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Algebraic Local Cohomology Classes Attached to
Unimodal Singularities

by

Shinichi Tajima and Yayoi Nakamura

Abstract

Algebraic local cohomology classes and holonomic systems attached to non-quasihomoge-
neous isolated unimodal singularities are considered in the context of algebraic analysis.
Holonomic systems and their algebraic local cohomology solution spaces attached to
a unimodal singularity are studied in a constructive manner. The holonomic system
constructed from linear partial differential operators of order at most two that annihi-
late the given algebraic local cohomology is proven to be simple for the case of non-
quasihomogeneous unimodal singularities.
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Introduction

Let X be a neighborhood of the origin O in Cn. Let Hn[O](Ω
n
X) be the algebraic

local cohomology group supported at the origin, where ΩnX is the sheaf on X

of holomorphic differential n-forms. Let f be a holomorphic function on X with
an isolated singularity at the origin. Denote by Wf the set of algebraic local
cohomology classes inHn[O](Ω

n
X) that are annihilated by the Jacobi ideal I ⊂ OX,O

of f , and let ω be a generator of Wf over OX,O, where OX,O is the stalk at the
origin of the sheaf OX of holomorphic functions on X.

Inspired by a result obtained by K. Saito [7], we previously studied algebraic
local cohomology classes attached to quasihomogeneous hypersurface isolated sin-
gularities in the category of left DX -modules [8]. We showed in particular that
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the quasihomogeneity of hypersurface isolated singularities can be characterized
in terms of the holonomic DX -modules. To be more precise, let AnnDX,O

(ω) be
the annihilator ideal of ω ∈ Wf in the stalk DX,O at the origin of the sheaf DX of
rings of linear partial differential operators. Let Ann(1)

DX,O
(ω) denote the right ideal

in DX,O generated by differential operators of order at most 1 that annihilate ω.
Then the result can be stated in terms of right DX,O-modules as follows.

Theorem 0.1 (cf. [8]). Let X be an open neighborhood of the origin in Cn. Let

f = f(x1, . . . , xn) ∈ OX,O

be a holomorphic function with an isolated singularity at the origin and denote by
ω a generator of Wf over OX,O. The following conditions are equivalent:

(i) OX,O(f, ∂f∂x1
, . . . , ∂f∂xn

) = OX,O( ∂f∂x1
, . . . , ∂f∂xn

).

(ii) AnnDX,O
(ω) is generated by differential operators of order at most 1, i.e.,

AnnDX,O
(ω) = Ann(1)

DX,O
(ω).

(iii) The holonomic DX,O-module DX,O/Ann(1)
DX,O

(ω) is simple.

Indeed, the above theorem can be proved, as done previously in [8], by showing
in the category of right DX -modules that if a given hypersurface isolated singular-
ity is non-quasihomogeneous, then the dimension of the algebraic local cohomology
solution space

HomOX
(DX,O/Ann(1)

DX,O
(ω),Hn[O](Ω

n
X))

to the holonomic system DX,O/Ann(1)
DX,O

(ω) is greater than or equal to 2. How-

ever, the structure of the holonomic system DX,O/Ann(1)
DX,O

(ω) and its algebraic
local cohomology solution space associated with the non-quasihomogeneous iso-
lated singularity have not yet been determined, even for the most typical case.

In this paper, we study the case of non-quasihomogeneous hypersurface iso-
lated singularities. We consider the right ideal Ann(k)

DX,O
(ω), k = 0, 1, 2, . . . ,

generated by differential operators of order at most k and holonomic systems
DX,O/Ann(k)

DX,O
(ω) attached to non-quasihomogeneous hypersurface isolated sin-

gularities. We investigate in particular unimodal singularities, the most typical
case among hypersurface singularities, that comprise hyperbolic singularities and
14 exceptional families [1]. By extending the algorithms introduced in earlier work
[9], [10] to the parametric case for computing algebraic local cohomology and an-
nihilators, we explicitly determine the algebraic local cohomology solution space

HomDX,O
(DX,O/Ann(k)

DX,O
(ω),Hn[O](Ω

n
X))
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for the non-quasihomogeneous unimodal singularity case. We show as an applica-
tion that the multiplicity of the holonomic system DX,O/Ann(1)

DX,O
(ω) is equal to 2

and that of DX,O/Ann(2)
DX,O

(ω) is equal to 1.
In Section 1, after introducing some basic notions, we associate a series of

holonomic systems DX,O/Ann(k)
DX,O

(ω), k = 0, 1, . . . , to hypersurface isolated sin-
gularities. We show that the multiplicities of the holonomic systems are analytical
invariants of the hypersurface isolated singularities. In Section 2, we study basic
properties of algebraic local cohomology solution spaces for Ann(k)

DX,O
(ω) and state

the main results. In Section 3, we consider hyperbolic singularities and prove the
main result by explicitly providing Wf and annihilators. In Section 4, we study
exceptional singularities by adopting a constructive approach. Instead of present-
ing the full set of data on Wf , a generator ω and annihilators for each case, we
examine the Z13 singularity and give the results of computations to illustrate the
proof.

