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Periodicity for Mumford–Morita–Miller Classes
of Surface Symmetries

by

Toshiyuki Akita

Abstract

We prove periodicity for mod p Mumford–Morita–Miller classes of surface symmetries
and thereby for finite subgroups of mapping class groups. As an application, we ob-
tain a couple of vanishing results for mod p Mumford–Morita–Miller classes for surface
symmetries.
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§1. Introduction

By a surface symmetry, we mean a pair (G,C) consisting of a closed oriented
surface C and a finite group G acting on C effectively and preserving orientation.
Associated with a surface symmetry (G,C), there is an oriented surface bundle

π : EG×G C → BG

where EG → BG is the universal principal G-bundle. Mumford [18], Morita [17]
and Miller [15] introduced a series of characteristic classes of oriented surface
bundles which are called Mumford–Morita–Miller classes (MMM classes for short).
The k-th MMM class ek(G,C) ∈ H2k(G,Z) of a surface symmetry (G,C) is then
defined to be the k-th MMM class of the associated surface bundle π. See Section 3
for precise definitions.

MMM classes of surface symmetries were studied in [1, 3, 4, 13, 20]. In case
G is a finite cyclic group, Uemura proved, among other things, a certain kind of
periodicity for MMM classes of surface symmetries [20, Theorem 2.1]:
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Theorem 1.1 (Uemura). Let G be a cyclic group of order m. There exists a co-
homology class vG ∈ H2φ(m)(G,Z) such that, for any surface symmetry (G,C),

ek+φ(m)(G,C) = ek(G,C) ∪ vG ∈ H2(k+φ(m))(G,Z) for all k ≥ 1,

where φ(m) is the number of positive integers less than m that are coprime to m.

See Remark 3.1 for the definition of vG. The primary purpose of this paper is
to generalize “mod p reduction” of Uemura’s result to arbitrary finite groups:

Theorem 1.2. Let G be an arbitrary finite group, p a prime number which divides
the order of G, and νp(G) := pm−pm−1 where pm is the highest power of p dividing
the order of G. There exists a cohomology class uG ∈ H2νp(G)(G,Fp) such that,
for any surface symmetry (G,C),

ek+νp(G)(G,C) = ek(G,C) ∪ uG ∈ H2(k+νp(G))(G,Fp) for all k ≥ 1.

The cohomology class uG is a certain multiple of the νp(G)-th Chern class
of the regular representation of G. See the proof of Theorem 1.2 for the precise
definition of uG. Two remarks are in order. Firstly, if G is a cyclic group of order
m, then νp(G) divides φ(m), and Theorem 1.2 implies “mod p reduction” of The-
orem 1.1. Secondly, if p = 2 then ek(G,C) ∈ H2k(G,F2) vanishes for all k ≥ 1 (see
Section 5). Hence Theorem 1.2 is trivial for p = 2; however, it is highly nontrivial
for odd primes.

Many of the results in this paper, including Theorem 1.2, can be restated in
purely algebraic terms. We try to separate topological and algebraic ingredients
of our results as much as possible, for we believe that our results have their own
meanings in group cohomology as well as topology. To do so, based on a result
of Kawazumi and Uemura [13], we will introduce the notion of algebraic MMM
classes which is an algebraic counterpart of MMM classes of surface symmetries.

Now let us describe the content of this paper very briefly. In Section 2 we
recall relevant definitions and facts concerning surface symmetries. In Section 3
we recall the definitions of MMM classes, together with Chern classes of linear
representations. Algebraic MMM classes will also be defined there. Section 4 is
devoted to the proof of Theorem 1.2. There are two key ingredients of the proof.
One is a result of Kawazumi and Uemura mentioned above. The other is a result
of Kahn [11] concerning the total Chern classes of the regular representations of
finite groups. The final section is devoted to applications of the main result. We will
prove a couple of vanishing results for mod p MMM classes of surface symmetries.

For other results concerning mod p reduction of MMM classes, we refer the
reader to [1, 2, 4, 6, 7, 12] and Section 5.
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Notation. For a finite group G, the order of G is denoted by |G|, the commutator
subgroup of G is denoted by [G,G], and the abelianization G/[G,G] of G is denoted
by Gab. For a subgroup H of G, the corestriction (or transfer) is denoted by CorGH :
H∗(H,Z) → H∗(G,Z), while the restriction is denoted by ResGH : H∗(G,Z) →
H∗(H,Z). For a prime number p, the field of p elements is denoted by Fp.

