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Local Duality and Polarized Hodge Modules

by

Christian Schnell

Abstract

We find a relationship between the graded quotients of a filtered holonomic D-module,
their duals as coherent sheaves, and the characteristic variety, in case the filtered
D-module underlies a polarized Hodge module on a smooth algebraic variety. The proof
is based on M. Saito’s result that the associated graded module is Cohen–Macaulay, and
on local duality for the cotangent bundle. The result plays a role in the study of Néron
models for families of intermediate Jacobians, recently constructed by the author.
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§1. Overview

§1.1. Introduction

Filtered holonomic D-modules play an important role in the theory of mixed Hodge
modules, where they appear as natural generalizations of the flat vector bundles
underlying variations of Hodge structure. One of M. Saito’s main results in [7] is
that a polarized variation of Hodge structure H on a Zariski-open subset U of a
complex manifold X can be canonically extended to a polarized Hodge module
on X. The extension produces, in particular, a holonomic D-module M that is
the minimal extension of the flat vector bundle (HO ,∇); and a good filtration
F = F•M by OX -coherent subsheaves that naturally extend the Hodge bundles,
in the sense that FkM|U = F−kHO .

In general, the process that leads from H to the pair (M, F ) is complicated;
but there are two interesting cases where a very concrete description is possible:

Communicated by M. Kashiwara. Received December 3, 2009.

C. Schnell: Department of Mathematics, University of Illinois, Chicago, IL 60607, USA;
e-mail: cschnell@math.uic.edu

c© 2011 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



706 C. Schnell

1. When X−U is a divisor with normal crossing singularities, (M, F ) is obtained
from the canonical extension of the flat vector bundle (HO ,∇) by differentiation
(see [6, §3.4], or [8, p. 290]).

2. When X is the projective space parametrizing hypersurface sections of a smooth
projective variety, and H is the variation of Hodge structure on the vanishing
cohomology, (M, F ) is obtained from residues of meromorphic forms, with the
filtration given by pole order [10].

A recent discovery is that the sheaves FkM can be used very nicely in geomet-
ric constructions, although they are usually not vector bundles. The best example
is the author’s construction of Néron models for arbitrary families of intermediate
Jacobians J(H) → U , for H of weight −1. As shown in [11], there is an analytic
space J̄(H)→ X that naturally extends the family; it is obtained as a quotient of
the space T (F0M), where for any coherent sheaf F , we define T (F ) as the spec-
trum of the symmetric algebra on F . This construction has useful consequences
for the study of normal functions, especially their zero loci and singularities.

With this in mind, the purpose of this paper is to investigate the properties of
the coherent sheaves FkM. The main result is a kind of duality theorem for filtered
D-modules (M, F ) that underlie polarized Hodge modules: we show that there is
a close relationship between (1) the graded quotients GrFkM, (2) their duals as
coherent sheaves, and (3) the characteristic variety ofM. In a forthcoming paper,
we apply this seemingly technical result to show that the Néron model J̄(H) for the
family of hypersurface sections of an even-dimensional smooth projective variety
has many good properties.

§1.2. Main result

To state the general result, let M be a polarized Hodge module of weight w on a
smooth complex algebraic variety X. There is always a Zariski-open subset U ⊆ X
such that the restriction of M to U is a polarized variation of Hodge structure of
weight n = w − d. As above, let (M, F ) be the filtered left holonomic D-module
underlying M , and let ΘX be the sheaf of sections of the tangent bundle of X.
The finitely-generated graded Sym ΘX -module

(1.1) GrFM =
⊕
p∈Z

GrFp M

defines a coherent sheaf on the cotangent bundle of X, whose support is the char-
acteristic variety of M. Let P = P(ΘX) be the projectivization of the cotangent
bundle, and π : P → X the natural map.

Here is the main result of this paper, stated in a way that reduces notation.
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Theorem. Let C = C (M, F ) be the coherent sheaf on P associated to the graded
Sym ΘX-module G = GrFM. Then for every k ∈ Z, there is an exact sequence

0→ Hom(G−n−k,OX)→ Gk → π∗(C ⊗ OP (k))→ Ext1(G−n−k,OX)→ 0,

where the first map is induced by the polarization on the variation of Hodge struc-
ture. For i ≥ 2 and k ∈ Z, we similarly have isomorphisms

Ri−1π∗(C ⊗ OP (k)) ' Ext i(G−n−k,OX).

Of course, there are more elegant versions: one really has an exact sequence
and isomorphisms of graded S -modules, where S = Sym ΘX (see Theorem 3.2);
and, in fact, they come from a triangle in a suitable derived category (see Theo-
rem 4.3).

A special case of the theorem was obtained in [10] for the family of hyper-
surface sections of a smooth projective variety, by lengthy calculations (using the
description of (M, F ) in terms of residues). Here, we give a far more conceptual
proof for the general result, based on two ingredients: a result by Saito and Kashi-
wara, to the effect that GrFM is Cohen–Macaulay as an S -module when (M, F )
underlies a polarized Hodge module (see [9, p. 55] for more information); and local
duality on the cotangent bundle T ∗X , relative to the zero section.

To orient the reader, here is a brief outline of the paper: After recalling the
relevant facts about local cohomology and local duality in §2.1–2.2, we deduce
our main result from the Cohen–Macaulay property of GrFM in §3.1–3.2. We
also show, in §3.3, that the initial map in the exact sequence is induced by the
polarization of M . Concretely, this means that on the dense open set where M is
a polarized variation of Hodge structure of weight n, the map

HomOX
(G−n−k,OX)→ Gk

is given (up to a sign factor) by S(−,−), for S the polarization and d = dimX.
As mentioned above, the exact sequence and the isomorphisms in Theorem 3.2 are
really part of an exact triangle in the derived category (of quasi-coherent graded
S -modules). This circumstance is useful when applying other functors, and so we
deduce it from the preceding sections in §4.1.

