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Abstract

There are several different ways to construct affine canonical bases, in addition to ap-
proaches by Lusztig and Kashiwara. In this paper we present a different approach to
canonical bases via Hall algebras and representations of tame quivers over finite fields.
The main idea is to tensor together integral bases constructed for cyclic quivers and Kro-
necker quivers with those from the preinjective and preprojective parts of tame quiver
representations. Several different bases: a PBW type basis, a monomial basis, and a bar-
invariant basis are constructed and their relations to the canonical basis are discussed.
The result also answers a question by Nakajima.
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§0. Introduction

§0.1

Let U™ be the positive part of the quantized enveloping algebra (over C(v)) of a
Kac—Moody Lie algebra g associated to a Cartan datum [Ka]. The construction of
the canonical basis consists of a Z[v~!]-lattice £ in Lusztig’s integral Z = Z[v, v~ 1]-
form Uz with a Z[v~!]-basis B such that the restriction of the quotient map
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7 : L — L/vTIL to LN L is an isomorphism of Z-modules. The elements in
B = 7~ Y(n(B))N(LNL) are bar-invariant and form a Z-basis of UZ. The set B is
called the canonical basis. If the Cartan datum is of finite type, Lusztig used PBW
bases for B, which are associated with reduced expressions of the longest element
of the Weyl group, and the image m(B) is independent of the reduced expressions
[L6, L7, DLJ.

If the Cartan datum is of finite or tame type, various approaches are taken to
construct the integral basis B for Ug. Lusztig’s geometric approach, which uses
certain simple perverse sheaves, gives B directly and works for general symmet-
ric Cartan matrices [L1-L5]. Kashiwara’s approach, which uses the Kashiwara
operators, works for more general Kac-Moody Lie algebras. Kashiwara called
the Z-basis w(B) the crystal basis and the Z-basis B the global crystal basis
[K1, K2, GL]. In the affine cases, Beck, Chari, and Pressley [BCP] constructed
an integral basis for untwisted affine type. Then Beck and Nakajima [BN] im-
proved and extended the results to all twisted affine types by using the Drinfeld
realization [Dr] of affine quantum groups. The main goal of this paper is to pro-
vide another approach to constructing an integral basis and to discuss its relation
to the canonical basis by using properties of representations of affine quivers.
This approach is motivated by Lusztig’s approach for finite type quiver cases, us-
ing Ringel’s characterization of U™ as the generic Hall algebra of a finite type

quiver.

§0.2

For a finite type root system, using Ringel’s characterization of Ut as the generic
Hall algebra of a Dynkin quiver, a PBW type basis for UT can be realized as the
set of isomorphism classes of representations of the quiver over finite fields. It uses
an order compatible with the orbit closure inclusion relation in the representa-
tion varieties. In the affine cases, U™ is isomorphic to the (generic) composition
algebra, which is a subalgebra of the Hall algebra. Not all isomorphism classes of
representations of the affine Dynkin quiver are in U™ . For cyclic quivers, there are
several approaches using quiver representations to construct the canonical basis.
They include the work of Lusztig [L1, L2, L3, L5] and Varagnolo—Vaserot [VV, S]
in terms of geometry and simple perverse sheaves, and [DDX] which uses compu-
tations in terms of quiver representations over finite fields. It should be mentioned
that Lusztig’s construction of the affine canonical basis in [L3] uses the McKay
correspondence between certain affine quivers and finite subgroups of SLy(C) and
has the flavor of the Hall algebra approach. Lusztig’s construction is also extended
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to all simply laced affine quivers using representations of the quiver over any al-
gebraically closed field without reference to McKay correspondence [Lin, LL].

The main feature of this paper is to work for all tame quivers using computa-
tions in the Hall algebra. In this paper, an integral PBW type basis is constructed
by tensoring bases from three subalgebras of the Hall algebra corresponding to
the subcategories of preinjective, regular, and preprojective representations of the
tame quiver. Not all regular modules are in the composition algebra. The reg-
ular part is further decomposed into the non-homogeneous part (corresponding
to several cyclic quivers) and the homogeneous part. For the non-homogeneous
regular part, bases of the composition algebra for cyclic quivers constructed in
[DDX] can be used by identifying each non-homogeneous tube with the category
of nilpotent representations of a cyclic quiver. By embedding the representation
category of the Kronecker quiver into the representation category of the affine
quiver, the image of the regular part of the Kronecker quiver together with those
from non-homogeneous tubes would complete the PBW basis of the regular part.

The idea of using the embedding of representations of the Kronecker quiver
appeared in [FMV] which motivated the present work. For the Kronecker quiver,
a certain integral basis with the aforementioned triangular decomposition is con-
structed by Chen [C] following the work of Zhang [Z2]. In [Z1], Zhang studied the
triangular decomposition structure of the composition algebra of affine type. In his
preprint [H], Hubery refined the work of [Z1] and constructed a PBW type basis for
the composition algebra using the triangular decomposition. The approach in this
paper uses the idea of triangular decomposition of [Z1, Z2] and is similar to that
in [H] when constructing a PBW type basis for the non-homogeneous regular part.

To relate this integral PBW basis to the canonical basis, one of the main pas-
sages is a monomial basis, which plays a significant role in Lusztig’s construction
in terms of perverse sheaves. The monomial basis elements are the direct images
of the constant sheaves over Springer type resolutions of certain orbit closures. We
will construct a monomial basis in terms of Hall algebras.

§0.3

For a finite type root system, Lusztig [L1] constructed the canonical basis in three
different ways. The first is to construct an integral PBW basis B by means of
a braid group action on simple Chevalley generators as in [DL] using a reduced
expression of the longest Weyl group element wqg. This is possible in a finite type
root system since every root is conjugate to a simple root. The second approach
is the aformentioned Hall approach where the integral basis elements are the iso-
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morphism classes of representations of the Dynkin graph with a fixed orienta-
tion. The third approach is to characterize the integral basis as certain semisim-
ple complexes using the characterization of Ug as the (graded) Grothendieck
group of a certain category of semisimple complexes in the equivariant derived
category of constructible sheaves on the representation varieties of the Dynkin
quiver.

This paper follows the idea of Lusztig’s second approach together with the
idea of using generic extension and the closure inclusion relation of orbits. One
important property used in this paper is that Hall polynomials exist for regular
representations of affine quivers (cf. [R2] and [Z2]). Using this property and di-
rect computations on representations of affine quivers over finite fields, one can
transfer these computations to the generic composition algebra, which has been
identified with UT. One has to be careful to keep track of the coefficients of ¢ as
g varies in order to derive a formula for U via Ringel’s genericalization process

(cf. §1.4).
§0.4

For an infinite type root system, the braid group action does not provide enough
root vectors to construct a PBW type basis. For affine types, a PBW type basis
was constructed in [BCP] and [BN]. There, real root vectors were constructed
by braid group actions on the Chevalley generators just as in the first approach
for finite type case and imaginary root vectors were constructed by using Schur
functions on Heisenberg generators. Then they used this PBW basis with the
almost orthonormal property to obtain a global crystal basis (canonical basis).
The approach of this paper is different from those of [BCP] and [BN] in that the
regular simple modules corresponding to the real root vectors are in the regular
part of the triangular decomposition mentioned in §0.2. Thus real root vectors can
appear in all three parts of the triangular decomposition.

§0.5

We now explain the organization of this paper. In Section 1 we recall the defini-
tion of Hall algebras of quivers by Ringel and by Lusztig respectively, and establish
an explicit relation between these two constructions. In particular, computations
in one form can be translated to the other form. Representations of quivers in
this section are over finite fields. Section 2 recalls some basic geometric properties
of orbit varieties and extension varieties for representations of quivers over alge-
braically closed fields. Section 3 deals with cyclic quivers and is largely taken from
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[DDX], in which some integral bases and the canonical basis are constructed in
terms of nilpotent representations of the cyclic quivers. The basis presented in this
section is part of the basis needed in Section 6. In Section 4, we discuss the Hall
subalgebra generated by preinjective modules and the Hall subalgebra generated
by preprojective modules. In this case, we can construct a monomial basis in ad-
dition to an obvious PBW type basis in terms of isomorphism classes of modules.
In Section 5 we recall, from [Z2] and [C], the construction of an integral PBW
basis of A(ll) type by using representations of the Kronecker quiver. In Section 6,
we show that the subalgebras corresponding to the preprojective part, preinjective
part, non-homogeneous tubes, and the regular part of the Kronecker quiver can be
tensored together to get a basis using the representation-directed property of the
Auslander—Reiten quiver of a tame quiver. This gives rise to an integral basis of
U over Q[v,v!]. In Section 7, we find a monomial basis which has a unipotent
triangular relation with the integral PBW type basis constructed in Section 6.
Finally, a bar-invariant basis {£° | ¢ € M} of U™ can be constructed following
Lusztig’s argument. In Section 8, by a detailed calculation of the inner product
on the PBW basis in the orthogonalization process using the properties of Schur
functions, we can answer Nakajima’s question in [N] affirmatively, by showing that
the basis {£'¢ | ¢ € M}, which is a modified form of the basis {£° | ¢ € M}, equals
the canonical basis in [L2]. The strong representation-directed property [DR] of
the module category of the Kronecker quiver enables us in Section 9 to arrange
the positive roots in a special order to give a direct computation of the canonical
basis for the Kronecker quiver.

In a preprint [Li], Y. Li gives a geometric characterization of the monomial
basis {m. | ¢ € M} constructed by us in Section 8, and proves that the transition
matrix between {m. | ¢ € M} and the canonical basis is triangular with diagonal
entries equal to 1 and entries above the diagonal in Z>g[v,v™!].

81. Ringel-Hall algebras
§1.1

A quiver Q = (I, H, s,t) consists of a vertex set I, an arrow set H, and two maps
s,t: H — I such that an arrow p € H starts at s(p) and terminates at t(p).

Throughout the paper, F, denotes a finite field with g elements, Q= (I, H, s,t)
is a fixed connected quiver without loops, and A = F,Q is the path algebra of @
over F,. By mod A we denote the category of all finite-dimensional nilpotent left
A-modules. We shall identify A-modules with representations of Q.
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§1.2. Ringel-Hall algebra

Given three modules L, M, N in mod A, let g%, denote the number of A-sub-
modules W of L such that W ~ N and L/W =~ M in mod A. More generally,
for My,...,M;, L € modA, let gﬁlth denote the number of filtrations 0 =
Li CLiy C--- C Ly C Ly =L of A-submodules such that L; 1/L; ~ M;
for : = 1,...,t. Let v, = /g € C and P be the set of isomorphism classes of
finite-dimensional nilpotent A-modules. The Ringel-Hall algebra H(A) of A is by
definition the Q(v,)-vector space with basis {ufa | [M] € P} whose multiplication
is given by

UMU[N] = Z gszNU[L]-
[LleP

Note that g%, depends only on the isomorphism classes of M, N and L. For
a fixed pair of isomorphism classes [M] and [N], there are only finitely many
isomorphism classes [L] such that g¥  # 0. It is clear that H(A) is an associative
Q(vg)-algebra with unit ), where 0 denotes the zero module.

The set of isomorphism classes of nilpotent simple A-modules is {S; | i € I},
where S; is one-dimensional at ¢ and zero elsewhere. Then the Grothendieck group
G(A) of modA is the free Abelian group ZI. For each nilpotent A-module M,
;er(dim M;)i € NI is an element of G(A). The
Ringel-Hall algebra H(A) is graded by NI, more precisely, by dimension vectors

the dimension vector dim M =

of modules.
The Euler form (—,—) on G(A) = ZI is defined by

(@, 8) = abi =Y aspbip)
el peEH

fora =73 ,c;a;iand § =), b;iin ZI. For any nilpotent A-modules M and N,
(dim M, dim N) = dimg, Homp (M, N) — dimg, Ext (M, N).
The symmetric Fuler form is defined as

(o, B) = (o, B) + (B,a) for o, € ZI.

This gives rise to a symmetric generalized Cartan matrix C' = (a4j)i jer with
a;j = (4, ). It is easy to see that C is independent of the field F, and the orientation
of Q.

The twisted Ringel-Hall algebra H*(A) is defined by setting H*(A) = H(A)
as Q(vq)-vector space, but multiplication is defined by

upn) * ) = oA N gy
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Following [R3], for any A-module M, we denote (M) = v, S M TdimEnda(dD),,

Note that {(M) | M € P} a Q(vq)-basis of H*(A).
The Q(vy)-algebras H*(A) and H(A) depend on g. We will use H;(A) and
H,4(A) to indicate the dependence on g when such a need arises.

[(M]-

§1.3. A construction by Lusztig

For any finite-dimensional I-graded F,-vector space V = ., V;, let Ey be the
subset of @ ,¢ iy Homr, (Vs(p), Vi(p)) defining nilpotent representations of Q. Note
that Ey = GapEH Homg, (Vy(p), Vi(p)) when @ has no oriented cycles. The group

Gv = [l;e; GL(Vs) acts naturally on Ey by
(9,) —gex=2a" where ), = gt(p)a:pgs_(})) for all p € H.

Let Cg(Ey ) be the space of Gy -invariant functions Ey, — C. For v € NI, we fix an
I-graded FF-vector space V,, with dim V., = v. For example, V,, = F} = @, Fy
if v =,c;nii. We will simply denote E, = Ey, and G, = Gy,. For a, 3 € NI
and v = a + 3, we consider the diagram

Eo, xEs &L B 2B 2R

Here E” is the set of all pairs (x, W) consisting of an I-graded subspace W of V,
with dimW = 3 and = € E, such that z,W,,y € Wy, (i.e., W is x-stable);
E’ is the set of all quadruples (z, W, R/, R"”) consisting of (x, W) € E” and in-
vertible graded linear maps R’ : IFg — W and R’ : Fy — V,/W. The maps

pe and p3 are the obvious projections and pi(x,W,R',R") = (2',2"), where

i = (R,

i‘Z (V3 /W)s(p) = (Vy/W )y is the quotient map induced from z,,.

For any map p : X — Y of finite sets, p* : C(Y) — C(X) is defined by
P*(1)(@) = f(p(x)) and pr : C(X) — C(Y) is defined by pi()() = Tyep11y) h()
(integration along the fibers). Given f € Cg(E,) and g € C¢(Eg), there is a unique
h € Cg(E") such that pi(h) = pi(f X g). Then define

fog=(p3)h(h) € Cg(E,).

