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Néron Models of Green–Griffiths–Kerr
and log Néron Models

by

Tatsuki Hayama

Abstract

For a variation of Hodge structure over a punctured disk, Green, Griffiths and Kerr
introduced a Néron model which is a Hausdorff space that includes values of admissible
normal functions. On the other hand, Kato, Nakayama and Usui introduced a Néron
model as a logarithmic manifold using log mixed Hodge theory. This work constructs a
homeomorphism between these two models.
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§1. Introduction

Let J → ∆∗ be a family of intermediate Jacobians arising from a variation of
polarized Hodge structure (VHS) of weight −1 with a unipotent monodromy on a
punctured disk. By Carlson [C], the intermediate Jacobians are isomorphic to the
extension groups of the Hodge structures, in the category of mixed Hodge struc-
tures (MHS). Then a section of J → ∆∗ is known as a variation of MHS (VMHS).
A VMHS satisfying the admissibility condition [SZ] is called an admissible VMHS
(AVMHS), and a section which gives an AVMHS is known as an admissible normal
function (ANF) [Sa1].

For the VHS, Green, Griffiths and Kerr [GGK1] introduced the family JGGK

→ ∆ satisfying the following conditions:

• The family restricted to ∆∗ is J → ∆∗;

• The fiber over 0 is a complex Lie group;
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• Any ANF is a section of JGGK → ∆;

• JGGK is a Hausdorff space.

The total space JGGK is called a Néron model. Here, JGGK is simply a topological
space. The authors of [GGK1] propose “doing geometry” on Néron models.

In contrast, Kato, Nakayama and Usui constructed Néron models via a log
mixed Hodge theory. To explain their work, we describe J → ∆∗ by another
formulation. Let ∆∗ → Γ\D be the period map arising from the VHS. The family
of intermediate Jacobians can then be obtained as the fiber product

J

��

// Γ′\D′

GrW−1

��
∆∗ // Γ\D

whereD′ and Γ′ are used for the MHS corresponding to the intermediate Jacobians.
Kato, Nakayama and Usui [KNU1] extended the above diagram. First, Kato

and Usui [KU] stated that the period map can be extended to

∆

⊂

// Γ\DΣ

⊂

∆∗ // Γ\D

where Σ is the fan of nilpotent cones arising from the monodromy of the VHS. Here
a boundary point of Γ\DΣ is a nilpotent orbit, which approximates the period map
given by Schmid [Sc]. The main theorem of [KU] states that Γ\DΣ is a logarithmic
manifold and that it is a moduli space of log (pure) Hodge structures.

Next, an ANF is written as

∆∗ → Γ′\D′.

Kato, Nakayama and Usui [KNU2] give the fan Σ′, by means of which this map
can be extended to

∆

⊂

// Γ′\D′Σ′

⊂

∆∗ // Γ′\D′

Similarly to the pure case [KU], a boundary point of Γ′\D′Σ′ is a nilpotent orbit,
which approximates the ANF by the method proposed by Pearlstein [P]. The main
theorem of [KNU2] states that Γ′\D′Σ′ is a logarithmic manifold and a moduli space
of log mixed Hodge structures.
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Finally, they define the log Néron model JKNU as the fiber product

JKNU

��

// Γ′\D′Σ′

GrW−1

��
∆ // Γ\DΣ

in the category of logarithmic manifolds. We remark that JKNU is not only a
topological space but also has a geometric structure as a logarithmic manifold.

However, [KNU1] does not show the relationship between JGGK and JKNU.
In fact, §8.2 of [KNU1] states that the relationship is apparently unknown between
JKNU and the Néron model constructed by Green, Griffiths and Kerr. Our main
aim is to solve this problem.

Theorem 1.1 (Theorem 5.1). JGGK is homeomorphic to JKNU.

We explain the idea of the proof. By using the liftings in (4.1) and (4.6), we
construct a bijective map between the two sets (in Proposition 4.4). In Section 5, we
show that this map is a homeomorphism. The diagram (3.5) and the admissibility
condition ((2.6) or (2.10)) play important roles in the proof.

§2. Preliminaries

In this section, we recall the definitions of the Néron models given in [GGK1] and
[KNU2]. Let (HZ,F ,∇) be a variation of polarized Hodge structure of weight −1
over a punctured disk ∆∗, where HZ is a local system, F is a filtration of a locally
free sheaf H := HZ ⊗O∆∗ and ∇ is a Gauss–Manin connection. We assume that
the monodromy transformation T is unipotent.

§2.1. Families of intermediate Jacobians

Let (H,F ) be the total space of the vector bundle corresponding to the VHS
(H,F). The intermediate Jacobian over s ∈ ∆∗ is defined as

Js := F 0
s \Hs/HZ;s

where the subscript s denotes the fiber (or stalk) over s. By Carlson [C], we have
the isomorphism

(2.1) Ext1
MHS (Z(0), Hs) ∼= Js

where Z(0) is Tate’s Hodge structure.
We describe the family of intermediate Jacobians J → ∆∗ using the MHS in

(2.1). Fix a reference point s0 ∈ ∆∗. For the PHS Hs0 = (HZ, Fs0 , 〈 , 〉) over s0,
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we take a MHS H ′ which represents an extension class in Ext1
MHS (Z(0), Hs0).

Let D (resp. D′) be the period domain for the type of Hs0 (resp. H ′), defined
in [G] (resp. [U]). The VHS gives the period map φ : ∆∗ → Γ\D where Γ is the
monodromy group. Here we may write

Γ = {Tn ∈ Aut(HZ) | n ∈ Z}.