§1.3. Applications

The main application of Theorem 3.2 is to the study of the spaces T (FkM), and
hence to the Néron model of [11]. We briefly describe the result; more details can
be found in [12]. Suppose that X = |OY (m)| parametrizes hypersurface sections
of degree m of a smooth projective variety Y of dimension n + 1. Denote by
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π : Y → X the corresponding family of hypersurfaces Yx = π−1(x). Let H be the
variation of Hodge structure with fibers the variable part of the cohomology,

Hx = ker
(
Hn(Yx,Q)→ Hn+2(X,Q(1))

)
,

and let (M, F ) be the filtered D-module underlying its extension to a polarized
Hodge module on X.

Theorem. Given an integer p > 0, the sheaves FkM in the range −n ≤ k ≤ 0
satisfy Serre’s condition Sp once m� 0. In particular, they are reflexive.

It follows that the Néron model J̄(H) (for odd values of n) is, except over a
subset whose codimension increases with m, the quotient of a vector bundle; in
particular, it is a complex manifold in a neighborhood of those points.

To verify Serre’s condition, one has to show that the support of the sheaves
Ext i(Gk,OX) has codimension at least i+p, for every i > 0. This can be done with
the help of Theorem 3.2, as follows: First, one proves that the family of hyper-
surface sections is naturally embedded into the projectivized cotangent bundle P ,
and that the support of the sheaf C (M, F ) is precisely the union of all the singular
points in the hypersurfaces. By taking m� 0, one can make the codimension of the
subset of X corresponding to hypersurfaces with “many” singularities arbitrarily
large and deduce the necessary vanishing of the Ext-sheaves from the theorem.

Another consequence is the following vanishing theorem for Ext-sheaves.

Theorem. If the hypersurface Yx corresponding to a point x ∈ X has a singu-
lar locus of dimension ≤ k, then the coherent sheaves Ext i(Gk,OX) vanish in a
neighborhood of x for all i ≥ k + 1.

In §4.3, we also give a small application of Theorem 3.2 to the study of the de
Rham complex DRX(M), where (M, F ) is still a filtered left D-module underlying
a polarized Hodge module M of weight n+d. The complex is naturally filtered by
subcomplexes Fk DRX(M), and we show that the inclusion Fp−n−1 DRX(M) ⊆
DRX(M) is a filtered quasi-isomorphism, where p ∈ Z is such that F−pM = 0.
For example, when M is the intermediate extension of a polarized variation of
Hodge structure of weight n, and Fn+1M = F−n−1M = 0, then F0 DRX(M) ⊆
DRX(M) is a quasi-isomorphism. This fact played a role in [10], where properties
of (M, F ) were used to study normal functions associated to primitive Hodge
classes.

§1.4. Notation

We will use the following notation when working with sheaves of graded modules.
For E → X a vector bundle of rank d, and E the corresponding locally free sheaf
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on X, we let S = Sym E ∨ be the symmetric algebra. We define

ωS = det E ∨ ⊗OX
S (−d).

Let G be a graded S -module. Its graded dual is the module

D(G ) =
⊕
k∈Z
HomOX

(G−k,OX),

with Hom(G−k,OX) in degree k, and the module structure given by the rule
(sφ)(g) = φ(sg). The involution (−1) : E → E allows us to define

(1.2) G r = (−1)∗G ;

this is the same graded OX -module as G , but with the S -module structure
changed so that sections of Sk act with an extra factor of (−1)k. When G is d-
dimensional and Cohen–Macaulay as an S -module, meaning that Ext iS (G ,S ) = 0
for i 6= d, we call the sheaf

Ĝ = ExtdS (G , ωS )

the dual S -module.
Except where mentioned otherwise, we use left D-modules in this paper (where

[8] uses right D-modules). When M is a mixed Hodge module, the effect of a Tate
twist M(k) on the underlying filtered D-module (M, F ) is as follows: (M, F )(k) =
(M, F•−k).

§2. Local duality on vector bundles

Let X be a smooth algebraic variety (or any quasi-compact variety where every
coherent sheaf is the quotient of a locally free one), and E → X a vector bundle
of rank d ≥ 1. We review several facts about local cohomology on E with support
in the zero section, as well as about local duality. The case when E is an affine
space is well-known, and is explained very clearly in Appendix 1 of D. Eisenbud’s
book [3, pp. 187–199]. Short proofs are included here for the sake of completeness;
they are mostly straightforward generalizations of the ones in [3].

§2.1. Local cohomology on a vector bundle

Let E be a locally free sheaf on X of rank d ≥ 1. The symmetric algebra

S = Sym E ∨ =
⊕
k≥0

Symk E ∨

is a sheaf of graded OX -algebras, and E = Spec S is the vector bundle correspond-
ing to E . The map f : E → X is affine, and we have S ' f∗OE . Quasi-coherent
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sheaves on E are in one-to-one correspondence with quasi-coherent S -modules
on X; given a sheaf of S -modules G , we let GE be the corresponding sheaf on E,
so that f∗GE ' G .

