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Noncommutative Topological Entropy of
Endomorphisms of Cuntz Algebras II

by

Adam Skalski

Abstract

A study of noncommutative topological entropy of gauge invariant endomorphisms of
Cuntz algebras begun in our earlier work with J. Zacharias is continued and extended to
endomorphisms which are not necessarily of permutation type. In particular it is shown
that if H is an N -dimensional Hilbert space, V is an irreducible multiplicative unitary on
H⊗ H and F : H⊗ H→ H⊗ H is the tensor flip, then the Voiculescu entropy of Longo’s
canonical endomorphism ρV F ∈ End(ON ) is equal to logN .
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Introduction

Noncommutative topological entropy for transformations of C∗-algebras intro-
duced by D. Voiculescu in [Voi] is an interesting invariant generalising the classical
topological entropy of continuous transformations of compact spaces ([NeS]); its
value for an endomorphism ρ will be denoted by ht(ρ). The class of transformations
most studied from the point of view of the Voiculescu entropy is the family of var-
ious noncommutative generalisations of classical shifts, in particular the canonical
shift on the Cuntz algebra ON . In [SkZ] together with J. Zacharias we computed
the Voiculescu entropy of certain permutation endomorphisms of ON generalising
the canonical shift. Permutation endomorphisms are endomorphisms of ON asso-
ciated to so-called permutation unitaries; their properties imply that they can be
studied via combinatorial methods.
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The basic method of obtaining lower estimates for the entropy ht(ρ) of a
given endomorphism ρ of a C∗-algebra A is based on finding a commutative
C∗-subalgebra left invariant by ρ on which ρ is induced by a classical transfor-
mation whose entropy can be computed by an application of standard dynamical
systems’ techniques. The examples of bitstream shifts studied in [NeS] show that
it can happen that

ht(ρ) > htc(ρ)

= sup{ht(ρ|C) : C is a commutative ρ-invariant C∗-subalgebra of A}

(see [Ska]). Each permutation endomorphism of ON leaves invariant the so-called
canonical masa (maximal abelian subalgebra) CN ⊂ ON (which can be thought of
as a natural ‘diagonal’ algebra inside ON ). Although the analysis in [SkZ] showed
that there exist examples when ht(ρ) > ht(ρ|CN

), in the cases studied in that
paper we still had ht(ρ) = htc(ρ) and the actual value of entropy was achieved
already on some ρ-invariant standard masa (i.e. a masa arising from CN by a
change of coordinates). Moreover the only values of entropy obtained explicitly for
endomorphisms of ON were equal to log k, where k ∈ N.

In view of the above discussion it is interesting to investigate on one hand the ex-
istence of invariant standard masas for endomorphisms of a Cuntz algebra and on the
other to seek new ways of establishing lower bounds for Voiculescu entropy for such
endomorphisms. The first problem was studied by J. H. Hong, W. Szymański and
the author in the recent paper [HSS]. The current work is devoted to making progress
in the second. The way forward was suggested by connections between the values of
the index of permutation endomorphisms and their entropy discussed in [CS2] and
resembling the connections between the index of a subfactor of a finite factor and
the Connes–Størmer entropy of a canonical shift of Ocneanu (see for example [Hia]).

We begin by introducing the notation and recalling basic statements needed in
what follows. In Section 2 we analyse a class of examples of endomorphisms of ON
introduced by M. Izumi in [Izu]. Each endomorphism ρ in this class, although not
a permutation endomorphism itself, is at the same time a square root of a permu-
tation endomorphism and the composition of a permutation endomorphism with
a Bogolyubov automorphism β. Moreover ht(ρ) = 1

2 logN and ht(ρ ◦ β) = logN
(note that in [HSS] it was shown that when N = 2 the corresponding endomor-
phism leaves no standard masa invariant). In Section 3 we prove that the compu-
tation of the entropy of Izumi’s examples can be interpreted as a special instance
of a general fact: each irreducible multiplicative unitary V on a finite-dimensional
Hilbert space H ([BaS]) leads to an endomorphism of a corresponding Cuntz alge-
bra whose Voiculescu entropy is equal to the logarithm of the dimension of H.
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§1. Notation and preliminaries