)flxp\wst's’(p) and z], = (Rg(p))*la_ch’s(p) for all p € H. Here

Note that the isomorphism classes of nilpotent A-modules of a fixed dimension
vector « are in one-to-one correspondence with GG,-orbits in E,. For each z € E,,
let M, be the A-module defined by z, O, = G, ® = be the G,-orbit, and 1p, be
the characteristic function of the finite set O,. Then we have

M.
1o, 01p,(2) = IM, M,
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for all z € E,, y € Eg, and z € E,. Therefore there is a natural isomorphism of
C-algebras

Ha(8) ©g(u,) € = (€D ColEa),o)

aeNT
sending uppr,] to 1o, -
Let
m(a,5) =Y aibi+ Y aspbip)-
icl peEH

We again define multiplication in the C-space K = @ .y; Ca(Ea) by
frg=v,"Pfog
forall f € Cg(Ey) and g € Co(Eg). Then (K, *) becomes an associative C-algebra.

Conventions. (1) To simplify the notation, instead of writing M,, for each x €E,,,
we will simply write M € E, by using M as both an element of E, and the
corresponding A-module. Thus Oy, C E,, is the corresponding G ,-orbit.

(2) Although we are working over a finite field F,, we will regularly use Gy
and Ey for the algebraic group and the algebraic variety over F, with an obvious
F4-structure and use the features of algebraic geometry without introducing extra
notation, i.e., the set of Fj-rational points and the algebraic variety are denoted by
the same symbol. This should not cause any confusion and the meanings should
be clear from the context. In particular, since stabilizer subgroups are connected
algebraic groups, Lang’s theorem ensures that two IF -rational points are in the
same orbit under the algebraic group action if and only if they are in the same
orbit under the finite group of F,-rational points.

For M € Eq, let Oy C E, be the G-orbit of M. We take 1155 € Ca(Va) to
be the characteristic function of Oy, and set fia = v;dim OMl[M]. We consider
the subalgebra (L, *) of (K, *) generated by fia over Q(vy), for all M € E,, and
all € NI. In fact L has a Q(v,)-basis { fiar) | M € Eq, o € NI}

Proposition 1.1. The linear map ¢ : (L,*) — H*(A) defined by
e(fin) = (M)~ for all [M] € P
is an isomorphism of associative Q(vy)-algebras.

Proof. By definition, ¢ is a linear isomorphism. For M € E,, one first notes
that dimOy; = dim G, — dimEnda (M) and dimGyip — dim G, — dimGg =
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(a, ) + m(e,8). If N € Eg and L € E,3, then

dim Enda (M) + dim Endp (N) — dim Enda (L) + (o, 8)
= —dim Oy — dim Oy + dim Oy, — m(«, ).

Now a direct computation of the structure constants for the bases {fja} and
{(M)}, respectively, will finish the proof. O

81.4. Genericalization

The free abelian group G(A) = ZI with the symmetric Euler form (—, —) defined
in §1.2 is a Cartan datum in the sense of Lusztig [L5]. Associated to (ZI,(—,—))
is the Drinfeld-Jimbo quantized enveloping algebra U = U~ ® U° ® U+ defined
over Q(v), where v is transcendental over Q. It is generated by the Chevalley
generators F;, F;, KijE (i € I) with respect to the quantum Serre relations. Recall
that Z = Z[v,v!] C Q(v). The Lusztig Z-form UZ of U™ is the Z-subalgebra in
Ut generated by El-(m) =E"/[m]! (m >0 and i € I), where

For v, = \/q € C, let Z,, be the subring of C which is the image of Z under
the map 2 — C with v — v,. Let C*(A)gz, be the Z, -subalgebra of Hj(A)

(*m)

generated by ug,)" = ufgh/[mly,! (i € I), where [n],, € Z,, is the image of [n]
in Z,,.

It follows from the works of Ringel [R1], Green [G], and Sevenhant—Van den
Bergh [SV] that C*(A)z,, is isomorphic to UL @z Z,, by sending ug?f) to Ei(m).

We will denote U2 by C*(A)z and call it the integral generic composition
algebra. In fact, following Ringel’s argument, Z can be identified with the subring of
[1, Zv, generated by v = (vF'), and C*(A) z with the Z-subalgebra of [T, Hs(A)
generated by (uf;:qu]), m > 1. Here the product is taken over all ¢ (although
infinitely many will be enough).

In this paper, computations in [] . Mg (A) will be performed in each compo-
nent. When an expression in each component is written as an element of Z[v,, vq’l]
with coefficients in Z independent of the choice of the field F,, we say that the
expression is snvariant (or generic) as F, varies. In this case replacing v, by v we
will get a formula in [], H7(A). We will not repeat this replacement each time and

simply write v = v, and call it generic in this expression.
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The bar involution () : UT — UT is a Q-algebra automorphism defined by
7 =v"', E; = E; and Ei(m) = Ei(m). Then U} = UZ. It should be pointed out
that the bar operation is not defined when v is specialized to v,.

§1.5

In general, if we take a special value v, = /g for the finite field I, it is easy to
obtain

Lemma 1.2. Any monomial m in u(ST), i€ I, m €N, can be written as m =
Yomep farg(M) in H;(A) with furg € 2., such that for each M, there is an
integer b such that v’ fr g € Zlvg) (the subring of algebraic integers) and b is

independent of F,. O

§2. The variety of representations

In this section, we list some geometric properties of representations of quivers over
the algebraically closed field k = F,. Take A = kQ; all Hom and Ext are taken in
A-mod.

§2.1

For a € NI, the I-graded k-vector space V = @, ;
k-variety €D ¢ y Homy, (k@) k) containing the set E, of all nilpotent elements

k¢ defines the affine algebraic

as a closed subvariety on which the algebraic group G, = [[;c; GLq, (k) acts as
in §1.3. For any « € E,, let M, be the corresponding representation of ) over k. We
will follow the convention (1) of §1.3 by simply writing M € E, for a module M.
The following properties are well-known (see [CB]).

Lemma 2.1. For any o € NI and M € E,, we have:

(i) dimE, — dim Oy = dimEnd M — (@, «)/2 = dim Ext* (M, M).

ii) Oy is open in By, if and only if M has no self-extension.

—~

)

)

(iii) There is at most one orbit Ops in E, such that M has no self-extension.

(iv) If 0 = M — L — N — 0 is a non-split exact sequence, then Open C

0.\ 05

(v) If Or is an orbit in Es of mazimal dimension and L = M & N, then
Ext'(M,N) = 0. O
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For subsets A C E, and B C Eg, we define the extension set AxB of A by B
to be

AxB = {z € Eqo13 | there exists an exact sequence

0— My, - M, - M, —0withzeB,yec A}

If A is a subvariety of E,, then codim A = dim E, —dim A is called the codimension
of Ain E,. From [Re] we obtain

Lemma 2.2. Given any o, € NI, if A C E, and B C Eg are irreducible
algebraic varieties and are stable under the actions of G and Gg respectively,
then A x B is irreducible and stable under the action of Go4p. Moreover,

codim A x B = codim A + codim B — (8, ) + r,
where 0 < r < min{dimy Hom(M,, M,) |y € B, z € A}. O
§2.2
For any «, 8 € NI, we consider the diagram of algebraic k-varieties
Eo xEg &L E 2B 2R, 4

defined in a similar way as in §1.3. It follows from the definition that A x B =
papa(py (A x B)). Thus we have AxB C A B since p; is a locally trivial fibration
(see Lemma 2.3 below). For any M € E,, N € Eg, and L € E, g we define

Z:pgpl_l(OM XON), ZLM’N:Zﬂpgl(L).
The following properties can be found in [L1].

Lemma 2.3. For the diagram above and M € E,, N € Eg, and L € Eoy3, we
have the following properties:

(i) The map p2 is a principal G, x Gg fibration.

(ii) The map p1 s a locally trivial fibration with smooth connected fibers of di-

Za? —l—Zb? +m(a, 3).

el el

mension

(iii) The map ps is proper.

(iv) The variety Z is smooth and irreducible of dimension

dimZ = dim Oy + dim Oy + m(c, §).



836 Z. LiN, J. X1A0 AND G. ZHANG

(v) If L is an extension of M by N, then
dim Op < dim Oy + dim On + m(a, §).
(vi) If Oy is dense in psZ, then
dimOp, = dim Oy +dim Oy + m(e, §) — dimZy, p N

(vil) Assume that Ext*(M,N) = 0 and Hom(N, M) = 0. If M’ € Oy and N' €
@N with either M' € 6]\/[\0]\/[ or N’ € @N\ON; then X € @MGBN\OM@N
for all X € Opp % Ope. In particular, dim Ox < dim Onmen- O

Lemma 2.4. Given any two representations M and N of Q over k, if Extl(M, N)
=0, then Oy xOn = 5M@N, i.e., Open 1S open and dense in Oy *Op.

Proof. By definition, Ext' (M, N) = 0 implies Oy *On = Oprgn. Hence Opran =
OM * ON - 61\4 *@N - m = @MEBN- Therefore @M *61\{ = @M@N,
since any orbit (under any connected algebraic group action) is always open in its
closure. O

Lemma 2.5. Let M, N, X € modA. Then Ox is open in Oy x On if and only if
Ox is open in O x On. In that case for any Y € Oy x On we have dim Oy <
dim Ox.

Proof. This follows from Ox C Oy +xOpn C Ou*On C Oy %« Oy and Lemma 2.2.
O

To end this section, we recall the (geometric) partial order on P (the isomor-
phism classes) defined by Lusztig for any quiver: [M] < [N] if dim M = dim N and
O € On. This order will play an important role in constructions of various bases.

83. The integral and canonical bases arising from a tube

In this section we summarize some results from [DDX] on constructions of mono-
mial bases and PBW bases for cyclic quivers. In [DDX] the canonical bases of
Uq(éln) and U, (gl,,) are constructed from these monomial bases by a linear alge-
bra method from the category of finite-dimensional nilpotent representations of a
cyclic quiver, i.e., from a tube.

§3.1

Let A = A(n) be the cyclic quiver with vertex set I = Z/nZ = {1,...,n} and
arrow set H = {i — i+ 1| i € Z/nZ}. We consider the category 7 = T (n) of
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finite-dimensional nilpotent representations of A(n) over F,. In view of the shape
of its Auslander—Reiten quiver, 7 (n) is called a tube of rank n. The irreducible
objects in 7 (n) are {S; | i € I'}. Let S;[!] be the unique absolutely indecomposable
object in 7 (n) with simple quotient S; and length [. Note that any indecomposable
object in 7 (n) is isomorphic to an S;[l]. Again in this section, we let P be the
set of isomorphism classes of objects in 7 (n), H the Ringel-Hall algebra of 7T (n),
H* the twisted Ringel-Hall algebra, and L the Lusztig form of the Hall algebra of
7 (n) (cf. §1.3). Because the Hall polynomials always exist in this case (see [R2]),
we may regard the algebras H, H* and L in their generic form. So they are defined
generically over Q(v) with v being an indeterminate. By Proposition 1.1, we may
identify L with H* via the morphism .

In this section, all properties we obtain are generic and independent of the
base field Fy, although the computations will be performed over F, (for each q)
following the remark in §1.4. We will omit the subscript ¢ for simplicity. Since the
number n is fixed, sometimes it is omitted too, e.g., 7 = T (n).

§3.2

Let A = (A > -+ > X\ > 0) be a partition of an integer m. We call [ and m,
respectively, the length and size of the partition A and denote |A| = m. Let II be the
set of n-tuples 7 = (71, ..., 7(™)) with each component 7(*) = (’/TY) > wéi) >
being a partition of an integer. Similarly, we write || = |[7(V| +--- + |7(™)| and
call it the size of m. For each m € I, we define an object in 7 by

M(r) = @ Sil{"].
pist
Every object in 7 is isomorphic to exactly one M (). This defines a bijection
between I and P. We will simply write u, for ujps(ry in ‘H. The geometric par-
tial order on P defines a partial order on IT such that # < 7’ if and only if
M(m) = M(x').

An n-tuple 7 = (71, ... 7)) of partitions in II is called aperiodic (in the
sense of Lusztig [L3]), or separated (in the sense of Ringel [R2]), if for each | > 1
there is some ¢ = i(l) € I such that 77§i> # | for all j > 1. By II* we denote
the set of aperiodic n-tuples of partitions. An object M in 7 is called aperiodic if
M ~ M(x) for some 7 € II*. For any dimension vector o € N™ (= NI), we let

Iy={rell|dmM(r)=a} and II; =II*NII,.
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For each « fixed, I, is finite. Thus E, has only finitely many G,-orbits.
Therefore, for any two modules M and N, there is a unique L such that Op
has the maximal dimension among G,-orbits in the irreducible variety Op; x On
(Lemma 2.2). This orbit Of, is open and dense in Oy x On. Thus O, C Of, for
any extension L' of M by N, ie., L is the unique maximal element under the
partial order < among all extensions of M by N. This L is called the generic
extension of M by N and is denoted by L = M ¢ N. (See [Re] for the finite type
cases.) If we define a binary operation in P by [M] o [N] = [M ¢ N], then (P,©) is
a monoid with identity [0].

We recall that Oy x Oy = p3p2pf1(0M x Op). Since p; is a locally trivial
fibration, p; ' (Opren X Ow ) is open and dense in p; ' ((Onr x On) x Oy) for any
[W] € P. Hence Opron * Oy is dense in Oy x Oy x Oy . Therefore

Omonyow € Onon * Ow € Opp +x On x Ow

implies that O(pron)ow is the unique dense orbit in Oy x Oy * Oy . This not only
proves the associativity of ¢ but also implies that

MoN  MoNoW MoNoW
gM,ON gMZN,OW = gMj;V,I(;V .
Let © be the set of all words on the alphabet set I. For each word w =
i1+ iy € §2, we define

M(U}):SilO'”OSim.

Then there is a unique 7 € II such that M (7)) ~ M (w), and we define p(w) = «. It
has been proved in [R2] that 7 = p(w) € II* and p is a surjective map @ :  — II%.

For each module M in 7 and each integer s > 1, we denote by sM the direct
sum of s copies of M. For w € Q, write w in the tight form w = ji'---j;/* € Q
with j,—1 # j, for all , and define p, € II such that M(u,) = €,S;,. For any

A€ HZf:l write g, for the Hall polynomial 9%83)).“71\4(%). A word w is called

erjr?
distinguished if the Hall polynomial gﬁ(w) equals 1. This means that M (p(w)) has
a unique reduced filtration of type w, i.e., a filtration

M(@(w)):MoDMl D--DM;_1DM;=0
with M,_1/M, ~e,5;, for all r.

Proposition 3.1. For any m € 11%, there exists a distinguished word w, =
gt gt € p () dn tight form.
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In H*, let ™™ = E&™ = w:™/[m]!, i € I, m > 1. The Z-subalgebra

C* = C% of Hq H; generated by ug*m), i € I, m > 1, is the twisted generic
composition algebra of 7 (cf. §1.4).