The original variety X is naturally embedded into E by the zero section of
the vector bundle. Let F be any quasi-coherent sheaf on E. The subsheaf H0

X(F )
consists of all sections of F whose support is contained in the zero section. Then
H0
X is a left-exact functor on quasi-coherent OE-modules, and its i-th right-derived

functor is denoted by HiX ; we call the sheaf HiX(F ) the i-th local cohomology sheaf
of F with support in the zero section of E. The corresponding quasi-coherent S -
module is f∗HiX(F ); when G is a graded S -module, the local cohomology modules
f∗HiX(GE) are naturally graded S -modules as well. More information about local
cohomology sheaves can be found in [5, Exposés I and II on pp. 5–26], in the
expected greater generality.

We also consider the projectivization of the vector bundle, given by P =
Proj S , together with the projection map π : P → X (see [4, Chapitre II, §3] for
details). As usual, we write OP (1) for the universal line bundle on P . A finitely
generated graded S -module

G =
⊕
k∈Z

Gk

defines a coherent sheaf GP on the projective bundle P . We let G (m) be the graded
S -module with G (m)k = Gm+k; evidently, OP (1) is the coherent sheaf associated
to S (1). For F a coherent sheaf on P , and i ≥ 0, we have a graded S -module

RiΓ∗(F ) =
⊕
k∈Z

Riπ∗(F ⊗ OP (k));

we usually write Γ∗(F ) in place of R0Γ∗(F ). Since OP (1) is relatively ample,
the natural map G → Γ∗(GP ) is an isomorphism in large degrees; its behavior in
arbitrary degrees is related to the local cohomology sheaves of GE , as shown by
the following proposition.

Proposition 2.1. Let G be a graded S -module on X. With the notation intro-
duced above, there is an exact sequence

0→ f∗H0
X(GE)→ G → Γ∗(GP )→ f∗H1

X(GE)→ 0

of graded S -modules. Moreover, for each i ≥ 2, we have an isomorphism

Ri−1Γ∗(GP ) ' f∗HiX(GE),

again of graded S -modules.
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Proof. For the convenience of the reader, we briefly review the argument. Consider
the following commutative diagram of maps:

E −X j- E

P

q

?
π - X

f

?

By [5, Corollaire 2.11], we have an exact sequence

(2.2) 0→ H0
X(GE)→ GE → j∗j

∗GE → H1
X(GE)→ 0.

Now G is graded, and so we have j∗GE ' q∗GP . Using the projection formula, we
then find that

f∗j∗j
∗GE ' π∗ (GP ⊗ q∗OE−X) ' π∗

(
GP ⊗

⊕
k∈Z

OP (k)
)
' Γ∗(GP ).

Applying the exact functor f∗ to the sequence in (2.2), and noting that f∗GE ' G ,
we obtain the first half of the proposition. The second half follows by similar
considerations from the isomorphism Ri−1j∗j

∗GE ' HiX(GE) for i ≥ 2, also given
in [5, p. 16].

§2.2. Local duality on a vector bundle

Given a graded S -module G , we define its graded dual to be

(2.3) D(G ) =
⊕
k∈Z
HomOX

(G−k,OX).

This is again a graded S -module, with the summand HomOX
(G−k,OX) in de-

gree k; the action of S is given by the rule (s · φ)(g) = φ(sg). The i-th derived
functor of D is then evidently

Di(G ) =
⊕
k∈Z
Ext iOX

(G−k,OX).

Note that even when G is finitely generated as an S -module, Di(G ) is usually
not; unless, of course, G actually has finite length.

In analogy with the canonical line bundle on projective space, we also in-
troduce the graded S -module ωS = det E ∨ ⊗OX

S (−d), whose graded piece in
degree k is det E ∨⊗Symk−d E ∨; here d is still the rank of the vector bundle. Then
ωP/X is the sheaf associated to ωS , because a simple calculation with the Euler
sequence for π : P → X shows that

(2.4) ωP/X ' (π∗ det E ∨)⊗ OP (−d).
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The second important result about local cohomology sheaves on a vector
bundle is the following duality theorem, known as graded local duality in the case
of an affine space.

Proposition 2.5. Let G be a finitely generated graded S -module on X. Then
there is a convergent fourth-quadrant spectral sequence of graded S -modules,

Ep,q2 = Dp(Ext−qS (G , ωS ))⇒ Hd+p+qX (GE),

functorial in the sheaf G .

The following notion will be useful during the proof. A graded S -module is
called basic if it is a finite direct sum of modules of the form B⊗OX

S (m), with B

a locally free OX -module. The local cohomology sheaves are easy to describe in
that case.

Lemma 2.6. Let F = B ⊗S (m) be a basic graded S -module. Then

(2.7) f∗HiX(FE) '

{
D(HomS (F , ωS )) for i = d,

0 otherwise.

Proof. Since B is locally free, one is quickly reduced to the case F = S , where
then FE = OE . When d = 1, the assertion follows immediately from the exact
sequence in Proposition 2.1. Thus we may assume from now on that d ≥ 2. Since
π∗OP (k) ' Sk, while Riπ∗OP (k) = 0 for 1 ≤ i ≤ d − 1, Proposition 2.1 shows
that HiX(OE) = 0 for i 6= d. For i = d, we let

(2.8) H = f∗HdX(OE) '
⊕
k∈Z

Rd−1π∗OP (k).

At this point, one can easily obtain the isomorphism in (2.7) by using duality for
the morphism π : P → X. Following [3, p. 191], we shall give a more concrete
derivation using a Čech complex, because this has the advantage of showing the
S -module structure on H more clearly.