§2. Surface symmetries

§2.1. Ramification data

By a surface symmetry we mean a pair (G,C), where C is a closed oriented surface,
not necessarily connected, and G is a finite group acting on C effectively and
preserving the orientation of C. Throughout this paper, we assume that surfaces
and G-actions on them are smooth.

For each x ∈ C, let Gx be the isotropy subgroup at x. Note that Gx is
necessarily cyclic. Set S = {x ∈ C | Gx 6= 1}, and let S/G = {x1, . . . , xq} be
a set of representatives of G-orbits of elements of S. For each xi ∈ S/G, choose
a generator γi of Gxi such that γi acts on the tangent space TxiC by rotation
through the angle 2π/|Gxi

| with respect to a G-invariant metric on C. Let γ̂i be
the conjugacy class of γi (1 ≤ i ≤ q). The ramification data of (G,C), abbreviated
by δ(G,C), is the unordered q-tuple 〈γ̂1, . . . , γ̂q〉. Note that δ(G,C) is independent
of various choices made and hence well-defined for (G,C).

Proposition 2.1. If 〈γ̂1, . . . , γ̂q〉 is the ramification data of a surface symmetry
(G,C), then γ1 · · · γq ∈ [G,G].

Proof. If the quotient surface D := C/G is connected, the conclusion is proved as
follows. Let π : C → D be the natural projection and put yi := π(xi) (xi ∈ S/G).
Then π : C \ S → D \ {y1, . . . , yq} is a regular covering. Such a covering yields a
homomorphism ρ : π1(D \ {y1, . . . , yq}, y0) → G where y0 ∈ D \ {y1, . . . , yq} is a
base point. Note that ρ is surjective if and only if C is connected. Now one has a
presentation

π1(D \ {y1, . . . , yq}, y0) ∼=
〈
ai, bi (1 ≤ i ≤ h), cj (1 ≤ j ≤ q)

∣∣∣ h∏
i=1

[ai, bi]
q∏
j=1

cj

〉
,

where h is the genus of the quotient surface D and cj is a small loop around yj
(1 ≤ j ≤ q). If cj ’s are oriented in a standard way, then γ′j := ρ(cj) ∈ G is conjugate
to γj (1 ≤ j ≤ q) (γ′j depends on the choices of y0 and cj). The proposition follows
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from the equality

q∏
j=1

γ′j = ρ
( q∏
j=1

cj

)
= ρ
( h∏
i=1

[ai, bi]
)−1

∈ [G,G].

If the quotient surfaceD is not connected, the conclusion can be proved by applying
the above argument to each connected component of D. The details are left to the
reader.

§2.2. The Grieder monoid of a finite group

Let G be a finite group and γ̂ the conjugacy class of an element γ ∈ G. We denote
by 〈γ̂1, . . . , γ̂q〉 (or 〈γ̂1, . . . , γ̂q〉G) an unordered q-tuple (q ≥ 0) of the conjugacy
classes of nontrivial elements of G satisfying γ1 · · · γq ∈ [G,G], and byMG the set
of all such tuples. We can define a commutative monoid structure on MG by

〈γ̂1, . . . , γ̂q〉+ 〈γ̂q+1, . . . , γ̂r〉 = 〈γ̂1, . . . , γ̂q, γ̂q+1, . . . , γ̂r〉.

The identity element is the empty tuple 〈〉. We callMG the Grieder monoid of G,
since MG and its variants were introduced and investigated by Grieder [8, 9] to
study surface symmetries.

According to Proposition 2.1, the ramification data δ(G,C) of any surface
symmetry (G,C) is an element of the Grieder monoid MG. Conversely, any ele-
ment of MG can be realized as the ramification data for some surface symmetry.
Hence MG can be identified with the set of ramification data of (G,C)’s:

Proposition 2.2. For any 〈γ̂1, . . . , γ̂q〉 ∈ MG, there exists a surface symmetry
(G,C) whose ramification data δ(G,C) coincides with 〈γ̂1, . . . , γ̂q〉. Moreover, C
can be chosen to be connected.

