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Abstract

This is an overview of some recent connections between non-archimedean geometry and
microlocal analysis, with some emphasis on the motivic Milnor fiber and the properties
of tangent cones.
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Introduction

Microlocal theory of sheaves as developed by Kashiwara and Schapira in their
treatise [21] assigns a microsupport to any sheaf on a real manifold. Roughly
speaking this is a conic involutive subset of the cotangent bundle which consists of
covectors along which the cohomology of the sheaf “does not propagate” in that
direction. The prototype of this approach is the theory of the microsupport for
hyperfunctions introduced by M. Sato.

In recent years, in particular with the development of motivic integration, the
need for developing microlocal geometry over valued fields became more and more
apparent. Though we are convinced that a full development of such a theory might
take place within the framework of Berkovich spaces (this is one of the motivations
behind our work in progress [20] with Hrushovski), and that the final picture should
include a satisfactory treatment of `-adic and motivic sheaves in non-archimedean
geometry and have connections with other approaches such as [1] and [33], we shall
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devote this paper to some quite concrete and down-to-earth results and issues re-
lated to microlocal geometry over the p-adics and Laurent series fields.

More precisely, we shall focus on two specific topics which have presently
reached quite different levels of development, the motivic Milnor fiber in Section 1
and the theory of tangent cones and wave fronts in Section 2. In both cases, we start
with the p-adic version which provides a useful model before setting the motivic
picture. The work presented here is for the most part the result of collaboration
with—in chronological order—J. Denef, G. Guibert, M. Merle, R. Cluckers, and
G. Comte.

§1. The motivic Milnor fiber

§1.1. The p-adic story

Let K be a finite extension of Qp, R the valuation ring of K, P the maximal ideal
of R, and K = R/P the residue field with cardinality q. Let $ be a uniformizing
parameter. For z ∈ K we denote by ord(z) its valuation, by |z| its absolute value
q− ord(z), and by ac z its angular component, that is, the image of $− ord(z)z in K.

Let f(x) ∈ K[x1, . . . , xn] be a non-constant polynomial over K, χ : K
× → C×

a multiplicative character, and Φ: Kn → C a Schwartz–Bruhat function, that is,
a locally constant function with compact support. To these data one associates
Igusa’s local zeta function, which is the meromorphic continuation to C of the
integral

ZΦ(s, χ) =
∫
Kn

Φ(x)χ(ac f(x))|f(x)|s |dx|

for <s > 0, where |dx| denotes the Haar measure on Kn. Igusa showed that this
is a rational function of q−s. When Φ is the characteristic function of Pn one sets
Z0(s, χ) = ZΦ(s, χ). From now on we suppose that χ is induced by a character
of K×.

Our starting point is the following remarkable result proved by Denef in [9]
which provides a link between the étale realization of the Milnor fiber and p-adic
Igusa zeta functions.

1.1. Theorem (Denef [9]). Assume that f−1{0} has a resolution with good and
tame reduction modulo P and that f(0) = 0. Then

lim
s→−∞

Z0(s, χ) = (1− q)q−n
∑
i

(−1)i Tr(σ,Hi(F0,Qa
`)
χ).

Here F0 is the étale Milnor fiber at 0 of the reduction modulo P of f , Hi(F0,Qa
`)
χ

is the χ-unipotent part of the action of the local geometric monodromy group on
the `-adic cohomology of F0, and σ is a suitable lifting of the geometric Frobenius.
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We shall now move on towards the motivic version of the story.

§1.2. The motivic zeta function

Let us start by recalling a version of the definition of motivic zeta functions [10],
[13]. Let k be a field of characteristic 0 and let X be a smooth variety over k
of pure dimension d. Given an integer n, the arc space Ln(X) parametrizes mor-
phisms Spec k[t]/tn+1 → X. Thus, for K a field extension of k, Ln(X)(K) may be
canonically identified with X(K[t]/tn+1). The full arc space L(X) will only occur
occasionally in this text. It may be defined as the inverse limit of the spaces Ln(X).

