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§1. Introduction

The main purpose of this paper is to prove the following cone and contraction
theorem. It is the culmination of the works of several authors: Ambro, Benveniste,
Birkar, Kawamata, Kollár, Mori, Reid, Shokurov, and others. It is indispensable
for the study of the log minimal model program for varieties with bad singularities
(cf. [F17]).

Theorem 1.1 (cf. Theorems 16.4, 16.6, 18.9, and 18.10). Let X be a normal va-
riety defined over C, let B be an effective R-divisor such that KX+B is R-Cartier,
and let π : X → S be a projective morphism onto a variety S. Then

NE(X/S) = NE(X/S)KX+B≥0 +NE(X/S)Nlc(X,B) +
∑

Rj

with the following properties:

(1) Nlc(X,B) is the non-lc locus of (X,B) and

NE(X/S)Nlc(X,B) = Im(NE(Nlc(X,B)/S)→ NE(X/S)).

(2) Rj is a (KX +B)-negative extremal ray of NE(X/S) such that

Rj ∩NE(X/S)Nlc(X,B) = {0}

for every j.

(3) Let A be a π-ample R-divisor on X. Then there are only finitely many Rj’s
included in (KX + B + A)<0. In particular, the Rj’s are discrete in the half-
space (KX +B)<0.

(4) Let F be a face of NE(X/S) such that

F ∩ (NE(X/S)KX+B≥0 +NE(X/S)Nlc(X,B)) = {0}.

Then there exists a contraction morphism ϕF : X → Y over S.

(i) Let C be an integral curve on X such that π(C) is a point. Then ϕF (C)
is a point if and only if [C] ∈ F .

(ii) OY ' (ϕF )∗OX .

(iii) Let L be a line bundle on X such that L · C = 0 for every curve C with
[C] ∈ F . Then there is a line bundle LY on Y such that L ' ϕ∗FLY .
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(5) Every (KX +B)-negative extremal ray R with

R ∩NE(X/S)Nlc(X,B) = {0}

is spanned by a rational curve C with 0 < −(KX +B) · C ≤ 2 dimX.

From now on, we further assume that (X,B) is a log canonical pair, that is,
Nlc(X,B) = ∅. Then we have the following properties:

(6) Let H be an effective R-Cartier R-divisor on X such that KX +B+H is π-nef
and (X,B + H) is log canonical. Then either KX + B is also π-nef or there
is a (KX +B)-negative extremal ray R such that

(KX +B + λH) ·R = 0

where
λ := inf{t ≥ 0 | KX +B + tH is π-nef }.

Of course, KX +B + λH is π-nef.

The first half of Theorem 1.1, that is, (1)–(4), is the main result of [A1].
Ambro’s proof depends on the theory of quasi-log varieties. Unfortunately, this
theory is inaccessible even to experts because it requires very technical arguments
on reducible varieties. In this paper, we give a proof of the above cone and con-
traction theorem without using the notion of quasi-log varieties. Our approach is
much more direct than Ambro’s. The reader does not have to refer to [A1] or to
the book [F11] in order to read this paper. The latter half of Theorem 1.1, that is,
items (5) and (6), is a generalization of the results obtained by Kollár, Kawamata,
Shokurov, and Birkar. We note that the formulation of (5) is new. It will play an
important role in the log minimal model program with scaling. So, we include it
in our cone and contraction theorem.

Here we would like to compare our results with the theory of quasi-log varieties
([A1], [F11]). The first part of Theorem 1.1 was first proved by using the theory
of quasi-log varieties; the proof reduced the problem on an irreducible normal
variety to one on the union of certain proper closed subvarieties (called non-klt
centers) of various dimensions. The notion of quasi-log varieties was a framework
to treat such reducible varieties. Thus various strong vanishing theorems on quasi-
log varieties were needed and a significant part of [F11] was devoted to proving
such theorems. Delicate arguments were also needed to overcome several technical
difficulties including partial resolutions of reducible closed subvarieties.

The main idea of our paper first appeared in [F16], which treated a special
kind of non-klt centers called minimal lc centers and proved their existence and
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normality. The point of our approach was a fully general treatment of minimal lc
centers, whose existence and normality were settled earlier under special assump-
tions.

Vanishing theorems required for these proofs are stronger than the Kawamata
–Viehweg–Nadel vanishing theorem but not as difficult as the one on quasi-log va-
rieties. The next step is to reduce the problem on a normal variety to one on
its minimal lc centers, where a vanishing theorem plays a central role. Thus it is
enough to consider only normal varieties in our treatment. Though we need to
prepare vanishing theorems stronger than the Kawamata–Viehweg–Nadel vanish-
ing theorem, they are all proved in our paper (without quoting [A1] or [F11]). In
our opinion, the most important contribution of this paper and [F16] is the cor-
rect formulation of various vanishing theorems and non-vanishing theorem (The-
orem 12.1), from which the cone and contraction theorems can be proved with-
out any difficulties. It is not necessary to treat reducible varieties or precise par-
tial resolutions of singularities of reducible varieties. As already mentioned, the
vanishing theorems needed and formulated in our paper are stronger than the
Kawamata–Viehweg–Nadel vanishing theorem. It is our belief that this advance-
ment of vanishing theorems distinguishes our treatment from those in [KMM],
[KM] and [L].

Let us briefly recall the history of the cone and contraction theorem. In the
epoch-making paper [Mo], Mori invented the cone theorem for smooth projective
varieties and the contraction theorem for smooth projective threefolds. See, for
example, [KM, Theorems 1.24 and 1.32]. After Mori’s pioneering works, the cone
and contraction theorem was proved and generalized for singular varieties by us-
ing a completely different method, now called the X-method (cf. [Ka1], [Ko1], [R],
and [S1]). In [A1], Ambro introduced the notion of quasi-log varieties and gener-
alized the cone and contraction theorem. See, for example, [F11, Chapter 3]. For
the details of the history of the cone and contraction theorem up to [KMM], we
recommend the introductions to Chapters 2, 3, and 4 of [KMM].

We summarize the contents of this paper. Section 2 is a warm-up. Here, we
discuss the base point free theorem for projective log canonical surfaces to mo-
tivate the reader. This section clarifies the difference between our approach and
Ambro’s theory of quasi-log varieties. In Section 3, we explain our philosophy
on various vanishing theorems. This section helps the reader to understand the
subsequent sections. Section 4 collects the preliminary definitions and results.
In Section 5, we explain the Hodge-theoretic aspect of the injectivity theorem.
It is an easy consequence of the theory of mixed Hodge structures on compact
support cohomology groups of smooth quasi-projective varieties. Section 6 treats
generalizations of Kollár’s injectivity, torsion-free, and vanishing theorems. These
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results play crucial roles in the following sections. They replace the Kawamata–
Viehweg vanishing theorem. In Section 7, we introduce the notion of non-lc ideal
sheaves. It is an analogue of the well-known multiplier ideal sheaves. Section 8
contains an important vanishing theorem, a generalization of the Nadel vanish-
ing theorem. It is very useful for the study of log canonical pairs. In Section
9, we recall the basic properties of lc centers. Section 10 treats the dlt blow-up
following Hacon and its slight refinement, which will be useful for future stud-
ies (cf. [G]). Here, we need [BCHM]. In Section 11, we give a vanishing theorem
for minimal lc centers. By the dlt blow-up obtained in Section 10, we can eas-
ily prove our important vanishing theorem. Section 12 is devoted to the proof
of the non-vanishing theorem. In Section 13, we prove the base point free theo-
rem. It is a direct consequence of the non-vanishing theorem. In Section 14, we
quickly recall Shokurov’s differents. Section 15 is devoted to the rationality the-
orem. In Section 16, we obtain the cone theorem and contraction theorem by
using the rationality theorem and the base point free theorem. Section 17 is a
supplement to the base point free theorem. In Section 18, we discuss estimates of
lengths of extremal rays. It is important for the study of the log minimal model
program with scaling. Our formulation for non-lc pairs is new. In Section 19,
we quickly explain some results which were obtained by the theory of quasi-log
varieties but cannot be covered by our new approach. In the final Section 20,
we briefly discuss some related topics considered by the author in other publica-
tions.

This paper grew out of the ideas in [F16]. The result in Section 10 heavily de-
pends on [BCHM]. We use it to prove the vanishing theorem for minimal lc centers
in Section 11. We note that the result in Section 11 can be proved without applying
[BCHM] if we discuss the theory of mixed Hodge structures on compact support
cohomology groups of reducible varieties. This was carried out in [F11, Chapter 2].
We note that [F11, Chapter 2] is independent of the log minimal model program
for klt pairs. So, the non-vanishing theorem (Theorem 12.1), the base point free
theorem (Theorem 13.1), the rationality theorem (Theorem 15.1), and the cone
theorem (Theorem 16.6) do not depend on the corresponding results for klt pairs.
Therefore, our proofs are new even for klt pairs. In Section 18, we need Theorem
10.4, which is a consequence of [BCHM], to prove Theorems 18.2 and 18.10. At
present there are no proofs of Theorems 18.2 and 18.10 without using [BCHM].
However, Theorem 18.2 can be directly proved if we have an appropriate vanish-
ing theorem for projective morphisms between analytic spaces. For the details, see
[F11, Remark 3.22].

We will work over C, the complex number field, throughout this paper.
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§2. Warm-ups

In this section, we explain the base point free theorem for projective log canonical
surfaces to motivate the reader. This section clarifies the difference between our
new approach and Ambro’s theory of quasi-log varieties. We refer the reader to
[F15, Section 4] for Ambro’s approach. The following theorem is a very special
case of Theorem 13.1.

Theorem 2.1 (Base point free theorem for lc surfaces). Let (X,B) be a projec-
tive log canonical surface. Let L be a nef Cartier divisor on X such that aL −
(KX +B) is ample for some a > 0. Then |mL| is base point free for m� 0.

This cannot be proved by the traditional X-method. A key ingredient of this
paper is the following generalization of Kollár’s vanishing theorem. We will describe
it in Section 8.

Theorem 2.2 (cf. Theorem 8.1). Let (X,B) be a projective log canonical pair.
Let D be a Cartier divisor on X such that D − (KX + B) is ample. Let C be an
lc center of (X,B) with the reduced scheme structure. Then

Hi(X, IC ⊗OX(D)) = 0 for every i > 0,

where IC is the defining ideal sheaf of C. In particular, the restriction map
H0(X,OX(D))→ H0(C,OC(D)) is surjective.

In Theorem 2.2, we do not assume that C is isolated in the non-klt locus of
the pair (X,B); nor do we assume that there exists another boundary R-divisor
B′ on X such that (X,B′) is klt. Therefore, the theorem cannot be proved by
the traditional arguments depending on the Kawamata–Viehweg–Nadel vanishing
theorem.

The next theorem is a special case of Theorem 12.1. This formulation was
first introduced in [F16]. We will see that it is equivalent to Theorem 2.1.

Theorem 2.3 (Non-vanishing theorem for lc surfaces). Let X be a projective log
canonical surface. Let L be a nef Cartier divisor on X such that aL− (KX +B) is
ample for some a > 0. Then the base locus Bs |mL| of |mL| contains no lc centers
of (X,B) for m� 0.

Proof. It is sufficient to check that Bs |mL| contains no minimal lc centers of
(X,B) for m� 0. Let C be a minimal lc center of (X,B). If C is a point P , then
Bs |mL| does not contain C for every m ≥ a, because the evaluation map

H0(X,OX(mL))→ C(P ) ' H0(P,OP (mL))
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is surjective for every m ≥ a by Theorem 2.2. If C is a curve, then C ⊂ xBy and
(X,B) is plt around C. Therefore,

KC +BC = (KX +B)|C

is klt by adjunction. Since aL|C − (KC +BC) is ample, there exists m1 such that
|mL|C | is base point free for every m ≥ m1. By Theorem 2.2, the restriction map

H0(X,OX(mL))→ H0(C,OC(mL))

is surjective for every m ≥ a. Thus, Bs |mL| does not contain C for m � 0. So,
the proof is finished since there are only finitely many minimal lc centers.

In the above proof, C is a point or a divisor on X. So, there are no difficulties
in investigating minimal lc centers. When dimX ≥ 3, we need a more power-
ful vanishing theorem (cf. Theorem 11.1) to study linear systems on minimal lc
centers.

Let us explain the proof of Theorem 2.1.

Proof of Theorem 2.1. If (X,B) is klt, then the statement is well-known as the
Kawamata–Shokurov base point free theorem (cf. [KM, Theorem 3.3]). So, we
assume that (X,B) is lc but not klt for simplicity. By Theorem 2.3, we can take
general members D1, D2, D3 ∈ |m1L| for some m1 > 0. If Bs |m1L| = ∅, then L is
semi-ample. Therefore, we assume that Bs |m1L| 6= ∅. We note that (X,B + D),
where D = D1 + D2 + D3, is log canonical outside Bs |m1L|, and (X,B + D) is
not log canonical at the generic point of every irreducible component of Bs |m1L|.
Let c be the log canonical threshold of (X,B) with respect to D. Then c > 0 by
Theorem 2.3, and c < 1 because (X,B + D) is not log canonical. By the above
construction, (X,B+cD) is log canonical and there is an lc center C of (X,B+cD)
such that C is contained in Bs |m1L|. By applying Theorem 2.3 to

(3cm1 + a)L− (KX +B + cD) ∼Q aL− (KX +B)

on (X,B+cD), we see that Bs |m2m1L| does not contain C for m2 � 0. Therefore,
Bs |m2m1L| ( Bs |m1L|. By noetherian induction, we find that L is semi-ample.
With a little care, we can check that |mL| is base point free for m� 0. We omit
some details here. For the details, see the proof of Theorem 13.1.

In Ambro’s framework of quasi-log varieties (cf. [A1], [F11], and [F15]), we
have to discuss the base point free theorem for certain reducible curves (cf. [F1])
to prove Theorem 2.1. We note that the ultimate generalization of Theorem 2.1
for surfaces is proved in [F17].
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One of the main purposes of this paper is to generalize Theorem 2.3 to pairs
(X,B), where X is an n-dimensional normal variety and B is an effective R-divisor
on X such that KX +B is R-Cartier (see Theorems 12.1 and 13.1).

§3. Kawamata–Viehweg, Nadel, Kollár, . . .

In this section, we explain our philosophy on vanishing theorems. There is a big
conceptual difference between our approach in this paper and the traditional ar-
guments based on the Kawamata–Viehweg–Nadel vanishing theorem (cf. [KMM],
[KM], and [L]).

In the traditional X-method, the following type of the Kawamata–Viehweg
vanishing theorem plays a crucial role (cf. [KM, Theorem 3.1], [L, Theorem 9.1.18]).

Theorem 3.1 (The Kawamata–Viehweg vanishing theorem). Let X be a smooth
projective variety and let B be an effective Q-divisor such that SuppB is simple
normal crossing and xBy = 0. Let L be a Cartier divisor on X such that L −
(KX +B) is nef and big. Then

Hi(X,OX(L)) = 0 for every i > 0.

Recently, the (algebraic version of) Nadel vanishing theorem, which is a gen-
eralization of the above Kawamata–Viehweg vanishing theorem, is very often used
for the study of linear systems (cf. [L, Theorem 9.4.17]).

Theorem 3.2 (The Nadel vanishing theorem). Let X be a normal projective va-
riety and let B be an effective Q-divisor on X such that KX +B is Q-Cartier. Let
L be a Cartier divisor on X such that L− (KX +B) is nef and big. Then

Hi(X,OX(L)⊗ J (X,B)) = 0 for every i > 0,

where J (X,B) is the multiplier ideal sheaf of (X,B) (see Remark 7.3 below).

The following relative version of the Kawamata–Viehweg vanishing theorem
sometimes plays an important role implicitly (cf. [L, Theorem 9.4.17], [KM, Corol-
lary 2.68]).

Theorem 3.3 (The relative Kawamata–Viehweg vanishing theorem). Let X be a
normal projective variety and let B be an effective Q-divisor on X such that KX+B
is Q-Cartier. Let f : Y → X be a projective resolution such that KY + BY =
f∗(KX +B) and SuppBY is simple normal crossing. Then

Rif∗OY (−xBY y) = 0 for every i > 0.
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It is obvious that 3.1 is a special case of 3.2. It is a routine exercise to deduce
3.3 from 3.1. We note that 3.2 can be obtained as a consequence of 3.1 and 3.3 by
Hironaka’s resolution theorem and Leray’s spectral sequence. In this paper, we see
the Nadel vanishing theorem 3.2 (resp. the relative Kawamata–Viehweg vanishing
theorem 3.3) as a special case of Kollár’s vanishing theorem 3.4(ii) (resp. Kollár’s
torsion-free theorem 3.4(i)).

Let us recall Kollár’s theorems (cf. [Ko4, 10.15 Corollary]).

Theorem 3.4 (Kollár’s torsion-free and vanishing theorems). Let Y be a smooth
projective variety and let ∆ be an effective Q-divisor on Y such that Supp ∆ is
simple normal crossing and x∆y = 0. Let f : Y → X be a surjective morphism
onto a projective variety X and let D be a Cartier divisor on Y .

(i) If D − (KY + ∆) ∼Q f∗M for some Q-Cartier Q-divisor M on X, then
Rif∗OY (D) is torsion-free for every i ≥ 0. In particular, Rif∗OY (D) = 0 for
every i > 0 if f is birational.

(ii) If D − (KY + ∆) ∼Q f∗M , where M is an ample Q-divisor on X, then

Hi(X,Rjf∗OY (D)) = 0 for every i > 0 and j ≥ 0.

