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The Dirac–Hardy and Dirac–Sobolev Inequalities
in L1

by

Alexander Balinsky, W. Desmond Evans and Tomio Umeda

Abstract

Dirac–Sobolev and Dirac–Hardy inequalities in L1 are established in which the Lp spaces
which feature in the classical Sobolev and Hardy inequalities are replaced by weak Lp

spaces. Counter-examples to the analogues of the classical inequalities are shown to be
provided by zero modes for appropriate Pauli operators constructed by Loss and Yau.
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§1. Introduction

Let σ = (σ1, σ2, σ3) be the triple of 2× 2 Pauli matrices

(1.1) σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
and set

p := −i∇, σ · p = −i
3∑
j=1

σj
∂

∂xj
.

By the Dirac–Sobolev inequality we mean the following: 1 ≤ p < 3, p∗ = 3p/(3−p),
and for all f ∈ C∞0 (R3,C2), the space of C2-valued functions whose components
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lie in C∞0 (R3),

(1.2)
(∫

R3
|f(x)|p

∗

p∗ dx
)1/p∗

≤ C(p)
(∫

R3
|(σ · p)f(x)|pp dx

)1/p

where for a = (a1, a2) ∈ C2, |a|pp = |a1|p + |a2|p. It is shown by Ichinose and Saitō
in [3] (see “Addendum” at end of paper) that for 1 < p < ∞, there are positive
constants c1(p), c2(p) such that

(1.3) c1(p)
∫

R3
|pf(x)|pp dx ≤

∫
R3
|(σ · p)f(x)|pp dx ≤ c2(p)

∫
R3
|pf(x)|pp dx,

and hence for 1 < p < 3, (1.2) is a consequence of the Sobolev inequality

(1.4)
(∫

R3
|f(x)|p

∗

p∗ dx
)1/p∗

≤ C̃(p)
(∫

R3
|pf(x)|pp dx

)1/p

.

On defining the Dirac–Sobolev space H1,p
D,0(R3,C2) to be the completion of

C∞0 (R3,C2) with respect to the norm

‖f‖D,1,p :=
{∫

R3
[|f(x)|pp + |(σ · p)f(x)|pp] dx

}1/p

,

(1.3) proves that H1,p
D,0(R3,C2) is isomorphic to H1,p

0 (R3,C2) if 1 < p < ∞,
where H1,p

0 (R3,C2) denotes the Sobolev space defined to be the completion of
C∞0 (R3,C2) with respect to the norm

‖f‖S,1,p :=
{∫

R3
[|f(x)|pp + |pf(x)|pp] dx

}1/p

.

However, as p → 1, c1(p) → 0 and so (1.3) only implies that H1,1
0 (R3,C2) is

continuously embedded in H1,1
D,0(R3,C2). In fact Ichinose and Saitō go on to prove

that the embedding H1,1
0 (R3,C2) ↪→ H1,1

D,0(R3,C2) is indeed strict. Hence, in the
case p = 1, (1.2) is not a consequence of the analogous Sobolev inequality. We prove
that the p = 1 case of (1.2) is untrue. We demonstrate this with a function used
by Loss and Yau in [5] to prove the existence of zero modes of a Pauli operator
{σ · (p + A)}2 (or equivalently, of the Weyl–Dirac operator σ · (p + A)) with
some appropriate magnetic potential A. A result of Saitō and Umeda in [6] on
the growth properties of zero modes of Pauli operators indicates that zero modes
have quite generally the properties we need of the counter-example. We prove in
Theorem 2.1 that

(1.5) ‖f‖3/2,∞ ≤ C1

∫
R3
|(σ · p)f(x)| dx,
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where | · | = | · |1 and for any q > 0,

(1.6) ‖f‖qq,∞ := sup
t>0

tqµ({x ∈ R3 : |f(x)| > t}),

µ denoting Lebesgue measure. We recall that ‖f‖q,∞ < ∞ if and only if f be-
longs to the weak-Lq space Lq,∞(R3,C2). Moreover, ‖ · ‖q,∞ is not a norm on
Lq,∞(R3,C2) but for q > 1 it is equivalent to a norm; see [2, Section 3.4].

