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On Some Properties of Universal Sigma-Finite
Measures Associated with a Remarkable Class of

Submartingales

by

Joseph Najnudel and Ashkan Nikeghbali

Abstract

In a previous work, we associated with any submartingale X of class (Σ), defined on a
filtered probability space (Ω,F , (Ft)t≥0,P) satisfying some technical conditions, a σ-finite
measure Q on (Ω,F) such that for all t ≥ 0, and for all events Λt ∈ Ft,

Q[Λt, g ≤ t] = EP[1ΛtXt],

where g is the last hitting time of zero by the process X. In this paper we establish some
remarkable properties of this measure from which we also deduce a universal class of pe-
nalization results of the probability measure P with respect to a large class of functionals.
The measure Q appears to be the unifying object in these problems.
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Notation

In this paper, (Ω,F , (Ft)t≥0,P) will denote a filtered probability space; C(R+,R)
is the space of continuous functions from R+ to R. D(R+,R) is the space of càdlàg
functions from R+ to R. If Y is a random variable, we denote by P[Y ] or EP[Y ] the
expectation of X with respect to P. If (At)t≥0 is an increasing process, as usual,
the increasing limit of At, as t→∞, is denoted A∞.

§1. Introduction

In a paper by Madan, Roynette and Yor [7], and a set of lectures by Bentata
and Yor [3], the authors prove that if (Mt)t≥0 is a continuous nonnegative local
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martingale defined on a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the
usual assumptions, and such that limt→∞Mt = 0, then for any K ≥ 0,

(1.1) KP[Ft1gK≤t] = P[Ft(K −Mt)+],

where gK = sup{t ≥ 0 : Mt = K}. The formula (1.1), which represents the price of
a European put option in terms of the probability distribution of some last passage
time, gives, in a particular case, a positive answer to the following problem, also
stated in [3] and [7]: for which submartingales X can we find a σ-finite measure Q
and the end of an optional set g such that

(1.2) Q[Ft1g≤t] = P[FtXt]?

This problem was previously encountered in the literature in different situations.
In [2], Azéma and Yor prove that for any continuous and uniformly integrable
martingaleM , (1.2) holds forXt = |Mt|,Q = |M∞|P and g = sup{t ≥ 0 : Mt = 0},
or equivalently

|Mt| = P[|M∞|1g≤t|Ft].

Here again the measure Q is finite. A particular case where the measure Q is not
finite was obtained by Najnudel, Roynette and Yor in their study of Brownian
penalizations (see [11]). For example, they prove the existence of the measure Q
when Xt = |Wt| is the absolute value of the standard Brownian motion. In this
case, the measure Q is not finite but only σ-finite and is singular with respect to
the Wiener measure: it satisfies Q(g = ∞) = 0, where g = sup{t ≥ 0 : Wt = 0}.
Similarly Yano, Yano and Yor [16] have obtained the existence of the measure Q
in the case where Xt = |Yt|α−1, with Y some symmetric Lévy stable process. Now,
apart from its path decomposition obtained in [11], the existence of Q in all the
examples cited above is a consequence of a general result proved by the authors
of the present paper in [10]. The relevant class of submartingales is called (Σ), it
was first introduced by Yor in [17] and some of its main properties were further
studied in [12]. Let us recall its definition.

Definition 1.1 ([12, 17]). Let (Ω,F , (Ft)t≥0,P) be a filtered probability space.
A nonnegative submartingale (resp. local submartingale) (Xt)t≥0 is of class (Σ) if
it can be decomposed as Xt = Nt + At where (Nt)t≥0 and (At)t≥0 are (Ft)t≥0-
adapted processes satisfying the following assumptions:

• (Nt)t≥0 is a càdlàg martingale (resp. local martingale).
• (At)t≥0 is a continuous increasing process with A0 = 0.
• The measure (dAt) is carried by the set {t ≥ 0 : Xt = 0}.
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Note that a process of class (Σ) is “almost” a martingale: outside the zeros
of X, the process A does not increase. In fact many processes one often encounters
fall into this class, e.g. Xt = |Mt| where (Mt)t≥0 is a continuous local martingale,
Xt = (Mt − K)+ where (Mt)t≥0 is a càdlàg local martingale with only positive
jumps and K ∈ R is a constant, Xt = St −Mt where (Mt)t≥0 is a local martin-
gale with only negative jumps and St = supu≤tMu. Other remarkable families of
examples consist of a large class of recurrent diffusions on natural scale (such as
some powers of Bessel processes of dimension δ ∈ (0, 2), see [10]) or of functions
of a symmetric Lévy process; in these cases, At is the local time of the diffusion
process or of the Lévy process.

Note that in the case where A∞ =∞ P-almost surely (this condition holds if
(Xt)t≥0 is a reflected Brownian motion), and (Ω,F , (Ft)t≥0,P) satisfies the usual
conditions, the measure Q cannot exist: otherwise, we would have, for all t ≥ 0,

P[Xt] = P[Xt1g>t] = Q[g ≤ t, g > t] = 0,

since the event {g > t} is P-almost sure, and so in Ft. Hence, X would be indis-
tinguishable from zero, which contradicts the fact that A∞ = ∞. This explains
why the usual conditions are not assumed in this paper. On the other hand, we
also encounter some problems if we do not complete the probability spaces: for
example, if Ω = C(R+,R), Ft is the σ-algebra generated by the canonical pro-
cess X up to time t, and P is Wiener measure, then there does not exist a càdlàg
(Ft)t≥0-adapted version of the local time which is well-defined everywhere (and
not only P-almost surely), as is explained for instance in [8]. In order to avoid
also this technical problem, we assume that the filtration satisfies some particular
conditions, intermediate between right-continuity and the usual conditions. These
assumptions, called “natural conditions”, were first introduced by Bichteler in [5]
(p. 36), and then rediscovered in [8] (there they are also called N-usual condi-
tions) where it is proved that most of the properties which generally hold under
the usual conditions remain valid under the natural conditions (for example, exis-
tence of càdlàg versions of martingales, the Doob–Meyer decomposition, the début
theorem, etc.). Let us recall here the definition.

Definition 1.2. A filtered probability space (Ω,F , (Ft)t≥0,P) satisfies the natural
conditions if the following two assumptions hold:

• The filtration (Ft)t≥0 is right-continuous.
• For all t ≥ 0, and for every P-negligible set A ∈ Ft, all the subsets of A are

contained in F0.
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This definition is slightly different from the definitions given in [5] and [8] but
one can easily check that it is equivalent. The natural enlargement of a filtered
probability space can be defined by using the following proposition:

Proposition 1.1 ([8]). Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. There
exists a unique filtered probability space (Ω, F̃ , (F̃t)t≥0, P̃) (with the same set Ω)
such that:

• For all t ≥ 0, F̃t contains Ft, F̃ contains F , and P̃ is an extension of P.
• The space (Ω, F̃ , (F̃t)t≥0, P̃) satisfies the natural conditions.
• For any filtered probability space (Ω,F ′, (F ′t)t≥0,P′) satisfying the two items
above, F ′t contains F̃t for all t ≥ 0, F ′ contains F̃ , and P′ is an extension of P̃.

