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Algebraic Analysis of Minimal Representations

Dedicated to Mikio Sato whose pioneering work
in algebraic analysis has been an inspiration for me

by

Toshiyuki Kobayashi

Abstract

Small representations of a group yield large symmetries in the representation space.
Analysis of minimal representations utilizes large symmetries in their geometric models,
and serves as a driving force in creating new interesting problems that interact with other
branches of mathematics.

This article discusses the following three topics that arise from minimal representa-
tions of the indefinite orthogonal group:

1. construction of conservative quantities for ultra-hyperbolic equations,
2. quantitative discrete branching laws,
3. deformation of the Fourier transform,

with emphasis on the prominent role of Sato’s ideas in algebraic analysis.
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§1. Introduction

The aim of this article is to highlight the prominent role of Sato’s idea of hy-
perfunctions and D-modules in the new developments in the analysis of minimal
representations [4, 35, 36, 40].

Minimal representations are the simplest, infinite-dimensional ‘unipotent rep-
resentations’. They are building blocks of unitary representations. The Segal–

This is a contribution to the special issue “The golden jubilee of algebraic analysis”.

Communicated by M. Kashiwara. Received December 31, 2009.

T. Kobayashi: Graduate School of Mathematical Sciences and IPMU, The University of Tokyo,
3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan;
e-mail: toshi@ms.u-tokyo.ac.jp

c© 2011 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



586 T. Kobayashi

Shale–Weil representation is a classic example for the split simple group of type C.
There has been an active study of minimal representations of reductive groups,
mostly through algebraic approaches since 1990s both over the real and p-adic
fields [5, 6, 10, 12, 22, 23, 37, 42, 43, 46, 50–52].

On the other hand, I believe that geometric analysis of minimal representa-
tions is also a promising area, and I have been advocating its study based on the
following change of viewpoint:

(1.1)
small representations of a group

= large symmetries in a representation space.

The terminology ‘minimal representations’ is defined inside representation theory
(i.e. the annihilator in the universal enveloping algebra is the Joseph ideal, see e.g.
[10]), and the corresponding ‘largest symmetries’ are expected to serve as a driving
force in creating new interesting areas of mathematics even outside representation
theory.

The ‘largest symmetries’ in representation spaces of minimal representations
may also be observed in branching laws. Indeed, as we shall see in Theorem 3.4,
it may well happen that broken symmetries of minimal representations reduce to
analysis of certain semisimple symmetric spaces (see also [30, 39, 41]). This obser-
vation indicates that analysis of minimal representations involves higher symme-
tries than those for (traditional) analysis of symmetric spaces.

We focus on the minimal representation of a simple group of type D. This is
just a single irreducible representation, but it turns out that geometric analysis of
its various models is surprisingly rich. Indeed, papers devoted to this single repre-
sentation in very recent years already exceed 500 pages, giving rise to interactions
with the following topics:

• conformal geometry for general pseudo-Riemannian manifolds [30, 38],

• Dolbeault cohomologies on open complex manifolds [37],

• conservative quantities for ultra-hyperbolic equations [40],

• breaking symmetries and discrete branching laws [39],

• Schrödinger model and the unitary inversion operator [34, 36],

• deformation of Fourier transforms [4],

• holomorphic semigroups [33, 35],

• new special function theory for fourth order differential operators [16, 17].

In this article, we choose three topics among them, and try to explain their
flavour in Sections 2, 3 and 4 respectively, with emphasis on the role of Sato’s
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ideas in algebraic analysis, both in philosophy and in techniques. For the reader’s
convenience, we list some representation-theoretic properties of our minimal rep-
resentation in the Appendix.

§2. Conservative quantities for D-modules

The energy of a wave is a conservative quantity for the wave equation, namely, it
is invariant under time-translations. In this section, we discuss higher symmetries
coming from conformal transformations. By using the idea of Sato’s hyperfunctions
[20, 47], we construct conservative quantities for specific ultra-hyperbolic equations
(see Theorem 2.6).

§2.1. Yamabe operator and conformal geometry

A diffeomorphism h of a Riemannian manifold (X, g) is said to be conformal if
there exists a positive-valued function Ω(h, ·) on X such that

h∗ghx = Ω(h, x)2gx for x ∈ X.

It is an isometry if Ω(h, ·) ≡ 1. We write

Isom(X, g) ⊂ Conf(X, g)

for the groups consisting of the isometries and conformal diffeomorphisms, respec-
tively. The same notation will be applied to a more general setting where g is a
non-degenerate symmetric tensor, namely, to an indefinite-Riemannian manifold.

The invariance for the Laplacian ∆X characterizes isometries among diffeo-
morphisms of X. In other words, a non-isometric transformation on (X, g) does
not preserve ∆X . However, the Laplacian ∆X is still subject to the following co-
variance under conformal transformations:

(2.1) $(n+2)/2(h) ◦ ∆̃X = ∆̃X ◦$(n−2)/2(h) for any h ∈ Conf(X, g),

where n is the dimension of X, ScalX is the scalar curvature, and

∆̃X := ∆X −
n− 2

4(n− 1)
ScalX (the Yamabe operator),

$λ(h)f(x) := Ω(h−1, x)λf(h−1x) for f ∈ C∞(X).

The formula (2.1) implies that the operator ∆X (or ∆̃X) is not conformally
invariant, but the D-module generated by ∆̃X is conformally invariant! As far as
the solutions are concerned, the invariance of the D-module is sufficient. Namely,
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by putting

(2.2) Sol(∆̃X) :=
{
f ∈ C∞(X) : ∆Xf =

n− 2
4(n− 1)

ScalX f
}
,

we get:

Fact 2.1. The conformal group Conf(X, g) preserves Sol(∆̃X) via $(n−2)/2.

See [38, Theorem 2.5] for the proof.

Remark 2.2.

(1) The eigenspaces Sol(∆̃X − λ) are not conformally invariant if λ 6= 0.

(2) Fact 2.1 may be better formulated if we use the ring of twisted differential
operators acting on sections of a certain line bundle.

(3) The differential equation ∆̃Xf = 0, that is, ∆Xf = n−2
4(n−1) ScalXf , is ellip-

tic, hyperbolic, or ultra-hyperbolic if (X, g) is Riemannian, Lorentzian, or of
general signature, respectively.

Then a general problem is:

Problem 2.3 (see [30, Problem C]).

(1) Does there exist an invariant inner product on an appropriate subspace of
Sol(∆̃X)?

(2) If yes, construct it explicitly.

