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Abstract

We calculate the Laplace transform of the cut-and-join equation of Goulden, Jackson and
Vakil. The result is a polynomial equation that has the topological structure identical to
the Mirzakhani recursion formula for the Weil–Petersson volume of the moduli space of
bordered hyperbolic surfaces. We find that the direct image of this Laplace transformed
equation via the inverse of the Lambert W-function is the topological recursion formula
for Hurwitz numbers conjectured by Bouchard and Mariño using topological string theory.
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§1. Introduction

The purpose of this paper is to give a proof of the Bouchard–Mariño conjecture
[3] on Hurwitz numbers using the Laplace transform of the celebrated cut-and-
join equation of Goulden, Jackson, and Vakil [17, 43]. The cut-and-join equation,
which seems to have been essentially known to Hurwitz [23], expresses the Hurwitz
number of a given genus and profile (partition) in terms of those corresponding to
profiles modified by either cutting a part into two pieces or joining two parts into
one. This equation holds for an arbitrary partition µ. We calculate the Laplace
transform of this equation with µ as the summation variable. The result is a
polynomial equation [38].

A Hurwitz cover is a holomorphic mapping f : X → P1 from a connected
nonsingular projective algebraic curve X of genus g to the projective line P1 with
only simple ramifications except for ∞ ∈ P1. Such a cover is further refined by
specifying its profile, which is a partition µ = (µ1 ≥ · · · ≥ µ` > 0) of the degree of
the covering deg f = |µ| = µ1 + · · · + µ`. The length `(µ) = ` of this partition is
the number of points in the inverse image f−1(∞) = {p1, . . . , p`} of ∞. Each part
µi gives a local description of the map f , which is given by z 7→ zµi in terms of a
local coordinate z of X around pi. The number hg,µ of topological types of Hurwitz
covers of given genus g and profile µ, counted with the weight factor 1/|Aut f |, is
the Hurwitz number we shall deal with in this paper. A remarkable formula due
to Ekedahl, Lando, Shapiro and Vainshtein [8, 21, 41] relates Hurwitz numbers
and Gromov–Witten invariants. For genus g ≥ 0 and a partition µ subject to the
stability condition 2g − 2 + `(µ) > 0, the ELSV formula states that

(1.1) hg,µ =

(
2g − 2 + `(µ) + |µ|

)
!

|Aut(µ)|

`(µ)∏
i=1

µµii
µi!

∫
Mg,`(µ)

Λ∨g (1)∏`(µ)
i=1 (1− µiψi)

,

where Mg,` is the Deligne–Mumford moduli stack of stable algebraic curves of
genus g with ` distinct marked points, Λ∨g (1) = 1− c1(E) + · · ·+ (−1)gcg(E) is the
alternating sum of the Chern classes of the Hodge bundle E on Mg,`, ψi is the
i-th tautological cotangent class, and Aut(µ) denotes the group of permutations of
equal parts of the partition µ. The linear Hodge integrals are the rational numbers
defined by

〈τn1 · · · τn`cj(E)〉 =
∫
Mg,`

ψn1
1 · · ·ψ

n`
` cj(E),

which is 0 unless n1 + · · ·+ n` + j = 3g − 3 + `. To present our main theorem, let
us introduce a series of polynomials ξ̂n(t) of degree 2n + 1 in t for n ≥ 0 by the
recursion formula

ξ̂n(t) = t2(t− 1)
d

dt
ξ̂n−1(t)
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with the initial condition ξ̂0(t) = t− 1. This differential operator appears in [19].
The Laplace transform of the cut-and-join equation gives the following formula.

Theorem 1.1 ([38]). Linear Hodge integrals satisfy recursion relations given as
a series of equations of symmetric polynomials in ` variables t1, . . . , t`:

(1.2)
∑
nL

〈τnLΛ∨g (1)〉g,`
(

(2g − 2 + `)ξ̂nL(tL) +
∑̀
i=1

1
ti
ξ̂ni+1(ti)ξ̂L\{i}(tL\{i})

)
=
∑
i<j

∑
m,nL\{i,j}

〈τmτnL\{i,j}Λ∨g (1)〉g,`−1ξ̂nL\{i,j}(tL\{i,j})

×
ξ̂m+1(ti)ξ̂0(tj)t2i − ξ̂m+1(tj)ξ̂0(ti)t2j

ti − tj

+
1
2

∑̀
i=1

∑
nL\{i}

∑
a,b

(
〈τaτbτnL\{i}Λ∨g−1(1)〉g−1,`+1

+
stable∑

g1+g2=g
ItJ=L\{i}

〈τaτnIΛ∨g1(1)〉g1,|I|+1〈τbτnJΛ∨g2(1)〉g2,|J|+1

)
× ξ̂a+1(ti)ξ̂b+1(ti)ξ̂nL\{i}(tL\{i}),

where L = {1, . . . , `} is an index set, and for a subset I ⊂ L, we denote

tI = (ti)i∈I , nI = {ni | i ∈ I}, τnI =
∏
i∈I

τni , ξ̂nI (tI) =
∏
i∈I

ξ̂ni(ti).

The last summation in the formula is taken over all partitions of g and decom-
positions of L \ {i} into disjoint subsets I t J = L \ {i} subject to the stability
condition 2g1 − 1 + |I| > 0 and 2g2 − 1 + |J | > 0.

Remark 1.2. We note a similarity of the above formula and the Mirzakhani
recursion formula for the Weil–Petersson volume of the moduli space of bordered
hyperbolic surfaces of genus g with ` closed geodesic boundaries [35, 36].

(1) There is no a priori reason for the Laplace transform to be a polynomial equa-
tion.

(2) The above formula is a topological recursion. For an algebraic curve of genus
g ≥ 0 and ` ≥ 1 distinct marked points on it, the absolute value of the
Euler characteristic of the `-punctured Riemann surface, 2g − 2 + `, defines
a complexity of the moduli space Mg,`. (1.2) gives an effective method of
calculating the linear Hodge integrals of complexity n > 0 from those with
complexity n− 1.
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(3) When we restrict (1.2) to the homogeneous highest degree terms, the equation
reduces to the Witten–Kontsevich theorem of ψ-class intersections [7, 27, 44].

Let us explain the background of our work. Independent of the recent geomet-
ric and combinatorial works [17, 35, 36, 43], a theory of topological recursions has
been developed in the matrix model/random matrix theory community [9, 13]. Its
culmination is the topological recursion formula established in [13]. There are three
ingredients in this theory: the Cauchy differentiation kernel (which is referred to
as the “Bergman kernel” in [3, 13]) of an analytic curve C ⊂ C2 in the xy-plane
called a spectral curve, the standard holomorphic symplectic structure on C2, and
the ramification behavior of the projection π : C → C of the spectral curve to the
x-axis. When C is hyperelliptic whose ramification points are all real, the topo-
logical recursion solves 1-Hermitian matrix models for the potential function that
determines the spectral curve. This means that the formula recursively computes
all n-point correlation functions of the resolvent of random Hermitian matrices of
an arbitrary size. By choosing a particular spectral curve of genus 0, the topo-
logical recursion [10, 13, 14] recovers the Virasoro constraint conditions for the
ψ-class intersection numbers 〈τn1 · · · τn`〉 due to Witten [44] and Kontsevich [27],
and the mixed intersection numbers 〈κm1

1 κm2
2 · · · τn1 · · · τn`〉 due to Mulase–Safnuk

[37] and Liu–Xu [31]. Based on the work by Mariño [33] and Bouchard, Klemm,
Mariño and Pasquetti [2] on remodeling the B-model topological string theory on
the mirror curve of a toric Calabi–Yau 3-fold, Bouchard and Mariño [3] conjecture
that when one uses the Lambert curve

(1.3) C = {(x, y) | x = ye−y} ⊂ C∗ × C∗

as the spectral curve, the topological recursion formula of Eynard and Orantin
should compute the generating functions

(1.4) Hg,`(x1, . . . , x`) =
∑

µ:`(µ)=`

µ1 · · ·µ`
(2g − 2 + `+ |µ|)!

hg,µ
∑
σ∈S`

∏̀
i=1

xµi−1
σ(i)

=
∑

n1+···+n`≤3g−3+`

〈τn1 · · · τn`Λ∨g (1)〉
∏̀
i=1

∞∑
µi=1

µµi+1+ni
i

µi!
xµi−1
i

of Hurwitz numbers for all g ≥ 0 and ` > 0. Here the sum in the first line is taken
over all partitions µ of length `, and S` is the symmetric group of ` letters.

Our discovery of this paper is that the Laplace transform of the combina-
torics, the cut-and-join equation in our case, explains the role of the Lambert
curve, the ramification behavior of the projection π : C → C∗, the Cauchy dif-
ferentiation kernel on C, and residue calculations that appear in the theory of
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Figure 1.1. The Lambert curve C ⊂ C∗ × C∗ defined by x = ye−y.

topological recursion. As a consequence of this explanation, we obtain a proof
of the Bouchard–Mariño conjecture [3]. For this purpose, it is essential to use a
different parametrization of the Lambert curve:

x = e−(w+1) and y =
t− 1
t

.

The coordinate w is the parameter of the Laplace transformation, which changes a
function of positive integers to a complex analytic function of w. Recall the Stirling
expansion

e−k
kk+n

k!
∼ 1√

2π
kn−1/2,

which makes its Laplace transform a function of
√
w. Note that the x-projection π

of the Lambert curve (1.3) is locally a double-sheeted covering around its unique
critical point (x = e−1, y = 1). Therefore, the Laplace transform of the ELSV for-
mula (1.1) naturally lives on the Lambert curve C rather than on the w-coordinate
plane. Note that C is an analytic curve of genus 0 and t is its global coordinate.
The point at infinity t =∞ is the ramification point of the projection π. In terms
of these coordinates, the Laplace transform of the ELSV formula becomes a poly-
nomial in t-variables.

The Bouchard–Mariño conjecture is proved as follows. A topological recursion
of [13] is always given as a residue formula of symmetric differential forms on the
spectral curve. The Laplace-transformed cut-and-join equation (1.2) is an equation
among primitives of differential forms. We first take the exterior differential of
this equation. We then analyze the role of the residue calculation in the theory of
topological recursion [3, 13], and find that it is equivalent to evaluating the form
at q ∈ C and its conjugate point q̄ ∈ C with respect to the local Galois covering
π : C → C near its critical point. This means all residue calculations are replaced
by an algebraic operation of taking the direct image of the differential form via
the projection π. We find that the direct image of (1.2) then becomes identical to
the conjectured formula (1.5).
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Theorem 1.3 (The Bouchard–Mariño Conjecture). The linear Hodge integrals
satisfy exactly the same topological recursion formula discovered in [13]:

(1.5)
∑
n,nL

〈τnτnLΛ∨g (1)〉g,`+1dξ̂n(t)⊗ dξ̂nL(tL)

=
∑̀
i=1

∑
m,nL\{i}

〈τmτnL\{i}Λ∨g (1)〉g,`Pm(t, ti)dt⊗ dti ⊗ dξ̂nL\{i}(tL\{i})

+
( ∑
a,b,nL

〈τaτbτnLΛ∨g−1(1)〉g−1,`+2

+
stable∑

g1+g2=g
ItJ=L

∑
a,nI
b,nJ

〈τaτnIΛ∨g1(1)〉g1,|I|+1〈τbτnJΛ∨g2(1)〉g2,|J|+1

)
Pa,b(t)dt⊗ dξ̂nL(tL),

where

dξ̂nI (tI) =
⊗
i∈I

d

dti
ξ̂ni(ti)dti.