We first consider the problem locally. So let U ' SpecA be an affine open
subset of X over which the vector bundle E is trivial. Then S = Γ(U,S ) '
A[t1, . . . , td] as graded A-algebras, and f−1(U) ' SpecS. Let I = At1 + · · ·+Atd
be the irrelevant ideal, and V (I) = Spec(S/I). As in the proof of Proposition 2.1,
the local cohomology module H = Γ(U,H) that we need to compute is

H = Hd
V (I)(SpecS,O) ' Hd−1(SpecS − V (I),O);
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it can be found by the Čech complex for the standard open cover of SpecS−V (I).
As a graded S-module, H is therefore isomorphic to the cokernel of the map

d⊕
i=1

S[(t1 · · · ti−1ti+1 · · · td)−1]→ S[(t1 · · · td)−1].

Thus Hk is generated by elements of the form F/(t1 · · · td)m, where F is a ho-
mogeneous polynomial of degree k+ dm. From degree considerations, we see that
Hk = 0 for k > −d, while H−d ' A, generated by (t1 · · · td)−1. We now have a
map

Hk → HomA(S−k−d, H−d),

by sending an element F/(t1 · · · td)m ∈ Hk to the functional G 7→ FG/(t1 · · · td)m,
for G ∈ S−k−d. This is easily seen to be an isomorphism; moreover, since the
S-module structure on H is simply given by multiplication, we obtain

H '
⊕
k∈Z

HomA(S−k−d, H−d) = H−d ⊗A D(S(−d))

as graded S-modules. As written, the isomorphism is coordinate-independent, and
so we get a global isomorphism of graded S -modules

H ' H−d ⊗OX
D(S (−d)).

Note that H−d has rank one, and is therefore a line bundle on X. Because of (2.8),
we find that H−d ' Rd−1π∗OP (−d) ' det E , and this concludes the proof.

Lemma 2.9. Let G be a finitely generated graded S -module on X. Then G can
be resolved in the form

· · · → F−2 → F−1 → F 0 → G → 0

by basic graded S -modules F i.

Proof. It suffices to show that every finitely generated graded S -module G admits
a surjection from a basic one. Since G is finitely generated, and X is quasi-compact,
there is a finite set F ⊆ Z such that⊕

k∈F

Gk ⊗OX
S (−k)→ G

is surjective. Each Gk is a coherent sheaf of OX -modules, and because X is smooth,
there is a locally free sheaf Bk mapping onto Gk. Then F 0 =

⊕
k∈F Bk ⊗S (−k)

is a basic module mapping onto G .

Here is the proof of Proposition 2.5.
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Proof. Let G be any finitely generated graded S -module. According to Lemma
2.9, there is a complex F • of basic graded S -modules resolving G . The local
cohomology sheaves of G are therefore computed by a spectral sequence

Ep,q1 = f∗HqX(F p)⇒ Hp+qX (GE).

From (2.7), all but one row of the E1-page is zero, and so Hd+iX (GE) is isomorphic
to the cohomology in degree i of the complex

f∗HdX(F •) ' D(HomS (F •, ωS )).

The spectral sequence is now simply the one for the composition of the two con-
travariant functors HomS (−, ωS ) and D.

§2.3. Local duality for Cohen–Macaulay modules

Now suppose that the graded S -module G is in addition Cohen–Macaulay of
dimension d; that is, the associated coherent sheaf GE is Cohen–Macaulay on E,
with purely d-dimensional support. Consequently, ExtqS (G ,S ) = 0 unless q = d;
let

Ĝ = ExtdS (G , ωS ) = ExtdS (G ,S (−d))⊗OX
det E ∨

be the dual S -module. The spectral sequence in Proposition 2.5 degenerates at
the E2-page, because it has only one nonzero row, and we find that

f∗HpX(GE) ' Dp(Ĝ ) =
⊕
k∈Z
ExtpOX

(Ĝ −k,OX)

for all p ≥ 0. In combination with Proposition 2.1, we now get the following result.

Theorem 2.10. Let G be a finitely generated graded S -module, which is Cohen–
Macaulay of dimension d = rk E . Let Ĝ = ExtdS (G , ωS ) be the dual module. Then
there is an exact sequence

0→ D(Ĝ )→ G → Γ∗(GP )→ D1(Ĝ )→ 0

of graded S -modules. Moreover, for each i ≥ 2, we have an isomorphism

Ri−1Γ∗(GP ) ' Di(Ĝ ),

again respecting the graded S -module structure on both sides.

§3. Polarized Hodge modules

From now on, let X be a nonsingular complex algebraic variety of dimension d ≥ 1.
The cotangent bundle E = T ∗X is then a vector bundle of rank d on X; as in §2.1,
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we let P = P(ΘX) be its projectivization, π : P → X the natural map, and OP (1)
the universal line bundle on P . Also let S = Sym ΘX . Note that det E = ωX , and
so ωS = ω−1

X ⊗OX
S (−d).

§3.1. The Cohen–Macaulay property

Let M be a polarized Hodge module on X of weight w (see [9] for an overview of
the theory). We write (M, F ) for the underlying filtered holonomic left D-module,
and consider the graded S -module

G = GrFM =
⊕
k∈Z

GrFkM.

As before, GE denotes the corresponding coherent sheaf on E, and GP = C (M, F )
is what might be called the “characteristic sheaf” of the D-module, defined on
P . The support of the sheaf GE is the characteristic variety of the D-module [1,
pp. 212–213]; it is a cone in E, and the support of GP is the projectivization of that
cone. Since M is holonomic, its characteristic variety is of pure dimension d. But
because M is a Hodge module, much more is true: in fact, Saito has shown that G

is always a Cohen–Macaulay module over S (in [7, Lemme 5.1.13]). Consequently,
the sheaf GE is Cohen–Macaulay of dimension d on E, and so Theorem 2.10 may
be applied to it.