Then the family of intermediate Jacobians is obtained by the following Cartesian
diagram:

J

��

// Γ′\D′

GrW−1

��
∆∗

φ // Γ\D

where Γ′ := {T ′ ∈ Aut(H ′Z) | T ′|Aut(HZ) ∈ Γ}.
We now review some properties of the period domains D and D′. Let Ď

(resp. Ď′) be the compact dual of D (resp. D′), defined in [G] (resp. [U]). From
[G, §4] (resp. [U, §2]) we have the following properties for the pure case (resp. for
some mixed case including the case of D′):

Proposition 2.1. Let GA := Aut(HA, 〈 , 〉) (resp. G′A := Aut(H ′A, 〈 , 〉•)) for
A = Z,R,Q,C. Then

(1) GR (resp. G′R) acts on D (resp. D′) transitively;

(2) GC (resp. G′C) acts on Ď (resp. Ď′) transitively;

(3) any subgroup of GZ (resp. G′Z) acts on D (resp. D′) properly discontinuously.

Since H ′ is an extension of Hs0 by Z(0), we have the exact sequence

0→ HZ
i→ H ′Z

j→ Z→ 0

of Z-modules. We fix e ∈ H ′Z such that j(e) = 1. Then we may write

(2.2) H ′Z
∼= HZ ⊕ Ze.

We set

h := {X ∈ End(H ′C) | X|End(HC) = 0, X(e) ∈ HC}.

Proposition 2.2 ([U, Theorem 2.16]). GrW−1 : Ď′ → Ď is a fiber bundle with fiber
h/(h ∩ b). Here, b is the Lie algebra of an isotropy subgroup of GC.
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§2.2. Normal functions and the identity components

We first define the following sheaves over ∆∗:

J := F0\H/HZ, J∇ :=
{
ν ∈ J

∣∣∣∣ ∇ν̃ ∈ F−1 ⊗ Ω1

for any local lifting ν̃

}
.

Since the monodromy is unipotent, we have the Deligne extension (He,Fe). Then
we define the following sheaves over ∆:

Je := F0
e \He/j∗HZ, Je,∇ := Je ∩ j∗J∇

where j : ∆∗ ↪→ ∆. A section of Je,∇ is called a normal function (NF).
Secondly we define a space that includes values of NF according to [GGK1,

§II.A]. Let (He, Fe) be the total space of the vector bundles corresponding to
(He,Fe). Since these vector bundles are trivial, we have a trivialization

(2.3) Fne
∼= ∆× Fne;0.

Since (Fe;0,W (N)) is a MHS [Sc], we have the Deligne decomposition He;0 =⊕
p,q I

p,q. It induces

(2.4) F 0
e;0\He;0

∼=
⊕
p<0

Ip,q =: V.

By the trivialization (2.3), we may write

F 0
e \He

∼= ∆× V.

We define the quotient space

JZ := F 0
e \He/∼

where the equivalence relation ∼ is given by equating two elements (s, x), (s′, x′) ∈
∆ × V ∼= F 0

e \He if and only if s = s′ and x − x′ ∈ j∗HZ;s. We call it the Zucker
space.

The Zucker space JZ includes values of NF. However, JZ is not generally a
Hausdorff space (cf. [GGK1, II.B.8]). Hence, [GGK1] defines a subspace of JZ so
that it is a Hausdorff space including values of NF.

Definition 2.3 ([GGK1, II.A.9]). Let

(2.5) W := {(s, x) ∈ ∆× V | x ∈ Ker(N) if s = 0}.

The identity component of the Néron model is the subset JGGK,0 := W/∼ of the
Zucker space JZ . Here the topology on JGGK,0 is induced from the strong topology
of W in ∆× V [KU, §3.1.1].
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The identity component has the following property:

Proposition 2.4 ([GGK1, II.A.9]). For a NF ν, ν(0) ∈ JGGK,0
0 .

Remark 2.5. In [GGK1], the definition of the topology on JGGK,0 seems to be
unclear (a remark after [GGK1, Theorem II.A.9] states “This topology is modeled
on the ‘strong topology’ in [KU]”). In this paper, we use the strong topology on
W ⊂ ∆× V . Saito [Sa2] proves the Hausdorff property in the case of the ordinary
topology.

§2.3. Admissible normal functions and Néron models

In accord with [GGK1, §II.B], we define the sheaf

(2.6) J̃e,∇ :=
{
ν ∈ j∗J∇

∣∣∣∣ ν̃ has a logarithmic growth as a section of F̌0
e ,

(T − I)ν̃ ∈ (T − I)HQ ∩HZ for any local lifting ν̃

}
where we denote the analytic continuation around the origin 0 of ν̃ by (T − I)ν̃.
A section of J̃e,∇ is called an admissible normal function (ANF). By definition,
we have the following exact sequence of sheaves:

(2.7) 0→ Je,∇
i→ J̃e,∇

j→ G0 → 0.

Here G0 is the skyscraper sheaf supported at 0, whose stalk is

G :=
(T − I)HQ ∩HZ

(T − I)HZ
.

We define the abelian group

JGGK
s :=

JGGK,0
s × J̃e,∇;s

{(ν(s), [i(ν)]s) | ν ∈ Je,∇}

where [i(ν)]s is the germ at s ∈ ∆. Since Je,∇;s is a divisible abelian group (i.e.,
for every positive integer n and every ν ∈ Je,∇;s there exists µ ∈ Je,∇;s such that
nµ = ν) and G is a finite group, the exact sequence of the stalks of (2.7) is split
[GGK1, II.B.11]. Then we have the isomorphism

JGGK
s

∼=

{
JGGK,0
s if s 6= 0,

JGGK,0
s ×G if s = 0.