Consider a morphism f : X → A1
k and set, for n ≥ 1,

Xn(f) := {ϕ ∈ Ln(X) | ordt f(ϕ) = n},

where ordt denotes the t-adic valuation. Note that Ln(X) is endowed with the
canonical Gm-action

a · ϕ(t) := ϕ(at)

under which Xn(f) is invariant. Furthermore f induces a morphism

fn : Xn(f)→ Gm,

assigning to a point ϕ in Xn(f) the coefficient ac(f(ϕ)) of tn in f(ϕ). Since

fn(a · ϕ) = anfn(ϕ),

the fiber
X 1
n(f) := f−1

n (1)

is canonically endowed with a µn-action, where µn is the group scheme of n-th
roots of unity, µn := Spec k[T ]/(Tn − 1).

We fix a k-variety S that we endow with the trivial µn-action and we denote
by Kµn

0 (VarS) the quotient of the free abelian group on isomorphism classes of
equivariant µn-morphisms Y → S with Y a variety with good (i.e. such that every
orbit is contained in an affine open subset) µn-action by the additivity relation

[Y → S] = [Y ′ → S] + [Y \ Y ′ → S]

for Y ′ closed in Y and the additional relation

[A→ Y → S] = [A′ → Y → S]

if A and A′ are two affine bundles of the same rank over Y with affine µn-action
lifting the same µn-action on Y . This abelian group is naturally endowed with a
ring structure induced by the fiber product.
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We then set

Mµn

S := Kµn

0 (VarS)[L−1]

with L the class of the trivial rank one affine bundle over S and

Mbµ
S := lim←−M

µn

S

under the projective system µnm → µn.
We can now consider the following series in Mbµ

X0(f)[[T ]]:

Zf (T ) :=
∑
n≥1

[X 1
n(f)] L−nd Tn,

which is a motivic analogue of Igusa’s local zeta function considered in 1.1. Indeed,
one can view the µ̂-action as a natural analogue in the present setting of the
multiplicative characters χ occuring in 1.1, and when k is a number field, Zf (T )
specializes to p-adic Igusa functions for large p’s.

Note that Zf = 0 when f is identically 0 on X, so we shall assume the reduced
zero locus X0(f) of f is nowhere dense in X. We shall now express Zf (T ) in terms
of a log-resolution h : Y → X of X0(f). Recall that this means that h : Y → X is
a proper morphism with Y smooth such that h induces an isomorphism Y \E →
X \ X0(f), with E = h−1(X0(f)) a divisor with simple normal crossings. We
denote by Ei, i ∈ A, the set of irreducible components of E. Hence, by definition
the Ei’s are smooth and intersect transversally.

For I ⊂ A, we set EI =
⋂
i∈I Ei and E◦I = EI \

⋃
j /∈I Ej . We denote by νEi

(resp. νEI
) the normal bundle to Ei (resp. EI) in Y , by UEi the complement of

the zero section in νEi
and by UI the fiber product of the restrictions of the spaces

UEi
, i in I, to E◦I . There is a canonical Gm-action on each UEi

and we consider
the diagonal action on UI .

We fix I such that there exists i in I such that the multiplicity Ni(f) of f
along Ei is > 0. Note that the function f ◦ h induces a function⊗

i∈I
ν
⊗Ni(f)
Ei |EI

→ A1
k,

vanishing only over the zero section. We define fI : νEI
→ A1

k as the composition
of this last function with the natural morphism νEI

→
⊗

i∈I ν
⊗Ni(f)
Ei |EI

, sending

(yi) to ⊗y⊗Ni(f)
i . We still denote by fI the induced morphism from UI to Gm.

Since fI(λ · x) = λnfI(x) with n =
∑
i∈I Ni(f), it follows that U1

I := f−1
I (1)

is endowed with a µn-action, so we can consider its class [U1
I ] in Mbµ

X0(f).
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By using the finite level version of the change of variable for motivic integra-
tion (Lemma 3.4 of [11]), one gets

(1.1) Zf (T ) =
∑
∅6=I⊂A

[U1
I ]

∏
i∈I

1
T−Ni(f)Lνi − 1

in Mbµ
X0(f)[[T ]]. In particular, the function Zf (T ) is rational.

Little is known about the poles of Zf (T ), in particular the following con-
jecture, known as the Monodromy Conjecture, remains largely open, apart from
some very specific examples and low dimensional cases, though new significant
cases have been proved recently (see [17] and [26]).