The space (Ω, F̃ , (F̃t)t≥0, P̃) is called the natural enlargement of (Ω,F , (Ft)t≥0,P).

Intuitively, the natural enlargement of a filtered probability space is its small-
est extension which satisfies the natural conditions. We also introduce a class of
filtered measurable spaces (Ω,F , (Ft)t≥0) such that any compatible family (Qt)t≥0

of probability measures Qt defined on Ft can be extended to a probability mea-
sure Q defined on F .

Definition 1.3. Let (Ω,F , (Ft)t≥0) be a filtered measurable space such that F
is the σ-algebra generated by Ft, t ≥ 0: F =

∨
t≥0 Ft. We say that property (P)

holds if (Ft)t≥0 enjoys the following properties:

• For all t ≥ 0, Ft is generated by a countable number of sets.
• For all t ≥ 0, there exists a Polish space Ωt and a surjective map πt from Ω

to Ωt such that Ft is the σ-algebra of the inverse images, under πt, of Borel sets
in Ωt, and for all B ∈ Ft and ω ∈ Ω, πt(ω) ∈ πt(B) implies ω ∈ B.
• If (ωn)n≥0 is a sequence of elements of Ω such that for all N ≥ 0,

N⋂
n=0

An(ωn) 6= ∅,

where An(ωn) is the intersection of the sets in Fn containing ωn, then
∞⋂
n=0

An(ωn) 6= ∅.

Remark. In the definition above, (P) stands for Parthasarathy since such condi-
tions were introduced by him in [13, Chapter V, Section 4].

A fundamental example of a filtered measurable space (Ω,F , (Ft)t≥0) with
property (P) can be constructed as follows: We take Ω to be equal to C(R+,Rd),
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the space of continuous functions from R+ to Rd, or D(R+,Rd), the space of
càdlàg functions from R+ to Rd (for some d ≥ 1), we define (Ft)t≥0 as the natural
filtration of the canonical process, and we set F :=

∨
t≥0 Ft. The combination of

property (P) and the natural conditions gives the following definition:

Definition 1.4. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. We say that
it has property (NP) if is the natural enlargement of a filtered probability space
(Ω,F0, (F0

t )t≥0,P0) such that the filtered measurable space (Ω,F0, (F0
t )t≥0) en-

joys property (P).

In [8] the following result on extension of probability measures is proved (in
a slightly more general form):

Proposition 1.2. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space with prop-
erty (NP). Then F is the σ-algebra generated by (Ft)t≥0, and for any coherent
family (Qt)t≥0 of probability measures such that Qt is defined on Ft, and is abso-
lutely continuous with respect to the restriction of P to Ft, there exists a unique
probability measure Q on F which coincides with Qt on Ft for all t ≥ 0.

By using all the results and definitions above, one can state rigorously the
main result of [10] in its most general form:

Theorem 1.1. Let (Xt)t≥0 be a submartingale of class (Σ) (in particular Xt is in-
tegrable for all t ≥ 0), defined on a filtered probability space (Ω,F , (Ft)t≥0,P) with
property (NP) (in particular, (Ft)t≥0 satisfies the natural conditions and F is the
σ-algebra generated by Ft, t ≥ 0). Then there exists a unique σ-finite measure Q,
defined on (Ω,F ,P), such that for g := sup{t ≥ 0 : Xt = 0}:

• Q[g =∞] = 0.
• For all t ≥ 0, and for all Ft-measurable, bounded random variables Ft,

(1.3) Q[Ft1g≤t] = P[FtXt].

Remark. Note that before being proved in its general form in [10], Theorem 1.1 was
shown (under the usual assumptions) by Cheridito, Nikeghbali and Platen [6] in
the particular case where the submartingaleX is of class (D) (in fact, as mentioned
in [6], the solution is essentially contained, somewhat hidden, in [1]). In this case,
the measure Q is finite and satisfies

Q = X∞P.

Moreover, Theorem 1.1 has already been obtained in some special cases such as
the case where Xt is the absolute value of the canonical process on the Wiener
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space or when Xt = |Yt|α−1 where Y is a symmetric stable Lévy process of index
α ∈ (1, 2), although in this latter case the property (1.3) was not noticed ([16]). In
fact, almost all our results will apply to a large class of symmetric Lévy processes
including the symmetric stable Lévy processes of index α ∈ (1, 2). We shall now
detail this last example a little more since it provides natural examples of processes
with jumps, living on the Skorokhod space. Let us define, on the space D(R+,R),
(Ft)t≥0 as the natural filtration of the canonical process (Yt)t≥0, and let us set

F :=
∨
t≥0

Ft.

We consider on D(R+,R) the probability P under which (Yt)t≥0 is a symmetric
Lévy process starting from zero, with exponent Ψ:

P[exp(iξYt)] = exp(−tΨ(ξ)).

Moreover, we assume that 0 is regular for itself and that (Yt)t≥0 is recurrent, or
equivalently (see Bertoin [4]),∫ ∞

−∞

dξ

1 + Ψ(ξ)
<∞ and

∫
0

dξ

Ψ(ξ)
=∞.

In the case where (Yt)t≥0 is a symmetric α-stable Lévy process of index α ∈ (1, 2),
we have Ψ(ξ) = |ξ|α and the above conditions on Ψ are satisfied (see [4]). Salminen
and Yor [15] have proved that if for some x ∈ R,

v(x) =
1
π

∫ ∞
0

1− cos(ξx)
Ψ(ξ)

dξ <∞,

then
v(Yt − x) = v(x) +Nx

t + Lxt ,

where Nx
t is a martingale and where (Lxt )t≥0 is the local time at level x of the

Lévy process (Yt)t≥0. Since (Lxt )t≥0 is continuous, increasing, adapted and only
increases when Yt = x (see Bertoin [4, Chapter V]), the process (v(Yt − x))t≥0

is of class (Σ), moreover, (Yt)t≥0 is recurrent and 0 is regular for itself, which
implies that limt→∞ Lxt =∞ P-almost surely. Hence Theorem 1.1 applies, and for
any x ∈ R, there exists a σ-finite measure Qx, singular to P and such that all
the properties of Theorem 1.1 are satisfied with Xt = v(Yt − x) and g ≡ gx =
sup{t : Yt = x}. In the special case of symmetric α-stable Lévy processes of index
α ∈ (1, 2), v(x) = c(α)|x|α−1 for some explicit constant c(α) (see [15]). In what
follows, all our results which do not require any assumptions on the sign of the
jumps will apply to this family of examples as well.
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Let us now briefly recall the general construction ofQ (defined in Theorem 1.1)
given in [10]. For a Borel, integrable, strictly positive and bounded function f from
R to R, one defines a function G as

G(x) =
∫ ∞
x

f(y) dy,

and then one proves that the process

(1.4)
(
Mf
t := G(At)− P[G(A∞) | Ft] + f(At)Xt

)
t≥0

is a martingale with respect to P and the filtration (Ft)t≥0. Since (Ω,F , (Ft)t≥0,P)
satisfies the natural conditions and G(At) ≥ G(A∞), one can suppose that this
martingale is nonnegative and càdlàg, by choosing the version of P[G(A∞) | Ft]
carefully. In this case, since (Ω,F , (Ft)t≥0,P) has property (NP), there exists
a unique finite measure Mf such that for all t ≥ 0, and for all bounded, Ft-
measurable functionals Γt,

Mf [Γt] = P[ΓtM
f
t ].