Definition 2.6 ([GGK1, II.B.9]). The Néron model of Green–Griffiths–Kerr is
the topological space

JGGK :=
⊔
s∈∆

JGGK
s .
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Here the topology on JGGK is defined by the open sets

(2.8) S(ν) := {((s, x), [ν]s) ∈ JGGK | (s, x) ∈ S}

where S is an open set of JGGK,0 and ν is an ANF.

Example 2.7 (Classical case). Let f̄ : Ē → ∆ be a degenerating family of elliptic
curves of Kodaira type In. For the restriction f : E → ∆∗, we have the local system
HZ := R1f∗Z and the filtration Fp = R1f∗(Ω

≥p
E/∆∗). Here (HZ,F) is a VHS over ∆∗

with a unipotent monodromy. In this case,

JGGK,0
0

∼= Gm, G ∼= Z/nZ

twisting (HZ,F) into the VHS of weight −1.

§2.4. A nonclassical example

We give an example where the Néron model is not an analytic space. Our two
sources, [GGK2, §III.A] and [KNU1, §9], deal with special situations of this kind.

Let Y be a singular K3 surface (i.e., ρ(Y ) = 20) and f̄ : Ē → ∆ be a
degenerating family of elliptic curves of Kodaira type In. By the Shioda–Inose
correspondence [SI], for a transcendental basis {t1, t2} of H2(Y ), the intersection
form is represented as

(ti · tj)i,j =
(

2a b

b 2c

)
where a, b, c ∈ Z, a, c > 0 and b2 − 4ac < 0. We assume that a = m, where m is a
square free positive integer, and that b = 0 and c = 1. We take a symplectic basis
{α, β} of H1(Es) for s 6= 0 such that the monodromy action is

α 7→ α+ nβ, β 7→ β.

If we set

e1 = t1 × α, e2 = t2 × α, e3 =
t1

2m
× β, e4 =

t2
2
× β

in H3(Y × Es,Q), then the intersection form is represented as

(ei · ej)i,j =
(

0 I

−I 0

)
.

For the family g := f ◦ pr2 : Y × E → ∆∗, we consider the local sys-
tem HZ ⊂ R3g∗Q such that HZ,s =

∑
i Zei and the filtration Fp induced from

R3g∗(Ω
≥p
Y×E/∆∗). Then (HZ,F) is a VHS and a fiber (HZ,s, Fs) is a PHS of
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weight −1 where h1,−2 = h0,−1 = h−1,0 = h−2,1 = 1, twisting it into the VHS of
weight −1. The monodromy transformation reads

T =

 I2 0
2mn 0

0 2n I2

 .

By [KU, §12.3], the limiting MHS is described by the following Hodge diamond:

(1,−1)
•

N

��

(−1,1)
•

N

��
(0,−2)
•

(−2,0)
•

Then
JGGK,0

0
∼= I−2,0/j∗HZ;0, G ∼= Z/2mnZ× Z/2nZ.

In this case, the dimension of JGGK,0
0 is smaller than the dimension of a general

fiber and JZ is not a Hausdorff space (cf. [KNU1, §9]).

§2.5. Moduli spaces of log Hodge structures and log Néron models

Let gA (resp. g′A) be the Lie algebra of GA (resp. G′A) for A = R,C. Writing
σ = R≥0N in gR with N = log(T ), we define the fan Σ := {{0}, σ} and the set

(2.9) DΣ = {(σ, Z) | σ ∈ Σ, Z = exp(σC)F is a σ-nilpotent orbit}.

By [KU], the period map φ : ∆∗ → Γ\D extends to the log period map φ : ∆ →
Γ\DΣ.

Following [KNU1], we define the fan
(2.10)

Σ′ :=
{

R≥0N
′
∣∣∣∣ N ′ ∈ EndH ′Q, N

′|EndHQ = N,

N ′(e) = N(a) for some a ∈ HQ such that (T − I)a ∈ HZ

}
.

Proposition 2.8. Let σ′ ∈ Σ′. Then there exists a generator N ′ ∈ EndH ′Q of σ′

such that exp(N ′) ∈ Γ′, and Ad(γ)σ′ ∈ Σ′ for γ ∈ Γ′. Therefore Γ′ is strongly
compatible with Σ′.

Proof. By definition, a generator of σ′ is written as(
N Na

0 0

)
with respect to the decomposition (2.2) for some a ∈ HQ. Moreover, we may write

Γ′ =
{(

Tn b

0 1

) ∣∣∣∣ b ∈ HZ, n ∈ Z
}
.
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Since (T − I)a ∈ HZ, we have

exp(N ′) =
(
T (T − I)a
0 1

)
∈ Γ′.

For γ =
(
Tn b
0 1

)
∈ Γ′, we have

(2.11) Ad(γ)N ′ =
(
N N(Tna− b)
0 0

)
.

Since (T − I)(Tna− b) ∈ HZ, it follows that Ad(γ)N ′ ∈ Σ′.

Similarly to (2.9), D′Σ′ is defined as the set of nilpotent orbits [KNU2, §2.1.3].
Using the above proposition, we define the action

Γ′ ×D′Σ′ → D′Σ′ ; (γ, (σ′, Z)) 7→ (Ad(γ)σ′, γZ)

and the orbit space Γ′\D′Σ′ .
The geometric structure on Γ′\D′Σ′ is defined in [KNU2, §2.2.2]. For a nilpo-

tent cone σ′ ∈ Σ′, we define the monoid

Γ′(σ′) := Γ′ ∩ exp(σ′)

and the toric variety

toricσ′ := Spec (C[Γ′(σ′)∨])an
∼= C.