1.2. Conjecture. Let r be a rational number. If Lr is a pole of Zf (T ), then
exp(2iπr) is an eigenvalue of the monodromy on the stalk of the nearby cycles at
some point of X0(f).

§1.3. The motivic Milnor fiber

Since we have
lim
T→∞

1
T−Ni(f)Lνi − 1

= −1,

one deduces immediately from (1.1) that the limit

Sf := − lim
T→∞

Zf (T )

is well-defined in Mbµ
X0(f) and that given a log-resolution h we have

(1.2) Sf = −
∑
∅6=I⊂A

(−1)|I|[U1
I ].

If x is a closed k-point of X0(f), by restricting to arcs with origin at x, one defines
similarly Sf,x inMbµ

k(x). By analogy with Theorem 1.1, the virtual object Sf should

be the motivic incarnation in Mbµ
X0(f) of the complex of nearby cycles RψfQX .

Indeed, as proved in [10], its Betti and Hodge realizations are compatible with
the semisimplifications of those of RψfQX , the µ̂-action corresponding to the
monodromy action. Motivic vanishing cycles are defined by setting

Sφf,x := (−1)d−1(Sf,x − 1).

§1.4. Convolution. Applications

It appears that a certain convolution operator is quite useful for several results
regarding the motivic Milnor fiber. If G is a finite group scheme and X and Y are
two varieties with good G-action, we shall denote by X ×G Y the quotient of the
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product X × Y by the equivalence relation (gx, y) ≡ (x, gy). The G-action on one
factor induces a good G-action on X ×G Y .

For n ≥ 1, we consider the Fermat varieties

Fn1 := {(x, y) ∈ G2
m | xn + yn = 1}, Fn0 := {(x, y) ∈ G2

m | xn + yn = 0},

both endowed with their canonical µn×µn-action. Let X be a variety with a good
µn × µn-action. We set

ΨΣ(X) := −[F1 ×µn×µn X] + [F0 ×µn×µn X]

inMµn

C , the µn-action being the diagonal one. The construction goes through the
projective limit, so we get a group morphism

ΨΣ :Mbµ×bµ
C →Mbµ

C.

In fact, given any quasihomogeneous polynomial Q, one can generalize the
above construction and define convolution operators ΨQ such that ΨΣ corresponds
to the polynomial Σ = x+ y (see [15]).

The convolution product

∗ :Mbµ
C ×M

bµ
C →M

bµ
C

is then defined by
[X] ∗ [Y ] := ψΣ([X × Y ]).

It is commutative and associative. It was first constructed at the level of Chow
motives in [12], and then on Mbµ

C and its relative versions by Looijenga in [28].
Let X1 and X2 be smooth varieties of pure dimension d1 and d2 and consider

functions f1 : X1 → A1 and f2 : X2 → A1. Denote by f1 ⊕ f2 the function on
X1 ×X2 sending (x1, x2) to f1(x1) + f2(x2).

When f1 and f2 have isolated singular points x1 and x2, Thom and Sebastiani
proved that the Milnor fiber with monodromy action of f1 ⊕ f2 at (x1, x2) is the
join of those of f1 and f2 at x1 and x2, respectively. The corresponding statement
for the Hodge spectrum has been proved by Steenbrink, Varchenko and Saito. It
states that the Hodge spectrum of f1 ⊕ f2 at (x1, x2) is equal to the product of
that of f1 at x1 with that of f2 at x2.

Using convolution one can prove the following motivic version of the Thom–
Sebastiani Theorem [12], [28], [13], [14], [15]:

1.3. Theorem (Denef–Loeser, Looijenga).

Sφf1⊕f2,(x1,x2) = Sφf1,x1
∗ Sφf2,x2

.
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§1.5. Motivic Milnor fibers of compositions

The motivic Thom–Sebastiani Theorem 1.3 can be considered as a special case of
the following problem: given a two-variable polynomial P (x, y) and two functions
f and g, compute the motivic Milnor fiber of P (f, g) in terms of those of f and g
and data depending on P .

In [30], Némethi studied the topological Milnor fiber and monodromy of
P (f, g), when the mapping (f, g) is assumed to have a reasonable discriminant.
Later, Némethi and Steenbrink [31] were able to compute, under mild assump-
tions, the Hodge spectrum of composed functions of the form P (f, g). Their result
involves the discriminant of the morphism (f, g).

