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Algebraic Local Cohomology Classes Attached to
Unimodal Singularities

by

Shinichi TAJIMA and Yayoi NAKAMURA

Abstract

Algebraic local cohomology classes and holonomic systems attached to non-quasihomoge-
neous isolated unimodal singularities are considered in the context of algebraic analysis.
Holonomic systems and their algebraic local cohomology solution spaces attached to
a unimodal singularity are studied in a constructive manner. The holonomic system
constructed from linear partial differential operators of order at most two that annihi-
late the given algebraic local cohomology is proven to be simple for the case of non-
quasihomogeneous unimodal singularities.
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Introduction

Let X be a neighborhood of the origin O in C". Let H%](QS’() be the algebraic
local cohomology group supported at the origin, where 2% is the sheaf on X
of holomorphic differential n-forms. Let f be a holomorphic function on X with
an isolated singularity at the origin. Denote by W, the set of algebraic local
cohomology classes in H, (2% ) that are annihilated by the Jacobiideal Z C Ox o
of f, and let w be a generator of Wy over Ox o, where Ox o is the stalk at the
origin of the sheaf Ox of holomorphic functions on X.

Inspired by a result obtained by K. Saito [7], we previously studied algebraic
local cohomology classes attached to quasihomogeneous hypersurface isolated sin-
gularities in the category of left Dx-modules [8]. We showed in particular that
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the quasihomogeneity of hypersurface isolated singularities can be characterized
in terms of the holonomic Dx-modules. To be more precise, let Annp, ,(w) be
the annihilator ideal of w € Wy in the stalk Dx o at the origin of the sheaf Dx of
rings of linear partial differential operators. Let Anngl ,, (w) denote the right ideal
in Dx o generated by differential operators of order at most 1 that annihilate w.

Then the result can be stated in terms of right Dx o-modules as follows.

Theorem 0.1 (cf. [8]). Let X be an open neighborhood of the origin in C™. Let

f=f(x1,...,2,) € Ox0

be a holomorphic function with an isolated singularity at the origin and denote by
w a generator of Wy over Ox o. The following conditions are equivalent:

: d d d 9
() Oxo(f 25, ... 2Ly =0x0(ZL, ..., 25).
(ii) Annpy ,(w) is generated by differential operators of order at most 1, i.e.,
Annp, o (w) = Ann) (w).

Dx,o

)

(iii) The holonomic Dx o-module Dx,o/.AngXYO

(w) s simple.

Indeed, the above theorem can be proved, as done previously in [8], by showing
in the category of right Dx-modules that if a given hypersurface isolated singular-
ity is non-quasihomogeneous, then the dimension of the algebraic local cohomology
solution space

Homoy (Dx,0/Anny).  (w), His (2%))

Dx,o
to the holonomic system vao/Anngi o (w) is greater than or equal to 2. How-

ever, the structure of the holonomic system Dx o/ Anng;o(w) and its algebraic
local cohomology solution space associated with the non-quasihomogeneous iso-
lated singularity have not yet been determined, even for the most typical case.
In this paper, we study the case of non-quasihomogeneous hypersurface iso-
lated singularities. We consider the right ideal .,élnn(Dk))(o((,u)7 k= 0,1,2,...,
generated by differential operators of order at most k and holonomic systems
Dx.,0/ Anng))( ,, (w) attached to non-quasihomogeneous hypersurface isolated sin-
gularities. We investigate in particular unimodal singularities, the most typical
case among hypersurface singularities, that comprise hyperbolic singularities and
14 exceptional families [1]. By extending the algorithms introduced in earlier work
[9], [10] to the parametric case for computing algebraic local cohomology and an-
nihilators, we explicitly determine the algebraic local cohomology solution space
Homp, o (Dx 0/ Annip) (@), Hip (12%))

Dx,o
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for the non-quasihomogeneous unimodal singularity case. We show as an applica-
tion that the multiplicity of the holonomic system Dx o/ Anngi o (w) is equal to 2

and that of DX7O/Anng})(ﬁo(w) is equal to 1.

In Section 1, after introducing some basic notions, we associate a series of
holonomic systems Dx o/ Anngi)( o W), k=0,1,..., to hypersurface isolated sin-
gularities. We show that the multiplicities of the holonomic systems are analytical
invariants of the hypersurface isolated singularities. In Section 2, we study basic
properties of algebraic local cohomology solution spaces for Anng; o (w) and state
the main results. In Section 3, we consider hyperbolic singularitieé and prove the
main result by explicitly providing Wy and annihilators. In Section 4, we study
exceptional singularities by adopting a constructive approach. Instead of present-
ing the full set of data on W¢, a generator w and annihilators for each case, we
examine the Z13 singularity and give the results of computations to illustrate the

proof.

81. Holonomic systems attached to hypersurface isolated singularities

Let X be an open neighborhood of the origin O in C". Denote by Dx o the stalk
at O of the sheaf Dx of holomorphic linear partial differential operators on X. Let
["O](Q?() be the algebraic local cohomology group supported at O, where (2% is
the sheaf of holomorphic differential n-forms on X. Note that, since (2% has the
structure of the right Dx o-module, differential operators in Dx o act on algebraic
local cohomology classes in Hip, (2%) from the right.
Definition 1.1. For an algebraic local cohomology class ( € HFO](Q}}), let
ﬁ(k)
Dx,o

most k that annihilate (. We define Ann(pk))( o (€) to be the right ideal in Dx o
generated by ) (€):

(¢) be the set of germs of linear partial differential operators of order at

Dx,o
L () ={PeD P=0,0dP <k}, Annl) (0)=L%) (D
pro@) ={P€Dxo0 ¢ yord P < k}, nnp () =Lp, ,(O)Dx.0-
Denote by Ox, o the stalk at O of the sheaf Ox of holomorphic functions
on X. Let f = f(x1,...,z,) be a holomorphic function on X, defining an isolated
singularity at the origin, and Z the Jacobi ideal of f in Ox o:
af of
=0 — e, = .
o (8:51 8xn>

Let W¢ be the set of algebraic local cohomology classes annihilated by the Jacobi
ideal Z:
Wy = {n € Hip|(£2%) | gn = 0 for all g € T}.
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Then W; is a p-dimensional vector space, where p is the Milnor number
dimc Ox o/Z.