Now, since f is strictly positive, one can define a σ-finite measure Qf by,

Qf :=
1

f(A∞)
Mf .

It is proved in [10] that if G/f is unformly bounded (this condition is, for example,
satisfied for f(x) = e−x), then Qf satisfies the conditions defining Q in Theorem
1.1, which implies the existence part of that result. The uniqueness part is then
proved in a very easy way; one remarkable consequence of the uniqueness is the
fact that Qf does not depend on the choice of f .

One of the remarkable features of the measure Q, in the special case of the
Wiener space and when (Xt)t≥0 is the absolute value of the Wiener process, is that
it allows a unified view of some penalization problems related to Wiener measure.
More precisely, Roynette, Vallois and Yor [14] consider W, the Wiener measure on
the space C(R+,R) endowed with its canonical filtration (Fs)s≥0 (not completed),
and then they define F :=

∨
s≥0 Fs. They consider a family (Γt)t≥0 of nonnegative

random variables on the same space such that

0 < W[Γt] <∞,

and for t ≥ 0, they define the probability measure

Qt :=
Γt

W[Γt]
W.

Then they are able to prove that for many examples of families of functionals
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(Γt)t≥0, there exists a probability measure Q∞ which can be considered as the
weak limit of (Qt)t≥0 as t → ∞, in the following sense: for all s ≥ 0 and for all
events Λs ∈ Fs,

Qt[Λs] −−−→
t→∞

Q∞[Λs].

Finding the measure Q∞ amounts to solving the penalization problem associated
with the functionals (Γt)t≥0. The functional Γt is typically some function of the
local time or the running supremum of the Wiener process, or some Feynman–Kac
functional of the Wiener process. In the monograph [11], Najnudel, Roynette and
Yor have proved that the measure Q associated with the absolute value of the
Wiener process allows a unified approach to many examples dealt with separately
in the literature; under some technical conditions on the functionals (Γt)t≥0, they
show that the measure Q∞ is absolutely continuous with respect to Q with an
explicit density. In this paper, we shall completely solve the penalization problem
(under the assumptions of Theorem 1.1) with functionals of the form Γt = FtXt,
where Ft is some functional satisfying a not too restrictive condition. In particular
we need no assumption on the continuity of the paths of (Xt), nor any Markov or
scaling properties.

More precisely, throughout this paper, we establish some of the fundamental
properties of the measure Q (which also prepare the ground for a forthcoming work
on penalization of diffusion paths). A remarkable class of martingales defined as
local densities (with respect to P) of finite measures, absolutely continuous with re-
spect to Q, is involved in a crucial way. The precise definition of these martingales
is given in Section 2, and they are explicitly computed in some particular cases. In
Section 3, we study their behaviour as t→∞, in the most interesting case where
A∞ = ∞ P-almost surely, and we deduce some information about the behaviour
of (Xt)t≥0 under the measure Q. We then naturally deduce the announced uni-
versal penalization results from our study of the asymptotic behaviour of these
martingales and of (Xt)t≥0 under Q. In Section 4, we give a decomposition of any
nonnegative supermartingale which can be interpreted as the decomposition of a
finite measure on (Ω,F) as the sum of three measures, one of them being abso-
lutely continuous with respect to P, the second absolutely continuous with respect
to Q, and the last one singular with respect to P and Q.

§2. A remarkable class of martingales related to the measures Q

We assume that we are working under the assumptions of Definition 1.1 and The-
orem 1.1. Let us first remark that since Q[g =∞] = 0, one has

(2.1) Q[A∞ =∞] = 0,
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i.e. A∞ is finite Q-almost everywhere. Let us state a useful result which was proved
in [10]:

Proposition 2.1. Let f be an integrable function from R+ to R+. Then under
the assumptions of Theorem 1.1, the measure

Mf := f(A∞)Q

is the unique positive, finite measure such that for all t ≥ 0, and for all bounded,
Ft-measurable functionals Γt,

(2.2) Mf [Γt] = P[ΓtM
f
t ],

where the process (Mf
t )t≥0 is given by

Mf
t := G(At)− P[G(A∞) | Ft] + f(At)Xt for G(x) :=

∫ ∞
x

f(y) dy.

In particular, (Mf
t )t≥0 is a martingale, càdlàg if one chooses a suitable version

of the conditional expectation of G(A∞) given Ft. Moreover, (Mf
t )t≥0 is uniquely

determined by f in the following sense: two càdlàg martingales satisfying (2.2) are
necessarily indistinguishable.

Proposition 2.1 gives a relation between a finite measure which is absolutely
continuous with respect to Q (Mf ), and a càdlàg martingale (Mf

t )t≥0. This rela-
tion can be generalized as follows:

Theorem 2.1. Under the assumptions and notation of Theorem 1.1, let F be a Q-
integrable, nonnegative functional defined on (Ω,F). Define also the finite measure
MF := FQ. Then there exists a càdlàg P-martingale (Mt(F ))t≥0 such that for all
t ≥ 0, and for all bounded, Ft-measurable functionals Γt,

MF [Γt] = P[ΓtMt(F )].

The martingale (Mt(F ))t≥0 is unique up to indistinguishability.

Proof. Let t ≥ 0, let Γt be a nonnegative, Ft-measurable functional such that

P[Γt] = 0,

and let f be an integrable, strictly positive function from R+ to R+. Then

P[Mf
t Γt] = 0,

and by Proposition 2.1,
Q[f(A∞)Γt] = 0.
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Since f is supposed to be strictly positive, one deduces that Q[Γt] = 0, and finally
Q[FΓt] = 0. Therefore, the restriction of the finite measure MF to Ft is abso-
lutely continuous with respect to P, and there exists a nonnegative, Ft-measurable
random variable M (0)

t such that for all Ft-measurable, bounded variables Γt,

MF [Γt] = P[M (0)
t Γt].

This equality, holding for all t ≥ 0, implies that (M (0)
t )t≥0 is a P-martingale. Since

the underlying probability space satisfies the natural conditions, (M (0)
t )t≥0 admits

a càdlàg modification (Mt)t≥0, and

MF [Γt] = P[MtΓt].

By the monotone class theorem this determines the measureMF uniquely. More-
over, if (M ′t)t≥0 is a càdlàg martingale satisfying

MF [Γt] = P[M ′tΓt],

then for all t ≥ 0, Mt = M ′t almost surely, and since M and M ′ are càdlàg, they
are indistinguishable.

By Theorem 2.1, one can define a particular family of nonnegative, càdlàg P-
martingales: those of the form (Mt(F ))t≥0, where F is a nonnegative, Q-integrable
functional F . By construction, they correspond to the local densities, with respect
to P, of finite measures which are absolutely continuous with respect to Q. The
situation is similar to the case of nonnegative, uniformly integrable martingales,
which are the local densities of finite measures, absolutely continuous with respect
to P. Theorem 2.1 does not give any explicit formula for the martingale Mt(F ).
However, from Proposition 2.1, one immediately deduces the following result:

Corollary 2.1. Under the assumptions of Theorem 1.1, for all integrable func-
tions f from R+ to R+, f(A∞) is integrable with respect to Q, and the martin-
gale (Mt(f(A∞)))t≥0 is indistinguishable from the martingale (Mf

t )t≥0 defined in
Proposition 2.1.