The functions Pa,b(t) and Pn(t, ti) are defined by taking the polynomial part of the
expressions

Pa,b(t)dt =
1
2

[
ts(t)
t− s(t)

dt

t2(t− 1)
(
ξ̂a+1(t)ξ̂b+1

(
s(t)

)
+ ξ̂a+1(s(t))ξ̂b+1(t)

)]
+

,

Pn(t, ti)dt⊗ dti = dti

[
ts(t)
t− s(t)

(
ξ̂n+1(t)ds(t)
s(t)− ti

+
ξ̂n+1

(
s(t)

)
dt

t− ti

)]
+

,

where s(t) is the deck transformation of the projection π : C → C∗ around its
critical point ∞.

The relation between the cut-and-join formula, (1.2) and (1.5) is the following:

Cut-and-Join
Equation

Laplace−−−−−−→
Transform

Polynomial Equation
on Primitives (1.2)

Direct Image−−−−−−−−→ Topological Recursion on
Differential Forms (1.5)y y y

{Partitions} −−−−→ Lambert Curve Galois Cover−−−−−−−−→ C

Mathematics of the topological recursion and its geometric realization in-
cludes still many more mysteries [2, 6, 13, 33]. Among them is a relation to inte-
grable systems such as the Kadomtsev–Petviashvili equations [13]. In recent years
these equations have played an essential role in the study of Hurwitz numbers
[24, 25, 34, 40, 41, 42]. Since the aim of this paper is to give a proof of the
Bouchard–Mariño conjecture and to give a geometric interpretation of the topo-



Laplace Transform of Hurwitz Numbers 635

logical recursion for the Hurwitz case, we do not address this relation here. Since
we relate the nature of the topological recursion and combinatorics by the Laplace
transform, it is reasonable to ask: what is the inverse Laplace transform of the
topological recursion in general? This question relates the Laplace transformation
and mirror symmetry. These are interesting topics to be further explored.

It is possible to prove the Bouchard–Mariño formula without appealing to
the cut-and-join equation. Indeed, a matrix integral expression of the generating
function of Hurwitz numbers has been recently discovered in [1], and its spectral
curve is identified as the Lambert curve. As a consequence, the symplectic invari-
ant theory of matrix models [9, 11] is directly applicable to Hurwitz theory. The
discovery of [1] is that the derivatives of the symplectic invariants of the Lambert
curve give Hg,`(x1, . . . , x`) of (1.4). The topological recursion formula of Bouchard
and Mariño then automatically follows. A deeper understanding of the interplay
between these two totally different techniques is desirable.

Although our statement is simple and clear, technical details are quite in-
volved. We have decided to provide all key details in this paper, believing that
some of the analysis may be useful for further study of more general topological
recursions. This explains the length of the current paper in the sections dealing
with complex analysis and Laplace transforms.

The paper is organized as follows. We start by identifying the generating
function (1.4) as the Laplace transform of the ELSV formula (1.1) in Section 2.
We then calculate the Laplace transform of the cut-and-join equation in Section 3
following [38], and present the key idea of the proof of Theorem 1.1. In Section 4
we give the statement of the Bouchard–Mariño conjecture [3]. We calculate the
residues appearing in the topological recursion formula in Section 5 for the case
of Hurwitz generating functions. The topological recursion becomes the algebraic
relation as presented in Theorem 1.3. In Section 6 we prove technical statements
necessary for reducing (1.2) to (1.5) as a Galois average. The final Section 7 is
devoted to proving the Bouchard–Mariño conjecture.

As an effective recursion, (1.2) and (1.5) calculate linear Hodge integrals,
and hence Hurwitz numbers through the ELSV formula. A computation has been
performed by Michael Reinhard, an undergraduate student of UC Berkeley. We
reproduce some of his tables at the end of the paper.

§2. The Laplace transform of the ELSV formula

In this section we calculate the Laplace transform of the ELSV formula as a
function of partitions µ. The result is a symmetric polynomial on the Lambert
curve (1.3).
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A Hurwitz cover is a smooth morphism f : X → P1 of a connected nonsingular
projective algebraic curve X of genus g to P1 that has only simple ramifications
except for the point at infinity ∞ ∈ P1. Let f−1(∞) = {p1, . . . , p`}. Then the
induced morphism of the formal completion f̂ : X̂pi → P̂1

∞ is given by z 7→ zµi

with a positive integer µi in terms of a formal parameter z around pi ∈ X. We
rearrange the integers µi so that µ = (µ1 ≥ · · · ≥ µ` > 0) is a partition of
deg f = |µ| = µ1 + · · · + µ` of length `(µ) = `. We call f a Hurwitz cover of
genus g and profile µ. A holomorphic automorphism of a Hurwitz cover is an
automorphism φ of X that preserves f :

X

f   A
AA

AA
AA

φ

∼
// X

f~~}}
}}

}}
}

P1

Two Hurwitz covers f1 : X1 → P1 and f2 : X2 → P1 are topologically equivalent if
there is a homeomorphism h : X1 → X2 such that

X1

f1   B
BB

BB
BB

B
h // X2

f2~~||
||

||
||

P1

The Hurwitz number of type (g, µ) is defined by

hg,µ =
∑
[f ]

1
|Aut f |

,

where the sum is taken over all topologically equivalent classes of Hurwitz covers
of a given genus g and profile µ. Although hg,µ appears to be a rational number,
it is indeed an integer for most of the cases because f has usually no nontrivial
automorphisms. The celebrated ELSV formula [8, 21, 41] relates Hurwitz numbers
and linear Hodge integrals on the Deligne–Mumford moduli stackMg,` consisting
of stable algebraic curves of genus g with ` distinct nonsingular marked points.
Denote by πg,` :Mg,`+1 →Mg,` the natural projection and by ωπg,` the relative
dualizing sheaf of the universal curve πg,`. The Hodge bundle E onMg,` is defined
by E = (πg,`)∗ωπg,` , and the λ-classes are the Chern classes of the Hodge bundle:

λi = ci(E) ∈ H2i(Mg,`,Q).

Let σi : Mg,` → Mg,`+1 be the i-th tautological section of π, and put Li =
σ∗i (ωπg,`). The ψ-classes are defined by

ψi = c1(Li) ∈ H2(Mg,`,Q).
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The ELSV formula then reads

hg,µ =
r!

|Aut(µ)|

`(µ)∏
i=1

µµii
µi!

∫
Mg,`(µ)

Λ∨g (1)∏`(µ)
i=1 (1− µiψi)

,

where r = r(g, µ) = 2g− 2 + `(µ) + |µ| is the number of simple ramification points
of f .

The Deligne–Mumford stack Mg,` is defined as the moduli space of stable
curves satisfying the stability condition 2−2g− ` < 0. However, Hurwitz numbers
are well defined for unstable geometries (g, `) = (0, 1) and (0, 2). It is an elementary
exercise to show that

h0,k = kk−3 and h0,(µ1,µ2) =
(µ1 + µ2)!
µ1 + µ2

· µ
µ1
1

µ1!
· µ

µ2
2

µ2!
.

The ELSV formula remains true for unstable cases by defining∫
M0,1

Λ∨0 (1)
1− kψ

=
1
k2
,(2.1) ∫

M0,2

Λ∨0 (1)
(1− µ1ψ1)(1− µ2ψ2)

=
1

µ1 + µ2
.(2.2)

Now fix an ` ≥ 1, and consider a partition µ of length ` as an `-dimensional
vector

µ = (µ1, . . . , µ`) ∈ N`

consisting of positive integers. We define

Hg(µ) =
|Aut(µ)|
r(g, µ)!

· hg,µ =
∏̀
i=1

µµii
µi!

∫
Mg,`

Λ∨g (1)∏`
i=1(1− µiψi)

(2.3)

=
∑

n1+···+n`≤3g−3+`

〈τn1 · · · τn`Λ∨g (1)〉
∏̀
i=1

µµi+nii

µi!

as a function of µ. Its Laplace transform

(2.4) Hg,`(w) = Hg,`(w1, . . . , w`) =
∑
µ∈N`

Hg(µ)e−(µ1(w1+1)+···+µ`(w`+1))

is the function we consider in this paper. We note that the automorphism group
Aut(µ) acts trivially on the function e−(µ1(w1+1)+···+µ`(w`+1)), which explains its
appearance in (2.3). Since the coordinate change x = e−(w+1) identifies

(2.5)
∂`

∂x1 · · · ∂x`
Hg,`(w(x1), . . . , w(x`)) = Hg,`(x1, . . . , x`),

the Laplace transform (2.4) is a primitive of the generating function (1.4).
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Before performing the exact calculation of the holomorphic function Hg,`(w),
let us make a quick estimate here. From Stirling’s formula

e−k
kk+n

k!
∼ 1√

2π
kn−1/2,

it is obvious thatHg,`(w1, . . . , w`) is holomorphic on Re(wi) > 0 for all i = 1, . . . , `.
Because of the half-integer powers of µi’s, the Laplace transform Hg,`(w) is ex-
pected to be a meromorphic function on a double-sheeted covering of the wi-planes.
Such a double covering is provided by the Lambert curve C of (1.3). So we define

(2.6) t = 1 +
∞∑
k=1

kk

k!
e−k(w+1),

which gives a global coordinate of C. The summation converges for Re(w) > 0,
and the Lambert curve is expressed in terms of w and t coordinates as

(2.7) e−(w+1) =
(

1− 1
t

)
e−(1−1/t).

The w-projection π : C → C is locally a double-sheeted covering at t = ∞. The
inverse function of (2.6) is given by

(2.8) w = w(t) = −1
t
− log

(
1− 1

t

)
=
∞∑
m=2

1
m

1
tm
,

which is holomorphic on Re(t) > 1. When considered as a functional equation,
(2.8) has exactly two solutions: t and

(2.9) s(t) = −t+
2
3

+
4

135
t−2 +

8
405

t−3 +
8

567
t−4 + · · · .

This is the deck transformation of the projection π : C → C near t = ∞ and
satisfies the involution equation s(s(t)) = t. It is analytic on C \ [0, 1] and has
logarithmic singularities at 0 and 1. Although w(t) = w(s(t)), s(t) is not given by
the Laplace transform (2.6).

Since the Laplace transform

(2.10) ξ̂n(t) =
∞∑
k=1

kk+n

k!
e−k(w+1)

also naturally lives on C, it is a meromorphic function in t rather than in w.
Actually it is a polynomial of degree 2n + 1 for n ≥ 0 because of the recursion
formula

(2.11) ξ̂n+1(t) = t2(t− 1)
d

dt
ξ̂n(t) for all n ≥ 0,
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which follows from (2.6), (2.10), and (2.8) that implies

(2.12) −dw =
dt

t2(t− 1)
.