Wy is generated, over Ox o, by one algebraic local cohomology class. Though
the choice of a generator of Wy over Ox o is not unique, we have the following.

Lemma 1.1. Let w and W' be two generators of Wy over Ox o, that is,
Wf = (’)X)ow = (’)Xpw’.

Then the Dx o-modules Dx,o/Ann(Dk))( o (W) and DXVO/Anng;O(w’) are isomor-
phic.

Proof. There is a holomorphic function g = g(x) € Ox,o with ¢g(0) # 0 such
that w = gw'. Let ¢ : Dx 0 — Dx,0 be a Dx o-linear homomorphism defined by
¢(R)=gR for R € Dx 0. Then ¢ induces an isomorphism from vao/Ann(k) (w)

Dx.,o

to DX,O/.Anng;O (W). O

It is known that the right Dx o-module Dx o /Anng))( , (€) is a holonomic

system with support at the origin, for any ¢ € H?O](.Q}’(). The next statement
immediately follows from Lemma 1.1.

Lemma 1.2. Let w and ' be two generators of Wy over Ox o. Then the multi-
plicity of the holonomic system Dx,o/Ann(Dk})(_o(w) is equal to the multiplicity of

nyo/Anng?(’O ().

That is, the multiplicity of the holonomic system Dx o/ .Ann(Dk})( o (w) is inde-
pendent of the choice of a generator of Wy. We thus arrive at the next definition.

Definition 1.2. We denote by ,ugck) the multiplicity of the holonomic system

Dx’o/Ann(Dk))( (W), where w is a generator of Wy over Ox o.

Note that if we denote the conormal space of the origin O € X by T{*O}X ,

then the characteristic cycle of the holonomic system Dx o/ Anngc))( o

by 1T, X

Let f(z,t) be a function on X = X x T of the form f(z,t) = f(x) +
t2 + -+ 12 with t = (t1,...,t¢) € T, where T is an open neighborhood of
the origin in C’. Let Wi C HHZ(Q;(H) be the set of algebraic local cohomol-
ogy classes with support at the origin O of X annihilated by the Jacobi ideal

O o(0f)0x1,...,0f|0xn,tr, ... tr) of f(a,1).

(w) is given
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Lemma 1.3. Let @ be a generator of Wy over Ox o- Then there exists an alge-
braic local cohomology class w € Wy such that & = w ® d7, where dr is the delta
function with support at the origin of T. Furthermore,

k) o~ (k
Ann%;’o (w) = AnnD))( o W) D o+ (t1,-- -, t)Dx o

Theorem 1.1. Letf f(x t) be a holomorphic function deﬁned onX=XxT.

(k)

Assume that f is stably equivalent to f. Then pi = ,uf for every k € N, and

fZI/f.

Proof. If two holomorphic functions defined on X are right equivalent, then the
multiplicities of the corresponding holonomic systems defined by kth-order anni-
hilators are equal. Therefore, to prove the theorem, it suffices to consider f of the
form f(x,t) = f(x) +t} +--- +t3. Let & be a generator of Wy over Ox . Then
@ can be written in the form & = w ® dp with some generator w € H%](Q}‘()
of Wy. Lemma 1.3 also implies that

Dy o/ Anny) (@) = Dx,0/Anny) (w)®p, , Dro/(t,-...t)Dr.o,

Dx,o
which yields the equality u} ) = ugfk). O
By Theorem 1.1, u(fk), k=1,2,..., are analytical invariants of a given singu-

larity defined by the function f.
Since {Ann(Dk))( o

comes a decreasing sequence of positive integers:

R R Y LRt

(w)}x is an increasing sequence of right ideals, {ugck)}k be-

There exists an integer m such that .Ann(D";)O (w) is equal to the right ideal
Annp, ,(w) of Dx o consisting of linear partial differential operators that annihi-
late w. Since the holonomic system Dx o/ Annpy , (w) is simple, we have ugcm) =1.
Example. Since Ann%)i o (w)=IDx.0, Ngco) is the Milnor number dim¢ Ox o/
at the origin of the isolated hypersurface singularity f.

Example. As seen in Theorem 0.1, u;k) =1 for k > 1 in quasihomogeneous cases
and pt) > 2] - sih ses
py° = 2 in non-quasihomogeneous cases.

Let B be the py-dimensional vector space spanned by a monomial basis of the
quotient space Ox o /Z. If we set

(1) { Zaz —|—a0( ) szO,ai(x)eB,i:O,l,...,n},
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then
Ann) (w) = Lg))( (w)Dx,0 +IDx 0.