Moreover, we define the analytic space

Ě′σ′ := toricσ′ × Ď′

and the subspace

E′σ′ =
{

(s, F ) ∈ Ě′σ′
∣∣∣∣ exp(l(s)N ′)F ∈ D′ if s 6= 0,

exp(σ′C)F is a nilpotent orbit if s = 0

}
where l(s) is a branch of (2πi)−1 log(s). The topology on E′σ′ is the strong topology
in Ě′σ′ . We then have the map

E′σ′
p′1→ Γ′(σ′)gp\D′σ′

p′2→ Γ′\D′Σ′ ; (s, F ) 7→

{
(0, exp(l(s)N ′)F ) if s 6= 0,

(σ′, exp(σ′C)F ) if s = 0.

The geometric structure on Γ′\D′Σ′ is induced from E′σ′ locally through this map.
Moreover Kato, Nakayama and Usui announced the following theorem:

Theorem 2.9 ([KNU2, Main Theorem]). Similarly to the pure case ([KU, Main
Theorem]), the following holds:
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(1) E′σ′ ,Γ
′(σ′)gp\D′σ′ and Γ′\D′Σ′ are logarithmic manifolds;

(2) E′σ′ → Γ′(σ′)gp\D′σ′ is a σ′C-torsor;

(3) Γ′(σ′)gp\D′σ′ → Γ′\D′Σ′ is locally an isomorphism;

(4) Γ′\D′Σ′ is a moduli space of log mixed Hodge structures.

Definition 2.10 ([KNU1, §7]). The log Néron model is the fiber product

(2.12)

JKNU

��

// Γ′\D′Σ′

GrW−1

��
∆

φ // Γ\DΣ

in the category B(log) [KU, 3.2.4].

We describe the topology on JKNU. We now have the following diagram:

(2.13)

Kσ′

��

// E′σ′

p′1
��

Jσ′

��

// Γ′(σ′)gp\D′σ′

p′2
��

JKNU // Γ′\D′Σ′

where Kσ′ and Jσ′ are the fiber products in B(log). Here the topology on Kσ′ is
the strong topology in ∆× Ě′σ′ . The topological structures of Jσ′ (resp. JKNU) are
induced from Kσ′ through the morphism Kσ′ → Jσ′ (resp. Kσ′ → JKNU).

§3. The relationship between Eσ → Γ(σ)gp\Dσ and E′σ′ → Γ′(σ′)gp\D′σ′

The results of this section can be easily verified using [KNU2]; however the details
will be useful in later sections. In the following section, we regard Eσ (resp. E′σ′)
as a topological space whose topology is the strong topology in Ěσ (resp. Ě′σ′).

§3.1. σC-action on Eσ and σ′C-action on E′σ′

For σ = R≥0N ∈ Σ, we define the algebraic torus

torusσ := Spec (C[Γ(σ)∨gp])an
∼= Gm

and the toric variety

torusσ := Spec (C[Γ(σ)∨])an
∼= C.
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We then have the surjective map

σC → torusσ; wN 7→ exp(2π
√
−1w),

which induces the action

σC × toricσ → toricσ; (wN, s) 7→ exp(2π
√
−1w)s.

For σ′ = R≥0N
′ ∈ Σ′, the σ′C-action on toricσ′ is defined similarly.

By the correspondence N ↔ N ′ (resp. exp(N) ↔ exp(N ′)), we have the
isomorphism σC ∼= σ′C (resp. toricσ ∼= toricσ′) and the commutative diagram

(3.1)

σ′C × toricσ′ //
∼

��

toricσ′

∼

��
σC × toricσ // toricσ

Moreover we define the σC-action

σC × Eσ → Eσ; (wN, (s, F )) 7→ (exp(2π
√
−1w)s, exp(−wN)F ),

and the σ′C-action on E′σ′ is defined similarly. If we consider

GrW−1 : Ě′σ′ → Ěσ; (s, F ) 7→ (s,GrW−1 (F )),

the diagram (3.1) induces the commutative diagram

(3.2)

σ′C × E′σ′

��

// E′σ′

��

⊂ Ě′σ′

GrW−1

��
σC × Eσ // Eσ ⊂ Ěσ

§3.2. The torsor property of E′σ′ → Γ′(σ′)gp\D′σ′

Lemma 3.1. The action of σ′C on E′σ′ is proper and free.

Proof. Since the lower horizontal action in (3.2) is free [KU, (7.2.9)], the upper
horizontal action in (3.2) is also free.

The σ′C-action is proper if and only if the following condition is satisfied:

• For x′, y′ ∈ E′σ′ , and sequences {x′λ} in E′σ′ and {h′λ} in σ′C such that x′λ → x′

and h′λx
′
λ → y′, there exists h′ ∈ σ′C such that h′λ → h′.

We will now show that the above condition holds. Taking x′, y′, {x′λ}, {h′λ} as
above, we let

x := GrW−1 (x′), y = GrW−1 (y′), hλ := h′λ|EndHQ .
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Since the σC-action is proper [KU, (7.2.2)], there exists h ∈ σC such that hλ → h.
By the isomorphism σ ∼= σ′, there exists h′ ∈ σ′C such that h = h′|EndHQ and
h′λ → h′.

Lemma 3.2 ([KU, Lemma 7.3.3]). Let H be a topological group and X be a topo-
logical space, and assume that we have an action H ×X → X which is proper and
free. Furthermore assume that the following condition is satisfied:

• For x ∈ X, there exists a topological space S, a morphism ι : S → X and an
open neighborhood U of 1 in H such that U × S → X; (h, s) 7→ hι(s), induces
an isomorphism onto an open subset of X.