We note that the differential operator of (2.11) is discovered in [19]. For future
convenience, we define

(2.13) ξ̂−1(t) =
t− 1
t

= y,

which is indeed the y coordinate of the original Lambert curve (1.3). We now see
that the Laplace transform

Ĥg,`(t1, . . . , t`) = Hg,`(w(t1), . . . , w(t`))(2.14)

=
∑
µ∈N`

Hg(µ)e−(µ1(w1+1)+···+µ`(w`+1))

=
∑

n1+···+n`≤3g−3+`

〈τn1 · · · τn`Λ∨g (1)〉
∏̀
i=1

ξ̂ni(ti)

is a symmetric polynomial in the t-variables when 2g − 2 + ` > 0.
It has been noted in [1, 10, 11, 13, 14] that the Airy curve w = 1

2v
2 is a

universal object of the topological recursion for the case of a genus 0 spectral curve
with only one critical point. Analysis of the Airy curve provides a good control
of the topological recursion formula for such cases. The Airy curve expression is
also valid around any nondegenerate critical point of a general spectral curve. To
switch to the local Airy curve coordinate, we define

(2.15) v = v(t) = t−1 +
1
3
t−2 +

7
36
t−3 +

73
540

t−4 +
1331
12960

t−5 + · · ·

as a function of t that solves

(2.16)
1
2
v2 = w = −1

t
− log

(
1− 1

t

)
= − 1

s(t)
− log

(
1− 1

s(t)

)
=
∞∑
m=2

1
m

1
tm
.

Note that we are making a choice of the branch of the square root of w that is
consistent with (2.6). The involution (2.9) becomes simply

(2.17) v(t) = −v(s(t)).

The new coordinate v plays a key role later when we reduce the Laplace transform
of the cut-and-join equation (1.2) to the Bouchard–Mariño topological recursion
(1.5).
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§3. The cut-and-join equation and its Laplace transform

In the modern times the cut-and-join equation for Hurwitz numbers was discovered
in [17, 43], though it seems to have been known to Hurwitz [23]. It has become an
effective tool for studying the algebraic geometry of Hurwitz numbers and many
related subjects [4, 18, 19, 20, 25, 26, 28, 30, 41, 45]. In this section we calculate
the Laplace transform of the cut-and-join equation following [38].

The simplest way of presenting the cut-and-join equation is to use a different
primitive of the same generating function of Hurwitz numbers (1.4). Let

(3.1) H(s,p) =
∑
g≥0

∑
`≥1

Hg,`(s,p), Hg,`(s,p) =
∑

µ: `(µ)=`

hg,µpµ
sr

r!
,

where pµ = pµ1 · · · pµ` , and r = 2g−2+`+ |µ| is the number of simple ramification
points on P1. The summation is over all partitions of length `. Here pk is the power-
sum symmetric function

(3.2) pk =
∑
i≥1

xki ,

which is related to the monomial symmetric functions by

∂`

∂x1 · · · ∂x`
pµ =

∑
σ∈S`

∏̀
i=1

µix
µi−1
σ(i) .

Therefore, we have

∂`

∂x1 · · · ∂x`
Hg,`(1,p) = Hg,`(x1, . . . , x`)

=
∑

µ: `(µ)=`

µ1 · · ·µ`
(2g − 2 + `+ |µ|)!

hg,µ
∑
σ∈S`

∏̀
i=1

xµi−1
σ(i) ,

which is the generating function of (1.4). Because of the identification (2.5), the
primitives Hg,`(1,p) and Ĥg,`(t1, . . . , t`) of (2.14) are essentially the same function,
differing only by a constant.

Remark 3.1. Although we do not use this fact here, we note that H(s,p) is a
one-parameter family of τ -functions of the KP equations with 1

kpk as the KP time
variables [25, 40]. The parameter s is the deformation parameter.

Let z ∈ P1 be a point at which the covering f : X → P1 is simply ramified.
Locally we can name sheets, so we assume sheets a and b are ramified over z.
When we merge z to ∞, one of the two things can happen:
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(1) The cut case. If both sheets are ramified at the same point xi of the inverse
image f−1(∞) = {x1, . . . , x`}, then the resulting ramification after merging z
to ∞ has a profile

(µ1, . . . , µ̂i, . . . , µ`, α, µi − α) = (µ(̂i), α, µi − α)

for 1 ≤ α < µi.

(2) Otherwise we are in the join case. If sheets a and b are ramified at two distinct
points, say xi and xj above∞, then the result of merging creates a new profile

(µ1, . . . , µ̂i, . . . , µ̂j , . . . , µ`, µi + µj) = (µ(̂i, ĵ), µi + µj).

Here the ̂ sign means removing the entry. The above consideration tells us what
happens to the generating function of the Hurwitz numbers when we differentiate
it with respect to s, because it decreases the degree in s, or the number of simple
ramification points, by 1. Since the cut case may cause a disconnected covering, let
us use the generating function of Hurwitz numbers allowing disconnected curves
to cover P1. Then the cut-and-join equation takes the following simple form:[

∂

∂s
− 1

2

∑
α,β≥1

(
(α+ β)pαpβ

∂

∂pα+β
+ αβpα+β

∂2

∂pα∂pβ

)]
eH(s,p) = 0.

It immediately implies

(3.3)
∂H
∂s

=
1
2

∑
α,β≥1

(
(α+ β)pαpβ

∂H
∂pα+β

+ αβpα+β
∂2H

∂pα∂pβ
+ αβpα+β

∂H
∂pα

· ∂H
∂pβ

)
,

which is the cut-and-join equation for the generating function H(s,p) of the num-
ber of connected Hurwitz coverings.

Let us now apply the ELSV formula (1.1) to (3.1). We obtain

Hg,`(s,p) =
1
`!

∑
nL∈N`

〈τnLΛ∨g (1)〉g,`s2g−2+`
∏̀
i=1

∞∑
µi=1

µµi+nii

µi!
sµipµi(3.4)

=
1
`!

∑
(µ1,...,µ`)∈N`

Hg(µ)pµsr =
∑

µ: `(µ)=`

1
|Aut(µ)|

Hg(µ)pµsr,

where Hg(µ) is introduced in (2.3). Now for every choice of r ≥ 1 and a partition µ,
the coefficient of pµsr−1 in the cut-and-join equation (3.3) gives
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Theorem 3.2 ([38]). The functions Hg(µ) of (2.3) satisfy a recursion equation

(3.5) r(g, µ)Hg(µ) =
∑
i<j

(µi + µj)Hg(µ(̂i, ĵ), µi + µj)

+
1
2

∑̀
i=1

∑
α+β=µi

αβ
(
Hg−1

(
µ(̂i), α, β

)
+

∑
g1+g2=g

ν1tν2=µ(̂i)

Hg1(ν1, α)Hg2(ν2, β)
)
.

Remark 3.3. Note that

`(µ(̂i, ĵ)) = `− 2, `(ν1) + `(ν2) = `(µ(̂i)) = `− 1.

Thus the complexity 2g− 2 + ` is one less for the coverings appearing on the RHS
of (3.5), which is the effect of ∂/∂s applied to H(s,p), except for the unstable
geometry corresponding to gi = 0 and |νi| = 0 in the join terms. If we move the
(0, 1)-terms to the LHS, then the cut-and-join equation (3.5) becomes a topological
recursion formula.

Let us first calculate the Laplace transform of the cut-and-join equation for
the ` = 1 case to see what is involved. We then move on to the more general case,
following [38].

Proposition 3.4. The Laplace transform of the cut-and-join equation for the
` = 1 case gives the following equation:

(3.6)
∑

n≤3g−2

〈τnΛ∨g (1)〉g,1[(2g − 1)ξ̂n(t) + ξ̂n+1(t)(1− ξ̂−1(t))]

=
1
2

∑
a+b≤3g−4

[
〈τaτbΛ∨g−1(1)〉g−1,2

+
stable∑

g1+g2=g

〈τaΛ∨g1(1)〉g1,1〈τbΛ∨g2(1)〉g2,1
]
ξ̂a+1(t)ξ̂b+1(t).

Proof. The cut-and-join equation for ` = 1 is a simple equation

(3.7) (2g − 1 + µ)Hg(µ) =
1
2

∑
α+β=µ

αβ
(
Hg−1(α, β) +

∑
g1+g2=g

Hg1(α)Hg2(β)
)
.

The Laplace transform of the LHS of (3.7) is∑
n≤3g−2

〈τnΛ∨g (1)〉g,1[(2g − 1)ξ̂n(t) + ξ̂n+1(t)].

When summing over µ to compute the Laplace transform of the RHS, we switch
to sum over α and β independently. The factor 1/2 cancels the double count on
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the diagonal. Thus the Laplace transform of the stable geometries of the RHS is

1
2

∑
a+b≤3g−4

[
〈τaτbΛ∨g−1(1)〉g−1,2

+
stable∑

g1+g2=g

〈τaΛ∨g1(1)〉g1,1〈τbΛ∨g2(1)〉g2,1
]
ξ̂a+1(t)ξ̂b+1(t).

The unstable terms contained in the second summand of the RHS of (3.7) are the
g = 0 terms H0(α)Hg(β) + Hg(α)H0(β). We calculate the Laplace transform of
these unstable terms using (2.1). Since

H0(α) =
αα−2

α!
,

the result is ∑
a

〈τaΛ∨g (1)〉g,1ξ̂−1(t)ξ̂a+1(t).

This completes the proof.

Remark 3.5. We note that (3.6) is a polynomial equation of degree 2n+2. Since
ξ̂−1(t) = 1− 1/t, the leading term of ξ̂n+1(t) is canceled in the formula.

To calculate the Laplace transform of the general case (3.5), we need to deal
with both of the unstable geometries (g, `) = (0, 1) and (0, 2). These are the
exceptions for the general formula (2.14). Recall the (0, 1) case (2.1). The formula

(3.8) Ĥ0,1(t) =
∞∑
k=1

kk−2

k!
e−k(w+1) = − 1

2t2
+ c = ξ̂−2(t),

where the constant c is given by

c =
∞∑
k=1

kk−2

k!
e−k,

is used in (3.6). The (g, `) = (0, 2) terms require a more careful computation. We
shall see that these are the terms that exactly correspond to the terms involving
the Cauchy differentiation kernel in the Bouchard–Mariño recursion.

Proposition 3.6. We have the following Laplace transformation formula:

Ĥ0,2(t1, t2) =
∑

µ1,µ2≥1

1
µ1 + µ2

· µ
µ1
1

µ1!
· µ

µ2
2

µ2!
e−µ1(w1+1)e−µ2(w2+1)(3.9)

= log
(
ξ̂−1(t1)− ξ̂−1(t2)

x1 − x2

)
− ξ̂−1(t1)− ξ̂−1(t2).
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Proof. Since x = e−(w+1), (3.9) is equivalent to

(3.10)
∑

µ1,µ2≥0
(µ1,µ2) 6=(0,0)

1
µ1 + µ2

· µ
µ1
1

µ1!
· µ

µ2
2

µ2!
xµ1

1 xµ2
2 = log

( ∞∑
k=1

kk−1

k!
· x

k
1 − xk2
x1 − x2

)
,

where |x1| < e−1, |x2| < e−1, and 0 < |x1 − x2| < e−1 so that the formula is an
equality of holomorphic functions in x1 and x2. Define

φ(x1, x2) def=
∑

µ1,µ2≥0
(µ1,µ2) 6=(0,0)

1
µ1 + µ2

· µ
µ1
1

µ1!
· µ

µ2
2

µ2!
xµ1

1 xµ2
2 − log

( ∞∑
k=1

kk−1

k!
· x

k
1 − xk2
x1 − x2

)
.