Dx,o

If we set

n 82 9
i,5=1 L) i

wP =0, a;;(z) € B,a;(z) € B,i,j=1,...,n, ap(x) € B},

then also

Ann) (W) = LY (w)Dx.0 + L) (w0)Dx.0 + IDx .0

Dx.,o

(see [4]). Accordingly, generators of Anngi o (w) and of Ann(g})( ,, (w) can be con-
structed by utilizing bases of the finite-dimensional vector spaces Lg))( (w) and
Lgi (w). Based on this observation, we have recently derived an efficient algorithm

for computing the right ideal Anngi)( , (w) generated by annihilating differential
operators of order at most k (see [9]). We also implemented the resulting algorithm
in the computer algebra system Risa/Asir [6].

§2. Main result

Let Solyfz) denote the algebraic local cohomology solution space of the system of

partial differential equations defined by the ideal Annt") (w):

Dx,o
Solft), = {C € i) (2%) | CP =0, VP € Anniy), (w)}
Fw fo1\4ex ’ Px,0 R0

Proposition 2.1. Let f be a holomorphic function with a hypersurface isolated
singularity at the origin. Let w be a generator of Wy. Then

u(fk) = dim¢ Solgc’fi.

%i)(,o (w) is supported at the

Proof. Since the holonomic Dx o-module Dx o/ Ann
origin, we have Ext%X)O(nyo/Ann%ﬁ;O (w), FO](Q})) = 0 for all j > 1, which
implies

ugck) = dim¢ HomDX,O(nyo/Anngi)(yo (w), Hig)(£2%))-

The isomorphism

Hompy o(Dx,0/AnnS) (), Hio (2%)) = Sol'f)

Dx.,o

yields the result. O
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Lemma 2.1. Let f be a holomorphic function with an isolated singularity at the
origin. Let w be a generator of Wy. Then

(i) Soll?), = Wy.
(i) Sol;ﬁl C Solgclf;l) for any k> 1.

Proof. By the definition of Ann(Dk;o(w), we have
Sol'l) = {C € iy (2%) | CP =0,VP € LS (w)}.

(i) Since £ (w)=7T =0x,0(0f/0x1,...,0f/0zy), we have

Dx,o
© _ ny | OF o _Of _
SOlf,w = {C € H%}(Q)L() ‘ 37514 == %C =0,
which is equal to Wy.
(ii) From Anng:g (w) C Ann%?{)o(w), we have Solgcli)d C 50151:1). O

The lemma above immediately yields the following description:
k k-1 k
Sollf) = {¢ € Sollf 7V | (P =0,vP € LS (w)}
and

(2.1) Sol!) = {CeWs | CP=0,YP e L) ()}

Dx,o

Since w € Sol(fli)] for any k, we have the following.

Proposition 2.2. The following conditions are equivalent:
) u =1
(i) Anny) (w) = Annp ,(w).
(iii) Sol;ﬁl = Spanc{w}.
Here, we study holonomic systems and their algebraic local cohomology so-
lutions attached to non-quasihomogeneous unimodal isolated singularities: hyper-

bolic singularities and exceptional families. Our main results are the following
theorems.

Theorem 2.1. Let f be a holomorphic function with a non-quasihomogeneous
unimodal isolated singularity at the origin O.

(1) SOZ%L = Spanc{w, 0}, where § is the delta function in ’HFO](.Q}).
(ii) Solfzj = Spang{w}.
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Remark. It has been shown that Sol(flyl D Spang{w, fw} for any non-quasihomo-
geneous hypersurface isolated singularity [8]. Since the ideal quotient Z : f for
the non-quasihomogeneous unimodal function f is the maximal ideal in Ox o, fw
coincides with a constant multiple of the delta function §. Therefore, the inclusion
Sol%l D Spang{w, d} was implicitly given in [8].

Theorem 2.2. Let f be a holomorphic function with a non-quasihomogeneous
unimodal isolated singularity at the origin O.

(i) The multiplicity of the holonomic system DX7O/Annf(Dl))(Yo(w) is equal to 2.

2)

(ii) The multiplicity of the holonomic system DXO/Ann(DX,O(W) is equal to 1.

Theorem 2.2 is a consequence of Theorem 2.1 in combination with Proposition
2.1. By Proposition 2.2, the second statement of Theorem 2.2 can be rephrased as
follows.

Corollary 2.1. Let f € Ox o be a holomorphic function that defines a non-
quasihomogeneous unimodal isolated singularity at the origin. Then

Ann(g;o (w) = Annpy , (w).

In other words, the annihilator ideal Annp, ,(w) can be generated by anni-
hilating operators of order at most 2 for any generator w of the dual space Wy of
the Milnor algebra of unimodal singularities.

§3. Hyperbolic singularities

The normal form of the hyperbolic singularity T4, is given by the polynomial
f=2P+y?+ 2" 4+ axyz,

with a parameter a (a # 0) and p, ¢, r € N satisfying the condition 1/p+1/q+1/r
< 1. It is known that the Milnor number p of the hyperbolic singularity is p 4+ ¢ +
r —1 (cf. [2, 3]). Note that if 1/p+ 1/q+ 1/r = 1, the singularity defined by f,
called the parabolic singularity, is quasihomogeneous. In this section, we study
hyperbolic singularities.

To prove our results, we give w, Anngiyo (w), Anng;o (w) in an explicit man-
ner. We shall deal with the case where one of the exponents p, ¢, r is 2 separately
from the generic case that all exponents p, g, are greater than or equal to 3.