Let N ∈ N and let ON denote the Cuntz algebra, i.e. the C∗-algebra generated
by N isometries with orthogonal ranges summing to 1 ([Cu1]). The isometries
generating ON will be usually denoted by S1, . . . , SN ; composition of several gen-
erating isometries will be expressed via a multi-index type notation (see for ex-
ample [SkZ]). For each k ∈ N we denote the set of multi-indices of length k by
Jk := {(j1, . . . , jk) : j1, . . . , jk ∈ {1, . . . , N}} and put J =

⋃
k∈N Jk. There is

a well-known 1-1 correspondence between the unital endomorphisms of ON (de-
noted further by End(ON )) and unitaries in ON , first observed in [Cu2]: given
U ∈ U(ON ) the associated endomorphism is determined by

ρU (Si) = USi, i = 1, . . . , N,

and conversely given ρ ∈ End(ON ) its associated unitary is given by

Uρ =
n∑
i=1

ρ(Si)S∗i .

If a unitary U ∈ ON is a linear combination of elements of the form SiS
∗
j (i, j =

1, . . . , N), the associated transformation ρU is an automorphism, called a Bo-
golyubov automorphism (its action corresponds to the change of coordinates in the
Hilbert space CN underlying the Cuntz algebra in the approach due to R. Longo
and J. Roberts). For Bogolyubov automorphisms we will usually write αU instead
of ρU . In particular the family of automorphisms {αt : t ∈ T} provides an ac-
tion of T on ON , called the gauge action. The fixed point space of this action
is denoted by FN and is generated as a normed space by the union

⋃
k∈N FkN ,

where FkN = Lin{SJS∗K : J,K ∈ Jk}. It is easy to check that FkN is isomorphic
to MNk ≈ M⊗kN and the corresponding embeddings FkN ⊂ F

k+1
N are compatible

with the usual unital embeddings on the matrix level, so that FN is a UHF al-
gebra of type N∞. The canonical masa (maximal abelian subalgebra) in ON is
the algebra CN generated by {SIS∗I : I ∈ J }; a standard masa is a C∗-subalgebra
of ON equal to α(CN ) for some Bogolyubov automorphism α. Every standard
masa is isomorphic to the algebra of continuous functions on C, the full shift on N
letters ([Wal]).

An interesting class of permutation endomorphisms of ON having a relatively
simple combinatorial description was introduced in [Kaw] and was subsequently
studied for example in [Szy] and [CS1]. Let Pk denote the set of all permutations of
the set Jk. The permutation endomorphism given by σ ∈ Pk is the endomorphism
associated to a unitary Uσ =

∑
J∈Jk

Sσ(J)S
∗
J . The canonical shift on ON is the
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permutation endomorphism associated with the flip unitary F =
∑N
i,j=1 SiSjS

∗
i S
∗
j

and denoted further by Φ.
The standard topological entropy of a continuous transformation T of a com-

pact space ([Wal]) will be denoted by htop(T ). For the definition and basic proper-
ties of Voiculescu’s noncommutative topological entropy of an endomorphism (or
a completely positive map) of a (nuclear) C∗-algebra we refer to the original paper
[Voi] or to the monograph [NeS]. All the information needed to read this note can
also be found in [SkZ].

§2. Entropy of an endomorphism coming from a real sector—
the square root of a canonical endomorphism

In [Izu] M. Izumi studied certain explicit examples of endomorphisms of Cuntz
algebras motivated by the subfactor theory. One class of them (Example 3.7 of
[Izu]) was constructed in the following way: Let G be a finite abelian group of
cardinality N ≥ 2 with the (symmetric) duality bracket 〈·, ·〉 : G×G→ T satisfying
the usual conditions (g, g′, h ∈ G)

〈g, h〉 = 〈−g, h〉,
∑
h∈G

〈h, g〉 =

{
0 if g 6= e,

N if g = e,

〈g, h〉〈g′, h〉 = 〈g + g′, h〉, 〈g, h〉 = 〈h, g〉

(the group operation in G will be written additively). If G = Z/NZ one can
put 〈k, l〉 := exp(2πi(kl)/N). We will use elements of G as indices of generating
isometries in ON . Define unitaries U(g) ∈ FN ⊂ ON (g ∈ G) by

U(g) =
∑
h∈G

〈g, h〉ShS∗h,

and the endomorphism ρ ∈ End(ON ) by

ρ(Sg) =
1√
N

∑
h∈G

〈g, h〉ShU(g)∗.