We will completely generalize it in Theorem 6.3. As we stated above, in this
paper, 3.2 is not seen as a combination of 3.1 and 3.3. It should be recognized as
a special case of Kollár’s vanishing theorem 3.4(ii). We do not see the vanishing
theorem 3.3 as a relative vanishing theorem but as a special case of Kollár’s torsion-
free theorem 3.4(i). This change of viewpoint opens the door to the study of log
canonical pairs.

3.5 (Philosophy). We note that 3.4 follows from the theory of pure Hodge struc-
tures. In our philosophy, we have the following correspondences.

Kawamata log terminal pairs ⇐⇒ Pure Hodge structures

and

Log canonical pairs ⇐⇒ Mixed Hodge structures

Therefore, it is very natural to prove a “mixed” version of 3.4 for the study
of log canonical pairs. We will carry it out in Sections 5 and 6. There is a big
difference between our framework discussed in this paper (cf. Sections 12, 13, and
15) and the traditional X-method from the Hodge-theoretic viewpoint. We believe



736 O. Fujino

that all the results for klt pairs can be proved without using the theory of mixed
Hodge structures (cf. [F14]).

3.6 (Further discussions). When we consider various extension theorems, which
play a crucial role in the proof of the existence of pl flips (cf. [HM]), we think that
the following correspondence is natural.

Kawamata log terminal pairs ⇐⇒ L2-method

The extension theorem in [HM] can be proved as a consequence of the usual
vanishing theorems. However, we note that the origin of the extension theorem is
the Ohsawa–Takegoshi L2 extension theorem. The Nadel vanishing theorem also
has its origin in the L2-method. It is very natural to try to generalize the above
correspondence for log canonical pairs. However, we do not know what should be
in the right box in the correspondence below.

Log canonical pairs ⇐⇒ ?

Here, we do not discuss this topic any more.

§4. Preliminaries

We work over the complex number field C throughout this paper. But we note
that by using the Lefschetz principle, we can extend almost everything to the case
where the base field is an algebraically closed field of characteristic zero. In this
paper, an algebraic scheme denotes a scheme which is separated and of finite type
over C. We collect the basic notation and definitions.

4.1 (m� 0). The expression ‘... for m � 0’ means that ‘there exists a positive
number m0 such that ... for every m ≥ m0.’

4.2 (Operations on R-divisors). For an R-Weil divisor D =
∑r
j=1 djDj such that

Dj is a prime divisor for every j and Di 6= Dj for i 6= j, we define the round-
up pDq =

∑r
j=1pdjqDj (resp. the round-down xDy =

∑r
j=1xdjyDj), where for

every real number x, pxq (resp. xxy) is the integer defined by x ≤ pxq < x + 1
(resp. x−1 < xxy ≤ x). The fractional part {D} of D denotes D−xDy. We define

D=1 =
∑
dj=1

Dj , D≤1 =
∑
dj≤1

djDj , D<1 =
∑
dj<1

djDj , D>1 =
∑
dj>1

djDj .

We call D a boundary R-divisor if 0 ≤ dj ≤ 1 for every j. We note that ∼Q
(resp. ∼R) denotes the Q-linear (resp. R-linear) equivalence of Q-divisors (resp.
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R-divisors). Let D1 and D2 be R-Cartier R-divisors on X and let f : X → Y

be a morphism. We say that D1 and D2 are R-linearly f -equivalent, denoted by
D1 ∼R,f D2, if there is an R-Cartier R-divisor B on Y such that D1 ∼R D2 +f∗B.
We can define D1 ∼Q,f D2 for Q-Cartier Q-divisors D1 and D2 similarly.

Definition 4.3 (Exceptional locus). For a proper birational morphism f :
X → Y , the exceptional locus Exc(f) ⊂ X is the locus where f is not an iso-
morphism.

4.4 (Discrepancy, singularities of pairs, etc.). Let X be a normal variety and let
B be an effective R-divisor on X such that KX + B is R-Cartier. Let f : Y → X

be a resolution such that Exc(f) ∪ f−1
∗ B has a simple normal crossing support,

where f−1
∗ B is the strict transform of B on Y . We write

KY = f∗(KX +B) +
∑
i

aiEi

and a(Ei, X,B) = ai. We say that (X,B) is lc (resp. klt) if ai ≥ −1 (resp. ai > −1)
for every i. Note that the discrepancy a(E,X,B) ∈ R can be defined for every prime
divisor E over X. If a(E,X,B) > −1 for every exceptional divisor E over X, then
the pair (X,B) is called plt. Here, lc (resp. klt, plt) is an abbreviation of log
canonical (resp. Kawamata log terminal, purely log terminal). By the definition,
there exists the largest Zariski open set U (resp. U ′) of X such that (X,B) is lc
(resp. klt) on U (resp. U ′). We put Nlc(X,B) = X \U (resp. Nklt(X,B) = X \U ′)
and call it the non-lc locus (resp. non-klt locus) of the pair (X,B). We sometimes
simply denote Nlc(X,B) by XNLC.

Let (X,B) be a log canonical pair and let M be an effective R-Cartier R-
divisor on X. The log canonical threshold of (X,B) with respect to M is defined
by

c = sup{t ∈ R | (X,B + tM) is log canonical}.

Definition 4.5 (Center). Let E be a prime divisor over X. The closure of the
image of E on X is denoted by cX(E) and called the center of E on X.

Definition 4.6 (Lc center). Let X be a normal variety and let B be an effective
R-divisor on X such that KX + B is R-Cartier. If a(E,X,B) = −1 and cX(E)
is not contained in Nlc(X,B), then cX(E) is called an lc center of (X,B). It is
obvious that there are at most finitely many lc centers.

We note that our definition of lc centers is slightly different from the usual
one. For details, see [FST, Section 3].
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Definition 4.7 (Stratum). Let (X,B) be a log canonical pair. A stratum of (X,B)
is X itself or an lc center of (X,B).

Let T be a simple normal crossing divisor on a smooth variety Y . A stratum
of T is a stratum of the pair (Y, T ) contained in T .

4.8 (Kleiman–Mori cone). Let X be an algebraic scheme over C and let π : X → S

be a proper morphism to an algebraic scheme S. Let Pic(X) be the group of line
bundles on X. Take a complete curve on X which is mapped to a point by π.
For L ∈ Pic(X), we define the intersection number L · C = degC f

∗L, where
f : C → C is the normalization of C. Via this intersection pairing, we introduce a
bilinear form

· : Pic(X)× Z1(X/S)→ Z,

where Z1(X/S) is the free abelian group generated by integral curves which are
mapped to points on S by π.

Now we have the notion of numerical equivalence both in Z1(X/S) and in
Pic(X), which is denoted by ≡, and we obtain a perfect pairing

N1(X/S)×N1(X/S)→ R,

where

N1(X/S) = {Pic(X)/≡} ⊗ R and N1(X/S) = {Z1(X/S)/≡} ⊗ R,

that is, N1(X/S) and N1(X/S) are dual to each other through this intersection
pairing. It is well known that

dimR N
1(X/S) = dimR N1(X/S) <∞.

We write ρ(X/S) = dimR N
1(X/S) = dimR N1(X/S). We define the Kleiman–

Mori cone NE(X/S) as the closed convex cone in N1(X/S) generated by integral
curves on X which are mapped to points on S by π. When S = Spec C, we drop
/Spec C from the notation, e.g., we simply write N1(X) instead of N1(X/Spec C).

Definition 4.9. An element D ∈ N1(X/S) is called π-nef (or relatively nef for π)
if D ≥ 0 on NE(X/S). When S = Spec C, we simply say that D is nef.

Theorem 4.10 (Kleiman’s criterion for ampleness). Let π : X → S be a projec-
tive morphism between algebraic schemes. Then L ∈ Pic(X) is π-ample if and only
if the numerical class of L in N1(X/S) gives a positive function on NE(X/S)\{0}.

In Theorem 4.10, we note that the projectivity of π is indispensable (cf. [F4]).
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Definition 4.11 (Semi-ample R-divisors). An R-Cartier R-divisor D on X is π-
semi-ample if D ∼R

∑
i aiDi, where Di is a π-semi-ample Cartier divisor on X

and ai is a positive real number for every i.

Remark 4.12. In Definition 4.11, we can replace D ∼R
∑
i aiDi with D =∑

i aiDi since every principal Cartier divisor on X is π-semi-ample.

The following two lemmas seem to be missing in the literature.

Lemma 4.13. Let D be an R-Cartier R-divisor on X. Then the following condi-
tions are equivalent:

(1) D is π-semi-ample.

(2) There exists a morphism f : X → Y over S such that D ∼R f
∗A, where A is

an R-Cartier R-divisor on Y which is ample over S.

Proof. It is obvious that (1) follows from (2). If D is π-semi-ample, then we can
write D ∼R

∑
i aiDi as in Definition 4.11. By replacing Di with its multiple, we can

assume that π∗π∗OX(Di) → OX(Di) is surjective for every i. Let f : X → Y be
a morphism over S obtained from the surjection π∗π∗OX(

∑
iDi)→ OX(

∑
iDi).

Then it is easy to see that f : Y → X has the desired property.

Lemma 4.14. Let D be a Cartier divisor on X. If D is π-semi-ample in the
sense of Definition 4.11, then D is π-semi-ample in the usual sense, that is,
π∗π∗OX(mD) → OX(mD) is surjective for some positive integer m. In partic-
ular, Definition 4.11 is reasonable.

Proof. We write D ∼R
∑
i aiDi as in Definition 4.11. Let f : X → Y be a

morphism in Lemma 4.13(2). By taking the Stein factorization, we can assume that
f has connected fibers. By the construction, Di ∼Q,f 0 for every i. By replacing
Di with its multiple, we can assume that Di ∼ f∗D′i for some Cartier divisor D′i
on Y for every i. Let U be any Zariski open set of Y on which D′i ∼ 0 for every i.
On f−1(U), we have D ∼R 0. This implies D ∼Q 0 on f−1(U) since D is Cartier.
Therefore, there exists a positive integer m such that f∗f∗OX(mD) → OX(mD)
is surjective. By this surjection, we have mD ∼ f∗A for a Cartier divisor A on Y

which is ample over S. This means that D is π-semi-ample in the usual sense.

We will repeatedly use the following easy lemma. We give a detailed proof for
the reader’s convenience.

Lemma 4.15. Let X be a normal variety and let B be an effective R-Cartier R-
divisor on X such that xBy = 0. Let A be a Cartier divisor on X. Assume that
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A ∼R B. Then there exists a Q-Cartier Q-divisor C on X such that A ∼Q C,
xCy = 0, and SuppC = SuppB.

Proof. We can write B = A +
∑k
i=1 ri(fi), where ri ∈ R and fi is a rational

function on X for every i. We put

E = SuppA ∪ SuppB ∪
k⋃
i=1

Supp(fi).

Let E =
∑n
j=1Ej be the irreducible decomposition of E. We can write

A =
∑
j

ajEj , B =
∑
j

bjEj ,

and

(fi) =
∑
j

mijEj for every i.

We can assume that bj ∈ Q for 1 ≤ j ≤ l and bj 6∈ Q for l + 1 ≤ j ≤ n. We note
that aj ∈ Z for every j and that mij ∈ Z for every i, j. We define

S =
{

(v1, . . . , vk) ∈ Rk
∣∣∣ bj = aj +

k∑
i=1

vimij for 1 ≤ j ≤ l
}
.

Then S is an affine subspace of Rk defined over Q. We note that S is not empty
since (r1, . . . , rk) ∈ S. If we take (r′1, . . . , r

′
k) ∈ S ∩ Qk which is very close to

(r1, . . . , rk) and put C = A+
∑
i r
′
i(fi), then it is obvious that C has the desired

properties.

The next lemma is well known as the negativity lemma.

Lemma 4.16 (Negativity lemma). Let h : Z → Y be a proper birational mor-
phism between normal varieties. Let −B be an h-nef R-Cartier R-divisor on Z.
Then we have the following statements:

(1) B is effective if and only if h∗B is.

(2) Assume that B is effective. Then for every y ∈ Y , either h−1(y) ⊂ SuppB or
h−1(y) ∩ SuppB = ∅.

Lemma 4.16 is essentially an application of the Hodge index theorem for
smooth projective surfaces. For the proof, see, for example, [KM, Lemma 3.39].

We close this section with the following useful lemma. It is a consequence of
Szabó’s resolution lemma.
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Lemma 4.17. Let Z be a smooth variety and let B be an R-divisor on Z such
that SuppB is simple normal crossing. Let f : Z → X be a projective morphism
and let X be a projective variety such that X contains X as a Zariski open set.
Then there exist a smooth projective variety Z and an R-divisor B on Z such that

(i) f : Z → X can be extended to f : Z → X.

(ii) SuppB is simple normal crossing.

(iii) SuppB ∪ Supp(Z \ Z) is simple normal crossing.

(iv) B|Z = B.

Proof. Let Z ′ be an arbitrary compactification of Z. By taking the graph of f :
Z ′ 99K X and using Hironaka’s resolution, we can assume that Z ′ is smooth
projective, Supp(Z ′ \ Z) is simple normal crossing, and f : Z → X is extended to
f ′ : Z ′ → X. Let B′ be the closure of B on Z ′. We apply Szabó’s resolution lemma
(see, for example, [F6]) to SuppB′ ∪ Supp(Z ′ \ Z). Then we obtain the desired
variety Z and B. By the above construction, f can be extended to f : Z → X.

§5. Hodge-theoretic injectivity theorem

In this section, we will prove the following injectivity theorem, which is a gener-
alization of [EV, 5.1. b)] for R-divisors. We use the classical topology throughout
this section.

Proposition 5.1 (Fundamental injectivity theorem). Let X be a smooth projec-
tive variety and let S +B be a boundary R-divisor on X such that the support of
S+B is simple normal crossing and xS+By = S. Let L be a Cartier divisor on X
and let D be an effective Cartier divisor whose support is contained in SuppB.
Assume that L ∼R KX + S +B. Then the natural homomorphisms

Hq(X,OX(L))→ Hq(X,OX(L+D))

which are induced by the natural inclusion OX → OX(D) are injective for all q.

Let us recall some results on the theory of mixed Hodge structures.

5.2 (Mixed Hodge structures). Let V be a smooth projective variety and Σ a
simple normal crossing divisor on V . Let ι : V \ Σ → V be the natural open
immersion. Then ι!CV \Σ is quasi-isomorphic to the complex Ω•V (log Σ)⊗OV (−Σ).
By this quasi-isomorphism, we can construct the spectral sequence

Epq1 = Hq(V,ΩpV (log Σ)⊗OV (−Σ))⇒ Hp+q
c (V \ Σ,C).
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By the Serre duality, the left hand side

Hq(V,ΩpV (log Σ)⊗OV (−Σ))

is dual to
Hn−q(V,Ωn−pV (log Σ)),

where n = dimV . By the Poincaré duality, Hp+q
c (V \ Σ,C) is dual to

H2n−(p+q)(V \ Σ,C). Therefore,

dimHk
c (V \ Σ,C) =

∑
p+q=k

dimHq(V,ΩpV (log Σ)⊗OV (−Σ))

by Deligne (cf. [D, Corollaire (3.2.13)(ii)]). Thus, the above spectral sequence de-
generates at E1. We will use this E1-degeneration in the proof of Proposition 5.1.
By the above E1-degeneration, we obtain

Hk
c (V \ Σ,C) '

⊕
p+q=k

Hq(V,ΩpV (log Σ)⊗OV (−Σ)).

In particular, the natural inclusion ι!CV \Σ ⊂ OV (−Σ) induces surjections

Hp
c (V \ Σ,C) ' Hp(V, ι!CV \Σ)→ Hp(V,OV (−Σ))

for all p.

Proof of Proposition 5.1. By Lemma 4.15, we can assume that B is a Q-divisor
and L ∼Q KX + S + B. We put L = OX(L − KX − S). Let ν be the smallest
positive integer such that νL ∼ ν(KX + S + B). In particular, νB is an integral
Weil divisor. We take the ν-fold cyclic cover π′ : Y ′ = SpecX

⊕ν−1
i=0 L−i → X

associated to the section νB ∈ |Lν |. More precisely, let s ∈ H0(X,Lν) be a section
whose zero divisor is νB. Then the dual of s : OX → Lν defines an OX -algebra
structure on

⊕ν−1
i=0 L−i. Let Y → Y ′ be the normalization and let π : Y → X be

the composition morphism. For the details, see [EV, 3.5. Cyclic covers]. We can
take a finite cover ϕ : V → Y such that V is smooth and T is a simple normal
crossing divisor on V , where ψ = π◦ϕ and T = ψ∗S, by Kawamata’s covering trick
(cf. [EV, 3.17. Lemma]). Let ι′ : Y \ π∗S → Y be the natural open immersion and
let U be the smooth locus of Y . We denote the natural open immersion U → Y

by j. We put Ω̃pY (log(π∗S)) = j∗Ω
p
U (log(π∗S)) for every p. Then it can be checked

easily that
ι′!CY \π∗S

qis−→ Ω̃•Y (log(π∗S))⊗OY (−π∗S)

is a direct summand of

ϕ∗(ι!CV \T )
qis−→ ϕ∗(Ω•V (log T )⊗OV (−T )),
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where qis means a quasi-isomorphism. On the other hand, we can decompose
π∗(Ω̃•Y (log(π∗S)) ⊗ OY (−π∗S)) and π∗(ι′!CY \π∗S) into eigencomponents of the
Galois action of π : Y → X. We write these decompositions as follows:

π∗(ι′!CY \π∗S) =
ν−1⊕
i=0

Ci ⊂
ν−1⊕
i=0

L−i(xiBy− S) = π∗OY (−π∗S),

where Ci ⊂ L−i(xiBy− S) for every i. We put C = C1. We see that

C qis−→ Ω•X(log(S +B))⊗ L−1(−S)

is a direct summand of

ψ∗(ι!CV \T )
qis−→ ψ∗(Ω•V (log T )⊗OV (−T )).