Then X → H\X is an H-torsor.

Proposition 3.3 ([KNU2, Theorem A(2)]). The action of σ′C on E′σ′ satisfies the
condition of Lemma 3.2. Then E′σ′ → Γ′(σ′)gp\D′σ′ is a σ′C-torsor.

Proof. Since σ′(s)C ↪→ TĎ′(F ) for (s, F ) ∈ E′σ′ (in this case σ′(s) = σ′ if s = 0,
and σ′(s) = 0 otherwise), the proof is the same as for the pure case [KU, (7.3.5)].

Since p1 : Eσ → Γ(σ)gp\Dσ (resp. p′1 : E′σ′ → Γ′(σ′)gp\D′σ′) is a σC-torsor
(σ′C-torsor), the diagram (3.2) induces the following property:

Corollary 3.4. The commutative diagram

(3.3)

E′σ′
p′1 //

GrW−1

��

Γ′(σ′)gp\D′σ′

��
Eσ

p1 // Γ(σ)gp\Dσ

is Cartesian.

§3.3. Limiting Hodge filtrations and liftings of the period map

Let φ̃ be a local lifting of the period map φ. Then we have the holomorphic map

(3.4) φ̂ : ∆∗ → Ď; s 7→ exp(−l(s)N)φ̃(s).

We call this an untwisted period map. By [Sc], this map can be extended over ∆.
We denote φ̂(0) by Fφ̃. Remark that Fφ̃ depends upon the choice of the local
lifting φ̃. The untwisted map φ̂ gives the lifting

∆→ Eσ; s 7→ (s, φ̂(s)),
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of φ. This gives the following diagram:

(3.5)

Ě′σ′ ⊃

GrW−1

��

E′σ′
p′1 //

��

Γ′(σ′)gp\D′σ′

��

p′2 // Γ′\D′Σ′

��
Ěσ ⊃ Eσ

p1 //
OO

(id,φ̂)

Γ(σ)gp\Dσ Γ\DΣ

∆
φ

55lllllllllllllll

for σ′ ∈ Σ′ such that σ′ 6= {0}.
For (s, F ) ∈ Ě′σ′ such that GrW−1(F ) = Fφ̂(s), we have the exact sequence

0→ F p
φ̂(s)
→ F p → C→ 0

if p ≤ 0, and F p
φ̂(s)
∼= F p otherwise. Then

(3.6) F p =

C(z, 1) + F p
φ̂(s)

if p ≤ 0,

F p
φ̂(s)

if p > 0,

where (z, 1) ∈ H ′C is represented with respect to the decomposition (2.2). By the
admissibility condition (2.10), a generator of σ′ ∈ Σ′ can be written as

N ′ =
(
N Na

0 0

)
for some a ∈ HQ.

Proposition 3.5. For (s, F ) ∈ Ě′σ′ such that GrW−1(F ) = Fφ̂(s),

(s, F ) ∈ E′σ′ ⇔

z ∈ HC if s 6= 0,

z + a ∈ F 0
φ̃

+ Ker(N) if s = 0,

where z ∈ HC is as in (3.6).

Proof. If s 6= 0, then

GrW−1(exp(l(s)N ′)F ) = exp(l(s)N)φ̂(s) = φ̃(s) ∈ D

for any z ∈ HC. Then (s, F ) ∈ E′σ′ for any z ∈ HC.
If s = 0, then

N(z + a) ∈ F−1

φ̃

by the transversality condition for nilpotent orbits. Since (Fφ̃,W (N)) is a MHS
and N is a (−1,−1)-morphism, N(z + a) ∈ F−1

φ̃
if z + a ∈ F 0

φ̃
+ Ker(N).
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§4. A bijection

In this section, we define a bijective map between JKNU and JGGK as sets.

§4.1. A map from JGGK to JKNU

Let ν be an ANF. It defines an AVMHS

ν : ∆∗ → Γ′\D′.

Taking a local lifting ν̃ of ν, we have the local lifting φ̃ = GrW−1(ν̃) of φ. Let N ′ be
the logarithm of monodromy of ν̃. Similarly to (3.4), we define

ν̂ : ∆∗ → Ď′; s 7→ exp(−l(s)N ′)ν̃(s).

By the admissibility condition (2.6), ν̂ extends over ∆ and σ′ = R≥0N is in Σ′. We
denote ν̂(0) by Fν̃ . By [P], (σ′, Fν̃) is a nilpotent orbit. We have the commutative
diagram

(4.1)

Ď′

GrW−1

��
∆

ν̂

??~~~~~~~~ φ̂ // Ď

that is, ν̂ is a lifting of φ̂.
We fix Fν̃ as a reference point of Ď′. By Proposition 2.2, the vertical morphism

of the above diagram is a fiber bundle with fiber h/(h ∩ b). Recall that

h = {X ∈ End(H ′C) | X|End(HC) = 0, X(e) ∈ HC},
h ∩ b = {X ∈ h | X(e) ∈ F 0

φ̃
},

V =
⊕
p<0

Ip,q (i.e., F 0
φ̃
⊕ V = HC),

and then

(4.2) h/(h ∩ b) ∼= V ; Xv ↔ v,

where Xv ∈ h is such that Xv(e) = v. Taking a boundary point ((0, v̇), [ν]0) ∈
JGGK where

(4.3) v̇ = v mod HZ ∩Ker(N)

for some v ∈ V ∩Ker(N), we define

α((0, v̇), [ν]0) := (0, (σ′, exp(σ′C) exp(X−v)Fν̃)).

By Proposition 3.5, α((0, v̇), [ν]0) is in JKNU.
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Lemma 4.1. α((0, v̇), [ν]0) is well-defined.

