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Abstract

There are several different ways to construct affine canonical bases, in addition to ap-

proaches by Lusztig and Kashiwara. In this paper we present a different approach to

canonical bases via Hall algebras and representations of tame quivers over finite fields.

The main idea is to tensor together integral bases constructed for cyclic quivers and Kro-

necker quivers with those from the preinjective and preprojective parts of tame quiver

representations. Several different bases: a PBW type basis, a monomial basis, and a bar-

invariant basis are constructed and their relations to the canonical basis are discussed.

The result also answers a question by Nakajima.
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§0. Introduction

§0.1

Let U+ be the positive part of the quantized enveloping algebra (over C(v)) of a
Kac–Moody Lie algebra g associated to a Cartan datum [Ka]. The construction of
the canonical basis consists of a Z[v−1]-lattice L in Lusztig’s integral Z = Z[v, v−1]-
form UZ with a Z[v−1]-basis B such that the restriction of the quotient map
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π : L → L/v−1L to L ∩ L̄ is an isomorphism of Z-modules. The elements in
B = π−1(π(B))∩ (L∩L̄) are bar-invariant and form a Z-basis of U+

Z . The set B is
called the canonical basis. If the Cartan datum is of finite type, Lusztig used PBW
bases for B, which are associated with reduced expressions of the longest element
of the Weyl group, and the image π(B) is independent of the reduced expressions
[L6, L7, DL].

If the Cartan datum is of finite or tame type, various approaches are taken to
construct the integral basis B for U+

Z . Lusztig’s geometric approach, which uses
certain simple perverse sheaves, gives B directly and works for general symmet-
ric Cartan matrices [L1–L5]. Kashiwara’s approach, which uses the Kashiwara
operators, works for more general Kac–Moody Lie algebras. Kashiwara called
the Z-basis π(B) the crystal basis and the Z-basis B the global crystal basis
[K1, K2, GL]. In the affine cases, Beck, Chari, and Pressley [BCP] constructed
an integral basis for untwisted affine type. Then Beck and Nakajima [BN] im-
proved and extended the results to all twisted affine types by using the Drinfeld
realization [Dr] of affine quantum groups. The main goal of this paper is to pro-
vide another approach to constructing an integral basis and to discuss its relation
to the canonical basis by using properties of representations of affine quivers.
This approach is motivated by Lusztig’s approach for finite type quiver cases, us-
ing Ringel’s characterization of U+ as the generic Hall algebra of a finite type
quiver.

§0.2

For a finite type root system, using Ringel’s characterization of U+ as the generic
Hall algebra of a Dynkin quiver, a PBW type basis for U+ can be realized as the
set of isomorphism classes of representations of the quiver over finite fields. It uses
an order compatible with the orbit closure inclusion relation in the representa-
tion varieties. In the affine cases, U+ is isomorphic to the (generic) composition
algebra, which is a subalgebra of the Hall algebra. Not all isomorphism classes of
representations of the affine Dynkin quiver are in U+. For cyclic quivers, there are
several approaches using quiver representations to construct the canonical basis.
They include the work of Lusztig [L1, L2, L3, L5] and Varagnolo–Vaserot [VV, S]
in terms of geometry and simple perverse sheaves, and [DDX] which uses compu-
tations in terms of quiver representations over finite fields. It should be mentioned
that Lusztig’s construction of the affine canonical basis in [L3] uses the McKay
correspondence between certain affine quivers and finite subgroups of SL2(C) and
has the flavor of the Hall algebra approach. Lusztig’s construction is also extended
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to all simply laced affine quivers using representations of the quiver over any al-
gebraically closed field without reference to McKay correspondence [Lin, LL].

The main feature of this paper is to work for all tame quivers using computa-
tions in the Hall algebra. In this paper, an integral PBW type basis is constructed
by tensoring bases from three subalgebras of the Hall algebra corresponding to
the subcategories of preinjective, regular, and preprojective representations of the
tame quiver. Not all regular modules are in the composition algebra. The reg-
ular part is further decomposed into the non-homogeneous part (corresponding
to several cyclic quivers) and the homogeneous part. For the non-homogeneous
regular part, bases of the composition algebra for cyclic quivers constructed in
[DDX] can be used by identifying each non-homogeneous tube with the category
of nilpotent representations of a cyclic quiver. By embedding the representation
category of the Kronecker quiver into the representation category of the affine
quiver, the image of the regular part of the Kronecker quiver together with those
from non-homogeneous tubes would complete the PBW basis of the regular part.

The idea of using the embedding of representations of the Kronecker quiver
appeared in [FMV] which motivated the present work. For the Kronecker quiver,
a certain integral basis with the aforementioned triangular decomposition is con-
structed by Chen [C] following the work of Zhang [Z2]. In [Z1], Zhang studied the
triangular decomposition structure of the composition algebra of affine type. In his
preprint [H], Hubery refined the work of [Z1] and constructed a PBW type basis for
the composition algebra using the triangular decomposition. The approach in this
paper uses the idea of triangular decomposition of [Z1, Z2] and is similar to that
in [H] when constructing a PBW type basis for the non-homogeneous regular part.

To relate this integral PBW basis to the canonical basis, one of the main pas-
sages is a monomial basis, which plays a significant role in Lusztig’s construction
in terms of perverse sheaves. The monomial basis elements are the direct images
of the constant sheaves over Springer type resolutions of certain orbit closures. We
will construct a monomial basis in terms of Hall algebras.

§0.3

For a finite type root system, Lusztig [L1] constructed the canonical basis in three
different ways. The first is to construct an integral PBW basis B by means of
a braid group action on simple Chevalley generators as in [DL] using a reduced
expression of the longest Weyl group element w0. This is possible in a finite type
root system since every root is conjugate to a simple root. The second approach
is the aformentioned Hall approach where the integral basis elements are the iso-
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morphism classes of representations of the Dynkin graph with a fixed orienta-
tion. The third approach is to characterize the integral basis as certain semisim-
ple complexes using the characterization of U+

Z as the (graded) Grothendieck
group of a certain category of semisimple complexes in the equivariant derived
category of constructible sheaves on the representation varieties of the Dynkin
quiver.

This paper follows the idea of Lusztig’s second approach together with the
idea of using generic extension and the closure inclusion relation of orbits. One
important property used in this paper is that Hall polynomials exist for regular
representations of affine quivers (cf. [R2] and [Z2]). Using this property and di-
rect computations on representations of affine quivers over finite fields, one can
transfer these computations to the generic composition algebra, which has been
identified with U+. One has to be careful to keep track of the coefficients of q as
q varies in order to derive a formula for U+ via Ringel’s genericalization process
(cf. §1.4).

§0.4

For an infinite type root system, the braid group action does not provide enough
root vectors to construct a PBW type basis. For affine types, a PBW type basis
was constructed in [BCP] and [BN]. There, real root vectors were constructed
by braid group actions on the Chevalley generators just as in the first approach
for finite type case and imaginary root vectors were constructed by using Schur
functions on Heisenberg generators. Then they used this PBW basis with the
almost orthonormal property to obtain a global crystal basis (canonical basis).
The approach of this paper is different from those of [BCP] and [BN] in that the
regular simple modules corresponding to the real root vectors are in the regular
part of the triangular decomposition mentioned in §0.2. Thus real root vectors can
appear in all three parts of the triangular decomposition.

§0.5

We now explain the organization of this paper. In Section 1 we recall the defini-
tion of Hall algebras of quivers by Ringel and by Lusztig respectively, and establish
an explicit relation between these two constructions. In particular, computations
in one form can be translated to the other form. Representations of quivers in
this section are over finite fields. Section 2 recalls some basic geometric properties
of orbit varieties and extension varieties for representations of quivers over alge-
braically closed fields. Section 3 deals with cyclic quivers and is largely taken from
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[DDX], in which some integral bases and the canonical basis are constructed in
terms of nilpotent representations of the cyclic quivers. The basis presented in this
section is part of the basis needed in Section 6. In Section 4, we discuss the Hall
subalgebra generated by preinjective modules and the Hall subalgebra generated
by preprojective modules. In this case, we can construct a monomial basis in ad-
dition to an obvious PBW type basis in terms of isomorphism classes of modules.
In Section 5 we recall, from [Z2] and [C], the construction of an integral PBW
basis of A(1)

1 type by using representations of the Kronecker quiver. In Section 6,
we show that the subalgebras corresponding to the preprojective part, preinjective
part, non-homogeneous tubes, and the regular part of the Kronecker quiver can be
tensored together to get a basis using the representation-directed property of the
Auslander–Reiten quiver of a tame quiver. This gives rise to an integral basis of
U+ over Q[v, v−1]. In Section 7, we find a monomial basis which has a unipotent
triangular relation with the integral PBW type basis constructed in Section 6.
Finally, a bar-invariant basis {Ec | c ∈ M} of U+ can be constructed following
Lusztig’s argument. In Section 8, by a detailed calculation of the inner product
on the PBW basis in the orthogonalization process using the properties of Schur
functions, we can answer Nakajima’s question in [N] affirmatively, by showing that
the basis {E ′c | c ∈M}, which is a modified form of the basis {Ec | c ∈M}, equals
the canonical basis in [L2]. The strong representation-directed property [DR] of
the module category of the Kronecker quiver enables us in Section 9 to arrange
the positive roots in a special order to give a direct computation of the canonical
basis for the Kronecker quiver.

In a preprint [Li], Y. Li gives a geometric characterization of the monomial
basis {mc | c ∈M} constructed by us in Section 8, and proves that the transition
matrix between {mc | c ∈M} and the canonical basis is triangular with diagonal
entries equal to 1 and entries above the diagonal in Z≥0[v, v−1].

§1. Ringel–Hall algebras

§1.1

A quiver Q = (I,H, s, t) consists of a vertex set I, an arrow set H, and two maps
s, t : H → I such that an arrow ρ ∈ H starts at s(ρ) and terminates at t(ρ).

Throughout the paper, Fq denotes a finite field with q elements, Q=(I,H, s, t)
is a fixed connected quiver without loops, and Λ = FqQ is the path algebra of Q
over Fq. By mod Λ we denote the category of all finite-dimensional nilpotent left
Λ-modules. We shall identify Λ-modules with representations of Q.
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§1.2. Ringel–Hall algebra

Given three modules L,M,N in mod Λ, let gLMN denote the number of Λ-sub-
modules W of L such that W ' N and L/W ' M in mod Λ. More generally,
for M1, . . . ,Mt, L ∈ mod Λ, let gLM1···Mt

denote the number of filtrations 0 =
Lt ⊆ Lt−1 ⊆ · · · ⊆ L1 ⊆ L0 = L of Λ-submodules such that Li−1/Li ' Mi

for i = 1, . . . , t. Let vq =
√
q ∈ C and P be the set of isomorphism classes of

finite-dimensional nilpotent Λ-modules. The Ringel–Hall algebra H(Λ) of Λ is by
definition the Q(vq)-vector space with basis {u[M ] | [M ] ∈ P} whose multiplication
is given by

u[M ]u[N ] =
∑

[L]∈P

gLMNu[L].

Note that gLMN depends only on the isomorphism classes of M , N and L. For
a fixed pair of isomorphism classes [M ] and [N ], there are only finitely many
isomorphism classes [L] such that gLMN 6= 0. It is clear that H(Λ) is an associative
Q(vq)-algebra with unit u[0], where 0 denotes the zero module.

The set of isomorphism classes of nilpotent simple Λ-modules is {Si | i ∈ I},
where Si is one-dimensional at i and zero elsewhere. Then the Grothendieck group
G(Λ) of mod Λ is the free Abelian group ZI. For each nilpotent Λ-module M ,
the dimension vector dimM =

∑
i∈I(dimMi)i ∈ NI is an element of G(Λ). The

Ringel–Hall algebra H(Λ) is graded by NI, more precisely, by dimension vectors
of modules.

The Euler form 〈−,−〉 on G(Λ) = ZI is defined by

〈α, β〉 =
∑
i∈I

aibi −
∑
ρ∈H

as(ρ)bt(ρ)

for α =
∑
i∈I aii and β =

∑
i∈I bii in ZI. For any nilpotent Λ-modules M and N ,

〈dimM,dimN〉 = dimFq HomΛ(M,N)− dimFq ExtΛ(M,N).

The symmetric Euler form is defined as

(α, β) = 〈α, β〉+ 〈β, α〉 for α, β ∈ ZI.

This gives rise to a symmetric generalized Cartan matrix C = (aij)i,j∈I with
aij = (i, j). It is easy to see that C is independent of the field Fq and the orientation
of Q.

The twisted Ringel–Hall algebra H∗(Λ) is defined by setting H∗(Λ) = H(Λ)
as Q(vq)-vector space, but multiplication is defined by

u[M ] ∗ u[N ] = v〈dimM,dimN〉
q u[M ]u[N ].
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Following [R3], for any Λ-module M , we denote 〈M〉 = v
−dimM+dim EndΛ(M)
q u[M ].

Note that {〈M〉 |M ∈ P} a Q(vq)-basis of H∗(Λ).
The Q(vq)-algebras H∗(Λ) and H(Λ) depend on q. We will use H∗q(Λ) and

Hq(Λ) to indicate the dependence on q when such a need arises.

§1.3. A construction by Lusztig

For any finite-dimensional I-graded Fq-vector space V =
∑
i∈I Vi, let EV be the

subset of
⊕

ρ∈H HomFq (Vs(ρ), Vt(ρ)) defining nilpotent representations of Q. Note
that EV =

⊕
ρ∈H HomFq (Vs(ρ), Vt(ρ)) when Q has no oriented cycles. The group

GV =
∏
i∈I GL(Vi) acts naturally on EV by

(g, x) 7→ g • x = x′ where x′ρ = gt(ρ)xρg
−1
s(ρ) for all ρ ∈ H.

Let CG(EV ) be the space of GV -invariant functions EV → C. For γ ∈ NI, we fix an
I-graded Fq-vector space Vγ with dimVγ = γ. For example, Vγ = Fγq =

⊕
i∈I Fniq

if γ =
∑
i∈I nii. We will simply denote Eγ = EVγ and Gγ = GVγ . For α, β ∈ NI

and γ = α+ β, we consider the diagram

Eα × Eβ
p1←− E′ p2−→ E′′ p3−→ Eγ .

Here E′′ is the set of all pairs (x,W ) consisting of an I-graded subspace W of Vγ
with dimW = β and x ∈ Eγ such that xρWs(ρ) ⊆ Wt(ρ)(i.e., W is x-stable);
E′ is the set of all quadruples (x,W,R′, R′′) consisting of (x,W ) ∈ E′′ and in-
vertible graded linear maps R′′ : Fβq → W and R′ : Fαq → Vγ/W. The maps
p2 and p3 are the obvious projections and p1(x,W,R′, R′′) = (x′, x′′), where
x′′ρ = (R′′t(ρ))

−1xρ|Ws(ρ)R
′′
s(ρ) and x′ρ = (R′t(ρ))

−1x̄ρR
′
s(ρ) for all ρ ∈ H. Here

x̄ρ : (Vγ/W )s(ρ) → (Vγ/W )t(ρ) is the quotient map induced from xρ.
For any map p : X → Y of finite sets, p∗ : C(Y ) → C(X) is defined by

p∗(f)(x) = f(p(x)) and p! : C(X)→ C(Y ) is defined by p!(h)(y) =
∑
x∈p−1(y) h(x)

(integration along the fibers). Given f ∈ CG(Eα) and g ∈ CG(Eβ), there is a unique
h ∈ CG(E′′) such that p∗2(h) = p∗1(f × g). Then define

f ◦ g = (p3)!(h) ∈ CG(Eγ).

Note that the isomorphism classes of nilpotent Λ-modules of a fixed dimension
vector α are in one-to-one correspondence with Gα-orbits in Eα. For each x ∈ Eα,
let Mx be the Λ-module defined by x, Ox = Gα • x be the Gα-orbit, and 1Ox be
the characteristic function of the finite set Ox. Then we have

1Ox ◦ 1Oy (z) = gMz

Mx,My
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for all x ∈ Eα, y ∈ Eβ , and z ∈ Eγ . Therefore there is a natural isomorphism of
C-algebras

Hq(Λ)⊗Q(vq) C→
(⊕
α∈NI

CG(Eα), ◦
)

sending u[Mx] to 1Ox .
Let

m(α, β) =
∑
i∈I

aibi +
∑
ρ∈H

as(ρ)bt(ρ).

We again define multiplication in the C-space K =
⊕

α∈NI CG(Eα) by

f ∗ g = v−m(α,β)
q f ◦ g

for all f ∈ CG(Eα) and g ∈ CG(Eβ). Then (K, ∗) becomes an associative C-algebra.

Conventions. (1) To simplify the notation, instead of writing Mx for each x∈Eα,
we will simply write M ∈ Eα by using M as both an element of Eα and the
corresponding Λ-module. Thus OM ⊆ Eα is the corresponding Gα-orbit.

(2) Although we are working over a finite field Fq, we will regularly use GV
and EV for the algebraic group and the algebraic variety over F̄q with an obvious
Fq-structure and use the features of algebraic geometry without introducing extra
notation, i.e., the set of Fq-rational points and the algebraic variety are denoted by
the same symbol. This should not cause any confusion and the meanings should
be clear from the context. In particular, since stabilizer subgroups are connected
algebraic groups, Lang’s theorem ensures that two Fq-rational points are in the
same orbit under the algebraic group action if and only if they are in the same
orbit under the finite group of Fq-rational points.

For M ∈ Eα, let OM ⊂ Eα be the Gα-orbit of M. We take 1[M ] ∈ CG(Vα) to
be the characteristic function of OM , and set f[M ] = v−dimOM

q 1[M ]. We consider
the subalgebra (L, ∗) of (K, ∗) generated by f[M ] over Q(vq), for all M ∈ Eα and
all α ∈ NI. In fact L has a Q(vq)-basis {f[M ] |M ∈ Eα, α ∈ NI}.