§1. Holonomic systems attached to hypersurface isolated singularities

Let X be an open neighborhood of the origin O in Cn. Denote by DX,O the stalk
at O of the sheaf DX of holomorphic linear partial differential operators on X. Let
Hn[O](Ω

n
X) be the algebraic local cohomology group supported at O, where ΩnX is

the sheaf of holomorphic differential n-forms on X. Note that, since ΩnX has the
structure of the right DX,O-module, differential operators in DX,O act on algebraic
local cohomology classes in Hn[O](Ω

n
X) from the right.

Definition 1.1. For an algebraic local cohomology class ζ ∈ Hn[O](Ω
n
X), let

L(k)
DX,O

(ζ) be the set of germs of linear partial differential operators of order at

most k that annihilate ζ. We define Ann(k)
DX,O

(ζ) to be the right ideal in DX,O
generated by L(k)

DX,O
(ζ):

L(k)
DX,O

(ζ) = {P ∈ DX,O | ζP = 0, ordP ≤ k}, Ann(k)
DX,O

(ζ) = L(k)
DX,O

(ζ)DX,O.

Denote by OX,O the stalk at O of the sheaf OX of holomorphic functions
on X. Let f = f(x1, . . . , xn) be a holomorphic function on X, defining an isolated
singularity at the origin, and I the Jacobi ideal of f in OX,O:

I = OX,O
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

Let Wf be the set of algebraic local cohomology classes annihilated by the Jacobi
ideal I:

Wf = {η ∈ Hn[O](Ω
n
X) | gη = 0 for all g ∈ I}.
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Then Wf is a µ-dimensional vector space, where µ is the Milnor number
dimCOX,O/I.

Wf is generated, over OX,O, by one algebraic local cohomology class. Though
the choice of a generator of Wf over OX,O is not unique, we have the following.

Lemma 1.1. Let ω and ω′ be two generators of Wf over OX,O, that is,

Wf = OX,Oω = OX,Oω′.

Then the DX,O-modules DX,O/Ann(k)
DX,O

(ω) and DX,O/Ann(k)
DX,O

(ω′) are isomor-
phic.

Proof. There is a holomorphic function g = g(x) ∈ OX,O with g(0) 6= 0 such
that ω = gω′. Let φ : DX,O → DX,O be a DX,O-linear homomorphism defined by
φ(R)=gR for R ∈ DX,O. Then φ induces an isomorphism from DX,O/Ann(k)

DX,O
(ω)

to DX,O/Ann(k)
DX,O

(ω′).

It is known that the right DX,O-module DX,O/Ann(k)
DX,O

(ζ) is a holonomic
system with support at the origin, for any ζ ∈ Hn[O](Ω

n
X). The next statement

immediately follows from Lemma 1.1.

Lemma 1.2. Let ω and ω′ be two generators of Wf over OX,O. Then the multi-
plicity of the holonomic system DX,O/Ann(k)

DX,O
(ω) is equal to the multiplicity of

DX,O/Ann(k)
DX,O

(ω′).

That is, the multiplicity of the holonomic system DX,O/Ann(k)
DX,O

(ω) is inde-
pendent of the choice of a generator of Wf . We thus arrive at the next definition.

Definition 1.2. We denote by µ
(k)
f the multiplicity of the holonomic system

DX,O/Ann(k)
DX,O

(ω), where ω is a generator of Wf over OX,O.

Note that if we denote the conormal space of the origin O ∈ X by T ∗{O}X,

then the characteristic cycle of the holonomic system DX,O/Ann(k)
DX,O

(ω) is given

by µ(k)
f T ∗{O}X.