Moreover, the dual Ĝ = ExtdS (G , ωS ) = ExtdS (G ,S (−d))⊗ω−1
X can be com-

puted explicitly in this case, since M is polarized. To do this, recall from (1.2) that
G r is the same graded OX -module as G , but with the action of S changed so that
sections of Sk act with an extra factor of (−1)k. Evidently, we have G r ' G⊗S S r.

Now let M ′ = DX(M) be the Verdier dual of the Hodge module, and (M′, F )
= DX(M, F ) the underlying filtered left D-module. According to [9, pp. 54–55],
we have

M′ = ExtdDX
(M,DX ⊗OX

ω−1
X ),

where the filtration on DX ⊗ ω−1
X is given by Fp(DX ⊗ ω−1

X ) = Fp−2dDX ⊗ ω−1
X .

Because of strictness (which is equivalent to the Cohen–Macaulay property), we
can pass to the associated graded modules to obtain

GrFM′ = ExtdS (G r,S (−2d))⊗ ω−1
X ' Ĝ r(−d).

The change in module structure from G to G r happens because, in computingM′,
one is really passing from M to the associated right D-module ωX ⊗OX

M, and
the right action of ΘX on ωX ⊗M is given by the rule

(ω ⊗m) · ξ = (ω · ξ)⊗m− ω ⊗ (ξm),

thus introducing an additional sign when passing to the graded module.
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A polarization on M is an isomorphism M ' DX(M)(−w), where w is the
weight of M . If M is polarized, we thus have

(M, F ) ' DX(M, F )(−w) = (M′, F•+w).

When combined with the isomorphism above, this gives

(3.1) G ' (GrFM′)(w) ' Ĝ r(w − d),

or in other words, Ĝ ' G r(d− w).

§3.2. Duality for polarized Hodge modules

We now obtain from Theorem 2.10 the following result about polarized Hodge
modules.

Theorem 3.2. Let M be a polarized Hodge module of weight w = d+n on the non-
singular d-dimensional complex algebraic variety X. Let (M, F ) be the underlying
filtered left D-module, and write G = GrFM for the associated graded S -module.
Also let C = C (M, F ) be the corresponding coherent sheaf on P = P(ΘX). Then
there is an exact sequence

(3.3) 0→ D(G r(−n))→ G → Γ∗(C )→ D1(G r(−n))→ 0

of graded S -modules on X. Similarly, for each i ≥ 2, we have an isomorphism

Ri−1Γ∗(C ) ' Di(G r(−n))

of graded S -modules.

The graded S -module Di(G r(−n)) is easily described. Indeed, for any inte-
ger k, its graded piece in degree k is

Di(G r(−n))k = Ext iOX
(G−n−k,OX) = Ext iOX

(GrF−n−kM,OX).

We thus get, for each k, an exact sequence

(3.4) 0→ Hom(G−n−k,OX)→ Gk → π∗(C ⊗ OP (k))→ Ext1(G−n−k,OX)→ 0.

§3.3. The role of the polarization

The derivation of Theorem 3.2 shows that the map D(G r(−n))→ G in the exact
sequence (3.3) is induced by the polarization of the Hodge module; in fact, the
isomorphism M ' DX(M)(−w) is exactly what was used to pass from Proposi-
tion 2.5 to Theorem 3.2. To see this more clearly, we first consider the case when
M comes from a polarized variation of Hodge structure.
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So let (LO ,∇, F, LQ, S) be a polarized variation of Hodge structure of
weight n. The flat connection ∇ makes the vector bundle LO into a left D-module,
which we denote byM; it is filtered by setting FkM = F−kLO , because of Griffiths
transversality. Note that the graded S -module G = GrFM is of finite length.

Now consider the polarization S : LQ ⊗ LQ → Q(−n) of the variation. By
definition, we have S(F pLO , F

qLO) = 0 for p+ q > n; thus S descends to a non-
degenerate bilinear pairing between Gr−kF LO and Grn+k

F LO for all k. We get an
isomorphism

(3.5)
⊕
k∈Z

GrFkM'
⊕
k∈Z
HomOX

(GrF−n−kM,OX).

Moreover, S is flat for the connection ∇, and so

dS(λ1, λ2) = S(∇λ1, λ2) + S(λ1,∇λ2)

for all sections λ1, λ2 of LO . When λ1 is a section of GrFk−1M = Gr−k+1
F LO , and

λ2 a section of GrF−n−kM = Grn+k
F LO , we therefore have

0 = ξ · S(λ1, λ2) = S(ξ · λ1, λ2) + S(λ1, ξ · λ2)

for arbitrary vector fields ξ. This shows that (3.5) is compatible with the action
by S , provided that sections of Sk act on the right-hand side with an extra factor
of (−1)k. In the notation used in §3.1, the polarization therefore determines an
isomorphism of graded S -modules G ' D(G r(−n)).

Let M be the polarized Hodge module associated to the variation [7, Theo-
rem 5.4.3]; its weight is w = d+ n. As expected, the map in (3.3) is the one given
by the polarization S, up to a sign factor.

Lemma 3.6. Let M be the Hodge module associated to a polarized variation of
Hodge structure (LO ,∇, F, LQ, S) of weight n, with S : LQ ⊗ LQ → Q(−n) the
polarization. Then the map D(G r(−n)) → G in (3.3) is an isomorphism, whose
inverse ⊕

k∈Z
GrkF LO →

⊕
k∈Z
HomOX

(Grn−kF LO ,OX),

is given (up to a sign factor) by the formula λ 7→ S(λ,−) for λ ∈ GrkF LO .