The endomorphism ρ was studied in detail in [HSS]. It does not leave CN invariant.
The unitary associated with ρ is equal to

(2.1) V =
1√
N

∑
g,h,l∈G

〈g, h− l〉ShSlS∗l S∗g .

Define, for each h ∈ G,

S̃h =
1√
N

∑
a∈G
〈h, a〉Sa
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and let β ∈ Aut(ON ) be given by

β(Sh) = S̃h, h ∈ G.

It is easy to see that β is a Bogolyubov automorphism.

Theorem 2.1. The endomorphism ρ′ := ρ ◦ β is a permutation endomorphism
of ON given by the formula (notation as above)

ρ′(Sh) =
∑
g∈G

SgSh+gS
∗
h+g, h ∈ G.

Moreover ht(ρ′) = logN .

Proof. The first statement is shown in [HSS]. As the endomorphism ρ′ is induced
by a unitary in F2

N , Theorem 2.2 of [SkZ] implies that ht(ρ′) ≤ logN . As ρ′ is
a permutation endomorphism, it leaves CN invariant and ρ′|CN

is induced by a
continuous transformation Tρ′ of C. Note that we have (for h, k ∈ G)

ρ′(ShS∗h) =
∑
g∈G

SgSh+gS
∗
h+gS

∗
g ,

ρ′(ShSkS∗kS
∗
h) =

∑
g∈G

SgSh+gSk+h+gS
∗
k+h+gS

∗
h+gS

∗
g ,

and so on. The analysis of the transformations on cylinder sets (see [SkZ] or [Szy])
implies that Tρ′ is given by the formula

(Tρ′(w))k = wk+1 − wk, w := (wn)∞n=1 ∈ C, k ∈ N.

Hence an application of an extension of Lemma 3.2 of [SkZ] (although this lemma
was stated in [SkZ] only for N = 2, it is easy to see that its formulation and
proof can be easily adapted to arbitrary N) shows that htop(Tρ′) = logN so that
ht(ρ′) ≥ ht(ρ′|CN

) = htop(Tρ′) = logN .

Theorem 2.2. The Voiculescu entropy of ρ is equal to 1
2 logN .

Proof. It is easily checked that ht(ρ) = 1
2ht(ρ2). Write γ := ρ2. It suffices to show

that ht(γ) = logN . This will follow from the general result in Theorem 3.2, but
here we can provide a direct proof, as γ is a permutation endomorphism given by
the formula (g ∈ G)

γ(Sg) =
∑
k∈G

SkSg+kS
∗
k

(see [HSS]). As the associated unitary Vγ :=
∑
g,h∈G SgSh+gS

∗
gS
∗
h belongs to F2

N ,
Theorem 2.2 of [SkZ] implies that ht(γ) ≤ logN .
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Examine the action of γ on CN . For each n ∈ N and g1, . . . , gn ∈ G,

γ(Sg1 · · ·SgnS
∗
gn
· · ·S∗g1) =

∑
h∈G

ShSg1+h · · ·Sgn+hS
∗
gn+h · · ·S∗g1+hS

∗
h,

so that once more analysing the cylinder sets we see that γ|CN
is induced by the

continuous transformation defined by

(Tγ(w))k = w1 + wk+1, w = (wn)∞n=1 ∈ C, k ∈ N.

Thus appealing again to a suitable generalisation of Lemma 3.2 in [SkZ] yields
ht(γ|CN

) = htop(Tγ) = logN. This ends the proof.

Note that Theorems 2.1 and 2.2 yield an example of an endomorphism ρ

of ON and a Bogolyubov automorphism β such that ht(ρ ◦ β) 6= ht(ρ) (although,
as follows from [DyS], the Voiculescu entropy of each Bogolyubov automorphism
of ON is 0).

Let G = Z/2Z = {0, 1} with the natural duality bracket (〈1, 1〉 = −1, all other
brackets take value 1). The corresponding endomorphism in the class discussed
above is then given by

(2.2) ρ(S0) =
1√
2

(S0+S1), ρ(S0) =
1√
2

(S0S0S
∗
0+S1S1S

∗
1−S1S0S

∗
0−S0S1S

∗
1 ).

