymmetry and bind to the D6 brane (we could have
picked the opposite sign, and then the particles would bind to anti-D6 branes).
For example, for

B > 0, R > 0

alongside M2 branes with β > 0, and for sufficiently large n also the anti-M2
branes with β < 0 have positive Z > 0 and contribute to the BPS partition
function. So in general we need to consider both signs of β. It is important to note
that the degeneracies Nm

β of the 5D particles are independent of the background.
The choice of background only affects which half of the supersymmetry the states
preserve.

Now, we can put these all together and compute the BPS partition function
in a given chamber. Simply, in each chamber, the BPS partition function is the
character in the Fock space of single particle states preserving the same supersym-
metry! In fact, a useful way to go about computing the partition function is in
steps:

Step 1. Start with the unrestricted partition function—the character

ZFock = TrFock q
Q0QQ2

in the full Fock space. The oscillators of charge β and intrinsic spin m and arbitrary
4d momenta contribute a factor

(3.2)
∏

`1+`2=n

(1− q`1+`2+mQβ)N
m
β = (1− qn+mQβ)nN

m
β .

3In the present case, we are restricting to CY manifolds with no compact 4-cycles. When the
CY is furthermore toric, as in the cases discussed in Sections 4.1 and 4.2, the genus of the target
space curve wrapped by the M2 branes vanishes. This means that the intrinsic spin of all the M2
branes vanishes as well.



576 M. Aganagic et al.

In addition, both the M2 branes and the anti-M2 branes contribute, and the total
character is

ZFock =
∏
β,m

∞∏
n=1

(1− qn+mQβ)nN
m
β .

Step 2. The 5d degeneracies Nm
β of M-theory on X ×R4,1 are computed by the

topological string partition function on X [9, 10]. This allows us to write

ZFock = Ztop(q,Q)Ztop(q,Q−1).

In particular, the knowledge of topological string amplitude allows us to compute
the BPS degeneracies in any chamber.

The topological string partition function has an expansion

Ztop(q,Q) = M(q)χ(X)/2
∏

β>0,m

∞∏
n=1

(1− qm+nQβ)nN
β
m .

where q and Q are determined by the string coupling constant gs and the Kähler
moduli t by q = e−gs and Q = e−t. The MacMahon function M(q) is defined by

M(q) =
∞∏
n=1

(1− qn)−n.

Above, χ(X) is the Euler characteristic of X. Note that topological string in-
volves only the M2 states with positive β > 0. On the other hand, the full Fock
space includes also anti-M2 branes. Since M2 branes and anti-M2 branes are CPT
conjugates in 5d, this gives another factor of Ztop with Q→ Q−1.

Note that we also have states with β = 0. These are the pure KK modes,
the particles with no M2 brane charge. To count the number of BPS states of
this type, we note that, for each R4 momentum (l1, l2) we get a classical particle
whose moduli space is the Calabi–Yau X. Quantizing this, we get a particle for
each element of the cohomology of X. On a (p, q) form, SU(2)R acts with the
Lefschetz action, and SU(2)L acts trivially. We find that the mR eigenvalue of a
(p, q) form on X is mR = p+q−3. Therefore, the pure KK modes contribute with
Nβ=0 = −χ(X). This agrees with the power of the MacMahon function M(q) we
get from Ztop(q,Q)Ztop(q,Q−1).

Step 3. We identify the walls of marginal stability as places where the central
charge vanishes for one of the oscillators contributing to Ztop(q,Q) or Ztop(q,Q−1).



Wall Crossing and M-Theory 577

Step 4. In any chamber, the BPS partition function is a restriction of ZFock to
the subspace of states that satisfy Z(β, n) > 0 in that chamber:

ZBPS(chamber) = ZFock|chamber(3.3)

= Ztop(q,Q)Ztop(q,Q−1)|chamber.(3.4)

There is a simple way to keep track of the chamber dependence. For the
book-keeping purposes, it is useful to identify the central charge with the chemical
potentials. Then, in a given chamber, the BPS states are those for which

qnQβ < 1

where n = m + k is the total spin. As we vary the background, and cross into
a chamber where this is no longer satisfied for some (n, β) in Ztop(q,Q) or in
Ztop(q,Q−1), we drop the contribution of the corresponding oscillator.

For example, consider some special cases. When

(3.5) R > 0, B →∞,

for all Kähler classes, Z(β, n) = (βB + n)/R > 0 implies that

β > 0.

In this case, only M2 branes contribute to the partition function. This is the
chamber discussed in [4]. By taking the limit (3.5) in (3.4), we find

ZBPS(R > 0, B →∞) = ZDT(q,Q) = M(q)χ/2Ztop(q,Q).

The partition function in this chamber computes DT invariants. In [17], it was
shown that, for a toric CY, ZBPS is equal to Ztop up to a factor which depends
only on q. Here we derived the relation between ZBPS and Ztop including the factor
of M(q)χ/2.

On the other hand, when 0 < B � 1, the BPS partition function is given by

(3.6) ZBPS(q,Q) = ZNCDT(q,Q) = Ztop(q,Q)Ztop(q,Q−1).