1.4. Question. State and prove a motivic analogue of the results by Némethi and
Steenbrink [31] for the motivic Milnor fiber of composed functions of the form
P (f, g).

Answering this question in general seems quite difficult. One of the issues one
has to face is the following: it seems hard to prove in a general setting that, given
a morphism F : X → A2

k with X a smooth variety, the induced morphism between
arc spaces L(X)→ L(A2

k) has good properties outside the discriminant locus of F .
Even the case when the discriminant of F is contained in the coordinate axes
seems to require substantial new ideas and some kind of substitutes for microlocal
methods. Indeed, over the complex or real numbers, studying the singularities of
integrals in the fibers of the morphism F and relating them to the discriminant
of F requires tools from D-modules or microlocal geometry (see [2], [27], [32]).

A related problem, somewhat dual, which is also very much open, is the
following:

1.5. Question. Find a good motivic analogue of Lê Dung Tráng’s result [24],
expressing the Milnor fiber of a function f at a singular point x in terms of that of
its restriction to a generic hyperplane `−1(0) passing through x and combinatorics
related to the discriminant of the morphism (f, `).

The only general results presently available regarding Question 1.4 assume
the functions f and g have no variable in common. In this case, one assigns to P
a tree τ(P ) which is obtained by considering the Puiseux expansions of the roots
of P (cf. [16]). To certain vertices v of the tree, called rupture vertices, one assigns
a quasihomogeneous polynomial Qv. The main result of [16] is a computation of
the motivic Milnor fiber of h = P (f, g) when f and g have no variable in common,
thus extending Theorem 1.3. More precisely, Theorem 4.2 of [16] expresses the Sh
as a sum over all rupture vertices of terms of the form ΨQv (Av), with ΨQv the
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convolution operator associated to Qv, and Av defined inductively in terms of the
tree and data depending only on (f, g).

§1.6. Extending Sf to the Grothendieck ring and a motivic analogue
of Steenbrink’s conjecture

This subsection is devoted to the exposition of the only significant case where one
is able to compute the motivic Milnor fiber of P (f, g) when the functions f and g
do have variables in common, namely the case of h = f + gN with N large.

To state the result one first needs to explain the construction of an extension
of Sf to a morphism

Sf :MX0(f) →Mbµ
X0(f)

that has been constructed by Bittner in [4] using weak factorization and in [14]
using motivic integration. This should be viewed as the analogue of considering
nearby cycles for complexes of constructible sheaves instead of just the constant
sheaf.

Let us start by explaining the construction of Sf ([U ]) when U is a dense
open subset of X. Denote by F the closed subset X \ U and by IF the ideal of
functions vanishing on F . Fix a positive integer γ ≥ 1. For n ≥ 1, we consider the
constructible set

X γnn (f, U) := {ϕ ∈ Lγn(X) | ordt f(ϕ) = n, ordt ϕ∗(IF ) ≤ γn},

we set X γn,1n (f, U) = X γnn (f, U)∩ f−1
n (1) and define the modified zeta function as

Zγf,U (T ) :=
∑
n≥1

[X γn,1n (f, U)] L−γnd Tn

in Mbµ
X0(f)[[T ]]. Note that for U = X, Zγf,U (T ) is equal to Zf (T ) for every γ, and

that if f vanishes on X it is 0. If X0(f) is nowhere dense in X, considering a
log-resolution of (X,F ∪X0(f)), one proves in [14] that there exists γ0 such that
for every γ > γ0 the series Zγf,U (T ) is rational and admits a limit limT→∞ Zγf,U (T )
which is independent of γ > γ0. Thus one may set

Sf,U := − lim
T→∞

Zγγ,U (T )

for γ � 0. Note that Sf,U is an element of Mbµ
X0(f).

We can then state

1.6. Theorem (Guibert–Loeser–Merle [14]). Let X be a variety with a function
f : X → A1

k. There exists a unique Mk-linear group morphism

(1.3) Sf :MX →Mbµ
X0(f)
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such that, for every proper morphism p : Z → X with Z smooth, and every dense
open subset U in Z,

(1.4) Sf ([U → X]) = p!(Sf◦p,U ).