The E1-degeneration of the spectral sequence

Epq1 = Hq(V,ΩpV (log T )⊗OV (−T ))

⇒Hp+q(V,Ω•V (log T )⊗OV (−T )) ' Hp+q(V, ι!CV \T )

(cf. 5.2) implies the E1-degeneration of

Epq1 = Hq(X,ΩpX(log(S +B))⊗ L−1(−S))

⇒Hp+q(X,Ω•X(log(S +B))⊗ L−1(−S)) ' Hp+q(X, C).

Therefore, the inclusion C ⊂ L−1(−S) induces surjections

Hp(X, C)→ Hp(X,L−1(−S))

for all p. We can check the following simple property by considering the monodromy
action of the Galois group of π : Y → X on C around SuppB.

Corollary 5.3 (cf. [KM, Corollary 2.54]). Let U ⊂ X be a connected open set
such that U ∩ SuppB 6= ∅. Then H0(U, C|U ) = 0.

This property is utilized via the following fact. The proof is obvious.

Lemma 5.4 (cf. [KM, Lemma 2.55]). Let F be a sheaf of Abelian groups on a
topological space X and let F1, F2 ⊂ F be subsheaves. Let Z ⊂ X be a closed
subset. Assume that

(1) F2|X\Z = F |X\Z , and

(2) if U is connected, open and U ∩ Z 6= ∅, then H0(U,F1|U) = 0.

Then F1 is a subsheaf of F2.
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As a corollary, we obtain:

Corollary 5.5 (cf. [KM, Corollary 2.56]). Let M ⊂ L−1(−S) be a subsheaf such
that M |X\SuppB = L−1(−S)|X\SuppB. Then the injection C → L−1(−S) factors
as C →M → L−1(−S). Therefore,

Hi(X,M)→ Hi(X,L−1(−S))

is surjective for every i.

Proof. The first part is clear from Corollary 5.3 and Lemma 5.4. This implies that
we have maps

Hi(X, C)→ Hi(X,M)→ Hi(X,L−1(−S)).

As we saw above, the composition is surjective. Hence so is the right map.

Therefore, we deduce that

Hq(X,L−1(−S −D))→ Hq(X,L−1(−S))

is surjective for every q. By the Serre duality,

Hq(X,OX(KX)⊗ L(S))→ Hq(X,OX(KX)⊗ L(S +D))

is injective for every q. This means that

Hq(X,OX(L))→ Hq(X,OX(L+D))

is injective for every q.

§6. Injectivity, torsion-free, and vanishing theorems

In this section, we prove generalizations of Kollár’s torsion-freeness and vanishing
theorem (cf. Theorem 6.3). First, we prove a generalization of Kollár’s injectivity
theorem (cf. [A1, Theorem 3.1]). It is a straightforward consequence of Proposition
5.1 and will produce the desired torsion-free and vanishing theorems.

Theorem 6.1 (Injectivity theorem). Let X be a smooth projective variety and let
∆ be a boundary R-divisor such that Supp ∆ is simple normal crossing. Let L be
a Cartier divisor on X and let D be an effective Cartier divisor that contains no
lc centers of (X,∆). Assume the following conditions hold:

(i) L ∼R KX + ∆ +H,

(ii) H is a semi-ample R-Cartier R-divisor, and

(iii) tH ∼R D + D′ for some positive real number t, where D′ is an effective
R-Cartier R-divisor whose support contains no lc centers of (X,∆).
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Then the homomorphisms

Hq(X,OX(L))→ Hq(X,OX(L+D))

induced by the natural inclusion OX → OX(D) are injective for all q.

Proof. We put S = x∆y and B = {∆}. We can take a resolution f : Y → X such
that f is an isomorphism outside Supp(D + D′ + B), and that the union of the
support of f∗(S+B+D+D′) and the exceptional locus of f has a simple normal
crossing support on Y . Let B′ be the strict transform of B on Y . We write

KY + S′ +B′ = f∗(KX + S +B) + E,

where S′ is the strict transform of S and E is f -exceptional. It is easy to see that
E+ = pEq ≥ 0. We put L′ = f∗L+E+ and E− = E+ −E ≥ 0. We note that E+

is Cartier and E− is an effective R-Cartier R-divisor with xE−y = 0. Since f∗H is
semi-ample, we can write f∗H ∼R

∑
i aiH

′
i, where 0 < ai < 1 and H ′i is a general

Cartier divisor on Y for every i. We put

B′′ = B′ + E− +
ε

t
f∗(D +D′) + (1− ε)

∑
i

aiH
′
i

for some 0 < ε � 1. Then L′ ∼R KY + S′ + B′′. By the construction, xB′′y = 0,
the support of S′+B′′ is simple normal crossing on Y , and SuppB′′ ⊃ Supp f∗D.
So, Proposition 5.1 implies that the homomorphisms

Hq(Y,OY (L′))→ Hq(Y,OY (L′ + f∗D))

are injective for all q. It is easy to see that f∗OY (L′) ' OX(L). By Lemma 4.15,
we can write L′ ∼Q KY + S′ + B′′′, where B′′′ is a Q-divisor on Y such that
xB′′′y = 0 and SuppB′′′ = SuppB′′. Thus, by Lemma 6.2 below, Rqf∗OY (L′) = 0
for all q > 0. By the Leray spectral sequence, the homomorphisms

Hq(X,OX(L))→ Hq(X,OX(L+D))

are injective for all q.

Let us recall the following well-known easy lemma.

Lemma 6.2 (Reid–Fukuda type). Let V be a smooth projective variety and let B
be a boundary Q-divisor on V such that SuppB is simple normal crossing. Let
f : V →W be a projective birational morphism onto a variety W . Assume that f
is an isomorphism at the generic point of every lc center of (V,B) and that D is
a Cartier divisor on V such that D − (KV +B) is nef. Then Rif∗OV (D) = 0 for
every i > 0.
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Proof. We use induction on the number of irreducible components of xBy and on
the dimension of V . If xBy = 0, then the lemma follows from the Kawamata–
Viehweg vanishing theorem (cf. [KM, Corollary 2.68]). Therefore, we can assume
that there is an irreducible divisor S ⊂ xBy. We consider the short exact sequence

0→ OV (D − S)→ OV (D)→ OS(D)→ 0.

By induction, we see that Rif∗OV (D − S) = 0 and Rif∗OS(D) = 0 for every
i > 0. Thus, Rif∗OV (D) = 0 for i > 0.

The next theorem is the main theorem of this section (cf. [A1]). See also [F3].

Theorem 6.3 (Torsion-freeness and vanishing theorem). Let Y be a smooth vari-
ety and let B be a boundary R-divisor such that SuppB is simple normal crossing.
Let f : Y → X be a projective morphism and let L be a Cartier divisor on Y such
that L− (KY +B) is f -semi-ample.

(i) Let q be an arbitrary non-negative integer. Every non-zero local section of
Rqf∗OY (L) contains in its support the f -image of some stratum of (Y,B).

(ii) Let π : X → S be a projective morphism. Assume that L− (KY +B) ∼R f
∗H

for some π-ample R-Cartier R-divisor H on X. Then Rpπ∗R
qf∗OY (L) = 0

for every p > 0 and q ≥ 0.

Remark 6.4. It is obvious that (i) of Theorem 6.3 is equivalent to

(i′) Let q be an arbitrary non-negative integer. Then every associated prime of
Rqf∗OY (L) is the generic point of the f -image of some stratum of (Y,B).

Proof of Theorem 6.3. We take an f -semi-ample R-Cartier R-divisor M on Y such
that M ∼R L− (KY +B).

(i) We divide the proof into two steps.

Step 1. First, we assume that X is projective. We can assume that M is semi-
ample by replacing L (resp. M) with L+f∗A′ (resp. M+f∗A′), where A′ is a very
ample Cartier divisor on X. Assume that Rqf∗OY (L) has a local section whose
support does not contain the images of any (Y,B)-strata. More precisely, let U be
a non-empty Zariski open set and let s ∈ Γ(U,Rqf∗OY (L)) be a non-zero section
of Rqf∗OY (L) on U whose support V ⊂ U does not contain the f -images of any
strata of (Y,B). Let V be the closure of V in X. We note that V \ V may contain
the f -image of some stratum of (Y,B). By replacing Y with its blow-up along an lc
center which is mapped into V \ V , we can assume that an irreducible component
B0 of xBy is mapped into V \V by f . We note that M ∼R L−B0−(KX+B−B0).
We replace L (resp. B) with L−B0 (resp. B−B0). By repeating this process finitely
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many times, we can assume that V does not contain the f -images of any strata
of (Y,B). Then we can find a very ample Cartier divisor A with the following
properties:

(a) f∗A contains no lc centers of (Y,B), and

(b) Rqf∗OY (L)→ Rqf∗OY (L)⊗OX(A) is not injective.

We can assume that M−f∗A is semi-ample by replacing L (resp. M) with L+f∗A
(resp. M + f∗A). If necessary, we replace L (resp. M) with L+ f∗A′′ (resp. M +
f∗A′′), where A′′ is a very ample Cartier divisor on X. Then

H0(X,Rqf∗OY (L)) ' Hq(Y,OY (L))

and
H0(X,Rqf∗OY (L)⊗OX(A)) ' Hq(Y,OY (L+ f∗A)).

We see that

H0(X,Rqf∗OY (L))→ H0(X,Rqf∗OY (L)⊗OX(A))

is not injective by (b) if A′′ is sufficiently ample. So,

Hq(Y,OY (L))→ Hq(Y,OY (L+ f∗A))

is not injective. This contradicts Theorem 6.1.

Step 2. Next, we assume that X is not projective. Note that the problem is local.
So, we can shrink X and assume that X is affine. By an argument similar to the
one in Step 1 in the proof of (ii) below, we can assume that M is a semi-ample
Q-Cartier Q-divisor. We compactify X and apply Lemma 4.17. Then we obtain a
compactification f : Y → X of f : Y → X. Let M be the closure of M on Y . If M
is not a semi-ample Q-Cartier Q-divisor, then we take blowing-ups of Y inside Y \Y
and obtain a semi-ample Q-Cartier Q-divisor M on Y such that M |Y = M . Let L
(resp. B) be the closure of L (resp. B) on Y . We note that M ∼R L− (KY + B)
does not necessarily hold. We can write M +

∑
i ai(fi) = L− (KY +B), where ai

is a real number and fi is a rational function on Y for every i. We put

E = M +
∑
i

ai(fi)− (L− (KY +B)).

We replace L (resp. B) with L+pEq (resp. B+{−E}). Then we obtain the desired
property of Rqf∗OY (L) since X is projective. We note that SuppE is in Y \ Y .
So, this completes the whole proof.

(ii) We divide the proof into three steps.



748 O. Fujino

Step 1. We assume that dimS = 0. The following arguments are well known
and standard. We describe them for the reader’s convenience. In this case, we
can write H ∼R H1 + H2, where H1 (resp. H2) is a π-ample Q-Cartier Q-divisor
(resp. π-ample R-Cartier R-divisor) on X. So, we can write H2 ∼R

∑
i aiH

′
i,

where 0 < ai < 1 and H ′i is a general very ample Cartier divisor on X for every i.
Replacing B (resp. H) with B +

∑
i aif

∗H ′i (resp. H1), we can assume that H is
a π-ample Q-Cartier Q-divisor. We take a general member A ∈ |mH|, where m is
a sufficiently divisible positive integer, such that A′ = f∗A and Rqf∗OY (L + A′)
is π∗-acyclic for all q. By (i), we have the short exact sequences

0→ Rqf∗OY (L)→ Rqf∗OY (L+A′)→ Rqf∗OA′(L+A′)→ 0

for all q. Note that Rqf∗OA′(L + A′) is π∗-acyclic by induction on dimX and
Rqf∗OY (L + A′) is also π∗-acyclic by the above assumption. Thus, Epq2 = 0 for
p ≥ 2 in the following commutative diagram of spectral sequences:

Epq2 = Rpπ∗R
qf∗OY (L)

ϕpq

��

+3 Rp+q(π ◦ f)∗OY (L)

ϕp+q

��
E
pq

2 = Rpπ∗R
qf∗OY (L+A′) +3 Rp+q(π ◦ f)∗OY (L+A′)

We note that ϕ1+q is injective by Theorem 6.1. Now E1q
2 → R1+q(π ◦ f)∗OY (L) is

injective as Epq2 = 0 for p ≥ 2. Also, E
1q

2 = 0 by the above assumption. Therefore,
E1q

2 = 0 since the injection E1q
2 → R1+q(π◦f)∗OY (L+A′) factors through E

1q

2 = 0.
This implies that Rpπ∗Rqf∗OY (L) = 0 for every p > 0 and q ≥ 0.

Step 2. We assume that S is projective. By replacing H (resp. L) with H + π∗G

(resp. L+(π ◦f)∗G), where G is a very ample Cartier divisor on S, we can assume
that H is an ample R-Cartier R-divisor. By the same argument as in Step 1, we
can assume that H is an ample Q-Cartier Q-divisor and M ∼Q f∗H. If G is a
sufficiently ample Cartier divisor on S, Hk(S,Rpπ∗Rqf∗OY (L)⊗OS(G)) = 0 for
every k ≥ 1,

H0(S,Rpπ∗Rqf∗OY (L)⊗OS(G)) ' Hp(X,Rqf∗OY (L)⊗OX(π∗G))

' Hp(X,Rqf∗OY (L+ f∗π∗G)),

and Rpπ∗R
qf∗OY (L)⊗OS(G) is generated by its global sections. Since

M + f∗π∗G ∼R L+ f∗π∗G− (KY +B), M + f∗π∗G ∼Q f∗(H + π∗G),

and H+π∗G is ample, we can apply Step 1 to obtain Hp(X,Rqf∗OY (L+f∗π∗G))
= 0 for every p > 0 and q ≥ 0. Thus, Rpπ∗Rqf∗OY (L) = 0 for every p > 0 and
q ≥ 0 by the above arguments.
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Step 3. When S is not projective, we shrink S and assume that S is affine. By
the same argument as in Step 1 above, we can assume that H is Q-Cartier. We
compactify S and X, and can assume that S and X are projective. By Lemma
4.17, we can reduce it to the case when S is projective. This step is essentially the
same as Step 2 in the proof of (i). So, we omit the details here.

We have thus obtained the statement (ii).

§7. Non-lc ideal sheaves

We introduce the notion of non-lc ideal sheaves. It is an analogue of the usual
multiplier ideal sheaves (see, for example, [L, Chapter 9]). For details, see [F10]
and [FST].

Definition 7.1 (Non-lc ideal sheaf). Let X be a normal variety and let B be an
R-divisor on X such that KX + B is R-Cartier. Let f : Y → X be a resolution
with KY +BY = f∗(KX +B) such that SuppBY is simple normal crossing. Then
we put

JNLC(X,B) = f∗OY (p−(B<1
Y )q− xB>1

Y y) = f∗OY (−xBY y +B=1
Y )

and call it the non-lc ideal sheaf associated to (X,B). If B is effective, then
JNLC(X,B) ⊂ OX .

The ideal sheaf JNLC(X,B) is well defined by the following easy lemma.

Lemma 7.2. Let g : Z → Y be a proper birational morphism between smooth
varieties and let BY be an R-divisor on Y such that SuppBY is simple normal
crossing. Assume that KZ + BZ = g∗(KY + BY ) and that SuppBZ is simple
normal crossing. Then

g∗OZ(p−(B<1
Z )q− xB>1

Z y) ' OY (p−(B<1
Y )q− xB>1

Y y).

Proof. Since KZ +BZ = g∗(KY +BY ), we obtain

KZ = g∗(KY +B=1
Y + {BY })

+ g∗(xB<1
Y y + xB>1

Y y)− (xB<1
Z y + xB>1

Z y)−B=1
Z − {BZ}.

If a(ν, Y,B=1
Y + {BY }) = −1 for a prime divisor ν over Y , then we can check

that a(ν, Y,BY ) = −1 by using [KM, Lemma 2.45]. Since g∗(xB<1
Y y + xB>1

Y y) −
(xB<1

Z y + xB>1
Z y) is Cartier, we can easily see that

g∗(xB<1
Y y + xB>1

Y y) = xB<1
Z y + xB>1

Z y + E,
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where E is an effective f -exceptional Cartier divisor. Thus, we obtain

g∗OZ(p−(B<1
Z )q− xB>1

Z y) ' OY (p−(B<1
Y )q− xB>1

Y y).

This completes the proof.

Remark 7.3. We use the same notation as in Definition 7.1. We put

J (X,B) = f∗OY (−xBY y).

This sheaf J (X,B) is well known as the (algebraic version of) multiplier ideal
sheaf of the pair (X,B). See, for example, [L, Chapter 9].

By the definition, the following proposition is obvious.