Proposition 1.1. The linear map ϕ : (L, ∗)→ H∗(Λ) defined by

ϕ(f[M ]) = 〈M〉 for all [M ] ∈ P

is an isomorphism of associative Q(vq)-algebras.

Proof. By definition, φ is a linear isomorphism. For M ∈ Eα, one first notes
that dimOM = dimGα − dim EndΛ(M) and dimGα+β − dimGα − dimGβ =
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〈α, β〉+ m(α, β). If N ∈ Eβ and L ∈ Eα+β , then

dim EndΛ(M) + dim EndΛ(N)− dim EndΛ(L) + 〈α, β〉

= −dimOM − dimON + dimOL −m(α, β).

Now a direct computation of the structure constants for the bases {f[M ]} and
{〈M〉}, respectively, will finish the proof.

§1.4. Genericalization

The free abelian group G(Λ) = ZI with the symmetric Euler form (−,−) defined
in §1.2 is a Cartan datum in the sense of Lusztig [L5]. Associated to (ZI, (−,−))
is the Drinfeld–Jimbo quantized enveloping algebra U = U− ⊗ U0 ⊗ U+ defined
over Q(v), where v is transcendental over Q. It is generated by the Chevalley
generators Ei, Fi,K±i (i ∈ I) with respect to the quantum Serre relations. Recall
that Z = Z[v, v−1] ⊆ Q(v). The Lusztig Z-form U+

Z of U+ is the Z-subalgebra in
U+ generated by E(m)

i = Emi /[m]! (m ≥ 0 and i ∈ I), where

[n] =
vn − v−n

v − v−1
, [n]! =

n∏
r=1

[r],
[
n

r

]
=

[n]!
[r]![n− r]!

.

For vq =
√
q ∈ C, let Zvq be the subring of C which is the image of Z under

the map Z → C with v 7→ vq. Let C∗(Λ)Zvq be the Zvq -subalgebra of H∗q(Λ)

generated by u
(∗m)
[Si]

= u∗m[Si]/[m]vq ! (i ∈ I), where [n]vq ∈ Zvq is the image of [n]
in Zvq .

It follows from the works of Ringel [R1], Green [G], and Sevenhant–Van den
Bergh [SV] that C∗(Λ)Zvq is isomorphic to U+

Z ⊗Z Zvq by sending u(∗m)
[Si]

to E(m)
i .

We will denote U+
Z by C∗(Λ)Z and call it the integral generic composition

algebra. In fact, following Ringel’s argument, Z can be identified with the subring of∏
q Zvq generated by v±1 = (v±1

q ), and C∗(Λ)Z with the Z-subalgebra of
∏
qH∗q(Λ)

generated by (u(∗m)
[Si⊗Fq ]), m ≥ 1. Here the product is taken over all q (although

infinitely many will be enough).
In this paper, computations in

∏
qH∗q(Λ) will be performed in each compo-

nent. When an expression in each component is written as an element of Z[vq, v−1
q ]

with coefficients in Z independent of the choice of the field Fq, we say that the
expression is invariant (or generic) as Fq varies. In this case replacing vq by v we
will get a formula in

∏
qH∗q(Λ). We will not repeat this replacement each time and

simply write v = vq and call it generic in this expression.
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The bar involution ( ) : U+ → U+ is a Q-algebra automorphism defined by

v = v−1, Ei = Ei and E
(m)
i = E

(m)
i . Then U+

Z = U+
Z . It should be pointed out

that the bar operation is not defined when v is specialized to vq.

§1.5

In general, if we take a special value vq =
√
q for the finite field Fq, it is easy to

obtain

Lemma 1.2. Any monomial m in u
(m)
Si

, i ∈ I, m ∈ N, can be written as m =∑
M∈P fM,q〈M〉 in H∗q(Λ) with fM,q ∈ Zvq such that for each M , there is an

integer b such that vbqfM,q ∈ Z[vq] (the subring of algebraic integers) and b is
independent of Fq.

§2. The variety of representations

In this section, we list some geometric properties of representations of quivers over
the algebraically closed field k = Fq. Take Λ = kQ; all Hom and Ext are taken in
Λ-mod.

§2.1

For α ∈ NI, the I-graded k-vector space V =
⊕

i∈I k
αi defines the affine algebraic

k-variety
⊕

ρ∈H Homk(kαs(ρ) , kαt(ρ)) containing the set Eα of all nilpotent elements
as a closed subvariety on which the algebraic group Gα =

∏
i∈I GLαi(k) acts as

in §1.3. For any x ∈ Eα, let Mx be the corresponding representation of Q over k. We
will follow the convention (1) of §1.3 by simply writing M ∈ Eα for a module M .
The following properties are well-known (see [CB]).

Lemma 2.1. For any α ∈ NI and M ∈ Eα, we have:

(i) dim Eα − dimOM = dim EndM − (α, α)/2 = dim Ext1(M,M).

(ii) OM is open in Eα if and only if M has no self-extension.

(iii) There is at most one orbit OM in Eα such that M has no self-extension.

(iv) If 0 → M → L → N → 0 is a non-split exact sequence, then OM⊕N ⊆
OL \ OL.

(v) If OL is an orbit in Eα of maximal dimension and L = M ⊕ N, then
Ext1(M,N) = 0.
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For subsets A ⊂ Eα and B ⊂ Eβ , we define the extension set A ?B of A by B
to be

A ? B = {z ∈ Eα+β | there exists an exact sequence

0→Mx →Mz →My → 0 with x ∈ B, y ∈ A}.

IfA is a subvariety of Eα, then codimA = dim Eα−dimA is called the codimension
of A in Eα. From [Re] we obtain

Lemma 2.2. Given any α, β ∈ NI, if A ⊂ Eα and B ⊂ Eβ are irreducible
algebraic varieties and are stable under the actions of Gα and Gβ respectively,
then A ? B is irreducible and stable under the action of Gα+β. Moreover,

codimA ? B = codimA+ codimB − 〈β, α〉+ r,

where 0 ≤ r ≤ min{dimk Hom(My,Mx) | y ∈ B, x ∈ A}.

§2.2

For any α, β ∈ NI, we consider the diagram of algebraic k-varieties

Eα × Eβ
p1←− E′ p2−→ E′′ p3−→ Eα+β

defined in a similar way as in §1.3. It follows from the definition that A ? B =
p3p2(p−1

1 (A×B)). Thus we have A?B ⊆ A ? B since p1 is a locally trivial fibration
(see Lemma 2.3 below). For any M ∈ Eα, N ∈ Eβ , and L ∈ Eα+β we define

Z = p2p
−1
1 (OM ×ON ), ZL,M,N = Z ∩ p−1

3 (L).

The following properties can be found in [L1].

Lemma 2.3. For the diagram above and M ∈ Eα, N ∈ Eβ, and L ∈ Eα+β , we
have the following properties:

(i) The map p2 is a principal Gα ×Gβ fibration.

(ii) The map p1 is a locally trivial fibration with smooth connected fibers of di-
mension ∑

i∈I
a2
i +

∑
i∈I

b2i + m(α, β).

(iii) The map p3 is proper.

(iv) The variety Z is smooth and irreducible of dimension

dim Z = dimOM + dimON + m(α, β).
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(v) If L is an extension of M by N, then

dimOL ≤ dimOM + dimON + m(α, β).

(vi) If OL is dense in p3Z, then

dimOL = dimOM + dimON + m(α, β)− dim ZL,M,N .

(vii) Assume that Ext1(M,N) = 0 and Hom(N,M) = 0. If M ′ ∈ OM and N ′ ∈
ON with either M ′ ∈ OM \OM or N ′ ∈ ON \ON , then X ∈ OM⊕N \OM⊕N
for all X ∈ OM ′ ?ON ′ . In particular, dimOX < dimOM⊕N .

Lemma 2.4. Given any two representations M and N of Q over k, if Ext1(M,N)
= 0, then OM ?ON = OM⊕N , i.e., OM⊕N is open and dense in OM ?ON .

Proof. By definition, Ext1(M,N) = 0 implies OM ?ON = OM⊕N . Hence OM⊕N =
OM ? ON ⊆ OM ? ON ⊆ OM ?ON = OM⊕N . Therefore OM ? ON = OM⊕N ,
since any orbit (under any connected algebraic group action) is always open in its
closure.

Lemma 2.5. Let M,N,X ∈ mod Λ. Then OX is open in OM ?ON if and only if
OX is open in OM ?ON . In that case for any Y ∈ OM ?ON we have dimOY ≤
dimOX .

Proof. This follows from OX ⊆ OM ?ON ⊆ OM ?ON ⊆ OM ?ON and Lemma 2.2.

To end this section, we recall the (geometric) partial order on P (the isomor-
phism classes) defined by Lusztig for any quiver: [M ] � [N ] if dimM = dimN and
OM ⊆ ŌN . This order will play an important role in constructions of various bases.

§3. The integral and canonical bases arising from a tube

In this section we summarize some results from [DDX] on constructions of mono-
mial bases and PBW bases for cyclic quivers. In [DDX] the canonical bases of
Uq(ŝln) and Uq(ĝln) are constructed from these monomial bases by a linear alge-
bra method from the category of finite-dimensional nilpotent representations of a
cyclic quiver, i.e., from a tube.

§3.1

Let ∆ = ∆(n) be the cyclic quiver with vertex set I = Z/nZ = {1, . . . , n} and
arrow set H = {i → i + 1 | i ∈ Z/nZ}. We consider the category T = T (n) of
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finite-dimensional nilpotent representations of ∆(n) over Fq. In view of the shape
of its Auslander–Reiten quiver, T (n) is called a tube of rank n. The irreducible
objects in T (n) are {Si | i ∈ I}. Let Si[l] be the unique absolutely indecomposable
object in T (n) with simple quotient Si and length l. Note that any indecomposable
object in T (n) is isomorphic to an Si[l]. Again in this section, we let P be the
set of isomorphism classes of objects in T (n), H the Ringel–Hall algebra of T (n),
H∗ the twisted Ringel–Hall algebra, and L the Lusztig form of the Hall algebra of
T (n) (cf. §1.3). Because the Hall polynomials always exist in this case (see [R2]),
we may regard the algebras H, H∗ and L in their generic form. So they are defined
generically over Q(v) with v being an indeterminate. By Proposition 1.1, we may
identify L with H∗ via the morphism ϕ.

In this section, all properties we obtain are generic and independent of the
base field Fq, although the computations will be performed over Fq (for each q)
following the remark in §1.4. We will omit the subscript q for simplicity. Since the
number n is fixed, sometimes it is omitted too, e.g., T = T (n).

§3.2

Let λ = (λ1 ≥ · · · ≥ λl > 0) be a partition of an integer m. We call l and m,
respectively, the length and size of the partition λ and denote |λ| = m. Let Π be the
set of n-tuples π = (π(1), . . . , π(n)) with each component π(i) = (π(i)

1 ≥ π
(i)
2 ≥ · · · )

being a partition of an integer. Similarly, we write |π| = |π(1)| + · · · + |π(n)| and
call it the size of π. For each π ∈ Π, we define an object in T by

M(π) =
⊕
i∈∆0
j≥1

Si[π
(i)
j ].

Every object in T is isomorphic to exactly one M(π). This defines a bijection
between Π and P. We will simply write uπ for u[M(π)] in H. The geometric par-
tial order on P defines a partial order on Π such that π � π′ if and only if
M(π) �M(π′).

An n-tuple π = (π(1), . . . , π(n)) of partitions in Π is called aperiodic (in the
sense of Lusztig [L3]), or separated (in the sense of Ringel [R2]), if for each l ≥ 1
there is some i = i(l) ∈ I such that π(i)

j 6= l for all j ≥ 1. By Πa we denote
the set of aperiodic n-tuples of partitions. An object M in T is called aperiodic if
M 'M(π) for some π ∈ Πa. For any dimension vector α ∈ Nn (= NI), we let

Πα = {π ∈ Π | dimM(π) = α} and Πa
α = Πa ∩Πα.
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For each α fixed, Πα is finite. Thus Eα has only finitely many Gα-orbits.
Therefore, for any two modules M and N , there is a unique L such that OL
has the maximal dimension among Gα-orbits in the irreducible variety OM ?ON
(Lemma 2.2). This orbit OL is open and dense in OM ?ON . Thus OL′ ⊆ OL for
any extension L′ of M by N , i.e., L is the unique maximal element under the
partial order � among all extensions of M by N . This L is called the generic
extension of M by N and is denoted by L = M �N . (See [Re] for the finite type
cases.) If we define a binary operation in P by [M ] � [N ] = [M �N ], then (P, �) is
a monoid with identity [0].

We recall that OM ? ON = p3p2p
−1
1 (OM × ON ). Since p1 is a locally trivial

fibration, p−1
1 (OM�N ×OW ) is open and dense in p−1

1 ((OM ?ON )×OW ) for any
[W ] ∈ P. Hence OM�N ?OW is dense in OM ?ON ?OW . Therefore

O(M�N)�W ⊆ OM�N ?OW ⊆ OM ?ON ?OW

implies that O(M�N)�W is the unique dense orbit in OM ?ON ?OW . This not only
proves the associativity of � but also implies that

gM�NM,N gM�N�WM�N,W = gM�N�WM,N,W .

Let Ω be the set of all words on the alphabet set I. For each word w =
i1 · · · im ∈ Ω, we define

M(w) = Si1 � · · · � Sim .

Then there is a unique π ∈ Π such that M(π) 'M(w), and we define ℘(w) = π. It
has been proved in [R2] that π = ℘(w) ∈ Πa and ℘ is a surjective map ℘ : Ω� Πa.

For each module M in T and each integer s ≥ 1, we denote by sM the direct
sum of s copies of M. For w ∈ Ω, write w in the tight form w = je11 · · · j

et
t ∈ Ω

with jr−1 6= jr for all r, and define µr ∈ Π such that M(µr) = erSjr . For any
λ ∈ ΠPt

r=1 erjr
, write gλw for the Hall polynomial gM(λ)

M(µ1),...,M(µt)
. A word w is called

distinguished if the Hall polynomial g℘(w)
w equals 1. This means that M(℘(w)) has

a unique reduced filtration of type w, i.e., a filtration

M(℘(w)) = M0 ⊃M1 ⊃ · · · ⊃Mt−1 ⊃Mt = 0

with Mr−1/Mr ' erSjr for all r.

Proposition 3.1. For any π ∈ Πa, there exists a distinguished word wπ =
je11 · · · j

et
t ∈ ℘−1(π) in tight form.



Affine Canonical Bases 839

In H∗, let u(∗m)
i = E

(∗m)
i = u∗mi /[m]!, i ∈ I, m ≥ 1. The Z-subalgebra

C∗ = C∗Z of
∏
qH∗q generated by u

(∗m)
i , i ∈ I, m ≥ 1, is the twisted generic

composition algebra of T (cf. §1.4).

§3.3

For each w = je11 · · · j
et
t ∈ Ω in tight form, define the monomial

m(w) = E
(∗e1)
j1

∗ · · · ∗ E(∗et)
jt

∈ C∗.

From now on, we fix a distinguished word wπ ∈ ℘−1(π) for each π ∈ Πa and
thus a fixed section of distinguished words D = {wπ | π ∈ Πa} of ℘ over Πa. For
each distinguished word wπ = je11 · · · j

et
t ∈ D in tight form, define L1 = ej1Sj1 and

Li = Li−1 � ejiSji for i = 2, . . . , t. Set α = dimLt. Then M(π) ' Lt. Since

1 = gπwπ = gL2
ej1Sj1 ,ej2Sj2

gL3
L2,ej3Sj3

· · · gπLt−1,ejtSjt
,

we get gLiLi−1,ejiSji
= 1 for 2 ≤ i ≤ t. Furthermore, by Lemma 2.3(vi) and Propo-

sition 1.1, we have

〈Li−1〉 ∗ 〈eji+1Sji+1〉 = 〈Li〉+
∑
X≺Li

aX〈X〉

with aX ∈ Zvq . Recall from §1.2 that 〈M〉 = v−dimM+dim EndM
q u[M ]. Thus

m(wπ) = 〈M(π)〉+
∑
λ≺π

ξλwπ 〈M(λ)〉,

where ξλwπ ∈ Zvq . Note that ξλwπ 6= 0 implies dimM(λ) = dimM(π) = α. Although
m(wπ) ∈ C∗Zvq , the terms 〈M〉 are not necessarily in C∗Zvq . Define Eπ inductively
by the relation (noting that v2

q = q in each component)

Eπ = m(wπ) −
∑

λ≺π, λ∈Πaα

v−dimM(π)+dim EndM(π)+dimM(λ)−dim EndM(λ)
q gλwπ (v2

q )Eλ.

If π ∈ Πa
α is minimal, then Eπ = m(wπ) ∈ C∗Zvq . By induction on the partial order,

we have Eπ ∈ C∗Zvq for all π ∈ Πa. If M(π) = Si, then Eπ = Ei = u[Si]. Therefore

Eπ = 〈M(π)〉+
∑

λ∈Πα\Πaα, λ≺π

ηπλ〈M(λ)〉

with ηπλ ∈ Zvq . By applying the genericalization process in §1.4, we have
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Proposition 3.2. Let D = {wπ | π ∈ Πa} be a section of distinguished words
of Ω over Πa. Then both {m(wπ) | π ∈ Πa} and {Eπ | π ∈ Πa} are Z-bases of C∗Z .
Furthermore, for any π ∈ Πa

α,

m(wπ) = Eπ +
∑

λ∈Πaα, λ≺π

v−dimM(π)+dim EndM(π)+dimM(λ)−dim EndM(λ)gλwπ (v2)Eλ.

Remark. The definition of the basis {Eπ | π ∈ Πa} relies on the choice of the
section D of distinguished words. However it is proved in [DDX] that this basis is
independent of the choice of D.