This gives the non-commutative DT invariants studied in [26, 18, 23]. When X is
toric, the partition function is computed using the crystal melting picture [18, 23],
generalizing the previous result of [21, 13] for C3. In [24], it was shown that the
thermodynamic limit of the partition function of the crystal melting model gives
the genus-0 topological string partition function. This result was mysterious since
the relation between Ztop and ZBPS was supposed to hold in the DT chamber
discussed in the previous paragraph. We now understand why there is such a
relation in the non-commutative DT chamber also as in (3.6).
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§4. Examples

In this section we give some examples of geometries without compact 4-cycles. We
first study toric cases, namely resolved conifold and generalized conifolds. We also
give a simple example of a non-compact, non-toric Calabi–Yau as well. In each of
these cases, we will use our methods to lay out the chamber structure, identifying
walls where BPS states jump, and the BPS partition function in each chamber. In
some of the cases we study, the jumps were studied by other means. We will show
that they agree with the M-theory results.

§4.1. Resolved conifold

The topological string partition function for the resolved conifold is given by

(4.1) Ztop(q,Q) = M(q)
∞∏
n=1

(1− qnQ)n.

This means that the only non-vanishing GV invariants are

(4.2) N0
β=±1 = 1, N0

β=0 = −2,

and that no BPS state in 5 dimensions has intrinsic spin [9, 10]. Our formula (3.4)
then implies that BPS states are counted by

ZBPS(q,Q) = Ztop(q,Q)Ztop(q,Q−1)|chamber(4.3)

=
∏

(β,n) :Z(β,n)>0

(1− qnQβ)nN
0
β .(4.4)

The product is over β = 0,±1 and n = 1, 2, . . . such that Z(β, n) > 0.
The chamber structure is easy to identify in this case since the Kähler moduli

space is one-dimensional. When

(4.5) R > 0 and m− 1 < B < m

with some m ≥ 1, the formula (4.4) gives

(4.6) ZBPS(q,Q) = M(q)2
∞∏
n=1

(1− qnQ)n
∞∏
n=m

(1− qnQ−1)n.

In particular, the chamber at m =∞ counts the DT invariants [6],

(4.7) ZBPS(q,Q) = ZDT(q,Q) = M(q)2
∞∏
n=1

(1− qnQ)n,
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while the chamber at m = 1 counts the non-commutative DT invariants [26],

(4.8) ZBPS(q,Q) = ZNCDT(q,Q) = M(q)2
∞∏
n=1

(1− qnQ)n
∞∏
n=1

(1− qnQ−1)n.

On the other hand, when

(4.9) R < 0 and −m− 1 < B < −m

with m ≥ 1, we have

(4.10) ZBPS(q,Q) =
m∏
n=1

(1− qnQ)n.

In particular, the chamber at m = ∞ counts the Pandharipande–Thomas invari-
ants [25],

(4.11) ZBPS(q,Q) = ZPT(q,Q) =
∞∏
n=1

(1− qnQ)n.

These agree with the results in [26, 14, 2, 20] in all chambers.

§4.2. Toric CY without compact 4-cycles

We can also test our formula (3.4) for a more general toric CY without compact
4-cycles. A toric CY is characterized by a convex polygon on a square lattice, and
the absence of compact 4-cycles means that there is no internal lattice point in
the polygon. By SL(2,Z) transformations of the lattice, one can move one of the
edges of the polygon along the positive x-axis, and one of the vertices to (x, y)
with −y < x ≤ 0. If we require that there is no internal lattice point, there
are essentially two possibilities: (x, y) = (0, 1) and (0, 2). In the former case, the
polygon is a trapezoid of height 1, and the corresponding CY is the so-called
generalized conifold, which has N − 1 P1’s where N is the area of the trapezoid.
We will describe the resolved geometry in more detail below. In the latter case,
we have an isosceles right triangle with two legs of length 2, which corresponds to
C3/Z2 × Z2.

For the generalized conifold, the topological string partition function has been
computed in [12] using the topological vertex [1]. The counting of BPS states has
been carried out in all chambers in [19]. Thus, we will use this case to test our
formula (3.4). For C3/Z2×Z2, the counting in the non-commutative DT chamber
has been done in [29].

Homology 2-cycles of the generalized conifold correspond to the simple roots
α1, . . . , αN−1 of the AN−1 algebra. To identify them in the toric diagram, we divide
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the trapezoid into N triangles of area 1 and label the internal lines dividing the
triangles as i = 1, . . . , N − 1. Each line i corresponds to the blowing up P1 at αi.
We will denote the D2 charge by

(4.12) β =
∑
i

niαi.

In general, there are several ways to divide the trapezoid, and they correspond to
different crepant resolutions of the singularity. If the two triangles across the line
i form a rhombus, we have a resolution by O(−1,−1). On the other hand, if the
two triangles form a triangle of area 2, the resolution is by O(−2, 0). Both the
topological string partition function and the BPS counting depend on the choice
of the resolution.