§3.3

For each w = ji* -+ - ji* € Q in tight form, define the monomial

m®) = Bl s Bl e o,

From now on, we fix a distinguished word w, € p~!(m) for each 7 € I1* and
thus a fixed section of distinguished words D = {w, | 7 € I1*} of p over II*. For
each distinguished word w, = ji* ---j;* € D in tight form, define L, = e;, S;, and
Li=L;_10e;5;, fori=2,...,t. Set @« =dim L;. Then M(7) ~ L,. Since

T

_ _ L2 Ls e g”
1= Jw, = gehshvejzsjzgl’??ejasjs gL“*heh Sjy?

we get gfj_heji s, = 1 for 2 < ¢ < t. Furthermore, by Lemma 2.3(vi) and Propo-

i

sition 1.1, we have

<Li*1> * <eji+lsji+1> = <Ll> + Z aX<X>

with ax € Z,,. Recall from §1.2 that (M) = v, dmM+dimEnd My, ) Thyg

m(n) = (M(m)) + Y & (M),
A<T
where £ € Z,,. Note that £ # 0 implies dim M (A) = dim M (7) = «. Although
m(wr) ¢ C%, , the terms (M) are not necessarily in C% . Define E inductively
by the relation (noting that vg = ¢ in each component)
E, = m(wﬂ) _ Z U—dim M (7)+dim End M (7)+dim M (A)—dim End M (\) A (’UQ)E)\.

q Wr \"q
A<m, Aellg

If 7 € II% is minimal, then F, = m(w) ¢ C%, . By induction on the partial order,
we have E, € C5  for all m € I1*. If M () = S;, then E; = E; = u[g,). Therefore
Er=(M(m)+ > n{(M®)

AETTL\TTE, A<

with 0} € Z,,. By applying the genericalization process in §1.4, we have
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Proposition 3.2. Let D = {w, | ®# € II*} be a section of distinguished words
of Q over 1. Then both {m(=) | 7 € TI*} and {E, | 7 € TI*} are Z-bases of C%.
Furthermore, for any m € 112,

m(w-n-) =F, + Z ,U—dim M (m)+dim End M (7)+dim M (A\)—dim End M()\)g)\ (UQ)EA.

AEIE, A< o
Remark. The definition of the basis {E, | 7 € II°} relies on the choice of the
section D of distinguished words. However it is proved in [DDX] that this basis is
independent of the choice of D.

We will call {m(¥=) | 7 € 1%} a monomial Z-basis of Cl and {E, | 7 € 1°} a
PBW basis of C%. With the triangular relation between the two bases, we can follow
the approach of Lusztig [L1, 7.8-7.11] to obtain the canonical basis {&; | 7 € TI*}
of C% in the sense of [L1, 3.1] by

Er = Z ParEN  for meIl%, o € N™,
A=, AETTE,

with pax = 1 and py, € v Z[v™!] for A < 7.
The following lemma will be used in Section 6.

Lemma 3.3. For anyl € N and 1 < j < n, let m,n’ € II* be such that S;[l| =
M(m) and Sj+1[l] = M(x"). Then

(i) ws,m= D, aaBEx(mod(v—1)C%) ifntl,
A=<, Aelle
(ii) US; ] — Y[Spall] = Z axEy (mod (v —1)C%) ifn|l

A=7 (orm’), A€Il®
Here ay € Q.
Proof. We use induction on [ and assume j = 1 for each [. For [ = 1, we have

ufs,) = F; and the conclusion follows. Assume that 2 < [ < n—1 and the conclusion
is true for m such that M (m) = S1[l — 1]. Then

us - = Y. axBE (mod (v —1)C%)
A=, A€l
and upg, 1] * U[s,] — U] * ULy [1-1)) = U[s,[1] (mod (v — 1)C%). For A < m and

A € 11, we have OM()\) - OM(m) = Osl[l—1]~ Thus

On)0s € Onmim)os; = Oniery = Os, i,
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ugs, 1] = ( Z aAEA) x By — Ep % ( Z aAEA) (mod (v — 1)C%)

A=y, Aelle A=my, Aelle
= E a>\E)\> * El — El * ( E a,\E>\> = E CLI)\E)\
A=y, €lle A=my, Aelle A=, Aelle

since {Ey | A € II*} is a Z-basis of C%. Thus the conclusion is true for [. For | = n,
by induction assumption (for j = 2), we have, with M (m3) = Sa[l — 1],

Usyi—) = Y, aaEx (mod (v —1)C3),
A<z, ACIIe

Ul ] — U[S,[1]] = U[S,] *U[Sy[1—1]] ~ U[Ss[1—1]] * U(s,) (mod (v—1)CZ)

= E1( Z a)\E)\) —( Z aAE)\) * Fy (mod (v—1)C%)

A=ma, A€II A=y, A€l

> a\Ex (mod (v—1)C%).

A=7 (or '), A€Il

Now we consider the general case. Let I = kn +m, 0 < m < n — 1. We set
M(m) = S1[l — 1] and M(7}) = Se[l — 1]. If m = 1, by induction assumption, we
have

UlS, 1-1]] ~ Ufsafi-1]] = Y. axE (mod (v —1)C%).
A= (orw}), A€lle
Hence
ugs, ) = (U[s, p—1)) = Usai—1])) * U[sy] — Uisy) * (U[s, 1—1)) = U[S,[1—1]))
= ( Z a)\E)\) *E1 — E1 * ( Z a)\E)\>
A=7y (or 7)), AeIl® A=my (or 7)), Aelle
= ) d\Ex (mod(v—1)C%).
A=, AeIle

Here in the last part we used the fact that | — 1 = nk and S;[l] is the unique
indecomposable module of dimension vector dim S [/] which is a real root. All Ey
appearing in the sum have terms uy) in H* with dim M = dim S [l]. Since S;[l]
has no self-extension, Og, ;) is an open dense orbit.

If 2<m < n—1, the argument is the same as in the case 2 <[ <n — 1.
When n|l, i.e., m = 0, the argument is the same as for [ = n. O
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84. Integral bases arising from preprojective and
preinjective components

In this section we consider a connected tame quiver ) without oriented cycles.
For the preprojective and preinjective components, the argument in this section is
essentially the same as in the case of finite type.

§4.1

Recall that U is the quantized affine enveloping algebra over Q(v) associated to the
quiver @, with the Chevalley generators F;, F; and KZjE Lusztig [L5] introduced
the symmetries Ti’fl :U — U for i € I as algebra automorphisms of U defined by

T7\(Kp) = Ksy5), Tih(E:) = —FKi,  T{)(Fi) = —KE;,
i (Ej) = Z (—1) v "EWE,E"  forj#iinl,
rHs=—a;;
T(Fj)= Y. (~)WEPERES  forj#iin L
r+s=—ai;
Here a;; = (i,7) for 4,5 € I, and s;(8) = 8 — (8,1)i for 8 € ZI. For each i € I,
define
Utli] ={z e U* | T} (z) e U},
which is a Q(v)-subalgebra of U*. Then T}, : UT[i] — U*[i] is a Q(v)-algebra
automorphism. Moreover, if we consider the Lusztig form U g and let U; [i] =
UZ NUT[i], then T}, : US[i] — UZ[i] is a Z-algebra automorphism.

§4.2

We define 0;@Q to be the quiver obtained from @ by reversing the direction of every
arrow adjacent to the vertex i and keeping all other arrows unchanged. If i is a
sink of @, one can define the BGP reflection functor (see [BGP] or [DR])

+ .

o; :mod A — modo; A

where A = Fy(Q) and o;A = F,(0,;Q) are path algebras. Let mod A[¢] be the full
subcategory of mod A consisting of all representations which do not have S; as a
direct summand. Let H*(A)[i] be the subalgebra of H*(A) generated by upy; with
M € modA[i]. Then o} induces a category equivalence mod Afi] — mod o} Ali]
and therefore we have an algebra homomorphism

o; : H*(A)[i] = H* (o:A)[d]
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defined by
oi(upn) = U+ agy)  for any M € mod Ali].

Under the identification of C%(A) with UZ, the subalgebra C*(A)z[i] =
{z € C*(A)z | oi(z) € C*(0;A)z} is identified with UZ[i]. Similarly C%(o;A)]i]
is identified with UZ[i].

On the other hand, the functor o;" induces an algebra homomorphism

ag; C*(A)z[’t] — C*(O'IA)z[Z]
and we have a commutative diagram

C*(N)z[i] —Z— C*(o:A)z]i)]

| |
Usl — ULl
with the vertical maps being the above mentioned identifications (for example, see
XY)).

Dually, if 7 is a source of @), we have similar results.

We recall that an indecomposable A-module M is exceptional if Ext ) (M, M)
= 0. In this case one has (M)*%) = (sM) for all s > 1. It is proved in [CX] that
(sM) € C*(A)z for any exceptional indecomposable M and any s > 1.

In [CB], the structure of the Auslander—Reiten quivers of tame quivers is
discussed. Indecomposable modules are divided into three classes: preprojective,
regular, and preinjective. Regular modules are further divided into homogeneous
and non-homogeneous ones, depending on the period being 1 or larger than 1
under the Auslander—Reiten translation.

We denote by Prep and Prei, respectively, the isomorphism classes of inde-

composable preprojective and preinjective A-modules. In particular, C% contains
the set

{{usan) | M is indecomposable in Prep or Prei and s > 1}.

§4.3

Let 4y, ...,41 be an admissible sink sequence of Q, i.e., i,, is a sink of Q) and 4; is
a sink of the quiver oy, ---0;, Q for 1 <t < m. Let M be in Prei. There exists
an admissible sink sequence of @ such that

M = O-it T U;; (Sim+1)’



844 Z. LiN, J. X1A0 AND G. ZHANG

where S;,, ., is a simple representation in modo;,, - -- 0y, A. The following lemma

can be found in [R3].

Lemma 4.1. Let M be an indecomposable preinjective representation. Then

<M> = Ti/i,l o 'Ti/:n,1(Eim+1)a
where M = 0; e ai‘tn (Sipssr), for an admissible sink sequence iy, ... i1 of Q.

For each positive real root 0 of the root datum corresponding to the tame
quiver @, there is exactly one indecomposable module M (8) with dim M = 3.
Since Prei is representation-directed, we can give a total order < on the set

(I);rei :{ <62 <61}

of all positive real roots §; such that [M(53;)] € Prei and

Hom (M (8;), M(B;)) #0 implies f; < 3;.

Then this order < has the property

(Bi, Bj) > 0 implies 3; < B; and (G;, 3;) < 0 implies §; < §;
and
Ext(M(6;), M(B;)) =0 for §; < p;.
Similarly, since Prep is representation-directed, we define a total order < on the
set
ot

Prep:{a1<a2<”'}

of all positive real roots «; such that [M(«;)] € Prep and
Hom(M (ev;), M(ej)) # 0 implies «; < ;.
Then this order has the property
(aj, ) > 0 implies o; < 5 and (o, ;) < 0 implies a; < a;

and
Ext(M (o), M(a;)) =0  for o; < aj.
We denote by NJICD "¢t the set of all support-finite functions b : &1, . — N. Each

Pres
beN JICD el defines a preinjective representation

M(b)= P b(B)M(S)

+
Bi€Ppye;
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and any preinjective representation is isomorphic to exactly one of the form M (b).
By Ringel [R3, Prop. 1] we have

Lemma 4.2. For any b € N}DT”?
(M(b)) = (b(Bi,, ) M(Bs,,)) * - - * (b(Bi, )M (Bi,)),
where {B;, < --- < Bi,} is the support of b in ®F O

Prei*

Thus, by discussions in §4.2, (M (b)) € C% for all b € N]Ifm'. We now define
C*(Prei) to be the Z-submodule of C% generated by {(M(b)) [ b € N{™}.

Lemma 4.3. The Z-submodule C*(Prei) is a subalgebra of C% and {(M(b)) |
b e mei} is a Z-basis of C*(Prei).

Proof. If b,by,bs € N}Dr@i, then the Hall polynomial Q%EEI)M(bz) always exists
(see Ringel [R5]). Then it is easy to see that C*(Prei) is closed under the multi-
plication . O

With similar definitions for Prep, we have

Lemma 4.4. For any a € N?Tep and M(a) =D, cq+ alai)M (),

(M(a)) = (a(ai, ) M(ei,)) * - -+ (alai,, ) M (),

where {a;, < --- <y, } s the support of a in @;Tep. O

Lemma 4.5. Let C*(Prep) be the Z-submodule of C% generated by {(M(a)) |
ae N}Dmp}. Then C*(Prep) is a subalgebra of C% and {(M(a)) |a € N}Dmp} is its
Z-basis. O

§4.4

Since @ is a tame quiver without oriented cycles, we can order the set {S1,...,S,}
of non-isomorphic nilpotent simple modules in mod A so that

Ext'(S;,8;) =0 fori>j.

We can now identify I = {1,...,n} and NI = N" go that S; is the simple module
at the vertex i € I. Any module M with dimension vector d = (dy,...,d,) has a
unique filtration
M=My2M 2---2M,=0
with factors M;_;/M; isomorphic to d;S;, since Ext'(S;, S;) = 0 for 4 > j. This
shows that the Hall polynomial gé‘f Sy.-d, s, €quals 1. By setting
(1-g)---(1=4g")

Yn(q) = 1— g )
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we have, in H, and H} respectively,
ult uln =00 (@) %0, (@)D upr@enmmens),

(xd1) (xdn) _  —(di4--+dn)+(d,d
uget) ® g = o (A HAD N Py e e ),

where the summation is over the triples (M (a), M (t), M (b)) with M (a) prepro-
jective, M (t) regular, M (b) preinjective, and dim M (a) +dim M (t) +dim M (b) =
(... dy) =d.