Such an inner product may be seen as a conservative quantity for the solution
to the equation ∆̃Xf = 0. Problem 2.3 does not find a final answer in the general
setting. We shall give a partial answer in the flat case (see Theorem 2.6 below).

§2.2. Conservative quantities

Let Rp,q be the Euclidean space Rp+q endowed with the flat indefinite-Riemannian
structure

ds2 = dx2
1 + · · ·+ dx2

p − dx2
p+1 − · · · − dx2

p+q.

Then the corresponding Laplace–Beltrami operator takes the form

�p,q :=
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
p

− ∂2

∂x2
p+1

− · · · − ∂2

∂x2
p+q

.

Obviously, the scalar curvature on Rp,q vanishes identically. Hence, the Yamabe
operator on Rp,q coincides with �p,q. The space of solutions to �p,qf = 0, denoted
by Sol(�p,q), is obviously invariant under the motion group

Isom(Rp,q) ' O(p, q) n Rp+q.
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It was proved in [40, Theorem 4.7] that Sol(�p,q) has even larger symmetries if
p+ q is even, namely, under the indefinite orthogonal group

G := O(p+ 1, q + 1) = {g ∈ GL(p+ q + 2,R) : tgIp+1,q+1g = Ip+1,q+1}

acting on Rp+q as Möbius transforms. (To be more precise, G preserves the space
Sol0(�p,q) of smooth solutions with certain decay conditions at infinity together
with their derivatives.)

Remark 2.4.

(1) The parity condition on p+ q is crucial. In fact, a theorem of Howe and Vogan
[51] asserts that there does not exist an infinite-dimensional representation of
G whose Gelfand–Kirillov dimension is p+ q − 1 if p+ q is odd and p, q > 3.

(2) Sol0(�p,q) is defined as the twisted pull-back of smooth functions on the con-
formal compactification of Rp+q. See [40] for details.

Problem 2.3 in this specific setting is stated as:

Problem 2.5. Find a G-invariant inner product on Sol0(�p,q) if it exists.

§2.3. Unitarizability versus unitarization

If p, q > 0 and p + q is even and greater than two, then we can tell a priori
that the representation on Sol0(�p,q) is unitarizable and irreducible (e.g. [5, 38])
by algebraic techniques. Namely, we know the existence and uniqueness of a G-
invariant inner product on Sol0(�p,q) in this case.

What we seek in Problem 2.5 is not merely an abstract unitarizability but the
unitarization of the representation space for a concrete geometric model, namely,
the construction of an invariant inner product. There are two approaches to the
unitarization: one is easier, and the other is more challenging as discussed below.

The easier approach to Problem 2.5 is to write the inner product by using
the integral representation of solutions. Such an integral formula was given in
[40, Theorem 4.7] by using an explicit formula for the Green kernel [30, 40]. The
disadvantage of this approach is that the formula for the inner product involves a
preimage of the integral representation, which is not canonically given.

A second approach is to use an expansion of solutions into a countable sum of
better understood solutions, and then to give a Parseval–Plancherel type theorem.
We shall discuss this approach in Section 3.

A more intrinsic approach is to find a formula for the inner product directly
without using the integral representation of solutions. A hint to this is the well-
known energy formula for the wave equation, which is given by integration of the
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Cauchy data on the hyperplane (t = constant) in the space-time, (see (2.6)). (We
note, however, that the energy is not conformally invariant but invariant only
under time-translations.)

In order to explain the second approach, let us set up some notation. We recall
that any non-characteristic hyperplane in Rp,q is written as

(2.3) α ≡ αv,c := {x ∈ Rp+q : (x, v)Rp,q = c}

for some c ∈ R and v ∈ Rp,q such that (v, v)Rp,q = ±1. Fix such a v, and express
a function f on Rp+q as Sato’s hyperfunction ([47]) in the direction of v, namely,

(2.4) f(x) = lim
ε↓0

(f+(x+
√
−1 εv)− f−(x−

√
−1 εv)).

Here, f±(x + tv) is a holomorphic function of one variable t near the real axis in
± Im t > 0.

We set

∂f±
∂ν

(x) :=
∂

∂t

∣∣∣∣
t=0

f(x+ tv) (normal derivative),

and introduce a function Qαf on the hyperplane α ≡ αv,c by

Qαf :=
1√
−1

(
f+
∂f+

∂ν
− f−

∂f−
∂ν

)
.

Finally, we define

(2.5) (f, f) :=
∫

α

Qαf.

The right-hand side of (2.5) does not always converge, but it makes sense if
f satisfies suitable decay conditions, say, f ∈ Sol0(�p,q). Then, we can give an
answer to Problem 2.5 as follows:

Theorem 2.6 (see [40, Theorem 6.2], also [30]).

(1) For f ∈ Sol0(�p,q), (2.5) is independent of the choice of the pair (f+, f−) in
the expression (2.4) and of the hyperplane α.

(2) (f, f) ≥ 0 for any f ∈ Sol0(�p,q). Equality holds if and only if f = 0.

(3) The polarization of the norm (2.5) yields a G-invariant inner product on
Sol0(�p,q).

We denote by Sol0(�p,q) the Hilbert space obtained as the completion of
Sol0(�p,q). Thus, we get a unitary representation of G = O(p+ 1, q+ 1), to be de-
noted by $ ≡ $p+1,q+1, on Sol0(�p,q). It turns out that this is an irreducible and
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minimal representation of G. See Section 5 for representation-theoretic properties
of $.

Remark 2.7. Assertion (1) in Theorem 2.6 is a part of the invariance of the
inner product ( , ) because any non-characteristic hyperplane is conjugate to either
x1 = 0 or xp+q = 0 under the motion group Isom(Rp,q) ' O(p, q) nRp+q. We note
that G contains Isom(Rp,q) as a proper subgroup.

The proof of Theorem 2.6 was given in [40] by using some representation-
theoretic results on the representation $. It might be interesting to find a proof
that does not depend on group theory but only on geometry such as Stokes’ the-
orem. We write this down as an open problem:

Problem 2.8. Give a purely geometric proof of Theorem 2.6.

§2.4. Energy generator

Our conformally invariant inner product (2.5) is very close to the energy of the
wave, where one integrates Cauchy data on the zero time hyperplane. We end this
section by making this connection more explicit.

For p = 1, let us introduce time and space coordinates (t;x) instead of the
previous coordinates (x1, . . . , xp;xp+1, . . . , xp+q). Then the energy of the wave f
is given by

(2.6) E(f) =
1
2

∫

Rq
(|ft|2 + |∇f |2) dx.