83.1. The cases p,q,7 >3

Assume p,q,r > 3. The next result provides a basis for the dual space of the
Milnor algebra for a hyperbolic singularity.
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Lemma 3.1. For the function f = 2P +y?+2"+azxyz with a non-zero parameter a
and p,q,v >3, 1/p+1/q+1/r < 1, the vector space Wy is spanned by p+q—+r—1
algebraic local cohomology classes ( = dx A dy A dz, where ¢ represents the
following algebraic local cohomology classes in Hf’o](OX):

[1} [1} (2<j<p-1),

TYZ zIyz

=] esksa-n |

Tycz

1 p 1 1 q 1 1 r 1
xPyz  axy?z?|’ xylz  ax?yz?|’ xyzt  ax?y?z|’

1 T 1 T 1 T 1
oyzrtl g ayitly  p xPtlyz  a 22y222 |

é] 2<e<r-1),
Tyz

Proof. Since the p4+g+r—1 cohomology classes ¢ € H[o] (Ox) in the statement are
linearly independent, it suffices to prove that they are annihilated by the partial

derivatives f, = 0f/0x, f, = 0f/0y and f, = 0f/0z. It is obvious that the

cohomology classes [ﬁ] [m,yz] 2<j<p-1), [Ty -] 2<k<q-1), [7]

(2 < ¢ <r—1) are annihilated by f,, f, and f.. Since pzP~! [mplyz — Eaxg%j =
1 1

p[@] and a’yz[xl’yz - %myz’zz] - _p[zyz] we have faj[ml’yz - ga:y 22 ] =0. It is

easy to see that the class [ L L ] is also annihilated by f, and f,. One can

zPyz  a zy2z2 N
r
] and [xyzr Erzyzz] are

verify in the same manner that the classes [

zylz a=x y22

annihilated by f,, f, and f.. Since pzP~! I:xyzr+1 +Z a mqurl —+ ; mpflyz -t yl Z2:| =
1 1 1
[r.@ yz} and ayz[zszJrl + +5

qzyitiz T papTlyz @ z2y? 22] =
the class [wzrﬂ + Lz +r_1 . One can also see that f, and

1
q lyq‘H pxPtlyz §x2y2z2j|
f. annihilate that class. Thus, all p + ¢ + r — 1 classes of the form v¥dx A dy A dz

given above belong to Wy and constitute a basis of the vector space Wy. O

- [m] f» annihilates

Corollary 3.1. The algebraic local cohomology class

1 n r 1 r 1 r 1
zyz"tl g xyttlz  p aPtlyz  a 2%y%z

(3.1) 5 |dz A dy A dz

in Lemma 3.1 is a generator of Wy over Ox 0.

Proof. Denote by w the cohomology class (3.1). For each class w’ in Lemma 3.1,
one can find a function h(z,y, z) € Ox o such that W’ = h(z,y, 2)w. O

The notions of algebraic local cohomology classes and the use of Grothendieck
local residues provide an answer to the membership problem for the Jacobi ideal
Z C Ox,0 (see [9]). As an application, we have the next result.
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Lemma 3.2. The monomials
32) L2/ (1<j<p-2), ¢y (1<k<q-1), 22(1<l<r), and zy
constitute a basis of the quotient space Ox 0/T.

Proof. Let g and ¢’ be two holomorphic functions defined in a neighborhood of O.
Then the Grothendieck local duality implies that the difference g — ¢’ is in the
Jacobi ideal 7 if and only if

reso(gdz A dy A dz) = reso(g'vdx A dy A dz)

for every algebraic local cohomology classes ¢ given in Lemma 3.1, where resg (*)
denotes the Grothendieck local residue at O. It follows that any element in the
Milnor algebra Ox o /Z can be uniquely represented as a linear combination of the
monomials (3.2). This completes the proof. O

The next result gives a characterization of annihilators in Lg; (w).

Proposition 3.1 ([5, 8, 9]). Let A be a linear partial differential operator of order
1 with coefficients in B. The following conditions are equivalent:

(1) There exists h € Ox o such that A+ h € Lgi (w).
(2) AgeZ foranyge .

Proposition 3.1 provides an effective method [9] for constructing first order
annihilators in Lgi (w). We fix a term ordering % - a% - %.

Lemma 3.3. Let f = 2P +y?+ 2"+ azxyz, a # 0, and let w be the generator (3.1).

Then Lgi (w) is spanned by the following p+q+r first-order differential operators:
0 (—-1q ,4,0

22 M He-l 2 (1 >4
. — Y gDz (p=24)

-0 N .
J;J%—(p—l—l—])xj 1, j=3,...,p—2(p24),

g1 a0 a4
dr  q(r—1)" 9z  q”’

0
p>4iyz— + 281‘:”_2,
ox a

Jd  6gq g 6
=3 yz— + —yi = 4 =
P e + 2y 5z + 7

0 a 0

r—1 Y hd I

*z 8x+ry25‘z’
a

o 2\ — 4 —yz,
r

ox
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0 0
; +(¢—Dyz+- — (¢ — 1)y,

) 82

0 _
.yk@_(Q+1_k)yk 17 k:37aq_1(q24)7
] 22—1— ! zzﬁ—z

4 Oy r—1" 0z ’
o r—1 0 qu—lg

oy r 0z’

ra q q—1

oza—y ; ,

. 24%_@“_5)24—17 0=3,...,r

Proof. It is easy to see by direct computations that these operators annihilate w.
Let M be the set of monomials (3.2). Let M, M,, M, be the sets of residual
monomials in M\ {1} of the coefficients of the leading terms of the above operators:

My={zy"(1<k<q-1),"(1<0<r)},

My ={y,2/ (1<j<p-2),2(1<e<n)},

M, ={2222(1<j<p-2),y"1<k<q-1),yz}.