The exact value of the sign depends on the sign conventions that are used for
shifts, total complexes, etc., and so we shall ignore this point here. The proof of
the lemma will be given in §3.4.

Now we return to the case of a general polarized Hodge module M of weight
w = d+ n. There is always a dense Zariski-open subset U ⊆ X on which M is the
Hodge module associated to a polarized variation of Hodge structure of weight n
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[7, Lemme 5.1.10]. Over U , therefore, the map D(G r(−n)) → G is the one in
Lemma 3.6. But then the same has to be true on all of X by continuity. In other
words, through the first map in (3.4), a local section σ of Hom(GrF−n−kM,OX)
determines a local section i(σ) of GrFkM. Lemma 3.6 shows that, at least at points
of U , we have

±S(i(σ),m) = σ(m)

for every local section m of GrF−n−kM. But since both sides are holomorphic
functions, and U is dense in X, the identity has to hold at points of X−U as well.

Remark. A different way to think about this is the following: Over U , any section
of GrFkM determines a linear functional on GrF−n−kM. We can thus think of the
sheaf π∗(C (M, F )⊗OP (k)) in (3.4), whose support is contained in the complement
of U , as giving the obstructions for that functional to extend over points of X−U .

§3.4. Proof of the lemma

The first assertion in Lemma 3.6 is very easy to prove. Indeed, the characteristic
variety ofM is the zero section, and G has finite length as an S -module. We thus
have C (M, F ) = 0, and so the map D(Ĝ )→ G in Theorem 2.10 is an isomorphism
in this case. It follows that the first map in (3.3) is also an isomorphism. Now, given
Saito’s description of the polarization in [7, Lemme 5.4.2], it is certainly believable
that the isomorphism should be given up to a sign by S as in (3.5); however, it
seemed advantageous to write down a more detailed proof. This is the purpose of
the present section; it involves looking more closely at Saito’s construction.

Since it becomes necessary to use both left and right D-modules here, we shall
introduce the following notation. As in §3.3, the filtered left D-module determined
by (LO ,∇, F ) will be denoted by (M, F ), and the associated graded S -module
by G = GrFM. The corresponding right D-module is then N = ωX ⊗OX

M, with
D-module structure defined by the rule

(3.7) (ω ⊗m) · ξ = (ω · ξ)⊗m− ω ⊗ (ξ ·m)

for ξ any section of ΘX . The filtration is given by FpN = ωX ⊗ Fp+dM; together
with (3.7), this shows that

GrFN ' ωX ⊗OX
G r(d),

in the notation of §3.1.
Saito proves that (N , F ) has a canonical resolution by induced D-modules [7,

Lemme 2.1.6]. It is constructed by taking the Spencer complex D̃R(N , F ) (iso-
morphic to the de Rham complex DR(M, F ) for the original left D-module), and
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tensoring on the right by (DX , F ); the augmentation map

D̃R(N , F )⊗OX
(DX , F )→ (N , F )

is a filtered quasi-isomorphism. The associated graded complex

GrF (D̃R(N , F )⊗OX
(DX , F ))

then provides a canonical resolution of GrFN by basic graded S -modules (as in
Lemma 2.6), because GrFN is locally free over OX in our case. We let

F • = ω−1
X ⊗OX

GrF (D̃R(N , F )⊗OX
(DX , F ))(−d),

which resolves G r by basic graded S -modules.
Saito’s construction of the isomorphism (M, F ) ' DX(M, F )(−w) is the

following. He shows that S gives a filtered quasi-isomorphism

D̃R(N , F )→ HomF
OX

(D̃R(N , F ), (ωX , F )[d])(−w);

note that, in this case only, the filtration on ωX is such that GrFk ωX = 0 for k 6= 0.
Passing to induced modules, one gets a filtered quasi-isomorphism

D̃R(N , F )⊗ (DX , F )→ HomDX
(D̃R(N , F )⊗ (DX , F ), (ωX ⊗DX , F )[d])(−w).

Here ωX ⊗OX
DX has two different structures as a right D-module; one is used

when applying HomDX
(−,−), and the other to make the right-hand side into a

complex of right D-modules. Since GrFN is locally free over OX , that complex
computes the Verdier dual DX(N , F )(−w); seeing that the left-hand side is quasi-
isomorphic to (N , F ), one has the desired polarization, on the level of filtered right
D-modules.

Using the strictness property of the right-hand side (again because G is
Cohen–Macaulay), we can now pass to the associated graded complexes. Not-
ing that a Tate twist operates by (M, F )(−w) = (M, F•+w), we obtain a quasi-
isomorphism

ωX ⊗F •(d)→ HomS (ωX ⊗F •(d), ωX ⊗S (w)[d])⊗S S r;

the change in module structure by S r is due to the difference between the two
D-module structures on ωX ⊗OX

DX . After some cancellation, and with the ab-
breviation ωS = ω−1

X ⊗S (−d), we see that

(3.8) F • ⊗S S r → HomS (F •(−n), ωS [d])

is also a quasi-isomorphism. Note that it is still induced by S, up to a sign.
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As we observed before, the complex F • ⊗S S r on the left-hand side is a
resolution of G by basic graded S -modules. Thus the complex

D(HomS (F • ⊗S S r, ωS [d]))

is quasi-isomorphic to f∗H0
X(GE) ' G by local duality, as in §2.2. On the other

hand, it computes the S -module D(Ĝ ), and the isomorphism D(Ĝ ) ' G in Propo-
sition 2.5 is therefore directly given by that complex.