For any a € N}Dmp, let {a;, < -+ < a4, } be the support of a and, for
1 <t < m, define

ag :a(ait)ait = (alt, .. .,ant) e Nn,

(*alt) (*ant)

Ma, =Upg " F ke kug I Mg = Mg, %ok My,

Similarly for b € N})m with support {8;, < --- < 0;,, } define

my = w0 s oy =my, ok ookm
b: — [S1] [Sn] b — b, b -

Lemma 4.6. For any a € mep and b € N}Dm, we have, in H*,

(i) ma=(M(a))+ > By (Vg ) U () M (67 M (b))

dim O}u(a’)GBM(t’)GBM(b’)<dim OM(a)

Here the sum ranges over all triples M (a’), M (t"), M(b") with M (a’) preprojective,
M(t") regular, M(b') preinjective, and dim M (a’) + dim M (t') + dim M (b’) =
Y acprep a(@)a, and By (v) € Zlv, v~ Moreover

(ii) mp = (M(b))

+ Z dzti)”t”b” (Uq)U[M(a”)@M(t”)@M(b”)]7

dim OIW(a”)EBJW(t”)éBM(b”) <dim O]\,{(b)

where the sum is over all triples M (a”), M(t"), M (b") with M (a') preprojective,
M(t") regular, M (b") preinjective, and dim M(a"”) + dim M (t") 4+ dim M (b") =
Zﬁeprep b(6)67 and dg”t”b” (U) € Z[U’ v_l]'

Proof. (i) Since M («y,) is exceptional, by Lemma 2.1, Oa(a;,)M(a;,) 18 @ unique

orbit of maximal dimension in E,(qa,,)a,, - Note that all simple modules are excep-

i
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tional. We have

M, =ufe? x5 = (a1pSh) # ek (a0 S)

o deim(a(ait)M(ait ))+dim End(a(a;, )M (e, )) Z

= Yq UM

dim M=a(a;,)oi,

= (a(ay, )M (as,)) + > vy A EALAD (Ar).

q

dim Oy <dim Oa(ﬂz‘t )M(ay,)

Because Ext(M (ay,), M(a;,)) = 0 and Hom(M (o, ), M(«;,)) = 0 for ¢4 < i4, by
Lemmas 2.3(vii) and §4.4 we have

My =My, * My,

= (M(a)) + > Cartrby qUIM (a)® M (£)& M (b))

dim OIW(a’)EDM(t’)@M(b’)<dim OM(a)
as desired. The proof for (ii) is similar. O

Remark. By Lemma 1.2, the degree of v, in Cart/brg OF IN d:;’//t//b//q is bounded
and independent of IF,.

85. The integral bases from the Kronecker quiver

Most results in this section can be found in [Z2] and [C] while others can be found
in [BK].

§5.1

Let I, be the finite field with ¢ elements and @ be the Kronecker quiver with
I ={1,2} and H = {p1, p2} such that s(p1) = s(p2) = 2 and t(p1) = t(p2) = 1.
Let Ay = F4Q be the path algebra. In this section we will use the subscript g to
indicate the dependence on ¢ since our computation will be performed in the cat-
egory mod A,. It is known that the structure of the preprojective and preinjective
components of mod A, is the same as those of mod kQ for k being an algebraically
closed field. However the regular components of mod A, are different from those of
mod kQ@. Recall that a module is called regular if all indecomposable direct sum-
mands are regular. By [R6], the full subcategory R of mod A, consisting of regular
representations in mod A, is an abelian category. If X is a simple object in R,
then X is said to be a quasi-simple module in mod A,.
The set of dimension vectors of indecomposable modules in mod A is

ot ={(I+1,0),(m,m),(n,n+1)|1>0,m>1,n>0}
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The dimension vectors (n + 1,n) and (n,n + 1) correspond to preprojective and
preinjective indecomposable modules respectively and are real roots. For each real
root «, there is only one isoclass of indecomposable modules with dimension vec-
tor «, which will be denoted by V. Define a total order < on ®* by using the
strong representation-directed property of the quiver @,

(L)< ---<(m+1m<(m+2m+1)<---<(kk)<(k+1,k+1)
<<(n+17n+2)<(n7n+1)<<(071)a

so that there is no non-zero homomorphism from an indecomposable module of
dimension vector « to an indecomposable module of dimension vector (3 if 8 < a.
This property will be used frequently in the computation.

Any A, module is given by a quadruple (Vi, Va;0,7), where V; and Vo are
finite-dimensional vector spaces over Iy, and ¢ and 7 are F -linear maps from V5
to Vi.

Proposition 5.1. The isomorphism classes of reqular simple modules in mod A,
are indezed by spec(F4[z]). That is, each regular quasi-simple module is isomorphic
to (V1,Va;0,7), where Vi = Vo = Fy[x]/(p(x)) for an irreducible polynomial p(x) in
F,[x], o is the identity map and T is given by multiplying by x, except (Fy,Fq;0,1)
which corresponds to the zero ideal.

§5.2

In this section, let P, be the set of isomorphism classes of finite-dimensional A,-
modules, H, be the Ringel-Hall algebra of A, over Q(v,), where vg = ¢, and H}
be the twisted form of H,. If d € NI is a dimension vector, we set in H,

[M]€Py, M regular
dim M=d

For an element x = Z[M]EP cvnu) € Hg, we call upyy) a (non-zero) term of
x if epy) # 0. Furthermore,

R(z) = > cnnupg
[M]ePgy, M regular
is called the regular part of x. According to our notation, we write u, = uyy, for
a=(n—1,n) or (n,n+ 1) being real roots.
Let oy = (1,0) and a2 = (0,1) be the simple roots. The orientation of @
implies (a1, a9) = 0 and (a9, a1) = —2. Thus for § = (1,1) we have (6, a1) = —1,
(a1,0) =1, (0,a2) =1 and (ag,d) = —1.
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§5.3

In this section, multiplication in H, will be simply written as xy instead of x o y.
The following four lemmas can be verified by direct computation as in [Z2].

Lemma 5.2. Let i and j be positive integers. Then

U1, UG-y = R(ug o1 jyuei1y) + a7 2uianugoa ). O
Lemma 5.3.
Rs = u0,1)u(1,0) = 1(1,0)%(0,1)
1
U(ntl,n) = m(RJU(mn_l) — QU(n,n—1)Rs),
1
U(n,n+1) = m(u(n—l,n)Ré - qRéu(n—l,n))~ O

Lemma 5.4. Let i and j be positive integers and n =i+ j — 1. Then

R(u(j—1,5)u,i-1)) = R(um-1,n1,0)) = R(u@©,1)Unn-1))- O

Lemma 5.5 ([Z2, Theorem 4.2,4.3]). Let m,n > 1. Then

¢ — gt
u(m—l,m)Rné = Z 1fRMu(m-‘,-n—i—1,m,+n—i)7
0<i<n q
¢ — g+
Rnéu(m,m—l) = Z Tu(m—i—n—i,m—i—n—i—l)Ri& O
0<i<n q
§5.4

We will introduce a new set of elements in H; to describe a basis that resembles
a PBW basis for the universal enveloping algebra of a Lie algebra. We give here
some quantum commutator relations in M, and in H;. We define (cf. §1.2)

E(n+1,n) = <u(n+1,n)> = vq_2nu(n+1,n)a E(n,n+1) = <u(n,n+1)> = Uq_2nu(n,n+1)~

We will call By = E( o) and Ey = E(q 1) the Chevalley generators. For n > 1,
define in H*

En5 = E(nfl,n) * By — vq_QEl * E(nfl,n)-

Most of the computations below are known from [C] and/or [Z2].

Lemma 5.6 ([C, Lemma 3.5], [22]). Ens = 0 T R (U 1,0y U(1,0))-
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Proof. By taking u1 = u(1,0) we have

(n71)5+a2,o¢1>u QUéal,(n71)5+o¢2>

Ens = Uqu(nfl)(vé (n—1,m)U1 — Vg UIU(n—1,n))

-3 1 2(n—1
= Vq et (u(nfl,n)ul - Uq(n )ulu(nfl,n))

= v;?’”“R(u(n_Ln)ul) by Lemma 5.2. O

Lemma 5.7 ([C, Prop. 4.2]). There exist ag’)(v), b;:) (v) € Z[v,v™1] forr € N\{0}
and h € {0,1,...,|r/2]} such that for allmn >m in N,

[(n—m)/2]
E(n+1,n) * E(m+1,m) = Z aglnim) (Uq)E(m+h+1,m+h) * E(nchrl,nfh)v
h=0
[(n—m)/2] ( )
E(m,m—i—l) * E(n,n+1) = Z bhn " (vq)E(n—h+1,n—h) * E(m+h,m+h+1)' O
h=0

For k > 0, we inductively define
1 F
Eos =1, Eps = T > 03 Eos % Ems)s-
s=1

Lemma 5.8. We have Ers = v, *" Rys.

Proof. If k =1, then E5 = Es = v;QR(;. Assume that the assertion is true for all
t < k. Then by Lemma 5.6, and [Z2, Lem. 3.7, Thm. 4.1, Lem. 4.7],

k

1 —k,,—3s —2(k—s

Eys = 7 Zvé P B M R(ugs— syun) # v 2P Ry
s=1

k
1 _
T K D v R(ue 1 gyun) * Ris—s)s
s=1

k

1 _
= v, ¥ ag(Rs, Ros, . .., Rss) * Rj—s)s
s=1
pBkHL | _
= q[k] T _qq Ris = v, " Rys.

Here as(Rs, Ras, - . -, Rss) is as in [Z2, p. 105]. O

Lemma 5.9. For m,n € N we have in Hj

n

Ens * Egny1,m) = Z[n +1-— k]E(m+n+1—k,m+n—k) * Fis,
k=0
n
E(m,m+1) * En6 - Z[n + 1-— k]Eké * E(m+n7k,m+n7k+1)-
k=0
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Proof. Again we will only verify the first equality. By Lemma 5.8, we have

-2 —2 2 _
Eps * E(m-‘,—l,m) = Uy ané * Uy mu(m+1,m) = Uy (n+m)vq an5u(m+1,m)
sn—2m x~ " —¢" !
=, Z ?u(mﬁ-n—k}-‘rl,m.’_n_k)Rk(S (by Lemma 5.5)
k=0 q
n ,U—Sn—Qm
_ q 2k 2n+2\, 2k, —k_ 2(n+m—k
- 1 — 2 (vg" = vg" " )vg v, Uq( )E(m+n7k+1,m+n7k) * Es
k=0 q
n
= [n +1- k]E(m+n7k+1,m+nfk) * Fs. O
k=0

§5.5

Let L4 be the Z, = Z[vg, vy ']-subalgebra of H}; generated by the set

{E(*S)

mﬂmym@EﬁLDanzQ&ukzu.

Recall from §1.4 that the integral Z,,-form C%, is generated by E((fso)) and E((gi)).
Thus C3 C L,.
vq
On the other hand, by §4.2, we get E((;frl)7,m), E((:;tnlq) € C}vq. Because F,; is
just P,y in [BCP], this implies E}} € Cz, - Thus £, € C% . Therefore C3, = L,
Now we have an integral Z, _-basis of £, consisting of the monomials
(*Sm) *T) (*tn)
{ H E(m,—i—l,m) H Ekgk H E(n,n+1)

m>0 k>1 n>0

SmatTHTk Z 0}

with the product taken with respect to the order given in §5.1 and there are only
finitely many non-zero s,,, t,, and 7, in each monomial. This follows easily from
the facts: (1) those monomials are linearly independent over 2, (even over Q(vg))
by the definition of Ringel-Hall algebras; (2) because there exist Hall polynomials
in the Kronecker quiver by [Z2], it follows from the lemmas in §5.4 that the Z, -
span of the monomials above is closed under multiplication in H; and that £,
contains all monomials we defined above.

Remark. The formulae in the lemmas are unchanged when we vary ¢. The lem-
mas can be stated in [[ Hy with v, replaced by v = (vy) (as a variable) in
Hq Z,, and with E(, ,) replaced by E(, .y = (E(s),q). We then define £ as the
Z = Z[v,v~!-algebra with a Z-basis consisting of the monomials described above.

As remarked in §1.4, Lusztig’s integral Z-form C%, which is called the generic
composition algebra, can be viewed as a Z-subalgebra of [] q H7 by the Ringel-
Green theorem (see [G], [R1, R7]). Using this identification, we can view C% = L.
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Let P(n) be the set of all partitions of n. Recall that there are no non-
trivial extensions between homogeneous regular representations. For any w =
(w1,...,wp) € P(n), we define

Eus=Eys%---xE, ;.
By Lemmas 5.5, 5.8, and the definition of (M), we get £ C C%. Then we have

Proposition 5.10. The set
{{P) % Eys * (I) | P € Pprep, w € P(n), I € Pprei, n € N}

is a Z-basis of C%. Here Pprep and Pprei are, respectively, the isoclasses of prepro-
Jjective and preinjective modules in Pg. O

Remarks. (1) It has been proved by Zhang in [Z2] that the basis in Proposition
5.10 is a Q(v)-basis of UT. Chen [C] improved this and showed that this set is a
Z-basis of U3 .

(2) Tt is not difficult to see that elements in {F,s | n € N} constructed here
correspond to the root vectors of U, (sly) constructed by Damiani in [Da] and by
Beck in [Be].

(3) It can be proved in an easier way that the set in Proposition 5.10 is an
integral basis of C% over A = Q[v,v!]. (See the proof of Proposition 6.2 below.)

We end this section with a lemma which will be used in Section 9. For any n >
m > 0, P ) (resp. I(y, n)) denotes a preprojective (resp. preinjective) module
with dim Py, )y = (n,m) (vesp. dim I(,;, 5,y = (m,n)). In the following formulae, the
summations are over all nonzero preprojective and preinjective modules with the
indicated dimension vectors. The formulas can first be stated for representations
over [F,. By using the argument in §1.4, we will state them in Hq H; with v as a
variable.

Lemma 5.11. In the following formulas all P and I are non-zero.

. *7 *(n+1 Jy
) BV BT = B + > v T B * Eis
1<I<n
+ Z p—dim End P—dim End Iv—p(l+t)—(s+l)(17—1)<
0<i<n—1

p=1,520,t20
st+t+l+(p—1)=n

P(s—&-p,s) > * Fy5x <I(t,t+p—1) > )
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i) BB = B + Z v s ¢ By n—i41)
1<i<n
+ Z p—dim End P—dim End Iv—p(l+s)+(t+l)(17—1)<

0<i<n-1
p>1,5>0,t>0

s+t+l4+(p—1)=n
(i) B« EUY = B
+ Z ,U—dim End P—dim End IU—p(s+2l+t) <

0<i<n—1,p>1
§>0,t>0, s+t+l+p=n

P(s+p—1,s)>*El5*<‘[(t,t+p)>;

P(S+p’s)> * El(; * <I(t,t+p)>-

Proof. We work with representations over F, and verify (i) only. The others can
be verified in a similar way. We have the following relation in H (see [R3]):

ug’u’le_l = wn(Q)wn-ﬁ-l(Q) (u(nJrl,n) + Z u(nflJrl,nfl)Rl(;

1<i<n

+ > u(P| Rwuw)

0<i<n—1,p>1
$>0,t>0, s+t+l+(p—1)=n

where P is a non-zero preprojective module with dim P = (s+p, s) and [ is a non-
zero preinjective module with dim I = (¢,¢ 4 p — 1). Then by a routine calculation
using the relation in §5.3, we obtain (i). O

8§6. Integral bases for the generic composition algebras
§6.1

For a connected tame quiver () without oriented cycles with path algebra A = F,Q,
let e be an extending vertex of Q. Let P = P(e) be the projective cover of the
simple module S, corresponding to the vertex e. Setting p = dim P(e), one has
(p,p) = 1 = (p,d) and there exists a unique indecomposable preprojective module
L with dim L = p + §. Moreover Homp (L, P) = 0 and Exta(L, P) = 0. Recall
that a pair (M, N) of indecomposable A-modules is called an ezceptional pair if
Ext(M, M) = Ext(N,N) = 0 and Ext(N, M) = Hom(N, M) = 0. Thus (P, L) is
an exceptional pair.