Set

0 0 9]
_ A 9 AN 9 AN 9 A
P=(X o) g+ (2 o >8y+(z ) 5o+ e
AeE, ACE, A\CE, ACE
where F;, Fy, E, and F are the sets of exponents of monomials in M, M,, M, and
M, respectively, ay, Bx, 7x and ¢y are undetermined coefficients, and x* = z7y*2¢

for A = (j,k,¢). Assume that wP = 0. Then

paioo + cooo = 0,
qBo10 + cooo = 0,
TYo01 + Cooo = 0,
@100 + Bo1o + Yoo1 + cooo = 0,

and ajie = 0 for (j,k,¢) # (1,0,0), Bjre = 0 for (5, k,¢) # (0,1,0), vjre = 0 for
(4, k,¢) #(0,0,1), and ¢;re = 0 for (j,k,¢) # (0,0,0).

Thus (04100,,60107’}/00170000) 75 (O, 0, 0, O) only when 1/p+ 1/q+1/r = 1, which
contradicts the hyperbolicity. O

Notice that for instance the second operator in Lemma 3.3 can be constructed
from the first one by multiplying with 27=2 from the right. Thus, to compute
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Sol?i, one does not need to solve the differential equations ( P = 0 for all operators

in Lgi (w). Actually, by solving the system (P = 0 for the third, seventh and first
(p > 4) or fourth (p = 3) operators, we obtain for p,q,r > 3 the following result,
which is the first statement of Theorem 2.1 for the hyperbolic case.

Theorem 3.1. Let f be a hyperbolic singularity and w be a generator of Wy.
Then 501;172) = Spang{d,w}.

Proof. We give the proof for p,q,r > 4. The case p = 3 can be proved in a similar
manner.

Let Py, P3, P; be the first, third and seventh operators in Lemma 3.3. We
verify that

Spanc{¢ € Wy | (P, = (P3 = (P; = 0} = Spanc{d,w}.

Since the action of a differential operator P from the right on a differential form
Ydx ANdy ANdz is given by (P*y)dx Ady Adz, we compute P*y for each ¢ in Lemma
3.1 where P* is the formal adjoint operator of P.
For
2 0 (p—1)q q—1 0

Plzx%—Ty a—(p—l)x,

p= (-2 ) - 2 (DY e

P for each ¢ in Lemma 3.1 is given below:

we have

[ 1
. P} }0,
| zyz
[ 1 ] 1
Pfl——|=—-(p—-1)|—
¢ 1_9:2yz_ (p )Lvyz]’

(3<j<p-2),
L

o Py P =0 (2<k<p-1),

1
* xyzt

([ ta]) - ] ot o] [

S a1 (P—Dg| 1 (p—Dg| 1
P _ 1 =_ =
* ( |:$qu a x2yz? ] > a xyz? * a xyz? 0

=0 (2<(<r—1),
|
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p 1 r 1 _r(p—l) 1
* U\ uzr T a2 - 2, |’
Yz a x2y3z a zy?z

(e )
Y\ | zyzrtt " qayatlz ' partlyz  ax2y222

(p—1r[ 1 (p—Dr[ 1 (p—1r[ 1 (p—Dr[ 1

P [fﬂpyJ_ a Ly%z]_ P [fﬂ”w}r a Ly%?]zo

It follows from the above computations that the solution space for the operator P;

in Wy is spanned by w, 6 and ¥dxz A dy A dz where 1) represents the following
algebraic local cohomology classes:
1

o [ wsesen o] esesrn ] 2]

xykz
Computing P51 for each ¢ in (3.3) in the same manner, we find that the
solution space {¢ € Wy | (P = (P3 = 0} is spanned by w, ¢ and ¢dz A dy A dz
with ¢ being the following algebraic local cohomology classes:

P |

xykz xydz a | x2yz?

Finally, computing P74 for each ¢ in (3.4), we find that the solution space of
the system of differential equations (P; = (P; = (P; = 0 is spanned by w and §.
Since Sol(fl’z} 2 Spang{d,w}, this completes the proof. O

Lemma 3.4. Let p,q,r > 3. Then the second-order partial differential operator

(3.5) R—z2—2—cx£—c 2—c( —p— )zg—i—c
. T 9.2 q O pyay pPqg—p—q 2 Pq
with ¢ = m is in Lg))( (w).

Proof. It is easy to see by direct computations that R annihilates w. O
For p, g, > 3, we have the following theorem.

Theorem 3.2. Let f be a hyperbolic singularity and w be a generator of Wy.
Then Solgfz) = Spang{w}.

Proof. Since the operator (3.6) gives R = ¢pqd, we have Solfl = Spanc{w}. O

83.2. The case p =2

To finish the proof of Theorems 3.1 and 3.2, we now examine the case where one
of the exponents p, q,r is equal to 2. We may assume without loss of generality
that p =2 and 3 < ¢ < r. We give Wy, w, Anng}){ (w), Anng; (w) in an explicit
manner for seven cases of ¢ and r.
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3.2.1. The case ¢ > 5. When p =2 and ¢ > 5, Wy, Anngi (w) and Anngi (w)
are given in the following results.

Lemma 3.5. For the function f = x2+y9+2"+axyz with a non-zero parameter a,
and 5 < q < 1, the vector space Wy is spanned by g+r+1 algebraic local cohomology
classes ( = dx ANdyNdz, where i) represents the algebraic local cohomology classes
in H?O] (Ox) given below:

) (] mersen ] wsrsrea

1 2 1 1 ¢ 1 2 1
[xzyz a ZL’y222:|7 Lquz a2y | a2 xy2z3]’
1 r 1 2?1
Lyzr Cary’z | a® W}

and

- 1 n r 1 r 1 r 1 n 2r 1
= xyzrtl 2 23yz g ayitlz  a 229222 a? wyd23 |

The algebraic local cohomology class ndx AdyAdz is a generator of Wy over Ox o.