In Section 6 of [HSS] we showed that ρ defined via the formulas in (2.2) does
not leave any standard masa invariant. This naturally leads to the following closely
connected questions: can one characterise those masas in ON left invariant by ρ?
Do we have ht(ρ) = htc(ρ)?

It would be very interesting to investigate the entropy of other examples
of real sectors given in [Izu]. This would require completely new methods even to
obtain upper estimates, as Theorem 2.2 of [SkZ] applies only to the endomorphisms
associated to unitaries in FN , and other examples of Section 3 of [Izu] are not of
this type.

§3. Entropy of canonical endomorphisms associated to
multiplicative unitaries

Consider again the endomorphism ρ associated to the unitary defined in (2.1)
via a symmetric duality bracket on a finite abelian group G discussed in the last
section. Let τ be the faithful trace on FN and let φ = τ ◦E, where E : ON → FN
is the canonical conditional expectation (given by integrating the gauge action).
It follows from Lemma 2.1 of [Lo2] that the endomorphism ρ preserves φ, so it
also extends to an endomorphism of M := πφ(ON )′′, where πφ denotes the GNS
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representation with respect to φ (we will denote the extension by ρ̃). It follows
from the easily checked condition in Corollary 4.3 of [CoP] that ρ̃ is irreducible,
i.e. ρ̃(M)′ ∩M = CIM.

As discussed in Section 2, in [Izu] it is observed (as a consequence of results
in [Lo1] and [Wat]) that ρ is a restriction of a ‘square root’ of a canonical endo-
morphism of the III1/N -factor generated by ON in the GNS representation with
respect to the state φ. It follows from Proposition 2.5 in [Izu] that if we consider
the conditional expectation Eρ : ON → ρ(ON ) defined by

Eρ(x) = ρ(S∗eρ(x)Se),

where e ∈ G is the neutral element, then IndEρ = N and it is a minimal index in
the sense of Hiai (see [Kos] and references therein). Moreover the endomorphism
γ = ρ2 is related to the left regular representation of the group G. Indeed, it is
easy to check that

(3.1) γ2 = Φ ◦ γ,

which due to Proposition 2.1 of [Cu3] is equivalent to the fact that the unitary
associated with γ is a product of a multiplicative unitary on Cn ⊗Cn ([BaS]) and
the flip unitary F =

∑
g,h∈G ShSgS

∗
hS
∗
g .

As suggested by the above discussion, there is a connection between the en-
tropy computation in Section 2, index values of the inclusion ρ̃(M) ⊂ M and the
fact that ρ2 is related to the left regular representation of a finite group. Indeed,
Theorem 2.2 may be viewed as a special instance of a general entropy result related
to interaction between finite-dimensional Kac algebras and index for subfactors
stated in Theorem 3.2 below. Recall two basic definitions from [BaS]:

Definition 3.1. Let H be a Hilbert space and let Σ denote the unitary tensor
flip in B(H ⊗ H). A unitary V ∈ B(H ⊗ H) is called a multiplicative unitary if it
satisfies the pentagonal equation

V12V13V23 = V23V12

(we use the standard leg notation, so that the operators in the equality above act
on H ⊗ H ⊗ H). A multiplicative unitary V ∈ B(H ⊗ H) is called irreducible if
there exists a self-adjoint unitary U ∈ B(H) such that (Σ(1⊗U)V )3 = 1 and both
operators V̂ = Σ(U ⊗ 1)V (U ⊗ 1)Σ and Ṽ = (U ⊗U)V̂ (U ⊗U) are multiplicative
unitaries.

Baaj and Skandalis showed in Section 4 of [BaS] that if H is finite-dimensional
then each multiplicative unitary in B(H⊗H) is irreducible up to multiplicity (i.e.



894 A. Skalski

each multiplicative unitary on H is unitarily equivalent to a tensor product of an
irreducible one and 1K⊗ 1K for some Hilbert space K). In particular multiplicative
unitaries associated in a canonical way with finite-dimensional Kac algebras are
irreducible.

Theorem 3.2. Let V be an irreducible multiplicative unitary on H⊗ H, where H

is an N -dimensional Hilbert space; view V as a matrix in MN ⊗MN and further
via the usual isomorphism MN ⊗MN ≈ F2

N ⊂ ON as a unitary in ON . Let F
be the flip unitary in F2

N . The topological entropy of the endomorphism of ON
associated with V F is equal to logN .