Let €(P, L) be the smallest full subcategory of mod A which contains P and L
and is closed under taking extensions, kernels of epimorphisms, and cokernels of
monomorphisms in the category of A-modules. Also we have dimg, Homy (P, L) =2.
By [CB], €(P, L) is equivalent to the category of F,K-modules, where K is the
Kronecker quiver with two arrows from vertex 2 to 1. In this case, L corresponds to
the projective cover of the simple module 65 and P corresponds to the projective
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cover of the simple module 6;. This induces an exact embedding F': modF K —
mod A. We note here that the embedding functor F' is essentially independent of
the field F,. This gives rise to an injective homomorphism of algebras, still denoted
by F': H3(K) — H;(A).

In H;(K) we have defined, in §5.8, the elements FE,,s, for m > 1 for the
corresponding imaginary root 6. The images Ep,s = F(Eps, ) in H;(Q) will play
a significant role in the construction of PBW bases and canonical bases in the affine
cases. Since Ey,s5, € Cy(K), and (L), (P) € C;(A), it follows that E,,s is in C;(A).
Therefore the genericalization process of §1.4 will induce an embedding of algebras
F:C*(K)z — C*(A)z. Let K be the subalgebra of C*(A)z generated by E,,s for
m € N. It is a polynomial ring on infinitely many variables {E,,s | m > 1}, and
its integral form is the polynomial ring on the variables {E,,s | m > 1} over Z
although the expressions of E,,5 in terms of linear combinations of equivalence
classes of modules of A will vary as ¢ changes. In a certain sense, these elements will
collect the contributions of the homogeneous regular modules to the composition
algebras.

§6.2

Let T, ..., 7 be all non-homogeneous tubes in mod A (in fact, s < 3). For each 7;,
let r; = r(7;) be the period of 7;, i.e., the number of quasi-simple modules in 7;.
Then r; > 1. Let g be the Kac-Moody Lie algebra corresponding to the tame
quiver Q. The multiplicity of a root « is the dimension of the root space g,. The
following is well-known (for example see [CB]):

Lemma 6.1. We have the equality Y ;_,(r; — 1) = |I| — 2 and the multiplicity of
each imaginary root md is |I| — 1, where |I| is the number of vertices of Q. O

§6.3

Each non-homogeneous tube 7; is a full subcategory of mod A, closed under ex-
tensions and equivalent to the full subcategory of nilpotent modules of the cyclic
quiver of the same period. In Section 3, the composition algebra C;(7;) of 7; and
its generic integral form C%(7;) have been constructed. For each 7;, let II? be the
set of aperiodic r;-tuples of partitions such that M;(m;) is an aperiodic module
in 7; for any m; € II?. We have constructed in §3.3 the element

Er = (Mi(m))+ ) ny(Mi(\)
)\LGHL\H;L, i <7

in C*(7;)z. Then {E,,

m; € 1%} is a Z-basis of C*(7;) z.



AFFINE CANONICAL BASES 855

There is a natural embedding of H,(7;) into Hy(A) from the embedding of
the category 7; in mod A. Since the Euler form (—,—) defined in §1.2 depends
on the homomorphism and extension spaces only, this embedding also gives an
algebra embedding H;(7;) into H;(A) for each finite field F,. Since all quasi-
simple modules in 7; are in C;(A), we have C;(7;) C C;(A) for all g. This induces
an embedding of C*(7;)z into C*(A)z. Thus elements in C*(7;)z will be denoted
by the same notations as their images in C*(A)z.

For the tame quiver @, let M be the set of quadruples ¢ = (ac, be, ¢, we)
such that a € N, be € NE™ 7o = (mie,..., o) € 1§ x -+ x 112, and
we = (wy > -+ > wy) is a partition.

Then for each ¢ € M we define

E°¢ = (M(a.))*x E

T2c

x-x B x By s % (M(be)),

where (M (a.)) and (M (b)) are defined in Lemmas 4.4 and 4.2 respectively, E,_ is
defined above and E,,_s is defined in §6.1 and Lemma 5.8. Obviously, { E€ | ¢ € M}
lie in C*(A), in fact in C*(A)z, and are linearly independent over Q(v).

Proposition 6.2. The set {E° | c € M} is a Q(v)-basis of C*(A)g(v)-
The proof of Proposition 6.2 will be given in §6.4 after some preparations.

Lemma 6.3. InC*(A)z,

En5 = Z bml,...,msEmlts Koeeo ok Ems(;a where bml, mg €z

m1<--<Smg
mi+-+ms=n

Proof. By the relation

k
1 o
Eos =1, Egs = 0 E 0" B * Egi_s)s,
s=1

we can solve the equation recursively to get the relation in the lemma. O

It is known from Ringel’s work [R2] that the Lie subalgebra nt C
C*(A)gpuw-11/(v — 1)C*(A)gjv,o-1) generated by wugg,) (i € I) over Q is the
positive part of the corresponding affine Kac-Moody Lie algebra over QQ, and
C*(M)gpo,o-1/(v = 1)C*(A)g[y,o-1] is the universal enveloping algebra of n.

For each non-homogeneous tube 7; of rank r;, we write S;[l]; for the indecom-
posable module S;[l] in the tube 7;. Let ¥ : C*(A)z — C*(A)z/(v — 1)C*(A)z be
the canonical projection. Then one of the main results in [FMV] is the following;
its proof relies on Lemma, 6.1.
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Proposition 6.4. The vectors V(ujar(ay)) for a € o W (us,y,)) for dim S [l];
=« being a real root, i = 1,..., 53 W(us, ;) — U[s,4. (1)) for dim S;[l]; = mé being

an imaginary root and 1 < j <r; —1,i=1,...,5 Y(Eys5),n > 1; and V(up(s))
for B € ®F ., form a Z-basis of n*.

TED ?

Note that it is easy to see that all vectors in Proposition 6.4 belong to the Lie
algebra n™, and that they are linearly independent over Q. For example, \IJ(Em;)
is in nt for all n > 1. Then by Lemma 6.1, one can prove that those vectors give
rise to a Z-basis of nT.

§6.4. Proof of Proposition 6.2

By the definition, {E€ | ¢ € M} is a linearly independent set over Q(v). For
any dimension vector w € NI, let V,, be the Q(v)-subspace spanned by those E¢,
c € M, such that E€ € C*(A),. It is well-known from Lusztig’s work [L1] that

dimQ(U) C*(A)w = dun@((,’* (A)@[v1w1]/(v - I)C* (A)Q[v,vfl})w

and the monomials in a fixed order in the basis elements of n* in Proposition 6.4
form a PBW basis of C*(A)qpy,s—1)/(v — 1)C*(A)g[u,v-1] over Q. However, Lem-
mas 3.3 and 6.3 imply that the PBW basis elements can be obtained by applying
¥ on {E° | ¢ € M}. Therefore dimg(,) Vi > dimg(,) C*(A). Hence {E€ | ¢ € M}
is a Q(v)-basis of C*(A). O

As a consequence, the multiplication map
@ : C*(Prep) ®q(v) C*(T1) @) * ** @qw) C*(Ts) ®q(v) K ®@q(v) C*(Prei) — C*(A)
is an isomorphism of Q(v)-vector spaces.

§6.5

We may consider the ring A = Q[v,v~!] and denote by C*(A) 4 the A-subalgebra
*m)

of the generic composition algebra C*(A)a C [], H;(A) generated by ug =
w™/Im)! (i € I).

Proposition 6.5. The set {E° | c € M} is an A-basis of C*(A) 4.

Proof. For any monomial m in the divided powers of ug,; (i € I), Proposition 6.2
implies

m= " fmew)E®€C*(A),

ceM
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where fm o(v) € Q(v) and the summation is finite. Note that E,_ in the definition
of E€ has the form (cf. §3.3)

A€M\, A<

with n € Z. The formula m = Y\ fmc(vq)E€ still holds for each ¢. Thus, by
Lemma 1.2, for each ¢ € M, there exists N (c) € N such that (,/q)V(® fu c(,/q) € Z
for all ¢q. It is easily seen that vN(c)fm,c(v) is a polynomial in Q[v]. Therefore

fm.c(v) € Qu, v~ 1. O
Corollary 6.6. The multiplication map
@ :C(Prep)a @aC (T1)a®a - @aC (T)a ®aKa®@aC*(Prei) g — C*(A) 4

is an isomorphism of A-modules. O

§7. A bar-invariant basis of C*(A) 4

§7.1

In this section, we continue to use the settings of Section 6. The first part of this
section is devoted to finding a monomial basis and a triangular relation with the
PBW basis {E°€ | c € M}.

We first define the variety

Oc = OM(aC) * O]\/Lrlc koo k OM”"SC *chg * OM(bc)

for any ¢ € M, where Ny s = Nyys * -+ % Nup,s if we = (w1,...,w;) and each

N, s is the union of orbits of regular modules of €(P, L) with dimension vector w;.

Since all homogeneous regular modules of dimension vector w;d of the affine quiver

are in €(P, L), by an argument similar to [R8, Cor.], M,s is an irreducible variety.
Then by Proposition 6.5, Lemma 4.6 can be rewritten as follows:

Lemma 7.1. For any a € NY™ and b € NETein C*(A) 4 we have

f
() ma= (M@)+ 3 AR
dim O <dim O,
(ii) mp = (M(b))+ > gE"

dim O, <dim Oy,

where f2,g° € A and c € M. O
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Remark. The conclusion of Lemma 7.1 is also true if we take M (a) to be finitely

many copies of an exceptional module.

Lemma 7.2. Let m € II for some T;. Then there exists a monomial m, in the
divided powers of ujg,) (i € I) such that

m; = FE, + Z fTES,  where fT € A.
dim Oc<dim O
Proof. Let {61,...,0,,} be a complete set of non-isomorphic quasi-simple modules

of 7; in the natural order (see Section 3). By Proposition 3.2, we then have, in

H (M),

m(ww) =E,. + Z U(I—dim M (m)+dim End M (7)+dim M (A)—dim End M(/\)g{})7r ('Ug)E)”

AETle, A<

where m(*r) = 0;?61) ook Gj(-fet). Since each 6, is an exceptional module, we have

<U[g],p]>(*e”) = (epfj,) (see the proof in §4.2).
Let m;, € II{ be such that M(m;,) = ey0;, and dim M(m;,) = (dy,...,d,)
with I ordered as in §4.4. By Lemma 7.1 and the subsequent remark, we define a

monomial mj, such that

= (S)CM s (S = (M) - YD feNES

dim O, <dim OM(,rj )
P

mj,

where fo'7 € Qv,v™].
Let Ly = e10;,, Lo = L1oeab,,, ..., Ly = Ly_10e,0;, € T;. By Lemma 2.3(vi),
we have M () ~ L;. Similar to the argument as in §3.3, we have gii =1

Jp

for 2 < p < t. Define a;, = dim L,,_; and 8, = dim M (r;,). By Lemma 2.3(vi),

—1,€5,0

dimOr, = dim O, , + dim Oepejp + m(ayp, Bp),
or
codim O, = codim Or,_, + codim Oepgjp — (Bp, ap).
Thus
t t
dim Opy(ry = dimOp, =Y dim O g, + Y m(ayp, ).
p=1

p=2
For any ¢ € M with O, C Eepgjp and dim O, < dim Oepejp, by Lemma 2.2,

codim Oy, , x Oc = codim Oy, , + codim O — (B, ap) + 7

> codim@LV1 + codim Oepgjp —(Bp, ap) = codim Op, .
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If we take m, = My keeek My then

me= (0000 Y e

dim O¢, <dim O, 0,

- (<9jt>(*6¢) i Z fé‘;thct)

dim O, <dim Oetej,

= (M + > e

dim O¢, <dim Oﬁlgjl

o (MEmY+ Y e

dim O, <dim Oetejt

=FE, + > fTES, where fT € A. O
dim O, <dim O,
Lemma 7.3. Let E,s5 be the embedded image in C*(A) 4 of the element Eys, in
C*(K)4 as in §6.1. Then there exists a monomial mys in the divided powers of
us,] (i € I) such that

Mys = Eps + E hg‘sEC, where b2 € A.
dim O <dim O, s

Proof. We let 61,65 be the two simple objects of €(P, L). By Lemma 5.11(iii),

00 5 (0) ™ = Bas+ S f19EC with 29 € Qv,v7Y)
dim O <dim Oy, s
Suppose that dimnf, = d’' = (df,...,d),) and dimnfy = d” = (df,...,d]!)
in ZI. Since 0, and 65 are exceptional modules, by the remark following Lemma 7.1,
we then have

m; = <Sl>(*dl1) o <Sn>(*d;) — <91>(*n) + Z f:glEC’
dim Oc<dim Oy6,

my = (1)) s (8,) 500 = (9,) ) 4 Z gro B,
dim Oc<dim Oy,

where f701 g2 ¢ Q[v,v~!]. By representations of the Kronecker quiver, we know
that N,s is open in Opg, *Oyyg, . Moreover, N5 is open and so dense in 6n02 *@ngl ,
that is, Nys is an irreducible G-stable open subvariety of O,g, * Ong, (of course
with maximal dimension). By Lemma 2.2, we then obtain

codim Oy, * Opg, = codim Oy, + codim O,g, — (d’,d").
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If either O C Opng, \ Ono, or Ocr € Opg, \ Opp,, then
codim O¢ * Oy = codim O + codim O — (d',d”) +r
> codim O,,g, x O, = codim N,,s.
We now take m,,5 = mo * my;. Then
ma = ()0 + > @B )« () Y fE)
dim Og <dim Og, dim O, <dim O,

— E,5 + > R ES,  where h?® € A. O
dim Oc<dim Oy s
Proposition 7.4. For any E€,c € M, there exists a monomial m¢ in the divided
powers of us,), © € I, such that

’
mc = Ec + E g/EC 3
c’'eM,dim O, <dim O¢

where hS, € A.