Then

φ(x, 0) =
∑
µ1≥1

µµ1−1
1

µ1!
xµ1 − log

( ∞∑
k=1

kk−1

k!
· xk−1

)

= ξ̂−1(t)− log
(
ξ̂−1(t)
x

)
= 1− 1

t
− log

(
1− 1

t

)
+ log x

= 1− 1
t
− log

(
1− 1

t

)
− w − 1 = 0

due to (2.8). Here t is restricted to the domain Re(t) > 1. Since

x1
∂

∂x1
log
( ∞∑
k=1

kk−1

k!
· x

k
1 − xk2
x1 − x2

)
= t21(t1 − 1)

∂

∂t1
log(ξ̂−1(t1)− ξ̂−1(t2))− x1

∂

∂x1
log(x1 − x2)

= t21(t1 − 1)
∂

∂t1
log
(
− 1
t1

+
1
t2

)
− x1

x1 − x2
=
t1t2(t1 − 1)
t1 − t2

− x1

x1 − x2
,

we have(
x1

∂

∂x1
+ x2

∂

∂x2

)
log
( ∞∑
k=1

kk−1

k!
· x

k
1 − xk2
x1 − x2

)
=
t1t2(t1 − 1)− t1t2(t2 − 1)

t1 − t2
− x1 − x2

x1 − x2
= t1t2− 1 = ξ̂0(t1)ξ̂0(t2) + ξ̂0(t1) + ξ̂0(t2).

On the other hand, we also have(
x1

∂

∂x1
+ x2

∂

∂x2

) ∑
µ1,µ2≥0

(µ1,µ2) 6=(0,0)

1
µ1 + µ2

· µ
µ1
1

µ1!
· µ

µ2
2

µ2!
xµ1

1 xµ2
2

= ξ̂0(t1)ξ̂0(t2) + ξ̂0(t1) + ξ̂0(t2).
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Therefore,

(3.11)
(
x1

∂

∂x1
+ x2

∂

∂x2

)
φ(x1, x2) = 0.

Note that φ(x1, x2) is a holomorphic function in x1 and x2. Therefore, it has a
series expansion in homogeneous polynomials around (0, 0). Since a homogeneous
polynomial in x1 and x2 of degree n is an eigenvector of the differential operator
x1

∂
∂x1

+ x2
∂
∂x2

belonging to the eigenvalue n, the only holomorphic solution to
the Euler differential equation (3.11) is a constant. But since φ(x1, 0) = 0, we
conclude that φ(x1, x2) = 0. This completes the proof of (3.10), and hence of the
proposition.

The following polynomial recursion formula was established in [38]. Since each
of the polynomials Ĥg,`(tL) in (3.12) satisfies the stability condition 2g−2+` > 0,
it is equivalent to (1.2) after expanding the generating functions using (2.14).

Theorem 3.7 ([38]). The Laplace transform of the cut-and-join equation (3.5)
produces the following polynomial equation on the Lambert curve:

(3.12)
(

2g − 2 + `+
∑̀
i=1

(1− ξ̂−1(ti))t2i (ti − 1)
∂

∂ti

)
Ĥg,`(t1, . . . , t`)

=
∑
i<j

titj
t2i (ti − 1)2 ∂

∂ti
Ĥg,`−1(t̂j)− t2j (tj − 1)2 ∂

∂tj
Ĥg,`−1(t̂i)

ti − tj

−
∑
i 6=j

t3i (ti − 1)
∂

∂ti
Ĥg,`−1(t̂j)

+
1
2

∑̀
i=1

[
u2

1(u1 − 1)u2
2(u2 − 1)

∂2

∂u1∂u2
Ĥg−1,`+1

(
u1, u2, tL\{i}

)]
u1=u2=ti

+
1
2

∑̀
i=1

stable∑
g1+g2=g

JtK=L\{i}

t2i (ti − 1)
∂

∂ti
Ĥg1,|J|+1(ti, tJ) · t2i (ti − 1)

∂

∂ti
Ĥg2,|K|+1(ti, tK),

where
Ĥg,`−1(t̂j) = Ĥg,`−1(t1, . . . , t̂j , . . . , t`).

In the last sum each term is restricted to satisfy the stability conditions 2g1 − 1 +
|J | > 0 and 2g2 − 1 + |K| > 0.

Remark 3.8. The polynomial equation (3.12) is equivalent to the original cut-
and-join equation (3.5). Note that the topological recursion structure of (3.12)
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is exactly the same as (1.5). Although (3.12) contains more terms, all functions
involved are polynomials that are easy to calculate from (2.11), whereas (1.5)
requires computation of the involution s(t) of (2.9) and infinite series expansions.

Remark 3.9. It is an easy task to deduce the Witten–Kontsevich theorem, i.e.,
the Virasoro constraint condition for the ψ-class intersection numbers [44, 27],
from (3.12). Let us use the normalized notation σn = (2n+ 1)!!τn for the ψ-class
intersections. Then the formula according to Dijkgraaf, Verlinde and Verlinde [7] is

(3.13) 〈σnσnL〉g,`+1

=
1
2

∑
a+b=n−2

〈σaσbσnL〉g−1,`+2 +
∑
i∈L

(2ni + 1)〈σn+ni−1σnL\{i}〉g,`

+
1
2

stable∑
g1+g2=g
ItJ=L

∑
a+b=n−2

〈σaσnI 〉g1,|I|+1 · 〈σbσnJ 〉g2,|J|+1.

This is exactly the relation of the homogeneous top degree terms of (3.12), after
canceling the highest degree terms coming from ξ̂ni+1(ti) in the LHS [38]. This
derivation is in the same spirit as those found in [4, 26, 41], though the argument
is much clearer due to the polynomial nature of our equation.

§4. The Bouchard–Mariño recursion formula for Hurwitz numbers

In this section we present the precise statement of the Bouchard–Mariño conjecture
on Hurwitz numbers.

Recall the function we introduced in (2.6):

(4.1) t = t(x) = 1 +
∞∑
k=1

kk

k!
xk.

This is closely related to the Lambert W -function

(4.2) W (x) = −
∞∑
k=1

kk−1

k!
(−x)k.

By abuse of terminology, we also call the function t(x) of (4.1) the Lambert func-
tion. The power series (4.1) has the radius of convergence 1/e, and its inverse
function is given by

(4.3) x = x(t) =
1
e

(
1− 1

t

)
e1/t.

Motivated by the Lambert W -function, a plane analytic curve

(4.4) C = {(x, t) | x = x(t)} ⊂ C∗ × C∗
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is introduced in [3], which is exactly the Lambert curve (1.3). We denote by π :
C → C the x-projection. Bouchard–Mariño [3] then defines a tower of polynomial
differentials on the Lambert curve C by

(4.5) ξn(t) =
d

dt
[t2(t− 1)ξn−1(t)]

with the initial condition

(4.6) ξ0(t) = dt.

It is obvious from (4.5) and (4.6) that for n ≥ 0, ξn(t) is a polynomial 1-form of
degree 2n with a general expression

ξn(t) = tn
[
(2n+ 1)!! tn −

(
(2n+ 3)!!

3
− (2n+ 1)!!

)
tn−1 + · · ·+ (−1)n(n+ 1)!

]
dt.

All the coefficients of ξn(t) have a combinatorial meaning called the second order
reciprocal Stirling numbers. As we will note below, the leading coefficient is re-
sponsible for the Witten–Kontsevich theorem on the cotangent class intersections,
and the lowest coefficient is related to the λg-formula [38]. For convenience, we
also use ξ−1(t) = t−2 dt and ξ−2(t) = t−3 dt.

Remark 4.1. The polynomial ξ̂n(t) of (2.10) is a primitive of ξn(t):

(4.7) dξ̂n(t) = ξn(t).

Definition 4.2. Let us call the symmetric polynomial differential form

d⊗` Ĥg,`(t1, . . . , t`) =
∑

n1+···+n`≤3g−3+`

〈τn1 · · · τn`Λ∨g (1)〉
⊗̀
i=1

ξni(ti)

on C` the Hurwitz differential of type (g, `).

Remark 4.3. Our ξn(t) is exactly the same as the ζn(y)-differential of [3]. How-
ever, this mere coordinate change happens to be essential. Indeed, the fact that
our expression is a polynomial in t-variables allows us to calculate the residues in
the Bouchard–Mariño formula in Section 5.

Remark 4.4. The degree of d⊗` Ĥg,`(t1, . . . , t`) is 2(3g − 3 + `), and the homo-
geneous top degree terms give a generating function of the ψ-class intersection
numbers ∑

n1+···+n`=3g−3+`

〈τn1 · · · τn`〉
∏̀
i=1

(2ni + 1)!! t2nii

⊗̀
i=1

dti.
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The homogeneous lowest degree terms of d⊗` Ĥg,`(t1, . . . , t`) are

(−1)3g−3+`
∑

n1+···+n`=2g−3+`

〈τn1 · · · τn`λg〉
∏̀
i=1

(ni + 1)! tnii
⊗̀
i=1

dti.

The combinatorial coefficients of the λg-formula [15, 16] can be directly deduced
from the topological recursion formula (1.2) [38], explaining the mechanism found
in [20].

Remark 4.5. The unstable Hurwitz differentials follow from (2.1) and (3.9). They
are

d Ĥ0,1(t) =
1
t3
dt = ξ−2(t);(4.8)

d⊗2 Ĥ0,2(t1, t2) =
dt1 ⊗ dt2
(t1 − t2)2

− π∗ dx1 ⊗ dx2

(x1 − x2)2
.(4.9)

Remark 4.6. The simplest stable Hurwitz differentials are given by

(4.10)
d⊗3 Ĥ0,3(t1, t2, t3) = dt1 ⊗ dt2 ⊗ dt3;

d Ĥ1,1(t) =
1
24

(−ξ0(t) + ξ1(t)) =
1
24

(t− 1)(3t+ 1) dt.

The amazing insight of Bouchard and Mariño [3] is that the Hurwitz differ-
entials of Definition 4.2 should satisfy the topological recursion relation of Eynard
and Orantin [13] based on the analytic curve C of (4.4) as the spectral curve.
Since the topological recursion utilizes the critical behavior of the x-projection
π : C → C∗, let us examine the local structure of C around its critical points. Let
z = −1/t be a coordinate of C centered at t = ∞. The Lambert curve is then
given by

x =
1
e

(1 + z)e−z.

We see that the x-projection π : C → C∗ has a unique critical point q0 at z = 0.
Locally around q0 the curve C is a double cover of C branched at q0. For a point
q ∈ C near q0, let us denote by q̄ the Galois conjugate point on C that has
the same x-coordinate. Let S(z) be the local deck transformation of the covering
π : C → C∗. Its defining equation

(4.11) S(z)− log(1 + S(z)) = z − log(1 + z) =
∞∑
m=2

(−1)m

m
zm

has a unique analytic solution other than z itself, which has a branch cut along
(−∞,−1]. We note that S is an involution, S(S(z))=z, and has a Taylor expansion

S(z) = −z +
2
3
z2 − 4

9
z3 +

44
135

z4 − 104
405

z5 +
40
189

z6 − 7648
42525

z7 +
2848
18225

z8 +O(z9)
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for |z| < 1. In terms of the t-coordinate, the involution corresponds to s(t) of (2.9):{
t(q) = −1/z = t,

t(q̄) = −1/S(z) = s(t).

The equation (4.11) defining S(z) translates into a relation

(4.12)
dt

t2(t− 1)
=

ds(t)
s(t)2(s(t)− 1)

= −dw = −vdv = π∗
(
dx

x

)
.

Using the global coordinate t of the Lambert curve C, the Cauchy differentiation
kernel (called the Bergman kernel in [13, 3]) is defined by

(4.13) B(t1, t2) =
dt1 ⊗ dt2
(t1 − t2)2

= dt1dt2 log(t1 − t2).