Remark. Let f be an integrable function from R+ to R+. The martingale

(P[G(A∞) | Ft])t≥0

admits a càdlàg version. If it is denoted by (Gt)t≥0, one has

Mt(F ) = G(At)−Gt + Yt,

where (Yt)t≥0 is a càdlàg modification of (f(At)Xt)t≥0, which then exists for any
choice of f (recall that G(At) is continuous in t). If f is bounded, one easily proves
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that f(At)Xt is càdlàg with respect to t; in this case, (Yt)t≥0 is indistinguishable
from (f(At)Xt)t≥0. However, for unbounded f , the existence of Y is not trivial.

Another case for which one can give a simple expression for the martingale
(Mt(F ))t≥0 is when (Xt)t≥0 is of class (D). More precisely, one has the following
result:

Theorem 2.2. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that the process (Xt)t≥0 is of class (D). Then Xt tends a.s. to a limit X∞ as t→∞,
and the measure Q is absolutely continuous with respect to P, with density X∞.
Moreover, a nonnegative measurable functional F is integrable with respect to Q if
and only if FX∞ is integrable with respect to P, and in this case, (Mt(F ))t≥0 is
a càdlàg version (unique up to indistinguishability) of the conditional expectation
(P[FX∞ | Ft])t≥0. In particular, it is uniformly integrable, and it converges a.s.
and in L1 to FX∞ as t→∞.

Proof. The equality Q = X∞P is contained in [10], [1] and [6]. Let us briefly
reprove it here. Since (Xt)t≥0 is of class (D), the expectation of At is bounded,
and so A∞ is integrable, which implies that (Nt)t≥0 is a uniformly integrable,
càdlàg martingale. It admits an a.s. limit N∞ as t → ∞, and hence X∞ is well-
defined. Moreover, if dt is the infimum of u > t such that Xu = 0, by the version
of the début theorem given in [8], dt is a stopping time. Moreover, dt =∞ if and
only if g ≤ t, and by right-continuity of X, Xdt

= 0 for dt <∞. One deduces

P[X∞1g≤t | Ft] = P[X∞1dt=∞ | Ft] = P[Xdt | Ft].

Now, since (Nt)t≥0 is a uniformly integrable, càdlàg martingale,

P[X∞1g≤t | Ft] = P[Ndt
+Adt

| Ft] = Nt +At = Xt

(we have used above the fact that Adt
= At: since (Xt)t≥0 is of class (Σ), the

process u → Au is constant for t ≤ u ≤ dt), or equivalently, for all bounded,
Ft-measurable functionals Γt,

P[ΓtX∞1g≤t] = P[ΓtXt].

Moreover, under X∞P, X∞ > 0 almost everywhere and so g < ∞. One deduces
that X∞P is equal to Q. For any nonnegative functional F , it is then trivial that
F is integrable with respect to Q if and only if FX∞ is integrable with respect
to P; in this case, the finite measure MF has density FX∞ with respect to P.
By taking the restriction to Ft, one deduces that the martingale (Mt(F ))t≥0 is a
càdlàg version of the conditional expectation of FX∞.
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It is also possible to describe Q and (Mt(F ))t≥0 explicitly if (Xt)t≥0 is a
strictly positive martingale:

Theorem 2.3. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that P-almost surely, (Xt)t≥0 does not vanish; in particular, (At)t≥0 is indistin-
guishable from zero, and (Xt)t≥0 is a martingale. Then Q is finite and it is the
unique measure such that for t ≥ 0, the restriction of Q to Ft has density Xt with
respect to the restriction of P to Ft. Moreover, for any nonnegative, Q-integrable
functional F , the martingale (Mt(F ))t≥0 can be given by

Mt(F ) = XtQ̃[F | Ft],

where Q̃[F | Ft] is a càdlàg version of the conditional expectation of F given Ft,
with respect to the probability measure Q̃ obtained by dividing Q by its total mass
(different from zero). In particular, the functional identically equal to one is Q-
integrable and (Mt(1))t≥0 is indistinguishable from (Xt)t≥0.

Proof. Let T0 := inf{t ≥ 0 : Xt = 0}. By the début theorem (under the natural
conditions), T0 is an (Ft)t≥0-stopping time. By assumption, for all t ≥ 0, the
event {T0 > t}, which is in Ft, holds P-almost surely. Now, by the construction
of Q given in [10] and described above, Q is absolutely continuous with respect
to a finite measure which is locally absolutely continuous with respect to P. One
deduces that for all t ≥ 0, the event {T0 > t} holds Q-almost everywhere. Hence,
Q-almost everywhere, T0 is infinite and (Xt)t≥0 does not vanish, which implies

(2.3) Q[Γt] = P[ΓtXt].

By the monotone class theorem, Q is the unique measure satisfying (2.3); it is
finite since X0 is integrable, its total mass is different from zero since X0 > 0.
Hence, Q̃ is well-defined. Moreover, if F is integrable with respect to Q, it is also
integrable with respect to Q̃, and the Q̃-martingale

(Q̃[F | Ft])t≥0

is well-defined and admits a càdlàg version (Yt)t≥0. Indeed, (Ω,F , (Ft)t≥0,P) sat-
isfies the natural conditions, and hence so does (Ω,F , (Ft)t≥0, Q̃), since for all
t ≥ 0, the restriction of Q̃ to Ft is equivalent to the restriction of P (recall that
Xt > 0 P-almost surely). Therefore, for all bounded, Ft-measurable functionals Γt,

Q[FΓt] = Q[1]Q̃[FΓt] = Q[1]Q̃
[
ΓtQ̃[F | Ft]

]
= Q[ΓtYt] = P[ΓtXtYt].

Now,
Q[FΓt] =MF [Γt] = P[ΓtMt(F )],
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with the notation of Theorem 2.1. Hence, (Mt(F ))t≥0 is a modification of
(XtYt)t≥0, and since these two processes are càdlàg, they are indistinguishable.
Moreover, the functional equal to one is Q-integrable, since Q is finite. In this
case, one can take Yt = 1 for all t ≥ 0, and (Mt(F ))t≥0 is indistinguishable from
(Xt)t≥0.

After giving these simple examples for which one can explicitly compute Q
and Mt(F ), it is natural to ask what happens in a more general situation. In
Section 3, we study the case where A∞ =∞ P-almost surely (this case occurs, in
particular, when (Xt)t≥0 is a reflected Brownian motion). Unfortunately, we are
not able to give explicit expressions for the martingales of the form (Mt(F ))t≥0 in
this case, but we obtain some information about their behaviour as t→∞.

§3. The case A∞ =∞ under P

In this case, let us first recall the following result, proven in [10]:

Proposition 3.1. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that A∞ = ∞ P-almost surely. Then the image of Q under the functional A∞ is
the measure

P[X0]δ0 + λ,

where λ is Lebesgue measure on R+. In particular Q is an infinite measure.