We will call {m(wπ) | π ∈ Πa} a monomial Z-basis of C∗Z and {Eπ | π ∈ Πa} a
PBW basis of C∗Z . With the triangular relation between the two bases, we can follow
the approach of Lusztig [L1, 7.8–7.11] to obtain the canonical basis {Eπ | π ∈ Πa}
of C∗Z in the sense of [L1, 3.1] by

Eπ =
∑

λ�π, λ∈Πaα

pλπEλ for π ∈ Πa
α, α ∈ Nn,

with pλλ = 1 and pλπ ∈ v−1Z[v−1] for λ ≺ π.
The following lemma will be used in Section 6.

Lemma 3.3. For any l ∈ N and 1 ≤ j ≤ n, let π, π′ ∈ Πa be such that Sj [l] =
M(π) and Sj+1[l] = M(π′). Then

u[Sj [l]] ≡
∑

λ�π, λ∈Πa

aλEλ (mod (v − 1)C∗Z) if n - l,(i)

u[Sj [l]] − u[Sj+1[l]] ≡
∑

λ�π (or π′), λ∈Πa

aλEλ (mod (v − 1)C∗Z) if n | l.(ii)

Here aλ ∈ Q.

Proof. We use induction on l and assume j = 1 for each l. For l = 1, we have
u[S1] = E1 and the conclusion follows. Assume that 2 ≤ l ≤ n−1 and the conclusion
is true for π1 such that M(π1) = S1[l − 1]. Then

u[S1[l−1]] ≡
∑

λ�π1,λ∈Πa

aλEλ (mod (v − 1)C∗Z)

and u[S1[l−1]] ∗ u[Sl] − u[Sl] ∗ u[S1[l−1]] ≡ u[S1[l]] (mod (v − 1)C∗Z). For λ � π1 and
λ ∈ Πa, we have OM(λ) ⊆ OM(π1) = OS1[l−1]. Thus

OM(λ)♦Sl ⊆ OM(π1)♦Sl = OM(π) = OS1[l],
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and

u[S1[l]] ≡
( ∑
λ�π1, λ∈Πa

aλEλ

)
∗ El − El ∗

( ∑
λ�π1, λ∈Πa

aλEλ

)
(mod (v − 1)C∗Z)

≡
( ∑
λ�π1,λ∈Πa

aλEλ

)
∗ El − El ∗

( ∑
λ�π1, λ∈Πa

aλEλ

)
≡

∑
λ�π, λ∈Πa

a′λEλ

since {Eλ | λ ∈ Πa} is a Z-basis of C∗Z . Thus the conclusion is true for l. For l = n,
by induction assumption (for j = 2), we have, with M(π2) = S2[l − 1],

u[S2[l−1]] ≡
∑

λ�π2, λ∈Πa

aλEλ (mod (v − 1)C∗Z),

u[S1[l]]−u[S2[l]] ≡ u[S1] ∗u[S2[l−1]]−u[S2[l−1]] ∗u[S1] (mod (v−1)C∗Z)

≡ E1

( ∑
λ�π2, λ∈Πa

aλEλ

)
−
( ∑
λ�π2, λ∈Πa

aλEλ

)
∗E1 (mod (v−1)C∗Z)

≡
∑

λ�π (orπ′), λ∈Πa

a′λEλ (mod (v−1)C∗Z).

Now we consider the general case. Let l = kn + m, 0 < m ≤ n − 1. We set
M(π1) = S1[l − 1] and M(π′1) = S2[l − 1]. If m = 1, by induction assumption, we
have

u[S1[l−1]] − u[S2[l−1]] ≡
∑

λ�π1 (orπ′1), λ∈Πa

aλEλ (mod (v − 1)C∗Z).

Hence

u[S1[l]] ≡ (u[S1[l−1]] − u[S2[l−1]]) ∗ u[S1] − u[S1] ∗ (u[S1[l−1]] − u[S2[l−1]])

≡
( ∑
λ�π1 (orπ′1), λ∈Πa

aλEλ

)
∗ E1 − E1 ∗

( ∑
λ�π1 (orπ′1), λ∈Πa

aλEλ

)
≡

∑
λ�π, λ∈Πa

a′λEλ (mod (v − 1)C∗Z).

Here in the last part we used the fact that l − 1 = nk and S1[l] is the unique
indecomposable module of dimension vector dimS1[l] which is a real root. All Eλ
appearing in the sum have terms u[M ] in H∗ with dimM = dimS1[l]. Since S1[l]
has no self-extension, OS1[l] is an open dense orbit.

If 2 ≤ m ≤ n − 1, the argument is the same as in the case 2 ≤ l ≤ n − 1.
When n | l, i.e., m = 0, the argument is the same as for l = n.
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§4. Integral bases arising from preprojective and
preinjective components

In this section we consider a connected tame quiver Q without oriented cycles.
For the preprojective and preinjective components, the argument in this section is
essentially the same as in the case of finite type.

§4.1

Recall that U is the quantized affine enveloping algebra over Q(v) associated to the
quiver Q, with the Chevalley generators Ei, Fi and K±i . Lusztig [L5] introduced
the symmetries T ′′i,1 : U → U for i ∈ I as algebra automorphisms of U defined by

T ′′i,1(Kβ) =Ksi(β), T ′′i,1(Ei) = −FiKi, T ′′i,1(Fi) = −KiEi,

T ′′i,1(Ej) =
∑

r+s=−aij

(−1)rv−rE(s)
i EjE

(r)
i for j 6= i in I,

T ′′i,1(Fj) =
∑

r+s=−aij

(−1)rvrF (r)
i FjF

(s)
i for j 6= i in I.

Here aij = (i, j) for i, j ∈ I, and si(β) = β − (β, i)i for β ∈ ZI. For each i ∈ I,
define

U+[i] = {x ∈ U+ | T ′′i,1(x) ∈ U+},

which is a Q(v)-subalgebra of U+. Then T ′′i,1 : U+[i] → U+[i] is a Q(v)-algebra
automorphism. Moreover, if we consider the Lusztig form U+

Z and let U+
Z [i] =

U+
Z ∩ U+[i], then T ′′i,1 : U+

Z [i]→ U+
Z [i] is a Z-algebra automorphism.

§4.2

We define σiQ to be the quiver obtained from Q by reversing the direction of every
arrow adjacent to the vertex i and keeping all other arrows unchanged. If i is a
sink of Q, one can define the BGP reflection functor (see [BGP] or [DR])

σ+
i : mod Λ→ modσiΛ

where Λ = Fq(Q) and σiΛ = Fq(σiQ) are path algebras. Let mod Λ[i] be the full
subcategory of mod Λ consisting of all representations which do not have Si as a
direct summand. Let H∗(Λ)[i] be the subalgebra of H∗(Λ) generated by u[M ] with
M ∈ mod Λ[i]. Then σ+

i induces a category equivalence mod Λ[i] → modσ+
i Λ[i]

and therefore we have an algebra homomorphism

σi : H∗(Λ)[i]→ H∗(σiΛ)[i]
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defined by

σi(u[M ]) = u[σ+
i (M)] for any M ∈ mod Λ[i].

Under the identification of C∗Z(Λ) with U+
Z , the subalgebra C∗(Λ)Z [i] =

{x ∈ C∗(Λ)Z | σi(x) ∈ C∗(σiΛ)Z} is identified with U+
Z [i]. Similarly C∗Z(σiΛ)[i]

is identified with U+
Z [i].

On the other hand, the functor σ+
i induces an algebra homomorphism

σi : C∗(Λ)Z [i]→ C∗(σiΛ)Z [i]

and we have a commutative diagram

C∗(Λ)Z [i] σi−−−−→ C∗(σiΛ)Z [i]y y
U+
Z [i]

T ′′i,1−−−−→ U+
Z [i]

with the vertical maps being the above mentioned identifications (for example, see
[XY]).

Dually, if i is a source of Q, we have similar results.
We recall that an indecomposable Λ-module M is exceptional if Ext1

Λ(M,M)
= 0. In this case one has 〈M〉(∗s) = 〈sM〉 for all s ≥ 1. It is proved in [CX] that
〈sM〉 ∈ C∗(Λ)Z for any exceptional indecomposable M and any s ≥ 1.

In [CB], the structure of the Auslander–Reiten quivers of tame quivers is
discussed. Indecomposable modules are divided into three classes: preprojective,
regular, and preinjective. Regular modules are further divided into homogeneous
and non-homogeneous ones, depending on the period being 1 or larger than 1
under the Auslander–Reiten translation.

We denote by Prep and Prei , respectively, the isomorphism classes of inde-
composable preprojective and preinjective Λ-modules. In particular, C∗Z contains
the set

{〈u[sM ]〉 |M is indecomposable in Prep or Prei and s ≥ 1}.

§4.3

Let im, . . . , i1 be an admissible sink sequence of Q, i.e., im is a sink of Q and it is
a sink of the quiver σit+1 · · ·σimQ for 1 ≤ t < m. Let M be in Prei . There exists
an admissible sink sequence of Q such that

M = σ+
i1
· · ·σ+

im
(Sim+1),
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where Sim+1 is a simple representation in modσim · · ·σi1Λ. The following lemma
can be found in [R3].

Lemma 4.1. Let M be an indecomposable preinjective representation. Then

〈M〉 = T ′′i1,1 · · ·T
′′
im,1(Eim+1),

where M = σ+
i1
· · ·σ+

im
(Sim+1), for an admissible sink sequence im, . . . , i1 of Q.

For each positive real root β of the root datum corresponding to the tame
quiver Q, there is exactly one indecomposable module M(β) with dimM = β.
Since Prei is representation-directed, we can give a total order ≤ on the set

Φ+
Prei = {· · · < β2 < β1}

of all positive real roots βi such that [M(βi)] ∈ Prei and

Hom(M(βi),M(βj)) 6= 0 implies βi ≤ βj .

Then this order ≤ has the property

〈βi, βj〉 > 0 implies βi ≤ βj and 〈βi, βj〉 < 0 implies βj < βi

and
Ext(M(βi),M(βj)) = 0 for βi ≤ βj .

Similarly, since Prep is representation-directed, we define a total order ≤ on the
set

Φ+
Prep = {α1 < α2 < · · · }

of all positive real roots αi such that [M(αi)] ∈ Prep and

Hom(M(αi),M(αj)) 6= 0 implies αi ≤ αj .

Then this order has the property

〈αi, αj〉 > 0 implies αi ≤ αj and 〈αi, αj〉 < 0 implies αj < αi

and
Ext(M(αi),M(αj)) = 0 for αi ≤ αj .

We denote by NPrei
f the set of all support-finite functions b : Φ+

Prei → N. Each
b ∈ NPrei

f defines a preinjective representation

M(b) =
⊕

βi∈Φ+
Prei

b(βi)M(βi)
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and any preinjective representation is isomorphic to exactly one of the form M(b).
By Ringel [R3, Prop. 1] we have

Lemma 4.2. For any b ∈ NPrei
f ,

〈M(b)〉 = 〈b(βim)M(βim)〉 ∗ · · · ∗ 〈b(βi1)M(βi1)〉,

where {βim < · · · < βi1} is the support of b in Φ+
Prei .

Thus, by discussions in §4.2, 〈M(b)〉 ∈ C∗Z for all b ∈ NPrei
f . We now define

C∗(Prei) to be the Z-submodule of C∗Z generated by {〈M(b)〉 | b ∈ NPrei
f }.

Lemma 4.3. The Z-submodule C∗(Prei) is a subalgebra of C∗Z and {〈M(b)〉 |
b ∈ NPrei

f } is a Z-basis of C∗(Prei).

Proof. If b,b1,b2 ∈ NPrei
f , then the Hall polynomial gM(b)

M(b1)M(b2) always exists
(see Ringel [R5]). Then it is easy to see that C∗(Prei) is closed under the multi-
plication ∗.

With similar definitions for Prep, we have

Lemma 4.4. For any a ∈ NPrep
f and M(a) =

⊕
αi∈Φ+

Prep
a(αi)M(αi),

〈M(a)〉 = 〈a(αi1)M(αi1)〉 ∗ · · · ∗ 〈a(αim)M(αim)〉,

where {αi1 < · · · < αim} is the support of a in Φ+
Prep.

Lemma 4.5. Let C∗(Prep) be the Z-submodule of C∗Z generated by {〈M(a)〉 |
a ∈ NPrep

f }. Then C∗(Prep) is a subalgebra of C∗Z and {〈M(a)〉 | a ∈ NPrep
f } is its

Z-basis.

§4.4

Since Q is a tame quiver without oriented cycles, we can order the set {S1, . . . , Sn}
of non-isomorphic nilpotent simple modules in mod Λ so that

Ext1(Si, Sj) = 0 for i ≥ j.

We can now identify I = {1, . . . , n} and NI = Nn so that Si is the simple module
at the vertex i ∈ I. Any module M with dimension vector d = (d1, . . . , dn) has a
unique filtration

M = M0 ⊇M1 ⊇ · · · ⊇Mn = 0

with factors Mi−1/Mi isomorphic to diSi, since Ext1(Si, Sj) = 0 for i ≥ j. This
shows that the Hall polynomial gMd1S1···dnSn equals 1. By setting

ψn(q) =
(1− q) · · · (1− qn)

(1− q)n
,
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we have, in Hq and H∗q respectively,

ud1
[S1] · · ·u

dn
[Sn] = ψd1(q) · · ·ψdn(q)

∑
u[M(a)⊕M(t)⊕M(b)],

u
(∗d1)
[S1] ∗ · · · ∗ u

(∗dn)
[Sn] = v−(d1+···+dn)+〈d,d〉

q

∑
u[M(a)⊕M(t)⊕M(b)],

where the summation is over the triples (M(a),M(t),M(b)) with M(a) prepro-
jective, M(t) regular, M(b) preinjective, and dimM(a)+dimM(t)+dimM(b) =
(d1, . . . , dn) = d.

For any a ∈ NPrep
f , let {αi1 < · · · < αim} be the support of a and, for

1 ≤ t ≤ m, define

at = a(αit)αit = (a1t, . . . , ant) ∈ Nn,

mat = u
(∗a1t)
[S1] ∗ ∗ · · · ∗ u

(∗ant)
[Sn] , ma = ma1 ∗ · · · ∗mam .

Similarly for b ∈ NPrei
f with support {βi1 < · · · < βim} define

mbt = u
(∗b1t)
[S1] ∗ · · · ∗ u

(∗bnt)
[Sn] , mb = mbm ∗ · · · ∗mb1 .

Lemma 4.6. For any a ∈ NPrep
f and b ∈ NPrei

f , we have, in H∗,

(i) ma = 〈M(a)〉+
∑

dimOM(a′)⊕M(t′)⊕M(b′)<dimOM(a)

caa′t′b′(vq)u[M(a′)⊕M(t′)⊕M(b′)].

Here the sum ranges over all triples M(a′),M(t′),M(b′) with M(a′) preprojective,
M(t′) regular, M(b′) preinjective, and dimM(a′) + dimM(t′) + dimM(b′) =∑
α∈Prep a(α)α, and caa′t′b′(v) ∈ Z[v, v−1]. Moreover

mb = 〈M(b)〉(ii)

+
∑

dimOM(a′′)⊕M(t′′)⊕M(b′′)<dimOM(b)

dba′′t′′b′′(vq)u[M(a′′)⊕M(t′′)⊕M(b′′)],

where the sum is over all triples M(a′′),M(t′′),M(b′′) with M(a′′) preprojective,
M(t′′) regular, M(b′′) preinjective, and dimM(a′′) + dimM(t′′) + dimM(b′′) =∑
β∈Prep b(β)β, and dba′′t′′b′′(v) ∈ Z[v, v−1].

Proof. (i) Since M(αit) is exceptional, by Lemma 2.1, Oa(αit )M(αit )
is a unique

orbit of maximal dimension in Ea(αit )αit
. Note that all simple modules are excep-
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tional. We have

mat = u
(∗a1t)
[S1] ∗ · · · ∗ u

(∗ant)
[Sn] = 〈a1tS1〉 ∗ · · · ∗ 〈antSn〉

= v
−dim(a(αit )M(αit ))+dim End(a(αit )M(αit ))
q

∑
dimM=a(αit )αit

u[M ]

= 〈a(αit)M(αit)〉+
∑

dimOM<dimOa(αit )M(αit )

v−dim Ext(M,M)
q 〈M〉.

Because Ext(M(αit),M(αis)) = 0 and Hom(M(αis),M(αit)) = 0 for it < is, by
Lemmas 2.3(vii) and §4.4 we have

ma = ma1 ∗mam

= 〈M(a)〉+
∑

dimOM(a′)⊕M(t′)⊕M(b′)<dimOM(a)

caa′t′b′qu[M(a′)⊕M(t′)⊕M(b′)],

as desired. The proof for (ii) is similar.

Remark. By Lemma 1.2, the degree of v−1
q in caa′t′b′q or in dba′′t′′b′′q is bounded

and independent of Fq.

§5. The integral bases from the Kronecker quiver

Most results in this section can be found in [Z2] and [C] while others can be found
in [BK].

§5.1

Let Fq be the finite field with q elements and Q be the Kronecker quiver with
I = {1, 2} and H = {ρ1, ρ2} such that s(ρ1) = s(ρ2) = 2 and t(ρ1) = t(ρ2) = 1.
Let Λq = FqQ be the path algebra. In this section we will use the subscript q to
indicate the dependence on q since our computation will be performed in the cat-
egory mod Λq. It is known that the structure of the preprojective and preinjective
components of mod Λq is the same as those of mod kQ for k being an algebraically
closed field. However the regular components of mod Λq are different from those of
mod kQ. Recall that a module is called regular if all indecomposable direct sum-
mands are regular. By [R6], the full subcategory R of mod Λq consisting of regular
representations in mod Λq is an abelian category. If X is a simple object in R,
then X is said to be a quasi-simple module in mod Λq.