Proof. Using the property of the Auslander—Reiten quiver of a tame quiver, if
P € Prep, I € Prei and R is a regular module, Lemma 2.3(vii) implies that
Oparer is open in Op x O « O;. Thus we need to prove the same property for
ErxE,s where m € II?. By Lemmas 7.2 and 7.3, there exist m, and m,,; such that

My = Eﬂ' + Z ngc7 Mps = En5 + Z g(’r;L’EEC,a
dim Oc<dim O, dim O,/ <dim Oy
where f29, g0 € A.
Since we can find smooth points A € O, and B € O,,5 such that Hom(B, A)
=0, by Lemma 2.2 we have
codim O, x 0,5 = codim O, + codim O,,5 — (nd, ).
If either O C Ox \ Oy or Ocr C Ops \ Ops, we have again

codim Ogr * O¢r > codim O * O,5 = codim Oy x Oy,

and
Me = Mk Mys
§ m e’ § né e’
= ETK‘ + C’E * En(S + gC” E
dim O,/ <dim O, dim O, <dim O, 5

11
= EC + E hg///Ec 5 Whel“e hg/ S A. D
c"eM,dim Oy <dim O¢
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§7.2

We define the lattice £’ to be the Q[v~!]-submodule of C*(A)4 with the basis
{E° | ¢ € M}. By an argument similar to that in [L1], we define wg € A such
that
Ec = Z wSES for any ¢ € M.
c’eM
Then wg € A, wg =1 and if wS # 0 and ¢ # ¢ then dim O < dim O,. Thus we
can solve for ¢ € A the system of equations

1 —
c E c
CC’ = Wer g//
dim O/ <dim O, <dim O

to get a unique solution such that
=1 and ¢ cov'Qu™Y if dimOy < dimO,.

For each ¢ € M, define
£°= > (SE°,

c’'eM
which is a finite sum. Then we have the following result.

Theorem 7.5 The set J = {£° | ¢ € M} is an A-basis of C*(A) 4 with the two
properties:

(i) E¢=E&°€ for allc € M,

(i) m(&°) = m(E°),

where 7 : L' — L'/v=1L is the canonical projection.

Proof. (i) We have
=Y B =) Gy wi b =Y (D Cewe ) B =Y (B =g

So the elements £€ are bar-invariant.
(ii) Obviously the set J is a Q[v~!]-basis of the lattice £’. O

§8. Affine canonical bases

Recall that A = kQ and k = F, is a finite field. For any A-module M and any
field extension k C K, we view M¥ = M ®;, K as a KQ-module. For any regular
A-modules M, ..., M; and L, it is known that there exists the Hall polynomial
<pﬁ/[1_“Mt € Q[T] such that 4,0’]—(41,__Mt(q") = g]%;l;MtK for any finite extension
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k C K of degree n ([R2], [Z2]). Similarly, we have a polynomial aps such that
anm(q™) = |Autgo(MHE)|. Therefore, we will perform computations in the Hall
algebra H,(A) and then use the argument as in §1.4 to get a generic form.

§8.1

The Ringel-Hall algebra H;(A) is an associative Q(v,)-algebra with the basis
{{M) | M € P}. Note that (M) = v;dimMerimEndA(M)u[M]. An inner product
(=, —)q on H;(A) is defined in [G] by

U2 dim End M

(8.1) (M), (N))g = 6pr.n ———,
apm

where ap; = |Aut(M)]. Following Green [G] and Ringel [R1], we can define a linear

map rq : Hy(A) — Hy(A) ®g,) Hg(A) by

(8.2) Tq(U[L]) = Z U({]dime,dime)g][\,/[)NaMaM Up @ UN-
[M],[N] az

We have the following property:

(8.3) (T, y*2)qg = (rq(z),y®2z), forany x,y,z € H;(A).

Using the fact that Ext(P, R) = Ext(R,I) = Ext(P,I) = 0 for P, R, and [
being preprojective, regular, and preinjective respectively, a direct computation
shows

Proposition 8.1. For any preprojective A-modules P, P’ € P, reqular A-modules
R, R' € P and preinjective A-modules I, 1" € P, we have, in H}(A),

2(dim End P+dim End R+dim End I)
((P) s (R) (I}, (P')y % (R') % (I') ) = 6pprOrprdrp

aparayr

Using the argument of §1.4, the linear maps r, induce a Z-linear map r :
C*(A)z — C*(A)z ®z C*(A)z, and the bilinear maps (—, —), define a Z-bilinear
form (—, =) : C*(A)Z®zC*(A)z — Z. The form (—, —) coincides with the paring
defined by Lusztig [L5] under the isomorphism C*(A)z = UZ. This can be easily
verified by comparing the values on simple objects (Chevalley generators) and by
using (8.3).

§8.2

Now we calculate the inner product on elements in the PBW basis {E | ¢ € M}.
For the Kronecker quiver, it follows from Section 5 (after taking the generic form)
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that, in C*(A) z,

En& = E(nflfn) * By — U72E1 * E(nflm)v

1 -
E05 = 1, En(; = m Z’US ES(S * E(n—s)5'

Using the calculations in [BCP], E,s corresponds to the complete symmetric func-

s=1

tion A, in [M] and E,, s corresponds to the complete symmetric functions h,,, in
[M] (see Sections 1 and 3 in [BCP]). Then

(Ens: Bng) = 1 (modv™'Q[[v™ )] N Q(v)),
(Ens, Fu.s) € N+ 07 1Q[[v 1] NQ(v),
(Bess Bues) € N* +071Q[ 1] N Q(v),
for any n > 0 and any partition w¢ of n.

Let F': 'H;(K) — H;(A) be the embedding and €(P, L) be the full subcate-
gory of mod A with two relative simple objects 61,605 as in §6.1. We denote by &g
(resp. €;) the full subcategory of €(P, L) consisting of the A-modules which be-
long to homogeneous (resp. non-homogeneous) tubes of mod A. We will use iso &
and iso €; to denote the isomorphism classes of objects in €y and &; respectively.
Note that the classes of indecomposable objects in €; do not depend on ¢, while
the classes of indecomposable objects in €y do depend on ¢. By the definition of
the inner product in §8.1, this embedding preserves the inner products. Recall the
definition of E,,; € H;(A) which is the image of E,s € H;(K). Now in H;(A) we
have the decomposition

En5 = En5,1 + En6,2 + En6,3
with

En6,1 _ ,Uq—n dim 61 —n dim 6 § u[]u]’
[M]€iso €1, dim M=nd

—ndim 61 —n dim 6
Epsp=uv,mommmnames Z U[Moo M)
dim(Mo+M1)=nd
[0]#[M1]€iso €1, [0]#[Mp]€iso €g

En§ 3= oo™ dim 0; —n dim 05 Z U[M]
s q .

[M]€iso €g, dim M=né
Note that dim 6; (i = 1,2) is independent of g. It is easy to see that (Eps;, Ensj)q
= 0 for all ¢ # j. Although in the decomposition above, E,; ; varies for i = 2,3 as
g varies (the number of terms will change) we still use E,s; to denote (Fy;s,) in

[T, 75 (A).
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In the rest of this section we will use the following facts frequently.

Lemma 8.2.1. Let M be a reqular module with dim M = nd, and M = @le M;
with M; € T; fori=1,...,s. Then dim M; = n;6 and y_;_, n; = n.

Proof. Assume M = M; & M] is a direct sum decomposition with M; € 77 and
M having no direct summand in 7;. If dim M; = m 1 + 31 with 8, ¢ N6 and
dim M{ = m/d + B} with 8] & No, then g1 + 5] € No. Since 0 = (m16 + 1, mid +
B1) = (B, B1) = (md — B, 81) = —(B,4), we get B, = kd,k € N. This is a
contradiction. Now the lemma follows by induction on s. O

Lemma 8.2.2. The following relations hold in C*(A) 4:

(EmS,l; Ené,l) =0 (modvil(@[[vilﬂ N Q(U))’
(En6,2a En5,2) =0 (modv_l(@[[v_l]] N Q(U))’
(Ens3, Ens3) =1 (mod v_l(@[[v_l]] NQ(v)).

Proof. We first work over finite fields F, and then pass to the generic form. Note
that upyy = vgm M-dimEndM V0 and dim M = n(dim6; + dim 63). Then

Ené,l — Z U;dim EndM<M>.
[M]€iso €;,dim M=nd
By Proposition 8.1 we have

(En(;,l,Ené,l)q - Z U;2dimEndM(<M>a <M>)q
Me€iso(€q),dim M=nd

Note that ((M), (M)), = |[End M|/anr € Q[[v; '] N Q(vy), [End M| = v dim End M

and ajps is a polynomial in v, with leading term vg dimEnd M (here dim End M is
invariant as ¢ varies). Then

(M), (M))q € 1+ v Qllvg '] N Qvy)
and
(En§,17 Ené,l)q € Uq_l(@[[vq_l]] N Q(UQ)'
We now use induction on n. Obviously, the relations of the lemma hold for
n = 1. We assume now that they are also true for all m with m < n. Since

—n dim 6, —n dim 6
(8.4) Epsp=v, nomimname E U[Mo@M,]
0#[M;]€iso €1, 0#£[Mop]Eiso €g
dim(Mo®M1)=nd
—dim End M
= E vy TR (My) * By _m)s3

[M1]€iso €4
dim M1=md,0<m<n
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(noting that 0 < n —m < n), we have

(En5,27 En5,2)q

= Z vy 2 ER M (M) (M) (B (ns—dim My ),35 B(ns—dim a1,),3)g-

[M1]€iso €4
dim My=md, 0<m<n

Since dim End M; > 1 and, by the inductive assumption, (Euns,3, Ems3)q = 1, we
have
(Ens 2, Bns 2)g = 0 (mod v, ' Q[[v, 1] NQ(vy))

for all n > 0. Since
(Ens, Bns)g = 1 (mod v, ' Q[[v, ']l N Q(vy))

and
(En57 Ené)q = (Ents,la Ené,l)q + (En6,2; En6,2)q + (En5737En6,3)q7

using the results proved for E, 5 and E,s2 we have

(Enss: Bns.3)g = 1 (mod vy Ql[vg 1] N Q(vg)).

Now the desired relations hold for all n and ¢. By taking the inner product in
[1, H;(A), the generic form of the lemma follows. O

§8.3

In the following, we will define a decomposition of the regular part of C*(A) 4 with
respect to the inner product (—, —).

In Section 6, we have constructed the Q(v)-basis {E° | ¢ € M} of C*(A)g(w)-
Let R(C*(A)) be the Q(v)-subspace of C*(A)g(,) With the basis

{E

ek xEr % Fy 5| Te = (Tey -y Tse) € I X+ - - xII2 and w, is a partition}.

Obviously, R(C*(A)) is a subalgebra of C*(A). Naturally, we take E,_; = 1 if
we = 0.
Let R%(C*(A)) be the Q(v)-subalgebra of R(C*(A)) generated by the basis
{Ep, % *xEp | 7Te=(T1cy. o, Tse) € UF x -+ x T2}

For o, € N[I], we write o < § if § — a € N[I]. Recall that C*(A)g is the
B-homogeneous part of the NI-graded algebra. It follows that R*(C*(A))s =
R(C*(A))g for f < 5. We now define

Fs ={z € R(C*(A))s | (z, R*(C*(A))s) =0}.
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By Proposition 8.1, (—,—) is non-degenerate on R(C*(A)). Using Lemma
8.2.1, we get

R(C*(A))s = R*(C*"(A))s @ Fs and dimFs = 1.
Using Schmidt orthogonalization, we set

E:? =FEs — Z Ao B
M(mic), dim M (mic)=6, 1<i<s
satisfying the condition F5 = Q(v)Ej5. Now let R(C*(A))(1) be the subalgebra of
R(C*(A)) generated by R*(C*(A)) and Fs. We have R(C*(A))(1)g = R(C*(A))g
if 8 < 24. Define

Fas ={x € R(C*(A))2s | (z, R(C*(A))(1)25) = O}
Then dim Fz5 = 1 and R(C*(A))2s = R(C*(A))(1)25 © Fas. Recursively, we define
Fns = {x € R(C*(A))ns | (2, R(C*(A))(n = 1)ns) = 0}

and R(C*(A))(n) to be the subalgebra of R(C*(A)) generated by R(C*(A))(n —1)
and F,s. We have R(C*(A))ns = R(C*(A))(n—1)pns ® Frs with dim F,,s = 1. Also,
we can choose E! ¢ such that E,s — E/ s € R(C*(A))(n —1),5 and F,5 = Q(v)E/ 4
for all n > 0.

Lemma 8.3.1. Let M, N,L be regular A-modules with dim M, dim N, dim L €
N§. Then the degree of the Hall polynomial ok, \ is no more than dimEnd L —
(dim End M + dim End N).

Proof. By the remark at the beginning of Section 8, we have the Hall poly-
nomial ¢4,y for gk, and the polynomials for ans,an,ar, and [Hom(M, N)|.
Therefore, we have a rational function, denoted by f, such that f(¢¢) =
|Ext" (M &, Fge, N ®F, Fge) L@, Fye | for all e > 1. Since f(g°) is an integer for all
e > 1, f is a polynomial with coefficients in Q. Since (dim M, dim N) = 0, we have
dim Ext' (M, N) = dim Hom(M, N). The degree of the polynomial f is no more
than dim Ext!' (M, N). Thus,

deg oty < degar — (degan + degay).

It is also known that degax = dimg End X for any A-module X. This completes
the proof. O
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Let we = (w1, ..., w;) be a partition of n. Then
Buyes = Euysx % By,s = (Buwys.1+Buwys 2+ Fuw53) % % (Buws1+Euws 2+ Eu,s 3)-
We set 6.3 = Ew,5,3% - * Ey,s.3.
Lemma 8.3.2. Let w. be a partition of n. Then
(Ensy Buwes) = (Bns3, Bues,3) (modv_l(@[[v_l]] NQ(v)).

Proof. We use induction on n. When n = 1, the result follows from Lemma 8.2.2.
Suppose

(E7YL57 Ewé&) = (Emé,?n Ewé&,i’)) (mOd vilQ[[vilﬂ N Q(U))

for all partitions w,, of m with m < n. Let w. be a partition of n. Since Eis =
Eys1+ Eys2 + Eys 3 for any k € N, we have, in H;(A),

Ewc5 = (Ew1§,1 + Ew16,2 + Ew15,3) koeee ok (Ewtﬁ,l + Ewt6,2 + Ewt6,3)

=Ey 51 % xEys51+ Eys3*---* Ey,s3+ rest.

Here

Ew1671 O Ewt&l

_ —wy dim 61 —w; dim O
- (vq § : U[M1]>

[M,]€iso €4
dim Mlzwlé
. —wy dim 61 —w; dim 62
* * (Uq z : UM,
[M¢]€iso €4
dim M;=wd
_ .. —ndim#; —ndim 6, L 2
=Y Z Z N1y a1, (VUL

[M1]€iso €1,...,[M]€iso €1 [L]€iso €4
dim My =w16,...,dim My=w;d

= > > pydmEnd Lok (2)(L).