Proposition 7.4. Let X be a normal variety and let B be an effective R-divisor
on X such that KX +B is R-Cartier. Then (X,B) is log canonical if and only if
JNLC(X,B) = OX .

The next proposition is a kind of Bertini’s theorem.

Proposition 7.5. Let X be a smooth variety and let B be an effective R-divisor
on X such that KX +B is R-Cartier. Let Λ be a linear system on X and let D ∈ Λ
be a general member of Λ. Then

JNLC(X,B + tD) = JNLC(X,B)

outside the base locus Bs Λ of Λ for all 0 ≤ t ≤ 1.

Proof. By replacing X with X\Bs Λ, we can assume that Bs Λ = ∅. Let f : Y → X

be a resolution as in Definition 7.1. Since D is a general member of Λ, f∗D = f−1
∗ D

is a smooth divisor on Y such that Supp f∗D∪SuppBY is simple normal crossing.
Hence, we can check that JNLC(X,B + tD) = JNLC(X,B) for all 0 ≤ t ≤ 1.

We close this section with an important remark.

Remark 7.6. In the subsequent sections (Sections 8, 12, 13, and 15), we consider
the scheme structure of Nlc(X,B) defined by JNLC(X,B). However, we can use
J ′(X,B) or J ′l (X,B) for any negative integer l in place of JNLC(X,B). For the
definitions and basic properties of J ′(X,B) and J ′l (X,B), see [FST]. We adopt
JNLC(X,B) since we think it is the most natural defining ideal sheaf of Nlc(X,B).

§8. Vanishing theorem

The following vanishing theorem, which is a special case of [A1, Theorem 4.4],
is one of the key results in this paper. We note that the importance of Theorem
8.1 is in its formulation best suited for new frameworks explained in subsequent
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sections. For the details of Ambro’s original statement, see [A1, Theorem 4.4] or
[F11, Theorem 3.39].

Theorem 8.1. Let X be a normal variety and let B be an effective R-divisor
on X such that KX + B is R-Cartier. Let D be a Cartier divisor on X. Assume
that D− (KX +B) is π-ample, where π : X → S is a projective morphism onto a
variety S. Let {Ci} be any set of lc centers of the pair (X,B). Put W =

⋃
Ci with

the reduced scheme structure. Assume that W is disjoint from Nlc(X,B). Then

Riπ∗(J ⊗OX(D)) = 0 for every i > 0,

where J = IW · JNLC(X,B) ⊂ OX and IW is the defining ideal sheaf of W on X.
Therefore, the restriction map

π∗OX(D)→ π∗OW (D)⊕ π∗ONlc(X,B)(D)

is surjective and
Riπ∗OW (D) = 0 for every i > 0.

In particular, the restriction maps

π∗OX(D)→ π∗OW (D) and π∗OX(D)→ π∗ONlc(X,B)(D)

are surjective.

Proof. Let f : Y → X be a resolution such that Supp f−1
∗ B ∪ Exc(f) is a simple

normal crossing divisor. We can further assume that f−1(W ) is a simple normal
crossing divisor on Y . We can write

KY +BY = f∗(KX +B).

Let T be the union of the irreducible components of B=1
Y that are mapped into W

by f . We consider the short exact sequence

0→ OY (A−N − T )→ OY (A−N)→ OT (A−N)→ 0,

where A = p−(B<1
Y )q and N = xB>1

Y y. Note that A is an effective f -exceptional
divisor. We obtain the long exact sequence

0→ f∗OY (A−N − T )→ f∗OY (A−N)→ f∗OT (A−N)
δ→ R1f∗OY (A−N − T )→ · · · .

Since

A−N − T − (KY + {BY }+B=1
Y − T ) = −(KY +BY ) ∼R −f∗(KX +B),
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every non-zero local section of R1f∗OY (A − N − T ) contains in its support the
f -image of some stratum of (Y, {BY }+B=1

Y −T ) by Theorem 6.3(i). On the other
hand, W = f(T ). Therefore, the connecting homomorphism δ is a zero map. Thus,
we have a short exact sequence

0→ f∗OY (A−N − T )→ f∗OY (A−N)→ f∗OT (A−N)→ 0.(♦)

We put J = f∗OY (A − N − T ) ⊂ OX . Since W is disjoint from Nlc(X,B),
the ideal sheaf J coincides with IW (resp. JNLC(X,B)) in a neighborhood of W
(resp. Nlc(X,B)). Therefore, J = IW · JNLC(X,B). We put U = X \ Nlc(X,B)
and V = f−1(U). By restricting (♦) to U , we obtain

0→ f∗OV (A− T )→ f∗OV (A)→ f∗OT (A)→ 0.

Since f∗OV (A) ' OU , we have f∗OT (A) ' OW . The latter isomorphism plays a
crucial role in the next section, so we write it as a proposition.

Proposition 8.2. We have f∗OT (A) ' OW . This obviously implies that f∗OT
' OW since A is effective.

Remark 8.3. We did not use D or π : X → S to obtain Proposition 8.2.

Since

f∗D +A−N − T − (KY + {BY }+B=1
Y − T ) ∼R f

∗(D − (KX +B)),

we have

Riπ∗(J ⊗OX(D)) ' Riπ∗(f∗OY (A−N − T )⊗OX(D)) = 0

for every i > 0 by Theorem 6.3(ii). By considering the short exact sequence

0→ J → JNLC(X,B)→ OW → 0,

we obtain

· · · → Riπ∗(JNLC(X,B)⊗OX(D))

→ Riπ∗OW (D)→ Ri+1π∗(J ⊗OX(D))→ · · · .

Since we have already checked

Riπ∗(JNLC(X,B)⊗OX(D)) = Riπ∗(J ⊗OX(D)) = 0

for every i > 0, we have Riπ∗OW (D) = 0 for all i > 0. Finally, we consider the
short exact sequence

0→ J → OX → OW ⊕ONlc(X,B) → 0.
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By taking ⊗OX(D) and Riπ∗, we obtain

0→ π∗(J ⊗OX(D))→ π∗OX(D)→ π∗OW (D)⊕ π∗ONlc(X,B)(D)→ 0.

This completes the proof of Theorem 8.1.

§9. Lc centers

We prove the basic properties of lc centers as an application of the result in the
preceding section (cf. Proposition 8.2). Theorem 9.1 is very useful in the study of
linear systems on log canonical pairs. It cannot be proved by the traditional method
based on the Kawamata–Viehweg–Nadel vanishing theorem in the sense that the
coefficients of B cannot be perturbed in general. For related topics, see [FG].

Theorem 9.1 (cf. [A1, Propositions 4.7 and 4.8]). Let X be a normal variety and
let B be an effective R-divisor such that (X,B) is log canonical. Then we have the
following properties:

(1) (X,B) has at most finitely many lc centers.

(2) The intersection of two lc centers is a union of lc centers.

(3) Any union of lc centers of (X,B) is semi-normal.

(4) Let x ∈ X be a closed point such that (X,B) is lc but not klt at x. Then there
is a unique minimal lc center Wx passing through x, and Wx is normal at x.

Proof. We use the notation in the proof of Theorem 8.1. (1) is obvious. (3) is
also obvious by Proposition 8.2 since T is a simple normal crossing divisor. Let
C1 and C2 be two lc centers of (X,B). We fix a closed point P ∈ C1 ∩ C2. For
the proof of (2), it is enough to find an lc center C such that P ∈ C ⊂ C1 ∩ C2.
We put W = C1 ∪ C2. By Proposition 8.2, we obtain f∗OT ' OW . This means
that f : T →W has connected fibers. We note that T is a simple normal crossing
divisor on Y . Thus, there exist irreducible components T1 and T2 of T such that
T1 ∩ T2 ∩ f−1(P ) 6= ∅ and f(Ti) ⊂ Ci for i = 1, 2. Therefore, we can find an lc
center C with P ∈ C ⊂ C1 ∩ C2. This yields (2).

Finally, we prove (4). The existence and uniqueness of the minimal lc center
follow from (2). We take the unique minimal lc center W = Wx passing through x.
By Proposition 8.2, we have f∗OT ' OW . By shrinking W around x, we can
assume that every stratum of T dominates W . Thus, f : T → W factors through
the normalization W ν of W . Since f∗OT ' OW , we see that W ν → W is an
isomorphism. So, we obtain (4).
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§10. Dlt blow-ups

In this section, we discuss dlt blow-ups by Hacon (cf. Theorem 10.4). In the subse-
quent sections, we will only use Lemma 10.2 (well known to experts) and Theorem
10.4. For details, see Sections 11 and 18. We also discuss a slight refinement of dlt
blow-ups (cf. Theorem 10.5), which is useful for future studies of log canonical
pairs and has already played a crucial role in the study of log canonical weak Fano
pairs (cf. [G]).

Let us recall the definition of dlt pairs. For another definition and the basic
properties of dlt pairs, see [KM, Section 2.3] and [F6].

Definition 10.1 (Dlt pair). Let X be a normal variety and let B be an effective
R-divisor on X such that KX + B is R-Cartier. If there exists a resolution f :
Y → X such that

(i) both Exc(f) and Exc(f)∪Supp f−1
∗ B are simple normal crossing divisors on Y ,

and

(ii) a(E,X,B) > −1 for every exceptional divisor E ⊂ Y ,

then (X,B) is called divisorial log terminal (dlt, for short).

We will use the following lemma in Section 11. For the details, see [F6, 3.9
Adjunction for dlt pairs].

Lemma 10.2. Let (X,B) be a dlt pair and let V be an lc center of (X,B). Then
KV +BV = (KX +B)|V is dlt by adjunction.

We borrow the next theorem from [BCHM].

Theorem 10.3 (cf. [BCHM, Theorem 1.2]). Let (X,B) be a klt pair, where
KX +B is R-Cartier. Let π : X → S be a projective birational morphism of quasi-
projective varieties. Then (X,B) has a log terminal model over S. This means that
there exists a projective birational morphism f : X ′ → S such that

(i) X ′ is Q-factorial,

(ii) φ−1 has no exceptional divisors, where φ = f−1 ◦ π : X 99K X ′,

(iii) KX′ +B′ is f -nef, where B′ = φ∗B, and

(iv) a(E,X,B) < a(E,X ′, B′) for every φ-exceptional divisor E ⊂ X.

The following theorem is very useful. The proof, which is the same as that
of [KK, Theorem 3.1], is nevertheless given below since Theorem 10.5 is based on
the close examination of it and Section 6. For a simpler proof of Theorem 10.4,
see [F18, Section 4].
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Theorem 10.4 (Dlt blow-ups by Hacon, cf. [KK, Theorem 3.1]). Let X be a
normal quasi-projective variety and let B be a boundary R-divisor on X such
that KX + B is R-Cartier. In this case, we can construct a projective birational
morphism f : Y → X from a normal quasi-projective variety Y with the following
properties:

(i) Y is Q-factorial.

(ii) a(E,X,B) ≤ −1 for every f -exceptional divisor E on Y .

(iii) Put
BY = f−1

∗ B +
∑

E:f-exceptional

E.

Then (Y,BY ) is dlt and

KY +BY = f∗(KX +B) +
∑

a(E,X,B)<−1

(a(E,X,B) + 1)E.

In particular, if (X,B) is lc, then KY + BY = f∗(KX + B). Moreover, if
(X,B) is dlt, then we can make f small, that is, f is an isomorphism in
codimension one.

Proof. Let π : V → X be a resolution such that π−1
∗ B ∪ Exc(π) has a simple

normal crossing support. We can assume that π is a composite of blow-ups of
centers of codimension at least two. Then there exists an effective π-exceptional
Cartier divisor C on V such that −C is π-ample. We put

F =
∑

a(E,X,B)>−1,
E:π-exceptional

E and E+ = −
∑

a(E,X,B)≤−1

a(E,X,B)E.

We note that E+ is not necessarily π-exceptional. We put E = SuppE+. We note
that E+ − E is π-exceptional.

Let H be a sufficiently ample Cartier divisor on X. We choose 0 < ε, ν, µ� 1
and note that

(♠) E + (1− ν)F + µ(−C + π∗H)

= (1− εµ)E + (1− ν)F + µ(εE − C + π∗H).

Since −C + π∗H and εE − C + π∗H are ample, we can take effective Q-divisors
H1 and H2 with small coefficients such that E +F + π∗B+H1 +H2 has a simple
normal crossing support and that −C +π∗H ∼Q H1, εE−C +π∗H ∼Q H2. Then
(V, (1− εµ)E + (1− ν)F + π−1

∗ B<1 + µH2) is klt. By Theorem 10.3, it has a log
terminal model f : Y → X. By [BCHM], we can assume that ϕ : V 99K Y is a
composition of (KV + (1− εµ)E + (1− ν)F + π−1

∗ B<1 + µH2)-negative divisorial
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contractions and log flips. By equation (♠), this is also a relative minimal model
of the pair (V,E + (1− ν)F + π−1

∗ B<1 + µH1), which is therefore dlt.
For any divisor G on V appearing above, let G′ denote its transform on Y .

By the above construction,

N = KY + (1− εµ)E′ + (1− ν)F ′ + f−1
∗ B<1 + µH ′2

is f -nef and KY +B = f∗(KX +B) is R-linearly f -trivial. We put

D = B − E′ − (1− ν)F ′ − f−1
∗ B<1 + µC ′.

Then

−D ∼R,f N − (KY +B) = −B + (1− εµ)E′ + (1− ν)F ′ + f−1
∗ B<1 + µH ′2,

hence it is f -nef. Since f∗D = 0, we see that D is effective by the negativity lemma
(cf. Lemma 4.16).

Every divisor in F has a negative coefficient in

B̃ − E − (1− ν)F − π−1
∗ B<1 + µC,

where KV + B̃ = π∗(KX + B). Therefore, F is contracted on Y . So, every f -
exceptional divisor has discrepancy ≤ −1. By the above construction, (Y,E′ +
f−1
∗ B<1 + µH ′1) is dlt since F ′ = 0. Therefore, (Y,E′ + f−1

∗ B<1) is also dlt. This
means that (Y,BY ) is dlt because BY = E′ +

∑
f−1
∗ B<1.

When (X,B) is dlt, we can assume that E+ = π−1
∗ B=1 by the definition of

dlt pairs. Therefore, we can make f small.

The study of lc centers of a given lc pair often requires a refinement of The-
orem 10.4, that is, Theorem 10.5 which relates lc centers on X to those on Y .
It is actually needed in [G], which studies weak Fano varieties with log canonical
singularities.

Theorem 10.5. Let X be a normal quasi-projective variety and let B be an ef-
fective R-divisor on X such that (X,B) is lc. In this case, we can construct a
projective birational morphism f : Y → X from a normal quasi-projective vari-
ety Y with the following properties:

(i) Y is Q-factorial.

(ii) a(E,X,B) = −1 for every f -exceptional divisor E on Y .

(iii) Put
BY = f−1

∗ B +
∑

E:f-exceptional

E.

Then (Y,BY ) is dlt and KY +BY = f∗(KX +B).
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(iv) Let {Ci} be any set of lc centers of (X,B). Put W =
⋃
Ci with the reduced

scheme structure. Let S be the union of the irreducible components of B=1
Y

which are mapped into W by f . Then f∗OS ' OW .

Proof. Let π : V → X be a resolution such that

(1) π−1(C) is a simple normal crossing divisor on V for every lc center C of (X,B),
and

(2) π−1
∗ B ∪ Exc(π) ∪ π−1(Nklt(X,B)) has a simple normal crossing support.

We apply the arguments in the proof of Theorem 10.4. From now on, we use the
same notation as in the proof of Theorem 10.4. In this case, we have

E = SuppE+ = E+.

When we construct f : Y → X, we can run the log minimal model program with
scaling with respect to

KV +E+(1−ν)F+π−1
∗ B<1 +µH1 ∼R KV +(1−εµ)E+(1−ν)F+π−1

∗ B<1 +µH2

(cf. [BCHM]). So, we can assume that ϕ : V 99K Y is a composition of (KV +
E + (1− ν)F + π−1

∗ B<1 + µH1)-negative divisorial contractions and log flips. Let
Σ be an lc center of (Y,BY ). Then it is also an lc center of (Y,BY + µH ′1). By
the negativity lemma (cf. Lemma 4.16), ϕ : V 99K Y is an isomorphism around
the generic point of Σ. Therefore, if f(Σ) ⊂W , then Σ ⊂ S by the conditions (1)
and (2) for π : V → X. This means that no lc centers of (Y,BY − S) are mapped
into W by f . Let g : Z → Y be a resolution such that

(a) KZ +BZ = g∗(KY +BY ),

(b) SuppBZ is a simple normal crossing divisor, and

(c) g is an isomorphism over the generic point of any lc center of (Y,BY ).

Let SZ be the strict transform of S on Z. We consider the short exact sequence

(♥) 0→ OZ(p−(B<1
Z )q− SZ)→ OZ(p−(B<1

Z )q)→ OSZ (p−(B<1
Z )q)→ 0.

We note that

p−(B<1
Z )q− SZ − (KZ + {BZ}+B=1

Z − SZ) ∼R −h∗(KX +B),

where h = f ◦ g. Then we obtain

0→ h∗OZ(p−(B<1
Z )q− SZ)→ h∗OZ(p−(B<1

Z )q)→ h∗OSZ (p−(B<1
Z )q)

δ→ R1h∗OZ(p−(B<1
Z )q− SZ)→ · · · .