The set of dimension vectors of indecomposable modules in mod Λ is

Φ+ = {(l + 1, l), (m,m), (n, n+ 1) | l ≥ 0, m ≥ 1, n ≥ 0}.
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The dimension vectors (n + 1, n) and (n, n + 1) correspond to preprojective and
preinjective indecomposable modules respectively and are real roots. For each real
root α, there is only one isoclass of indecomposable modules with dimension vec-
tor α, which will be denoted by Vα. Define a total order < on Φ+ by using the
strong representation-directed property of the quiver Q,

(1, 0) < · · · < (m+ 1,m) < (m+ 2,m+ 1) < · · · < (k, k) < (k + 1, k + 1)

< · · · < (n+ 1, n+ 2) < (n, n+ 1) < · · · < (0, 1),

so that there is no non-zero homomorphism from an indecomposable module of
dimension vector α to an indecomposable module of dimension vector β if β < α.
This property will be used frequently in the computation.

Any Λq-module is given by a quadruple (V1, V2;σ, τ), where V1 and V2 are
finite-dimensional vector spaces over Fq, and σ and τ are Fq-linear maps from V2

to V1.

Proposition 5.1. The isomorphism classes of regular simple modules in mod Λq
are indexed by spec(Fq[x]). That is, each regular quasi-simple module is isomorphic
to (V1, V2;σ, τ), where V1 = V2 = Fq[x]/(p(x)) for an irreducible polynomial p(x) in
Fq[x], σ is the identity map and τ is given by multiplying by x, except (Fq,Fq; 0, 1)
which corresponds to the zero ideal.

§5.2

In this section, let Pq be the set of isomorphism classes of finite-dimensional Λq-
modules, Hq be the Ringel–Hall algebra of Λq over Q(vq), where v2

q = q, and H∗q
be the twisted form of Hq. If d ∈ NI is a dimension vector, we set in Hq

Rd =
∑

[M ]∈Pq,M regular
dimM=d

u[M ].

For an element x =
∑

[M ]∈P c[M ]u[M ] ∈ Hq, we call u[M ] a (non-zero) term of
x if c[M ] 6= 0. Furthermore,

R(x) =
∑

[M ]∈Pq,M regular

c[M ]u[M ]

is called the regular part of x. According to our notation, we write uα = u[Vα] for
α = (n− 1, n) or (n, n+ 1) being real roots.

Let α1 = (1, 0) and α2 = (0, 1) be the simple roots. The orientation of Q
implies 〈α1, α2〉 = 0 and 〈α2, α1〉 = −2. Thus for δ = (1, 1) we have 〈δ, α1〉 = −1,
〈α1, δ〉 = 1, 〈δ, α2〉 = 1 and 〈α2, δ〉 = −1.
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§5.3

In this section, multiplication in Hq will be simply written as xy instead of x ◦ y.
The following four lemmas can be verified by direct computation as in [Z2].

Lemma 5.2. Let i and j be positive integers. Then

u(j−1,j)u(i,i−1) = R(u(j−1,j)u(i,i−1)) + qi+j−2u(i,i−1)u(j−1,j).

Lemma 5.3.
Rδ = u(0,1)u(1,0) − u(1,0)u(0,1),

u(n+1,n) =
1

q + 1
(Rδu(n,n−1) − qu(n,n−1)Rδ),

u(n,n+1) =
1

q + 1
(u(n−1,n)Rδ − qRδu(n−1,n)).

Lemma 5.4. Let i and j be positive integers and n = i+ j − 1. Then

R(u(j−1,j)u(i,i−1)) = R(u(n−1,n)u(1,0)) = R(u(0,1)u(n,n−1)).

Lemma 5.5 ([Z2, Theorem 4.2,4.3]). Let m,n ≥ 1. Then

u(m−1,m)Rnδ =
∑

0≤i≤n

qi − qn+1

1− q
Riδu(m+n−i−1,m+n−i),

Rnδu(m,m−1) =
∑

0≤i≤n

qi − qn+1

1− q
u(m+n−i,m+n−i−1)Riδ.

§5.4

We will introduce a new set of elements in H∗q to describe a basis that resembles
a PBW basis for the universal enveloping algebra of a Lie algebra. We give here
some quantum commutator relations in Hq and in H∗q . We define (cf. §1.2)

E(n+1,n) = 〈u(n+1,n)〉 = v−2n
q u(n+1,n), E(n,n+1) = 〈u(n,n+1)〉 = v−2n

q u(n,n+1).

We will call E1 = E(1,0) and E2 = E(0,1) the Chevalley generators. For n ≥ 1,
define in H∗

Ẽnδ = E(n−1,n) ∗ E1 − v−2
q E1 ∗ E(n−1,n).

Most of the computations below are known from [C] and/or [Z2].

Lemma 5.6 ([C, Lemma 3.5], [Z2]). Ẽnδ = v−3n+1
q R(u(n−1,n)u(1,0)).
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Proof. By taking u1 = u(1,0) we have

Ẽnδ = v−2(n−1)
q (v〈(n−1)δ+α2,α1〉

q u(n−1,n)u1 − v−2
q v〈α1,(n−1)δ+α2〉

q u1u(n−1,n))

= v−3n+1
q (u(n−1,n)u1 − v2(n−1)

q u1u(n−1,n))

= v−3n+1
q R(u(n−1,n)u1) by Lemma 5.2.

Lemma 5.7 ([C, Prop. 4.2]). There exist a(r)
h (v), b(r)h (v) ∈ Z[v, v−1] for r ∈ N\{0}

and h ∈ {0, 1, . . . , br/2c} such that for all n > m in N,

E(n+1,n) ∗ E(m+1,m) =
b(n−m)/2c∑

h=0

a
(n−m)
h (vq)E(m+h+1,m+h) ∗ E(n−h+1,n−h),

E(m,m+1) ∗ E(n,n+1) =
b(n−m)/2c∑

h=0

b
(n−m)
h (vq)E(n−h+1,n−h) ∗ E(m+h,m+h+1).

For k ≥ 0, we inductively define

E0δ = 1, Ekδ =
1

[k]

k∑
s=1

vs−kq Ẽsδ ∗ E(k−s)δ.

Lemma 5.8. We have Ekδ = v−2k
q Rkδ.

Proof. If k = 1, then Eδ = Ẽδ = v−2
q Rδ. Assume that the assertion is true for all

t < k. Then by Lemma 5.6, and [Z2, Lem. 3.7, Thm. 4.1, Lem. 4.7],

Ekδ =
1

[k]

k∑
s=1

vs−kq v−3s+1
q R(u(s−1,s)u1) ∗ v−2(k−s)

q R(k−s)δ

=
1

[k]

k∑
s=1

v−3k+1
q R(u(s−1,s)u1) ∗R(k−s)δ

=
1

[k]

k∑
s=1

v−3k+1
q as(Rδ, R2δ, . . . , Rsδ) ∗R(k−s)δ

=
v−3k+1
q

[k]
1− qk

1− q
Rkδ = v−2k

q Rkδ.

Here as(Rδ, R2δ, . . . , Rsδ) is as in [Z2, p. 105].

Lemma 5.9. For m,n ∈ N we have in H∗q

Enδ ∗ E(m+1,m) =
n∑
k=0

[n+ 1− k]E(m+n+1−k,m+n−k) ∗ Ekδ,

E(m,m+1) ∗ Enδ =
n∑
k=0

[n+ 1− k]Ekδ ∗ E(m+n−k,m+n−k+1).
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Proof. Again we will only verify the first equality. By Lemma 5.8, we have

Enδ ∗ E(m+1,m) = v−2n
q Rnδ ∗ v−2m

q u(m+1,m) = v−2(n+m)
q v−nq Rnδu(m+1,m)

= v−3n−2m
q

n∑
k=0

qk − qn+1

1− q
u(m+n−k+1,m+n−k)Rkδ (by Lemma 5.5)

=
n∑
k=0

v−3n−2m
q

1− v2
q

(v2k
q − v2n+2

q )v2k
q v
−k
q v2(n+m−k)

q E(m+n−k+1,m+n−k) ∗ Ekδ

=
n∑
k=0

[n+ 1− k]E(m+n−k+1,m+n−k) ∗ Ekδ. �

§5.5

Let Lq be the Zvq = Z[vq, v−1
q ]-subalgebra of H∗q generated by the set

{E(∗s)
(m+1,m), Ekδ, E

(∗t)
(n,n+1) | m,n ≥ 0, s, t, k ≥ 1}.

Recall from §1.4 that the integral Zvq -form C∗Zvq is generated by E(∗s)
(1,0) and E(∗s)

(0,1).
Thus C∗Zvq ⊆ Lq.

On the other hand, by §4.2, we get E(∗sm)
(m+1,m), E

(∗tn)
(n,n+1) ∈ C

∗
Zvq . Because Enδ is

just P̃n,1 in [BCP], this implies Erkkδ ∈ C∗Zvq . Thus Lq ⊆ C∗Zvq . Therefore C∗Zvq = Lq.
Now we have an integral Zvq -basis of Lq consisting of the monomials{∏

m≥0

E
(∗sm)
(m+1,m)

∏
k≥1

E∗rkkδ

∏
n≥0

E
(∗tn)
(n,n+1)

∣∣∣ sm, tn, rk ≥ 0
}

with the product taken with respect to the order given in §5.1 and there are only
finitely many non-zero sm, tn, and rk in each monomial. This follows easily from
the facts: (1) those monomials are linearly independent over Zvq (even over Q(vq))
by the definition of Ringel–Hall algebras; (2) because there exist Hall polynomials
in the Kronecker quiver by [Z2], it follows from the lemmas in §5.4 that the Zvq -
span of the monomials above is closed under multiplication in H∗q and that Lq
contains all monomials we defined above.

Remark. The formulae in the lemmas are unchanged when we vary q. The lem-
mas can be stated in

∏
qH∗q with vq replaced by v = (vq) (as a variable) in∏

q Zvq and with E(∗,∗) replaced by E(∗,∗) = (E(∗,∗),q). We then define L as the
Z = Z[v, v−1]-algebra with a Z-basis consisting of the monomials described above.

As remarked in §1.4, Lusztig’s integral Z-form C∗Z , which is called the generic
composition algebra, can be viewed as a Z-subalgebra of

∏
qH∗q by the Ringel–

Green theorem (see [G], [R1, R7]). Using this identification, we can view C∗Z = L.
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Let P(n) be the set of all partitions of n. Recall that there are no non-
trivial extensions between homogeneous regular representations. For any w =
(w1, . . . , wm) ∈ P(n), we define

Ewδ = Ew1δ ∗ · · · ∗ Ewmδ.

By Lemmas 5.5, 5.8, and the definition of 〈M〉, we get L ⊆ C∗Z . Then we have

Proposition 5.10. The set

{〈P 〉 ∗ Ewδ ∗ 〈I〉 | P ∈ Pprep, w ∈ P(n), I ∈ Pprei, n ∈ N}

is a Z-basis of C∗Z . Here Pprep and Pprei are, respectively, the isoclasses of prepro-
jective and preinjective modules in Pq.

Remarks. (1) It has been proved by Zhang in [Z2] that the basis in Proposition
5.10 is a Q(v)-basis of U+. Chen [C] improved this and showed that this set is a
Z-basis of U+

Z .

(2) It is not difficult to see that elements in {Enδ | n ∈ N} constructed here
correspond to the root vectors of Uq(ŝl2) constructed by Damiani in [Da] and by
Beck in [Be].

(3) It can be proved in an easier way that the set in Proposition 5.10 is an
integral basis of C∗A over A = Q[v, v−1]. (See the proof of Proposition 6.2 below.)

We end this section with a lemma which will be used in Section 9. For any n >
m ≥ 0, P(n,m) (resp. I(m,n)) denotes a preprojective (resp. preinjective) module
with dimP(n,m) = (n,m) (resp. dim I(m,n) = (m,n)). In the following formulae, the
summations are over all nonzero preprojective and preinjective modules with the
indicated dimension vectors. The formulas can first be stated for representations
over Fq. By using the argument in §1.4, we will state them in

∏
qH∗q with v as a

variable.

Lemma 5.11. In the following formulas all P and I are non-zero.

(i) E
(∗n)
2 ∗ E(∗(n+1))

1 = E(n+1,n) +
∑

1≤l≤n

v−l−1E(n−l+1,n−l) ∗ Elδ

+
∑

0≤l≤n−1
p≥1, s≥0, t≥0
s+t+l+(p−1)=n

v−dim EndP−dim End Iv−p(l+t)−(s+l)(p−1)〈P(s+p,s)〉∗Elδ∗〈I(t,t+p−1)〉;
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(ii) E
(∗(n+1))
2 ∗ E(∗n)

1 = E(n,n+1) +
∑

1≤l≤n

v−l−1Elδ ∗ E(n−l,n−l+1)

+
∑

0≤l≤n−1
p≥1, s≥0, t≥0
s+t+l+(p−1)=n

v−dim EndP−dim End Iv−p(l+s)+(t+l)(p−1)〈P(s+p−1,s)〉∗Elδ∗〈I(t,t+p)〉;

(iii) E
(∗n)
2 ∗ E(∗n)

1 = Enδ

+
∑

0≤l≤n−1, p≥1
s≥0, t≥0, s+t+l+p=n

v−dim EndP−dim End Iv−p(s+2l+t)〈P(s+p,s)〉 ∗ Elδ ∗ 〈I(t,t+p)〉.

Proof. We work with representations over Fq and verify (i) only. The others can
be verified in a similar way. We have the following relation in H (see [R3]):

un2u
n+1
1 = ψn(q)ψn+1(q)

(
u(n+1,n) +

∑
1≤l≤n

u(n−l+1,n−l)Rlδ

+
∑

0≤l≤n−1, p≥1
s≥0, t≥0, s+t+l+(p−1)=n

u[P ]Rlδu[I]

)

where P is a non-zero preprojective module with dimP = (s+p, s) and I is a non-
zero preinjective module with dim I = (t, t+ p− 1). Then by a routine calculation
using the relation in §5.3, we obtain (i).

§6. Integral bases for the generic composition algebras

§6.1

For a connected tame quiver Q without oriented cycles with path algebra Λ = FqQ,
let e be an extending vertex of Q. Let P = P (e) be the projective cover of the
simple module Se corresponding to the vertex e. Setting p = dimP (e), one has
〈p, p〉 = 1 = 〈p, δ〉 and there exists a unique indecomposable preprojective module
L with dimL = p + δ. Moreover HomΛ(L,P ) = 0 and ExtΛ(L,P ) = 0. Recall
that a pair (M,N) of indecomposable Λ-modules is called an exceptional pair if
Ext(M,M) = Ext(N,N) = 0 and Ext(N,M) = Hom(N,M) = 0. Thus (P,L) is
an exceptional pair.

Let C(P,L) be the smallest full subcategory of mod Λ which contains P and L
and is closed under taking extensions, kernels of epimorphisms, and cokernels of
monomorphisms in the category of Λ-modules. Also we have dimFq HomΛ(P,L)=2.
By [CB], C(P,L) is equivalent to the category of FqK-modules, where K is the
Kronecker quiver with two arrows from vertex 2 to 1. In this case, L corresponds to
the projective cover of the simple module θ2 and P corresponds to the projective



854 Z. Lin, J. Xiao and G. Zhang

cover of the simple module θ1. This induces an exact embedding F : mod FqK ↪→
mod Λ. We note here that the embedding functor F is essentially independent of
the field Fq. This gives rise to an injective homomorphism of algebras, still denoted
by F : H∗q(K) ↪→ H∗q(Λ).

In H∗q(K) we have defined, in §5.8, the elements EmδK for m ≥ 1 for the
corresponding imaginary root δK . The images Emδ = F (EmδK ) in H∗q(Q) will play
a significant role in the construction of PBW bases and canonical bases in the affine
cases. Since EmδK ∈ C∗q (K), and 〈L〉, 〈P 〉 ∈ C∗q (Λ), it follows that Emδ is in C∗q (Λ).
Therefore the genericalization process of §1.4 will induce an embedding of algebras
F : C∗(K)Z → C∗(Λ)Z . Let K be the subalgebra of C∗(Λ)Z generated by Emδ for
m ∈ N. It is a polynomial ring on infinitely many variables {Emδ | m ≥ 1}, and
its integral form is the polynomial ring on the variables {Emδ | m ≥ 1} over Z
although the expressions of Emδ in terms of linear combinations of equivalence
classes of modules of Λ will vary as q changes. In a certain sense, these elements will
collect the contributions of the homogeneous regular modules to the composition
algebras.

§6.2

Let T1, . . . , Ts be all non-homogeneous tubes in mod Λ (in fact, s ≤ 3). For each Ti,
let ri = r(Ti) be the period of Ti, i.e., the number of quasi-simple modules in Ti.
Then ri > 1. Let g be the Kac–Moody Lie algebra corresponding to the tame
quiver Q. The multiplicity of a root α is the dimension of the root space gα. The
following is well-known (for example see [CB]):

Lemma 6.1. We have the equality
∑s
i=1(ri − 1) = |I| − 2 and the multiplicity of

each imaginary root mδ is |I| − 1, where |I| is the number of vertices of Q.

§6.3

Each non-homogeneous tube Ti is a full subcategory of mod Λ, closed under ex-
tensions and equivalent to the full subcategory of nilpotent modules of the cyclic
quiver of the same period. In Section 3, the composition algebra C∗q (Ti) of Ti and
its generic integral form C∗Z(Ti) have been constructed. For each Ti, let Πa

i be the
set of aperiodic ri-tuples of partitions such that Mi(πi) is an aperiodic module
in Ti for any πi ∈ Πa

i . We have constructed in §3.3 the element

Eπi = 〈Mi(πi)〉+
∑

λi∈Πi\Πai , λi≺πi

ηπiλi 〈Mi(λi)〉

in C∗(Ti)Z . Then {Eπi | πi ∈ Πa
i } is a Z-basis of C∗(Ti)Z .
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There is a natural embedding of Hq(Ti) into Hq(Λ) from the embedding of
the category Ti in mod Λ. Since the Euler form 〈−,−〉 defined in §1.2 depends
on the homomorphism and extension spaces only, this embedding also gives an
algebra embedding H∗q(Ti) into H∗q(Λ) for each finite field Fq. Since all quasi-
simple modules in Ti are in C∗q (Λ), we have C∗q (Ti) ⊆ C∗q (Λ) for all q. This induces
an embedding of C∗(Ti)Z into C∗(Λ)Z . Thus elements in C∗(Ti)Z will be denoted
by the same notations as their images in C∗(Λ)Z .