[M1]€iso €4,...,[M]€iso € [L]€iso €, dim L=nd
dim My =w14,...,dim M;=wd
Using formula (8.3) (in §8.1) for the expression of Ej; 2 in the proof of Lemma 8.2.2,

we have

rest = Z Z v;dimE“ndp%, M, (v§)<M> * By s, 3.

21
[Mi,],....,[M;,]€iso €1 [M], wl; 0£MeC,
Sl dim M, =15, 1<n |(wg)|+l=n



868 Z. LiN, J. X1A0 AND G. ZHANG

By applying the above expansion of E, s to (Ens, Ew.s), and by (8.3) (in §8.1)
and Lemma 8.3.1, and by applying the genericalization process of §1.4, we have,

in C* (A)A,

(Ens, Bus) = (Bns 3, Bw.sz) (modv Qv N Q(v)). O
Lemma 8.3.3. Assumem+n=s+t, m>n>0,s>t>0. Then:
(i) If m# s orn#t, then (E/ s+ El s, E's+ Ef5) =0.
(ii) (Eys * Eis, By x Ei) = (Eys, Eos) (Efs: Eys).
(il) (Es* Eis, Eis = Eys) = (B, Egs)(Els, Eys)-
(iv) ((Eps)™, (Ens)™) = nl(Eps, Eps)"

Proof. We remark that if 0 = R — M — I — 0 is exact for a non-zero regular
module R and a non-zero preinjective module I, then M contains a non-zero
preinjective direct summand and no non-zero preprojective summand. Dually, if
0 — P — N — R — 0 is exact for a preprojective module P and a regular
module R, then N contains a non-zero preprojective direct summand and no non-
zero preinjective summand.

Since R(C*(A))ks = R(C*(A))(k — 1)is ® Q(v) E} 5, we have

(85) 7(Eps) = Eps @1+1® Eps + Z g ® bri + Z i * (Ini) ® (Pri) * Yni,

where aw;, bri, Thi, Yri € Uj<k R(C*(A))(j) and Iy; and Py, are respectively non-
zero preinjective modules and non-zero preprojective modules.
We may assume that s > m; then n > t. Since

(Brs * Eps, Egs * Eig) = (1(E)s % Eps), By © Eis) = (r(Eps) x7(Ers), Egs @ Eig),

by the above formula for 7(E} ) and the above remark, we have

(Brs * Bos Bl + Ejs) = ((Brs @14+ 10 B 5+Zaml®bmz)
*(E ©L+1OE,;+ > au®b ) E ®E’)
nd no ni ni |y ~sh t |-

If s > m, it is easy to compute that the right hand side vanishes. If s = m >
t = n, it is easy to see that the left side of the above identity is equal to
(Els,El5)(Els, Els). If s =t = m = n, it is equal to 2(E’,, E'5)%. In general,
we have ((E/;)*, (E;)*) = I(E.s, E.5)! for 1 > 0.

Similarly, we can prove that (Els * Ejs, Ejs * El5) = (ElLs, Els)(Eys, Ejs) for
s> t. O
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Corollary 8.3.4. For m;,n; € N (i = 1,...,t) satisfying my > --- > my and
Li,kieN(i=1,...,7) satisfying Iy > --- > l;, we have
((Brys) ™ s e (B 5) ™ (Bl )™ 5ok (B 5)™9)

= ((Brys)™ 5 (Bpys)™) - (Biys)™ 5 (Eps)™)

ift=34,m;i=1;, andn; =k; foralli=1,...,t, and

(Bnys) ™ e (Bp) ™ (B )™ - (B 5)™) = 0

m15
otherwise.

For a partition w = (wy > -+ - > w;), we define

By = E,

sxeox By s
Lemma 8.3.5. Let {E, | 7 € I} be the Z-basis of C*(T;) z defined in §7.3. Then

(Ex % E5, Ex % Ep5) = 0yn(Ex, Exr)(E, hs)s  (Ex, Eys) =0.

mé» mé»

Proof. We may assume that m < n. Note that

’I"(ETr) = ET( ®1+1 ®Eﬂ' + Z C”lﬂ"zEﬂ'l ®Eﬂ'2

1,72

+ Z drymo By % (Iny ma) © (Prymy) % By s

1,72

where ¢qy ryy dny g € Z, M (), M(m1), M(ms) are in 7;, and Iy, r, and Py, », are
respectively non-zero preinjective and non-zero preprojective modules. Recall that

1(Eps) = By @1+ 1@ B s + Zami ® bmi + mei * (Imi) @ (Prni) * Y

where @i, bmi, Tmi, Ymi € Uj<m R(C*(A))(j) and I,; and P,,; are respectively
non-zero preinjective and non-zero preprojective modules. The same calculation
as in the proof of Lemma 8.3.3 tells us that

(EW*E/ ETr’ *E’:u;) :6mn(E7T7E7T’)( , ;16)

md> md>

The identities now follow from the definition of E;U 5 O

By Proposition 6.2, the set {(M(ac)) * Ex,_ %+ * Ex__ % Ey 5% (M(be))} is
a Q(v)-basis of C*(A)g(y). In the same way, we obtain
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Lemma 8.3.6. The following equalities hold:
(i) (M(ac)) * Erye x -+ % Er ., E}, 5) =0 for ac # 0 and partition we # 0.
(i) (Er,Ep, % -xEq E{UC(;) =0 for we # 0.

(iil) (Ery*-- % Er ,Ex,_ % xEx , xE! ) =0 forwe #0. O
Based on Lemmas 8.3.5 and 8.3.6, we obtain

Lemma 8.3.7. The following holds:

(ETric * Ez/ycé’ETrjc/ * E/ ) = (ETric’ETrjc/)(El Eq/ﬂc/ci)v 1 S Z.’j S S.

Wer 6 wed?

Proof. For a fixed 7, we have
r(Er.) = Er,, ®14+1® Er,
+ Z Cryma By @ By + Z iy o By * Iy ) @ (Preymy) * By s

T2 L, T2

where ¢q, rp, dny ry € 2, M(m), M(m1), M (m2) are in 7;, and I, », and Py, -, are
respectively non-zero preinjective and non-zero preprojective modules. Let

TO(Emc) =FEr ®1+1QFEq, + Z Cryma By @ By

T2

' (Bry.) = Erye ©1+1® Br,.

Also for we = (wy, ..., wy),
il {vczS) = T(E:ula) *eeo k T(E:uta)

= (E{Ws ®1+1R®E, s+ Z Quoyi @ buyi + Z Ty * (Lwyi) @ (Puwyi) * ywli)
ook (E{M R1+1®Ey 5+ Y i @ bu,i + 3 Tuyi * (Lwyi) @ (Puyi) yw)
Let Z Z
P(Elres) = (Blois @ 1419 Elyg + Y uni @ buns)
. (E;W; D1+1@ Elys+ > ®bw),

(B, s) = (El, s ®1+1QE), ;)% *(E, ;®1+1® E/ ),
It is clear that
(Er, * E:ucév ijcz * E{ucfé) = (r(Er,) * T(Elwcé)vEﬂjcr ® E{UC,J)
= (r%(Er,.) xr°(El,_5), Er. ©E, )

Wer 6
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Using Lemmas 8.3.5 and 8.3.6, induction on the length of the partition we/s shows
that

(TO(Eﬂ'z‘c) * TO(E:Ucﬁ)a Eﬂ'jc/ ® Evlﬂc/6) = (rl(Eﬂ'q:c) * rl( :ucé)v Eﬂ'jc/ ® E;;clé)
= ((Brie ® 14+1@ Er, ) x (B, @1+ 1@ B, ), Ex, , ® E,,_5)
= (Enyos Ex, ., )(E, w5)- O

wedr Hwer b

Theorem 8.3.8. With the same notation as above,

/ /
(Eﬂlc*"'*Eﬂsc*EwcéaETrlc/*"'*Eﬂ'sc/*E )

wc/5

= (ETF1C7 Eﬂlc/ )(Eﬂ'sc7 E‘n'sc/) U ( . . ) 0

wedr Hwes b
§8.4

In this subsection, we construct the canonical basis. Let Z7 be the union of the
sets of the isomorphism classes of indecomposable objects in the non-homogeneous
tubes 71, ...,7;, and add(Z7) be the set of objects that are isomorphic to direct
sums of objects in Z7 .

Theorem 8.3.8 and Corollary 8.3.4 imply that (E/ s+ E s—E! s*E! s x) =0

for all z € R(C*(A)). Thus E/ s*E! s = E! s*E! s by the non-degeneracy of (—, —)
on R(C*(A)).

Lemma 8.4.1. Assume Y ;_, dim M (m;c) + |we|d = nd. Then:
(i) (Bngs Emye * -+ % Br % Ey ) € Qv N Q(v);
(ii) if |we|d < né, then (Ens, Ex,, * % Ex._ % By s) € v 1Q[[v™ 1] N Q(v);
(iil) (Brye % Broo % Bues, Enyo %o % En % Bygs) € 0" (N+07 Qo] NQ(v))
for some h > 0.
Proof. By the proof of Lemma 8.3.2; we have
Eyes = Eyys1 %% By51 + Euyys3 % - % By, 6.3 + rest,

where, in H;(A),

E’w16,1 Kook Ew‘6’1 = Z Z vq_dimEndLSOLMr"Mt (U§)<L>

[M;]€iso €q,...,[M]€iso €1 [L]€C;
dim M =w14,...,dim My=w;d

and

rest = Z Z v, S End MW (W2)(M) % Eyys 3.

i1 it
[Mi,],...,[My,]€iso €1 [M], wl: 0£M€EC,
23:1 dim M;, =15,1<n 1<|wl| < |we|
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If M(mie) = 0 for all 1 <4 < s, then both (i) and (iii) are true using the
property of complete symmetric functions with respect to the bilinear form (—, —)
(see §8.2).

Suppose M (7;c) # 0 for some i. By [DDX],

B, = (M(me)) + Z nyie(M())), wherenyc € v Zv1].
AGHI‘\H;}, A<Tic

Then

Epy % % By :<éM(mc)>+ > (N,
i=1

Neisoadd{ZT}

where 7y € v™'Z[v™!]. Then multiplying them in H}(A) we have

Eﬂ'lc koeee ok Eﬂ"sc * Ewl&l koeee ok Ewt(?,l

_ 3 > v;dimE“dehl...Mt(v§)<@M(Wic)> * (L)

[Mi]€iso €q,...,[M]€iso €1 [L]€C, i=1
dim M7 =w1d,...,dim M;=wd
—dimEnd L, L 2
+ > > Vg Onry -, (V)N (N) = (L).
[Mi]€iso €q,...,[M]€iso €1 [N]€isoadd(ZT)
dim My=w14,....dim M;=wé [L]ec¢,

Here,

S

<@ M(mc)> « (L)

=1
o dim End @;_; M(mic)+dimEnd L-dimEndU 2
- § Vq @@le M(wic),L(vq)<U>
[l

and
<N> % <L> _ Z Udim End N+dim End L—dim End VQO%[/(’UQ)<V>.
V]

By Lemma 8.3.1, we know

deg, P ai(mepr < dimEnd U — (dim End L + dim End @) M(ric) ).

=1
t
deg, ¢fr,..a, < dimEnd L — > dimEnd M;,
i=1
deg, oY, < dimEndV — (dimEnd N + dimEnd L).
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Hence,

EroxxBr *xFEys51%- % Eys1

dim End U —dim End @;_; M(7sc)—2 ), dim End M; -1
= > Vg ' fo v )U)
0#[U]€isoadd(ZT)
dim End V—dim End N—2 3}, dim End M; -1
S Frlog YV,

0#[V]€isoadd(ZT)
where fy(v™1), fy(v™!) € Qu~!]. In general,

Eﬂ'lc ook Eﬂ'sc * Ewcé
= > fo(L) + > Far(M) % Euys3

0#([L]€isoadd(ZT) 0#([M]€iso add(ZT)
1< we | <|we|
+ (M(mie) @+ ® M(mse)) * Euess + Z fN(N) * B3,

[0]#[N]€iso add(ZT)

where U—dinlEndeL7v—dimEnd MfMa fN c 1}_1@[1)_1}.
Using the expressions of Eps1, Ens2, Ens3, it is easy to check that (after
computation for each ¢ and then taking the genericalization)

(En57 E’Tl'lc O Eﬂ'sc * Ewcé) € ’U_lQ[[U_lﬂ N Q(U)

Then conclusion (ii) follows.
By Lemma 8.3.2 and the property of complete symmetric functions, we have

(<M(7rlc) D---D M(ﬂ—sc» * Ewc5,37 <M(7Tlc) DD M(ﬂ—sc» * Ewcﬁ,S)
€ N* + v~ 'Q[[v~]] N Q(v).

Thus
(Brpo % % Ep _xEy s, Fr % xE; _*FEy,s)€ vh(N +071Q[ Y N Q(v))
for some h > 0. Thus (iii) is proved. O

Using [L5], the lattice £’ defined in §7.2 is the Q[v~!]-submodule of C*(A) 4

characterized by
L'={z e ()| (z,2) € Qv ] NQ(v)}.

Lemma 8.4.2. Wehave E! s € L' and(E! 4, E!s) = 1/n (mod v 'Q[[v~1]]NQ(v)).
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Proof. We know that {E,, | dim M (m;c) =6, 1 <1 < s} is a basis of R%(C*(A))s.
Via Schmidt orthogonalization, we define £/ to be the orthogonal element cor-
responding to E, fori=1,...,s. We use induction on n.

For n = 1, it is easy to see that (E.,FE.) = 1 and (Es;,E.) = 0
(mod v~ 1Q[[v™1]] N Q(v)). Thus

;o (E(;,E;T) /
Eé = E§ - Eﬂ—: mEﬂ.
Hence, (B}, E5) =1 (modv™'Q[[v™]] N Q(v))).

Now suppose (E/ s, E! ;) =1/m (modv~'Q[[v~1]] N Q(v)) for all m < n. By

md?
the definition of E/ 5, the set

{E/s}U {Eﬂlc %k Er % By s ’ Z dim M (mc) + |weld = nd and |we| < n}
1<i<s

is a basis of R(C*(A))ns.

By Theorem 8.3.8 and the induction hypothesis, { Er, -+ Ex *E, 5, Ens}
C L'. Similar to Lemma 8.4.1, we get (Eys, Ex, *-- % Er *E/, 5) € v 'Q[v™']]N
Q(w) if there exists ¢ such that M(m;c) # 0. Thus

(En57 EZU ) _
7/15 = En(; — Z ﬁ iucé (modv 1£/).

weFn,weF(n) - Wed? Twed

First of all, (El s, El5) = (Ens, El5) since (E! s, E! s) = 0 if we # (n). We now

wed
claim that
(8.6) (Enss Biyes) = (Bryys By )™ - (Bl By )™
if we = (w’fl,...,wft), wy > --- > w;. Note that

T(Ené) = Z Eis ® E(n,i)g + rest.