In terms of the inner product (2.5), E(f) is written as

(f, |H|f) = (f+, Hf+)− (f−, Hf−)

where H = i∂t is the energy generator (infinitesimal time-translation). Since the
energy generator H is invariant under time-translations (i.e. invariant under a
one-dimensional subgroup of G) and the inner product ( , ) is invariant under the
whole group G, E(f) is also invariant under time-translations. This explains the
classical fact that the energy (2.6) is a conservative quantity in the narrow sense
that it is independent of which constant-time hyperplane we integrate over.

§3. Quantitative branching laws

In Section 1, we have given a concrete formula for the conformally invariant inner
product on the minimal representation (conservative quantities). It is given by an
integral over hyperplanes. Yet another formula for the same inner product will be
given as a countable sum of well-understood quantities.
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This is a Parseval-type theorem (see Theorem 3.4), which is built on a ‘good
expansion theorem’ for solutions. Such an expansion theorem is obtained as a
special case of the general theory of discretely decomposable restrictions of unitary
representations (see Theorem 3.2). We will see that algebraic analysis provides
a powerful method for solving branching problems in representation theory (cf.
Problem 3.1 below).

§3.1. Breaking symmetries and discrete decomposability

Suppose π : G → GL(H) is a unitary representation of a Lie group G. Given a
subgroup G′ of G, consider the broken symmetry, that is, the restriction π|G′ . In
general, π|G′ decomposes into a direct integral of irreducible representations of G′.
Our concern here is:

Problem 3.1 (see [24, 25]). For which triple (G,G′, π) does the restriction π|G′
decompose discretely with finite multiplicities?

It often happens that the irreducible decomposition of π|G′ (branching law)
contains a continuous spectrum if G′ is non-compact. Even worse, each irreducible
representation of G′ may occur in the branching law with infinite multiplicities.
Thus, Problem 3.1 seeks for a very nice class of branching laws.

Now, let us fix some notation for a real reductive group G. Let K be a maximal
compact subgroup of G, T a maximal torus of K, and t, k the Lie algebras of T , K,
respectively. We choose the set ∆+(k, t) of positive roots, and denote the dominant
Weyl chamber by t+ (⊂

√
−1 t∗). We also fix a K-invariant inner product on k,

and regard
√
−1 t∗ as a subset of

√
−1 k∗.

Suppose that K ′ is a closed subgroup of K. The group K acts on the homo-
geneous space K/K ′ from the left, and then on the cotangent bundle T ∗(K/K ′)
in a Hamiltonian fashion. We write

µ : T ∗(K/K ′)→
√
−1 k∗

for the momentum map, and define the closed cone

CK(K ′) := Imageµ ∩ t+.

For a closed subgroup G′ of G, we shall consider CK(K ′) with K ′ := K ∩G′.
Next, suppose that π is a (reducible) representation of a compact Lie group K.

The asymptotic K-support of π, to be denoted by ASK(π), was introduced by
Kashiwara and Vergne [21] as the asymptotic cone of the K-types of π. By def-
inition ASK(π) = {0} if dimπ < ∞. For a representation π of G, we can define
ASK(π) by considering the restriction π|K .

We are ready to state an answer to Problem 3.1:
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Theorem 3.2 (see [26]). Suppose that π is a unitary representation of G of finite
length, and that G′ is a closed subgroup of G. Set K ′ = K ∩G′. If

(3.1) CK(K ′) ∩ASK(π) = {0},

then the restriction π|G′ decomposes discretely into a direct sum of irreducible
unitary representations of G′ with finite multiplicities.

An upper estimate of the singularity spectrum of the hyperfunction character
of π plays a crucial role in the proof of Theorem 3.2. In particular, the assumption
(3.1) ensures that

(3.2) Restriction and Trace (hyperfunction character) commute.

Here, we remark that the character of an infinite-dimensional representation π,

Traceπ(g) (g ∈ G),

does not make sense as an ordinary function because Traceπ(e) = dimπ = ∞.
Harish-Chandra proved that Traceπ is well-defined as a distribution on G if π is an
irreducible unitary representation of a real reductive group G, and proved further
that Traceπ belongs to L1

loc(G). On the other hand, the restriction Traceπ|K is
not locally integrable on K any more (see Atiyah [1]). What (3.2) means is that

Trace(π|K′) = Trace(π)|K′

as an identity of hyperfunctions (or distributions) on K ′. See [26, Theorem 2.8] for
the proof. We also refer to the lecture notes [32] for heuristic ideas of the proof.

Recently, Hansen, Hilgert, and Keliny [13] have given an alternative proof of
Theorem 3.2 by replacing Sato’s hyperfunctions with Schwartz’s distributions. See
also [27, 28] for a necessary condition of discrete decomposability of branching
laws, where the associated variety of an infinite-dimensional representation π (an
analogue of the characteristic variety of a D-module) plays an important role. The
references [29, 31] discuss some applications of discrete branching laws.

Loosely, Theorem 3.2 says that if CK(K ′) and ASK(π) are not ‘large’ then
the restriction π|G′ is discretely decomposable. We note that CK(K ′) = {0} if
K ′ = K, and consequently the assumption (3.1) is automatically satisfied. In this
case, Theorem 3.2 is precisely Harish-Chandra’s admissibility theorem ([14]). For
any minimal representation π of a reductive group G, we know from [51] that
ASK(π) is one-dimensional, i.e. ASK(π) = Rv or R+v where v is the highest root.
Thus we can expect that there is a rich family of subgroups G′ of G for which the
restriction of the minimal representation of G decomposes discretely.
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§3.2. Space forms of indefinite-Riemannian manifolds

Before applying Theorem 3.2 to actual branching problems, we review quickly
known results about the geometry and global analysis on space forms of indefinite-
Riemannian manifolds (also referred to as pseudo-hyperbolic spaces, generalized
hyperboloids, etc.).

We set

Xp,q
+ := {(x, y) ∈ Rp+1 ⊕ Rq : ‖x‖2 − ‖y‖2 = 1} ' O(p+ 1, q)/O(p, q),

Xp,q
− := {(x, y) ∈ Rp ⊕ Rq+1 : ‖x‖2 − ‖y‖2 = −1} ' O(p, q + 1)/O(p, q).