Moreover, again for A∞ = ∞, the martingale (Mt(F ))t≥0 tends P-almost
surely to zero for any Q-integrable functional F . In particular, it cannot be uni-
formly integrable, except for F = 0 Q-almost everywhere. More precisely, one has
the slightly more general result:

Proposition 3.2. Suppose the assumptions of Theorem 1.1 hold. Then on the set
{A∞ = ∞}, for every Q-integrable, nonnegative functional F defined on (Ω,F),
the martingale Mt(F ) tends P-almost surely to zero as t→∞.

Proof. Let us use the notation of Theorem 2.1. For all u > 0 and v ≥ t > 0,

MF [At > u] = P[Mv(F )1At>u].

Moreover, P-almost surely

Mv(F )1At>u −−−→
v→∞

M∞(F )1At>u,

where M∞(F ) is the a.s. limit of Mt(F ) as t→∞ (recall that Mt(F ) is a nonneg-
ative martingale under P and hence converges almost surely). By Fatou’s lemma,
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one deduces

P[M∞(F )1At>u] ≤MF [At > u] ≤MF [A∞ > u].

Now, M∞(F )1A∞>u is the almost sure limit of M∞(F )1At>u as t → ∞. Since
M∞(F ) is integrable with respect to P by Fatou’s lemma, one has, by dominated
convergence,

P[M∞(F )1A∞>u] ≤MF [A∞ > u].

By letting t→∞, we are done, since A∞ is finiteMF -almost everywhere (this is
a consequence of (2.1) and the fact thatMF is absolutely continuous with respect
to Q).

Once the behaviour of (Mt(F ))t≥0 under P is known, it is natural to ask what
happens under Q. The following result implies that the behaviour of (Mt(F ))t≥0 is
not the same as under P. Moreover, it gives some information about the behaviour
of (Xt)t≥0 under Q:

Theorem 3.1. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that A∞ = ∞ P-almost surely. Then Q-almost everywhere, Xt tends to infinity
with t, and

Mt(F )
Xt

−−−→
t→∞

F

for all nonnegative, Q-integrable functionals F .

Remark. As we have seen in Theorem 2.1, two càdlàg versions of (Mt(F ))t≥0 are
indistinguishable with respect to P. Since Q is absolutely continuous with respect
to a finite measure which is locally absolutely continuous with respect to P, the
two versions are also indistinguishable with respect to Q. Hence, (Mt(F ))t≥0 can
be considered to be well-defined for all problems concerning its behaviour under
the measure Q.

Remark. In the case where (Xt)t≥0 is a reflected Brownian motion, Theorem 3.1 is
essentially proved in [11] and when Xt is |Yt|α−1 for a symmetric α-stable process
(Yt)t≥0 of index α ∈ (1, 2), it is proved in [16].

Proof of Theorem 3.1. The functional H := e−A∞ is Q-integrable and one has
(from Corollary 2.1)

Mt(H) = e−At(1 +Xt)

(recall that P-almost surely, e−A∞ = 0, since A∞ =∞). One deduces that, for all
bounded, Ft-measurable random variables Γt,

MH [Γt] = P[e−At(1 +Xt)Γt].
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This implies

P[Γt] =MH [YtΓt], where Yt =
eAt

1 +Xt
.

Now, (Yt)t≥0 is a nonnegative, càdlàg martingale with respect to the probability
measure M̃H := MH/MH(1), and so it converges MH -almost everywhere to a
limit random variable Y∞. Now, since for all u > 0 and v ≥ t > 0,

P[At ≤ u] =MH [Yv1At≤u],

one has, by letting v →∞ and by using Fatou’s lemma,

MH [Y∞1At≤u] ≤ P[At ≤ u],

which implies
MH [Y∞1A∞≤u] ≤ P[At ≤ u].

Now, since A∞ =∞ P-almost surely, one has

P[At ≤ u] −−−→
t→∞

0.

Hence,
MH [Y∞1A∞≤u] = 0,

and finally (by letting u→∞)

MH [Y∞1A∞<∞] = 0.

Since A∞ < ∞ Q-almost everywhere, Y∞ = 0 MH -almost everywhere, which
implies that Xt tends to infinity with t. On the other hand, for all nonnegative,
integrable functionals F , and for all bounded, Ft-measurable functionals Γt, one
has

MH

[
Γt
Mt(F )
Mt(H)

]
= Q

[
ΓtH

Mt(F )
Mt(H)

]
= P

[
ΓtMt(H)

Mt(F )
Mt(H)

]
= P[ΓtMt(F )]

= Q[ΓtF ] =MH

[
Γt
F

H

]
=MH

[
ΓtM̃H

[
F

H

∣∣∣∣Ft]].
Note that all the equalities above are meaningful sinceMt(H) and H never vanish.
Therefore, for all t ≥ 0, one has almost surely

Mt(F )
Mt(H)

= M̃H

[
F

H

∣∣∣∣Ft],
which implies that

Mt(F )
Mt(H)

−−−→
t→∞

F

H
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M̃H -almost surely, and hence Q-almost everywhere. Now, sinceXt →∞Q-almost
everywhere, Xt > 0 for t large enough and

Mt(H)
Xt

= e−At

(
1 +

1
Xt

)
−−−→
t→∞

e−A∞ .

One deduces that

Mt(F )
Xt

=
Mt(F )
Mt(H)

Mt(H)
Xt

−−−→
t→∞

F

H
e−A∞ = F.

In the particular case of the reflected Brownian motion, the measure Q is
strongly related to the last passage time at any level and not only at zero. This
relation can be generalized as follows:

Theorem 3.2. Suppose that the assumptions of Theorem 1.1 are satisfied, that the
submartingale (Xt)t≥0 has only positive jumps and that A∞ = ∞ almost surely
under P. For a ≥ 0, let g[a] be the last hitting time of the interval [0, a],

g[a] = sup{t ≥ 0 : Xt ≤ a}.

Then for all t ≥ 0, and for all Ft-measurable, bounded variables Γt, the measure Q
satisfies

(3.1) Q[Γt1g[a]≤t] = P[Γt(Xt − a)+].

Moreover, ((Xt−a)+)t≥0 is a submartingale of class (Σ) and the σ-finite measure
obtained by applying Theorem 1.1 to it is equal to Q.

Proof. Let
d

[a]
t := inf{v > t : Xv ≤ a}.

By the début theorem (for the natural conditions), d[a]
t is a stopping time. Now,

for all u > t,
Q[Γt1g≤u,d[a]

t >u
] = P[Γt1d[a]

t >u
Xu].