0<i<n
Let 70(Ens) = Y g<icn Bis @ En_iys and wg = (w1 whz .. wl). Then
(Bns, By 5) = (r(Ens), By 5 ® Ezluga) = (TO(Eﬂ5)7E1/1115 ® Ezlugé)'
Based on the definition of E{Ul(; and Theorem 8.3.8, we have
(Bnss Eiyes) = (Buns, By 5)(Bn—wy)ss Buys)-

Now (8.6) follows by induction on the length of the partition we.
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On the other hand, Lemma 8.3.3(iv) and Corollary 8.3.4 imply
(8.7) (Elvess Bues) = kFil(Elyysy Blys)™ - kel (Ery 5, By 5)*
Using (8.7) and (8.6) we have

(Ens, By 5)*

(Eress Bioes)

( :167 ;5)E(En5vEn5)_ Z

webn,we#(n)

[Lis:(Efs, Ei5)™
= (En57 Ené) - Z — oo Y07 Y97
(n)#(1m272- )kn Hizl ri!
1
=1 Z —————  (by the induction hypothesis )

' k3
(n)#(1m1272-- )n, H2>1 rili"

1 1 1
=1- Z H Z” :5'

(1r1272 . i>1 T
We have used the identity n! = 3" 9m.. )y, W in the last equality. [

Let P,; = nE];. For a partition we = (171272 ---t7), let 2z, = [[;5, 977!
and P, s = P/{" %% PJ".

Corollary 8.4.3. Let we = (171272 - ), we = (171272 ...} be partitions. Then
(i) (Brpo % % Ep % Ey 5,Er , %% Er ,*Ew,é)
= Orpomye O myes Owe, s Hrl !5y Bls)T (mod v Q[ NQ(v)),
(Ppus, Prs) =n (mod v 'Q[[v!] N Q(v)),
(Pwess Puwes) = Swew,, 2w, (mod vil(@[[fu*l]] NQ(v)).

By this property of P, s, it is easy to see that P, _s corresponds to Newton

(i)

symmetric functions (i.e., power sum symmetric functions). Let Sy, s be the Schur
functions corresponding to P, s, and e® = (M (ac))*Ey, *- - -« E;_ %Sy s%(M(be))
for c € M.

By Theorem 8.3.8, Lemma 8.4.2, Corollary 8.4.3, and the Nakayama Lemma,
we have the following corollary:

Corollary 8.4.4. {e° | ¢ € M} is an almost orthonormal basis of L', that is,
(e%,6%) € ber + v Qv 1] NQ(v) fore, ¢’ € M.

In §8.1, we have defined the constructible set

Oc = OM(aC) * O]\/Iﬂlc koo k OM”rsc *chg * OM(bc)
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for any ¢ € M. Now we define a new partial order < for those e¢, ¢ € M, with
the same dimension vector as follows:

€€ < ¢ if either dim O, < dimO¢r, or dimO¢ = dim O but we > wer.
Based on the definition of E/ 5, we have

(En(S;El 5)

r_ We

Bo=Bu= D (E B
wekn,we#(n) We We

+ E ané,c’Ewlc/ ek ET{'SC/ * chztsa
dim O, <dim Oy,

’
EwC6

where a5 € Q(v). In fact, by Corollary 8.4.4, we have ans.c € Q[[v™1]] NQ(v).
Thus
E,s, E'
Eg=Eyt Y ((sw(;)) e

7 /
wc!—n,wc;é(n)( wed? T wed

+ § and,c/Errlc/ Kook Eﬂ'sc/ * w8y
dim Oc/ <dim O,

1 1
Ené =—Fps + E 7ch6
n Zw
webn, we#(n) €

+ § ami,c’Eﬂ'lc/ *oox By
dim Oc/ <dim O, s

se’ * ch/6~
Let H,s be the nth complete symmetric function corresponding to P,s. From
[M, p. 25], we have

En6 = Hn6 + Z an5,c/E7rlc/ O Eﬂ'sc/ * Owysd-
dim Ocl <dim O, 5
Let we be a partition of n. According to Lemma 2.2 and the above formula, we

have

Ewcé = ch5 + E Ans,c’ E‘n'lcl Hoeeek ETK'SC/ * chzé-
dim O, <dim Oy, 5

There is a monomial m,, s in the divided powers of u(g,j (i € I) in Proposition 7.4

corresponding to F,, s such that

Myes = ché + Z bn&,c’Eﬂ'lc/ * ch/6
dim O, <dim O, 5

+ Z Cnocr €’

dim Oc/ <dim Oy
M(ac/ )7&0 or M(bc/ )750
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= chzs + E ch//wc chué + E bnS,C’EWIC/ O Eﬂ"sc/ * ch/5

Wt >We dim OC/ <dim Oy

’
§ c
+ Cps,c'€

dim OC/ <dim Oy
M(a./)#0or M(b./)#0

where K, 5 are Kostka numbers and bys.c/, cns,cr € Q(v). Furthermore, for ¢ € M
and the monomials m. given in Proposition 7.4, we have

’

c E c

me =e + Qc'c€
e’ <ee

where a¢rc € Q(v). Proposition 7.4 and the above formulae tell us that the transi-
tion matrix between {E° | ¢ € M} and {e® | ¢ € M} is triangular with diagonal
entries equal to 1, and {E° | ¢ € M} is an A-basis of C*(A) 4, {e® | c e M} C L’
and {m. | c € M} C C*(A) 4. Thus the constants ac/c in the above formulae must
lie in A.

By applying the same argument as in Section 7 to {e€ | ¢ € M}, we obtain
an A-basis of C*(A) 4 which is denoted by {£'¢ | ¢ € M} satisfying

£'° = Z g/eC' for any ¢ € M,
c’eM
where ¢ =1 and ¢ € v 'Q[v™!] if e’ < e°.
Finally, we have the following theorem:
Theorem 8.4.5 The set {€'° | ¢ € M} C L is an A-basis of C*(A).a which is
characterized by the following three properties:
(i) &c =&’ for all c € M.
(i) 7(&'¢) = m(E°), where w: L — L' Jv=1L' is the canonical projection.
(iii) (£'¢,E"") = beer (mod v~ Q[[v™1]] N Q(v)).
According to Lusztig [L5], we have obtained the signed canonical basis (£'¢)
of L. From the above formulae, we have the relations
Me=E°+ Y decf’, where dec € A
e’ <ee
By the total positivity of the canonical basis, we have
Theorem 8.4.6. The set {£'° | ¢ € M} is the canonical basis of L' in the sense
of Lusztig.

This answers a question raised by Nakajima in [N].
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89. Appendix: Canonical basis for the Kronecker quiver

For the Kronecker quiver, one could follow the same argument as in Section 8 to
construct the canonical basis. Since the Kronecker quiver has the strong repre-
sentation-directed property, we will make the computation explicit following the
approach in [L1, 7.8-7.11]. We remark that although integral bases are constructed
in [C] and [Z2], their relation to the canonical basis presented here is new.

§9.1

In this section, we work in C* = C*(A)z. Recall from §5.1 that ®* is the positive
root system of §lg. For each positive root «, there is exactly one absolutely inde-
composable module in mod A with dimension vector a since the imaginary roots
have multiplicity 1. A function ¢ : ®* — N is called support-finite if c(a) # 0
only for finitely many o € ®T. Let N}ﬁ be the set of all support-finite N-valued
functions. We will use the order in ®* given in §5.1.

For c € N2 if {a € ®* | c(a) £ 0} = {B1 < --- < i}, we set

E° = ESP) y B,

Br

where Egcc(ﬁ ) & E;:(ﬁ *) if B; = md. Then Proposition 5.10 is equivalent to the

statement that
{E°|ceN?"}
= {(P(c)) * Ey.5 * (I(c)) | P(c) € Pprep, w € P(n),I(c) € Pprei, n € N}

is a Z-basis of C*.
Let E¢ = (P(c)) * Ey_s * (I(c)) be as in §7.1. We define the variety

O := (’)p(c),wc,j(c) = OP(C) *ch6 * OI(C)

for any ¢ € M, where N5 = Nyys * -+ - * Nyys if we = (wy, ..., we) and NMy,s is
the union of the orbits of regular modules with dimension vector w;d.
For d = (di,d2) € N?, we denote

E(d) = ES™) « B,
Note that ®* C N2. Similarly we define
E(c) = E(c(B1)p1) * - - - x E(c(Bk) Br)-

Note that E(c) € C* since it is a monomial in the Chevalley generators E; and
E5 in the form of divided powers. Moreover, by definition, E(d) = E(d). Thus
E(c) = E(c).
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§9.2

The rest of this section is devoted to giving a triangular relation between the PBW
basis and the monomial basis.

Lemma 9.2. For anyc € N}?Jr and any real root 3 € ®*, in C* we have

E(c(B)p) = <Uc(ﬁ)ﬁ> + Z v/\(C,)ECI, where \(c') € Z.

’ ot
c’ €Ny
dim O/ <dim Oc(g>5

Proof. Let ¢(8)8 = (m,n). In H, (for any fixed F,) we have
uy'ut = Pm(q)hn(q) Z ULN]-
dim N=(m,n)

By §4.4,

U = Y (@)U QU 0-0vs] T Ym (¥ (q) Y uipRisu,

where P is preprojective, I is preinjective, dim P + 1§ + dimI = (m,n), and
dim Op(ery,(y1(ery < dimOpy(e(p))- Although the number of terms in Rys =
Z[M] upp in ‘Hy depends on ¢, Lemma 5.8 shows that R;s; has a generic form
in C% with each component in ‘H, being R;s. Then in C%,

(sm)  (em) pm(m=1)/2,n(n—1)/2
Uy okuy = I v uy uy

_ Um2_m+n2—n—2’mnu[vﬁ®m®vﬁ] + ,Umz_m+n2—n—2’mn Z U[P]Rléu[l]
= (ue(p)p) + > OB

’ 3+
c €Ny
dim O <dim O¢ ()

O
Similarly, we have the following:

Lemma 9.3. Let c,c’ € N;?Jr be such that M(c) = P(c) and M(c') = I(c'). In
C% we have

Be)=(Pe)+ Y g
C//EN;I:+
dim O <dim O
E() = {I(c)) + Z g:,ECN, where g%, he, € Z.

Cc
CHGN;>Jr
dim O, <dim O/
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Proof. Since Hall polynomials exist in the Kronecker quiver, the lemma follows
from Lemma 9.2, Proposition 6.5, and Lemma 4.4. O

Lemma 9.4. Let n,m > 1. Then

E(nd) * E(md) = Eps * Epms + Z h(c)E€,  where h(c) € Z.

CEN?+
dim Oc<dimN(n+m)5

Proof. By Lemma 5.11(iii), we have

E(né)=Ens+ o (PrBeD) Py s Bys 5 (1),
P#0, I#0

E(md)=Es + Z W UPEsD) (P« Bys  (I),
P#0, T£0

where [((P) x Ei5 * (I)) € Z. We then have
E(nd) x E(md) = Ens % Ems + Y _ h(c)E°.

It is easy to see from the structure of the AR-quiver of the Kronecker quiver that
there is a real root « so that c(a) # 0 for each c. Thus dim O¢ < dim N4y O

Remark. By Lemma 9.4 we can get

E(wd) = E(wi0) %% E(wmd) = E.s+ > h(c)E®, where h(c) € Z.
dim Oc<dim O,,s

Let ¢ : N;I?+ — N? be defined by ¢(c) = >, co+ ¢(a)a. Then for any d € N?,
¢~ 1(d) is a finite set. We define a (geometric) order in ¢ ~1(d) as follows: ¢’ < ¢
if and only if either ¢’ = ¢ or ¢’ # ¢ but dim O < dim Ok.

From Lemma 2.3(vii) and the above lemmas, we may summarize our results

of this subsection as follows, which resembles [L1, 7.8].

Proposition 9.5. For any c € N?+, we have

E(e)= Y. ¢, E°

e (p(e)

Cc ?
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In the same way as in §8.4, we define e® = (P(c)) * Sy.s * (I(c)) and the
partial order < for e€ is the same as in §8.4. We then have the following:
Proposition 9.6. For any c € N?Jr, we have

E(c) = Z goe’
c’ep1(p(c)
where
(1) gc’ € Z
(i) g =1,
) if
)

(iii) if g5 # 0 then ¢’ < c,

E(c) = E(c). O

For any c,c’ € N}I)Jr we define w$ € Z by

E wc,e

c u’:‘N‘fJr

(iv

The following proposition resembles [L1, Prop. 7.9].
Proposition 9.7. w& =1, and if w$ # 0 and ¢’ # ¢ then ¢’ < c.

Proof. Since E(c) = E(c) and {E° | c € N?+} is a Z-basis of C*, we have

9o = ngwgf, for ¢,c” € p~1(d).
C/

By Proposition 9.5, the matrices (hS,) as well as (hS,), where the index set is

c!’

¢~ 1(d), are triangular with 1s on the diagonal. Hence, by the equation above, the
matrix (wS,) has the same property. O

Consider the bar involution (7) :C* — C*. For any c € Nfﬁ, the equality
ec - €:c - Z /ec Z wc/wcue
c/ C/ C//

implies the orthogonal relation
Z Tgwg;/ = §cc// .
c/

Therefore one can solve uniquely the system of equations

G= Y &%
c/ —_— C/ C//

c’<c’"<c
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with unknowns ¢$ € Z[v™'], ¢/ < c and ¢/, c € p~1(d), such that

=1 and (& ecv'Zp™!] foralc <ec.
For any d € N2 and ¢ € ¢~ 1(d), we set

8= Y (Ge® and J={&|ceyp !(d),deN}.

c€p~1(d)

Let
n
L = spang,-1{e® | c € N? }.
We verify the following two properties of J. The first is
= = Y e = 3 ) = 3 e = £
So the elements £€ are bar-invariant. The second property is obvious: J is a Z[v~!]-
basis of the lattice £. Therefore we have
Proposition 9.8. The set J is a basis of C% which satisfies
(i) Ee=¢-,

(i) (£9,E%) = de,er(mod v~ Z[[v~ 1] N Q(v)),
(iii) (&) = m(E°),
for any £¢ € L, where 7 is the canonical projection L — L/v~ L.

By the total positivity of the canonical basis, we find that J is just the canon-
ical basis in the sense of Lusztig.
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