Lemma 3.6. Let f = 22 + 49+ 2" +axyz, a# 0 (5 < ¢ <r). For a generator

1 r 1 r 1 r 1 2r 1 da A du A d
w= = = - — — —= = |ax Z
zyz"tl 2 23yz g xyttlz  a 22y222 a2 xy Y

of Wy, Lg; (w) is spanned by the following 24q+r first-order differential operators:

0 22q(r — 2) 2 o 2
P _ .29 _ -2 _ 2\ 0 | 2
® Van1 T Y= 5, +< (r—1)a3 Y (r—l)az 0z + a”
o 22 o 1
9* r—1_~Y r—2 Y -
V2T e Tt 5‘y+ry8’
o 0 z e AR
(eom),3 ) %5 P
2qr ._5\ O
2 r—2
'e(qr)4—< Tz )aer(q—l)yza—(q—l)y,
0 (g—2)r ,_
_.3 2 r—2
® Oyrs=1Y oy (q—2)y" + o )
®  _ k9 kel _ _
® 0igiye =Y a9 (g+1—-Fky", k=4,....,¢q—2(q>06),

b 1 0
0 _ o N q—2 2\ 2
(g,r),7 yzay + ( r = 1)a2y + - lz )82 Z,
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® Oy =2" T

® O(er)10 Ta% - %azyﬁ

® Ogm .11 23% QQ(CLQ_ 2)yq‘2 —(r—2)2%

© 0010 = %% —rH1—0Y f=4,

The coefficients of the operators in the above lemma are in

B = Spa‘nC{lvya y2a ce 7yq72,92’,y327 2, 223 ceey Zr}'

Note that the solution space Solgcl’zj can be determined by solving only two equa-
tions, (04,1 = 0 and (0(g )4 = 0.
Lemma 3.7. Let f = 2®>+y?+2" +axyz, a # 0 (¢ > 5, r > q). The second-order

partial differential operator

1 z2> 9? ca® 9 ca® 9 (¢q—2)ca® O 9

+ —y—+—F"—2——ca

— q—2 _ T s
(36) S (y 822~ 22 oy q y@y 2q 0z

2qa?

r(r=1) (2)

3.2.2. The case q = 4. Let f = 22 + y* + 2" + axyz with r > 5. A basis of the
vector space Wy is the same as for ¢ > 5. The second-order partial differential
operator (3.6) also belongs to Lgi (w) in this case. We now give Lgi (w):

Lemma 3.8. Let f = 22 +y* + 2" + axyz, a # 0 (r > 5). For the generator

1 r 1 r 1 r 1 2r

w= = - - - —
zyz"tl 2 x3yz 4 xySz a 2%y?22  a? xy2s

dx Ndy N dz

of Wy, Lgi (w) is spanned by the following 6 4+ r first-order differential operators:

253(r — 2)r
>6: 014, _— 2,
o r> (4,71 + (’I“—l)a,5 z
26325 9 273252 3 23325 9
r:5:9(4’5),1— s Y+ e 2%+ s z°,
i 0(*,r),2a

4 9(*,r),3a
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® O
24372
>6: 04, P T_g,
7206037+ r = 1)a4z
253 .52 9 263.53 3 223.52 9
r=>5: 9(475)’7— e Y-+ = 2%+ o z°,
25y
9 . = 7‘—27
® w12
L 9(*,7”),97
hd 9(*,7‘),107
24(T _ 2)7" r—2
L4 9(4,r),11 - TZ ,
(0) _
° 9(*7?0)’12, b=4,...,r.

The coeflicients of the operators in the above lemma are in
B = Spanc{l,y,9°% yz,y2%, 2,2%,...,2"}.

Note that the solution space Sol%i can be determined by solving only two equa-
tions, (04,1 = 0 and (04 )4 = 0.

3.2.3. The case ¢ =3. Let f = 2% +y3 + 2" + azyz with r > 7.

Lemma 3.9. For the function f = 22+y>+2"+axyz with a non-zero parameter a,
r > 7, the vector space Wy is spanned by r + 4 algebraic local cohomology classes
¢ = dx Ndy A dz, where ¥ represents the algebraic local cohomology classes in
H?O}(@X) given below:

2} [l [ oereron

1 2 1 1 3 1 6 1
1 r 1 72 1 6r 1 120 1
[chzT' Ca 2%y2z + a? w22 B a2y + at a:y2z4}

and

_ 1 +r 1 r 1 r 1 +2r 1 6r 1 120 1
= xyz" T 223yz  3aytz  ax?y?2?  a?aytzd ad 2yt ot xy?d |

The algebraic local cohomology class ndx Ady Adz above is a generator of Wy over
Ox 0 in each case.
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Lemma 3.10. Let f = 22 + 93 + 2" + axyz, a # 0. For the generator