Proof. We continue to use the notation of the proof of Proposition 2.1. To prove
the proposition, it suffices to construct a surjective homomorphism

ρ : π1(D \ {y1, . . . , yq}, y0)→ G

with ρ(cj) = γj (1 ≤ j ≤ q) for some genus h = g(D). Since γ1 · · · γq ∈ [G,G], one
has

(γ1 · · · γq)−1 =
r∏
i=1

[αi, α′i]

for some αi, α′i ∈ G (1 ≤ i ≤ r). Choose a set of generators {β1, . . . , βs} of G and
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set h := r + s. Then a homomorphism ρ : π1(D \ {y1, . . . , yq}, y0)→ G defined by
ρ(ai) = αi, ρ(bi) = α′i (1 ≤ i ≤ r),
ρ(ai+r) = ρ(bi+r) = βi (1 ≤ i ≤ s),
ρ(cj) = γj (1 ≤ j ≤ q)

has the desired properties.

For a subgroup H of G, define a homomorphism CorGH : MH → MG of
monoids by

CorGH(〈γ̂1, . . . , γ̂q〉H) := 〈γ̂1, . . . , γ̂q〉G.
One can also define a homomorphism ResGH : MG → MH as follows. Given
ρ ∈MG, choose a surface symmetry (G,C) with ρ = δ(G,C), and define ResGH(ρ)
by ResGH(ρ) := δ(H,C) ∈ MH . The definition of ResGH(ρ) is independent of the
surface symmetry chosen. We will call CorGH and ResGH the corestriction and the
restriction, respectively.

Remark 2.3. The ramification data of a surface symmetry as well as the mono-
idMG were introduced by Grieder [8]. Propositions 2.1 and 2.2 were stated in [8,
Section 3] without details. We wrote down the proof for completeness.

§3. Mumford–Morita–Miller classes

§3.1. The definition of Mumford–Morita–Miller classes

Let C be a closed oriented surface. Let π : E → B be an oriented surface bundle
with fiber C, T vE the tangent bundle along the fibers of π, and e ∈ H2(E; Z)
the Euler class of T vE. Define ek(π) ∈ H2k(B; Z) by ek(π) := π!(ek+1) where
π! : H∗(E; Z)→ H∗−2(B; Z) is the Gysin homomorphism (or integration along the
fiber). The cohomology class ek(π) is called the k-th Mumford–Morita–Miller class
of π (MMM class for short), as it was introduced and studied by Mumford [18],
Morita [17] and Miller [15].

Now let (G,C) be a surface symmetry as in Section 2.1. Associated with
(G,C), there is an oriented surface bundle π : EG×GC → BG called the Borel con-
struction (or the homotopy orbit space), where EG→ BG is the universal principal
G-bundle. The k-th MMM class ek(G,C) ∈ H2k(G,Z) of (G,C) is defined to be
the k-th MMM class of the Borel construction π. For a subgroup H of G, we have

(3.1) ResGH(ek(G,C)) = ek(H,C) ∈ H2k(H,Z),

where (H,C) is the surface symmetry obtained by restricting the action of G to
the subgroup H.
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§3.2. Chern classes of linear representations

Before proceeding further, we introduce Chern classes of linear representations
of finite groups, for they are used in the definition of algebraic MMM classes as
well as the proof of Theorem 1.2. Let G be a finite group and V an n-dimensional
complex linear representation of G. The k-th Chern class of V , denoted by ck(V ) ∈
H2k(G,Z), is defined to be the k-th Chern class of the n-dimensional complex
vector bundle EG ×G V → BG associated with V . The total Chern class of V is
denoted by c•(V ) := 1 +

∑n
k=1 ck(V ).

Now let 〈γ〉 be a cyclic group of order m generated by γ, and Lγ the 1-
dimensional complex linear representation of 〈γ〉 defined by γ 7→ exp(2π

√
−1/m).

Define c(γ) ∈ H2(〈γ〉,Z) to be the first Chern class of Lγ . Alternatively, c(γ) can
be defined in purely algebraic terms, as follows. For any finite group G, there are
natural isomorphisms

Hom(G,C×)
∼=−→ H1(G,C×)

∼=−→ H2(G,Z),

where C× := C \ {0}. Here, the latter isomorphism is the connecting homomor-
phism associated to the short exact sequence 0 → Z ↪→ C → C× → 0, where
C → C× is the map defined by z 7→ exp(2π

√
−1z). Then the first Chern class of

a 1-dimensional complex linear representation L of G can be identified with the
image of L under the isomorphism Hom(G,C×)→ H2(G,Z) (see [19, Chapter 6]).