Proof. We show that α((0, v̇), [ν]0) does not depend on the choice of v of (4.3),
a lifting ν̃ and a representative ((0, v̇), [ν]0).

First, we take x ∈ HZ ∩Ker(N). By (2.11), this gives Ad(γx)N ′ = N ′ for

γx =
(
I x

0 1

)
∈ Γ′.

Then

(σ′, exp(σ′C) exp(X−v+x)Fν̃) = (σ′, exp(σ′C)γx exp(X−v)Fν̃)

= γx(σ′, exp(σ′C) exp(X−v)Fν̃).

Next, we take another lifting γν̃ for γ ∈ Γ′. The monodromy cone that arises
from γν̃ is Ad(γ)σ′ and Fγν̃ = γFν̃ . Since v ∈ Ker(N), we have

exp(X−v)γ = γ exp(X−v).

Then

(Ad(γ)σ′C, exp(Ad(γ)σ′C) exp(X−v)Fγν̃) = γ(σ′, exp(σ′C) exp(X−v)Fν̃).

Finally, we take ((0, v̇1), [ν1]0) ∼ ((0, v̇2), [ν2]0) and let

F pν̃i =

C(zi, 1) + F p
φ̃

if p ≤ 0,

F p
φ̃

if p > 0,
for i = 1, 2,

where ν̃i are local liftings. Let µ = ν1− ν2. Then there exists a local lifting µ̃ such
that

F pµ̃ =

C(z1 − z2, 1) + F p
φ̃

if p ≤ 0,

F p
φ̃

if p > 0.

Since ((0, v̇1), [ν1]0) ∼ ((0, v̇2), [ν2]0), µ is a NF such that µ(0) = v̇1− v̇2 ∈ JGGK,0
0 .

Then there exist v1, v2 ∈ Ker(N) ∩ V such that

v̇i = vi mod HZ ∩Ker(N)

and z1 − z2 = v1 − v2.
On the other hand, the logarithm of the monodromy of ν̃i is described by(

N Nai
0 0

)
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for some ai ∈ HQ. Then the logarithm of the monodromy of µ̃ is(
N N(a1 − a2)
0 0

)
.

Since µ is a NF, (T − I)(a1 − a2) ∈ (T − I)HZ by the exact sequence (2.7). Then
a1 − a2 ∈ HZ. Setting

γa1−a2 =
(
I a1 − a2

0 1

)
,

we have

Ad(γa1−a2)
(
N Na2

0 0

)
=
(
N Na1

0 0

)
by (2.11). Since α((0, v̇2), [ν2]0) does not depend on the choice of lifting, we may
take γa1−a2 ν̃2 as a lifting of ν2. The monodromy cone that arises from γa1−a2 ν̃2

is σ′. Then

(σ′, exp(σ′C) exp(X−v2)Fν̃2) = (σ′, exp(σ′C) exp(X−v2) exp(Xv2−v1)Fν̃1)

= (σ′, exp(σ′C) exp(X−v1)Fν̃1).

Therefore, α defines a map α : JGGK → JKNU where the restriction α|J is
canonical.

§4.2. A map from JKNU to JGGK

Let φ̃ be a lifting of φ. By Corollary 3.4, for (0, (σ′, Z)) ∈ Jσ′ , we have (0, F ) ∈ E′σ′
such that

(4.4) GrW−1(0, F ) = (0, Fφ̃), p′1(0, F ) = (σ′, Z).

We denote this filtration by F(σ′,Z),φ̃.

Lemma 4.2. For γ ∈ Γ′ such that γ|AutHZ = Tn, γ exp((m − n)N ′)F(σ′,Z),φ̃ =
Fγ(σ′,Z),Tmφ̃.

Proof. By Proposition 3.5, there exists x ∈ Ker(N) such that

F p
(σ′,Z),φ̃

=

C(x− a, 1) + F p
φ̃

if p ≤ 0,

F p
φ̃

if p > 0.

Writing γ =
(
Tn b
0 1

)
for some b ∈ HZ, we have

γ exp((m− n)N ′)F p
(σ′,Z),φ̃

=

C(Tmx− Tna+ b, 1) + F p
Tmφ̃

if p ≤ 0,

F p
Tmφ̃

if p > 0.
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Since x ∈ Ker(N),

(4.5) Tmx− Tna+ b = x− (Tna− b).

By (2.11) and Proposition 3.5, (0, γ exp((m − n)N ′)F(σ′,Z),φ̃) ∈ E′Ad(γ)σ′ , which
satisfies

GrW−1(0, γ exp((m− n)N ′)F(σ′,Z),φ̃) = (0, FTmφ̃),

p′1(0, γ exp((m− n)N ′)F(σ′,Z),φ̃) = γ(σ′, Z).

Let φ̂ : ∆→ Ď be the untwisted period map. Since Ď′ → Ď is a fiber bundle,
there exists a lifting of φ̂,

(4.6)

Ď′

GrW−1

��
∆

ν̂(σ′,Z),φ̃

??~~~~~~~~ φ̂ // Ď

such that ν̂(σ′,Z),φ̃(0) = F(σ′,Z),φ̃, after shrinking ∆ if necessary. We then have a
holomorphic map

∆∗ → Γ′\D′; s 7→ p′2 ◦ p′1(s, ν̂(σ′,Z),φ̃(s)),

which defines an AVMHS, i.e., an ANF. Denoting this ANF by ν(σ′,Z),φ̃, we define

β(0, (σ′, Z)) := ((0, 0), [ν(σ′,Z),φ̃]0) ∈ JGGK.

Lemma 4.3. β(0, (σ′, Z)) is well-defined.