Let f̃(x, t) be a function on X̃ = X × T of the form f̃(x, t) = f(x) +
t21 + · · · + t2` with t = (t1, . . . , t`) ∈ T , where T is an open neighborhood of
the origin in C`. Let Wf̃ ⊂ H

n+`
[O] (Ωn+`

X̃
) be the set of algebraic local cohomol-

ogy classes with support at the origin O of X̃ annihilated by the Jacobi ideal
OX̃,O(∂f/∂x1, . . . , ∂f/∂xn, t1, . . . , t`) of f̃(x, t).
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Lemma 1.3. Let ω̃ be a generator of Wf̃ over OX̃,O. Then there exists an alge-
braic local cohomology class ω ∈ Wf such that ω̃ = ω ⊗ δT , where δT is the delta
function with support at the origin of T . Furthermore,

Ann(k)
DX̃,O

(ω̃) = Ann(k)
DX,O

(ω)DX̃,O + (t1, . . . , t`)DX̃,O.

Theorem 1.1. Let f̃ = f̃(x, t) be a holomorphic function defined on X̃ = X ×T .
Assume that f̃ is stably equivalent to f . Then µ

(k)

f̃
= µ

(k)
f for every k ∈ N, and

νf̃ = νf .

Proof. If two holomorphic functions defined on X̃ are right equivalent, then the
multiplicities of the corresponding holonomic systems defined by kth-order anni-
hilators are equal. Therefore, to prove the theorem, it suffices to consider f̃ of the
form f̃(x, t) = f(x) + t21 + · · ·+ t2` . Let ω̃ be a generator of Wf̃ over OX̃,O. Then
ω̃ can be written in the form ω̃ = ω ⊗ δT with some generator ω ∈ Hn[O](Ω

n
X)

of Wf . Lemma 1.3 also implies that

DX̃,O/Ann
(k)
DX,O

(ω̃) ∼= DX,O/Ann(k)
DX,O

(ω)⊗DX̃,O
DT,O/(t1, . . . , t`)DT,O,

which yields the equality µ(k)

f̃
= µ

(k)
f .

By Theorem 1.1, µ(k)
f , k = 1, 2, . . . , are analytical invariants of a given singu-

larity defined by the function f .
Since {Ann(k)

DX,O
(ω)}k is an increasing sequence of right ideals, {µ(k)

f }k be-
comes a decreasing sequence of positive integers:

µ
(0)
f ≥ µ

(1)
f ≥ · · · ≥ µ

(k)
f ≥ · · · ≥ 1.

There exists an integer m such that Ann(m)
DX,O

(ω) is equal to the right ideal
AnnDX,O

(ω) of DX,O consisting of linear partial differential operators that annihi-
late ω. Since the holonomic system DX,O/AnnDX,O

(ω) is simple, we have µ(m)
f = 1.

Example. Since Ann(0)
DX,O

(ω) = IDX,O, µ(0)
f is the Milnor number dimCOX,O/I

at the origin of the isolated hypersurface singularity f .

Example. As seen in Theorem 0.1, µ(k)
f = 1 for k ≥ 1 in quasihomogeneous cases

and µ
(1)
f ≥ 2 in non-quasihomogeneous cases.

Let B be the µ-dimensional vector space spanned by a monomial basis of the
quotient space OX,O/I. If we set

L
(1)
DX

(ω) =
{
P =

n∑
i=1

ai(x)
∂

∂xi
+ a0(x)

∣∣∣∣ ωP = 0, ai(x) ∈ B, i = 0, 1, . . . , n
}
,
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then
Ann(1)

DX,O
(ω) = L

(1)
DX

(ω)DX,O + IDX,O.

If we set

L
(2)
DX

(ω) =
{
P =

n∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
+
∑

ai(x)
∂

∂xi
+ a0(x)

∣∣∣
ωP = 0, aij(x) ∈ B, ai(x) ∈ B, i, j = 1, . . . , n, a0(x) ∈ B

}
,

then also

Ann(2)
DX,O

(ω) = L
(2)
DX

(ω)DX,O + L
(1)
DX

(ω)DX,O + IDX,O

(see [4]). Accordingly, generators of Ann(1)
DX,O

(ω) and of Ann(2)
DX,O

(ω) can be con-

structed by utilizing bases of the finite-dimensional vector spaces L(1)
DX

(ω) and

L
(2)
DX

(ω). Based on this observation, we have recently derived an efficient algorithm

for computing the right ideal Ann(k)
DX,O

(ω) generated by annihilating differential
operators of order at most k (see [9]). We also implemented the resulting algorithm
in the computer algebra system Risa/Asir [6].