_ 1 r 1 r 1
|yt 2 23yz 3 aydz
r 1 2r 1 6r 1 12r 1

a 12y%22 a2 Y323 ad a?yzt at xy?P

]dw/\dy/\dz

of Wy, Lg))( (w) is spanned by the following 5+ r first-order differential operators:

o 22 9 22(r — 6) 2.5 9
>10: 0,1 = yz°— — —yz— — _ 2| Y
e 1TV 3ay26y ( (r— 1)a3y 3(r— l)az ) 0z’
2'3-5r(r—6) 5 25
(r—1)a” 3a
22355, 243%5
r=9:0g1 — o yz© + algz,
29325 214335
r=28 fgq — = Yz 13 27,
g 208757, 278572 923.5.7
r=avn a1 YT TER 9
a a a
21230574 929315.73 | 20325.72
L B H I A
0 2 ad 0
>10: 00 = 2" 2 4 (—Zr 3o O ) &
*re 2= 2 (‘3x+ < a” 2-327“yz) Ay
n a _ a® .2 0 22.5r . a?
3r—1)7 23501 )92 (r—1)ad 232
3%5 22365
r=29: 99’2 + ¥y22 — ag 7,
263.5 21325 .
r=a8: 98,2+ 7&5 yz — 7&9 z7,
o TFT S0 28 50 2709, 27109 22109
r=": 2P = =2 — 27— z—
s a’ dy a® " Oz alt 7 alt Y a7
2103573109 . 273372109 , 213.7.109 , 2°-3-5 ,
+ o2 z+ SR ) z+ PEREEC
g 22 0 1 0
> Q. 07” _ =1 2 r-2> 3.3 7
*r= 3= 2 or a 8y+2-3ra26z
r—2 223(r—2) .., T—2 5,
+ ay — 3 2Tt — ——a”z%,
r a 2-3r
2433 2934
r=2~8 08,3 — ?yzz —+ ag ZG,

20345.7 , 23325

28355 . 72 5 25335. 7 4
all Y =

r="707,3+
: a5 a9 )
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, 0 1 44,0 r—4 223(r—4) .3 r—3 54
07“28:07«74:,2%—2.374(12'%— " ayz + e z —|—maz,
2333 25347
r="T 04— — yz? + —5 25,
a? a
2232y 0 0
) _ 2 r—2 3
or>9.9n5<yz - z >3y+228z
223(r — 3) 2432(r = 3)r ,_, 9
+ o e 2T = 2(r —2)2°%,
28335 213345
r=28:0g5+ S yz? — o2 28,
2103572 ) 27337 2123673 5 293472 4
r="T 075+ T s e PR
4, 0 1 o r-3 2-3r—3) .3 1—3 4, .
>80, =212 _ 4,49 2 r—3 4.3
*r= 6 Oy 23" % 9z or ¢ vzt a? : 923, 4 %
2432 26337
r="T 676 — e yz> — 25,
e 0.7 =2"— — ia2yz2 + 2
r,7 9 o 2 )
1 5,3\0 223r(r—6) ., r—2 45 4
e r>9:0,.5 (yz—ma )32 (r—2)y o r +2.3a2,
2732 21233
r=2~8 98,8 — 7(16 yz© + 410 26,
203472, 23327 283573 o 253372
r="T 078 — o2 yz© — G Yz + 16 27+ 410 z5,
1 0 223r(r — 6 -3
e r>8:0,9= (zzy - Ha2z4) e (r—3)yz+ %2“3 + Z%Bazz?’,
23327 253372
r="T 679 — o yz? + 410 25,
0 2-3(r—4 233%(r — 4
° 9r,10 _ ZS@ + 3,2 )y22 _ (;6 )Tzr72 o (T’ _ 4)24’

A I T

The coefficients of the operators in the above lemma are in
B = Spanc{1,y,yz,y2%, 2,2%,...,2"}.

Note that in order to check SOZS}’Z) = Spanc{w,d}, it is enough to solve only two
equations, (6,1 =0 and (6, 5 = 0.
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Lemma 3.11. For q = 3, the following second-order partial differential operator
is in Lg))( (w):

o For f=a?+ 9%+ 2" + avyz withr > 9,

4 02 +23(r+3)(r—6)2,_2i2_2(r2—2r—12) 5 02

* 9202 a® Oy? 3ra : Oydz
23(r —3) 4 02 3 0
R Rl e Rl U e
+(243r(r - S‘)(r ~2) s N 2(r —2)(r? — 2r — 12) o 22(r® — 6% — 21 + 24) y) 9
a 3ra ra? Ay
25(r—3)(r+2) 0 233(r—3)
b =2
ra 0z a

o For f =2x2+ 143 + 28 4+ axyz,

L 0 2923 P 2.7, 26 2 2.3.5 ,0°
z + 2 -2 = Yz — 25—
0xdz  1la®” Oy? 11a 11a® Oyoz 11a® = 022

n _523+2-3~53 B 2_'_ _223-722_237~19 P 243.5.7
11a2 y ox 11a 11a3 Y ) 11a3

o For f =22+ 143+ 2" + axyz,

<yz+ 1 a223) o? (273252732326+263372Z5223~7224 7 ayz)az
2-11 0x0z 11at5 a® 11a3 3211 oy?
253527223 , 272 , 295.7° T, 27\ 9 2437, 0°
< el ° 357 1ia PTan® +32ay>8y(‘3z_ a7~ 922
22335.7 , 25357 5 ., 1 \0 27 8 237
+<_ ad - "1 ot T )aa:_?ﬁ-nazaz/+ a7

Theorems 3.1 and 3.2 can be proved for p = 2 by using the results presented

in this subsection. This completes the proof of the main theorem for the hyperbolic
case.

84. Exceptional families

There are 14 exceptional families of unimodal singularities, F12, F13, F14, Z11,

Z12, Z13, Wiz, Wiz, Qio, Q11, Q12, S11, S12, and Uz, Theorem 2.2 is proved
for these exceptional families by performing case-by-case computations. The proof
involves the following five steps.

Step 1. Compute the basis of the vector space Wy and find a generator w of Wy.
Step 2. Compute a monomial basis of Ox o/Z.
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Step 3. Compute generators of Anng; o, (w) by constructing a basis of ng{ (w).