For the tame quiver Q, let M be the set of quadruples c = (ac,bc, πc, wc)
such that ac ∈ NPrep

f , bc ∈ NPrei
f , πc = (π1c, . . . , πsc) ∈ Πa

1 × · · · × Πa
s , and

wc = (w1 ≥ · · · ≥ wt) is a partition.
Then for each c ∈M we define

Ec = 〈M(ac)〉 ∗ Eπ2c ∗ · · · ∗ Eπsc ∗ Ewcδ ∗ 〈M(bc)〉,

where 〈M(ac)〉 and 〈M(bc)〉 are defined in Lemmas 4.4 and 4.2 respectively, Eπic is
defined above and Ewcδ is defined in §6.1 and Lemma 5.8. Obviously, {Ec | c ∈M}
lie in C∗(Λ), in fact in C∗(Λ)Z , and are linearly independent over Q(v).

Proposition 6.2. The set {Ec | c ∈M} is a Q(v)-basis of C∗(Λ)Q(v).

The proof of Proposition 6.2 will be given in §6.4 after some preparations.

Lemma 6.3. In C∗(Λ)Z ,

Ẽnδ =
∑

m1≤···≤ms
m1+···+ms=n

bm1,...,msEm1δ ∗ · · · ∗ Emsδ, where bm1,...,ms ∈ Z.

Proof. By the relation

E0δ = 1, Ekδ =
1

[k]

k∑
s=1

vs−kẼsδ ∗ E(k−s)δ,

we can solve the equation recursively to get the relation in the lemma.

It is known from Ringel’s work [R2] that the Lie subalgebra n+ ⊆
C∗(Λ)Q[v,v−1]/(v − 1)C∗(Λ)Q[v,v−1] generated by u[Si] (i ∈ I) over Q is the
positive part of the corresponding affine Kac–Moody Lie algebra over Q, and
C∗(Λ)Q[v,v−1]/(v − 1)C∗(Λ)Q[v,v−1] is the universal enveloping algebra of n+.

For each non-homogeneous tube Ti of rank ri, we write Sj [l]i for the indecom-
posable module Sj [l] in the tube Ti. Let Ψ : C∗(Λ)Z → C∗(Λ)Z/(v − 1)C∗(Λ)Z be
the canonical projection. Then one of the main results in [FMV] is the following;
its proof relies on Lemma 6.1.



856 Z. Lin, J. Xiao and G. Zhang

Proposition 6.4. The vectors Ψ(u[M(α)]) for α ∈ Φ+
Prep ; Ψ(u[Sj [l]i]) for dimSj [l]i

= α being a real root, i = 1, . . . , s; Ψ(u[Sj [l]i]−u[Sj+1[l]i]) for dimSj [l]i = mδ being
an imaginary root and 1 ≤ j ≤ ri − 1, i = 1, . . . , s; Ψ(Ẽnδ), n ≥ 1; and Ψ(u[M(β)])
for β ∈ Φ+

Prei , form a Z-basis of n+.

Note that it is easy to see that all vectors in Proposition 6.4 belong to the Lie
algebra n+, and that they are linearly independent over Q. For example, Ψ(Ẽnδ)
is in n+ for all n ≥ 1. Then by Lemma 6.1, one can prove that those vectors give
rise to a Z-basis of n+.

§6.4. Proof of Proposition 6.2

By the definition, {Ec | c ∈ M} is a linearly independent set over Q(v). For
any dimension vector w ∈ NI, let Vw be the Q(v)-subspace spanned by those Ec,

c ∈M, such that Ec ∈ C∗(Λ)w. It is well-known from Lusztig’s work [L1] that

dimQ(v) C∗(Λ)w = dimQ(C∗(Λ)Q[v,v−1]/(v − 1)C∗(Λ)Q[v,v−1])w

and the monomials in a fixed order in the basis elements of n+ in Proposition 6.4
form a PBW basis of C∗(Λ)Q[v,v−1]/(v − 1)C∗(Λ)Q[v,v−1] over Q. However, Lem-
mas 3.3 and 6.3 imply that the PBW basis elements can be obtained by applying
Ψ on {Ec | c ∈M}. Therefore dimQ(v) Vw ≥ dimQ(v) C∗(Λ)w. Hence {Ec | c ∈M}
is a Q(v)-basis of C∗(Λ).

As a consequence, the multiplication map

ϕ : C∗(Prep)⊗Q(v) C∗(T1)⊗Q(v) · · · ⊗Q(v) C∗(Ts)⊗Q(v) K ⊗Q(v) C∗(Prei)→ C∗(Λ)

is an isomorphism of Q(v)-vector spaces.

§6.5

We may consider the ring A = Q[v, v−1] and denote by C∗(Λ)A the A-subalgebra
of the generic composition algebra C∗(Λ)A ⊆

∏
qH∗q(Λ) generated by u

(∗m)
i =

u∗mi /[m]! (i ∈ I).

Proposition 6.5. The set {Ec | c ∈M} is an A-basis of C∗(Λ)A.

Proof. For any monomial m in the divided powers of u[Si] (i ∈ I), Proposition 6.2
implies

m =
∑
c∈M

fm,c(v)Ec ∈ C∗(Λ),
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where fm,c(v) ∈ Q(v) and the summation is finite. Note that Eπic in the definition
of Ec has the form (cf. §3.3)

Eπ = 〈M(π)〉+
∑

λ∈Πα\Πaα, λ≺π

ηπλ〈M(λ)〉

with ηπλ ∈ Z. The formula m =
∑

c∈M fm,c(vq)Ec still holds for each q. Thus, by
Lemma 1.2, for each c ∈M, there existsN(c) ∈ N such that (

√
q)N(c)fm,c(

√
q) ∈ Z

for all q. It is easily seen that vN(c)fm,c(v) is a polynomial in Q[v]. Therefore
fm,c(v) ∈ Q[v, v−1].

Corollary 6.6. The multiplication map

ϕ : C∗(Prep)A ⊗A C∗(T1)A ⊗A · · · ⊗A C∗(Ts)A ⊗A KA ⊗A C∗(Prei)A → C∗(Λ)A

is an isomorphism of A-modules.

§7. A bar-invariant basis of C∗(Λ)A

§7.1

In this section, we continue to use the settings of Section 6. The first part of this
section is devoted to finding a monomial basis and a triangular relation with the
PBW basis {Ec | c ∈M}.

We first define the variety

Oc = OM(ac) ?OMπ1c
? · · · ?OMπsc

?Nwcδ ?OM(bc)

for any c ∈ M, where Nwcδ = Nw1δ ? · · · ? Nwtδ if wc = (w1, . . . , wt) and each
Nwiδ is the union of orbits of regular modules of C(P,L) with dimension vector wiδ.
Since all homogeneous regular modules of dimension vector wiδ of the affine quiver
are in C(P,L), by an argument similar to [R8, Cor.], Nwiδ is an irreducible variety.

Then by Proposition 6.5, Lemma 4.6 can be rewritten as follows:

Lemma 7.1. For any a ∈ NPrep
f and b ∈ NPrei

f , in C∗(Λ)A we have

ma = 〈M(a)〉+
∑

dimOc<dimOa

fa
cE

c,(i)

mb = 〈M(b)〉+
∑

dimOc<dimOb

gbcE
c,(ii)

where fa
c , g

b
c ∈ A and c ∈M.
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Remark. The conclusion of Lemma 7.1 is also true if we take M(a) to be finitely
many copies of an exceptional module.

Lemma 7.2. Let π ∈ Πa
i for some Ti. Then there exists a monomial mπ in the

divided powers of u[Si] (i ∈ I) such that

mπ = Eπ +
∑

dimOc<dimOπ

fπc E
c, where fπc ∈ A.

Proof. Let {θ1, . . . , θri} be a complete set of non-isomorphic quasi-simple modules
of Ti in the natural order (see Section 3). By Proposition 3.2, we then have, in
H∗q(Λ),

m(wπ) = Eπ +
∑

λ∈Πaα, λ≺π

v−dimM(π)+dim EndM(π)+dimM(λ)−dim EndM(λ)
q gλwπ (v2

q )Eλ,

where m(wπ) = θ
(∗e1)
j1

∗ · · · ∗ θ(∗et)
jt

. Since each θji is an exceptional module, we have
〈u[θjp ]〉(∗ep) = 〈epθjp〉 (see the proof in §4.2).

Let πjp ∈ Πa
i be such that M(πjp) = epθjp and dimM(πjp) = (d1, . . . , dn)

with I ordered as in §4.4. By Lemma 7.1 and the subsequent remark, we define a
monomial mjp such that

mjp = 〈S1〉(∗d1) ∗ · · · ∗ 〈Sn〉(∗dn) = 〈M(πjp)〉+
∑

dimOc<dimOM(πjp )

f
πjp
c Ec

where f
πjp
c ∈ Q[v, v−1].

Let L1 = e1θj1 , L2 = L1 �e2θj2 , . . . , Lt = Lt−1 �etθjt ∈ Ti. By Lemma 2.3(vi),
we have M(π) ' Lt. Similar to the argument as in §3.3, we have gLpLp−1,ejpθjp

= 1
for 2 ≤ p ≤ t. Define αp = dimLp−1 and βp = dimM(πjp). By Lemma 2.3(vi),

dimOLp = dimOLp−1 + dimOepθjp + m(αp, βp),

or
codimOLp = codimOLp−1 + codimOepθjp − 〈βp, αp〉.

Thus

dimOM(π) = dimOLt =
t∑

p=1

dimOepθjp +
t∑

p=2

m(αp, βp).

For any c ∈M with Oc ⊆ Eepθjp and dimOc < dimOepθjp , by Lemma 2.2,

codimOLp−1 ?Oc = codimOLp−1 + codimOc − 〈βp, αp〉+ r

> codimOLp−1 + codimOepθjp − 〈βp, αp〉 = codimOLp .
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If we take mπ = mπj1
∗ · · · ∗mπjt

, then

mπ =
(
〈θj1〉(∗e1) +

∑
dimOc1<dimOe1θj1

f
πj1
c1 Ec1

)
∗ · · · ∗

(
〈θjt〉(∗et) +

∑
dimOct<dimOetθjt

f
πjt
ct E

ct
)

=
(
〈M(πj1)〉+

∑
dimOc1<dimOe1θj1

f
πj1
c1 Ec1

)
∗ · · · ∗

(
〈M(πjt)〉+

∑
dimOct<dimOetθjt

f
πjt
ct E

ct
)

= Eπ +
∑

dimOc<dimOπ

fπc E
c, where fπc ∈ A.

Lemma 7.3. Let Enδ be the embedded image in C∗(Λ)A of the element EnδK in
C∗(K)A as in §6.1. Then there exists a monomial mnδ in the divided powers of
u[Si] (i ∈ I) such that

mnδ = Enδ +
∑

dimOc<dimOnδ

hnδc Ec, where hnδc ∈ A.

Proof. We let θ1, θ2 be the two simple objects of C(P,L). By Lemma 5.11(iii),

〈θ2〉(∗n) ∗ 〈θ1〉(∗n) = Enδ +
∑

dimOc<dimOnδ

fnδc Ec with fnδc ∈ Q[v, v−1].

Suppose that dimnθ1 = d′ = (d′1, . . . , d
′
n) and dimnθ2 = d′′ = (d′′1 , . . . , d

′′
n)

in ZI. Since θ1 and θ2 are exceptional modules, by the remark following Lemma 7.1,
we then have

m1 = 〈S1〉(∗d
′
1) ∗ · · · ∗ 〈Sn〉(∗d

′
n) = 〈θ1〉(∗n) +

∑
dimOc<dimOnθ1

fnθ1c Ec,

m2 = 〈S1〉(∗d
′′
1 ) ∗ · · · ∗ 〈Sn〉(∗d

′′
n) = 〈θ2〉(∗n) +

∑
dimOc<dimOnθ2

gnθ2c Ec,

where fnθ1c , gnθ2c ∈ Q[v, v−1]. By representations of the Kronecker quiver, we know
that Nnδ is open in Onθ2 ?Onθ1 . Moreover, Nnδ is open and so dense in Onθ2 ?Onθ1 ,
that is, Nnδ is an irreducible G-stable open subvariety of Onθ2 ? Onθ1 (of course
with maximal dimension). By Lemma 2.2, we then obtain

codimOnθ2 ?Onθ1 = codimOnθ2 + codimOnθ1 − 〈d′,d′′〉.
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If either Oc ⊂ Onθ2 \ Onθ2 or Oc′ ⊂ Onθ1 \ Onθ1 , then

codimOc ?Oc′ = codimOc + codimOc′ − 〈d′,d′′〉+ r

> codimOnθ2 ?Onθ1 = codimNnδ.

We now take mnδ = m2 ∗m1. Then

mnδ =
(
〈θ2〉(∗n) +

∑
dimOc<dimOnθ2

gnδc Ec
)
∗
(
〈θ1〉(∗n) +

∑
dimOc′<dimOnθ1

fnδc′ E
c′
)

= Enδ +
∑

dimOc<dimOnδ

hnδc Ec, where hnδc ∈ A.

Proposition 7.4. For any Ec, c ∈M, there exists a monomial mc in the divided
powers of u[Si], i ∈ I, such that

mc = Ec +
∑

c′∈M, dimOc′<dimOc

hc
c′E

c′ ,

where hc
c′ ∈ A.

Proof. Using the property of the Auslander–Reiten quiver of a tame quiver, if
P ∈ Prep, I ∈ Prei and R is a regular module, Lemma 2.3(vii) implies that
OP⊕R⊕I is open in OP ? OR ? OI . Thus we need to prove the same property for
Eπ ∗Enδ where π ∈ Πa

i . By Lemmas 7.2 and 7.3, there exist mπ and mnδ such that

mπ = Eπ +
∑

dimOc<dimOπ

fπc E
c, mnδ = Enδ +

∑
dimOc′<dimOnδ

gnδc′ E
c′ ,

where fnδc , gnδc′ ∈ A.
Since we can find smooth points A ∈ Oπ and B ∈ Onδ such that Hom(B,A)

= 0, by Lemma 2.2 we have

codimOπ ?Onδ = codimOπ + codimOnδ − 〈nδ, α〉.

If either Oc′ ⊂ Oπ \ Oπ or Oc′′ ⊂ Onδ \ Onδ, we have again

codimOc′ ?Oc′′ > codimOπ ?Onδ = codimOπ ?Onδ,

and

mc = mπ ∗mnδ

=
(
Eπ +

∑
dimOc′<dimOπ

fπc′E
c′
)
∗
(
Enδ +

∑
dimOc′′<dimOnδ

gnδc′′E
c′′
)

= Ec +
∑

c′′′∈M, dimOc′′′<dimOc

hc
c′′′E

c′′′ , where hc
c′ ∈ A.
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§7.2

We define the lattice L′ to be the Q[v−1]-submodule of C∗(Λ)A with the basis
{Ec | c ∈ M}. By an argument similar to that in [L1], we define ωc

c′ ∈ A such
that

Ec =
∑

c′∈M
ωc

c′E
c′ for any c ∈M.

Then ωc
c′ ∈ A, ωc

c = 1 and if ωc
c′ 6= 0 and c 6= c′ then dimOc′ < dimOc. Thus we

can solve for ζcc′ ∈ A the system of equations

ζcc′ =
∑

dimOc′≤dimOc′′≤dimOc

ωc′′

c′ ζ
c
c′′

to get a unique solution such that

ζcc = 1 and ζcc′ ∈ v−1Q[v−1] if dimOc′ < dimOc.

For each c ∈M, define
Ec =

∑
c′∈M

ζcc′E
c′ ,

which is a finite sum. Then we have the following result.

Theorem 7.5 The set J = {Ec | c ∈ M} is an A-basis of C∗(Λ)A with the two
properties:

(i) Ec = Ec for all c ∈M,

(ii) π(Ec) = π(Ec),

where π : L′ → L′/v−1L′ is the canonical projection.

Proof. (i) We have

Ec =
∑
c′

ζcc′ E
c′ =

∑
c′

ζcc′
∑
c′′

ωc′

c′′E
c′′ =

∑
c′′

(∑
c′

ζcc′ω
c′

c′′

)
Ec′′ =

∑
c′′

ζcc′′E
c′′ = Ec.

So the elements Ec are bar-invariant.
(ii) Obviously the set J is a Q[v−1]-basis of the lattice L′.

§8. Affine canonical bases

Recall that Λ = kQ and k = Fq is a finite field. For any Λ-module M and any
field extension k ⊆ K, we view MK = M ⊗k K as a KQ-module. For any regular
Λ-modules M, . . . ,Mt and L, it is known that there exists the Hall polynomial
ϕLM1···Mt

∈ Q[T ] such that ϕLM1···Mt
(qn) = gL

K

MK
1 ,...,MK

t
for any finite extension
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k ⊆ K of degree n ([R2], [Z2]). Similarly, we have a polynomial aM such that
aM (qn) = |AutKQ(MK)|. Therefore, we will perform computations in the Hall
algebra Hq(Λ) and then use the argument as in §1.4 to get a generic form.