Analogous questions arise for the Dirac–Hardy inequality

(1.7)
∫

R3

|f(x)|pp
|x|p

dx ≤ C(p)
∫

R3
|(σ · p)f(x)|pp dx

and similar answers are obtained. The inequality is true for 1 < p < ∞ by (1.3),
but not for p = 1 in which case we prove that

(1.8)
∥∥|f |/| · |∥∥

1,∞ ≤ C2

∫
R3
|(σ · p)f(x)| dx.

The plan of the paper is as follows. In Section 2 we shall prove the results
concerning the Dirac–Sobolev and Dirac–Hardy inequalities discussed above. We
shall give estimates of the optimal constant C(p) in the Dirac–Sobolev inequality
(1.2) for 1 < p < 3 in Section 3 and show that C(p) → ∞ as p ↓ 1. In order
to check if the results in Section 2 are dimension related, we investigate higher
dimensional analogues in Section 4. A weak Hölder-type inequality is given in an
Appendix.

§2. The weak Dirac–Sobolev and Dirac–Hardy inequalities

To show that the inequality (1.2) does not hold, we shall prove that a counter-
example is provided by a zero mode for an appropriate Pauli (or Weyl–Dirac)
operator constructed by Loss–Yau in [5]. This is the C2-valued function

(2.1) ψ(x) =
1

(1 + r2)3/2
(I + ix · σ)

(
1
0

)
, r = |x|,

where I is the 2 × 2 identity matrix. In view of the anti-commutation relation
σjσk + σkσj = 2δjkI, it follows that

(2.2) |ψ(x)| = 1
1 + r2

.

Also, ψ satisfies the Loss–Yau equation

(2.3) (σ · p)ψ(x) =
3

1 + r2
ψ(x).
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Let χn ∈ C∞0 (R) be such that

(2.4) χn(r) =

{
1, r ≤ n,
0, r ≥ n+ 2,

|χ′n(r)| ≤ 1.

Then ψn := χnψ ∈ C∞0 (R3,C2) and we see that

‖(σ · p)ψn‖L1(R3,C2) =
∥∥∥∥χn(σ · p)ψ − i χ′n

(
σ · x

r

)
ψ

∥∥∥∥
L1(R3,C2)

(2.5)

≤ 4π
(∫ n+2

0

3
1 + r2

dr +
∫ n+2

n

dr

)
≤ C0

for some positive constant C0 independent of n.
Now suppose that the case p = 1 of the inequality (1.2) is true. Then it would

follow from (2.5) that

(2.6) C0 ≥ ‖ψn‖L3/2(R3,C2) ≥
(∫
|x|≤n

|ψ(x)|3/2 dx
)2/3

≥ const · (log n)2/3

and hence a contradiction.
The properties of the zero mode ψ, defined by (2.1), which lead to the in-

equality (1.2) being contradicted when p = 1, are that (σ · p)ψ ∈ L1(R3,C2) and
ψ(x) � r−2 at infinity (i.e., r2ψ(x) goes to a constant vector in C2 as r →∞). It
was shown in Saitō–Umeda [6] that these two properties are satisfied by the zero
modes of any Weyl–Dirac operator

(2.7) DA = σ · (p + A(x))

whose magnetic potential A = (A1, A2, A3) is such that

(2.8) Aj is measurable, |Aj(x)| ≤ C(1 + r)−ρ, ρ > 1,

for j = 1, 2, 3.
As was mentioned in the Introduction, what is true is the following

Theorem 2.1. There exists a positive constant C1 such that

(2.9) ‖f‖L3/2,∞(R3,C2) ≤ C1‖(σ · p)f‖L1(R3,C2)

for all f ∈ C∞0 (R3,C2).

Proof. Let g = (σ ·p)f . Since (σ ·p)2 = −∆ and the fundamental solution of −∆
in R3 is convolution with 1/4π| · |, it follows that σ ·p has a fundamental solution
with kernel (σ · p)(1/4π| · |) and hence

(2.10) f(x) =
−i
4π

∫
R3

[(σ ·∇)|x− y|−1]g(y) dy =
i

4π

∫
R3

σ · (x− y)
|x− y|3

g(y) dy.
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Note that this also follows from the more general result in Saitō–Umeda [7, The-
orem 4.2]. Consequently,

(2.11) |f(x)| ≤ 1
4π

∫
R3

1
|x− y|2

|g(y)| dy =:
1

4π
I1(|g|)(x),

where I1(|g|) is the 3-dimensional Riesz potential of |g|; see Edmunds and Evans
[2, Section 3.5] for the terminology and properties we need. In view of [2, Re-
mark 3.5.7(i)], we see that the Riesz potential I1 is of weak type (1, 3/2; 3,∞).
In particular, I1 is of weak type (1, 3/2) (cf. [2, Theorem 3.5.13], [8, Theorem 1,
pp. 119–120]), which means that there exists a positive constant C such that for
all u ∈ L1(R3),

(2.12) ‖I1(u)‖L3/2,∞(R3) ≤ C‖u‖L1(R3).