Proof. We show that β(0, (σ′, Z)) does not depend on the choice of ν̂(σ′,Z),φ̃, (σ′, Z)
and φ̃.

If we take liftings ν̂(σ′,Z),φ̃ and ν̂′
(σ′,Z),φ̃

such that

ν̂(σ′,Z),φ̃(0) = ν̂′
(σ′,Z),φ̃

(0) = F(σ′,Z),φ̃,

then µ := ν(σ′,Z),φ̃ − ν′(σ′,Z),φ̃
is a NF and µ(0) = 0 ∈ JGGK,0

0 . Then

((0, 0), [ν(σ′,Z),φ̃]0) ∼ ((0, 0), [ν′
(σ′,Z),φ̃

]0).

Moreover, by Lemma 4.2,

γ exp((m− n)N ′)ν̂(σ′,Z),φ̃(0) = Fγ(σ′,Z),Tmφ̃.

If we take ν̂γ(σ′,Z),Tmφ̃ = γ exp((m − n)N ′)ν̂(σ′,Z),φ̃ as a lifting of Tmφ̂, then
ν(σ′,Z),φ̃ = νγ(σ′,Z),Tmφ̃.
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Thus β defines a map β : JKNU → JGGK where the restriction β|J is canonical.

Proposition 4.4. α = β−1 and β = α−1, i.e., JGGK is bijective to JKNU.

Proof. For ((0, v̇), [ν]0) ∈ JGGK, we set (0, (σ′, Z)) := α((0, v̇), [ν]0). By making a
suitable choice of ν̃, φ̃ and v, we have F(σ′,Z),φ̃ = exp(X−v)Fν̃ . Therefore µ(0) = v̇

for µ = ν − ν(σ′,Z),φ̃, which implies

((0, v̇), [ν]0) ∼ ((0, 0), [ν(σ′,Z),φ̃]0) = β(0, (σ′, Z)).

On the other hand, for (0, (σ′, Z)) ∈ JKNU, we set ((0, 0), [ν]0) := β(0, (σ′, Z)).
By a suitable choice of ν̃, (σ′, Z) and φ̃, we have Fν̃ = F(σ′,Z),φ̃. Therefore,

(0, (σ′, Z)) = (0, (σ′, exp(σ′C)Fν̃)) = α((0, 0), [ν]0).

§5. A homeomorphism

In this section, we show the following main theorem:

Theorem 5.1. JGGK is homeomorphic to JKNU.

To show continuity, we describe an open neighborhood in JKNU. We recall
that the topology on JKNU is induced from Kσ through the following diagram:

Kσ′

��

// E′σ′

p′1
��

Jσ′

��

// Γ′(σ′)gp\D′σ′

p′2
��

JKNU

��

// Γ′\D′Σ′

GrW−1

��
∆

φ // Γ\DΣ

We describe an open neighborhood in JKNU using the following steps:

Step 1. Describe an open neighborhood in E′σ′ .

Step 2. Describe an open neighborhood in Γ′(σ′)gp\D′σ′ .
Step 3. Describe an open neighborhood in JKNU.

Open neighborhoods in JGGK are described in (2.8). Comparing these, we show
that the bijection constructed in the last section is continuous.
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§5.1. Proof of the main theorem

Setting. We take a boundary point (0, (σ′, Z)) ∈ JKNU. Choosing a lifting φ̃ of
the period map φ, we have the untwisted period map φ̂ : ∆ → Ď. Since σC ↪→
TĎ(Fφ̃), we may take a C-subspace B of gC such that B⊕ σC ∼= TĎ(Fφ̃). An open
neighborhood at Fφ̃ in Ď is described by

{exp(a1) exp(a2)Fφ̃ | a1 ∈ U1, a2 ∈ U2} ∼= U1 × U2

where U1 (resp. U2) is a sufficiently small open neighborhood of 0 in σC (resp. B).
We assume that the image of φ̂ is included in this open neighborhood, after shrink-
ing ∆ if necessary. We put φ̂(s) = (φ̂1(s), φ̂2(s)), where φ̂1 : ∆ → σC ∼= C
is a holomorphic function such that φ̂1(0) = 0. By using the coordinate t =
exp(2π

√
−1φ̂1(s)) · s on ∆ the untwisted period map is

φ̂(t) = exp(−l(t)N)φ̃(t) = exp(−φ̂1(s)N − l(s)N)φ̃(t) = exp(−φ̂1(s)N)φ̂(s).

Then φ̂1(t) = 0 for φ̂(t) = (φ̂1(t), φ̂2(t)) ∈ U1 × U2. It is significant that Fφ̃, Fν̃
and F(σ′,Z),φ̃ do not depend on this coordinate change (i.e., the bijection α is
independent).

Steps 1 and 2. In the pure case, neighborhoods in Eσ and in Γ(σ)gp\Dσ are
described in [KU, (7.3.5)]. We describe neighborhoods in E′σ′ and in Γ′(σ′)gp\D′σ′
in a similar way. Now we have the point (0, F(σ′,Z),φ̃) ∈ E′σ′ as described in (4.4).
Since GrW−1 : Ď′ → Ď is a fiber bundle with fiber V , we have a local trivialization

(5.1) (GrW−1)−1(U1 × U2) ∼= U1 × U2 × V.

SinceF(σ′,Z),φ̃ ∈ (GrW−1)−1(Fφ̃), we can assume that (0, 0, 0) corresponds toF(σ′,Z),φ̃.
Using this local trivialization, an open neighborhood at (0, F(σ′,Z),φ̃) in Ě′σ′ can
be described by

{(a0, (a1, a2, v)) | a0 ∈ U0, a1 ∈ U1, a2 ∈ U2, v ∈ U3}

where U0 (resp. U3) is a sufficiently small open neighborhood of 0 in toricσ′
(resp. V ). Let

A′ = {(a0, (0, a2, v)) | a0 ∈ U0, a2 ∈ U2, v ∈ U3}, S′ = A′ ∩ E′σ′ .