758 O. Fujino

Every associated prime of R1h∗OZ(p−(B<1
Z )q − SZ) is the generic point of the

h-image of some stratum of (Z, {BZ} + B=1
Z − SZ) by Theorem 6.3(i) and no lc

centers of (Z, {BZ}+B=1
Z − SZ) are mapped into W by h. Therefore, δ is a zero

map. Thus, we obtain

0→ IW → OX → h∗OSZ (p−(B<1
Z )q)→ 0

and OW ' h∗OSZ ' h∗OSZ (p−(B<1
Z )q) (cf. Proposition 8.2), where IW is the

defining ideal sheaf of W . Here, we have used the fact that p−(B<1
Z )q is effective

and h-exceptional. By applying g∗ to (♥), we obtain

0→ IS → OY → g∗OSZ (p−(B<1
Z )q)→ 0

and OS ' g∗OSZ ' g∗OSZ (p−(B<1
Z )q) (cf. Proposition 8.2), where IS ' OY (−S)

is the defining ideal sheaf of S. We note that

R1g∗OZ(p−(B<1
Z )q− SZ) = 0

by Theorem 6.3(i) since g is an isomorphism at the generic point of any stratum
of (Z, {BZ}+B=1

Z −SZ), and p−(B<1
Z )q is effective and g-exceptional. Therefore,

OW ' h∗OSZ ' f∗g∗OSZ ' f∗OS .

§11. Vanishing theorem for minimal lc centers

In this section, we prove a vanishing theorem on minimal lc centers. It is very
powerful and will play a crucial role in the proof of Theorem 12.1. We note that
a key point of Theorem 11.1 is in its formulation which is best suited for our
subsequent applications.

Theorem 11.1 (Vanishing theorem for minimal lc centers). Let X be a normal
variety and let B be an effective R-divisor on X such that KX + B is R-Cartier.
Let W be a minimal lc center of (X,B) such that W is disjoint from Nlc(X,B).
Let π : X → S be a projective morphism onto a variety S. Let D be a Cartier
divisor on W such that D − (KX +B)|W is π-ample. Then

Riπ∗OW (D) = 0 for every i > 0.

Proof. Without loss of generality, we can assume that S is quasi-projective. We
shrink X around W and assume that (X,B) is log canonical. By Theorem 10.4, we
can construct a projective birational morphism f : Y → X such that KY +BY =
f∗(KX + B) and (Y,BY ) is dlt. We take an lc center V of (Y,BY ) such that
f(V ) = W and put KV + BV = (KY + BY )|V . Then (V,BV ) is dlt by Lemma
10.2 and KV +BV ∼R f

∗((KX +B)|W ). Let g : Z → V be a resolution such that
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KZ +BZ = g∗(KV +BV ) and SuppBZ is simple normal crossing. Then we have
KZ +BZ ∼R h

∗((KX +B)|W ), where h = f ◦ g. Since

h∗(D − (KX +B)|W ) ∼R h
∗D + p−(B<1

Z )q− (KZ +B=1
Z + {BZ}),

we obtain
Riπ∗h∗OZ(h∗D + p−(B<1

Z )q) = 0 for every i > 0

by Theorem 6.3(ii). We note that

h∗OZ(h∗D + p−(B<1
Z )q) ' f∗OV (f∗D)

by the projection formula since p−(B<1
Z )q is effective and g-exceptional. Moreover,

OW (D) is a direct summand of f∗OV (f∗D) ' OW (D)⊗ f∗OV since W is normal
(cf. Theorem 9.1(4)). Therefore, Riπ∗OW (D) = 0 for every i > 0.

We close this section with an important remark.

Remark 11.2. The short proof of Theorem 11.1 given in this section depends
on Theorem 6.3(ii), Theorem 9.1(4), and Theorem 10.4 which is a corollary to
[BCHM]. However Theorem 11.1, a special case of [A1, Theorem 4.4], is indepen-
dent of [BCHM] since it can be proved without using Theorem 10.4. We refer the
reader to [F11, Theorem 3.39] for the independent proof of Theorem 11.1, which
heavily depends on the theory of mixed Hodge structures on compact support
cohomology groups of reducible varieties (cf. [F11, Chapter 2]).

§12. Non-vanishing theorem

In this section, we prove the non-vanishing theorem, which is a generalization of
the main theorem of [F16]. In [A1], Ambro does not discuss any generalization of
Shokurov’s non-vanishing theorem. Therefore, the result in this section is one of the
main differences between the theory of quasi-log varieties and our new framework.

Theorem 12.1 (Non-vanishing theorem). Let X be a normal variety and let B
be an effective R-divisor on X such that KX + B is R-Cartier. Let π : X → S be
a projective morphism onto a variety S and let L be a π-nef Cartier divisor on X.
Assume that

(i) aL− (KX +B) is π-ample for some real number a > 0, and

(ii) ONlc(X,B)(mL) is π|Nlc(X,B)-generated for m� 0.

Then the relative base locus Bsπ |mL| contains no lc centers of (X,B) and is
disjoint from Nlc(X,B) for m� 0.
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Proof. Without loss of generality, we can assume that S is affine.

Step 1. In this step, we will prove that OX(mL) is π-generated on an open neigh-
borhood of Nlc(X,B) for m� 0.

By the assumption, π∗π∗ONlc(X,B)(mL) → ONlc(X,B)(mL) is surjective for
m � 0. On the other hand, π∗OX(mL) → π∗ONlc(X,B)(mL) is surjective for
m ≥ a since

R1π∗(JNLC(X,B)⊗OX(mL)) = 0

for m ≥ a by Theorem 8.1. Therefore, for every large integer m, π∗π∗OX(mL)→
OX(mL) is surjective on an open neighborhood of Nlc(X,B). See the following
commutative diagram:

π∗π∗OX(mL)

��

// π∗π∗ONlc(X,B)(mL)

��

// 0

OX(mL) // ONlc(X,B)(mL) // 0

Let W be a minimal lc center of (X,B). Then it is sufficient to see that W is
not contained in Bs |mL| for m� 0.

Step 2. If W ∩ Nlc(X,B) 6= ∅, then Bs |mL| does not contain W by Step 1. So,
from now on, we can assume that W ∩Nlc(X,B) = ∅.

Step 3. We assume that L|Wη
is numerically trivial, where Wη is the generic fiber

of W → π(W ). In this case,

h0(Wη,OWη (L)) = χ(Wη,OWη (L)) = χ(Wη,OWη ) = h0(Wη,OWη ) > 0

by [Kl, Chapter, II §2, Theorem 1] and the vanishing theorem (Theorem 11.1). On
the other hand,

π∗OX(mL)→ π∗OW (mL)⊕ π∗ONlc(X,B)(mL)

is surjective for every m ≥ a by Theorem 8.1. In particular, the restriction map
π∗OX(mL) → π∗OW (mL) is surjective for every m ≥ a. Thus, Bs |mL| does not
contain W for every m ≥ a.

Step 4. We assume that L|Wη
is not numerically trivial. We take a general sub-

variety V of W such that V → π(W ) is generically finite. If l is a large positive
integer, then we can write

lL− (KX +B) = N1 + a2N2 + · · ·+ akNk

with the following properties:
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(a) N1 is a π-ample Q-Cartier Q-divisor on X such that

((N1|W )|F )dimF > d(codimW V )dimF ,

where d is the mapping degree of V → π(W ) and F is a general fiber of
W → π(W ).

(b) ai is a positive real number and Ni is a π-very ample Cartier divisor on X for
every i ≥ 2.

By Lemma 12.2 below, we can find an effective Q-divisor D1 on W such that
D1 ∼Q N1|W with multV D1 > codimW V . If b is sufficiently large and divisible,
then bD1 ∼ bN1|W , IW ⊗OX(bN1) is π-generated, and R1π∗(IW ⊗OX(bN1)) = 0
since N1 is π-ample, where IW is the defining ideal sheaf of W . By using the short
exact sequence

0→ π∗(IW ⊗OX(bN1))→ π∗OX(bN1)→ π∗OW (bN1)→ 0,

we can find an effective Q-divisor M1 on X with the following properties:

(a) M1|W = D1.

(b) M1 ∼Q N1.

(c) (X,B +M1) is lc outside W ∪Nlc(X,B).

(d) JNLC(X,B +M1) = JNLC(X,B) outside W .

Let Mi be a general member of |Ni| for every i ≥ 2. We put M = M1 + a2M2 +
· · ·+ akMk. Then we have:

(i) M |W ≥ D1.

(ii) M ∼R lL− (KX +B).

(iii) (X,B +M) is lc outside W ∪Nlc(X,B).

(iv) JNLC(X,B +M) = JNLC(X,B) outside W .

We take the log canonical threshold c of (X,B) with respect to M outside
Nlc(X,B). By the above construction, we have 0 < c < 1. More precisely, c > 0
since M contains no lc centers of (X,B), and c < 1 follows from the fact that
M |W ≥ D1 and multV D1 > codimW V . We note that

(a− ac+ cl)L− (KX +B + cM) ∼R (1− c)(aL− (KX +B))

is π-ample. Moreover, we can find a smaller lc center W ′ of (X,B+cM) contained
in W (cf. Theorem 9.1(2)). Therefore, we replace (X,B) with (X,B+cM), a with
a−ac+ cl, and consider the new lc center W ′. By repeating this process, we reach
the situation where L|Wη is numerically trivial.
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Anyway, we have proved that Bs |mL| contains no lc centers of (X,B) for
m� 0.

The following lemma is a relative version of Shokurov’s concentration method.
We used it in the proof of Theorem 12.1.

Lemma 12.2. Let f : Y → Z be a projective morphism from a normal variety Y
onto an affine variety Z. Let V be a general closed subvariety of Y such that
f : V → Z is generically finite. Let M be an f -ample R-divisor on Y . Assume that

(M |F )d > kmd,

where F is a general fiber of f : Y → Z, d = dimF , and k is the mapping degree
of f : V → Z. Then we can find an effective R-divisor D on Y such that

D ∼R M

and multV D > m. If M is a Q-divisor, then we can make D a Q-divisor with
D ∼Q M .

Proof. We can write

M = M1 + a2M2 + · · ·+ alMl,

where M1 is an f -ample Q-Cartier Q-divisor such that (M1|F )d > kmd, ai is a
positive real number, and Mi is an f -ample Cartier divisor for every i. If M is a
Q-divisor, then we can assume that l = 2 and a2 is rational. Let IV be the defining
ideal sheaf of V on Y . We consider the exact sequence

0→ f∗(OY (pM1)⊗ IpmV )→ f∗OY (pM1)→ f∗(OY (pM1)⊗OY /IpmV )→ · · ·

for a sufficiently large and divisible integer p. By restricting the above sequence to
a general fiber F of f , we can check that the rank of f∗OY (pM1) is greater than
that of f∗(OY (pM1)⊗OY /IpmV ) by the usual estimates (see Lemma 12.3 below).
Therefore, f∗(OY (pM1)⊗ IpmV ) 6= 0. Let D1 be a member of

H0(Z, f∗(OY (pM1)⊗ IpmV )) = H0(Y,OY (pM1)⊗ IpmV )

and let Di be an effective Q-Cartier Q-divisor such that Di ∼Q Mi for i ≥ 2. We
can take D2 with multV D2 > 0. Then D = (1/p)D1 + a2D2 + · · ·+ alDl has the
desired properties.

We close this section with the following well-known lemma. The proof is ob-
vious.
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Lemma 12.3. Let X be a normal projective variety with dimX = d and let A
be an ample Q-divisor on X such that rA is Cartier for some positive integer r.
Then

h0(X,OX(trA)) = χ(X,OX(trA)) =
(trA)d

d!
+ (lower terms in t)

by the Riemann–Roch formula and the Serre vanishing theorem for t� 0.
Let P ∈ X be a smooth point. Then

dimCOX/mα
P =

(
α− 1 + d

d

)
=
αd

d!
+ (lower terms in α)

for all α ≥ 1, where mP is the maximal ideal associated to P .

§13. Base point free theorem

The base point free theorem is one of the most important theorems in the log min-
imal model program. Since we have already established the non-vanishing theorem
(Theorem 12.1) in our framework, there are no difficulties in obtaining the base
point free theorem (Theorem 13.1). Our approach is simpler than in [A1], though
Theorem 13.1 is a special case of the base point free theorem for quasi-log varieties
obtained by Ambro (cf. [A1, Theorem 5.1] and [F11, Theorem 3.66]). Indeed in the
approach of [A1] it is necessary to treat reducible non-equidimensional quasi-log
varieties even for the proof of the base point free theorem for log canonical pairs.

Theorem 13.1 (Base point free theorem). Let X be a normal variety and let B
be an effective R-divisor on X such that KX + B is R-Cartier. Let π : X → S be
a projective morphism onto a variety S and let L be a π-nef Cartier divisor on X.
Assume that

(i) aL− (KX +B) is π-ample for some real number a > 0, and

(ii) ONlc(X,B)(mL) is π|Nlc(X,B)-generated for m� 0.

Then OX(mL) is π-generated for m� 0.

We will prove the base point free theorem for R-divisors in Section 17 as an
application of the cone theorem (Theorem 16.6).

Proof. We can assume that S is affine.

Step 1. We assume that (X,B) is klt and that Lη is numerically trivial, where
Lη = L|Xη and Xη is the generic fiber of π : X → S. Then we have

h0(Xη,OXη (Lη)) = χ(Xη,OXη (Lη)) = χ(Xη,OXη ) = h0(Xη,OXη ) > 0
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by [Kl, Chapter II, §2, Theorem 1] and the vanishing theorem. Here, the Kawamata
–Viehweg vanishing theorem is sufficient. Therefore, |L| 6= ∅. Let D be a member
of |L|. If D = 0, then it is obvious that |mL| is free for every m. Thus, we can
assume that D 6= 0. Let c be the log canonical threshold of (X,B) with respect
to D. We replace (X,B) with (X,B+ cD), and a with a+ c. Then we can assume
that (X,B) is lc but not klt. This case will be treated in Step 3.

Step 2. We assume that (X,B) is klt and that Lη is not numerically trivial. We
take a general subvariety V on X such that π : V → S is generically finite. By
Lemma 12.2, we can find an effective R-divisor D on X such that

D ∼R lL− (KX +B)

for some large l and multV D > codimX V . Let c be the log canonical threshold
of (X,B) with respect to D. By the above construction, we obtain 0 < c < 1. We
replace (X,B) with (X,B + cD), and a with a − ac + cl, and can assume that
(X,B) is lc but not klt. We note that

(a− ac+ cl)L− (KX +B + cD) ∼R (1− c)(aL− (KX +B)).

So, the problem is reduced to the case when (X,B) is lc but not klt. It will be
treated in Step 3.

Step 3. We assume that (X,B) is not klt. Let p be a prime integer. We will prove
that Bs |pmL| = ∅ for some positive integer m.

By Theorem 12.1, |pm1L| 6= ∅ for some positive integer m1. If Bs |pm1L| = ∅,
then there is nothing to prove. So, we can assume that Bs |pm1L| 6= ∅. We take
general members D1, . . . , Dn+1 ∈ |pm1L|, where n = dimX. Since D1, . . . , Dn+1

are general, (X,B+D1 + · · ·+Dn+1) is lc outside Bs |pm1L|∪Nlc(X,B). It is easy
to see that (X,B +D), where D = D1 + · · ·+Dn+1, is not lc at the generic point
of every irreducible component of Bs |pm1L| (see Lemma 13.2 below). Let c be
the log canonical threshold of (X,B) with respect to D outside Nlc(X,B). Then
(X,B+cD) is lc but not klt outside Nlc(X,B), 0 < c < 1, and JNLC(X,B+cD) =
JNLC(X,B) (see Proposition 7.5). We note that

(c(n+ 1)pm1 + a)L− (KX +B + cD) ∼R aL− (KX +B)

is f -ample. By the construction, there exists an lc center of (X,B+ cD) contained
in Bs |pm1L|. By Theorem 12.1, we can find m2 > m1 such that Bs |pm2L| (
Bs |pm1L|. By noetherian induction, there exists m such that Bs |pmL| = ∅.
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Step 4. Let p′ be a prime integer such that p′ 6= p. Then, by Step 3 again, we can
find a positive integerm′ such that Bs |p′m′L| = ∅. So, there exists a positive integer
m0 such that |kL| is free for every k ≥ m0, since Bs |pmL| = ∅ and Bs |p′m′L| = ∅.

This completes the proof.

We close this section with the following lemma. We used it in the proof of
Theorem 13.1.

Lemma 13.2. Let X be a normal variety and let B be an effective R-divisor on X
such that KX + B is R-Cartier. Let P be a closed point of X and let P ∈ Di be
a Cartier divisor for every i. If (X,B +

∑k
i=1Di) is log canonical at P , then

k ≤ dimX.

Proof. The proof is by induction on dimX. The assertion is clear if dimX = 1. We
put S = D1. Let ν : Sν → S be the normalization and let BSν be the different of
(X,S+B) on Sν (see Section 14 below). So, we have KSν +BSν = ν∗(KX+S+B).
Since (X,B + S +

∑k
i=2Di) is log canonical at P , (Sν , BSν +

∑k
i=2 ν

∗Di) is log
canonical at Q ∈ ν−1(P ). Thus, k − 1 ≤ dimSν by induction. This means that
k ≤ dimX.

§14. Shokurov’s differents

Let us recall the definition and basic properties of Shokurov’s differents following
[S2, §3] and [A2, 9.2.1].