The inequality (2.9) follows.

It is evident that the two properties of the zero mode ψ defined by (2.1) also
lead to a contradiction of the inequality (1.7). What is now true is the following:

Theorem 2.2. For all f ∈ C∞0 (R3,C2),

(2.13)
∥∥f/| · |∥∥

L1,∞(R3,C2)
≤ C2‖(σ · p)f‖L1(R3,C2),

where C2 ≤ (9π)1/3C1 and C1 is the optimal constant in (2.9).

Proof. On applying the weak Hölder inequality in the Appendix with p = 3/2 and
q = 3, and noting that

∥∥1/| · |
∥∥

3,∞ = (4π/3)1/3, we get

(2.14)
∥∥f/| · |∥∥

1,∞ ≤ 32/3π1/3‖f‖3/2,∞.

Hence the theorem follows from (2.9).

§3. Estimate of the optimal constants

In this section, we estimate the optimal constant C(p) in the inequality (1.2) for
1 < p < 3, and show that C(p)→∞ as p ↓ 1.

Let ψ be the Loss–Yau zero mode defined by (2.1). It does not lie inC∞0 (R3,C2)
but is inH1,p

D,0(R3,C2). Hence the optimal constant C(p) must satisfy the inequality

(3.1) C(p) ≥ ‖ψ‖Lp∗ (R3,C2)

/
‖(σ · p)ψ‖Lp(R3,C2),
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where p∗ = 3p/(3− p). On passing to polar coordinates, we have

‖ψ‖p
∗

p∗ = 4π
∫ ∞

0

(1 + r2)−p
∗
r2dr ≥ 4π

{∫ 1

0

2−p
∗
r2 dr +

∫ ∞
1

(2r2)−p
∗
r2dr

}
(3.2)

= 4π 2−p
∗

3−2 2p
p− 1

.

On the other hand, by (2.3), we see that

‖(σ · p)ψ‖pp =
∫

R3

3p

(1 + r2)2p
dx = 4π 3p

∫ ∞
0

(1 + r2)−2pr2dr(3.3)

≤ 4π 3p
{∫ 1

0

r2 dr +
∫ ∞

1

r−4p+2dr

}
= π 243p−1 p

4p− 3
.

Combining (3.1) with (3.2) and (3.3), we obtain

(3.4) C(p) ≥ π−1/3 2−2−1/p 3−1/3−1/p p
−1/3(4p− 3)1/p

(p− 1)1/p−1/3
.

It is evident that the right hand side of (3.4) goes to ∞ as p ↓ 1.
We recall that for p > 1, the optimal constant C̃(p) in the Sobolev inequality

(1.4) is

C̃(p) = π−1/23−1/p

(
p− 1
3− p

)(p−1)/p{ Γ(5/2)Γ(3)
Γ(3/p)Γ(4− 3/p)

}1/3

,

which tends to C̃(1), the optimal constant in the case p = 1, as p→ 1.

§4. The weak Dirac–Sobolev and weak Dirac–Hardy inequalities
in m dimensions

Let γ1, . . . , γm be Hermitian ` × ` matrices satisfying the anti-commutation rela-
tions

(4.1) γjγk + γkγj = 2δjkI,

where I denotes the ` × ` identity matrix. For example, we can take ` = 2m−2

and construct the matrices by the following iterative procedure. To indicate the
dependence on m, write the matrices as γ(m)

1 , . . . , γ
(m)
m . For m = 3, we have ` = 2

and they are given by the Pauli matrices in (1.1). Given matrices γ(m)
1 , . . . , γ

(m)
m

we define

(4.2) γ
(m+1)
j =

(
0 γ

(m)
j

γ
(m)
j 0

)
, j = 1, . . . ,m, γ

(m+1)
m+1 =

(
I 0
0 −I

)
.