Remark 3.1. For a cyclic group G of order m generated by γ, the cohomology
class vG ∈ H2φ(m)(G,Z) in Theorem 1.1 is the one defined by vG := c(γ)φ(m).

§3.3. Algebraic Mumford–Morita–Miller classes

For each element ρ = 〈γ̂1, . . . , γ̂q〉 ofMG, define a sequence of cohomology classes
ealg
k (ρ) ∈ H2k(G,Z) (k ≥ 1) by

ealg
k (ρ) :=

q∑
i=1

CorG〈γi〉(c(γi)
k) ∈ H2k(G,Z).

Since the corestriction is invariant under conjugation, ealg
k (ρ) is well-defined for ρ.

We call ealg
k (ρ) the k-th algebraic Mumford–Morita–Miller class of ρ (algebraic

MMM class for short). The definition of ealg
k (ρ) is inspired by a result of Kawazumi

and Uemura [13, Theorem B] concerning MMM classes for surface symmetries. In
terms of Grieder monoids and algebraic MMM classes, their result can be restated
as follows:
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Theorem 3.2 (Kawazumi–Uemura). For any surface symmetry (G,C), one has
ek(G,C) = ealg

k (δ(G,C)) ∈ H2k(G,Z) where δ(G,C) ∈ MG is the ramification
data of (G,C).

The assignment ρ 7→ ealg
k (ρ) defines a homomorphism MG → H2k(G,Z) of

commutative monoids, which commutes with CorGH and ResGH :

Proposition 3.3. For any subgroup H of G, the following two diagrams are com-
mutative:

MH
CorG

H−−−−→ MG

ealgk

y yealgk

H2k(H,Z)
CorG

H−−−−→ H2k(G,Z)

MG
ResG

H−−−−→ MH

ealgk

y yealgk

H2k(G,Z)
ResG

H−−−−→ H2k(H,Z)

Proof. The first diagram is commutative by the definitions of CorGH :MH →MG

and algebraic MMM classes. Given ρ ∈ MG, choose a surface symmetry (G,C)
with ρ = δ(G,C). Then ResGH(ealg

k (ρ)) = ResGH(ek(G,C)) = ek(H,C) by Theorem
3.2 and the equation (3.1), while ealg

k (ResGH(ρ)) = ealg
k (δ(H,C)) = ek(H,C) by the

definition of ResGH :MG →MH . Hence the second diagram is commutative.

§4. Proof of the main result

Throughout this section, p is a fixed prime number, VG is the regular representation
of a finite group G, and νp(G) := pm − pm−1 where pm is the highest power of p
dividing the order of G as in Theorem 1.2.

Lemma 4.1. Let G be a cyclic group of order pm generated by γ. Then

c•(VG) = 1− c(γ)νp(G) ∈ H∗(G,Fp).

Proof. Since VG =
⊕pm−1

k=0 L⊗kγ and c•(L⊗kγ ) = 1 + kc(γ), we have

c•(VG) =
pm−1∏
k=1

c•(L⊗kγ ) =
pm−1∏
k=1

(1 + kc(γ)) =
(p−1∏
k=1

(1 + kc(γ))
)pm−1

= (1− c(γ)p−1)p
m−1

= 1− c(γ)p
m−pm−1

.

As νp(G) = pm − pm−1, the lemma is verified.

Lemma 4.2. Let G be a p-group and H a cyclic subgroup generated by γ. Then

ResGH(c•(VG)) = c•(ResGH(VG)) = 1− c(γ)νp(G) ∈ H∗(H,Fp),

where ResGH(VG) is the restriction of the regular representation VG to H.
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Proof. Set |G| = pn and |H| = pm. Then ResGH(VG) = (VH)⊕(G:H) = (VH)⊕p
n−m

,
where (G : H) is the index of H in G. Hence

ResGH(c•(VG)) = c•((VH)⊕p
n−m

) = (1− c(γ)p
m−pm−1

)p
n−m

= 1− c(γ)(pm−pm−1)pn−m

= 1− c(γ)p
n−pn−1

= 1− c(γ)νp(G)

as claimed.

In view of the discussions in Sections 2 and 3, Theorem 1.2 in the Introduction
is equivalent to the following theorem which we now prove:

Theorem 4.3. Let G be a finite group whose order is divisible by p. There exists
a cohomology class uG ∈ H2νp(G)(G,Fp) such that, for any ρ ∈MG,

ealg
k+νp(G)(ρ) = ealg

k (ρ) ∪ uG ∈ H2(k+νp(G))(G,Fp) for all k ≥ 1.