14.1. Let X be a normal variety and let S + B be an R-divisor on X such that
KX + S + B is R-Cartier. Assume that S is reduced and that S and B have no
common irreducible components. Let f : Y → X be a resolution such that

KY + SY +BY = f∗(KX + S +B)

and Supp(SY +BY ) is simple normal crossing and SY is smooth, where SY is the
strict transform of S on Y . Let ν : Sν → S be the normalization. Then f : SY → S

can be decomposed as
f : SY

π−→ Sν
ν−→ S.

We define BSY = BY |SY . Then we obtain

(KY + SY +BY )|SY = KSY +BSY

by adjunction. We put BSν = π∗BSY . Then we have

KSν +BSν = ν∗(KX + S +B).
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The R-divisor BSν on Sν is called the different of (X,S + B) on Sν . We can
easily check that BSν is independent of the resolution f : Y → X. So, BSν is a
well-defined R-divisor on Sν . We can check the following properties:

(i) KSν +BSν is R-Cartier and KSν +BSν = ν∗(KX + S +B).

(ii) If B is a Q-divisor, then so is BSν .

(iii) BSν is effective if B is effective in a neighborhood of S.

(iv) (Sν , BSν ) is log canonical if (X,S + B) is log canonical in a neighborhood
of S.

(v) Let D be an R-Cartier R-divisor on X such that S and D have no common
irreducible components. Then

(B +D)Sν = BSν + ν∗D.

We sometimes write D|Sν = ν∗D for simplicity.

The above properties except (iii) are obvious by the definition. We give a proof of
(iii) for the reader’s convenience.

Proof of (iii). By shrinking X, we can assume that X is quasi-projective and B

is effective. By taking hyperplane cuts, we can also assume that X is a surface.
Run the log minimal model program over X with respect to KY + SY . Let C be
a curve on Y such that (KY + SY ) · C < 0 and f(C) is a point. Then KY · C < 0
because SY is the strict transform of S. Therefore, each step of the log minimal
model program over X with respect to KY +SY is a contraction of a (−1)-curve E
with (KY + SY ) · E < 0. So, by replacing (Y, SY ) with the output of the above
log minimal model program, we can assume that Y is smooth, (Y, SY ) is plt, and
KY +SY is f -nef. We note that SY is a smooth curve since (Y, SY ) is plt (cf. [KM,
Proposition 5.51]). By the negativity lemma (see Lemma 4.16) and the assumption
that B is effective, BY is effective. We note the equality

−BY = KY + SY − f∗(KX + S +B).

By adjunction, we obtain

(KY + SY +BY )|SY = KSY +BY |SY .

Obviously, BY |SY is effective. This implies that BSν = BY |SY is effective.

When X is singular, BSν is not necessarily zero even if B = 0.
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§15. Rationality theorem

In this section, we prove the rationality theorem below, though it is a special
case of [A1, Theorem 5.9] (see also [F11, Theorem 3.68]). In the traditional X-
method, the rationality theorem for klt pairs is proved by the Kawamata–Viehweg
vanishing theorem, Hironaka’s resolution theorem, and Shokurov’s non-vanishing
theorem (see, for example, [KM, §3.4]). Our proof only uses the vanishing theorem
(Theorem 8.1). We need neither the non-vanishing theorem (cf. Theorem 12.1) nor
Hironaka’s resolution theorem in this section.

Theorem 15.1 (Rationality theorem). Let X be a normal variety and let B be
an effective Q-divisor on X such that KX + B is Q-Cartier. Let π : X → S be a
projective morphism and let H be a π-ample Cartier divisor on X. Assume that
KX +B is not π-nef and that r is a positive number such that

(1) H + r(KX +B) is π-nef but not π-ample, and

(2) (H + r(KX +B))|Nlc(X,B) is π|Nlc(X,B)-ample.

Then r is a rational number, and in reduced form, it has denominator at most
a(dimX + 1), where a(KX +B) is a Cartier divisor on X.

Before the proof of Theorem 15.1, we recall the following lemmas.

Lemma 15.2 (cf. [KM, Lemma 3.19]). Let P (x, y) be a non-trivial polynomial of
degree ≤ n and assume that P vanishes for all sufficiently large integral solutions
of 0 < ay− rx < ε for some fixed positive integer a and positive ε for some r ∈ R.
Then r is rational, and in reduced form, it has denominator ≤ a(n+ 1)/ε.

Proof. We assume that r is irrational. Then an infinite number of integral points
in the (x, y)-plane on each side of the line ay− rx = 0 are closer than ε/(n+ 2) to
that line. So there is a large integral solution (x′, y′) with 0 < ay′−rx′ < ε/(n+2).
In this case, we see that

(2x′, 2y′), . . . , ((n+ 1)x′, (n+ 1)y′)

are also solutions by hypothesis. So y′x − x′y divides P , since P and y′x − x′y
have n + 1 common zeroes. We choose a smaller ε and repeat the argument. We
do this n+ 1 times to get a contradiction.

Now we assume that r = u/v in lowest terms. For given j, let (x′, y′) be a
solution of ay− rx = aj/v. Note that an integral solution exists for every j. Then
we have a(y′ + ku)− r(x′ + akv) = aj/v for all k. So, as above, if aj/v < ε, then
(ay− rx)− (aj/v) must divide P . So we can have at most n such values of j. Thus
a(n+ 1)/v ≥ ε.
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Lemma 15.3. Let C be a projective variety and let D1 and D2 be Cartier divisors
on X. Consider the Hilbert polynomial

P (u1, u2) = χ(C,OC(u1D1 + u2D2)).

If D1 is ample, then P (u1, u2) is a non-trivial polynomial of total degree ≤ dimC,
because P (u1, 0) = h0(C,OC(u1D1)) 6≡ 0 if u1 is sufficiently large.

Proof of Theorem 15.1. Let m be a positive integer such that H ′ = mH is π-very
ample. If H ′+r′(KX+B) is π-nef but not π-ample, and (H ′+r′(KX+B))|Nlc(X,B)

is π|Nlc(X,B)-ample, then

H + r(KX +B) =
1
m

(H ′ + r′(KX +B)).

This gives r = (1/m)r′. Thus, r is rational if and only if r′ is rational. Assume
furthermore that r′ has denominator v. Then r has denominator dividing mv. Since
m can be an arbitrary sufficiently large integer, this implies that r has denominator
dividing v. Therefore, by replacing H with mH, we can assume that H is very
ample over S.

For each (p, q) ∈ Z2, let L(p, q) denote the relative base locus of the linear
system M(p, q) on X (with the reduced scheme structure), that is,

L(p, q) = Supp
(
Coker

(
π∗π∗OX(M(p, q))→ OX(M(p, q))

))
,

where M(p, q) = pH + qa(KX + B). By the definition, L(p, q) = X if and only if
π∗OX(M(p, q)) = 0.

Claim 1 (cf. [KM, Claim 3.20]). Let ε be a positive number. For (p, q) sufficiently
large and 0 < aq − rp < ε, L(p, q) is the same subset of X. We call it L0. Let
I ⊂ Z2 be the set of (p, q) for which 0 < aq − rp < 1 and L(p, q) = L0. Then I

contains all sufficiently large (p, q) with 0 < aq − rp < 1.

Proof of Claim 1. We fix (p0, q0) ∈ Z2 such that p0 > 0 and 0 < aq0 − rp0 < 1.
Since H is π-very ample, there exists a positive integer m0 such that OX(mH +
ja(KX + B)) is π-generated for all m > m0 and 0 ≤ j ≤ q0 − 1. Let M be the
round-up of (

m0 +
1
r

)/(
a

r
− p0

q0

)
.

If (p′, q′) ∈ Z2 such that 0 < aq′− rp′ < 1 and q′ ≥M + q0− 1, then we can write

p′H + q′a(KX +B) = k(p0H + q0a(KX +B)) + (lH + ja(KX +B))
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for some k ≥ 0, 0 ≤ j ≤ q0 − 1 and l > m0, because we can uniquely write
q′ = kq0 + j with 0 ≤ j ≤ q0 − 1. Thus, we have kq0 ≥M . So, we obtain

l = p′ − kp0 >
a

r
q′ − 1

r
− (kq0)

p0

q0
≥
(
a

r
− p0

q0

)
M − 1

r
≥ m0.

Therefore, L(p′, q′) ⊂ L(p0, q0). By noetherian induction, we obtain the desired
closed subset L0 ⊂ X and I ⊂ Z2.

Claim 2. We have L0 ∩Nlc(X,B) = ∅.

Proof of Claim 2. We take (α, β) ∈ Q2 such that α > 0, β > 0, and βa/α > r

is sufficiently close to r. Then (αH + βa(KX + B))|Nlc(X,B) is π|Nlc(X,B)-ample
because (H + r(KX + B))|Nlc(X,B) is π|Nlc(X,B)-ample. If 0 < aq − rp < 1 and
(p, q) ∈ Z2 is sufficiently large, then

M(p, q) = mM(α, β) + (M(p, q)−mM(α, β))

where M(p, q)−mM(α, β) is π-very ample, and

m(αH + βa(KX +B))|Nlc(X,B)

is also π|Nlc(X,B)-very ample. This can be checked by the same argument as in the
proof of Claim 1. Therefore, ONlc(X,B)(M(p, q)) is π-very ample. Since

π∗OX(M(p, q))→ π∗ONlc(X,B)(M(p, q))

is surjective by the vanishing theorem (Theorem 8.1), we obtain L(p, q)∩Nlc(X,B)
= ∅. We note that

M(p, q)− (KX +B) = pH + (qa− 1)(KX +B)

is π-ample because (p, q) is sufficiently large and aq− rp < 1. By Claim 1, we have
L0 ∩Nlc(X,B) = ∅.

Claim 3. Assume that r is either irrational, or rational and has denominator
> a(n + 1) in reduced form, where n = dimX. Then, for (p, q) sufficiently large
and 0 < aq − rp < 1, OX(M(p, q)) is π-generated at the generic point of every lc
center of (X,B).

Proof of Claim 3. We note that

M(p, q)− (KX +B) = pH + (qa− 1)(KX +B).

If aq− rp < 1 and (p, q) is sufficiently large, then M(p, q)− (KX +B) is π-ample.
Let C be an lc center of (X,B). We can assume C ∩ Nlc(X,B) = ∅ by Claim 2.
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Then PCη (p, q) = χ(Cη,OCη (M(p, q))) is a non-zero polynomial of degree at most
dimCη ≤ dimX by Lemma 15.3. Note that Cη is the generic fiber of C → π(C).
By Lemma 15.2, there exists (p, q) such that PCη (p, q) 6= 0, (p, q) is sufficiently
large, and 0 < aq − rp < 1. By the π-ampleness of M(p, q)− (KX +B),

PCη (p, q) = χ(Cη,OCη (M(p, q))) = h0(Cη,OCη (M(p, q))),

and
π∗OX(M(p, q))→ π∗OC(M(p, q))

is surjective by Theorem 8.1. We note that C ∩ Nlc(X,B) = ∅. Therefore,
OX(M(p, q)) is π-generated at the generic point of C. By combining this with
Claim 1, OX(M(p, q)) is π-generated at the generic point of every lc center of
(X,B) if (p, q) is sufficiently large with 0 < aq − rp < 1. This yields Claim 3.

Note that OX(M(p, q)) is not π-generated for (p, q) ∈ I because M(p, q) is
not π-nef. Therefore, L0 6= ∅. We shrink S to an affine open subset intersecting
π(L0). Let D1, . . . , Dn+1 be general members of

π∗OX(M(p0, q0)) = H0(X,OX(M(p0, q0)))

with (p0, q0) ∈ I. We can check that KX + B +
∑n+1
i=1 Di is not lc at the generic

point of every irreducible component of L0 by Lemma 13.2. On the other hand,
KX +B +

∑n+1
i=1 Di is lc outside L0 ∪ Nlc(X,B) since Di is a general member of

|M(p0, q0)| for every i. Let 0 < c < 1 be the log canonical threshold of (X,B) with
respect to D =

∑n+1
i=1 Di outside Nlc(X,B). Note that c > 0 by Claim 3. Thus,

the pair (X,B + cD) has some lc centers contained in L0. Let C be an lc center
contained in L0. We note that JNLC(X,B + cD) = JNLC(X,B) by Proposition
7.5 and C ∩Nlc(X,B + cD) = C ∩Nlc(X,B) = ∅. We consider

KX +B + cD = c(n+ 1)p0H + (1 + c(n+ 1)q0a)(KX +B).

Thus we have

pH + qa(KX +B)− (KX +B + cD)

= (p− c(n+ 1)p0)H + (qa− (1 + c(n+ 1)q0a))(KX +B).

If p and q are large enough and 0 < aq − rp ≤ aq0 − rp0, then

pH + qa(KX +B)− (KX +B + cD)

is π-ample, because

(p− c(n+ 1)p0)H + (qa− (1 + c(n+ 1)q0a))(KX +B)

= (p−(1+c(n+1))p0)H+(qa−(1+c(n+1))q0a)(KX+B)+p0H+(q0a−1)(KX+B).
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Suppose that r is not rational. There must be arbitrarily large (p, q) such
that 0 < aq − rp < ε = aq0 − rp0 and χ(Cη,OCη (M(p, q))) 6= 0 by Lemma 15.2,
because PCη (p, q) = χ(Cη,OCη (M(p, q))) is a non-trivial polynomial of degree
at most dimCη by Lemma 15.3. Since M(p, q) − (KX + B + cD) is π-ample by
0 < aq−rp < aq0−rp0, we have h0(Cη,OCη (M(p, q))) = χ(Cη,OCη (M(p, q))) 6= 0
by the vanishing theorem (Theorem 8.1). By that theorem

π∗OX(M(p, q))→ π∗OC(M(p, q))

is surjective because M(p, q) − (KX + B + cD) is π-ample. We note that C ∩
Nlc(X,B + cD) = ∅. Thus C is not contained in L(p, q). Therefore, L(p, q) is a
proper subset of L(p0, q0) = L0, giving the desired contradiction. So now we know
that r is rational.

We next suppose that the assertion of the theorem concerning the de-
nominator of r is false. We choose (p0, q0) ∈ I such that aq0 − rp0 is max-
imum, say d/v. If 0 < aq − rp ≤ d/v and (p, q) is sufficiently large, then
χ(Cη,OCη (M(p, q))) = h0(Cη,OCη (M(p, q))) since M(p, q) − (KX + B + cD) is
π-ample. There exists sufficiently large (p, q) in the strip 0 < aq − rp < 1 with
ε = 1 for which h0(Cη,OCη (M(p, q))) = χ(Cη,OCη (M(p, q))) 6= 0 by Lemma 15.2
since χ(Cη,OCη (M(p, q))) is a non-trivial polynomial of degree at most dimCη by
Lemma 15.3. Note that aq − rp ≤ d/v = aq0 − rp0 automatically for (p, q) ∈ I.
Since

π∗OX(M(p, q))→ π∗OC(M(p, q))

is surjective by the π-ampleness of M(p, q)−(KX +B+cD), we obtain the desired
contradiction for the same reason as above. This finishes the proof of the rationality
theorem.

We close this section with an important remark, which is indispensable for
the proof of the cone theorem (Theorem 16.6).

Remark 15.4. In Theorem 15.1, it is sufficient to assume that B is an effective
R-divisor on X such that KX +B is R-linearly equivalent to a Q-Cartier Q-divisor
ω on X with aω Cartier. All we have to do is to replace a(KX +B) with aω in the
proof of Theorem 15.1. We need this generalization in the proof of Theorem 16.6.

§16. Cone theorem

The main theorem of this section is the cone theorem. Before we state it, let us
fix the notation.
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Definition 16.1. Let X be a normal variety and let B be an effective R-divisor
on X such that KX + B is R-Cartier. Let π : X → S be a projective morphism.
We put

NE(X/S)Nlc(X,B) = Im(NE(Nlc(X,B)/S)→ NE(X/S)).

For an R-Cartier R-divisor D, we define

D≥0 = {z ∈ N1(X/S) | D · z ≥ 0}.

Similarly, we can define D>0, D≤0, and D<0. We also define

D⊥ = {z ∈ N1(X/S) | D · z = 0}.

We use the notation

NE(X/S)D≥0 = NE(X/S) ∩D≥0,

and similarly for > 0, ≤ 0, and < 0.

Definition 16.2. An extremal face of NE(X/S) is a non-zero subcone F ⊂
NE(X/S) such that z, z′ ∈ F and z + z′ ∈ F imply that z, z′ ∈ F . Equivalently,
F = NE(X/S) ∩ H⊥ for some π-nef R-divisor H, which is called a supporting
function of F . An extremal ray is a one-dimensional extremal face.

(1) An extremal face F is called (KX +B)-negative if

F ∩NE(X/S)KX+B≥0 = {0}.

(2) An extremal face F is called rational if we can choose a π-nef Q-divisor H as
a support function of F .

(3) An extremal face F is called relatively ample at Nlc(X,B) if

F ∩NE(X/S)Nlc(X,B) = {0}.

Equivalently, H|Nlc(X,B) is π|Nlc(X,B)-ample for every supporting function H

of F .

(4) An extremal face F is called contractible at Nlc(X,B) if it has a rational
supporting function H such that H|Nlc(X,B) is π|Nlc(X,B)-semi-ample.

Remark 16.3. If X is complete but non-projective, then it sometimes happens
that NE(X) = N1(X) even when X is smooth (cf. [FP]). Therefore, the projec-
tivity is crucial for the log minimal model program.