Dirac–Hardy and Dirac–Sobolev Inequalities 797

The m-dimensional analogue of the inequality (1.2) for p = 1 is

(4.3)
(∫

Rm

|f(x)|m/(m−1) dx
)(m−1)/m

≤ C
∫

Rm

|(γ · p)f(x)| dx

for f ∈ C∞0 (Rm,C`), where

γ · p = −i
m∑
j=1

γj
∂

∂xj
, p = −i∇.

To show that (4.3) does not hold we introduce an m-dimensional analogue of the
Loss–Yau zero mode, namely

(4.4) ψ(x) =
1

(1 + r2)m/2
(I + ix · γ)φ0, r = |x|,

where φ0 = t(1, 0, . . . , 0) ∈ C`. It follows from the anti-commutation relations (4.1)
that

(4.5) |ψ(x)| = 1
(1 + r2)(m−1)/2

,

and that ψ satisfies the m-dimensional analogue of the Loss–Yau equation (2.3),

(4.6) (γ · p)ψ(x) =
m

1 + r2
ψ(x).

Let χn ∈ C∞0 (R) be as in (2.4), and put ψn := χnψ ∈ C∞0 (Rm,C`). As in (2.5),
we see that

‖(γ · p)ψn‖L1(Rm,C`) =
∥∥∥∥χn(γ · p)ψ − iχ′n

(
γ · x

r

)
ψ

∥∥∥∥
L1(Rm,C`)

(4.7)

≤ Sm
(∫ n+2

0

m

1 + r2
dr +

∫ n+2

n

dr

)
≤ C0

for some positive constant C0, independent of n. Here Sm is the surface area of
the unit sphere in Rm. If the inequality (4.3) were true then it would follow from
(4.3) and (4.7) that

C0 ≥ ‖ψn‖Lm/(m−1)(Rm,C`) ≥
(∫
|x|≤n

|ψ(x)|m/(m−1) dx
)(m−1)/m

(4.8)

≥ const · (log n)(m−1)/m.

which is a contradiction. Therefore the inequality (4.3) does not hold. Instead,
what is true is the following inequality.
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Theorem 4.1. There exists a positive constant C1,m such that

(4.9) ‖f‖Lm/(m−1),∞(Rm,C`) ≤ C1,m ‖(γ · p)f‖L1(Rm,C`)

for all f ∈ C∞0 (Rm,C`).

Proof. Let f ∈ C∞0 (Rm,C`), and define g = (γ · p)f . Since (γ · p)2 = −∆I, we
have (−∆)f = (γ · p)g. By Stein [8, p. 118, (7)],

(4.10) J2(−∆)u = u, u ∈ C∞0 (Rm,C),

where

(4.11) J2(u) =
Γ((m− 2)/2)

4πm/2
I2(u), I2(u)(x) =

∫
Rm

1
|x− y|m−2

u(y) dy.

It follows that

(4.12) f(x) = J2(−∆)f(x) =
Γ((m− 2)/2)

4πm/2

∫
Rm

1
|x− y|m−2

(γ · p)g(y) dy.

On integration by parts, this yields

(4.13) f(x) =
Γ((m− 2)/2)

4πm/2

∫
Rm

iγ · (x− y)
|x− y|m

g(y) dy.

Then it follows that

|f(x)| ≤ Γ((m− 2)/2)
4πm/2

∫
Rm

1
|x− y|m−1

|g(y)| dy

=
Γ((m− 2)/2)

4πm/2
2π(m+2)/2

Γ((m− 1)/2)
I1(|g|)(x).

(4.14)

Here I1(|g|) is the m-dimensional Riesz potential of |g|; see [2, Section 3.5]. In
view of [2, Remark 3.5.7(i)], we see that the Riesz potential I1 is of weak type
(1, m/(m− 1);m, ∞), in particular, of weak type (1, m/(m− 1)) (cf. [2, Theorem
3.5.13], [8, Theorem 1, pp. 119–120]), which means that there exists a positive
constant C such that for all u ∈ L1(Rm),

(4.15) ‖I1(u)‖Lm/(m−1),∞(Rm) ≤ C‖u‖L1(Rm).

The inequality (4.9) follows.