We have already encountered it in (4.9) in the expression of H0,2(t1, t2). Following
[13], define a 1-form on C by

dE(q, q̄, t2) =
1
2

∫ q̄

q

B( · , t2) =
1
2

(
1

t1 − t2
− 1
s(t1)− t2

)
dt2

=
1
2
(
ξ̂−1(s(t1)− t2)− ξ̂−1(t1 − t2)

)
dt2,

where the integral is taken with respect to the first variable of B(t1, t2) along any
path from q to q̄. The natural holomorphic symplectic form on C∗ × C∗ is given
by

Ω = d log y ∧ d log x = d log
(

1− 1
t

)
∧ d log x.

Again following [3, 13], let us introduce another 1-form on the curve C by

ω(q, q̄) =
∫ q̄

q

Ω(·, x(q)) =
(

1
t
− 1
s(t)

)
dt

t2(t− 1)
=
(
ξ̂−1(s(t))− ξ̂−1(t)

) dt

t2(t− 1)
.

The kernel operator is defined as the quotient

K(t1, t2) =
dE(q, q̄, t2)
ω(q, q̄)

=
1
2
· t1
t1 − t2

· s(t1)
s(t1)− t2

· t
2
1(t1 − 1)
dt1

⊗ dt2,

which is a linear algebraic operator acting on symmetric differential forms on C`

by replacing dt1 with dt2. We note that

(4.14) K(t1, t2) = K(s(t1), t2),

which follows from (4.12). In the z-coordinate, the kernel has the expression
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K = −1
2
· 1 + z

z
· 1

(1 + zt)(1 + S(z)t)
· dt⊗ 1

dz
(4.15)

= −1
2
· 1 + z

z

( ∞∑
m=0

(−1)m · z
m+1 − S(z)m+1

z − S(z)
· tm

)
dt⊗ 1

dz

= −1
2

(
1
z

+ 1 +
1
3

(3t− 2)tz +
1
9

(3t− 2)tz2

+
1

135
(135t3 − 180t2 + 30t+ 16)tz3 + · · ·

)
dt⊗ 1

dz
.

Definition 4.7. The topological recursion formula is an inductive mechanism of
defining a symmetric `-form

Wg,`(tL) = Wg,`(t1, . . . , t`)

on C` for any given g and ` subject to 2g − 2 + ` > 0 by

(4.16) Wg,`+1(t0, tL) = − 1
2πi

∮
γ∞

[
K(t, t0)

(
Wg−1,`+2(t, s(t), tL)

+
∑̀
i=1

(
Wg,`(t, tL\{i})⊗B(s(t), ti) +Wg,`(s(t), tL\{i})⊗B(t, ti)

)
+

stable terms∑
g1+g2=g, ItJ=L

Wg1,|I|+1(t, tI)⊗Wg2,|J|+1(s(t), tJ)
)]
.

Here tI = (ti)i∈I for a subset I ⊂ L = {1, . . . , `}, and the last sum is taken over
all partitions of g and disjoint decompositions I t J = L subject to the stability
condition 2g1 − 1 + |I| > 0 and 2g2 − 1 + |J | > 0. The integration is taken with
respect to dt on the contour γ∞, which is a positively oriented loop of large radius
in the complex t-plane so that |t| > max(|t0|, |s(t0)|) for t ∈ γ∞.

Now we can state the Bouchard–Mariño conjecture, which we prove in Sec-
tion 7.

Conjecture 4.8 (Bouchard–Mariño Conjecture [3]). For every g and ` subject to
the stability condition 2g− 2 + ` > 0, the topological recursion formula (4.16) with
the initial condition

(4.17)

{
W0,3(t1, t2, t3) = dt1 ⊗ dt2 ⊗ dt3,
W1,1(t1) = 1

24 (t1 − 1)(3t1 + 1)dt1,

gives the Hurwitz differential

Wg,`(t1, . . . , t`) = d⊗` Ĥg,`(t1, . . . , t`).
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Remark 4.9. In the literature [3, 13], the topological recursion is written as

(4.18) Wg,`+1(t0, tL) = Resq=q̄

[
dE(q, q̄, t0)
ω(q, q̄)

(
Wg−1,`+2(t(q), t(q̄), tL)

+
∑

g1+g2=g, ItJ=L

Wg1,|I|+1(t(q), tI)⊗Wg2,|J|+1(t(q̄), tJ)
)]
,

including all possible terms in the second line, with the initial condition

(4.19) W0,1(t1) = 0, W0,2(t1, t2) = B(t1, t2).

If we single out the stable terms from (4.18), then we obtain (4.16). Although the
initial values ofWg,` given in (4.19) are different from (4.8) and (4.9), the advantage
of (4.18) is that we can include (4.17) as a consequence of the recursion.

Remark 4.10. It is established in [13] that a solution of the topological recursion
is a symmetric differential form in general. In our case, the RHS of the recursion
formula (4.16) does not appear to be symmetric in t0, t1, . . . , t`. We note that our
proof of the formula establishes this symmetry because the Hurwitz differential is a
symmetric polynomial. This situation is again strikingly similar to the Mizrakhani
recursion [35, 36], where the symmetry appears not as a consequence of the recur-
sion, but rather as the geometric nature of the quantity the recursion calculates,
namely, the Weil–Petersson volume of the moduli space of bordered hyperbolic
surfaces.

§5. Residue calculation

In this section we calculate the residues appearing in the recursion formula (4.16).
It turns out to be equivalent to the direct image operation with respect to the
projection π : C → C.

Recall that the kernel K(t, t0) is a rational expression in terms of t, s(t) and t0.
The function s(t) is an involution, s(s(t)) = t, defined outside of the slit [0, 1] of the
complex t-plane, with logarithmic singularities at 0 and 1. Our idea of computing
the residue is to decompose the integration over the loop γ∞ into the sum of
integrations over γ∞ − γ[0,1] and γ[0,1], where γ[0,1] is a positively oriented thin
loop containing the interval [0, 1].

Definition 5.1. For a Laurent series
∑
n∈Z ant

n, we denote[∑
n∈Z

ant
n
]

+
=
∑
n≥0

ant
n.
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1

2

Figure 5.1. The contours of integration. γ∞ is the circle of a large radius, and γ[0,1]

is the thin loop surrounding the closed interval [0, 1].

Theorem 5.2. In terms of the primitives ξ̂n(t), we have

Ra,b(t) = − 1
2πi

∮
γ∞

K(t′, t)ξa(t′)ξb(s(t′))(5.1)

=
1
2

[
ts(t)
t− s(t)

(ξa(t)ξ̂b+1(s(t)) + ξ̂a+1(s(t))ξb(t))
]

+

.

Similarly,

Rn(t, ti) = − 1
2πi

∮
γ∞

K(t′, t)
(
ξn(t′)B(s(t′), ti) + ξn(s(t′))B(t′, ti)

)
(5.2)

=
[
ts(t)
t− s(t)

(
ξ̂n+1(t)B(s(t), ti) + ξ̂n+1(s(t))B(t, ti)

)]
+

.

Proof. In terms of the original z-coordinate of [3], the residue Ra,b(t) is simply the
coefficient of z−1 in K(t′, t)ξa(t′)ξb(s(t′)), after expanding it in the Laurent series
in z. Since ξn(t′) is a polynomial in t′ = −1/z, the contribution to the z−1 term
in the expression is a polynomial in t because of the z-expansion formula (4.15)
for the kernel K. Thus we know that Ra,b(t) is a polynomial in t.

Let us write ξn(t) = fn(t)dt, and let γ[0,1] be a positively oriented loop con-
taining the slit [0, 1], as in Figure 5.1. On this compact set we have a bound∣∣∣∣ ts(t)

t− s(t)
t2(t− 1)s′(t)fa(t)fb(s(t))

∣∣∣∣ < M,

since the function is holomorphic outside [0, 1]. Choose |t| � 1. Then we have
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2πi

∮
γ[0,1]

K(t′, t)ξa(t′)ξb(s(t′))
∣∣∣∣

=
∣∣∣∣− 1

2πi

∮
γ[0,1]

1
2

(
1

t′ − t
− 1
s(t′)− t

)
t′s(t′)
s(t′)− t′

× t′2(t′ − 1)s′(t′)fa(t′)fb(s(t′))dt′
∣∣∣∣⊗ dt

<
M

2π

∮
γ[0,1]

1
2

∣∣∣∣ 1
t′ − t

− 1
s(t′)− t

∣∣∣∣ dt′ ⊗ dt ∼ M

4π|t|
dt.

Therefore,

− 1
2πi

∮
γ∞

K(t′, t)ξa(t′)ξb(s(t′))

= − 1
2πi

∮
γ∞−γ[0,1]

K(t′, t)ξa(t′)ξb(s(t′)) +O(t−1)

=
[
− 1

2πi

∮
γ∞−γ[0,1]

K(t′, t)ξa(t′)ξb(s(t′))
]

+

.

Noticing the relation (4.12) and the fact that s(t) is an involution, we obtain

− 1
2πi

∮
γ∞−γ[0,1]

K(t′, t)ξa(t′)ξb(s(t′))

= − 1
2πi

∮
γ∞−γ[0,1]

1
2

(
1

t′ − t
− 1
s(t′)− t

)
t′s(t′)
s(t′)− t′

× t′2(t′ − 1)s′(t′)fa(t′)fb(s(t′))dt′ ⊗ dt

= − 1
2πi

∮
γ∞−γ[0,1]

1
2
· 1
t′ − t

· t′s(t′)
s(t′)− t′

· t′2(t′ − 1)s′(t′)fa(t′)fb(s(t′))dt′ ⊗ dt

+
1

2πi

∮
s(γ∞)−s(γ[0,1])

1
2
· 1
s(t′)− t

· t′s(t′)
s(t′)− t′

× t′2(t′ − 1)fa(t′)fb(s(t′))ds(t′)⊗ dt

=
1
2
· ts(t)
t− s(t)

· t2(t− 1)s′(t)fa(t)fb(s(t))dt

+
1
2
· s(t)t
t− s(t)

· s(t)2
(
s(t)− 1

)
fa(s(t))fb(t)dt

=
ts(t)
t− s(t)

t2(t− 1)s′(t)
fa(t)fb(s(t)) + fa(s(t))fb(t)

2
dt

=
1
2
· ts(t)
t− s(t)

(
ξa(t)ξ̂b+1(s(t)) + ξ̂a+1(s(t))ξb(t)

)
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=
1
2
· ts(t)
t− s(t)

(
ξ̂′a(t)ξ̂b+1(s(t)) + ξ̂a+1(s(t))ξ̂′b(t)

)
dt

=
1
2
· ts(t)
t− s(t)

(
ξ̂a+1(t)ξ̂b+1(s(t)) + ξ̂a+1(s(t))ξ̂b+1(t)

) dt

t2(t− 1)
.

Here we used (2.11) and (4.12) at the last step. The proof of the second residue
formula is exactly the same.

Remark 5.3. The equation for the kernel (4.14) implies

Ra,b(t) = Rb,a(t) = −[Ra,b(s(t))]+.