We note that Xp,0
+ ' Sp and X0,q

− ' Sq. By switching the factors, we have Xp,q
+

' Xq,p
− .
We induce an indefinite-Riemannian structure on Xp,q

+ and Xp,q
− from the

ambient space Rp+1,q and Rp,q+1, respectively. Then, Xp,q
+ and Xp,q

− have constant
sectional curvatures. Here is a summary of the properties of Xp,q

+ and Xp,q
− :

Sectional curvature κ Signature of metric tensor

Xp,q
+ κ ≡ +1 (p, q)

Xp,q
− κ ≡ −1 (p, q)

Let L2(Xp−1,q
+ ) be the Hilbert space of square integrable functions on Xp−1,q

+

with respect to the induced volume element. For λ ∈ C, we set

V p,qλ := {f ∈ L2(Xp−1,q
+ ) : ∆̃Xp−1,q

+
f = (1/4− λ2)f},

where the Yamabe operator ∆̃Xp,q+
takes the following form:

(3.3) ∆̃Xp,q+
= ∆Xp,q+

− 1
4

(p+ q)(p+ q − 2).

Clearly, the isometry group Isom(Xp−1,q
+ ) ' O(p, q) preserves V p,qλ for any λ ∈ C.

The representations on V p,qλ are called discrete series representations for Xp−1,q
+ if

V p,qλ 6= {0}, which were studied by Gelfand, Graev, Vilenkin, Shintani, Molchanov,
Faraut, and Strichartz among others. We summarise:

Proposition 3.3.

(1) (p = 1) V p,qλ = {0} for any λ ∈ C.

(2) (p 6= 1) V p,qλ 6= {0} ⇔ λ ∈ (p+ q)/2 + 2Z and λ 6= 0.

Furthermore, O(p, q) acts irreducibly on each V p,qλ , when it is non-zero.

The resulting representation in Proposition 3.3(2) will be denoted by πp,qλ .
Since V p,qλ = V p,q−λ , we may and do assume Reλ ≥ 0 without loss of generality. By
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the coherent continuation of πp,qλ for λ > 0 such that λ ∈ (p + q)/2 + 2Z, we can
define irreducible unitary representations πp,q0 (p+ q even) and πp,q−1/2 (p+ q odd)

of O(p, q). These representations do not lie in L2(Xp−1,q
+ ) but enjoy analogous

algebraic properties to πp,qλ (λ > 0) (see [24, §6] or [39, §5.4] for the vanishing
results on cohomologies).

§3.3. Quantitative branching laws

We return to the setting of Section 2.2. The flat indefinite-Riemannian manifold
Rp,q may be seen as the direct product of two flat spaces:

(Rp, dx2
1 + · · ·+ dx2

p)× (Rq,−dx2
p+1 − · · · − dx2

p+q).

Likewise, the direct product of two space forms

Y := Xp′,q′

+ ×Xp′′,q′′

−

is locally conformal to Rp,q for any p′, q′, p′′, q′′ such that

p′ + p′′ = p, q′ + q′′ = q.

This local conformal map is given as follows: For u = ((ξ0, ξ′, η′), (ξ′′, η′′, η0)) ∈
R1+p′+q′ ⊕ Rp′′+q′′+1, we set

Φ(u) :=
2

ξ0 + η0
(ξ′, η′, ξ′′, η′′).

Then the restriction of Φ to Y is conformal (see [38, Lemma 3.3], for example).
More precisely, the map

(3.4) Φ : Xp′,q′

+ ×Xp′′,q′′

− → Rp,q

is well-defined and conformal in the open dense set Y ′ ⊂ Y , defined by ξ0 +η0 6= 0.
Correspondingly, if we set

(3.5) (Φ̃∗f)(u) :=
(

2
ξ0 + η0

)(p+q−2)/2

f(Φ(u))

then Φ̃∗f solves ∆̃Y Φ̃∗f = 0 on Y ′ if �p,qf = 0 (see [38, Proposition 2.6]). Here,
∆̃Y is the Yamabe operator on Y , which amounts to

∆̃Y = ∆̃
Xp
′,q′

+
− ∆̃

Xp
′′,q′′
−

= ∆
Xp
′,q′

+
−∆

Xp
′′,q′′
−

− 1
4

(p′ + q′ − p′′ − q′′)(p+ q − 2).

Hence, we can realize the minimal representation $ of O(p + 1, q + 1) on the
solution space ∆̃Y F = 0 as well through Φ̃∗.
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We note that the map (3.4) is two-to-one at generic points. In order to give a
global action of the group O(p + 1, q + 1) on the solution space to ∆̃Y F = 0, we
need to define F = Φ̃∗f by (3.5) for ξ0 + η0 > 0, and by the parity condition for
ξ0 + η0 < 0 so that F (−u) = (−1)(p−q)/2F (u) (see [40, (4.4.2a)]).

As the isometry group of Y = Xp′,q′

+ ×Xp′′,q′′

− is the reductive groupO(p′+1, q′)
×O(p′′, q′′ + 1), it is natural to consider the branching law of the minimal repre-
sentation $ with respect to the symmetric pair

O(p+ 1, q + 1) ↓ O(p′ + 1, q′)×O(p′′, q′′ + 1)

by using the geometric model Y .
In this setting, the criterion (3.1) of Theorem 3.2 holds if and only if p′′ = 0

or q′ = 0 (see [39, Theorem 4.2]). Thus, it follows from Theorem 3.2 that $
decomposes discretely. For the description of the irreducible decomposition, we
define the space of spherical harmonics of degree l by

Hl(Rm) := {ϕ ∈ C∞(Sm−1) : ∆Sm−1ϕ = −l(l +m− 2)ϕ}(3.6)

=
{
ϕ ∈ C∞(Sm−1) : ∆̃Sm−1ϕ =

(
1
4
−
(
l +

m− 2
2

)2)
ϕ

}
.

The orthogonal group O(m) acts irreducibly on Hl(Rm) for any l ∈ N.
Here is the branching law together with quantitative information on the in-

variant inner product:

Theorem 3.4 (see [39, Theorem B]). Suppose p + q (> 2) is even, q = q′ + q′′,
and p, q > 0. Then the twisted pull-back Φ̃∗ of the conformal map Φ : Y → Rp,q

induces the following quantitative branching law:

(1) (branching law; O(p+ 1, q + 1) ↓ O(p+ 1, q′)×O(q′′ + 1))

(3.7) $p+1,q+1|O(p+1,q′)×O(q′′+1) '
∞∑⊕

l=0

πp+1,q′

l+q′′/2−1/2 ⊗Hl(Rq
′′+1).

Here, the right-hand side of (3.7) is a multiplicity-free Hilbert direct sum of
irreducible representations of O(p+ 1, q′)×O(q′′).

(2) (Parseval-type theorem) For f ∈ Sol0(�p,q), we expand Φ̃∗f into the series∑
l Fl according to the discrete decomposition (3.7). Then

(3.8) ‖f‖2Rp,q =
∞∑

l=0

(
l +

q′′

2
− 1

2

)
‖Fl‖2L2(Y ).