The topological string partition function for this geometry is given by

(4.13) Ztop(q,Q) = M(q)N/2
∞∏
n=1

∏
i≤j

(1− qnQiQi+1 · · ·Qj)nNij ,

where

(4.14) Nij = (−1)1+nij ,

nij = #{k ∈ I | i ≤ k ≤ j}, and I is the set of internal lines of the toric diagram
corresponding to the resolution by O(−1,−1). Thus, the only non-vanishing GV
invariants are

(4.15) Nm=0
β = (−1)1+

P
i∈I ni

for a root vector β =
∑
i niαi of AN−1, and

(4.16) Nm=0
β=0 = −N.

Note that when β is a positive root βij = βi + · · · + βj , (4.15) reduces to (4.14).
No BPS states in 5 dimensions carry intrinsic spin.

The central charge Z(β, n) is given by

(4.17) Z(β, n) = R−1
(
n+

∑
i

niBi

)
,

where Bi is the B-field evaluated on αi. The formula (3.4) predicts that BPS states
in the chamber characterized by Bi’s are counted as

(4.18) ZBPS(q,Q) = M(q)N
∏

(β,n) :Z(β,n)>0

(1− qnQβ)nN
0
β .

Here the product is over all roots β of AN−1 and n = 1, 2, . . . such that Z(β, n) > 0.
This agrees with the result in [19].
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§4.3. A non-toric example

Our discussion in Sections 2 and 3 is not limited to toric CYs, and applies to any
CY without compact 4-cycles. In order to illustrate this point in a concrete setting,
let us describe the geometry shown in Figure 1. This geometry arises by identifying
two of the four external legs of the (p, q)-web of the resolved conifold. This is one
of the simplest non-toric geometries studied in [11], and it is straightforward to
repeat the following analysis for other non-toric geometries discussed in [11].

Figure 1. The non-toric CY which arises by identifying two external legs of the
(p, q)-web of the resolved conifold.

In addition to the P1 of the resolved conifold, the geometry of Figure 1 has
another compact P1 which arises from identification. Let us denote their homology
classes by βoriginal and βnew, respectively. As a basis of the homology class, we
choose β1 = βoriginal and β2 = βoriginal + βnew.

The topological string partition function is given by [11]

(4.19) Ztop(q,Q1, Q2)

= M(q)
( ∞∏
n=1

(1−Q1q
n)n
) ∞∏
k,n=1

(
(1− qnQ1Q

k
2)(1− qnQ−1

1 Qk2)
(1− qn−1Qk2)(1− qn+1Qk2)

)n
where Q1 and Q2 are the variables corresponding to β1 and β2. The GV invariants
are therefore given by

(4.20) N0
β=0 = −2, N0

±β1
= 1, N0

±β1+kβ2
= 1, N±1

kβ2
= −1 (k ∈ Z\{0}).

Notice that genus 1 GV invariants are non-vanishing in this non-toric example.
Again, the general formula gives (notice that m 6= 0 in this case)

ZBPS(q,Q) = Ztop(q,Q)Ztop(q,Q−1)|chamber(4.21)

=
∏

(β,l,m) :Z(β,n=m+l)>0

(1− ql+mQβ)lN
m
β .
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The formula for the central charge is

Z
(
β =

∑
i=1,2

niβi, n
)

= R−1
(∑

i

niBi + n
)
,

and the equation

Z(β, n = l +m) = 0,

with corresponding GV invariants non-vanishing, determines the position of walls
of marginal stability. This is a new result which has not been discussed in the
literature to the best of our knowledge.

§5. Relation to the Denef–Moore formula

In this final section, we point out that our M-theory viewpoint discussed in this
paper allows us to derive, in the present context of D6, D2 and D0 degeneracies,
the “semi-primitive” wall crossing formula of [3]. The latter says the following.
Suppose a BPS bound state of charge γ decays into two fragments. Since the D6
brane is non-compact and fills the entire CY, the fragments should have charges
γ1 = (1, 0, β′, n′) ∈ H6 ⊕H4 ⊕H2 ⊕H0 and γ2 = (0, 0, β, n) [14]. The position of
walls is determined by the condition that the central charges align

(5.1) Im(Z(γ1)Z(γ2)) = 0,

where Z(γi) are the central charges for the D brane charges γi. The prediction of
[3] is that across such a “semi-primitive” wall the partition function jumps by a
factor4

(1− qnQβ)nN(β,n).

The fact that the same factors enter the topological string partition begged for
an explanation. We have provided it by using STS duality to relate both the
topological string and the D6-D2-D0 degeneracy counting to M-theory, where the
computations unify.5 Note however that, while the topological string computes the
pieces of the D6-D2-D0 degeneracies, the two partition functions are the same only
in one chamber.

4We here consider cases where GV invariants are vanishing except for genus 0, such as the
toric examples discussed in Sections 4.1 and 4.2.

5In this paper, we are considering the subspace of the moduli space where all the central
charges are real. The walls are restrictions of the walls discussed by Denef and Moore to this
subspace.
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