The following theorem is a direct consequence of Theorem 13.1.
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Theorem 16.4 (Contraction theorem). Let X be a normal variety, let B be an
effective R-divisor on X such that KX + B is R-Cartier, and let π : X → S be
a projective morphism. Let H be a π-nef Cartier divisor such that F = H⊥ ∩
NE(X/S) is (KX +B)-negative and contractible at Nlc(X,B). Then there exists
a projective morphism ϕF : X → Y over S with the following properties:

(1) Let C be an integral curve on X such that π(C) is a point. Then ϕF (C) is a
point if and only if [C] ∈ F .

(2) OY ' (ϕF )∗OX .

(3) Let L be a line bundle on X such that L·C = 0 for every curve C with [C] ∈ F .
Assume that L⊗m|Nlc(X,B) is ϕF |Nlc(X,B)-generated for m� 0. Then there is
a line bundle LY on Y such that L ' ϕ∗FLY .

Proof. By the assumption, qH − (KX + B) is π-ample for some positive integer
q and we can assume that H|Nlc(X,B) is π|Nlc(X,B)-semi-ample. By Theorem 13.1,
OX(mH) is π-generated for some m > 0. We take the Stein factorization of the
associated morphism. Then we have the contraction morphism ϕF : X → Y with
the properties (1) and (2).

We consider ϕF : X → Y and NE(X/Y ). Then NE(X/Y ) = F , L is numer-
ically trivial over Y , and −(KX + B) is ϕF -ample. Applying the base point free
theorem (cf. Theorem 13.1) over Y , both L⊗m and L⊗(m+1) are pull-backs of line
bundles on Y . Their difference gives a line bundle LY such that L ' ϕ∗FLY .

Example 16.5. Let S be a cone over a smooth cubic curve and let π : X → S

be the blow-up at the vertex of S. Then KX + E = π∗KS , where E is the π-
exceptional curve. We put B = 2E and consider the pair (X,B). In this case,
ϕF = π : X → Y = S with F = 0⊥ ∩ NE(X/S) = NE(X/S) = R≥0[E] is an
example of contraction morphisms in Theorem 16.4.

The time is ripe to state one of the main theorems in this paper.

Theorem 16.6 (Cone theorem). Let X be a normal variety, let B be an effective
R-divisor on X such that KX +B is R-Cartier, and let π : X → S be a projective
morphism. Then we have the following properties:

(1) NE(X/S) = NE(X/S)KX+B≥0 +NE(X/S)Nlc(X,B) +
∑
Rj, where Rj’s are

the (KX + B)-negative extremal rays of NE(X/S) that are rational and rel-
atively ample at Nlc(X,B). In particular, each Rj is spanned by an integral
curve Cj on X such that π(Cj) is a point.

(2) Let H be a π-ample R-divisor on X. Then there are only finitely many Rj’s
included in (KX +B +H)<0. In particular, the Rj’s are discrete in the half-
space (KX +B)<0.
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(3) Let F be a (KX + B)-negative extremal face of NE(X/S) that is relatively
ample at Nlc(X,B). Then F is a rational face. In particular, F is contractible
at Nlc(X,B).

Proof. First, we assume that KX + B is R-linearly equivalent to a Q-Cartier Q-
divisor on X (see Remark 15.4). We can assume that dimR N1(X/S) ≥ 2 and
KX +B is not π-nef. Otherwise, the theorem is obvious.

Step 1. We have

NE(X/S) = NE(X/S)KX+B≥0 +NE(X/S)Nlc(X,B) +
∑
F

F ,

where F ’s vary among all rational proper (KX + B)-negative faces that are rela-
tively ample at Nlc(X,B) and the overline denotes closure in the real topology.

Indeed, put

B = NE(X/S)KX+B≥0 +NE(X/S)Nlc(X,B) +
∑
F

F .

It is clear that NE(X/S) ⊃ B. We note that each F is spanned by curves on X

mapped to points on S by Theorem 16.4(1). Supposing NE(X/S) 6= B, we shall
derive a contradiction. There is a separating function M which is Cartier and is
not a multiple of KX +B in N1(X/S) such that M > 0 on B\{0} and M · z0 < 0
for some z0 ∈ NE(X/S). Let C be the dual cone of NE(X/S)KX+B≥0, that is,

C = {D ∈ N1(X/S) | D · z ≥ 0 for z ∈ NE(X/S)KX+B≥0}.

Then we see that C is generated by π-nef divisors and KX + B. Since M > 0
on NE(X/S)KX+B≥0 \ {0}, M is in the interior of C, and hence there exists a
π-ample Q-Cartier Q-divisor A such that M −A = L′ + p(KX +B) in N1(X/S),
where L′ is a π-nef Q-Cartier Q-divisor on X and p is a non-negative rational
number. Therefore, M is expressed in the form M = H+p(KX +B) in N1(X/S),
where H = A+L′ is a π-ample Q-Cartier Q-divisor. The rationality theorem (see
Theorem 15.1) implies that there exists a positive rational number r < p such that
L = H + r(KX +B) is π-nef but not π-ample, and L|Nlc(X,B) is π|Nlc(X,B)-ample.
Note that L 6= 0 in N1(X/S), since M is not a multiple of KX + B. Thus the
extremal face FL associated to the supporting function L is contained in B, which
implies M > 0 on FL. Therefore, p < r, a contradiction.

Step 2. In the equality of Step 1, we can assume that every extremal face F is
one-dimensional.
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Indeed, let F be a rational proper (KX + B)-negative extremal face that is
relatively ample at Nlc(X,B), and assume that dimF ≥ 2. Let ϕF : X → W be
the associated contraction. Note that −(KX +B) is ϕF -ample. By Step 1,

F = NE(X/W ) =
∑
G

G,

where the G’s are the rational proper (KX+B)-negative extremal faces of the cone
NE(X/W ). We note that NE(X/W )Nlc(X,B) = 0 because ϕF embeds Nlc(X,B)
into W . The G’s are also (KX +B)-negative extremal faces of NE(X/S) that are
ample at Nlc(X,B), and dimG < dimF . By induction, we obtain

NE(X/S) = NE(X/S)KX+B≥0 +NE(X/S)Nlc(X,B) +
∑

Rj ,(♣)

where the Rj ’s are (KX + B)-negative rational extremal rays. Note that no Rj
intersects NE(X/S)Nlc(X,B).

Step 3. The contraction theorem (cf. Theorem 16.4) guarantees that for each ex-
tremal ray Rj there exists a reduced irreducible curve Cj on X such that [Cj ] ∈ Rj .
Let ψj : X → Wj be the contraction morphism of Rj , and let A be a π-ample
Cartier divisor. We set

rj = − A · Cj
(KX +B) · Cj

.

Then A+rj(KX+B) is ψj-nef but not ψj-ample, and (A+rj(KX+B))|Nlc(X,B) is
ψj |Nlc(X,B)-ample. By the rationality theorem (see Theorem 15.1), expressing rj =
uj/vj with uj , vj ∈ Z>0 and (uj , vj) = 1, we have the inequality vj ≤ a(dimX+1).

Step 4. Now take π-ample Cartier divisors H1, . . . ,Hρ−1 such that KX +B and
the Hi’s form a basis of N1(X/S), where ρ = dimR N

1(X/S). By Step 3, the
intersections of the extremal rays Rj with the hyperplane

{z ∈ N1(X/S) | a(KX +B) · z = −1}

in N1(X/S) lie on the lattice

Λ = {z ∈ N1(X/S) | a(KX +B) · z = −1, Hi · z ∈ (a(a(dimX + 1))!)−1Z}.

This implies that the extremal rays are discrete in the half-space

{z ∈ N1(X/S) | (KX +B) · z < 0}.

Thus we can omit the closure sign from the formula (♣) and this completes the
proof of (1) when KX +B is R-linearly equivalent to a Q-Cartier Q-divisor.



776 O. Fujino

Step 5. Let H be a π-ample R-divisor on X. We choose 0 < εi � 1 for 1 ≤
i ≤ ρ − 1 such that H −

∑ρ−1
i=1 εiHi is π-ample. Then the Rj ’s included in

(KX + B + H)<0 correspond to some elements of the above lattice Λ for which∑ρ−1
i=1 εiHi · z < 1/a. Therefore, we obtain (2).

Step 6. Let F be a (KX +B)-negative extremal face as in (3). The vector space
V = F⊥ ⊂ N1(X/S) is defined over Q because F is generated by some of the Rj ’s.
There exists a π-ample R-divisor H such that F is contained in (KX +B+H)<0.
Let 〈F 〉 be the vector space spanned by F . We put

WF = NE(X/S)KX+B+H≥0 +NE(X/S)Nlc(X,B) +
∑
Rj 6⊂F

Rj .

Then WF is a closed cone, NE(X/S) = WF + F , and WF ∩ 〈F 〉 = {0}. The
supporting functions of F are the elements of V that are positive on WF \ {0}.
This is a non-empty open set and thus it contains a rational element that, after
scaling, gives a π-nef Cartier divisor L such that F = L⊥ ∩NE(X/S). Therefore,
F is rational. So, we have (3).

From now on, KX +B is R-Cartier.

Step 7. Let H be a π-ample R-divisor on X. We shall prove (2). We assume, for
a contradiction, that there are infinitely many Rj ’s in (KX + B + H)<0. There
exists an affine open subset U of S such that NE(π−1(U)/U) has infinitely many
(KX + B + H)-negative extremal rays. So, we shrink S, and can assume that S
is affine. We can write H = E + H ′ where H ′ is π-ample, JNLC(X,B + E) =
JNLC(X,B), and KX + B + E is R-linearly equivalent to a Q-Cartier Q-divisor.
Since KX +B +H = KX +B + E +H ′, we have

NE(X/S) = NE(X/S)KX+B+H≥0 +NE(X/S)Nlc(X,B) +
∑
finite

Rj .

This is a contradiction. Thus, we obtain (2). The statement (1) is a direct conse-
quence of (2). Of course, (3) holds by Step 6 once we obtain (1).

So, the proof of the cone theorem is complete.

We close this section with the following elementary example.

Example 16.7. We consider Y = P1×P1. Let πi : Y → P1 be the i-th projection
for i = 1, 2. Let Fi be a fiber of πi for i = 1, 2. We put P = F1 ∩ F2 and consider
the blow-up f : X → Y at P . Let E be the exceptional curve of f and Ci = f−1

∗ Fi
for i = 1, 2. In this situation, we can check that −KX is ample, ρ(X) = 3, and

NE(X) = R≥0[C1] + R≥0[C2] + R≥0[E].
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We put

B =
3
2
E +

1
2
C1 + C2.

Then we have

NE(X) = NE(X)KX+B≥0 +NE(X)Nlc(X,B) + R≥0[C2],

where
NE(X)Nlc(X,B) = R≥0[E], NE(X)KX+B≥0 = R≥0[C1],

and
C2 · (KX +B) < 0.

§17. Base point free theorem revisited

This section is a supplement to the base point free theorem (Theorem 13.1). In the
recent log minimal model program (cf. [S3], [BCHM], and so on), we frequently
use R-divisors. Therefore, the following theorem is useful.

Theorem 17.1 (Base point free theorem for R-divisors). Let X be a normal va-
riety and let B be an effective R-divisor on X such that (X,B) is log canonical,
and let π : X → S be a projective morphism onto a variety S. Let D be a π-nef
R-Cartier R-divisor on X such that aD − (KX + B) is π-ample for some real
number a > 0. Then D is π-semi-ample.

Proof. We can assume that a = 1 by replacing D with aD. We put

F = {z ∈ NE(X/S) |D · z = 0}.

Then F is a face of NE(X/S) and (KX+B)·z < 0 for z ∈ F . We claim that F con-
tains only finitely many (KX+B)-negative extremal rays R1, . . . , Rk of NE(X/S).
If F contains infinitely many (KX +B)-negative extremal rays of NE(X/S), then
this also holds after shrinking S suitably. Therefore, we can assume that S is affine.
In this situation, X is quasi-projective. We take a general small π-ample Q-divisor
A on X such that D−(KX+B+A) is π-ample and (X,B+A) is log canonical. Let
R be a (KX+B)-negative extremal ray such that R ⊂ F . Then R is a (KX+B+A)-
negative extremal ray since D ·R = 0 and D − (KX +B +A) is π-ample. On the
other hand, there are only finitely many (KX +B +A)-negative extremal rays in
NE(X/S) by Theorem 16.6(2). This is a contradiction. Therefore, F is spanned by
the extremal rays R1, . . . , Rk. We consider the finite-dimensional real vector space
V =

⊕
j RDj , where

∑
j Dj = SuppD is the irreducible decomposition. Then

R = {E ∈ V |E is R-Cartier and E · z = 0 for every z ∈ F}
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is a rational affine subspace of V and D ∈ R. Thus, we can find positive real
numbers r1, . . . , rm and π-nef Q-Cartier Q-divisors E1, . . . , Em such that D =∑m
i=1 riEi and Ei − (KX + B) is π-ample for every i (cf. Step 6 in the proof of

Theorem 16.6). By Theorem 13.1, Ei is a π-semi-ample Q-Cartier Q-divisor for
every i. Therefore, D is π-semi-ample.

§18. Lengths of extremal rays

In this section, we discuss estimates of lengths of extremal rays. This is indispens-
able for the log minimal model program with scaling (see, for example, [BCHM]).
Some results in this section have already been obtained in [Ko2], [Ko3], [Ka2], [S3],
[S4], and [B1] with some extra assumptions. We note that the formulation of the
main theorem of this section (cf. Theorem 18.10) is new.

Let us recall the following easy lemma.

Lemma 18.1 (cf. [S4, Lemma 1]). Let (X,B) be a log canonical pair, where B

is an R-divisor. Then there are positive real numbers ri and effective Q-divisors
Bi for 1 ≤ i ≤ l and a positive integer m such that

∑l
i=1 ri = 1, KX + B =∑l

i=1 ri(KX+Bi), (X,Bi) is lc for every i, and m(KX+Bi) is Cartier for every i.

Proof. Let
∑
kDk be the irreducible decomposition of SuppB. We consider the

finite-dimensional real vector space V =
⊕

k RDk. We put

Q = {D ∈ V | KX +D is R-Cartier} .

Then it is easy to see that Q is an affine subspace of V defined over Q. We put

P = {D ∈ Q | KX +D is log canonical} .

Thus by the definition of log canonicity, it is also easy to check that P is a closed
convex rational polytope in V . We note that P is compact in the classical topology
of V . By the assumption, B ∈ P. Therefore, we can find the desired Q-divisors
Bi ∈ P and positive real numbers ri.

The next result is essentially due to [Ka2] and [S4, Proposition 1]. We will
prove a more general result in Theorem 18.10 whose proof depends on Theorem
18.2.

Theorem 18.2. Let (X,B) be an lc pair and let π : X → S be a projective mor-
phism onto a variety S. Let R be a (KX +B)-negative extremal ray of NE(X/S).
Then we can find a rational curve C on X such that [C] ∈ R and

0 < −(KX +B) · C ≤ 2 dimX.
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Proof. By shrinking S, we can assume that S is quasi-projective. By replacing
π : X → S with the extremal contraction ϕR : X → Y over S, we can assume that
the relative Picard number ρ(X/S) is 1. In particular, −(KX +B) is π-ample. Let
KX + B =

∑l
i=1 ri(KX + Bi) be as in Lemma 18.1. Without loss of generality,

we can assume that −(KX +B1) is π-ample and −(KX +Bi) = −si(KX +B1) in
N1(X/S) with si ≤ 1 for every i ≥ 2. Thus, it is sufficient to find a rational curve
C such that π(C) is a point and −(KX + B1) · C ≤ 2 dimX. So, we can assume
that KX +B is Q-Cartier and lc. By Theorem 10.4, there is a birational morphism
f : (V,BV ) → (X,B) such that KV + BV = f∗(KX + B), V is Q-factorial, and
(V,BV ) is dlt. By [Ka2, Theorem 1] and [Ma, Theorem 10-2-1], we can find a
rational curve C ′ on V such that −(KV + BV ) · C ′ ≤ 2 dimV = 2 dimX and C ′

spans a (KV +BV )-negative extremal ray. By the projection formula, the f -image
of C ′ is the desired rational curve.

Remark 18.3. It is conjectured that the estimate ≤ 2 dimX in Theorem 18.2
can be replaced by ≤ dimX + 1. When X is smooth projective, this is true by
Mori’s famous result (cf. [Mo]). See, for example, [KM, Theorem 1.13]. When X

is a toric variety, it is also true by [F2] and [F5].

Remark 18.4. In the proof of Theorem 18.2, we need Kawamata’s estimate on
the length of an extremal rational curve (cf. [Ka2, Theorem 1] and [Ma, Theorem
10-2-1]). It depends on Mori’s bend and break technique to create rational curves.
So, we need the mod p reduction technique there.

Remark 18.5. We give a remark on [BCHM]. We use the same notation as in
[BCHM, 3.8]. In the proof of [BCHM, Corollary 3.8.2], we can assume that KX+∆
is klt by [BCHM, Lemma 3.7.4]. By perturbing the coefficients of B slightly, we
can further assume that B is a Q-divisor. By applying the usual cone theorem to
the klt pair (X,B), we deduce that there are only finitely many (KX+∆)-negative
extremal rays of NE(X/U). We note that [BCHM, Theorem 3.8.1] is only used in
the proof of [BCHM, Corollary 3.8.2]. Therefore, we do not need the estimate of
lengths of extremal rays in [BCHM]. In particular, we do not need mod p reduction
arguments for the proof of the main results in [BCHM].

By the proof of Theorem 18.2, we have the following corollary.