Here p! denotes the morphism Mbµ
Z0(f◦p) →M

bµ
X0(f) induced by composition

with p, with Z0(f ◦p) the zero locus of f ◦p in Z. The construction in the previous
theorem can be carried out equivariantly (cf. [14]), leading to a morphism

Sf :Mbµ
X →M

bµ×bµ
X0(f).

The following result can be viewed as a motivic analogue of a conjecture by
Steenbrink:

1.7. Theorem (Guibert–Loeser–Merle [14]). Let X be a smooth variety and f

and g be two functions from X to A1. Let x be a closed point of X0(f) ∩ X0(g).
For N � 0, we have the equality

Sφf,x − S
φ
f+gN ,x

= ΨΣ(i∗x(SgN (Sφf ))).

Here SgN (Sφf ) lives inMbµ×bµ
X0(f)∩X0(g) and i∗x stands for taking the fiber over x.

§1.7. Some further open problems about the motivic Milnor fiber

In their paper [22] on motivic Donaldson–Thomas invariants, Kontsevich and
Soibelman propose the following conjecture which plays an important role in their
program:

1.8. Conjecture (Kontsevich–Soibelman [22]). Let W = V1×V2×V3 be the prod-
uct of three finite-dimensional vector spaces over k. Let F be a polynomial with
F (0, 0, 0) = 0. Assume that F (λv1, λ

−1v2, v3) = F (v1, v2, v3) for every λ in k×.
Set f = F|V1×{0}×{0} and g = F|{0}×{0}×V3 . Then

π!Sf = LdimV1Sg,(0,0,0),

where π! denotes the canonical morphism Mbµ
V0(f) →M

bµ
Spec k induced by composi-

tion with the projection to the point, with V0(f) the zero locus of f in V1.

Note that in [22] the conjecture is stated under more general assumptions, in
particular F is assumed to be a formal series on W depending in a constructible
way on finitely many extra parameters.

Using results of Guibert, Merle and Loeser [15] and [16] on motivic Milnor
fibers of compositions (cf. 1.5), Lê Quy Thuong [25] was recently able to prove
some significant cases of Conjecture 1.8.
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Note that motivic Milnor fibers also play a role in the recent work by Behrend,
Bryan, and Szendrői on motivic degree-zero Donaldson–Thomas invariants [3].

§2. Tangent cones and wave fronts over the p-adics

§2.1. Tangent cones over the p-adics

In motivic integration, semi-algebraic (also known as definable) sets over k((t))
played a fundamental role already in [11] and then more recently again in [7].
Thus it is quite natural to try to develop microlocal geometry in that category,
similarly to [21]. Before building such a theory from scratch, it seems useful to
start by exploring the p-adic case as a toy model. We now present some of the
p-adic results recently obtained in [5] and [6]. Extension of these results to k((t))
and the motivic world is part of some work in progress with Cluckers and Comte.

Over the p-adics, one can define semi-algebraic sets by mimicking the defini-
tion over the reals as follows. The Boolean algebra of semi-algebraic subsets of Qn

p

is the smallest such algebra containing sets of zeroes of polynomial functions and
such that images of semi-algebraic subsets under linear projections Qn+1

p → Qn
p

are still semi-algebraic. By a fundamental result of Macintyre [29], semi-algebraic
p-adic sets may be described as Boolean combinations of zeroes of polynomial
functions and of sets of the form “f(x) is an m-th power” with f a polynomial
function and m an integer. Remark that if one restricts to m = 2, this statement
is similar to Tarski’s classical result over the reals.

Now, if one is willing to define the tangent cone at a point to a semi-algebraic
subset one is faced with the issue of finding an adequate substitute for the mul-
tiplicative group of positive reals. The idea, which can be traced back to Heifetz
[18], is to consider all finite index subgroups Λ of Q×p at once. Thus, if X is a
semi-algebraic subset of Qn

p , x a point of Qn
p , and Λ a finite index subgroup of Q×p ,

one defines the tangent Λ-cone to X at x as

CΛ
x (X) := {u ∈ Qn

p | (∀i > 0)(∃z ∈ X)(∃λ ∈ Λ) such that

ord(z − x) > i and ord(λ(z − x)− u) > i}.