§8.1

The Ringel–Hall algebra H∗q(Λ) is an associative Q(vq)-algebra with the basis

{〈M〉 | M ∈ P}. Note that 〈M〉 = v
−dimM+dim EndΛ(M)
q u[M ]. An inner product

(−,−)q on H∗q(Λ) is defined in [G] by

(8.1) (〈M〉, 〈N〉)q = δM,N

v2 dim EndM
q

aM
,

where aM = |Aut(M)|. Following Green [G] and Ringel [R1], we can define a linear
map rq : H∗q(Λ)→ H∗q(Λ)⊗Q(vq) H∗q(Λ) by

rq(u[L]) =
∑

[M ],[N ]

v〈dimM,dimN〉
q gLM,N

aMaM
aL

uM ⊗ uN .(8.2)

We have the following property:

(8.3) (x, y ∗ z)q = (rq(x), y ⊗ z)q for any x, y, z ∈ H∗q(Λ).

Using the fact that Ext(P,R) = Ext(R, I) = Ext(P, I) = 0 for P , R, and I

being preprojective, regular, and preinjective respectively, a direct computation
shows

Proposition 8.1. For any preprojective Λ-modules P, P ′ ∈ P, regular Λ-modules
R,R′ ∈ P and preinjective Λ-modules I, I ′ ∈ P, we have, in H∗q(Λ),

(〈P 〉 ∗ 〈R〉 ∗ 〈I〉, 〈P ′〉 ∗ 〈R′〉 ∗ 〈I ′〉)q = δPP ′δRR′δII′
v

2(dim EndP+dim EndR+dim End I)
q

aPaRaI
.

Using the argument of §1.4, the linear maps rq induce a Z-linear map r :
C∗(Λ)Z → C∗(Λ)Z ⊗Z C∗(Λ)Z , and the bilinear maps (−,−)q define a Z-bilinear
form (−,−) : C∗(Λ)Z ⊗Z C∗(Λ)Z → Z. The form (−,−) coincides with the paring
defined by Lusztig [L5] under the isomorphism C∗(Λ)Z ∼= U+

Z . This can be easily
verified by comparing the values on simple objects (Chevalley generators) and by
using (8.3).

§8.2

Now we calculate the inner product on elements in the PBW basis {Ec | c ∈M}.
For the Kronecker quiver, it follows from Section 5 (after taking the generic form)
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that, in C∗(Λ)Z ,

Ẽnδ = E(n−1,n) ∗ E1 − v−2E1 ∗ E(n−1,n),

E0δ = 1, Enδ =
1

[n]

n∑
s=1

vs−nẼsδ ∗ E(n−s)δ.

Using the calculations in [BCP], Enδ corresponds to the complete symmetric func-
tion h(n) in [M] and Eωcδ corresponds to the complete symmetric functions hωc in
[M] (see Sections 1 and 3 in [BCP]). Then

(Enδ, Enδ) ≡ 1 (mod v−1Q[[v−1]] ∩Q(v)),

(Enδ, Eωcδ) ∈ N∗ + v−1Q[[v−1]] ∩Q(v),

(Eωcδ, Eωcδ) ∈ N∗ + v−1Q[[v−1]] ∩Q(v),

for any n ≥ 0 and any partition ωc of n.
Let F : H∗q(K) → H∗q(Λ) be the embedding and C(P,L) be the full subcate-

gory of mod Λ with two relative simple objects θ1, θ2 as in §6.1. We denote by C0

(resp. C1) the full subcategory of C(P,L) consisting of the Λ-modules which be-
long to homogeneous (resp. non-homogeneous) tubes of mod Λ. We will use iso C0

and iso C1 to denote the isomorphism classes of objects in C0 and C1 respectively.
Note that the classes of indecomposable objects in C1 do not depend on q, while
the classes of indecomposable objects in C0 do depend on q. By the definition of
the inner product in §8.1, this embedding preserves the inner products. Recall the
definition of Enδ ∈ H∗q(Λ) which is the image of Enδ ∈ H∗q(K). Now in H∗q(Λ) we
have the decomposition

Enδ = Enδ,1 + Enδ,2 + Enδ,3

with

Enδ,1 = v−n dim θ1−n dim θ2
q

∑
[M ]∈iso C1, dimM=nδ

u[M ],

Enδ,2 = v−n dim θ1−n dim θ2
q

∑
dim(M0+M1)=nδ

[0]6=[M1]∈iso C1, [0]6=[M0]∈iso C0

u[M0⊕M1],

Enδ,3 = v−n dim θ1−n dim θ2
q

∑
[M ]∈iso C0, dimM=nδ

u[M ].

Note that dim θi (i = 1, 2) is independent of q. It is easy to see that (Enδ,i, Enδ,j)q
= 0 for all i 6= j. Although in the decomposition above, Enδ,i varies for i = 2, 3 as
q varies (the number of terms will change) we still use Enδ,i to denote (Enδ,i) in∏
qH∗q(Λ).
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In the rest of this section we will use the following facts frequently.

Lemma 8.2.1. Let M be a regular module with dimM = nδ, and M =
⊕s

i=1Mi

with Mi ∈ Ti for i = 1, . . . , s. Then dimMi = niδ and
∑s
i=1 ni = n.

Proof. Assume M = M1 ⊕M ′1 is a direct sum decomposition with M1 ∈ T1 and
M ′1 having no direct summand in T1. If dimM1 = m1δ + β1 with β1 6∈ Nδ and
dimM ′1 = m′1δ+ β′1 with β′1 6∈ Nδ, then β1 + β′1 ∈ Nδ. Since 0 = (m1δ+ β1,m

′
1δ+

β′1) = (β1, β
′
1) = (mδ − β′1, β

′
1) = −(β′1, β

′
1), we get β′1 = kδ, k ∈ N. This is a

contradiction. Now the lemma follows by induction on s.

Lemma 8.2.2. The following relations hold in C∗(Λ)A:

(Enδ,1, Enδ,1)≡ 0 (mod v−1Q[[v−1]] ∩Q(v)),

(Enδ,2, Enδ,2)≡ 0 (mod v−1Q[[v−1]] ∩Q(v)),

(Enδ,3, Enδ,3)≡ 1 (mod v−1Q[[v−1]] ∩Q(v)).

Proof. We first work over finite fields Fq and then pass to the generic form. Note
that u[M ] = vdimM−dim EndM

q 〈M〉 and dimM = n(dim θ1 + dim θ2). Then

Enδ,1 =
∑

[M ]∈iso C1,dimM=nδ

v−dim EndM
q 〈M〉.

By Proposition 8.1 we have

(Enδ,1, Enδ,1)q =
∑

M∈iso(C1), dimM=nδ

v−2 dim EndM
q (〈M〉, 〈M〉)q.

Note that (〈M〉, 〈M〉)q = |EndM |/aM ∈ Q[[v−1
q ]] ∩Q(vq), |EndM | = v2 dim EndM

q

and aM is a polynomial in vq with leading term v2 dim EndM
q (here dim EndM is

invariant as q varies). Then

(〈M〉, 〈M〉)q ∈ 1 + v−1
q Q[[v−1

q ]] ∩Q(vq)

and
(Enδ,1, Enδ,1)q ∈ v−1

q Q[[v−1
q ]] ∩Q(vq).

We now use induction on n. Obviously, the relations of the lemma hold for
n = 1. We assume now that they are also true for all m with m < n. Since

Enδ,2 = v−n dim θ1−n dim θ2
q

∑
06=[M1]∈iso C1, 06=[M0]∈iso C0

dim(M0⊕M1)=nδ

u[M0⊕M1](8.4)

=
∑

[M1]∈iso C1
dimM1=mδ, 0<m<n

v−dim EndM1
q 〈M1〉 ∗ E(n−m)δ,3
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(noting that 0 < n−m < n), we have

(Enδ,2, Enδ,2)q

=
∑

[M1]∈iso C1
dimM1=mδ, 0<m<n

v−2 dim EndM1
q (〈M1〉, 〈M1〉)q(E(nδ−dimM1),3, E(nδ−dimM1),3)q.

Since dim EndM1 ≥ 1 and, by the inductive assumption, (Emδ,3, Emδ,3)q ≡ 1, we
have

(Enδ,2, Enδ,2)q ≡ 0 (mod v−1
q Q[[v−1

q ]] ∩Q(vq))

for all n > 0. Since

(Enδ, Enδ)q ≡ 1 (mod v−1
q Q[[v−1

q ]] ∩Q(vq))

and
(Enδ, Enδ)q = (Enδ,1, Enδ,1)q + (Enδ,2, Enδ,2)q + (Enδ,3, Enδ,3)q,

using the results proved for Enδ,1 and Enδ,2 we have

(Enδ,3, Enδ,3)q ≡ 1 (mod v−1
q Q[[v−1

q ]] ∩Q(vq)).

Now the desired relations hold for all n and q. By taking the inner product in∏
qH∗q(Λ), the generic form of the lemma follows.

§8.3

In the following, we will define a decomposition of the regular part of C∗(Λ)A with
respect to the inner product (−,−).

In Section 6, we have constructed the Q(v)-basis {Ec | c ∈M} of C∗(Λ)Q(v).

Let R(C∗(Λ)) be the Q(v)-subspace of C∗(Λ)Q(v) with the basis

{Eπ1c ∗· · ·∗Eπsc ∗Ewcδ | πc = (π1c, . . . , πsc) ∈ Πa
1×· · ·×Πa

s and wc is a partition}.

Obviously, R(C∗(Λ)) is a subalgebra of C∗(Λ). Naturally, we take Ewcδ = 1 if
wc = 0.

Let Ra(C∗(Λ)) be the Q(v)-subalgebra of R(C∗(Λ)) generated by the basis

{Eπ1c ∗ · · · ∗ Eπsc | πc = (π1c, . . . , πsc) ∈ Πa
1 × · · · ×Πa

s}.

For α, β ∈ N[I], we write α ≤ β if β − α ∈ N[I]. Recall that C∗(Λ)β is the
β-homogeneous part of the NI-graded algebra. It follows that Ra(C∗(Λ))β =
R(C∗(Λ))β for β < δ. We now define

Fδ = {x ∈ R(C∗(Λ))δ | (x,Ra(C∗(Λ))δ) = 0}.
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By Proposition 8.1, (−,−) is non-degenerate on R(C∗(Λ)). Using Lemma
8.2.1, we get

R(C∗(Λ))δ = Ra(C∗(Λ))δ ⊕Fδ and dimFδ = 1.

Using Schmidt orthogonalization, we set

E′δ = Eδ −
∑

M(πic), dimM(πic)=δ, 1≤i≤s

aπicEπic

satisfying the condition Fδ = Q(v)E′δ. Now let R(C∗(Λ))(1) be the subalgebra of
R(C∗(Λ)) generated by Ra(C∗(Λ)) and Fδ. We have R(C∗(Λ))(1)β = R(C∗(Λ))β
if β < 2δ. Define

F2δ = {x ∈ R(C∗(Λ))2δ | (x,R(C∗(Λ))(1)2δ) = 0}.

Then dimF2δ = 1 and R(C∗(Λ))2δ = R(C∗(Λ))(1)2δ ⊕F2δ. Recursively, we define

Fnδ = {x ∈ R(C∗(Λ))nδ | (x,R(C∗(Λ))(n− 1)nδ) = 0}

and R(C∗(Λ))(n) to be the subalgebra of R(C∗(Λ)) generated by R(C∗(Λ))(n− 1)
and Fnδ. We have R(C∗(Λ))nδ = R(C∗(Λ))(n−1)nδ⊕Fnδ with dimFnδ = 1. Also,
we can choose E′nδ such that Enδ −E′nδ ∈ R(C∗(Λ))(n− 1)nδ and Fnδ = Q(v)E′nδ
for all n > 0.

Lemma 8.3.1. Let M,N,L be regular Λ-modules with dimM, dimN, dimL ∈
Nδ. Then the degree of the Hall polynomial ϕLMN is no more than dim EndL −
(dim EndM + dim EndN).

Proof. By the remark at the beginning of Section 8, we have the Hall poly-
nomial ϕLMN for gLMN , and the polynomials for aM , aN , aL, and |Hom(M,N)|.
Therefore, we have a rational function, denoted by f, such that f(qe) =
|Ext1(M ⊗Fq Fqe , N ⊗Fq Fqe)L⊗FqFqe | for all e ≥ 1. Since f(qe) is an integer for all
e ≥ 1, f is a polynomial with coefficients in Q. Since 〈dimM, dimN〉 = 0, we have
dim Ext1(M,N) = dim Hom(M,N). The degree of the polynomial f is no more
than dim Ext1(M,N). Thus,

degϕLMN ≤ deg aL − (deg aM + deg aN ).

It is also known that deg aX = dimk EndX for any Λ-module X. This completes
the proof.
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Let wc = (w1, . . . , wt) be a partition of n. Then

Ewcδ = Ew1δ∗· · ·∗Ewtδ = (Ew1δ,1+Ew1δ,2+Ew1δ,3)∗· · ·∗(Ewtδ,1+Ewtδ,2+Ewtδ,3).

We set Ewcδ,3 = Ew1δ,3 ∗ · · · ∗ Ewtδ,3.

Lemma 8.3.2. Let wc be a partition of n. Then

(Enδ, Ewcδ) ≡ (Enδ,3, Ewcδ,3) (mod v−1Q[[v−1]] ∩Q(v)).

Proof. We use induction on n. When n = 1, the result follows from Lemma 8.2.2.
Suppose

(Emδ, Ew′cδ) ≡ (Emδ,3, Ew′cδ,3) (mod v−1Q[[v−1]] ∩Q(v))

for all partitions w′c of m with m < n. Let wc be a partition of n. Since Ekδ =
Ekδ,1 + Ekδ,2 + Ekδ,3 for any k ∈ N, we have, in H∗q(Λ),

Ewcδ = (Ew1δ,1 + Ew1δ,2 + Ew1δ,3) ∗ · · · ∗ (Ewtδ,1 + Ewtδ,2 + Ewtδ,3)

=Ew1δ,1 ∗ · · · ∗ Ewtδ,1 + Ew1δ,3 ∗ · · · ∗ Ewtδ,3 + rest.

Here

Ew1δ,1 ∗ · · · ∗ Ewtδ,1

=
(
v−w1 dim θ1−w1 dim θ2
q

∑
[M1]∈iso C1

dimM1=w1δ

u[M1]

)

∗ · · · ∗
(
v−wt dim θ1−wt dim θ2
q

∑
[Mt]∈iso C1
dimMt=wtδ

u[Mt]

)

= v−n dim θ1−n dim θ2
q

∑
[M1]∈iso C1,...,[Mt]∈iso C1

dimM1=w1δ,...,dimMt=wtδ

∑
[L]∈iso C1

ϕLM1···Mt
(v2
q )u[L]

=
∑

[M1]∈iso C1,...,[Mt]∈iso C1
dimM1=w1δ,...,dimMt=wtδ

∑
[L]∈iso C1, dimL=nδ

v−dim EndL
q ϕLM1···Mt

(v2
q )〈L〉.

Using formula (8.3) (in §8.1) for the expression of Ekδ,2 in the proof of Lemma 8.2.2,
we have

rest =
∑

[Mi1 ],...,[Mit ]∈iso C1Pt
j=1 dimMij

=lδ, l<n

∑
[M ], w′c; 0 6=M∈C1

|(w′c)|+l=n

v−dim EndM
q ϕMMi1 ···Mit

(v2
q )〈M〉 ∗ Ew′cδ, 3.
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By applying the above expansion of Ewcδ to (Enδ, Ewcδ), and by (8.3) (in §8.1)
and Lemma 8.3.1, and by applying the genericalization process of §1.4, we have,
in C∗(Λ)A,

(Enδ, Ewcδ) ≡ (Enδ,3, Ewcδ,3) (mod v−1Q[[v−1]] ∩Q(v)).

Lemma 8.3.3. Assume m+ n = s+ t, m ≥ n ≥ 0, s ≥ t ≥ 0. Then:

(i) If m 6= s or n 6= t, then (E′mδ ∗ E′nδ, E′sδ ∗ E′tδ) = 0.

(ii) (E′sδ ∗ E′tδ, E′sδ ∗ E′tδ) = (E′sδ, E
′
sδ)(E

′
tδ, E

′
tδ).

(iii) (E′sδ ∗ E′tδ, E′tδ ∗ E′sδ) = (E′sδ, E
′
sδ)(E

′
tδ, E

′
tδ).

(iv) ((E′mδ)
∗n, (E′mδ)

∗n) = n!(E′mδ, E
′
mδ)

n.

Proof. We remark that if 0 → R → M → I → 0 is exact for a non-zero regular
module R and a non-zero preinjective module I, then M contains a non-zero
preinjective direct summand and no non-zero preprojective summand. Dually, if
0 → P → N → R → 0 is exact for a preprojective module P and a regular
module R, then N contains a non-zero preprojective direct summand and no non-
zero preinjective summand.

Since R(C∗(Λ))kδ = R(C∗(Λ))(k − 1)kδ ⊕Q(v)E′kδ, we have

(8.5) r(E′kδ) = E′kδ ⊗ 1 + 1⊗ E′kδ +
∑
i

aki ⊗ bki +
∑
i

xki ∗ 〈Iki〉 ⊗ 〈Pki〉 ∗ yki,

where aki, bki, xki, yki ∈
⋃
j<kR(C∗(Λ))(j) and Iki and Pki are respectively non-

zero preinjective modules and non-zero preprojective modules.
We may assume that s ≥ m; then n ≥ t. Since

(E′mδ ∗E′nδ, E′sδ ∗E′tδ) = (r(E′mδ ∗E′nδ), E′sδ⊗E′tδ) = (r(E′mδ) ∗ r(E′nδ), E′sδ⊗E′tδ),

by the above formula for r(E′kδ) and the above remark, we have

(E′mδ ∗ E′nδ, E′sδ ∗ E′tδ) =
((
E′mδ ⊗ 1 + 1⊗ E′mδ +

∑
i

ami ⊗ bmi
)

∗
(
E′nδ ⊗ 1 + 1⊗ E′nδ +

∑
i

ani ⊗ bni
)
, E′sδ ⊗ E′tδ

)
.