Let us define polynomials Pa,b(t) and Pn(t, ti) by

Pa,b(t)dt =
1
2

[
ts(t)
t− s(t)

dt

t2(t− 1)
(
ξ̂a+1(t)ξ̂b+1(s(t)) + ξ̂a+1(s(t))ξ̂b+1(t)

)]
+

,(5.3)

Pn(t, ti)dt⊗ dti = dti

[
ts(t)
t− s(t)

(
ξ̂n+1(t)ds(t)
s(t)− ti

+
ξ̂n+1(s(t))dt

t− ti

)]
+

.(5.4)

Obviously degPa,b(t) = 2(a + b + 2). To calculate Pn(t, ti), we use the Laurent
series expansion

(5.5)
1

t− ti
=

1
t

∞∑
k=0

(
ti
t

)k
,

and take the polynomial part in t. We note that it is automatically a polynomial
in ti as well. We thus see that degPn(t, ti) = 2n+ 2 in each variable.

Theorem 5.4. The topological recursion formula (4.16) is equivalent to the fol-
lowing equality of symmetric differential forms in `+ 1 variables with polynomial
coefficients:∑
n,nL

〈τnτnLΛ∨g (1)〉g,`+1dξ̂n(t)⊗ dξ̂nL(tL)

=
∑̀
i=1

∑
m,nL\{i}

〈τmτnL\{i}Λ∨g (1)〉g,`Pm(t, ti)dt⊗ dti ⊗ dξ̂nL\{i}(tL\{i})

+
( ∑
a,b,nL

〈τaτbτnLΛ∨g−1(1)〉g−1,`+2

+
stable∑

g1+g2=g
ItJ=L

∑
a,nI
b,nJ

〈τaτnIΛ∨g1(1)〉g1,|I|+1〈τbτnJΛ∨g2(1)〉g2,|J|+1

)
Pa,b(t)dt⊗ dξ̂nL(tL).

Here L = {1, . . . , `} is an index set, and for a subset I ⊂ L, we denote

tI = (ti)i∈I , nI = {ni | i ∈ I}, τnI =
∏
i∈I

τni , dξ̂nI (tI) =
⊗
i∈I

d

dti
ξ̂ni(ti)dti.
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The last summation in the formula is taken over all partitions of g and decom-
positions of L into disjoint subsets I t J = L subject to the stability condition
2g1 − 1 + |I| > 0 and 2g2 − 1 + |J | > 0.

Remark 5.5. An immediate observation we can make from (1.5) is the simple
form of the formula for the case with one marked point:

(5.6)
∑

n≤3g−2

〈τnΛ∨g (1)〉g,1
d

dt
ξ̂n(t)

=
∑

a+b≤3g−4

(
〈τaτbΛ∨g−1(1)〉g−1,2 +

stable∑
g1+g2=g

〈τaΛ∨g1(1)〉g1,1〈τbΛ∨g2(1)〉g2,1
)
Pa,b(t).

§6. Analysis of the Laplace transforms on the Lambert curve

As a preparation for Section 7 where we give a proof of (1.5), in this section
we present analysis tools that provide the relation among the Laplace transforms
on the Lambert curve (2.7). The mystery of the work of Bouchard–Mariño [3]
lies in their ζn(y)-forms that play an effective role in devising the topological
recursion for the Hurwitz numbers. We have already identified these differential
forms as polynomial forms dξ̂n(t), where ξ̂n(t)’s are the Lambert W -function and
its derivatives.

Recall Stirling’s formula

log Γ(z) =
1
2

log 2π +
(
z − 1

2

)
log z − z(6.1)

+
m∑
r=1

B2r

2r(2r − 1)
z−2r+1 − 1

2m

∫ ∞
0

B2m(x− [x])
(z + x)2m

dx,

where m is an arbitrary cut-off parameter, Br(s) is the Bernoulli polynomial de-
fined by

zezx

ez − 1
=
∞∑
n=0

Br(x)
zr

r!
,

Br = Br(0) is the Bernoulli number, and [x] is the largest integer not exceeding
x ∈ R. For N > 0, we have

e−N
NN+n

N !

=
1√
2π
Nn−1/2 exp

(
−

m∑
r=1

B2r

2r(2r − 1)
N−2r+1

)
exp
(

1
2m

∫ ∞
0

B2m(x− [x])
(N + x)2m

dx

)
.
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Let us define the coefficients sk for k ≥ 0 by

∞∑
k=0

skN
−k = exp

(
−
∞∑
r=1

B2r

2r(2r − 1)
N−2r+1

)
(6.2)

= 1− 1
12
N−1 +

1
288

N−2 +
139

51840
N−3 − 571

2488320
N−4 + · · · .

Then for a large N we have an asymptotic expansion

(6.3) e−N
NN+n

N !
∼ 1√

2π
Nn−1/2

∞∑
k=0

skN
−k.

Definition 6.1. Let us introduce an infinite sequence of Laurent series

(6.4) ηn(v) =
1
v

∞∑
k=0

sk
(2(n− k)− 1)!!

v2(n−k)
= −ηn(−v)

for every n ∈ Z, where sk’s are the coefficients defined in (6.2).

The following lemma relates the polynomial forms ξn(t) = dξ̂n(t), the func-
tions ηn(v), and the Laplace transform.

Proposition 6.2. For n ≥ 0, we have

(6.5)
∫ ∞

0

e−s
ss+n

Γ(s+ 1)
e−sw ds = ηn(v) + const +O(w)

with the choice of the branch of
√
w specified by v = −

√
2w as in (2.8) and (2.15),

where O(w) denotes a holomorphic function in w = 1
2v

2 defined around w = 0
which vanishes at w = 0. The substitution of (2.15) in ηn(v) yields

(6.6) ηn(v) =
1
2

(ηn(v)− ηn(−v)) =
1
2
(
ξ̂n(t)− ξ̂n(s(t))

)
,

where s(t) is the involution of (2.9). This formula is valid for n ≥ −1, and in
particular, we have a relation between the kernel and η−1(v):

(6.7) η−1(v) =
1
2
(
ξ̂−1(t)− ξ̂−1(s(t))

)
=

1
2
t− s(t)
ts(t)

.

More precisely, for n ≥ −1, we have

(6.8)

{
ηn(v) = ξ̂n(t) + Fn(w),

ηn(−v) = ξ̂n(s(t)) + Fn(w),

where Fn(w) is a holomorphic function in w.
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Proof. From definition (6.4), it is obvious that the series ηn(v) satisfies the recur-
sion relation

(6.9) ηn+1(v) = −1
v

d

dv
ηn(v)

for all n ∈ Z. The integral (6.5) also satisfies the same recursion for n ≥ 0. So
choose an n ≥ 0. We have an estimate

e−s
ss+n

Γ(s+ 1)
=

1√
2π
sn−1/2

n∑
k=0

sks
−k +O(s−3/2),

valid for s > 1. Since the integral∫ 1

0

e−s
ss+n

Γ(s+ 1)
e−sw ds

is an entire function in w, we have∫ ∞
0

e−s
ss+n

Γ(s+ 1)
e−sw ds =

∫ 1

0

e−s
ss+n

Γ(s+ 1)
e−sw ds+

∫ ∞
1

e−s
ss+n

Γ(s+ 1)
e−sw ds

=
∫ ∞

0

(
1√
2π
sn−1/2

n∑
k=0

sks
−k
)
e−sw ds+

∫ ∞
1

O(s−3/2)e−sw ds+ const +O(w)

=
1
v

n∑
k=0

sk
(2(n− k)− 1)!!

v2(n−k)
+ const + vO(w) +O(w).

This formula is valid for all n ≥ 0. Starting it from a large n � 0 and using the
recursion (6.9) backwards, we conclude that the vO(w) terms in the above formula
are indeed the positive power terms of ηn(v). The principal part of ηn(v) does not
depend on the addition of positive power terms in w = 1

2v
2, since − 1

v
d
dv transforms

a positive even power of v to a nonnegative even power and does not create any
negative powers. This proves (6.5).

Next let us estimate the holomorphic error term O(w) in (6.5). When n ≤ −1,
the Laplace transform (6.5) does not converge. However, the truncated integral∫ ∞

1

e−s
ss+n

Γ(s+ 1)
e−sw ds

always converges and defines a holomorphic function in v = −
√

2w, which still
satisfies the recursion relation (6.9). Again by the inverse induction, we have

(6.10)
∫ ∞

1

e−s
ss+n

Γ(s+ 1)
e−sw ds = ηn(v) +O(w)

for every n < 0. Now by the Euler summation formula, for n ≤ −1 and Re(w) > 0,
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we have

(6.11)
∫ ∞

1

e−s
ss+n

Γ(s+ 1)
e−sw ds−

∞∑
k=2

e−k
kk+n

k!
e−kw

= −1
2
e−(w+1) +

∫ ∞
1

(
s− [s]− 1

2

)
d

ds

(
e−s

ss+n

Γ(s+ 1)
e−sw

)
ds.

Note that the RHS of (6.11) is holomorphic in w around w = 0. From (2.10), (6.10)
and (6.11), we establish a comparison formula

(6.12) η−1(v)− ξ̂−1(t) = F−1(w),

where F−1(w) is a holomorphic function in w defined near w = 0, and we identify
the coordinates t, v and w by the relations (2.16) and (2.15). Note that the relation
(2.16) is invariant under the involution

(6.13) v 7→ −v, t 7→ s(t).

Therefore, we also have

η−1(−v)− ξ̂−1(s(t)) = F−1(w).

Thus we obtain
η−1(v) =

1
2
(
ξ̂−1(t)− ξ̂−1(s(t))

)
,

which proves (6.7). Since − 1
v
d
dv = t2(t − 1) ddt , the recursion relations (6.9) and

(2.11) for ξ̂n(t) are exactly the same. We note that from (4.12) we have

−1
v

d

dv
= t2(t− 1)

d

dt
= s(t)2(s(t)− 1)

d

ds(t)
.

Therefore, the differences ξ̂n+1(t)− ξ̂n+1(s(t)) satisfy the same recursion

(6.14) ξ̂n+1(t)− ξ̂n+1(s(t)) = t2(t− 1)
d

dt

(
ξ̂n(t)− ξ̂n(s(t))

)
.

The recursions (6.9) and (6.14), together with the initial condition (6.7), establish
(6.6). Application of the differential operator

−1
v

d

dv
= − d

dw
= t2(t− 1)

d

dt

n+ 1 times to (6.12) yields

ηn(v)− ξ̂n(t) = Fn(w),

where Fn(w) = (−1)n dn

dwnF−1(w) is a holomorphic function in w around w = 0.
Involution (6.13) then gives

ηn(−v)− ξ̂n(s(t)) = Fn(w).

This completes the proof of the proposition.
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As we have noted in Section 5, the residue calculations appearing in the
Bouchard–Mariño recursion formula (4.16) are essentially evaluations of the prod-
uct of ξ-forms at the points t and s(t) on the Lambert curve, if we truncate the
result to the polynomial part. In terms of the v-coordinate, these two points cor-
respond to v and −v. Thus we have

Corollary 6.3. The residue polynomials of (5.3) are given by

(6.15) Pa,b(t)dt

=
1
2

[
ts(t)
t− s(t)

dt

t2(t− 1)
(
ξ̂a+1(t)ξ̂b+1(s(t)) + ξ̂a+1(s(t))ξ̂b+1(t)

)]
+

=
1
2

[
ηa+1(v)ηb+1(v)

η−1(v)
vdv

∣∣∣∣
v=v(t)

]
+

,

where the reciprocal of

η−1(v)=
∞∑
k=0

sk
(
2(−1− k)− 1

)
!! v2k+1 = −v

(
1 +

∞∑
k=1

(−1)ksk
1

(2k + 1)!!
v2k

)
is defined by

1
η−1(v)

= −1
v

(
1 +

∞∑
m=0

( ∞∑
k=1

(−1)k−1sk
1

(2k + 1)!!
v2k

)m)
.