Proof. Suppose first that G is a p-group. Define an element uG ∈ H2νp(G)(G,Fp)
by uG := −cνp(G)(VG). Then, for any cyclic subgroup 〈γ〉 of G generated by γ,
ResG〈γ〉(uG) = c(γ)νp(G) by Lemma 4.2. We have

c(γ)k+νp(G) = c(γ)k ∪ ResG〈γ〉(uG) for all k ≥ 1

and hence

CorG〈γ〉(c(γ)k+νp(G)) = CorG〈γ〉(c(γ)k ∪ ResG〈γ〉(uG))

= CorG〈γ〉(c(γ)k) ∪ uG for all k ≥ 1.

Setting ρ = 〈γ̂1, . . . , γ̂q〉, we obtain

ealg
k+νp(G)(ρ) =

q∑
i=1

CorG〈γi〉(c(γi)
k+νp(G)) =

q∑
i=1

(CorG〈γi〉(c(γi)
k) ∪ uG)(4.1)

=
( q∑
i=1

CorG〈γi〉(c(γi)
k)
)
∪ uG = ealg

k (ρ) ∪ uG.

This proves the theorem for p-groups.
Now let G be an arbitrary finite group and P its Sylow p-subgroup. Observe

first that ResGP (VG) = (VP )⊕(G:P ) and hence ResGP (c•(VG)) = c•(VP )(G:P ). Ac-
cording to a result of Kahn [11, Théorème 0.1], ck(VP ) = 0 ∈ H2k(P,Fp) holds for
0 < k < νp(P ) = νp(G), and hence

c•(VP )(G:P ) = 1 + (G : P ) · cνp(G)(VP ) + terms of higher degrees
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in H∗(P,Fp), which implies that

ResGP (cνp(G)(VG)) = (G : P ) · cνp(G)(VP ) = −(G : P ) · uP .

Define a cohomology class uG ∈ H2νp(G)(G,Fp) by

uG := −(G : P )p−2 · cνp(G)(VG).

Then ResGP (uG) = uP , for (G : P )p−1 ≡ 1 (mod p) by Fermat’s little theorem. We
have

ResGP (ealg
k+νp(G)(ρ)) = ealg

k+νp(G)(ResGP (ρ)) (by Proposition 3.3)

= ealg
k (ResGP (ρ)) ∪ uP (by (4.1))

= ResGP (ealg
k (ρ) ∪ uG) (by Proposition 3.3).

Since ResGP : H∗(G,Fp)→ H∗(P,Fp) is injective, this proves the theorem.

Let C be a closed oriented surface of genus g ≥ 2 and Diff+C the group of
orientation preserving diffeomorphisms of C equipped with the C∞-topology. The
mapping class group Γg of genus g is defined to be the group of connected compo-
nents of Diff+C. Given a surface symmetry (G,C), the composition of canonical
homomorphisms

G ↪→ Diff+C � Γg

is injective (see [16, Section 2] for instance). Regarding G as a subgroup of Γg via
the above homomorphism, we have

ek(G,C) = ResΓg

G (ek) ∈ H2k(G,Z),

where ek ∈ H2k(Γg,Z) is the k-th MMM class of Γg (see [17, Section 1] for the
definition of MMM classes of Γg). Conversely, according to the affirmative solution
of Nielsen’s realization problem by Kerchoff [14], any finite subgroup of Γg can be
realized as a surface symmetry in this way. Therefore we obtain the following
corollary:

Corollary 4.4. Under the notation of Theorem 4.3, for any finite subgroup G

of Γg (g ≥ 2) whose order is divisible by p, we have

ResΓg

G (ek+νp(G)) = ResΓg

G (ek) ∪ uG ∈ H2(k+νp(G))(G,Fp) for all k ≥ 1.

§5. Vanishing results for MMM classes of surface symmetries

In this section, we will prove a couple of vanishing results for mod p MMM classes
of surface symmetries. Before doing so, we quote a result of Galatius, Madsen and
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Tillmann [7, Theorem 1.2], which was an affirmative solution to the conjecture
posed by the author [1, Conjecture 1]:

Theorem 5.1 (Galatius–Madsen–Tillmann). Let π : E → B be an oriented sur-
face bundle. Then the mod p MMM class ek(π) ∈ H2k(B,Fp) of π vanishes when-
ever k ≡ −1 (mod p−1). In particular, the mod 2 MMM class ek(π) ∈ H2k(B,F2)
vanishes for all k.