Here ‖ ‖Rp,q is the norm defined in Theorem 2.6.
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In view of (3.6), the self-adjoint operator 1/4 − ∆̃Sq′′ is non-negative, and
therefore we can define a pseudo-differential operator (1/4 − ∆̃Sq′′ )

1/4 on Y =
Xp,q′

+ × Sq′′ as well as on Sq
′′
.

Hence, we get another expression of the invariant inner product of the min-
imal representation in the geometric model Y by means of a pseudo-differential
operator:

Corollary 3.5. Suppose p + q (> 2) is even, q = q′ + q′′, and p, q′′ > 0. Let
(1/4−∆̃Sq′′ )

1/4 be a pseudo-differential operator on Y = Xp,q′

+ ×Sq′′ . Set F = Φ̃∗f
for f ∈ Sol0(�p,q). Then

(3.9) ‖f‖2Rp,q = ‖(1/4− ∆̃Sq′′ )
1/4F‖2L2(Y ).

Remark 3.6.

(1) For q′′ = 0 or 1, we have l+ q′′/2−1/2 ≤ 0 if l = 0. In this case V p+1,q′

l+q′′/2−1/2 =
{0}. Nevertheless, we can justify the summand in (3.8) by using the argument
of analytic continuation.

(2) In the case p′′ = q′ = 0, the branching law (3.7) is nothing but the K-type
formula for the minimal representation $, and (3.8) was proved earlier by
Kostant [42] for p = q = 3, and by Binegar and Zierau [5] for general p, q such
that p+ q is even and greater than 2.

(3) In the case q′′ = 0, we have Y ' Xp,q
+ × S0, so Y consists of two copies

of Xp,q
+ . Then Theorem 3.4 asserts that the minimal representation splits into

two components, namely,

$p+1,q+1|O(p+1,q) ' πp+1,q
−1/2 ⊕ π

p+1,q
1/2

because Hl(R1) = 0 for l ≥ 2.

(4) In the case p′′ = 0 and p′ = q′ = 1, we are dealing with the branching law for
the pair

O(2, q + 1) ↓ O(2, 1)×O(q).

The branching law (3.7) in this special case yields a setting of the deformation
of the Fourier transform (see Section 4).

§4. Deformation of Fourier transforms

Minimal representations give us also a hint to define a generalization of the Fourier
transform. In this section, we introduce a holomorphic semigroup Ik,a(z) consisting
of Hilbert–Schmidt operators with three parameters:
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• a: interpolating minimal representations of simple groups of type C and D,

• k: Dunkl deformation parameter (multiplicities on the root system),

• z: complex number,

such that the operator-valued boundary value

lim
Re z↓0

Ik,a(z)

of Hilbert–Schmidt operators yields a one-parameter group of unitary operators.
The underlying idea may be seen as a descendant of Sato’s hyperfunction the-
ory [47] and also that of the Gelfand–Gindikin program [11, 44, 48] for unitary
representations of real reductive groups. We shall see in Diagram 4.1 that the Eu-
clidean Fourier transform, the Hankel-type transform, the Dunkl transform, etc.
arise naturally as special values of Ik,a(πi/2) = limε↓0 Ik,a(πi/2 + ε).

§4.1. L2-model of minimal representations

We return to the setting of Section 2.2. If a tempered distribution f ∈ S ′(Rp+q)
satisfies the differential equation �p,qf = 0, then it is easy to see that its Fourier
transform Ff is supported on the characteristic variety

(4.1) Ξ := {ξ ∈ Rp+q : ξ2
1 + · · ·+ ξ2

p − ξ2
p+1 − · · · − ξ2

p+q = 0}.

What is more, the following theorem holds (see [39, Theorem 6.2]):

Theorem 4.1. For p+ q > 2 even and p, q > 0, the Euclidean Fourier transform
F ≡ FRp+q induces the bijection

F : Sol0(�p,q)
∼→ L2(Ξ).

It is an isometry up to scalar multiplication by 2(p+q+2)/2π(p+q+1)/2.

Here, Sol0(�p,q) is the Hilbert space with respect to the conservative quantity
( , ) defined in Theorem 2.6, and L2(Ξ) denotes the Hilbert space consisting of
the square integrable functions with respect to the canonical measure on Ξ. The
non-trivial part of Theorem 4.1 is to show that ImageF ∩ L2(Ξ) 6= {0}. See [39,
Theorem 6.2] for the proof.

It follows from Theorem 4.1 that we can realize the minimal representation
of the indefinite orthogonal group O(p + 1, q + 1) on the Hilbert space L2(Ξ)
(L2-model) from the one on Sol0(�p,q) (conformal model).

At this moment, we remark a distinguishing feature of minimal representa-
tions (see Appendix in Section 5). Unlike well-understood families of irreducible
unitary representations of real reductive groups such as unitary principal series
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representations or discrete series representations, minimal representations are so
‘small’ that there is no geometric model for which both group actions and the
Hilbert structure are given in a simple manner (cf. [6, 50]). We write down the
advantages of the aforementioned two models:

Group action Hilbert structure

Conformal model Sol(�p,q) simple ¬

L2-model L2(Ξ) ­ simple

Finding the missing parts ¬ and ­ is interesting, particularly because of
interactions with other branches of mathematics. Representation-theoretic consid-
erations play a guiding role in formalizing problems there. In fact, we have seen in
Theorem 2.6 that ¬ brought us to the construction of conservative quantities for
ultra-hyperbolic equations, whereas ­ leads us to the notion of a Fourier transform
on the isotropic cone Ξ [3, 35, 36], as discussed below.

From now on, we consider the missing part ­. In order to find a global formula
for group actions on the L2-model, let us clarify what is trivial and what will be
the crucial operator. We observe that there is a maximal parabolic subgroup P of
G = O(p+ 1, q + 1) that contains the conformal transformation group

Conf(Rp,q) ' (R>0 ×O(p, q)) n Rp+q

as a subgroup of index two. Then we have the Bruhat decomposition

G = P q PwP, where w =

(
Ip+1 0

0 −Iq+1

)
.

In fact, the Euclidean Fourier transform FRN appears as the unitary inversion op-
erator of the Segal–Shale–Weil representation of the metaplectic group Mp(N,R),
which is also a minimal representation. See [37, Chapter 1] for the comparison
of FΞ and FRN from this point of view.