Here ord stands for the p-adic valuation. By construction CΛ
x (X) is a closed semi-

algebraic susbet. It is a Λ-cone, that is, it is stable under the canonical Λ-action.
This construction provides a whole bunch of tangent cones, so it is natural

to ask whether there is one which is better than the others. The answer is that
they stabilize when Λ is small enough. This result, which we found unexpectedly
difficult to prove, is one of the main results of [6]:
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2.1. Theorem (Cluckers–Comte–Loeser [6]). Let X be a semi-algebraic subset
of Qn

p . Then there exists Λ0 such that for every x ∈ X, for every finite index
subgroup Λ of Q×p , we have CΛ

x (X) = CΛ0
x (X) whenever Λ ⊂ Λ0.

The proof is quite involved and required the following result that can be
considered as a p-adic substitute for the mean value theorem.

2.2. Theorem (Cluckers, Comte, Loeser [5]). Let X be a semi-algebraic subset
of Qn

p and f : X → Qp be a semi-algebraic function (that is, one whose graph is
semi-algebraic). Assume there is a constant C > 0 such that f is locally Lipschitz
continuous with constant C at each point of X. Then there is a finite partition of X
into semi-algebraic subsets Xi and a constant C ′ > 0 such that the restriction of f
to each Xi is globally Lipschitz continuous with constant C ′.

This is a p-adic analogue of a result by Kurdyka [23] over the reals. However,
the proof by Kurdyka relies heavily on the use of paths connecting points and the
relation between lenghts of paths and sizes of derivatives. Clearly such an approach
cannot be followed over the p-adics, and the heart of the proof in [5] was to find
appropriate p-adic substitutes.

Let us sketch the argument in [5] in the one-variable and two-variable cases.
Let g : X ⊂ Qp → Qp be a semi-algebraic function which is locally Lipschitz
continuous with constant C. We know that we can partition X into finitely many
p-adic cells, all of which are very roughly of a form similar to

A = {t ∈ Qp | |α| ≤ |t− c| ≤ |β|, t− c ∈ λQm,n},

with α, β, c and λ in Qp, n > 0, m > 0, and where Qm,n is the set of all p-adic
numbers of the form pna(1 + pmx) for some x ∈ Zp and some a ∈ Z. One calls c
the center of A, even if c may lie outside A, which happens precisely when λ 6= 0,
and may not be uniquely determined by A. We define the balls of the cell A as
the collection of maximal balls (with respect to inclusion) contained in A. It then
follows from a certain Jacobian property that we can select the cells A in such
a way that each ball of A is mapped by g to either a point or a ball. We refine
this Jacobian property so that we can make sure that the images of the balls
of A form a single cell which has moreover as collection of maximal balls precisely
the collection of the images of the maximal balls in A. In particular, g(A) is a
cell with a certain center d. Then, roughly, distances between points in A are
compared with distances to c and similarly in the range of g, using the center d.
In the one-variable case a computation based on this comparison of distances and
the Jacobian property then allows one to conclude.



624 F. Loeser

In the two-variable case, one proceeds as follows. Let g : X ⊂ Q2
p → Qp

be locally Lipschitz continuous with some constant C. Roughly, we partition the
family Xx1 := {x2 | (x1, x2) ∈ X} into finitely many families of cells Ax1 ⊂ Qp

with center c and boundaries α and β now depending on x1. We show that, after
possibly switching the roles of x1 and x2, we can make sure that the center c is
Lipschitz continuous in x1. By a piecewise bi-Lipschitz transformation, we may
then assume that the center is identically zero for each of the cells. This is al-
ready a significant step, but the issues due to the lack of a good notion of paths
and integrals to control distances remain. Instead of working with paths as in
the real case, we work with a finite sequence of points with given starting point
and endpoint. One should view such a finite sequence of jumps from one point
to the closest one as a p-adic analogue of a real “path”. For such a sequence of
jumps to be of use, the following is required: after each jump, one should remain
in the same cell so that one can still evaluate the function g, the total cumu-
lative distance of the jumps should be comparable to the distance between the
starting point and the endpoint, and the function should not vary too much at
each jump so that one can control |g(a) − g(b)| for any jump from a to b in the
sequence. This is achieved as follows. Let a and a′ be given in A. Either α(x1),
where we view α as a function of the parameter x1, has bounded derivative, and
then we can use induction for the one-variable function x1 7→ g(x1, α(x1)) and
roughly jump from a to (a1, α(a1))), then to (a′1, α(a′1))) and finally to a′. In
the seemingly more difficult case where α(x1) has large derivative, we switch the
roles of x1 and x2 in the parametrization of the function g(x1, α(x1)), namely,
we essentially deal with the one-variable function x2 7→ g(α−1(x2), x2) and use
induction for this function and then roughly make similar jumps as before: from
a to (a1, α(a1))) = (α−1(b), b), then to (α−1(b′), b′) = (a′1, α(a′1))) and finally
to a′, for some b, b′ ∈ Qp. Such a “path” allows us to bound |g(a) − g(a′)| in
terms of |a − a′| as needed for Lipschitz continuity, uniformly in a and a′ in the
cell.