Returning to (3.8), we find that

D(HomS (F • ⊗S S r, ωS [d])) ' D(F •(−n)) ' D(G r(−n)),

since F • resolves G r. If we compose this isomorphism with the inverse ofD(Ĝ )'G ,
we obtain a map

G → D(G r(−n));

by construction, it is the inverse of the isomorphism in (3.3). On the other hand,
our derivation shows that it is given by ±S, and so the remaining assertion of
Lemma 3.6 is proved.

§4. Several consequences

§4.1. Derived category formulation

When applying other functors, it is more convenient to have a version of (3.3) in
the derived category; such a version is easily deduced from §2.1–3.1.

Throughout, we will employ the following (mostly standard) notation for de-
rived categories and derived functors. We let Db

qc(OX) be the bounded derived
category of quasi-coherent sheaves on X, and Db(OX) the full subcategory of ob-
jects whose cohomology sheaves are coherent. Similarly, we write Db

qc,gr(S ) for the
bounded derived category of quasi-coherent and graded S -modules, and Db

gr(S )
for the full subcategory of objects whose cohomology sheaves are finitely generated
as S -modules. As already mentioned, there is an equivalence of categories

Rf∗ : Db
qc(OE)→ Db

qc(S );

for an object F ∈ Db
qc(S ), we write FE for the corresponding object in Db

qc(OE)
such that Rf∗FE ' F . Similarly, for G ∈ Db

qc,gr(S ), we let GP be the correspond-
ing object in Db

qc(OP ). Both operations are exact functors.
The symbol Hi(−) means the i-th cohomology sheaf of a complex of sheaves.

The derived functor of the tensor product will be denoted by ⊗. We write

LD : Db
qc,gr(S )→ Db

qc,gr(S )op
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for the derived functor of the graded dual in (2.3); we also let

RΓ∗ : Db(OP )→ Db
gr(S )

be the derived functor of F 7→ Γ∗(F ) =
⊕

k∈Z F ⊗ OP (k).
The results about local cohomology and local duality from §2.1–2.2 are easily

translated into the language of derived categories. To begin with, we have the
following restatement of Proposition 2.1.

Lemma 4.1. For any object G ∈ Db
gr(S ), there is a functorial exact triangle

Rf∗RH0
X(GE)→ G→ RΓ∗(GP )→ Rf∗RH0

X(GE)[1]

in the derived category Db
qc,gr(S ) of graded, quasi-coherent S -modules on X.

Proof. The result from [5, p. 16] that was used in the proof of Proposition 2.1 is
based on the exact triangle

RH0
X(GE)→ GE → Rj∗j∗GE → RH0

X(GE)[1]

in the derived category Db
qc(OE) of quasi-coherent sheaves on E. To get the conclu-

sion, simply apply the functor Rf∗ to that triangle, and then argue as before.

In like manner, local duality from Proposition 2.5 can be reformulated as
follows. Note that this only works for finitely generated S -modules, because of
the necessity of resolving by basic S -modules.

Lemma 4.2. For any object G ∈ Db
gr(S ), there is a functorial isomorphism

Rf∗RH0
X(GE) ' LDRHomS (G,ωS [d])

in Db
qc,gr(S ).

By combining the two lemmas with the arguments from §2.3–3.1, we arrive
at the following derived-category version of Theorem 3.2.

Theorem 4.3. With the assumptions and the notation of Theorem 3.2, there is
an exact triangle

LD(G r(−n))→ G → RΓ∗(C (M, F ))→ LD(G r(−n))[1]

in Db
qc,gr(S ).
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§4.2. Graded de Rham complexes

We now wish to apply Theorem 4.3 to the study of the de Rham complex DRX(M)
of a filtered D-module (M, F ) underlying a polarized Hodge module. Since our
result gives information about the associated graded complex, we begin by proving
several simple lemmas about the de Rham complex for general graded S -modules.

Given any graded S -module F , we can form the Koszul complex for the
multiplication map ΘX ⊗OX

F → F (1), and tensor by ωX , to arrive at the
Koszul-type complex

DR(F ) =
[
F → Ω1

X ⊗F (1)→ Ω2
X ⊗F (2)− · · · → ΩdX ⊗F (d)

]
[d]

of graded S -modules. We call this the de Rham complex for the graded module F ;
as commonly done, we put it in degrees −d, . . . , 0, as indicated by the shift. Ob-
viously, we have DR(F ) ' DR(S ) ⊗S F . Since S = Sym ΘX , the complex
DR(S ) is a free resolution of ωX(d) = ωX ⊗S S (d), where ωX has the trivial
S -module structure; we therefore have DR(S ) ' ωX(d) in Db

gr(S ). It follows
that F 7→ DR(F ) ' DR(S )⊗S F ' ωX ⊗S F (d) gives rise to an exact functor

DR: Db
qc,gr(S )→ Db

qc,gr(S ).

A simple, but useful observation is that the cohomology sheaves of the de
Rham complex are always of finite length as S -modules.

Lemma 4.4. Let G ∈ Db
qc,gr(S ) be any object. Then DR(G)P ' 0 in Db

qc(OP ).

Proof. As an S -module, ωX(d) is torsion, and so its associated coherent sheaf
on P is zero. Thus we also have DR(S )P ' 0. Alternatively, one can consider the
Euler sequence

0→ OP → π∗Ω1
X ⊗ OP (1)→ ΘP/X → 0

on the projectivized cotangent bundle π : P → X, and observe that its d-th wedge
product gives an exact complex[

OP → π∗Ω1
X ⊗ OP (1)→ π∗Ω2

X ⊗ OP (2)− · · · → π∗ΩdX ⊗ OP (d)
]
.