Proof. Using the formulas established in Proposition 6.2, we compute

1
2

ts(t)
t− s(t)

dt

t2(t− 1)
(
ξ̂a+1(t)ξ̂b+1(s(t)) + ξ̂a+1(s(t))ξ̂b+1(t)

)
= − ts(t)

t− s(t)
dt

t2(t− 1)

(
ξ̂a+1(t)− ξ̂a+1(s(t))

2
ξ̂b+1(t)− ξ̂b+1(s(t))

2

− ξ̂a+1(t) + ξ̂a+1(s(t))
2

ξ̂b+1(t) + ξ̂b+1(s(t))
2

)
= − 1

2η−1(v)
(
ηa+1(v)ηb+1(v)− Fa+1(w)Fb+1(w)

)
(−v)dv

=
ηa+1(v)ηb+1(v)

2η−1(v)
vdv + (const +O(w))dv.

From (2.15) we see [(const + O(w))dv|v 7→t]+ = 0. This completes the proof of
(6.15).

For the terms involving the Cauchy differentiation kernel B(ti, tj), we have
the following formula.
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Proposition 6.4. As a polynomial in t and tj, we have the following equality:

Pn(t, tj)dt⊗ dtj = dtj

[
ts(t)
t− s(t)

(
ξ̂n+1(t)ds(t)
s(t)− tj

+
ξ̂n+1(s(t))dt

t− tj

)]
+

(6.16)

= dtj

[
ηn+1(vj)
η−1(v)

· 1
v2

finite∑
m=0

(
vj
v

)2m

vdv

∣∣∣∣ v=v(t)
vj=v(tj)

]
+

.

On the RHS we first evaluate the expression at v = v(t) and vj = v(tj), then expand
it as a series in 1/t and 1/tj, and finally truncate it as a polynomial in both t and tj.

Proof. From the formulas for ξ̂n(t) and ηn(v), we know that both expressions
have the same degree 2n+ 2 in t and tj . Since the powers of vj in the summation∑finite
m=0 (vj/v)2m are nonnegative, clearly we have

dtj

[
ηn+1(v)
η−1(v)

· 1
v2

finite∑
m=0

(
vj
v

)2m

vdv

∣∣∣∣ v=v(t)
vj=v(tj)

]
+

= 0.

Thus we can replace the RHS of (6.16) by

dtj

[
ηn+1(v)− ηn+1(vj)

η−1(v)
· 1
v2

finite∑
m=0

(
vj
v

)2m

(−v)dv
∣∣∣∣ v=v(t)
vj=v(tj)

]
+

.

Since the degree of ηn+1

(
v(tj)

)
in tj is 2n+ 3, the finite sum over m in the above

expression contributes nothing for m > n+ 2. Therefore,

dtj

[
ηn+1(v)− ηn+1(vj)

η−1(v)
· 1
v2

finite∑
m=0

(
vj
v

)2m

(−v)dv
∣∣∣∣ v=v(t)
vj=v(tj)

]
+

= dtj

[
ts(t)
t− s(t)

(
ξ̂n+1(t)− ξ̂n+1(tj)

w − wj
+
Fn+1(w)− Fn+1(wj)

w − wj

)
(−dw)

∣∣∣∣ v=v(t)
vj=v(tj)

]
+

= dtj

[
ts(t)
t− s(t)

ξ̂n+1(t)− ξ̂n+1(tj)
w − wj

(−dw)
∣∣∣∣ v=v(t)
vj=v(tj)

]
+

because of (6.8). We also used the fact that

1
v2

finite∑
m=0

(
vj
v

)2m

vdv =
1
2

dw

w − wj
+O(wn+2

j )dw,

and that Fn+1(w)−Fn+1(wj)
w−wj is holomorphic along w = wj . Let us use once again

−ξ̂n+1(t) = ξ̂n+1(s(t)) + 2Fn+1(w) and

− dw

w − wj
= − 2vdv

v2 − v2
j

=
(

1
−v − vj

− 1
v − vj

)
dv.
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We obtain

dtj

[
ts(t)
t− s(t)

ξ̂n+1(t)− ξ̂n+1(tj)
w − wj

(−dw)
∣∣∣∣ v=v(t)
vj=v(tj)

]
+

= dtj

[
ts(t)
t− s(t)

(
ξ̂n+1(t)− ξ̂n+1(tj)

−v − vj
dv

ds(t)
ds(t)

)∣∣∣∣ v=v(t)
vj=v(tj)

]
+

+ dtj

[
ts(t)
t− s(t)

(
ξ̂n+1(s(t))− ξ̂n+1(s(tj))

v − vj
dv

dt
dt

)∣∣∣∣ v=v(t)
vj=v(tj)

]
+

= dtj

[
ts(t)
t− s(t)

(
ξ̂n+1(t)− ξ̂n+1(tj)

s(t)− tj
s(t)− tj

v(s(t))− v(tj)
dv(s(t))
ds(t)

ds(t)
)]

+

+ dtj

[
ts(t)
t− s(t)

(
ξ̂n+1(s(t))− ξ̂n+1(s(tj))

t− tj
t− tj

v(t)− v(tj)
dv(t)
dt

dt

)]
+

.

Here we remark that

dtj

[
ts(t)
t− s(t)

(
ξ̂n+1(t)− ξ̂n+1(tj)

s(t)− tj
ds(t) +

ξ̂n+1(s(t))− ξ̂n+1(s(tj))
t− tj

dt

)]
+

= dtj

[
ts(t)
t− s(t)

(
ξ̂n+1(t)
s(t)− tj

ds(t) +
ξ̂n+1(s(t))
t− tj

dt

)]
+

,

because the extra terms on the LHS do not contribute to the polynomial part in t.
Therefore, it suffices to show that

(6.17) dtj

[
ts(t)
t− s(t)

ξ̂n+1(t)− ξ̂n+1(tj)
s(t)− tj

(
s(t)− tj

v(s(t))− v(tj)
dv(s(t))
ds(t)

− 1
)
ds(t)

]
+

+ dtj

[
ts(t)
t− s(t)

ξ̂n+1(s(t))− ξ̂n+1(s(tj))
t− tj

(
t− tj

v(t)− v(tj)
dv(t)
dt
− 1
)
dt

]
+

= dtj

[
ts(t)
t− s(t)

(ξ̂n+1(t)− ξ̂n+1(tj))
(

−dv(t)
−v(t)− v(tj)

− ds(t)
s(t)− tj

)]
+

+ dtj

[
ts(t)
t− s(t)

(
ξ̂n+1(s(t))− ξ̂n+1(s(tj))

)( dv(t)
v(t)− v(tj)

− dt

t− tj

)]
+

= dtj

[
ts(t)
t− s(t)

(ξ̂n+1(t)− ξ̂n+1(tj))
(

−dv(t)
−v(t)− v(tj)

− ds(t)
s(t)− tj

)]
+

− dtj
[
ts(t)
t− s(t)

(ξ̂n+1(t)− ξ̂n+1(tj))
(

dv(t)
v(t)− v(tj)

− dt

t− tj

)]
+

= 0,

in light of (6.8). At this stage we need the following lemma:
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Lemma 6.5. For every n ≥ 0 we have the identity

(6.18) 0 = dtj

[
(tn − tnj )

(
−dv
−v − vj

− ds(t)
s(t)− tj

− dv

v − vj
+

dt

t− tj

)∣∣∣∣ v=v(t)
vj=v(tj)

]
+

.

Proof of Lemma. First let us recall that B(t, tj) = dtj
(
dt
t−tj

)
is the Cauchy differ-

entiation kernel of the Lambert curve C, which is a symmetric quadratic form on
C × C with second order poles along the diagonal t = tj . The function v = v(t)
is a local coordinate change, which transforms v = 0 to t = ∞. Therefore, the
form dv

v−vj −
dt
t−tj is a meromorphic 1-form locally defined on C×C, which is actu-

ally holomorphic on a neighborhood of the diagonal and vanishes on the diagonal.
Therefore, it has the Taylor series expansion in 1/t and 1/tj without a constant
term.

Since v(s(t)) = −v(t), the form dv
v+vj

− ds(t)
s(t)−tj is the pull-back of dv

v−vj −
dt
t−tj

via the local involution s : C → C that is applied to the first factor. Thus this
is again a local holomorphic 1-form on C × C and has exactly the same Taylor
expansion in 1/s(t) and 1/tj . Therefore, in the 1/tj-expansion of the difference
−dv
−v−vj −

ds(t)
s(t)−tj −

dv
v−vj + dt

t−tj , no coefficient contains a constant term because it
is canceled by taking the difference. This implies that the difference 1-form does
not contain any terms without 1/t. In other words, we have

(6.19) 0 =
[
tnj

(
−dv
−v − vj

− ds(t)
s(t)− tj

− dv

v − vj
+

dt

t− tj

)∣∣∣∣ v=v(t)
vj=v(tj)

]
+

.

Note that we have an expression of the form

(6.20)
[
−dv
−v − vj

− ds(t)
s(t)− tj

− dv

v − vj
+

dt

t− tj

]
v=v(t)
vj=v(tj)

= f(t−1) +
1
tj
F

(
1
t
,

1
tj

)
,

where f is a power series in one variable and F a power series in two variables.
Therefore,

(6.21) 0 = dtj

[
tn
(
−dv
−v − vj

− ds(t)
s(t)− tj

− dv

v − vj
+

dt

t− tj

)∣∣∣∣ v=v(t)
vj=v(tj)

]
+

.

The lemma follows from (6.19) and (6.21).

It is obvious from (6.19) and (6.20) that

(6.22) 0 = dtj

[
(tn−tnj )

ts(t)
t−s(t)

(
−dv
−v−vj

− ds(t)
s(t)−tj

− dv

v−vj
+

dt

t−tj

)∣∣∣∣ v=v(t)
vj=v(tj)

]
+

.

Since ξ̂n+1(t) is a polynomial in t, (6.17) follows from (6.22). This completes the
proof of the proposition.
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§7. Proof of the Bouchard–Mariño topological recursion formula

In this section we prove (1.5). Since it is equivalent to Conjecture 4.8, we establish
the Bouchard–Mariño conjecture. Our procedure is to take the direct image of the
equation (3.12) on the Lambert curve via the projection π : C → C. To compute
the direct image, it is easier to switch to the coordinate v of the Lambert curve,
because of the relation (2.17). This simple relation tells us that the direct image
of a function f(v) on C via the projection π : C → C is just the even powers of
the v-variable in f(v):

π∗f = f(v) + f(−v).

After taking the direct image, we extract the principal part of the meromorphic
function in v, which becomes the Bouchard–Mariño recursion (1.5). To this end,
we utilize the formulas developed in Section 6.

Here again let us consider the ` = 1 case first. We start with Proposition 3.4.

Theorem 7.1. We have the equality

(7.1) −
∑

n≤3g−2

〈τnΛ∨g (1)〉g,1η−1(v)ηn+1(v) =
1
2

∑
a+b≤3g−4

[
〈τaτbΛ∨g−1(1)〉g−1,2

+
stable∑

g1+g2=g

〈τaΛ∨g1(1)〉g1,1〈τbΛ∨g2(1)〉g2,1
]
(ηa+1(v)ηb+1(v) +Ow(1)),

where Ow(1) denotes a holomorphic function in w = 1
2v

2.