One deduces, by using the decomposition of the submartingale (Xt)t≥0, and by
applying the martingale property to (Nt)t≥0, that

Q[Γt1g≤u,d[a]
t >u

] = P[Γt1d[a]
t >u

(Nu +Au)] = P[Γt1d[a]
t >u

(Nu +At)]

= P[Γt1d[a]
t >u

At] + P[ΓtNu]− P[Γt1d[a]
t ≤u

Nu]

= P[Γt1d[a]
t >u

At] + P[ΓtNt]− P[Γt1d[a]
t ≤u

N
d
[a]
t

]

= P[Γt1d[a]
t >u

At] + P[ΓtNt]− P[Γt1d[a]
t ≤u

X
d
[a]
t

] + P[Γt1d[a]
t ≤u

At]

= P[ΓtXt]− P[Γt1d[a]
t ≤u

X
d
[a]
t

].
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In the above equalities we have used the fact that Au = At on the set {d[a]
t > u}

and A
d
[a]
t

= At on {d[a]
t ≤ u}. Now, by right continuity, d[a]

t = t if Xt < a, and

since X has only positive jumps, for Xt ≥ a and d[a]
t <∞, X

d
[a]
t

= a. One deduces
that

Q[Γt1g≤u,d[a]
t >u

] = P[ΓtXt]− P[Γt1d[a]
t ≤u

(Xt ∧ a)].

As u → ∞, the event {g ≤ u, d
[a]
t > u} tends to {g[a] ≤ t}. Moreover, the event

{d[a]
t ≤ u} tends to {d

[a]
t <∞}, which is almost sure under P, since A∞ =∞. One

deduces that

Q[Γt1g[a]≤t] = P[ΓtXt]− P[Γt(Xt ∧ a)] = P[Γt(Xt − a)+].

Now, from Lemma 2.1 in [6], ((Xt − a)+)t≥0 is also a nonnegative submartingale
of class (Σ). The supremum of its hitting times of zero is g[a]. The formula (3.1)
and the fact that {g[a] < ∞} holds Q-almost everywhere (recall that Xt → ∞
as t → ∞, since A∞ = ∞ P-almost surely) imply that Q is the σ-finite measure
obtained from the submartingale ((Xt − a)+)t≥0.

In their study of Brownian penalizations, Najnudel, Roynette and Yor [11]
introduce a particular class of nonnegative processes which converge Q-almost
everywhere to a Q-integrable functional. Let us state a similar definition in our
general framework:

Definition 3.1. Suppose that the assumptions of Theorem 1.1 are satisfied. We
say that a process (Ft)t≥0 belongs to the class (C) if it is nonnegative, uniformly
bounded, nonincreasing, càdlàg and adapted with respect to (Ft)t≥0, there exists
a > 0 such that for all t ≥ 0, Ft = Fg[a] on the set {t ≥ g[a]}, and the decreasing
limit of the process at infinity, denoted F∞, is Q-integrable.

For example, the process (Ft)t≥0 given by

Ft = ϕ(At),

where ϕ : R+ → R+ is integrable and decreasing, is in the class (C), as also is

Ft := exp
(
−λAt −

∫ t

0

q(Xs) ds
)
,

where λ > 0 and q is a measurable function from R+ to R+, with compact support.
When a process (Ft)t≥0 is in the class (C), the following proposition gives the
behaviour of P[FtXt] as t→∞.
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Theorem 3.3. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that A∞ = ∞ P-almost surely. Let (Ft)t≥0 be a process in the class (C). If Fg is
integrable with respect to Q, then

P[FtXt] −−−→
t→∞

Q[F∞].

Proof. It is sufficient to prove

Q[Ft1g≤t] −−−→
t→∞

Q[F∞].

Now, since the set {g[a] ≤ t} is included in {g ≤ t}, one can write

Q[Ft1g≤t] = Q[Ft1g[a]≤t] +Q[Ft1g≤t<g[a] ].

Moreover

Q[Ft1g[a]≤t] = Q[F∞1g[a]≤t] −−−→
t→∞

Q[F∞1g[a]<∞] = Q[F∞].

The last equality is due to the fact that if A∞ = ∞ P-almost surely, the process
(Xt)t≥0 tends Q-almost everywhere to infinity with t. Hence, it is sufficient to
prove that

Q[Ft1g≤t<g[a] ] −−−→
t→∞

0.

Now, Ft1g≤t<g[a] is dominated by Fg, integrable with respect to Q, and tends to
zero Q-almost surely as t→∞. By dominated convergence, we are done.

Remark. Let (Xt)t≥0 be the absolute value of the Wiener process and let Ft :=
exp(−λLt), where Lt is the local time of (Xt)t≥0 at level 0. The process (Ft)t≥0 is
in the class (C) and it is known (see [10]) that L∞ follows the Lebesgue measure
on R+ under Q. Consequently,

P[exp(−λLt)Xt] −−−→
t→∞

1/λ,

although
exp(−λLt)Xt −−−→

t→∞
0

P-almost surely. Of course, due to the general feature of our results, the same
result holds if one replaces Xt by |Yt|α−1, where Y is a symmetric α-stable Lévy
process with index α ∈ (1, 2), and Lt would then stand for the local time of Y .

Here is another version of the same result (which does not involve the
class (C)), which is in fact more powerful and useful:

Theorem 3.4. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that A∞ = ∞ P-almost surely. Let (Ft)t≥0 be a càdlàg, adapted, nonnegative
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process such that its limit F∞ exists Q-almost everywhere. Suppose that there exists
a Q-integrable, nonnegative functional H such that for all t ≥ 0,

FtXt ≤Mt(H)

P-almost surely. Then F∞ is Q-integrable and

P[FtXt] −−−→
t→∞

Q[F∞].

Proof. For all t ≥ 0, one has Q-almost everywhere

(3.2) FtXt ≤Mt(H).

Indeed, the event {FtXt > Mt(H)} is Ft-measurable and P-negligible, and hence
Q-negligible. One deduces that P-almost surely and Q-almost everywhere, (3.2) is
satisfied for all rationals t ≥ 0, and so for all t ≥ 0, since (Ft)t≥0, (Mt(H))t≥0 and
(Xt)t≥0 are càdlàg. By adding e−A∞ to H, one can now suppose that H > 0 and
Mt(H) > 0 for all t. Hence

P[FtXt] =MH

[
FtXt

Mt(H)

]
.

Now, uniformly in t,

FtXt

Mt(H)
≤ 1 +∞ · 1∃t≥0, FtXt>Mt(H),

which is MH -integrable, since MH is a finite measure and the event {∃t ≥ 0,
FtXt > Mt(H)} is Q-negligible, and soMH -negligible, In particular:

P[FtXt] ≤MH [1 +∞ · 1∃t≥0, FtXt>Mt(H)] = Q[H] <∞.

Moreover, Q-almost everywhere,

FtXt

Mt(H)
−−−→
t→∞

F∞
H

.

By dominated convergence,

P[FtXt] −−−→
t→∞

MH

[
F∞
H

]
= Q[F∞].

Since P[FtXt] ≤ Q[H] for all t ≥ 0, one deduces that Q[F∞] ≤ Q[H] <∞.