It quickly follows that DR(S )P is also exact, and therefore isomorphic to zero in
Db(OP ). Either way, we then have

DR(G)P ' (DR(S )⊗S G)P ' DR(S )P ⊗OP
GP ' 0,

because the operation (−)P is compatible with tensor products.
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The results of §4.1 take a very simple form when applied to a de Rham
complex.

Lemma 4.5. For any object G ∈ Db
gr(S ), there are functorial isomorphisms

DR(S )⊗S LDRHomS (G,ωS [d]) ' LDRHomS (DR(G), ωS [d]) ' DR(G).

Proof. Apply Lemma 4.1 to the object DR(G) to obtain an exact triangle

Rf∗RH0
X(DR(G)E)→ DR(G)→ RΓ∗(DR(G)P )→ Rf∗RH0

X(DR(G)E)[1]

whose third term is isomorphic to zero by Lemma 4.4. The triangle therefore
degenerates to an isomorphism

(4.6) Rf∗RH0
X(DR(G)E) ' DR(G).

Lemma 4.2 now implies one half of the assertion. For the other, we note that

Rf∗RH0
X(DR(G)E) ' Rf∗RH0

X(DR(S )E ⊗OE
GE)

' DR(S )⊗S Rf∗RH0
X(GE),

and then conclude by invoking Lemma 4.2 a second time.

§4.3. Properties of the de Rham complex

After these preparations, we can now apply Theorem 3.2 to study the de Rham
complex

DRX(M) =
[
M→ Ω1

X ⊗M→ Ω2
X ⊗M− · · · → ΩdX ⊗M

]
[d]

of the filtered D-module (M, F ). As in §4.2, the complex is supported in degrees
−d, . . . , 0. It is naturally filtered by subcomplexes

Fk DRX(M) =
[
FkM→ Ω1

X ⊗ Fk+1M− · · · → ΩdX ⊗ Fk+nM
]
[d];

moreover, GrF DRX(M) is a complex of finitely-generated graded S -modules.
As a matter of fact, it is not hard to see that

GrF DRX(M) ' DR(GrFM) = DR(G ).

We can therefore obtain information about the associated graded of the de Rham
complex of M by applying Lemma 4.5 to the complex DR(G ). When combined
with Theorem 4.3, the following result emerges.
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Proposition 4.7. Let M be a polarized Hodge module of weight w = d+ n on a
nonsingular d-dimensional complex algebraic variety, let (M, F ) be the underly-
ing filtered left D-module, and G = GrFM the associated graded S -module. Let
DR(G ) = GrF DRX(M) be the graded de Rham complex. Then

DR(S )⊗S LD(G r(−n)) ' DR(G )

in the derived category Db
gr(S ) of graded, coherent S -modules.

In particular, there is a convergent spectral sequence

Ep,q1 = (Ωp+dX ⊗OX
S (p+ d))⊗S Dq(G r(−n)) =⇒ Hp+q(GrF DRX(M))

of graded S -modules; explicitly, the degree k part is

(Ep,q1 )k = ExtqOX
(G−w−k−p,Ω

p+d
X ) =⇒ Hp+q(GrFk DRX(M)).

The spectral sequence has a useful consequence for the de Rham complex of M.

Proposition 4.8. Let m ∈ Z be such that F−mM = 0. Then the inclusion
Fm−n−1 DRX(M) ⊆ DRX(M) is a filtered quasi-isomorphism.

Proof. By assumption, Gk = 0 for all k ≤ −m; in the spectral sequence, we
therefore have (Ep,q1 )k = 0 for all p, q ∈ Z, provided that−w−k+d = −n−k ≤ −m.
This means that GrFk DRX(M) is exact for k ≥ m − n. Since F•M is a good
filtration on M, the assertion follows.

To see what this means, let us suppose that M is the intermediate extension
of a polarized variation of Hodge structure of weight n, which is “effective,” mean-
ing that Fn+1M = F−n−1M = 0. Then F0 DRX(M) ⊆ DRX(M) is a filtered
quasi-isomorphism by the proposition. This implies, for instance, that any class in
H−d+1(DRX(M)) can be represented by a closed form ω ∈ Γ(X,Ω1

X ⊗ F1M).
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[11] , Complex analytic Néron models for arbitrary families of intermediate Jacobians,
Invent. Math., to appear.

[12] , Residues and filtered D-modules, Math. Ann., to appear.

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1066.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2103875
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0118.36206&format=complete
http://www.ams.org/mathscinet-getitem?mr=0217084
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0197.47202&format=complete
http://www.ams.org/mathscinet-getitem?mr=0476737
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0629.14005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0890924
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0691.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1000123
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0691.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1047415
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0815.14008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1308540
http://www.ohiolink.edu/etd/view.cgi?acc_num=osu1218036000
http://www.ams.org/mathscinet-getitem?mr=2712093

	Overview
	Introduction
	Main result
	Applications
	Notation

	Local duality on vector bundles
	Local cohomology on a vector bundle
	Local duality on a vector bundle
	Local duality for Cohen–Macaulay modules

	Polarized Hodge modules
	The Cohen–Macaulay property
	Duality for polarized Hodge modules
	The role of the polarization
	Proof of the lemma

	Several consequences
	Derived category formulation
	Graded de Rham complexes
	Properties of the de Rham complex

	References