Proof. Denote R = V F , γ := ρR. As R ∈ F2
N , Theorem 2.2 of [SkZ] implies that

ht(γ) ≤ logN .
As mentioned above, Lemma 2.1 of [Lo2] implies that γ preserves φ, so γ

extends to an endomorphism of M := πφ(ON )′′, denoted by γ̃. Irreducibility of V
implies that γ̃ is a canonical endomorphism for an irreducible inclusion of factors
N ⊂ M (Corollary 4.3 of [Lo2]), where N = {x ∈ M : Φ̃(x) = γ̃(x)} is the fixed
point algebra for the coaction associated to V ([Lo2], [Cu3]). By Proposition 3.1
in [Lo2], Ind(γ̃) = N2.

Let M(0) := πφ(FN )′′ = πφ(
⋃
n∈N FnN )′′. Due to Proposition 4.7 in [Lo2], M(0)

is equal to the strong closure of the algebra
⋃
n∈N γ̃

n(M)′ ∩M. As V ∈ FN , the
endomorphism γ̃ leaves M(0) invariant. By Theorem 3.2.2(ii) in [NeS] we have
hφ(γ̃) = hφ(γ), where hω(α) denotes the CNT entropy of an endomorphism α pre-
serving a state ω (see [NeS] for the precise definitions—although Theorem 3.2.2(ii)
is stated for automorphisms, its proof is valid also when ρ is just an endomor-
phism). As ht(γ) ≥ hφ(γ) by Theorem 6.2.2(ii) in [NeS], to finish the proof it
suffices to show that hφ(γ̃) ≥ logN . Note that as the canonical conditional expec-
tation E extends to a φ-preserving normal conditional expectation Ẽ : M→ M(0),
by Theorem 3.2.2(v) in [NeS] we have hφ(γ̃) ≥ hφ(γ̃|M(0)).

Let N(0) := N ∩ M(0). Note that because both γ and the canonical shift Φ
commute with the gauge action, we have N(0) = Ẽ(N). As the canonical expecta-
tion Eγ : M→ γ̃(M) discussed in Lemma 4.6 of [Lo2] preserves the trace on M(0),
due to Lemma 7.3.5 in [Cho] we see that N(0) is a subfactor of M(0); Proposition
7.3.6 of the same paper1 implies [M(0),N(0)] = (Ind(γ̃))1/2 = N . Further we can
use the observation in Theorem 7.3.7 of [Cho] (see also Corollary 4.3 in [Lo2])
that γ̃|M(0) is conjugate to Ocneanu’s canonical shift associated with the inclusion
N(0) ⊂ M(0); note that now we are in the framework of finite factor inclusions.

1Note that in Lemma 7.2.1 in [Cho] the operator V should be defined as V = (1/λ)γ(e)fe
and is only a partial isometry—this does not affect further reasoning and the main results of
that paper remain valid.
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Corollary 4.6 of [Hia] then gives hφ(γ̃|M(0)) = log([M(0),N(0)]) = logN , provided
the inclusion N(0) ⊂ M(0) is extremal and strongly amenable. Extremality follows
from the equality (N(0))′ ∩M(0) = CIM, which itself is a consequence of Theorem
6.6 in [LoR] and Proposition 3.2 of [Lo2]. By Theorem 1 in [Pop] strong amenabil-
ity of the inclusion in question will follow if we can only show that it has finite
depth, as M(0) is a hyperfinite factor. As the Jones tunnel corresponding to the
inclusion N(0) ⊂ M(0) is given by

· · · ⊂ γ̃(N(0)) ⊂ γ̃(M(0)) ⊂ N(0) ⊂ M(0) ⊂ · · · ,

it suffices to show that γ̃(N(0))′ ∩ M(0) is a factor. The earlier observation that
(N(0))′ ∩ M(0) = CIM, the fact that γ̃(N(0))′ = Φ̃(N(0))′ and a suitably adapted
argument from Corollary 3.3 of [Lo2] furnishes precisely that (one can show that
γ̃(N(0))′ ∩M(0) = F1

N ).

Conceptually the reason for having ht(ρV F ) = logN is that ρV F is indeed a
map closely related to the canonical shift on ON , as is suggested by the formula
(3.1); several instances of such analogies can be found in [LoR].
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