We now illustrate how the above result can be used. Let f : R+ → R+ be an
integrable function. From the identity (1.4) defining the martingale (Mf

t )t≥0, and
using the fact that A∞ =∞ P-almost surely, we obtain

f(At)Xt ≤Mf
t .
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Consequently, the above proposition applies to the case Ft = f(At), where f :
R+ → R+ is an integrable function. It also obviously applies to any function Ft
which satisfies Ft ≤ f(At) for some integrable f : R+ → R+, for instance, Ft =
Gtf(At) where Gt is a bounded càdlàg Ft-measurable process and f : R+ → R+

is integrable; in particular it applies to Ft = f(At) exp(−
∫ t

0
q(Xs) ds), where q is

a measurable function from R+ to R+.
We are now able to state two universal penalization results:

Theorem 3.5. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that A∞ =∞ P-almost surely. Let (Ft)t≥0 be a process in the class (C) such that
Fg is integrable with respect to Q and F∞ is not Q-almost everywhere equal to zero.
Then, for t sufficiently large, 0 < P[FtXt] <∞, and one can define a measure Qt

by

Qt =
FtXt

P[FtXt]
P.

Moreover, there exists a probability measure Q∞ which can be considered as the
weak limit of Qt as t → ∞, in the following sense: for all s ≥ 0 and all events
Λs ∈ Fs,

Qt[Λs] −−−→
t→∞

Q∞[Λs].

The measure Q∞ is absolutely continuous with respect to Q:

Q∞ =
F∞
Q[F∞]

Q, where 0 < Q[F∞] <∞.

Proof. The integrability of F∞ under Q is an immediate consequence of the in-
tegrability of Fg, and Q[F∞] > 0 because F∞ is not Q-almost everywhere equal
to zero. Moreover, for all t ≥ 0, Ft is uniformly bounded and Xt is P-integrable,
which implies that P[FtXt] is finite. On the other hand, by Theorem 3.3,

(3.3) P[FtXt] −−−→
t→∞

Q[F∞] > 0,

and so P[FtXt] > 0 for t large enough. Now, for t > s,

P[Ft1Λs
Xt] = Q[Ft1Λs

1g≤t],

where, by the arguments in the proof of Theorem 3.3,

Q[Ft1Λs1g≤t] −−−→
t→∞

Q[F∞1Λs ].

Combining this with (3.3) completes the proof of the theorem.

Theorem 3.6. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that A∞ = ∞ P-almost surely. Let (Ft)t≥0 be a càdlàg, adapted, nonnegative
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process such that its limit F∞ exists Q-almost everywhere and is not Q-almost
everywhere equal to zero. Suppose that there exists a Q-integrable, nonnegative
functional H such that for all t ≥ 0,

FtXt ≤Mt(H)

P-almost surely. Then, for t sufficiently large, 0 < P[FtXt] <∞ and one can define
a measure Qt by

Qt =
FtXt

P[FtXt]
P.

Moreover, there exists a probability measure Q∞ which can be considered as the
weak limit of Qt as t→∞, in the following sense: for all s ≥ 0 and all Λs ∈ Fs,

Qt[Λs] −−−→
t→∞

Q∞[Λs].

The measure Q∞ is absolutely continuous with respect to Q:

Q∞ =
F∞
Q[F∞]

Q, where 0 < Q[F∞] <∞.

Proof. Since for all t ≥ 0, FtXt ≤Mt(H) P-almost surely, one has

P[FtXt] ≤ P[Mt(H)] = Q[H] <∞.

On the other hand, by Theorem 3.4,

(3.4) P[FtXt] −−−→
t→∞

Q[F∞] ∈ (0,∞),

which implies that P[FtXt] > 0 for t large enough. Moreover, by applying Theorem
3.4 to the family of functionals (Ft1Λs1t≥s)t≥0, one deduces that

P[Ft1Λs
Xt] −−−→

t→∞
Q[1Λs

F∞].

Combining this with (3.4) completes the proof of the theorem.

Remark. To obtain penalization results which do not necessarily involve Xt, e.g.
of the form Ft = f(At), we need to find an equivalent for P[Ft]. Unfortunately,
we are not able to give such an estimate in the general case; however, if (Xt)t≥0

is a diffusion satisfying some technical conditions, this problem is solved in the
companion paper [9], and we deduce a penalization theorem, generalizing results
given in [11].
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§4. A new decomposition of nonnegative supermartingales

The following proposition gives a general decomposition of any nonnegative, càdlàg
supermartingale, involving a uniform martingale and a martingale of the form
(Mt(F ))t≥0. This decomposition generalizes a result obtained in [11] (Theorem
1.2.5).

Theorem 4.1. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that A∞ = ∞ P-almost surely. Let (Zt)t≥0 be a nonnegative, càdlàg P-super-
martingale. Denote by Z∞ the P-almost sure limit of Zt as t→∞. Then, Q-almost
everywhere, the quotient Zt/Xt is well-defined for t large enough and converges,
as t→∞, to a limit z∞, integrable with respect to Q, and (Zt)t≥0 decomposes as

(Zt = Mt(z∞) + P[Z∞ | Ft] + ξt)t≥0,

where (P[Z∞ | Ft])t≥0 denotes a càdlàg version of the conditional expectation of
Z∞ with respect to Ft, and (ξt)t≥0 is a nonnegative, càdlàg P-supermartingale,
such that:

• Z∞ ∈ L1
+(F ,P), hence P[Z∞ | Ft] converges P-almost surely and in L1(F ,P)

towards Z∞.
• P[Z∞ | Ft]+ξt

Xt
−−−→
t→∞

0 Q-almost everywhere.

• Mt(z∞) + ξt −−−→
t→∞

0 P-almost surely.

Moreover, the decomposition is unique in the following sense: Let z′∞ be a Q-
integrable, nonnegative functional, Z ′∞ a P-integrable, nonnegative random vari-
able, (ξ′t)t≥0 a càdlàg, nonnegative P-supermartingale, and suppose that for all
t ≥ 0,

Zt = Mt(z′∞) + P[Z ′∞ | Ft] + ξ′t.

Under these assumptions, if as t→∞, ξ′t tends P-almost surely to zero and ξ′t/Xt

tends Q-almost everywhere to zero, then z′∞ = z∞ Q-almost everywhere, Z ′∞ = Z∞
P-almost surely, and ξ′ is P-indistinguishable from ξ.

Proof. Let H := e−A∞ . Since Z is a càdlàg P-supermartingale, it is easy to de-
duce that (Zt/Mt(H))t≥0 is a càdlàg supermartingale with respect to M̃H :=
MH/MH(1). Hence, it converges M̃H -almost surely to a limit ζ. SinceMt(H)/Xt

converges M̃H -a.s. to H, Zt/Xt converges M̃H -a.s., and hence Q-almost ev-
erywhere, to z∞ = ζH. Moreover, since ζ is the M̃H -a.s. limit of the M̃H -
supermartingale (Zt/Mt(H))t≥0, one has

Q[z∞] =MH [ζ] ≤MH [Z0/M0(H)] <∞.
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Since z∞ is Q-integrable, (Mt(z∞))t≥0 is well-defined. Now, for all nonnegative,
Ft-measurable functionals Γt,

Q[Γtz∞] = Q
[
Γt lim

u→∞

Zu
Xu

]
= Q

[
Γt lim

u→∞

Zu
Xu

1g≤u

]
≤ lim inf

u→∞
Q
[
Γt
Zu
Xu

1g≤u

]
= lim inf

u→∞
P
[
Γt
Zu
Xu

Xu

]
≤ lim inf

u→∞
P[ΓtZu] ≤ P[ΓtZt].