In the L2-model of the minimal representation π of G on L2(Ξ), the P -action
is simple: it is given just by translations and multiplications [40]. Hence, it is
enough to find the single unitary operator (unitary inversion operator) π(w) in
order to fill the missing part ­. We set

(4.2) FΞ := cπ(w),

where c is the phase factor. Algebraically, FΞ intertwines multiplication by coor-
dinate functions ξj (1 ≤ j ≤ p + q) with the Bargmann–Todorov operators Rj
(1 ≤ j ≤ p + q) which are mutually commuting differential operators of second
order on Ξ (see [2], [36, Chapter 1]).
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This algebraic feature is similar to the classical fact that the Euclidean Fourier
transform FRN intertwines the multiplication operators ξj and the differential op-
erators

√
−1 ∂j (1 ≤ j ≤ N).

The goal of this section is to explain these operators FΞ and FRN from a
broader point of view, by constructing a continuous family of operators that in-
cludes FΞ and FRN .

For this, we limit ourselves to the case p = 1. Then the light cone Ξ (see (4.1))
splits into the forward light cone Ξ+ and the backward light cone Ξ− according as
x1 > 0 and x1 < 0. The unitary inversion operator FΞ preserves the direct sum

(4.3) L2(Ξ) = L2(Ξ+)⊕ L2(Ξ−).

For later purpose, we set q = N . Then the projection to the second factor,
R1 ⊕ RN → RN , induces the following isomorphism between Hilbert spaces:

(4.4) L2(Ξ+) ' L2(RN , ‖x‖−1dx).

Via (4.4), the unitary inversion operator FΞ on L2(Ξ+) may be seen as a unitary
operator on L2(RN , ‖x‖−1dx). The explicit formula for FΞ in the coordinates of RN

was given in [35]. In this framework, we can construct a holomorphic family of
bounded operators so that the unitary operator FΞ is obtained as the limit of
holomorphic objects. Deformation in the Dunkl setting [3, 4] is also built on this
formulation. We will discuss those operators in this generality in Section 4.4.

An alternative approach was taken in [36] based on the Barnes–Mellin integral
to find the kernel function of FΞ for general p and q.

§4.2. Hermite semigroup and Fourier transform

We begin by recalling that the classical Hermite operator on RN (e.g. [9, 18])

(4.5) ∆− ‖x‖2 =
N∑

j=1

∂2

∂x2
j

−
N∑

j=1

x2
j

extends to a self-adjoint operator on L2(RN ). We normalize the Euclidean Fourier
transform FRN on L2(RN ) as

(FRN f)(ξ) =
1

(2π)N/2

∫

RN
f(x)e−i〈x,ξ〉 dx.

Then FRN is a special value of the one-parameter group of unitary operators

χ(t) := exp
(
it

2
(∆− ‖x‖2)

)
,
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namely, we have

(4.6) FRN = e
1
4πiN exp

(
πi

4
(∆− ‖x‖2)

)
.

Further, the one-parameter group χ(t) of unitary operators extends to a holomor-
phic semigroup I(z) defined by

(4.7) I(z) = exp
(
z

2
(∆− ‖x‖2)

)
for Re z > 0.

The semigroup I(z) is called the Hermite semigroup, and it is expressed as
an integral transform against the Mehler kernel [9, 18], a Gaussian type kernel.

Next, we consider another differential operator on RN ,

‖x‖∆− ‖x‖.

It turns out that this operator has a self-adjoint extension on the Hilbert space
L2(RN , ‖x‖−1dx) (see [35, Section 1.1]). Moreover, an analogous formula to (4.6)
holds: via the identification (4.4), the ‘Fourier transform’ FΞ on the forward light
cone Ξ+ can be expressed as

(4.8) FΞ = c exp
(
πi

2
(‖x‖∆− ‖x‖)

)
,

where c = e
1
2πi(N−1) is the phase factor. The expression (4.8) allows us to see FΞ

as the limit of the following holomorphic semigroup (Laguerre semigroup):

(4.9) I(z) = exp(z(‖x‖∆− ‖x‖)) for Re z > 0,

as z → πi/2 + 0. The kernel function of I(z) is given in terms of the Bessel
function [33].

Interpolating ∆ − ‖x‖2 and ‖x‖∆ − ‖x‖, the infinitesimal generators of the
Hermite semigroup (4.7) and the Laguerre semigroup (4.9), we consider the differ-
ential operator

∆0,a := ‖x‖2−a∆− ‖x‖a.
It might not be obvious that the symmetric operator ∆0,a has a self-adjoint ex-
tension on the Hilbert space L2(RN , ‖x‖a−2dx). In fact, this is the case. The proof
uses representation theory (see Proposition 4.6), and the same idea works in a more
general setting of Dunkl’s differential-difference operators. Thus, in Section 4.3 we
shall introduce a holomorphic semigroup Ik,a(z) with infinitesimal generator ∆k,a

(see (4.10) below for the definition) for Re z > 0 with parameters k and a.
In Diagram 4.1, we have summarised some of the deformation properties by

indicating the limit behavior of the holomorphic semigroup Ik,a(z). The special-
ization Ik,a(πi/2) leads us to a (k, a)-generalized Fourier transform Fk,a (up to
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a phase factor), which reduces to the Fourier transform (a = 2 and k ≡ 0), the
Dunkl transform Dk (a = 2 and k 6≡ 0), and the Hankel-type transform (a = 1
and k ≡ 0).

(k, a)-generalized Fourier transform Fk,a

a→2 a→1

xz→πi/2

holomorphic semigroup Ik,a(z)

a→2

←−−
−−−
−−−
−− −−−−−−−−−−→

a→1

Ik,2(z) Ik,1(z)

z→πi/2

←−−
−−−

−−−−−→k→0 k→0

←−−
−−−

−−−−−→z→πi/2

Dunkl transform
Dk

Hermite semigroup
I(z) Laguerre semigroup Fk,1

k→0

−−−−−→ ←−−
−−−z→πi/2 z→πi/2

−−−−−→ ←−−
−−−k→0

Fourier transform Hankel transform

..
..

.

⇐ ‘unitary inversion operator’ ⇒

..
..

.

the Weil representation of
Mp(N, R)

the minimal representation of
O(2, N + 1)

Diagram 4.1. Special values of the holomorphic semigroup Ik,a(z).

§4.3. Holomorphic semigroup Ik,a(z) with two parameters k and a

This subsection introduces a holomorphic semigroup, denoted by Ik,a(z), whose
infinitesimal generator is a self-adjoint differential-difference operator.