Note that [7, Theorem 1.2] was stated only for MMM classes of the stable
mapping class group rather than for oriented surface bundles, but the argument
is valid for arbitrary oriented surface bundles as well. An alternative proof of
Theorem 5.1 can be found in [6].

Applying Theorem 5.1 to the oriented surface bundle E ×G C → BG associ-
ated to a surface symmetry (G,C), we obtain the following corollary:

Corollary 5.2. If k ≡ −1 (mod p− 1) then

1. ek(G,C) = 0 ∈ H2k(G,Fp) for any surface symmetry (G,C),

2. ealg
k (ρ) = 0 ∈ H2k(G,Fp) for any ρ ∈MG.

Note that, for each prime p ≥ 3 and the cyclic group G of order p, there
exists an element ρ ∈ MG satisfying ealg

k (ρ) 6= 0 ∈ H2k(G,Fp) whenever k 6≡ −1
(mod p− 1) (see [1, Proof of Theorem 3]).

Now we give two sufficient conditions for the vanishing of mod p MMM classes,
both of which are independent of Corollary 5.2:

Proposition 5.3. Let G a finite group whose Sylow p-subgroup is not cyclic.
Then, for all k ≥ 1,

1. ekνp(G)(G,C) = 0 ∈ H2kνp(G)(G,Fp) for any surface symmetry (G,C),

2. ealg
kνp(G)(ρ) = 0 ∈ H2kνp(G)(G,Fp) for any ρ ∈MG.

Since kνp(G) ≡ 0 (mod p−1), Proposition 5.3 is independent of Corollary 5.2.

Proof. Since the two statements are equivalent, we will prove the one for algebraic
MMM classes. As the restriction ResGP : H∗(G,Fp) → H∗(P,Fp) to the Sylow
p-subgroup P is injective, it suffices to consider the case where G is a p-group. For
any cyclic subgroup 〈γ〉 generated by γ ∈ G, we have

ResG〈γ〉(uG) = c(γ)νp(G) ∈ H2νp(G)(〈γ〉,Fp)

as in the proof of Theorem 4.3. Since c(γ)νp(G) is a generator of H2νp(G)(〈γ〉,Fp) ∼=
Z/pZ, the restriction ResG〈γ〉 : H2νp(G)(G,Fp) → H2νp(G)(〈γ〉,Fp) is surjective. It
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follows that the corestriction

CorG〈γ〉 : H2νp(G)(〈γ〉,Fp)→ H2νp(G)(G,Fp)

is trivial, because CorG〈γ〉 ◦ResG〈γ〉(u) = (G : 〈γ〉) · u = 0 for all u ∈ H2νp(G)(G,Fp).
Here (G : 〈γ〉) is divisible by p by assumption. Setting ρ = 〈γ̂1, . . . , γ̂q〉 ∈ MG, we
have

ealg
νp(G)(ρ) =

q∑
i=1

CorG〈γi〉(c(γi)
νp(G)) = 0 ∈ H2νp(G)(G,Fp).

Now the proposition follows from Theorem 4.3.

The second vanishing result is based on the principal ideal theorem concerning
the transfer in group theory. Let G be a finite group and H a subgroup of index n.
Choose a set E = {g1, . . . , gn} of representatives for the right cosets of H in G. For
each g ∈ G, let ḡ ∈ E be the representative of Hg. The transfer TrGH : Gab → Hab

is the homomorphism defined by

g mod [G,G] 7→
n∏
i=1

gig(gig)−1 mod [H,H]

(see [10, Section 5A] or [5, Section III.10]). The transfer TrGH induces a homomor-
phism Hom(H,C×)→ Hom(G,C×), which fits into a commutative diagram

Hom(H,C×) −−−−→ Hom(G,C×)

∼=
y y∼=

H2(H,Z)
CorG

H−−−−→ H2(G,Z)

where the vertical arrows are the isomorphisms introduced in Section 3.2. The
commutativity of the diagram follows from the fact that TrGH can be identified with
the transfer H1(G,Z)→ H1(H,Z) in group homology (see [5, Section III.10]).