§2. Main result

Let Sol (k)f,ω denote the algebraic local cohomology solution space of the system of

partial differential equations defined by the ideal Ann(k)
DX,O

(ω):

Sol (k)f,ω = {ζ ∈ Hn[O](Ω
n
X) | ζP = 0, ∀P ∈ Ann(k)

DX,O
(ω)}.

Proposition 2.1. Let f be a holomorphic function with a hypersurface isolated
singularity at the origin. Let ω be a generator of Wf . Then

µ
(k)
f = dimC Sol (k)f,ω.

Proof. Since the holonomic DX,O-module DX,O/Ann(k)
DX,O

(ω) is supported at the

origin, we have ExtjDX,O
(DX,O/Ann(k)

DX,O
(ω),Hn[O](Ω

n
X)) = 0 for all j ≥ 1, which

implies
µ

(k)
f = dimCHomDX,O

(DX,O/Ann(k)
DX,O

(ω),Hn[O](Ω
n
X)).

The isomorphism

HomDX,O
(DX,O/Ann(k)

DX,O
(ω),Hn[O](Ω

n
X)) ∼= Sol (k)f,ω

yields the result.
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Lemma 2.1. Let f be a holomorphic function with an isolated singularity at the
origin. Let ω be a generator of Wf . Then

(i) Sol (0)f,ω =Wf .

(ii) Sol (k)f,ω ⊂ Sol (k−1)
f,ω for any k ≥ 1.

Proof. By the definition of Ann(k)
DX,O

(ω), we have

Sol (k)f,ω = {ζ ∈ Hn[O](Ω
n
X) | ζP = 0, ∀P ∈ L(k)

DX,O
(ω)}.

(i) Since L(0)
DX,O

(ω) = I = OX,O(∂f/∂x1, . . . , ∂f/∂xn), we have

Sol (0)f,ω =
{
ζ ∈ Hn[O](Ω

n
X)
∣∣∣∣ ∂f∂x1

ζ = · · · = ∂f

∂xn
ζ = 0

}
,

which is equal to Wf .
(ii) From Ann(k−1)

DX,O
(ω) ⊂ Ann(k)

DX,O
(ω), we have Sol (k)f,ω ⊂ Sol (k−1)

f,ω .

The lemma above immediately yields the following description:

Sol (k)f,ω = {ζ ∈ Sol (k−1)
f,ω | ζP = 0, ∀P ∈ L(k)

DX,O
(ω)}

and

(2.1) Sol (k)f,ω = {ζ ∈ Wf | ζP = 0, ∀P ∈ L(k)
DX,O

(ω)}.

Since ω ∈ Sol (k)f,ω for any k, we have the following.

Proposition 2.2. The following conditions are equivalent:

(i) µ
(k)
f = 1.

(ii) Ann(k)
DX,O

(ω) = AnnDX,O
(ω).

(iii) Sol (k)f,ω = SpanC{ω}.

Here, we study holonomic systems and their algebraic local cohomology so-
lutions attached to non-quasihomogeneous unimodal isolated singularities: hyper-
bolic singularities and exceptional families. Our main results are the following
theorems.

Theorem 2.1. Let f be a holomorphic function with a non-quasihomogeneous
unimodal isolated singularity at the origin O.

(i) Sol (1)f,ω = SpanC{ω, δ}, where δ is the delta function in Hn[O](Ω
n
X).

(ii) Sol (2)f,ω = SpanC{ω}.
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Remark. It has been shown that Sol (1)f,ω ⊇ SpanC{ω, fω} for any non-quasihomo-
geneous hypersurface isolated singularity [8]. Since the ideal quotient I : f for
the non-quasihomogeneous unimodal function f is the maximal ideal in OX,O, fω
coincides with a constant multiple of the delta function δ. Therefore, the inclusion
Sol (1)f,ω ⊇ SpanC{ω, δ} was implicitly given in [8].

Theorem 2.2. Let f be a holomorphic function with a non-quasihomogeneous
unimodal isolated singularity at the origin O.

(i) The multiplicity of the holonomic system DX,O/Ann(1)
DX,O

(ω) is equal to 2.

(ii) The multiplicity of the holonomic system DX,O/Ann(2)
DX,O

(ω) is equal to 1.

Theorem 2.2 is a consequence of Theorem 2.1 in combination with Proposition
2.1. By Proposition 2.2, the second statement of Theorem 2.2 can be rephrased as
follows.

Corollary 2.1. Let f ∈ OX,O be a holomorphic function that defines a non-
quasihomogeneous unimodal isolated singularity at the origin. Then

Ann(2)
DX,O

(ω) = AnnDX,O
(ω).