Using the diagram (3.2), the σ′C-action defines an open inclusion map

U1 × S′ ↪→ E′σ′ .

This inclusion map induces the open inclusion map

σ′C × S′ ↪→ E′σ′ ,
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after shrinking S′ if necessary. Then p′1(S′) is an open set of Γ′(σ′)gp\D′σ′ and
p′1(S′) ∼= S′. Moreover, p′2 ◦ p′1(S′) is an open neighborhood of (σ′, Z) in Γ′\D′Σ′ .

Step 3. Since p′1(S′) (resp. p′2 ◦ p′1(S′)) is an open neighborhood in Γ′(σ′)gp\D′σ′
(resp. Γ′\D′Σ′), p′1 ((∆× S′) ∩Kσ′) (resp. p′2 ◦ p′1 ((∆× S′) ∩Kσ′)) is an open
neighborhood of Jσ′ (resp. JKNU). Moreover, since p′1(S′) ∼= S′,

p′1 ((∆× S′) ∩Kσ′) ∼= (∆× S′) ∩Kσ′ .

We describe (∆ × S′) ∩ Kσ′ explicitly. By (3.5), we have the commutative
diagram

(5.2)

Kσ′

��

// E′σ′
GrW−1

{{xx
xx

xx
xx

x
p′2◦p

′
1

��
Eσ

p1

##FF
FF

FF
FF

F Γ′\D′Σ′

GrW−1

��
∆

φ // Γ\DΣ

Then, for (t, ξ) ∈ ∆× E′σ′ , (t, ξ) ∈ Kσ′ if, and only if,

φ(t) = GrW−1 ◦ p′2 ◦ p′1(ξ) = p1 ◦GrW−1(ξ).

Lemma 5.2. ((p1)−1(φ(t))) ∩GrW−1(S′) = (t, φ̂(t)).

Proof. Since p1((t, φ̂(t))) = φ(t) and p1 is a σC-torsor, the fiber is

(p1)−1(φ(t)) = σC · (t, φ̂(t)) = {(exp(2π
√
−1x)t, exp(−xN)φ̂(t)) | x ∈ C}.

The intersection with U0 × U1 × U2 is

(U0 × U1 × U2) ∩ (p1)−1(φ(t))

= {(exp(2π
√
−1a1)t,−a1, φ̂2(t)) | exp(2π

√
−1a1)t ∈ U0, −a1 ∈ U1}.

On the other hand, for (a0, 0, a2, v) ∈ S′,

GrW−1((a0, 0, a2, v)) = (a0, 0, a2).

Thus (a0, 0, a2) ∈ (p1)−1(φ(t)) if, and only if, a0 = t and a2 = φ̂2(t).

Lemma 5.3.

(∆× S′) ∩Kσ′ =

(t, (t, 0, φ̂2(t), v))

∣∣∣∣∣∣∣
t ∈ U0 ∩∆,
v ∈ Ker(N) ∩ U3 if t = 0,
v ∈ U3 if t 6= 0

 .(5.3)
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Proof. By Lemma 5.2, for (a0, 0, a2, v) ∈ S′,

φ(t) = p1 ◦Gr−1
W ((a0, 0, a2, v)) ⇒ a0 = t and a2 = φ̂2(t).

By Proposition 3.5, if t 6= 0, then (t, 0, φ̂2(t), v) ∈ S′ for v ∈ U3. If t = 0, since
(0, 0, v) ∈ U1 × U2 × U3 corresponds to exp(Xv)F(σ′,Z),φ̃, we have (0, 0, 0, v) ∈ S′

for v ∈ F 0
φ̃

+ Ker(N). Since V ⊕ F 0
φ̃

= HC by (2.4), v ∈ Ker(N).

Homeomorphism. Let S := W ∩ (∆ × U3) where W is as in (2.5) and S is
endowed with the strong topology in ∆ × U3. Then S is homeomorphic to (5.3).
For the local trivialization (5.1), we get

ν̂ : ∆→ U1 × U2 × U3 ⊂ Ď′; t 7→ (0, φ̂2(t), 0).

Then we have an ANF

ν : ∆→ Γ′\D′Σ′ ; t 7→ p′2 ◦ p′1(t, ν̂(t)).

Following (2.8) we define a neighborhood

Ṡ(ν) = {((t,−v̇), [ν]t) | (t, v̇) ∈ Ṡ}

at α−1(0, (σ′, Z)) = ((0, 0), [ν]0) in JGGK where Ṡ is the image of S in the quo-
tient space W/∼. Then α(Ṡ(ν)) is the image of (5.3) under p′2 ◦ p′1, which is a
neighborhood of (0, (σ′, Z)). In fact

α((t,−v̇), [ν]0) =

{
(0, exp(l(t)N ′) exp(Xv)ν̂(t)) if t 6= 0

(σ′, exp(σ′C) exp(Xv)ν̂(0)) if t = 0

= p′2 ◦ p′1(t, (t, 0, φ̂2(t), v)).

[KU, §3.1] gives a fundamental system of neighborhoods at (0, 0) in S. It defines
a fundamental system of neighborhoods at ((0, 0), [ν]0) in JGGK, which goes to a
fundamental system of neighborhoods at (0, (σ′, Z)) in JKNU under α. Therefore,
α is a homeomorphism.
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