Theorem 5.4. Let G be a finite group and [G,G] the commutator subgroup. Then
the transfer TrG[G,G] is trivial. Consequently, the corestriction

CorG[G,G] : H2([G,G],Z)→ H2(G,Z)

is trivial.

Proof. The triviality of the transfer TrG[G,G] is known as the principal ideal theorem.
See [10, Chapter 10.C] for the proof.

As an immediate consequence, we obtain the following corollary. For simplic-
ity, we state the argument only for algebraic MMM classes:
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Corollary 5.5. Let G be a finite group and ρ = 〈γ̂1, . . . , γ̂q〉 ∈ MG an element
satisfying γi ∈ [G,G] (1 ≤ i ≤ q). Then

(5.1) ealg
1 (ρ) = 0 ∈ H2(G,Z)

and hence

(5.2) ealg
1+kνp(G)(ρ) = 0 ∈ H2(1+kνp(G))(G,Fp) for all k ≥ 0.

In particular, if G is perfect, then (5.1) and (5.2) hold for all ρ ∈MG.

Proof. The corollary follows from the equality

CorG〈γi〉(c(γi)) = CorG[G,G] ◦ Cor[G,G]
〈γi〉 (c(γi)) = 0 ∈ H2(G,Z),

which holds for 1 ≤ i ≤ q.

Since 1 + kνp(G) ≡ 1 (mod p − 1), Corollary 5.5 is independent of Corol-
lary 5.2. Finally, by applying the following proposition to Corollary 5.5, we can
obtain other sufficient conditions for the vanishing of mod p MMM classes:

Proposition 5.6. Let G be a finite group and p an odd prime. Then, for all k ≥ 1,

1. ek(G,C)p = ekp(G,C) ∈ H2kp(G,Fp) for any surface symmetry (G,C),

2. ealg
k (ρ)p = ealg

kp (ρ) ∈ H2kp(G,Fp) for any ρ ∈MG.

Proof. Let π : E → B be an oriented surface bundle. It was proved in [2] that

Pi(ek(π)) =
(
k

i

)
ek+i(p−1)(π) ∈ H2(k+i(p−1))(B,Fp),

where Pi : Hk(−,Fp)→ Hk+2i(p−1)(−,Fp) is the reduced power operation. Hence

ek(π)p = Pk(ek(π)) =
(
k

k

)
ek+k(p−1)(π) = ekp(π) ∈ H2kp(B,Fp).

By applying the last equality to the oriented surface bundle EG ×G C → BG

associated with a surface symmetry (G,C), the proposition follows.
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and geometry Vol. II, Birkhäuser, Boston, 1983, 271–328. Zbl 0554.14008 MR 0717614

[19] C. B. Thomas, Characteristic classes and cohomology of finite groups, Cambridge Stud.
Adv. Math. 9, Cambridge Univ. Press, Cambridge, 1986. Zbl 0618.20036 MR 0878978

[20] T. Uemura, Morita–Mumford classes on finite cyclic subgroups of the mapping class group
of closed surfaces, Hokkaido Math. J. 28 (1999), 597–611. Zbl 0946.57031 MR 1723456

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1158.57302&format=complete
http://www.ams.org/mathscinet-getitem?mr=2509708
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1159.55005&format=complete
http://www.ams.org/mathscinet-getitem?mr=2405898
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0980.57011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1829309
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0584.20036&format=complete
http://www.ams.org/mathscinet-getitem?mr=0672956
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1166.55004&format=complete
http://www.ams.org/mathscinet-getitem?mr=2482078
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1102.57015&format=complete
http://www.ams.org/mathscinet-getitem?mr=2219303
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1169.20001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2426855
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0954.20028&format=complete
http://www.ams.org/mathscinet-getitem?mr=1701292
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1020.57005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1934277
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0924.57031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1664755
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0528.57008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0690845
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0618.57005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0857372
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0844.57012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1290586
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0608.57020&format=complete
http://www.ams.org/mathscinet-getitem?mr=0914849
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0554.14008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0717614
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0618.20036&format=complete
http://www.ams.org/mathscinet-getitem?mr=0878978
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0946.57031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1723456

	Introduction
	Surface symmetries
	Ramification data
	The Grieder monoid of a finite group

	Mumford–Morita–Miller classes
	The definition of Mumford–Morita–Miller classes
	Chern classes of linear representations
	Algebraic Mumford–Morita–Miller classes

	Proof of the main result
	Vanishing results for MMM classes of surface symmetries
	References