Let C be the Coxeter group associated with a reduced root system R in RN .
For a C-invariant function k ≡ (kα) (multiplicity function) on R, we set

〈k〉 :=
1
2

∑

α∈R
kα,

and write ∆k for the Dunkl Laplacian on RN (see [15]). This is a differential-
difference operator, which reduces to the Euclidean Laplacian ∆ when k ≡ 0.

We take a > 0 to be yet another deformation parameter, and define

(4.10) ∆k,a := ‖x‖2−a∆k − ‖x‖a.
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We define a density on RN by

ϑk,a(x) := ‖x‖a−2
∏

α∈R
|〈α, x〉|kα .

The volume of the unit ball with respect to the measure ϑk,a(x)dx is explicitly
known in terms of the gamma function owing to the work by Selberg, Macdonald,
Heckman, and Opdam among others but we do not go into details (see Etingof [8]).

In the case a = 2 and k ≡ 0, ϑ0,2(x) ≡ 1 and ∆0,2 is the Hermite operator
(4.5) on RN .

Here are the basic properties of our differential-difference operator ∆k,a:

Theorem 4.2 (see [4, Theorem A]). Assume a > 0 and a+ 2〈k〉+N − 2 > 0.

(1) ∆k,a extends to a self-adjoint operator on the Hilbert space L2(RN , ϑk,a(x)dx).

(2) ∆k,a has no continuous spectrum.

(3) All the discrete spectrum of ∆k,a is negative.

We introduce the following operators on L2(RN , ϑk,a(x)dx):

(4.11) Ik,a(z) := exp
(
z

a
∆k,a

)
for Re z ≥ 0.

Correspondingly to the properties of the infinitesimal generator 1
a∆k,a in Theorem

4.2, we get:

Theorem 4.3 (see [4, Theorem B]). Retain the assumption of Theorem 4.2.

(1) {Ik,a(z) : Re z > 0} forms a holomorphic semigroup in the complex right-
half plane {z ∈ C : Re z > 0} in the sense that Ik,a(z) is a Hilbert–Schmidt
operator on L2(RN , ϑk,a(x)dx) satisfying

Ik,a(z1) ◦ Ik,a(z2) = Ik,a(z1 + z2) (Re z1,Re z2 > 0),

and the scalar product (Ik,a(z)f, g) is a holomorphic function of z for Re z > 0,
for any f, g ∈ L2(RN , ϑk,a(x)dx).

(2) Ik,a(z) is a one-parameter group of unitary operators on the imaginary axis
Re z = 0.

We shall call Ik,a(z) the (k, a)-generalized Laguerre semigroup. We note that
I0,2(z) is the Hermite semigroup (4.7) (see [9, 18]), and I0,1(z) is the Laguerre
semigroup (4.9) (see [33]).
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§4.4. (k, a)-generalized Fourier transforms Fk,a

Theorem 4.3(2) asserts that the ‘boundary value’ of the holomorphic semigroup
Ik,a(z) produces a one-parameter family of unitary operators.

The case z = 0 gives the identity operator, Ik,a(0) = id. A particularly
interesting case is when z = πi/2. We set

c := exp
(
iπ
N + 2〈k〉+ a− 2

2a

)
(phase factor),

and define the (k, a)-generalized Fourier transform by

Fk,a := cIk,a
(
πi

2

)
= c exp

(
πi

2a
(‖x‖2−a∆k − ‖x‖a)

)
.

The operator Fk,a for general a and k has the following significant properties:

Theorem 4.4 ([4, Theorem D]). Retain the assumption of Theorem 4.2.

(1) Fk,a is a unitary operator on L2(RN , ϑk,a(x)dx).

(2) Fk,a◦Hk,a = −Hk,a◦Fk,a, where Hk,a is the differential operator of first order
defined in (4.12) below.

(3) Fk,a ◦ ‖x‖a = −‖x‖2−a∆k ◦ Fk,a and Fk,a ◦ (‖x‖2−a∆k) = −‖x‖a ◦ Fk,a.

(4) Fk,a is of finite order if and only if a ∈ Q. Its order is 2m if a = m/n with
(m,n) = 1. In particular, Fk,1 is of order 2, and Fk,2 is of order 4.

As indicated in Diagram 4.1, Fk,a reduces to the Euclidean Fourier transform
F on RN if k ≡ 0 and a = 2; and to the Dunkl transform Dk introduced by
C. Dunkl himself if k > 0 and a = 2. The unitary operator F0,1 arises as the
unitary inversion operator FΞ on L2(Ξ+) of the minimal representation of the
conformal group (see Section 4.1).

Our study also contributes to the theory of special functions, in particular or-
thogonal polynomials; indeed we derive several new identities, for example, the
(k, a)-deformation of the classical Bochner–Hecke identity where the Gaussian
function and harmonic polynomials in the classical setting (k ≡ 0 and a = 2)
are replaced respectively with exp(− 1

a‖x‖a) and polynomials annihilated by the
Dunkl Laplacian. The (k, a)-generalized Fourier transform Fk,a also satisfies a
Heisenberg-type inequality. This generalizes the classical case (k ≡ 0 and a = 2)
and Rösler’s Heisenberg inequality [45] (k > 0 and a = 2). We refer to [4] for full
details.
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§4.5. Hidden symmetries in the Hilbert space L2(RN , ϑk,a(x)dx)

The key idea of the proofs of Theorem 4.1–4.3 is to use more operators rather than
the single operator ∆k,a, and then to appeal to the representation theory of sl2,
in particular, the theory of discretely decomposable unitary representations.

Lemma 4.5. Let k be a multiplicity function on a root system, and a ∈ C×. Then
the differential-difference operators on RN \ {0}

(4.12)

E+
k,a :=

i

a
‖x‖a,

E−k,a :=
i

a
‖x‖2−a∆k,

Hk,a :=
2
a

N∑

i=1

xi∂i +
N + 2〈k〉+ a− 2

a

form an sl2-triple, namely,

[Hk,a, E
+
k,a] = 2E+

k,a, [Hk,a, E
−
k,a] = −2E−k,a, [E+

k,a, E
−
k,a] = Hk,a.

Special cases of Lemma 4.5 were previously known: the case k ≡ 0 and a = 2
is the classical harmonic sl2-triple (e.g. Howe [18]), the case k > 0 and a = 2 is due
to Heckman [15], and k ≡ 0 and a = 1 to Kobayashi and Mano [33]. The operator
∆k,a (see (4.10)) takes the form

∆k,a = ai(E+
k,a − E−k,a),

which may be seen as an element of sl(2,C).
Lemma 4.5 fits well into the framework of discretely decomposable represen-

tations of reductive groups [25–27] as discussed in Section 3.1:

Theorem 4.6 (see [4, Theorem 3.31]). If a > 0 and a+2〈k〉+N−2 > 0, then the
representation of sl(2,R) lifts to a unitary representation of the simply-connected
group on L2(RN , ϑk,a(x)dx). The resulting unitary representation is discretely de-
composable, and commutes with the obvious action of the Coxeter group C.