The m-dimensional Hardy inequality for L1 is

(4.16)
∫

Rm

|u(x)|
|x|

dx ≤ (m− 1)−1

∫
Rm

|pu(x)| dx, u ∈ C∞0 (Rm).
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It can be proved as in the 3-dimensional case that its natural analogue

(4.17)
∫

Rm

|f(x)|
|x|

dx ≤ C
∫

Rm

|(γ · p)f(x)| dx, f ∈ C∞0 (Rm,C`),

is not true.

Theorem 4.2. For all f ∈ C∞0 (Rm,C`),

(4.18)
∥∥f/| · |∥∥

L1,∞(Rm,C`)
≤ C2,m‖(γ · p)f‖L1(Rm,C`),

where

C2,m ≤ C1,m
π1/2m

Γ((m+ 2)/2)1/m(m− 1)1−1/m
,

and C1,m is the optimal constant in Theorem 4.1.

Proof. It is easy to see that
∥∥1/| · |

∥∥
m,∞ = (ωm)1/m, where ωm denotes the volume

of the m-dimensional unit ball, and is given by

ωm =
πm/2

Γ((m+ 2)/2)
.

On applying the weak Hölder inequality in the Appendix with p = m/(m−1) and
q = m, we get

(4.19)
∥∥f/| · |∥∥

1,∞ ≤ ((m− 1)1/m + (m− 1)−(m−1)/m)ω1/m
m ‖f‖m/(m−1),∞.

The theorem follows on combining this inequality with (4.9).

§5. Appendix

The proofs of Theorems 2.2 and 4.2 are consequences of the following Hölder-type
inequality in weak Lp spaces, which we have been unable to find in the literature.

Theorem 5.1 (Weak Hölder inequality). Let p > 1, q > 1 and p−1 + q−1 = 1. If
f ∈ Lp,∞(Rd) and g ∈ Lq,∞(Rd), then fg ∈ L1,∞ and

(5.1) ‖fg‖1,∞ ≤ ((q/p)1/q + (p/q)1/p)‖f‖p,∞‖g‖q,∞.

Proof. Let ε > 0 be arbitrary, and set

A = {x ∈ Rd : ε|f(x)| > t1/p},
B = {x ∈ Rd : ε−1|g(x)| > t1/q},
E = {x ∈ Rd : |f(x)g(x)| > t}.
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Since

(5.2) |f(x)g(x)| ≤ p−1(ε|f(x)|)p + q−1(ε−1|g(x)|)q,

we have

(5.3) E ⊂ A ∪B,

which implies that

(5.4) tµ(E) ≤ tµ({x : ε|f(x)| > t1/p}) + tµ({x : ε−1|g(x)| > t1/q}).

With

(5.5) s := t1/p/ε, r := εt1/q,

it follows from (5.4) that

(5.6) tµ({x : |f(x)g(x)| > t})

≤ εpspµ({x : |f(x)| > s}) + ε−qrqµ({x : |g(x)| > r})
≤ εp‖f‖pp,∞ + ε−q‖g‖qq,∞.

The minimum value of the last expression is the right-hand side of (5.1), attained
when ε = (q‖g‖qq,∞/p‖f‖pp,∞)1/pq.

Addendum. We are grateful to the referee for the comment that the first inequality in
(1.3) is not a direct consequence of Ichinose and Saitō [3, Theorem 1.3(ii)], but can be
established as follows. Since (σ · p)2 = −∆, one has

−i∂j(σ · p)−1 = {−i∂j/
√
−∆}{(σ · p)/

√
−∆} =

3X
k=1

σkRjRk

where Rj = −i∂j/
√
−∆, j = 1, 2, 3, are the Riesz transforms. Since Rj is a pseudo-

differential operator with symbol ξj/|ξ|, it is bounded on Lp by the Calderón–Zygmund
theorem (see [8]). The first inequality in (1.3) therefore follows.
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[1] A. Balinsky, W. D. Evans and Y. Saitō, Dirac–Sobolev inequalities and estimates for the
zero modes of massless Dirac operators, J. Math. Phys. 49 (2008), 043514. Zbl 1152.81325
MR 2412309

[2] D. E. Edmunds and W. D. Evans, Hardy operators, function spaces and embeddings, Springer,
Berlin, 2004. Zbl 1099.46002 MR 2091115
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