Proof. We use (6.8) to change from the t-variables to the v-variables. The function
factor of the LHS of (3.6) becomes

(2g − 1)ηn(v) + ηn+1(v)− η−1(v)ηn+1(v) + vfL(w) + const +O(w),

where fL(w) is a Laurent series in w. The function factor of the RHS is

ηa+1(v)ηb+1(v) + vfR(w) + const +O(w),

where fR(w) is another Laurent series in w. We note that the product of two ηn-
functions is a Laurent series in w. Therefore, extracting the principal part of the
Laurent series in w, we obtain

−
∑

n≤3g−2

〈τnΛ∨g (1)〉g,1η−1(v)ηn+1(v) =
1
2

∑
a+b≤3g−4

[
〈τaτbΛ∨g−1(1)〉g−1,2

+
stable∑

g1+g2=g

〈τaΛ∨g1(1)〉g1,1〈τbΛ∨g2(1)〉g2,1
]
(ηa+1(v)ηb+1(v) + const +O(w)),

which completes the proof of the theorem.
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Corollary 7.2. The cut-and-join equation (3.5) for the case of ` = 1 implies the
topological recursion (5.6).

Proof. Going back to the t-coordinates and using (2.10), (2.11), and (6.8) in (7.1),
we establish

(7.2)
∑

n≤3g−2

〈τnΛ∨g (1)〉g,1ξn(t) =
1
2

∑
a+b≤3g−4

(
〈τaτbΛ∨g−1(1)〉g−1,2

+
stable∑

g1+g2=g

〈τaΛ∨g1(1)〉g1,1〈τbΛ∨g2(1)〉g2,1
)[ηa+1(v)ηb+1(v)

η−1(v)
vdv

∣∣∣∣
v=v(t)

]
+

,

since [
const +O(w)

η−1(v)
vdv

∣∣∣∣
v=v(t)

]
+

= 0.

From Corollary 6.3, we conclude that (7.2) is identical to (5.6). This completes the
proof of the topological recursion for ` = 1.

We are now ready to give a proof of (1.5). The starting point is the Laplace
transform of the cut-and-join equation, as established in Theorem 3.7. Since we
are interested in the principal part of the formula in the v-coordinate expansion,
in what follows we ignore all terms that contain any positive powers of vi’s.

First let us deal with the unstable (0, 2)-terms computed in (3.9). Using (6.9),
we find

− ∂

∂wi
Ĥ0,2(ti, tj) ≡ −

1
vi

∂

∂vi
log (η−1(vi)− η−1(vj)) ≡

η0(vi)
η−1(vi)− η−1(vj)

modulo holomorphic functions in wi and wj . Therefore, the result of the coordinate
change from the t-coordinates to the v-coordinates is the following:

(7.3)
∑
nL

〈τnLΛ∨g (1)〉g,`
(

(2g − 2 + `)ηnL(vL) +
∑̀
i=1

ηni+1(vi)ηL\{i}(vL\{i})

−
∑̀
i=1

η−1(vi)ηni+1(vi)ηnL\{i}(vL\{i})
)

≡ 1
2

∑̀
i=1

∑
nL\{i}

∑
a,b

(
〈τaτbτnL\{i}Λ∨g−1(1)〉g−1,`+1

+
stable∑

g1+g2=g
ItJ=L\{i}

〈τaτnIΛ∨g1(1)〉g1,|I|+1〈τbτnJΛ∨g2(1)〉g2,|J|+1

)
× ηa+1(vi)ηb+1(vi)ηnL\{i}(vL\{i})
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+
1
2

∑̀
i=1

∑
j 6=i

∑
nL\{i,j}

∑
m

〈τnL\{i,j}τmΛ∨g (1)〉g,`−1ηnL\{i,j}(vL\{i,j})

× ηm+1(vi)η0(vi)− ηm+1(vj)η0(vj)
η−1(vi)− η−1(vj)

,

again modulo terms containing any holomorphic terms in any wk. At this stage we
take the direct image with respect to the projection π : C → C applied to the v1-
coordinate component, and then restrict the result to its principal part, meaning
that we throw away any terms that contain nonnegative powers of any vk. Thanks
to (6.8), only those terms containing ηa(v1)ηb(v1) survive. The last term of (7.3)
requires a separate care. We find

1
2

(
ηm+1(v1)η0(v1)− ηm+1(vj)η0(vj)

η−1(v1)− η−1(vj)
+
ηm+1(v1)η0(v1)− ηm+1(vj)η0(vj)

−η−1(v1)− η−1(vj)

)
= −(ηm+1(v1)η0(v1)− ηm+1(vj)η0(vj))

η−1(vj)
η−1(v1)2 − η−1(vj)2

≡ ηm+1(vj)
v2

1 − v2
j

=
ηm+1(vj)

v2
1

∞∑
k=0

(
vj
v1

)2k

,

modulo terms containing nonnegative terms in vj . Thus by taking the direct image
and reducing to the principal part, (7.3) is greatly simplified. We have obtained:

Theorem 7.3. Modulo terms with holomorphic factors in vk,

(7.4) −
∑
nL

〈τnLΛ∨g (1)〉g,`η−1(v1)ηn1+1(v1)ηnL\{1}(vL\{1})

≡ 1
2

∑
nL\{1}

∑
a,b

(
〈τaτbτnL\{1}Λ∨g−1(1)〉g−1,`+1

+
stable∑

g1+g2=g
ItJ=L\{1}

〈τaτnIΛ∨g1(1)〉g1,|I|+1〈τbτnJΛ∨g2(1)〉g2,|J|+1

)
× ηa+1(v1)ηb+1(v1)ηnL\{1}(vL\{1})

+
1
2

∑
j≥1

∑
nL\{1,j}

∑
m

〈τnL\{1,j}τmΛ∨g (1)〉g,`−1ηnL\{1,j}(vL\{1,j})

× ηm+1(vj)
v2

1

finite∑
k=0

(
vj
v1

)2k

.

We note that only finitely many terms of the expansion contribute in the last
term of (7.4). Appealing to Corollary 6.3 and Proposition 6.4, we obtain (1.5),
after switching back to the t-coordinates. We have thus completed the proof of the
Bouchard–Mariño conjecture [3].
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Appendix. Examples of linear Hodge integrals and Hurwitz numbers

In this Appendix we give a few examples of linear Hodge integrals and Hurwitz
numbers computed by Michael Reinhard.

Table 1. Examples of linear Hodge integrals.

g = 2

` = 1 〈τ3λ1〉 1
480

` = 2 〈τ2
2λ1〉 5

576

g = 3

` = 1 〈τ6λ1〉 7
138 240

〈τ5λ2〉 41
580 608

` = 2
〈τ2τ5λ1〉 323

483 840
〈τ2τ4λ2〉 2329

2 903 040

〈τ3τ4λ1〉 19
17 920

〈τ2
3λ2〉 1501

1 451 520

` = 3 〈τ2
2 τ4λ1〉 541

60 480
〈τ2τ3

3λ1〉 89
7680

〈τ2
2 τ3λ2〉 859

96 768

` = 4 〈τ3
2 τ3λ1〉 395

3456
〈τ4

2λ2〉 17
192

g = 4

` = 1 〈τ9λ1〉 1
1 244 160

〈τ8λ2〉 1357
696 729 600

〈τ7λ3〉 13
6 220 800

` = 2

〈τ2τ8λ1〉 841
38 707 200

〈τ2τ7λ2〉 33 391
696 729 600

〈τ3τ5λ3〉 2609
29 030 400

〈τ3τ7λ1〉 221
4 147 200

〈τ3τ6λ2〉 1153
11 059 200

〈τ2
4λ3〉 6421

58 060 800

〈τ4τ6λ1〉 517
5 806 080

〈τ4τ5λ2〉 979
6 451 200

〈τ2
5λ1〉 1223

11 612 160
〈τ2τ6λ3〉 5477

116 121 600

` = 3

〈τ2
2 τ7λ1〉 3487

5 806 080
〈τ3τ2

4λ1〉 137
46 080

〈τ2
3 τ4λ2〉 58 951

16 588 800

〈τ2τ3τ6λ1〉 50 243
38 707 200

〈τ2
2 τ6λ2〉 137 843

116 121 600
〈τ2

2 τ5λ3〉 241
230 400

〈τ2τ4τ5λ1〉 2597
1 382 400

〈τ2τ3τ5λ2〉 577
258 048

〈τ2τ3τ4λ3〉 27 821
16 588 800

〈τ2
3 τ5λ1〉 3359

1 382 400
〈τ2τ2

4λ2〉 2657
967 680

〈τ3
3λ3〉 4531

2 073 600

g = 5

` = 1
〈τ12λ1〉 1

106 168 320
〈τ10λ3〉 71

1 114 767 360

〈τ11λ2〉 577
16 721 510 400

〈τ9λ4〉 21 481
367 873 228 800
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Some examples of g = 5 Hurwitz numbers:

h5,(1) = 0, h5,(4) = 272 097 280,

h5,(2) = 1/2, h5,(5) = 333 251 953 125,

h5,(3) = 59 049, h5,(6) = 202 252 053 177 720.

Table 2. Examples of Hurwitz numbers for 1 ≤ g ≤ 4 and |µ| ≤ 6.

hg,µ g = 1 g = 2 g = 3 g = 4

(1) 0 0 0 0

(2) 1/2 1/2 1/2 1/2

(1, 1) 1/2 1/2 1/2 1/2

(3) 9 81 729 6561

(2, 1) 40 364 3280 29 524

(1, 1, 1) 40 364 3280 29 524

(4) 160 5824 209 920 7 558 144

(3, 1) 1215 45 927 1 673 055 60 407 127

(2, 2) 480 17 472 629 760 22 674 432

(2, 1, 1) 5460 206 640 7 528 620 271 831 560

(1, 1, 1, 1) 5460 206 640 7 528 620

(5) 3125 328 125 33 203 125 3 330 078 125

(4, 1) 35 840 3 956 736 409 108 480 41 394 569 216

(3, 2) 26 460 2 748 816 277 118 820 27 762 350 616

(3, 1, 1) 234 360 26 184 060 2 719 617 120 275 661 886 500

(2, 2, 1) 188 160 20 160 000 2 059 960 320 207 505 858 560

(2, 1, 1, 1) 1 189 440 131 670 000 13 626 893 280

(1, 1, 1, 1, 1) 1 189 440 131 670 000

(6) 68 040 16 901 136 3 931 876 080 895 132 294 056

(5, 1) 1 093 750 287 109 375 68 750 000 000 15 885 009 765 625

(4, 2) 788 480 192 783 360 44 490 434 560 10 093 234 511 360

(4, 1, 1) 9 838 080 2 638 056 960 638 265 788 160 148 222 087 453 440

(3, 3) 357 210 86 113 125 19 797 948 720 4 487 187 539 835

(3, 2, 1) 14 696 640 3 710 765 520 872 470 478 880 199 914 163 328 880

(3, 1, 1, 1) 65 998 800 17 634 743 280 4 259 736 280 800

(2, 2, 2) 2 016 000 486 541 440 111 644 332 800 25 269 270 586 560

(2, 2, 1, 1) 80 438 400 20 589 085 440 4 874 762 692 800

(2, 1, 1, 1, 1) 382 536 000 100 557 737 280

(1, 1, 1, 1, 1, 1) 382 536 000
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