§2.2. Wave fronts

Let V be a finite-dimensional vector space over Qp. If U is an open subset of V ,
the space S(U) of Schwartz–Bruhat functions on V is the space of locally constant
complex valued functions with compact support in U . Given an additive character
Ψ on Qp with conductor Zp, the Fourier transform F(f) of a function f in S(V )
is defined by

F(f)(y) =
∫
V

f(x)Ψ(〈x, y〉) |dx|,
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with |dx| a Haar measure. It is a Schwartz–Bruhat function on the dual space V ∗

and 〈·, ·〉 denotes the duality pairing. One defines the space S ′(U) of tempered
distributions on U as the linear dual of S(U).

In [18], Heifetz defines a notion of wave front for tempered p-adic distributions
as follows:

2.3. Definition. Let U be an open subset of V and u in S ′(U). Let Λ be a finite
index subgroup of Q×p . One says u is Λ-smooth at (x0, ξ0) ∈ U × V \ {0} if there
exist open neighborhoods O of x0 and O′ of ξ0 such that, for every ϕ in S(O),
there exists N > 0 such that, for every λ > N in Λ, F(ϕu)(λξ) = 0 for every ξ

in O′.

2.4. Definition. Let U be an open subset of V and u in S ′(U). Let Λ be a finite
index subgroup of Q×p . One defines the wave front WFΛ(u) as the complement of
the set of smooth directions.

Now if X is an n-dimensional Qp-analytic manifold, the definitions of S(X)
and S ′(X) globalize. If u belongs to S ′(X) one checks that the definition of WFΛ

can be globalized to give a closed Λ-cone WFΛ(u) in T ∗(X) \ {0}.
In his paper, Heifetz proves that WFΛ satisfies the usual functorial properties

with respect to pull-backs, push-forwards, etc.
As for motivic counterparts, we have now at hand a motivic formalism al-

lowing us to construct WFΛ at the motivic level. More precisely, one replaces Qp

by k((t)), with k a field of characteristic zero. In [8], motivic versions of S(V ) and
F were constructed, relying on the constructions of [7] (see also [19]). The space S ′

is still defined as the linear dual of S. Hence, it is already possible to develop full
motivic analogues of the results of [18], which we intend to do in the near future.
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Zbl 1079.14003 MR 1905328

[14] G. Guibert, F. Loeser and M. Merle, Iterated vanishing cycles, convolution, and a motivic
analogue of a conjecture of Steenbrink, Duke Math. J. 132 (2006), 409–457. Zbl 1173.14301
MR 2219263

[15] , Nearby cycles and composition with a non-degenerate polynomial, Int. Math. Res.
Notices 2005, no. 31, 1873–1888. Zbl 1093.14032 MR 2171196

[16] , Composition with a two variable function, Math. Res. Lett. 16 (2009), 439–448.
Zbl 1187.14046 MR 2511624

[17] L. Halle and J. Nicaise, Motivic zeta functions of abelian varieties, and the monodromy
conjecture, Adv. Math. 227 (2011), 610–653. Zbl pre05880836

[18] D. Heifetz, p-adic oscillatory integrals and wave front sets, Pacific J. Math. 116 (1985),
285–305. Zbl 0528.22008 MR 0771637

[19] E. Hrushovski and D. Kazhdan, Integration in valued fields, in Algebraic geometry and
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