Corollary 18.6. Let (X,B) be a log canonical pair and let

KX +B =
l∑
i=1

ri(KX +Bi)
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and m be as in Lemma 18.1. Let ϕ : X → Y be a projective surjective morphism
with connected fibers such that the relative Picard number ρ(X/Y ) is 1. Then we
can find a curve C on X such that C spans N1(X/Y ) and

−(KX +Bi) · C =
ni
m

with ni ≤ 2m dimX for every i. Of course,

−(KX +B) · C =
∑
i

rini
m
≤ 2 dimX.

If −(KX +Bi) is ϕ-ample for some i, then we can find a rational curve C in the
above statement. Note that ϕ is not necessarily assumed to be a (KX +B)-negative
extremal contraction.

The following important lemma is a very special case of [S3, 6.2. First Main
Theorem].

Lemma 18.7. Let (X,B) be a log canonical pair and let π : X → S be a projective
morphism onto a variety S. Take

∑
kDk such that SuppB ⊂

∑
kDk, where Di is

an irreducible Weil divisor for every i and Di 6= Dj for every i 6= j. Put

P =
{∑

k

dkDk

∣∣∣ 0 ≤ dk ≤ 1 for all k and KX +
∑
k

dkDk is lc
}
.

Then P is a closed convex rational polytope.
Let {Rj} be any set of (KX +B)-negative extremal rays of the lc pair (X,B)

over S. Put

N =
⋂
j

{∑
k

dkDk ∈ P
∣∣∣ (KX +

∑
k

dkDk

)
·Rj ≥ 0

}
.

Then N is a closed convex subset of P.
Take B′ ∈ P. Let F be the minimal face of P containing B′. Assume that

(KX+B′) ·Rj > 0 for every j. Then there is an open subset U of F in the classical
topology such that B′ ∈ U ⊂ N ∩ F . In particular, we can write

KX +B′ =
d+1∑
i=1

r′i(KX +B′i)

with the following properties:

(a) d = dimF .

(b) B′i ∈ F for every i.

(c) m′(KX +B′i) is Cartier for some positive integer m′ for every i.
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(d)
∑d+1
i=1 r

′
i = 1 and 0 ≤ r′i ≤ 1 for every i.

(e) (KX +B′i) ·Rj > 0 for every i and j.

Proof. It is obvious that P is a closed convex rational polytope (see the proof of
Lemma 18.1). By definition, N is a closed convex subset of P. Since F is a face
of P and contains B′, we can take a d-dimensional rational simplex spanned by ∆i

for 1 ≤ i ≤ d+ 1 in F containing B′ inside it. Thus, we can write

KX +B′ =
d+1∑
i=1

ri(KX + ∆i)

with
∑d+1
i=1 ri = 1 and 0 < ri < 1 for every i, and m(KX + ∆i) with Cartier for

every i, where m is a positive integer.
We take an extremal ray Rj . By Corollary 18.6, we can find a curve Cj on X

such that Cj spans Rj and that m(KX + ∆i) · Cj = nij with nij ≥ −2mdimX

for every i. By assumption, we have

(KX +B′) · Cj =
∑
i

rinij
m

> 0.

We define

α = inf
{∑

i

rini
m

> 0
∣∣∣∣ ni ≥ −2mdimX and ni ∈ Z for every i

}
.

Then we obtain α > 0. We put

c =
α

2 dimX + α+ 1
> 0.

It is obvious that
B′ + c(∆i −B′) ∈ F

for every i since 0 < c < 1 and that

(KX +B′ + c(∆i −B′)) · Cj > 0

for every i and j by the definition of c. Thus, the d-dimensional simplex spanned
by B′ + c(∆i −B′) for 1 ≤ i ≤ d+ 1 is contained in N ∩F and contains B′ in its
interior. So, the interior of the above simplex is the desired open set contained in
N ∩ F . Thus, we can write

KX +B′ =
d+1∑
i=1

r′i(KX +B′i)

with the required properties.
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Remark 18.8. In [S3, 6.2. First Main Theorem], it is proved that N is a closed
convex rational polytope. We refer the reader to [B2, Section 3] for the details. The
arguments in [B2, Section 3] work for lc pairs by Theorem 18.2 (see, for example,
[F11]).

By Corollary 18.6 and Lemma 18.7, Lemma 2.6 in [B1] holds for lc pairs. It
may be useful for the log minimal model program with scaling. We follow Birkar’s
proof in [BP].

Theorem 18.9 (cf. [B1, Lemma 2.6]). Let (X,B) be an lc pair, let B be an R-
divisor, and let π : X → S be a projective morphism between algebraic varieties.
Let H be an effective R-Cartier R-divisor on X such that KX+B+H is π-nef and
(X,B+H) is lc. Then either KX+B is also π-nef, or there is a (KX+B)-negative
extremal ray R such that (KX +B + λH) ·R = 0, where

λ := inf{t ≥ 0 | KX +B + tH is π-nef }.

Of course, KX +B + λH is π-nef.

Proof. Assume that KX+B is not π-nef. Let {Rj} be the set of (KX+B)-negative
extremal rays over S. Let Cj be the rational curve spanning Rj with the estimate
as in Corollary 18.6 for every j. We put µ = supj{µj}, where

µj =
−(KX +B) · Cj

H · Cj
.

Obviously, λ = µ and 0 < µ ≤ 1. So, it is sufficient to prove that µ = µl for
some l. By Corollary 18.6, there are positive real numbers r1, . . . , rl and a positive
integer m, all independent of j, such that

−(KX +B) · Cj =
l∑
i=1

rinij
m

> 0,

where nij is an integer with nij ≤ 2m dimX for every i and j. If (KX +B+H) ·Rl
= 0 for some l, then there is nothing to prove since λ = 1 and (KX +B +H) ·R
= 0 with R = Rl. Thus, we assume that (KX + B + H) · Rj > 0 for every j.
Therefore, we can apply Lemma 18.7 to obtain

KX +B +H =
q∑
p=1

r′p(KX + ∆p),

where r′1, . . . , r
′
q are positive real numbers, (X,∆p) is lc for every p, m′(KX + ∆p)

is Cartier for some positive integer m′ and every p, and (KX + ∆p) · Cj > 0 for
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every p and j. So, we obtain

(KX +B +H) · Cj =
q∑
p=1

r′pn
′
pj

m′

with 0 < n′pj = m′(KX + ∆p) · Cj ∈ Z. Note that m′ and r′p are independent of j
for every p. We also note that

1
µj

=
H · Cj

−(KX +B) · Cj
=

(KX +B +H) · Cj
−(KX +B) · Cj

+ 1 =
m
∑q
p=1 r

′
pn
′
pj

m′
∑l
i=1 rjnij

+ 1.

Since
l∑
i=1

rinij
m

> 0

for every j and nij ≤ 2m dimX with nij ∈ Z for every i and j, the cardinality of
the set {nij}i,j is finite. Thus,

inf
j
{1/µj} = 1/µl

for some l. Therefore, µ = µl, which finishes the proof.

The following picture helps the reader understand Theorem 18.9.

NE(X/S)

R

KX + B + H = 0

KX + B + λH = 0

KX + B < 0

KX + B = 0
KX + B > 0

The main result of this section is an estimate of lengths of extremal rays which
are relatively ample at non-lc loci (cf. [Ko2], [Ko3]).

Theorem 18.10. Let X be a normal variety, let B be an effective R-divisor on X
such that KX +B is R-Cartier, and let π : X → S be a projective morphism onto
a variety S. Let R be a (KX + B)-negative extremal ray of NE(X/S) which is
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relatively ample at Nlc(X,B). Then we can find a rational curve C on X such
that [C] ∈ R and

0 < −(KX +B) · C ≤ 2 dimX.

Proof. By shrinking S, we can assume that S is quasi-projective. By replacing
π : X → S with the extremal contraction ϕR : X → Y over S (cf. Theorem
16.6(3)), we can assume that the relative Picard number ρ(X/S) is 1 and π is an
isomorphism in a neighborhood of Nlc(X,B). In particular, −(KX+B) is π-ample.
By Theorem 10.4, there is a projective birational morphism f : Y → X such that

(i) KY +BY = f∗(KX +B) +
∑
a(E,X,B)<−1(a(E,X,B) + 1)E, where

BY = f−1
∗ B +

∑
E:f-exceptional

E,

(ii) (Y,BY ) is a Q-factorial dlt pair, and

(iii) D = BY + F with F = −
∑
a(E,X,B)<−1 (a(E,X,B) + 1)E ≥ 0.

We note that KY +D = f∗(KX +B). Therefore,

f∗(NE(Y/S)KY +D≥0) ⊆ NE(X/S)KX+B≥0 = {0}.

We also note that
f∗(NE(Y/S)Nlc(Y,D)) = {0}.

Thus, there is a (KY +D)-negative extremal ray R′ of NE(Y/S) which is relatively
ample at Nlc(Y,D). By Theorem 16.6(1), R′ is spanned by a curve C†. Since
−(KY +D) ·C† > 0, we see that f(C†) is a curve. If C† ⊂ SuppF , then f(C†) ⊂
Nlc(X,B). This is a contradiction because π◦f(C†) is a point. Thus, C† 6⊂ SuppF .
Since −(KY +BY ) = −(KY +D)+F , we can see that R′ is a (KY +BY )-negative
extremal ray of NE(Y/S). Therefore, we can find a rational curve C ′ on Y such
that C ′ spans R′ and

0 < −(KY +BY ) · C ′ ≤ 2 dimX

by Theorem 18.2. By the above argument, we can easily see that C ′ 6⊂ SuppF .
Therefore, we obtain

0 < −(KY +D) · C ′ = −(KY +BY ) · C ′ − F · C ′ ≤ −(KY +BY ) · C ′ ≤ 2 dimX.

Since KY +D = f∗(KX +B), it follows that C = f(C ′) is a rational curve on X

such that π(C) is a point and 0 < −(KX +B) · C ≤ 2 dimX.

Remark 18.11. In Theorem 18.10, we can easily prove 0 < −(KX + B) · C ≤
dimX + 1 when dimX ≤ 2. For details, see [F17, Proposition 3.7].
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§19. Ambro’s theory of quasi-log varieties

In this section, we make some comments on Ambro’s theory of quasi-log varieties.
We recommend [F15] for an introduction to the theory of quasi-log varieties.

In the acknowledgements in [A1], Ambro wrote “The motivation behind this
work is his (Professor Shokurov’s) idea that log varieties and their LCS loci should
be treated on an equal footing.” So, in the theory of quasi-log varieties, we have
to treat highly reducible non-equidimensional varieties (see Example 19.2 below).
Therefore, our approach in this paper is completely different from the theory of
quasi-log varieties. We recommend the reader to compare our proof of the base
point free theorem for projective lc surfaces in Section 2 with Ambro’s proof (see,
for example, [F15, Section 4]).

Let us explain some results of the theory of quasi-log varieties which cannot
be covered by our approach.

19.1. Let (X,B) be a projective log canonical pair and let {Ci} be any set of lc
centers of the pair (X,B). We put W =

⋃
Ci with the reduced scheme structure.

Then [W,ω] is a qlc pair, where ω = (KX + B)|W . For the definition of qlc pairs,
see [F11, Definition 3.29] or [F15, Definition 3.1].

Example 19.2. Let V be a projective toric variety and let D be the complement
of the big torus. Then (V,D) is log canonical and KV +D ∼ 0. In this case, every
torus invariant closed subvariety W of V with ω = 0 is a qlc pair. In particular,
W is not necessarily pure-dimensional (cf. [F7, §5]).

We can prove the cone theorem for [W,ω].

Theorem 19.3 (Cone theorem). We have

NE(W ) = NE(W )ω≥0 +
∑
j

Rj .

For the details, see [F11, 3.3.3 Cone Theorem]. We can also prove the base
point free theorem.

Theorem 19.4 (Base point free theorem). Let L be a nef Cartier divisor on W

such that aL−ω is ample for some a > 0. Then |mL| is base point free for m� 0.

See, for example, [F11, 3.3.1 Base point free theorem]. By these theorems, we
have the following statement.

Theorem 19.5 (Contraction theorem). Let F be an ω-negative extremal face of
NE(W ). Then there is a contraction morphism ϕF : W → V with the following
properties:
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(i) Let C be an integral curve on W . Then ϕF (C) is a point if and only if [C] ∈ F .

(ii) OV ' (ϕF )∗OW .

(iii) Let L be a line bundle on W such that L · C = 0 for every curve C with
[C] ∈ F . Then there is a line bundle LV on V such that L ' ϕ∗FLV .

For the details of the theory of quasi-log varieties, see [F11]. The book [F11]
also deals with various other topics which cannot be covered by this paper.

§20. Related topics

In this final section, for the reader’s convenience we briefly discuss some related
topics considered by the author in other publications.

In this paper, we did not describe the notion of singularities of pairs. However,
it is very important in some papers on the log minimal model program. We think
that [F6] helps the reader understand the subtlety of the notion of dlt pairs.

The reader can find that all the injectivity, vanishing, and torsion-free theo-
rems of this paper are discussed in full generality in [F11, Sections 2 and 3]. They
heavily depend on the theory of mixed Hodge structures on compact support co-
homology groups of reducible varieties.

We omitted the explanation of the log minimal model program for log canon-
ical pairs. It is because the framework is the same as for klt pairs. The reader
can find it in [F11, Section 3]. We note that the existence of log canonical flips is
still an open problem in dimension ≥ 5 and the termination of log canonical flips
follows from the termination of klt flips. For the details, see [F11, Section 3].

In [F8], we prove an effective version of the base point free theorem for log
canonical pairs. It is a log canonical version of Kollár’s effective freeness. In [F9], the
Angehrn–Siu type effective base point free theorems are proved for log canonical
pairs. The reader can find that the proof of our non-vanishing theorem (cf. Theorem
12.1 and [F16, Theorem 1.1]) grew out from the arguments in [F8] and [F9].

In [F10], we systematically investigate the basic properties of non-lc ideal
sheaves, especially, the restriction theorem of non-lc ideal sheaves for normal divi-
sors. It is a generalization of Kawakita’s inversion of adjunction on log canonicity.
See also [FST] for a further discussion of various analogues of non-lc ideal sheaves.

In [F13], we prove the finite generation of the log canonical ring for log canoni-
cal pairs in dimension four and discuss related topics. The finite generation theorem
implies the existence of fourfold log canonical flips.

In [F17], we discuss the minimal model theory for log surfaces. The results in
[F17] are obtained under much weaker assumptions than the usual minimal model
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theory. The paper [F17] is an ultimate application of our new approach to the log
minimal model program.
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Rep., Eur. Math. Soc., Zürich, 2011, 77–113. Zbl pre05885267 MR 2779468
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[KK] J. Kollár and S. Kovács, Log canonical singularities are Du Bois, J. Amer. Math. Soc.

23 (2010), 791–813. Zbl 1202.14003 MR 2629988

[KM] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in

Math. 134, Cambridge Univ. Press., 1998. Zbl 0926.14003 MR 1658959

[L] R. Lazarsfeld, Positivity in algebraic geometry. II. Positivity for vector bundles, and

multiplier ideals, Ergeb. Math. Grenzgeb. 49, Springer, Berlin, 2004. Zbl 1093.14500

MR 2095472

[Ma] K. Matsuki, Introduction to the Mori program, Universitext, Springer, New York, 2002.

Zbl 0988.14007 MR 1875410

[Mo] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of

Math. (2) 116 (1982), 133–176. Zbl 0557.14021 MR 0662120

[R] M. Reid, Projective morphisms according to Kawamata, preprint, 1983.

[S1] V. V. Shokurov, The nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985),

635–651 (in Russian). Zbl 0605.14006 MR 0794958

[S2] , Three-dimensional log perestroikas (with an appendix in English by Y. Kawa-

mata), Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 105–203 (in Russian); English

transl.: Russian Acad. Sci. Izv. Math. 40 (1993), 95–202. MR 1162635

[S3] , 3-fold log models, in Algebraic geometry, 4, J. Math. Sci. 81 (1996), 2667–2699.

Zbl 0873.14014 MR 1420223

[S4] , Letters of a bi-rationalist: VII. Ordered termination, in Multidimensional alge-

braic geometry, Tr. Mat. Inst. Steklova 264 (2009), 184–208 (in Russian). MR 2590847

http://www.ams.org/mathscinet-getitem?mr=0750714
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0807.14010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1260941
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0807.14009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1144441
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0871.14015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1341589
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1202.14003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0926.14003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.14500&format=complete
http://www.ams.org/mathscinet-getitem?mr=2095472
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0988.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1875410
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0557.14021&format=complete
http://www.ams.org/mathscinet-getitem?mr=0662120
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0605.14006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0794958
http://www.ams.org/mathscinet-getitem?mr=1162635
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0873.14014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1420223
http://www.ams.org/mathscinet-getitem?mr=2590847

	Introduction
	Warm-ups
	Kawamata–Viehweg, Nadel, Kollár, …
	Preliminaries
	Hodge-theoretic injectivity theorem
	Injectivity, torsion-free, and vanishing theorems
	Non-lc ideal sheaves
	Vanishing theorem
	Lc centers
	Dlt blow-ups
	Vanishing theorem for minimal lc centers
	Non-vanishing theorem
	Base point free theorem
	Shokurov's differents
	Rationality theorem
	Cone theorem
	Base point free theorem revisited
	Lengths of extremal rays
	Ambro's theory of quasi-log varieties
	Related topics
	References