Step 4. Compute S’ol(l,zj by solving the system of partial differential equations
(P=0, YPeLy (w),for¢ewy.

Step 5. Compute generators of Anng})( O(w).

Since the defining function of the normal form of an exceptional family of
the unimodal singularity in question contains a parameter, we have extended the
previously developed algorithm [10] to handle such parametric cases. Step 1 is
executed by the resulting algorithm implemented in the computer algebra system
Risa/Asir. Steps 3 and 5 are performed by another algorithm described in [9].

By executing Steps 1 to 4 for each exceptional family of unimodal singularities,
we obtain the following.

Theorem 4.1 (cf. [5]). Let f be an exceptional family of unimodal singularities.
Then Solgclﬁ)u = Spanc{d,w}.

By executing Step 5 for each case, we have the following result.

Lemma 4.1. Let f define an exceptional family of unimodal hypersurface isolated
singularities at the origin. Let w be a generator of Wy. Then there exists in Lgi (w)
a second-order partial differential operator S such that

SO o m,

where S is the zeroth-order part of the differential operator S, and m is the
mazimal ideal in Ox 0.

Since 65 # 0 provided that S(© ¢ m for the delta function &, we have the
following.

Theorem 4.2. Let f be an exceptional family of non-quasithomogeneous unimodal
isolated singularities and w be a generator of Wy. Then 501;23] is the one-dimen-

stonal vector space spanned by w.

Instead of providing proofs by presenting the full set of data for each ex-
ceptional family of unimodal singularities, we restrict ourselves to confirming the
results for the Z;3 singularity.

Example 1 (Z;3 singularity). Set f = 23y + y% + azy® with a non-zero param-
eter a. Then f defines the Z;3 singularity at the origin. Wy is spanned by the
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cohomology classes ¢ = ¥dz A dy, where 1 represents the algebraic local cohomol-
ogy classes in H[ZO](OX) given below:

I e O e A Pl A e A R e

1 1 1 1 1 6 1 1 5 1
it | |22t |zt 3%82 T Caty |t |22 ey
1 6 1 7 1 1 1 . 7 5 1
—— — 66— 0— — —a—— + —a"——|.
2290 oy 9 wy? 3 aty? 27 adyP
The algebraic local cohomology class

1 1 7 1 1 1 7,
=|———6——~a— — —a— + —a
x2y6 oy 9 xy’ 3 xiy? 27 x3y8

]dw/\dy

is a generator of Wy over Ox o.
The monomials

(41) Ly, 2,y zy, 2% y%, 2y, vt oy, 00wyt o

constitute a basis of the quotient space Ox o/Z.
Let B be the vector space spanned by monomials (4.1). Taking coefficients
from B, the algorithm described in [9] outputs the following 16 operators as a
: @ )
basis of the space Ly (w):

L S U = A R
Yor 2. 335 T 2.3.5Y oy
22-757 4 22~7465 22.73 , 22-7233 7 2-19
_7313'5axy—311'5ay+38.5axy+36.5ay—2.33.5ax—3.5y,
oax2£+ 57 ary + 32 2
or T \22.3.5" T2 5Y )5,
7411 4 1l g 7RIl o, TH1l 4, 89 3
B 5 T s Y T st Tyt Ty 3 5 T Y
0 73 23 . 7
2 4,3 3,4 2,2 2
omya—z—&—?axy—i— 35ay —1—3—4 m—gzaxy Y-,
1 32
2,4 2
'aya+<22“‘”y+z2y)a
2.74 273 2.7 -7 1
310 a7xy ST a6y5—|— 3 a4xy2+3—3a3y3+§ax—32y,
0 73 72 7
3 4,4 3,5 2 3
e Ty a*m‘*‘?aﬂ?y +§ay —3—2axy Yy,
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7
® 3794%—3*2@9@3 Yy,
0 2 7T .
L4 y6%+3— Qxy4+?ay,
3 33 0
2,.2 2
L] a~x _Q?ny 27y 67y
22.73 22-7265+22~7 +13 3 438
- — — —ax
39 ary 37 ay 34 a*zy 3ay B) Y,
0 73 7 -7 7
° y3a—y—?a4xy37 33a yt 34 ~_a%® + 32 55 4LY — 32,
5 0 23 2
° a——i——a Ty +33ay +3—2am —4zy,
0 7 72
° y48—y — ?a4xy4+ 32axy T — 35(1 y® — 2y°,
0 72 7
. a——i——amy‘l—Sxy +3—2 %
8 + 5 AT 4
o P — 1+ o
8 y -y,

2—0—1(:& 4
Y oy g

By solving the system of partial differential equations
(P=0, VYPelLy (w)

for ¢ € Wy, we have

Sol%l = Spang{w, d}.
Actually, it is enough to consider the first and the nineth operators to determine
the algebraic local cohomology solution space.

As for the second-order annmihilators, the algorithm outputs five operators.
Among them, we find the operator

8 (3.5 . 7-13 9 7 1\ 0
S=y*— +( z+ 2y3) +<2 5207 + y)y

Oy? 2 233 ox 2°)0
5. 7° 5.74 5.7 5.7
~ 51 a’zy® — 310 a®yt + 37 atry + P 392-2.3.5
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Since the zeroth-order part

572
35

5'73 4 5'74
a Ty — 310

5
S0 — _ o azyd + ; Syt + ay?—2.3.5

of S is not contained in the maximal ideal m, we have

(1]
2]
(3]

(4]

(5]

(6]
[7]

(8]

(9]

(10]

Sol(%zj = Spanc{w}.
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