If s > m, it is easy to compute that the right hand side vanishes. If s = m >

t = n, it is easy to see that the left side of the above identity is equal to
(E′sδ, E

′
sδ)(E

′
tδ, E

′
tδ). If s = t = m = n, it is equal to 2(E′sδ, E

′
sδ)

2. In general,
we have ((E′sδ)

∗l, (E′sδ)
∗l) = l!(E′sδ, E

′
sδ)

l for l ≥ 0.
Similarly, we can prove that (E′sδ ∗ E′tδ, E′tδ ∗ E′sδ) = (E′sδ, E

′
sδ)(E

′
tδ, E

′
tδ) for

s > t.
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Corollary 8.3.4. For mi, ni ∈ N (i = 1, . . . , t) satisfying m1 > · · · > mt and
li, ki ∈ N (i = 1, . . . , j) satisfying l1 > · · · > lj , we have

((E′m1δ)
∗n1 ∗ · · · ∗ (E′mtδ)

∗nt , (E′l1δ)
∗k1 ∗ · · · ∗ (E′ljδ)

∗kj )

= ((E′m1δ)
∗n1 , (E′m1δ)

∗n1) · · · ((E′mtδ)
∗nt , (E′mtδ)

∗nt)

if t = j, mi = li, and ni = ki for all i = 1, . . . , t, and

((E′m1δ)
∗n1 ∗ · · · ∗ (E′mtδ)

∗nt , (E′l1δ)
∗k1 ∗ · · · ∗ (E′ljδ)

∗kj ) = 0

otherwise.

For a partition w = (w1 ≥ · · · ≥ wt), we define

E′wδ = E′w1δ ∗ · · · ∗ E
′
wtδ.

Lemma 8.3.5. Let {Eπ | π ∈ Πa
i } be the Z-basis of C∗(Ti)Z defined in §7.3. Then

(Eπ ∗ E′mδ, Eπ′ ∗ E′nδ) = δmn(Eπ, Eπ′)(E′mδ, E
′
nδ), (Eπ, E′wδ) = 0.

Proof. We may assume that m ≤ n. Note that

r(Eπ) = Eπ ⊗ 1 + 1⊗ Eπ +
∑
π1,π2

cπ1,π2Eπ1 ⊗ Eπ2

+
∑
π1,π2

dπ1,π2Eπ1 ∗ 〈Iπ1,π2〉 ⊗ 〈Pπ1,π2〉 ∗ Eπ2 ,

where cπ1,π2 , dπ1,π2 ∈ Z, M(π),M(π1),M(π2) are in Ti, and Iπ1,π2 and Pπ1,π2 are
respectively non-zero preinjective and non-zero preprojective modules. Recall that

r(E′mδ) = E′mδ ⊗ 1 + 1⊗ E′mδ +
∑
i

ami ⊗ bmi +
∑
i

xmi ∗ 〈Imi〉 ⊗ 〈Pmi〉 ∗ ymi,

where ami, bmi, xmi, ymi ∈
⋃
j<mR(C∗(Λ))(j) and Imi and Pmi are respectively

non-zero preinjective and non-zero preprojective modules. The same calculation
as in the proof of Lemma 8.3.3 tells us that

(Eπ ∗ E′mδ, Eπ′ ∗ E′nδ) = δmn(Eπ, Eπ′)(E′mδ, E
′
nδ).

The identities now follow from the definition of E′wδ.

By Proposition 6.2, the set {〈M(ac)〉 ∗ Eπ1c ∗ · · · ∗ Eπsc ∗ Ewcδ ∗ 〈M(bc)〉} is
a Q(v)-basis of C∗(Λ)Q(v). In the same way, we obtain
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Lemma 8.3.6. The following equalities hold:

(i) (〈M(ac)〉 ∗ Eπ2c ∗ · · · ∗ Eπsc , E′wc′δ
) = 0 for ac 6= 0 and partition wc′ 6= 0.

(ii) (Eπ, Eπ1c ∗ · · · ∗ Eπsc ∗ E′wcδ
) = 0 for wc 6= 0.

(iii) (Eπ1c ∗ · · · ∗ Eπsc , Eπ1c′ ∗ · · · ∗ Eπsc′ ∗ E
′
wc′δ

) = 0 for wc′ 6= 0.

Based on Lemmas 8.3.5 and 8.3.6, we obtain

Lemma 8.3.7. The following holds:

(Eπic ∗ E′wcδ, Eπjc′ ∗ E
′
wc′δ

) = (Eπic , Eπjc′ )(E
′
wcδ, E

′
wc′δ

), 1 ≤ i, j ≤ s.

Proof. For a fixed i, we have

r(Eπic) = Eπic ⊗ 1 + 1⊗ Eπic
+
∑
π1,π2

cπ1,π2Eπ1 ⊗ Eπ2 +
∑
π1,π2

dπ1,π2Eπ1 ∗ 〈Iπ1,π2〉 ⊗ 〈Pπ1,π2〉 ∗ Eπ2 ,

where cπ1,π2 , dπ1,π2 ∈ Z, M(π),M(π1),M(π2) are in Ti, and Iπ1,π2 and Pπ1,π2 are
respectively non-zero preinjective and non-zero preprojective modules. Let

r0(Eπic) = Eπic ⊗ 1 + 1⊗ Eπic +
∑
π1,π2

cπ1,π2Eπ1 ⊗ Eπ2 ,

r1(Eπic) = Eπic ⊗ 1 + 1⊗ Eπic .

Also for wc = (w1, . . . , wt),

r(E′wcδ) = r(E′w1δ) ∗ · · · ∗ r(E
′
wtδ)

=
(
E′w1δ ⊗ 1 + 1⊗ E′w1δ +

∑
i

aw1i ⊗ bw1i +
∑
i

xw1i ∗ 〈Iw1i〉 ⊗ 〈Pw1i〉 ∗ yw1i

)
∗ · · · ∗

(
E′wtδ ⊗ 1 + 1⊗ E′wtδ +

∑
i

awti ⊗ bwti +
∑
i

xwti ∗ 〈Iwti〉 ⊗ 〈Pwti〉 ∗ ywti
)
.

Let

r0(E′wcδ) =
(
E′w1δ ⊗ 1 + 1⊗ E′w1δ +

∑
i

aw1i ⊗ bw1i

)
∗ · · · ∗

(
E′wtδ ⊗ 1 + 1⊗ E′wtδ +

∑
i

awti ⊗ bwti
)
,

r1(E′wcδ) = (E′w1δ ⊗ 1 + 1⊗ E′w1δ) ∗ · · · ∗ (E′wtδ ⊗ 1 + 1⊗ E′wtδ),

It is clear that

(Eπic ∗ E′wcδ, Eπjc′ ∗ E
′
wc′δ

) = (r(Eπic) ∗ r(E′wcδ), Eπjc′ ⊗ E
′
wc′δ

)

= (r0(Eπic) ∗ r0(E′wcδ), Eπjc′ ⊗ E
′
wc′δ

).
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Using Lemmas 8.3.5 and 8.3.6, induction on the length of the partition wc′δ shows
that

(r0(Eπic) ∗ r0(E′wcδ), Eπjc′ ⊗ E
′
wc′δ

) = (r1(Eπic) ∗ r1(E′wcδ), Eπjc′ ⊗ E
′
wc′δ

)

= ((Eπic ⊗ 1 + 1⊗ Eπic) ∗ (E′wcδ
⊗ 1 + 1⊗ E′wcδ

), Eπjc′ ⊗ E
′
wc′δ

)

= (Eπic , Eπjc′ )(E
′
wcδ, E

′
wc′δ

).

Theorem 8.3.8. With the same notation as above,

(Eπ1c ∗ · · · ∗ Eπsc ∗ E′wcδ, Eπ1c′ ∗ · · · ∗ Eπsc′ ∗ E
′
wc′δ

)

= (Eπ1c , Eπ1c′ )(Eπsc , Eπsc′ ) · · · (E
′
wcδ, E

′
wc′δ

).

§8.4

In this subsection, we construct the canonical basis. Let IT be the union of the
sets of the isomorphism classes of indecomposable objects in the non-homogeneous
tubes T1, . . . , Ts, and add(IT ) be the set of objects that are isomorphic to direct
sums of objects in IT .

Theorem 8.3.8 and Corollary 8.3.4 imply that (E′nδ ∗E′mδ−E′mδ ∗E′nδ, x) = 0
for all x ∈ R(C∗(Λ)). Thus E′nδ ∗E′mδ = E′mδ ∗E′nδ by the non-degeneracy of (−,−)
on R(C∗(Λ)).

Lemma 8.4.1. Assume
∑s
i=1 dimM(πic) + |wc|δ = nδ. Then:

(i) (Enδ, Eπ1c ∗ · · · ∗ Eπsc ∗ Ewcδ) ∈ Q[[v−1]] ∩Q(v);

(ii) if |wc|δ < nδ, then (Enδ, Eπ1c ∗ · · · ∗ Eπsc ∗ Ewcδ) ∈ v−1Q[[v−1]] ∩Q(v);

(iii) (Eπ1c ∗ · · · ∗Eπsc ∗Ewcδ, Eπ1c ∗ · · · ∗Eπsc ∗Ewcδ) ∈ vh(N +v−1Q[[v−1]]∩Q(v))
for some h ≥ 0.

Proof. By the proof of Lemma 8.3.2, we have

Ewcδ = Ew1δ,1 ∗ · · · ∗ Ewtδ,1 + Ew1δ,3 ∗ · · · ∗ Ewtδ,3 + rest,

where, in H∗q(Λ),

Ew1δ,1 ∗ · · · ∗ Ewtδ,1 =
∑

[M1]∈iso C1,...,[Mt]∈iso C1
dimM1=w1δ,...,dimMt=wtδ

∑
[L]∈C1

v−dim EndL
q ϕLM1···Mt

(v2
q )〈L〉

and

rest =
∑

[Mi1 ],...,[Mit ]∈iso C1Pt
j=1 dimMij

=lδ, l<n

∑
[M ], w′c: 0 6=M∈C1

1≤|w′c|<|wc|

v−dim EndM
q ϕMMi1 ···Mit

(v2
q )〈M〉 ∗ Ew′cδ,3.
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If M(πic) = 0 for all 1 ≤ i ≤ s, then both (i) and (iii) are true using the
property of complete symmetric functions with respect to the bilinear form (−,−)
(see §8.2).

Suppose M(πic) 6= 0 for some i. By [DDX],

Eπic = 〈M(πic)〉+
∑

λ∈Πi\Πai , λ≺πic

ηπicλ 〈M(λ)〉, where ηπicλ ∈ v−1Z[v−1].

Then

Eπ1c ∗ · · · ∗ Eπsc =
〈 s⊕
i=1

M(πic)
〉

+
∑

N∈iso add{IT }

ηN 〈N〉,

where ηN ∈ v−1Z[v−1]. Then multiplying them in H∗q(Λ) we have

Eπ1c ∗ · · · ∗ Eπsc ∗ Ew1δ,1 ∗ · · · ∗ Ewtδ,1

=
∑

[M1]∈iso C1,...,[Mt]∈iso C1
dimM1=w1δ,...,dimMt=wtδ

∑
[L]∈C1

v−dim EndL
q ϕLM1···Mt

(v2
q )
〈 s⊕
i=1

M(πic)
〉
∗ 〈L〉

+
∑

[M1]∈iso C1,...,[Mt]∈iso C1
dimM1=w1δ,...,dimMt=wtδ

∑
[N ]∈iso add(IT )

[L]∈C1

v−dim EndL
q ϕLM1···Mt

(v2
q )ηN 〈N〉 ∗ 〈L〉.

Here,

〈 s⊕
i=1

M(πic)
〉
∗ 〈L〉

=
∑
[U ]

v
dim End

Ls
i=1 M(πic)+dim EndL−dim EndU

q ϕULs
i=1 M(πic),L(v2

q )〈U〉

and

〈N〉 ∗ 〈L〉 =
∑
[V ]

vdim EndN+dim EndL−dim EndV ϕVNL(v2)〈V 〉.

By Lemma 8.3.1, we know

degq ϕ
ULs
i=1 M(πic),L ≤ dim EndU −

(
dim EndL+ dim End

s⊕
i=1

M(πic)
)
,

degq ϕ
L
M1···Mt

≤ dim EndL−
t∑
i=1

dim EndMi,

degq ϕ
V
NL ≤ dim EndV − (dim EndN + dim EndL).
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Hence,

Eπ1c ∗ · · · ∗ Eπsc ∗ Ew1δ,1 ∗ · · · ∗ Ewtδ,1

=
∑

0 6=[U ]∈iso add(IT )

v
dim EndU−dim End

Ls
i=1 M(πic)−2

P
i dim EndMi

q fU (v−1
q )〈U〉

+
∑

06=[V ]∈iso add(IT )

v
dim EndV−dim EndN−2

P
i dim EndMi

q fV (v−1
q )〈V 〉,

where fU (v−1), fV (v−1) ∈ Q[v−1]. In general,

Eπ1c ∗ · · · ∗ Eπsc ∗ Ewcδ

=
∑

06=[L]∈iso add(IT )

fL〈L〉+
∑

06=[M ]∈iso add(IT )
1≤|w′c|<|wc|

fM 〈M〉 ∗ Ew′cδ,3

+ 〈M(π1c)⊕ · · · ⊕M(πsc)〉 ∗ Ewcδ,3 +
∑

[0]6=[N ]∈iso add(IT )

fN 〈N〉 ∗ Ewcδ,3,

where v−dim EndLfL, v
−dim EndMfM , fN ∈ v−1Q[v−1].

Using the expressions of Enδ,1, Enδ,2, Enδ,3, it is easy to check that (after
computation for each q and then taking the genericalization)

(Enδ, Eπ1c ∗ · · · ∗ Eπsc ∗ Ewcδ) ∈ v−1Q[[v−1]] ∩Q(v).

Then conclusion (ii) follows.
By Lemma 8.3.2 and the property of complete symmetric functions, we have

(〈M(π1c)⊕ · · · ⊕M(πsc)〉 ∗ Ewcδ,3, 〈M(π1c)⊕ · · · ⊕M(πsc)〉 ∗ Ewcδ,3)

∈ N∗ + v−1Q[[v−1]] ∩Q(v).

Thus

(Eπ1c ∗ · · · ∗ Eπsc ∗ Ewcδ, Eπ1c ∗ · · · ∗ Eπsc ∗ Ewcδ) ∈ vh(N + v−1Q[[v−1]] ∩Q(v))

for some h ≥ 0. Thus (iii) is proved.

Using [L5], the lattice L′ defined in §7.2 is the Q[v−1]-submodule of C∗(Λ)A
characterized by

L′ = {x ∈ C∗(Λ) | (x, x) ∈ Q[[v−1]] ∩Q(v)}.

Lemma 8.4.2. We haveE′nδ ∈ L′ and (E′nδ, E
′
nδ) ≡ 1/n (mod v−1Q[[v−1]]∩Q(v)).
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Proof. We know that {Eπic | dimM(πic) = δ, 1 ≤ i ≤ s} is a basis of Ra(C∗(Λ))δ.
Via Schmidt orthogonalization, we define E′πic to be the orthogonal element cor-
responding to Eπic for i = 1, . . . , s. We use induction on n.

For n = 1, it is easy to see that (E′π, E
′
π) ≡ 1 and (Eδ, E′π) ≡ 0

(mod v−1Q[[v−1]] ∩Q(v)). Thus

E′δ = Eδ −
∑
π

(Eδ, E′π)
(E′π, E′π)

E′π.

Hence, (E′δ, E
′
δ) ≡ 1 (mod v−1Q[[v−1]] ∩Q(v))).

Now suppose (E′mδ, E
′
mδ) ≡ 1/m (mod v−1Q[[v−1]] ∩Q(v)) for all m < n. By

the definition of E′nδ, the set

{E′nδ} ∪
{
Eπ1c ∗ · · · ∗ Eπsc ∗ E′wcδ

∣∣∣ ∑
1≤i≤s

dimM(πic) + |wc|δ = nδ and |wc| < n
}

is a basis of R(C∗(Λ))nδ.
By Theorem 8.3.8 and the induction hypothesis, {Eπ1c ∗· · ·∗Eπsc ∗E′wcδ

, Enδ}
⊂ L′. Similar to Lemma 8.4.1, we get (Enδ, Eπ1c ∗· · ·∗Eπsc ∗E′wcδ

) ∈ v−1Q[[v−1]]∩
Q(v) if there exists i such that M(πic) 6= 0. Thus

E′nδ ≡ Enδ −
∑

wc`n,wc 6=(n)

(Enδ, E′wcδ
)

(E′wcδ
, E′wcδ

)
E′wcδ (mod v−1L′).

First of all, (E′nδ, E
′
nδ) = (Enδ, E′nδ) since (E′nδ, E

′
wcδ

) = 0 if wc 6= (n). We now
claim that

(8.6) (Enδ, E′wcδ) = (E′w1
, E′w1

)k1 · · · (E′wt , E
′
wt)

kt

if wc = (wk1
1 , . . . , wktt ), w1 > · · · > wt. Note that

r(Enδ) =
∑

0≤i≤n

Eiδ ⊗ E(n−i)δ + rest.

Let r0(Enδ) =
∑

0≤i≤nEiδ ⊗ E(n−i)δ and w′c = (wk1−1
1 , wk2

2 , . . . , wktt ). Then

(Enδ, E′wcδ) = (r(Enδ), E′w1δ ⊗ E
′
w′cδ

) = (r0(Enδ), E′w1δ ⊗ E
′
w′cδ

).

Based on the definition of E′w1δ
and Theorem 8.3.8, we have

(Enδ, E′wcδ) = (Ew1δ, E
′
w1δ)(E(n−w1)δ, E

′
w′cδ

).