Thus for all t ≥ 0, Mt(z∞) ≤ Zt P-a.s., which implies that the process
(Mt(z∞) ∧ Zt)t≥0 is a càdlàg and adapted modification of (Mt(z∞))t≥0. Since
(Mt(z∞))t≥0 is only defined up to càdlàg modifications (which are indistinguish-
able from each other), one can replace (Mt(z∞))t≥0 by (Mt(z∞) ∧ Zt)t≥0, and
therefore suppose that for all t ≥ 0,Mt(z∞) ≤ Zt everywhere. Note that if (Zt)t≥0

is supposed to be uniformly integrable, then so is (Mt(z∞))t≥0, and since it tends
P-almost surely to zero, it is P-almost surely identically zero. This implies that
z∞ = 0 Q-almost everywhere. Now, going back to the general case, let us define,
for all t ≥ 0,

Z̃t := Zt −Mt(z∞).

Since (Mt(z∞))t≥0 is a càdlàg P-martingale, the process (Z̃t)t≥0 is a càdlàg, non-
negative P-supermartingale. Moreover, Mt(z∞) tends P-almost surely to zero as
t→∞, hence

Z̃t −−−→
t→∞

Z∞

P-almost surely. Now, since (Z̃t)t≥0 is a nonnegative supermartingale and Z∞ ≥ 0
P-almost surely, we obtain, for all t ≥ 0,

(4.1) 0 ≤ P[Z∞ | Ft] ≤ Z̃t

P-almost surely. Hence, ((P[Z∞ | Ft])+∧Z̃t)t≥0 is a càdlàg version of (P[Z∞ | Ft])t≥0

and one can suppose that (4.1) holds everywhere. Now, let us write, for all t ≥ 0,

ξt := Z̃t − P[Z∞ | Ft].

This is a nonnegative, càdlàg supermartingale tending P-a.s. to zero as t → ∞.
On the other hand, Q-almost everywhere,

lim
t→∞

ξt
Xt

= lim
t→∞

Z̃t
Xt

= z∞ − z∞ = 0.

Here, the first equality is due to the fact that (P[Z∞ | Ft]/Xt)t≥0 tends to zero
Q-almost everywhere, by the remark made above on the case where (Zt)t≥0 is
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uniformly integrable. The uniqueness of the decomposition is very easy to check:
since Mt(z′∞) and ξ′t tend P-almost surely to zero as t → ∞, Zt tends P-almost
surely to Z ′∞ and so Z ′∞ = Z∞. Similarly, since ξ′t/Xt and any càdlàg version
of P[Z ′∞ | Ft]/Xt tend to zero Q-almost everywhere, Zt/Xt tends to z′∞, which is
Q-almost everywhere equal to z∞. One now deduces that for all t ≥ 0, ξ′t = ξt
P-almost surely, and since ξ and ξ′ are càdlàg, they are indistinguishable, which
proves the uniqueness of the decomposition.

As in [11], we can deduce, from Theorem 4.1, the following characterization
of the martingales of the form (Mt(F ))t≥0:

Corollary 4.1. Suppose that the assumptions of Theorem 1.1 are satisfied, and
that A∞ = ∞ P-almost surely. Then a càdlàg, nonnegative P-martingale (Zt)t≥0

has the form (Mt(F ))t≥0 for a nonnegative, Q-integrable functional F if and only
if

(4.2) P[Z0] = Q
(

lim
t→∞

Zt
Xt

)
.

Note that, by Theorem 4.1, the limit above necessarily exists Q-almost everywhere.

Proof. By Theorem 4.1, one can write the decomposition

Zt = Mt(z∞) + P[Z∞ | Ft] + ξt.

Note that in this situation, (ξt)t≥0 is a nonnegative martingale. One has

P[Z0] = P[M0(z∞)] + P[P[Z∞ | F0]] + P[ξ0] = Q[z∞] + P[Z∞] + P[ξ0].

Now, the equation (4.2) is satisfied if and only if

P[Z0] = Q[z∞].

If this condition holds, one has

P[Z∞] = P[ξ0] = 0,

and then, for all t ≥ 0,
P[Z∞ | Ft] + ξt = 0

almost surely. Hence, the martingale (Zt)t≥0 is a càdlàg modification of
(Mt(z∞))t≥0. Since (Mt(z∞))t≥0 is only defined up to càdlàg modification, one can
suppose that (Zt)t≥0 coincides with (Mt(z∞))t≥0. On the other hand, if (Zt)t≥0

has the form (Mt(F ))t≥0, by uniqueness of the decomposition given in Proposition
4.1, F = z∞ Q-almost everywhere, which implies that P[Z0] = Q[z∞], and so (4.2)
is satisfied.
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Remark. Suppose that, in Theorem 4.1, (Zt)t≥0 is a nonnegative martingale. Since
the space has property (NP), there exists a unique finite measure QZ on (Ω,F)
such that for all t ≥ 0, its restriction to Ft has density Zt with respect to P. If one
writes the decomposition

Zt = Mt(z∞) + P[Z∞ | Ft] + ξt,

one deduces

QZ = z∞Q+ Z∞P + Qξ,

where the restriction of Qξ to Ft has density ξt with respect to P. By the Radon–
Nikodym theorem, one has a decomposition

Qξ = ξ′P + Q′ξ,

where Q′ξ is singular with respect to P. Now, if for t ≥ 0, ξ′t is the density, with
respect to P, of the restriction of ξ′P to Ft, then for all t ≥ 0, ξ′t ≤ ξt P-almost
surely. Moreover, if (ξ′t)t≥0 is supposed to be càdlàg, then almost surely, ξ′t ≤ ξt
for all t ≥ 0. By taking the P-almost sure limit for t going to infinity, one deduces
that ξ′ = 0 P-almost surely, and therefore Qξ = Q′ξ is singular with respect to P.
One can also decompose Qξ as

Qξ = ξ′′Q+ Q′′ξ ,

where Q′′ξ is singular with respect to Q. Now, for all t ≥ 0, one has, P-almost surely,
and hence Q-almost everywhere, Mt(ξ′′) ≤ ξt. Since (Mt(ξ′′))t≥0 and (ξt)t≥0 are
right-continuous, one deduces that Q-almost everywhere,Mt(ξ′′) ≤ ξt for all t ≥ 0.
Since Q-almost everywhere, Mt(ξ′′)/Xt tends to ξ′′ as t→∞, and ξt/Xt tends to
zero, one has ξ′′ = 0 Q-almost everywhere and Qξ = Q′′ξ is singular with respect
to Q. Hence, we have obtained a decomposition of QZ into three parts:

• A part which is absolutely continuous with respect to P.
• A part which is absolutely continuous with respect to Q.
• A part which is singular with respect to P and Q.

This decomposition is unique, as a consequence of uniqueness of the Radon–
Nikodym decomposition (recall that P and Q are mutually singular, since A∞ =∞
P-almost surely, and A∞ <∞Q-almost everywhere). This uniqueness can be com-
pared with the uniqueness of the decomposition of the martingale (Zt)t≥0 given
in Proposition 4.1.
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