This unitary representation plays a central role in the proof of Theorems
4.2–4.4. An explicit formula for the irreducible decomposition of L2(RN , ϑk,a(x))
is found in [4, Theorem 3.28]. In the special cases k ≡ 0 and a = 1 or 2, this
formula may be regarded as the branching law of the minimal representations of
O(2, N+1)∼ or Mp(N,R), respectively (see Diagram 4.2 below). Correspondingly,
all the spectrum of ∆k,a is also obtained explicitly.

In the case a = 2, the sl2-action also induces a representation of SL(2,C)
on the algebra generated by Dunkl’s operators, multiplication operators, and the
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Coxeter group. The restriction of this action to SL(2,Z) coincides with a special
case of the SL(2,Z)-action discovered by Cherednik [7] on the (degenerate) rational
DAHA (double affine Hecke algebra).

Theorem 4.6 asserts that the Hilbert space L2(RN , ϑk,a(x)dx) has a symmetry

of the direct product group C× ˜SL(2,R) for all k and a. This symmetry becomes
larger for special values of k and a:

O(2, N + 1)∼a→ 1

−−−−−→
C× ˜SL(2,R) k→0−−−−→ O(N)× ˜SL(2,R)

(k, a: general)

−−−−−→
Mp(N,R)a→ 2

Diagram 4.2. Hidden symmetries in L2(RN , ϑk,a(x)dx).

For a = 2, this symmetry is given by the Segal–Shale–Weil representation of
the metaplectic group Mp(N,R). For a = 1, it is given by the irreducible unitary
representation of the double covering O(2, N + 1)∼ of the conformal group on
L2(RN , ‖x‖−1dx). Here, as we saw in Theorem 4.1, we do not need to take a
double cover when N is odd. Both of them are minimal representations and, in
particular, they attain the minimum of their Gelfand–Kirillov dimensions among
the unitary dual. In this sense, our continuous parameter a > 0 interpolates the
L2-models of two minimal representations of different reductive groups by keeping
smaller symmetries O(N)× ˜SL(2,R). In view of Lemma 4.5, the (k, a)-generalized
Fourier transform Fk,a (k ≡ 0, a = 1, 2) arises as the unitary operator (up to a
phase factor) corresponding to

exp
(
π

2

(
0 1
−1 0

))
∈ ˜SL(2,R).

§5. Appendix: representation-theoretic properties of $

For the reader’s convenience, we list some representation-theoretic properties of
the irreducible unitary representation $ of the indefinite orthogonal group G =
O(p+ 1, q + 1), whose geometric analysis is the leading theme of this article.

In what follows, we assume

p, q ≥ 1 and p+ q is an even integer greater than two.

We write K ' O(p + 1) × O(q + 1) for a maximal compact group of G, g '
o(p+1, q+1) for the Lie algebra of G, gC ' o(p+q+2,C) for its complexification,
and gC = kC + pC for the complexified Cartan decomposition.
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Here are some properties of $ from representation-theoretic viewpoints.

(1) $ is an irreducible unitary representation of G.

(2) (Minimal representation) The representation $ is a minimal representation
in the sense that the annihilator of the underlying (gC,K)-module $K in the
universal enveloping algebra U(gC) is the Joseph ideal if p + q ≥ 6 ([5, 42]).
See [10] for algebraic aspects of minimal representations of reductive groups
and the definition of the Joseph ideal.

(3) (Restriction to the identity component) The group G has four connected com-
ponents, and we write G0 = SO0(p+ 1, q + 1) for the identity component; $
stays irreducible when restricted to G0 if and only if p, q > 1.

(4) (Highest weight module case) If p = 1 or q = 1, then the restriction $|G0

is a direct sum of two irreducible representations; one is a highest weight
representation $+ and the other is a lowest weight representation $−. As we
have seen in (4.3), this decomposition $|G0 = $+ ⊕ $− corresponds to the
direct sum

L2(Ξ) = L2(Ξ+)⊕ L2(Ξ−)

in the L2-model. Both $+ and $− are minimal representations of the con-
nected group G0.
To fix notation, we suppose p = 1. Then G is the conformal group O(2, q+ 1)
of the Minkowski space R1,q, the Euclidean space R1+q equipped with the
flat Lorentz metric of signature (1, q). In this case our representation $ has
a long history of study, also in physics (see e.g. Todorov [49]). The minimal
representation $+ may be interpreted as the symmetry of the solution space
to the mass-zero spin-zero wave equation. The representation $+ also arises
on the Hilbert space of bound states of the hydrogen atom.

(5) (Spherical case) The underlying (gC,K)-module $K has the following K-type
formula:

(5.1) $K '
⊕

a,b∈N,
a+p/2=b+q/2

Ha(Rp+1) �Hb(Rq+1).

In particular, the representation $ is spherical (i.e. contains a non-zero K-fixed
vector) if and only if p = q.

(6) (Infinitesimal character) Let Z(gC) be the center of U(gC). Then the infinites-
imal character of $K is given by

(
1,
p+ q

2
− 1,

p+ q

2
− 2, . . . , 1, 0

)
.
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Here, we normalize the Harish-Chandra isomorphism for the simple Lie algebra
gC of type Dn (n = (p+ q)/2 + 1),

HomC-algebra(Z(gC),C) ' Cn/W (Dn),

that the infinitesimal character of the trivial one-dimensional representation
is (

p+ q

2
,
p+ q

2
− 1,

p+ q

2
− 2, . . . , 1, 0

)
.

(7) (Theta correspondence) The representation $ is obtained also as the theta
correspondence of the trivial one-dimensional representation of SL(2,R) with
respect to the reductive dual pair

O(p+ 1, q + 1) · SL(2,R) ⊂ Sp(p+ q + 2,R).

See [52].

(8) (Gelfand–Kirillov dimension) The Gelfand–Kirillov dimension of the repre-
sentation $, denoted by DIM($), attains its minimum among all unitary
representations of G, that is,

DIM($) = p+ q − 1.

The associated variety of the underlying (gC,K)-module $K is given by

AV($) = OC
min ∩ pC

(see [39, Lemma 4.4]). Here, OC
min is the minimal nilpotent coadjoint orbit

in g∗C identified with the Lie algebra gC.
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