Now (8.6) follows by induction on the length of the partition wc.
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On the other hand, Lemma 8.3.3(iv) and Corollary 8.3.4 imply

(8.7) (E′wcδ, E
′
wcδ) = k1!(E′w1δ, E

′
w1δ)

k1 · · · kt!(E′wtδ, E
′
wtδ)

kt .

Using (8.7) and (8.6) we have

(E′nδ, E
′
nδ)≡ (Enδ, Enδ)−

∑
wc`n,wc 6=(n)

(Enδ, E′wcδ
)2

(E′wcδ
, E′wcδ

)

≡ (Enδ, Enδ)−
∑

(n)6=(1r12r2 ··· )`n

∏
i≥1(E′iδ, E

′
iδ)

ri∏
i≥1 ri!

≡ 1−
∑

(n)6=(1r12r2 ··· )`n

1∏
i≥1 ri!iri

(by the induction hypothesis )

= 1−
∑

(1r12r2 ··· )`n

1∏
i≥1 ri!iri

+
1
n

=
1
n
.

We have used the identity n! =
∑

(1r12r2 ··· )`n
n!Q

i≥1 ri!i
ri

in the last equality.

Let Pnδ = nE′nδ. For a partition wc = (1r12r2 · · · trt), let zwc =
∏
i≥1 i

riri!
and Pwcδ = P ∗r11δ ∗ · · · ∗ P

∗rt
tδ .

Corollary 8.4.3. Let wc = (1r12r2 · · · ), wc′ = (1r
′
12r
′
2 · · · ) be partitions. Then

(i) (Eπ1c ∗ · · · ∗ Eπsc ∗ E′wcδ, Eπ1c′ ∗ · · · ∗ Eπsc′ ∗ E
′
wc′δ

)

≡ δπ1c,π1c′ · · · δπ1c,π1c′ δwc,wc′

∏
i

ri!(E′iδ, E
′
iδ)

ri (mod v−1Q[[v−1]] ∩Q(v)),

(ii)
(Pnδ, Pnδ) ≡ n (mod v−1Q[[v−1]] ∩Q(v)),

(Pwcδ, Pwcδ) ≡ δwcwc′ zwc (mod v−1Q[[v−1]] ∩Q(v)).

By this property of Pwcδ, it is easy to see that Pwcδ corresponds to Newton
symmetric functions (i.e., power sum symmetric functions). Let Swcδ be the Schur
functions corresponding to Pwcδ, and ec = 〈M(ac)〉∗Eπ1c∗· · ·∗Eπsc∗Swcδ∗〈M(bc)〉
for c ∈M.

By Theorem 8.3.8, Lemma 8.4.2, Corollary 8.4.3, and the Nakayama Lemma,
we have the following corollary:

Corollary 8.4.4. {ec | c ∈ M} is an almost orthonormal basis of L′, that is,
(ec, ec

′
) ∈ δc,c′ + v−1Q[[v−1]] ∩Q(v) for c, c′ ∈M.

In §8.1, we have defined the constructible set

Oc = OM(ac) ?OMπ1c
? · · · ?OMπsc

?Nwcδ ?OM(bc)



876 Z. Lin, J. Xiao and G. Zhang

for any c ∈ M. Now we define a new partial order ≺ for those ec, c ∈ M, with
the same dimension vector as follows:

ec ≺ ec
′

if either dimOc < dimOc′ , or dimOc = dimOc′ but wc > wc′ .

Based on the definition of E′nδ, we have

E′nδ = Enδ −
∑

wc`n,wc 6=(n)

(Enδ, E′wcδ
)

(E′wcδ
, E′wcδ

)
E′wcδ

+
∑

dimOc′<dimOnδ

anδ,c′Eπ1c′ ∗ · · · ∗ Eπsc′ ∗ Swc′δ,

where anδ,c′ ∈ Q(v). In fact, by Corollary 8.4.4, we have anδ,c′ ∈ Q[[v−1]] ∩Q(v).
Thus

Enδ =E′nδ +
∑

wc`n,wc 6=(n)

(Enδ, E′wcδ
)

(E′wcδ
, E′wcδ

)
E′wcδ

+
∑

dimOc′<dimOnδ

anδ,c′Eπ1c′ ∗ · · · ∗ Eπsc′ ∗ Swc′δ,

Enδ =
1
n
Pnδ +

∑
wc`n,wc 6=(n)

1
zwc

Pwcδ

+
∑

dimOc′<dimOnδ

anδ,c′Eπ1c′ ∗ · · · ∗ Eπsc′ ∗ Swc′δ.

Let Hnδ be the nth complete symmetric function corresponding to Pnδ. From
[M, p. 25], we have

Enδ = Hnδ +
∑

dimOc′<dimOnδ

anδ,c′Eπ1c′ ∗ · · · ∗ Eπsc′ ∗ Swc′δ.

Let wc be a partition of n. According to Lemma 2.2 and the above formula, we
have

Ewcδ = Hwcδ +
∑

dimOc′<dimOnδ

anδ,c′Eπ1c′ ∗ · · · ∗ Eπsc′ ∗ Swc′δ.

There is a monomial mwcδ in the divided powers of u[Si] (i ∈ I) in Proposition 7.4
corresponding to Ewcδ such that

mwcδ = Hwcδ +
∑

dimOc′<dimOnδ

bnδ,c′Eπ1c′ ∗ Swc′δ

+
∑

dimOc′<dimOnδ
M(ac′ )6=0 orM(bc′ )6=0

cnδ,c′e
c′
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= Swcδ +
∑

wc′′>wc

Kwc′′wcSwc′′δ +
∑

dimOc′<dimOnδ

bnδ,c′Eπ1c′ ∗ · · · ∗ Eπsc′ ∗ Swc′δ

+
∑

dimOc′<dimOnδ
M(ac′ )6=0 orM(bc′ )6=0

cnδ,c′e
c′ ,

where Kµλ are Kostka numbers and bnδ,c′ , cnδ,c′ ∈ Q(v). Furthermore, for c ∈ M
and the monomials mc given in Proposition 7.4, we have

mc = ec +
∑
ec′≺ec

ac′ce
c′ ,

where ac′c ∈ Q(v). Proposition 7.4 and the above formulae tell us that the transi-
tion matrix between {Ec | c ∈ M} and {ec | c ∈ M} is triangular with diagonal
entries equal to 1, and {Ec | c ∈ M} is an A-basis of C∗(Λ)A, {ec | c ∈ M} ⊂ L′

and {mc | c ∈M} ⊂ C∗(Λ)A. Thus the constants ac′c in the above formulae must
lie in A.

By applying the same argument as in Section 7 to {ec | c ∈ M}, we obtain
an A-basis of C∗(Λ)A which is denoted by {E ′c | c ∈M} satisfying

E ′c =
∑

c′∈M
ζcc′e

c′ for any c ∈M,

where ζcc = 1 and ζcc′ ∈ v−1Q[v−1] if ec
′ ≺ ec.

Finally, we have the following theorem:

Theorem 8.4.5 The set {E ′c | c ∈ M} ⊂ L′ is an A-basis of C∗(Λ)A which is
characterized by the following three properties:

(i) E ′c = E ′c for all c ∈M.

(ii) π(E ′c) = π(Ec), where π : L′ → L′/v−1L′ is the canonical projection.

(iii) (E ′c, E ′c′) ≡ δcc′ (mod v−1Q[[v−1]] ∩Q(v)).

According to Lusztig [L5], we have obtained the signed canonical basis (E ′c)
of L′. From the above formulae, we have the relations

mc = E ′c +
∑
ec′≺ec

dc′cE ′c
′
, where dc′c ∈ A.

By the total positivity of the canonical basis, we have

Theorem 8.4.6. The set {E ′c | c ∈ M} is the canonical basis of L′ in the sense
of Lusztig.

This answers a question raised by Nakajima in [N].
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§9. Appendix: Canonical basis for the Kronecker quiver

For the Kronecker quiver, one could follow the same argument as in Section 8 to
construct the canonical basis. Since the Kronecker quiver has the strong repre-
sentation-directed property, we will make the computation explicit following the
approach in [L1, 7.8–7.11]. We remark that although integral bases are constructed
in [C] and [Z2], their relation to the canonical basis presented here is new.

§9.1

In this section, we work in C∗ = C∗(Λ)Z . Recall from §5.1 that Φ+ is the positive
root system of ŝl2. For each positive root α, there is exactly one absolutely inde-
composable module in mod Λ with dimension vector α since the imaginary roots
have multiplicity 1. A function c : Φ+ → N is called support-finite if c(α) 6= 0
only for finitely many α ∈ Φ+. Let NΦ+

f be the set of all support-finite N-valued
functions. We will use the order in Φ+ given in §5.1.

For c ∈ NΦ+

f , if {α ∈ Φ+ | c(α) 6= 0} = {β1 < · · · < βk}, we set

Ec = E
(∗c(β1))
β1

∗ · · · ∗ E(∗c(βk))
βk

,

where E(∗c(βk))
βk

, E
∗c(βk)
βk

if βi = mδ. Then Proposition 5.10 is equivalent to the
statement that

{Ec | c ∈ NΦ+

f }

= {〈P (c)〉 ∗ Ewcδ ∗ 〈I(c)〉 | P (c) ∈ Pprep, w ∈ P(n), I(c) ∈ Pprei, n ∈ N}

is a Z-basis of C∗.
Let Ec = 〈P (c)〉 ∗ Ewcδ ∗ 〈I(c)〉 be as in §7.1. We define the variety

Oc := OP (c),wc,I(c) = OP (c) ?Nwcδ ?OI(c)

for any c ∈ M, where Nwcδ = Nw1δ ? · · · ?Nwtδ if wc = (w1, . . . , wt) and Nwiδ is
the union of the orbits of regular modules with dimension vector wiδ.

For d = (d1, d2) ∈ N2, we denote

E(d) = E
(∗d2)
2 ∗ E(∗d1)

1 .

Note that Φ+ ⊂ N2. Similarly we define

E(c) = E(c(β1)β1) ∗ · · · ∗ E(c(βk)βk).

Note that E(c) ∈ C∗ since it is a monomial in the Chevalley generators E1 and
E2 in the form of divided powers. Moreover, by definition, E(d) = E(d). Thus
E(c) = E(c).



Affine Canonical Bases 879

§9.2

The rest of this section is devoted to giving a triangular relation between the PBW
basis and the monomial basis.

Lemma 9.2. For any c ∈ NΦ+

f and any real root β ∈ Φ+, in C∗ we have

E(c(β)β) = 〈uc(β)β〉+
∑

c′∈NΦ+
f

dimOc′<dimOc(β)β

vλ(c′)Ec′ , where λ(c′) ∈ Z.

Proof. Let c(β)β = (m,n). In Hq (for any fixed Fq) we have

um2 u
n
1 = ψm(q)ψn(q)

∑
dimN=(m,n)

u[N ].

By §4.4,

um2 u
n
1 = ψm(q)ψn(q)u[Vβ⊕···⊕Vβ ] + ψm(q)ψn(q)

∑
u[P ]Rlδu[I],

where P is preprojective, I is preinjective, dimP + lδ + dim I = (m,n), and
dimOP (c′),(l)I(c′) < dimOM(c(β)β). Although the number of terms in Rlδ =∑

[M ] u[M ] in Hq depends on q, Lemma 5.8 shows that Rlδ has a generic form
in C∗Z with each component in Hq being Rlδ. Then in C∗Z ,

u
(∗m)
2 ∗ u(∗n)

1 =
vm(m−1)/2vn(n−1)/2

[m]![n]!
v−2mnum2 u

n
1

= vm
2−m+n2−n−2mnu[Vβ⊕···⊕Vβ ] + vm

2−m+n2−n−2mn
∑

u[P ]Rlδu[I]

= 〈uc(β)β〉+
∑

c′∈NΦ+
f

dimOc′<dimOc(β)β

vλ(c′)Ec′ .

Similarly, we have the following:

Lemma 9.3. Let c, c′ ∈ NΦ+

f be such that M(c) = P (c) and M(c′) = I(c′). In
C∗Z we have

E(c) = 〈P (c)〉+
∑

c′′∈NΦ+
f

dimOc′′<dimOc

gcc′′E
c′′ ,

E(c′) = 〈I(c′)〉+
∑

c′′∈NΦ+
f

dimOc′′<dimOc′

hc′

c′′E
c′′ , where gcc′′ , h

c′

c′′ ∈ Z.
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Proof. Since Hall polynomials exist in the Kronecker quiver, the lemma follows
from Lemma 9.2, Proposition 6.5, and Lemma 4.4.

Lemma 9.4. Let n,m ≥ 1. Then

E(nδ) ∗ E(mδ) = Enδ ∗ Emδ +
∑

c∈NΦ+
f

dimOc<dimN(n+m)δ

h(c)Ec, where h(c) ∈ Z.

Proof. By Lemma 5.11(iii), we have

E(nδ) =Enδ +
∑

P 6=0, I 6=0

vl(〈P 〉∗Elδ∗〈I〉)〈P 〉 ∗ Elδ ∗ 〈I〉,

E(mδ) =Emδ +
∑

P 6=0, I 6=0

vl(〈P 〉∗Elδ∗〈I〉)〈P 〉 ∗ Elδ ∗ 〈I〉,

where l(〈P 〉 ∗ Elδ ∗ 〈I〉) ∈ Z. We then have

E(nδ) ∗ E(mδ) = Enδ ∗ Emδ +
∑

h(c)Ec.

It is easy to see from the structure of the AR-quiver of the Kronecker quiver that
there is a real root α so that c(α) 6= 0 for each c. Thus dimOc < dimN(n+m)δ.

Remark. By Lemma 9.4 we can get

E(ωδ) = E(ω1δ)∗ · · · ∗E(ωmδ) = Eωδ +
∑

dimOc<dimOωδ

h(c)Ec, where h(c) ∈ Z.

Let ϕ : NΦ+

f → N2 be defined by ϕ(c) =
∑
α∈Φ+ c(α)α. Then for any d ∈ N2,

ϕ−1(d) is a finite set. We define a (geometric) order in ϕ−1(d) as follows: c′ � c
if and only if either c′ = c or c′ 6= c but dimOc′ < dimOc.

From Lemma 2.3(vii) and the above lemmas, we may summarize our results
of this subsection as follows, which resembles [L1, 7.8].

Proposition 9.5. For any c ∈ NΦ+

f , we have

E(c) =
∑

c′∈ϕ−1(ϕ(c))

hc
c′E

c′

where

(i) hc
c′ ∈ Z,

(ii) hc
c = 1,

(iii) if hc
c′ 6= 0 then c′ � c,

(iv) E(c) = E(c).
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In the same way as in §8.4, we define ec = 〈P (c)〉 ∗ Swcδ ∗ 〈I(c)〉 and the
partial order ≺ for ec is the same as in §8.4. We then have the following:

Proposition 9.6. For any c ∈ NΦ+

f , we have

E(c) =
∑

c′∈ϕ−1(ϕ(c))

gcc′e
c′

where

(i) gcc′ ∈ Z,
(ii) gcc = 1,

(iii) if gcc′ 6= 0 then c′ � c,

(iv) E(c) = E(c).

For any c, c′ ∈ NΦ+

f we define ωc
c′ ∈ Z by

ec =
∑

c′∈NΦ+
f

ωc
c′e

c′ .

The following proposition resembles [L1, Prop. 7.9].

Proposition 9.7. ωc
c = 1, and if ωc

c′ 6= 0 and c′ 6= c then c′ ≺ c.

Proof. Since E(c) = E(c) and {Ec | c ∈ NΦ+

f } is a Z-basis of C∗, we have

gcc′′ =
∑
c′

gcc′ω
c′

c′′ for c, c′′ ∈ ϕ−1(d).

By Proposition 9.5, the matrices (hc
c′′) as well as (hc

c′), where the index set is
ϕ−1(d), are triangular with 1s on the diagonal. Hence, by the equation above, the
matrix (ωc

c′′) has the same property.

Consider the bar involution ( ) : C∗ → C∗. For any c ∈ NΦ+

f , the equality

ec = ec =
∑
c′

ωc
c′e

c′ =
∑
c′,c′′

ωc
c′ω

c′

c′′e
c′′

implies the orthogonal relation ∑
c′

ωc
c′ω

c′

c′′ = δcc′′ .

Therefore one can solve uniquely the system of equations

ζcc′ =
∑

c′�c′′�c

ωc′′

c′ ζ
c
c′′
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with unknowns ζcc′ ∈ Z[v−1], c′ � c and c′, c ∈ ϕ−1(d), such that

ζcc = 1 and ζcc′ ∈ v−1Z[v−1] for all c′ ≺ c.

For any d ∈ N2 and c ∈ ϕ−1(d), we set

Ec =
∑

c′∈ϕ−1(d)

ζcc′e
c′ and J = {Ec | c ∈ ϕ−1(d), d ∈ N2}.

Let
L = spanZ[v−1]{ec | c ∈ NΦ+

f }.

We verify the following two properties of J. The first is

Ec =
∑
c′

ζcc′e
c′ =

∑
c′

ζcc′
∑
c′′

ωc′

c′′e
c′′ =

∑
c′′

(
∑
c′

ζcc′ω
c′

c′′)e
c′′ =

∑
c′′

ζcc′′e
c′′ = Ec.

So the elements Ec are bar-invariant. The second property is obvious: J is a Z[v−1]-
basis of the lattice L. Therefore we have

Proposition 9.8. The set J is a basis of C∗Z which satisfies

(i) Ec = Ec,

(ii) (Ec, Ec′) ≡ δc,c′(mod v−1Z[[v−1]] ∩Q(v)),

(iii) π(Ec) = π(Ec),

for any Ec ∈ L, where π is the canonical projection L → L/v−1L.

By the total positivity of the canonical basis, we find that J is just the canon-
ical basis in the sense of Lusztig.
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