In other words, the annihilator ideal AnnDX,O
(ω) can be generated by anni-

hilating operators of order at most 2 for any generator ω of the dual space Wf of
the Milnor algebra of unimodal singularities.

§3. Hyperbolic singularities

The normal form of the hyperbolic singularity Tpqr is given by the polynomial

f = xp + yq + zr + axyz,

with a parameter a (a 6= 0) and p, q, r ∈ N satisfying the condition 1/p+ 1/q+ 1/r
< 1. It is known that the Milnor number µ of the hyperbolic singularity is p+ q+
r − 1 (cf. [2, 3]). Note that if 1/p + 1/q + 1/r = 1, the singularity defined by f ,
called the parabolic singularity, is quasihomogeneous. In this section, we study
hyperbolic singularities.

To prove our results, we give ω, Ann(1)
DX,O

(ω), Ann(2)
DX,O

(ω) in an explicit man-
ner. We shall deal with the case where one of the exponents p, q, r is 2 separately
from the generic case that all exponents p, q, r are greater than or equal to 3.

§3.1. The cases p, q, r ≥ 3

Assume p, q, r ≥ 3. The next result provides a basis for the dual space of the
Milnor algebra for a hyperbolic singularity.
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Lemma 3.1. For the function f = xp+yq+zr+axyz with a non-zero parameter a
and p, q, r ≥ 3, 1/p+1/q+1/r < 1, the vector space Wf is spanned by p+q+r−1
algebraic local cohomology classes ζ = ψdx ∧ dy ∧ dz, where ψ represents the
following algebraic local cohomology classes in H3

[O](OX):[
1
xyz

]
,

[
1

xjyz

]
(2 ≤ j ≤ p− 1),[

1
xykz

]
(2 ≤ k ≤ q − 1),

[
1

xyz`

]
(2 ≤ ` ≤ r − 1),[

1
xpyz

− p

a

1
xy2z2

]
,

[
1

xyqz
− q

a

1
x2yz2

]
,

[
1

xyzr
− r

a

1
x2y2z

]
,[

1
xyzr+1

+
r

q

1
xyq+1z

+
r

p

1
xp+1yz

− r

a

1
x2y2z2

]
.

Proof. Since the p+q+r−1 cohomology classes ψ ∈ H3
[O](OX) in the statement are

linearly independent, it suffices to prove that they are annihilated by the partial
derivatives fx = ∂f/∂x, fy = ∂f/∂y and fz = ∂f/∂z. It is obvious that the
cohomology classes

[
1
xyz

]
,
[

1
xjyz

]
(2 ≤ j ≤ p − 1),

[
1

xykz

]
(2 ≤ k ≤ q − 1),

[
1

xyz`

]
(2 ≤ ` ≤ r − 1) are annihilated by fx, fy and fz. Since pxp−1

[
1

xpyz −
p
a

1
xy2z2

]
=

p
[

1
xyz

]
and ayz

[
1

xpyz −
p
a

1
xy2z2

]
= −p

[
1
xyz

]
, we have fx

[
1

xpyz −
p
a

1
xy2z2

]
= 0. It is

easy to see that the class
[

1
xpyz −

p
a

1
xy2z2

]
is also annihilated by fy and fz. One can

verify in the same manner that the classes
[

1
xyqz −

q
a

1
x2yz2

]
and

[
1

xyzr − r
a

1
x2y2z

]
are

annihilated by fx, fy and fz. Since pxp−1
[

1
xyzr+1 + r

q
1

xyq+1z + r
p

1
xp+1yz −

r
a

1
x2y2z2

]
=[

r 1
x2yz

]
and ayz

[
1

xyzr+1 + r
q

1
xyq+1z + r

p
1

xp+1yz −
r
a

1
x2y2z2

]
= −r

[
1

x2yz

]
, fx annihilates

the class
[

1
xyzr+1 + r

q
1

xyq+1z + r
p

1
xp+1yz −

r
a

1
x2y2z2

]
. One can also see that fy and

fz annihilate that class. Thus, all p+ q + r − 1 classes of the form ψdx ∧ dy ∧ dz
given above belong to Wf and constitute a basis of the vector space Wf .

Corollary 3.1. The algebraic local cohomology class

(3.1)
[

1
xyzr+1

+
r

q

1
xyq+1z

+
r

p

1
xp+1yz

− r

a

1
x2y2z2

]
dx ∧ dy ∧ dz

in Lemma 3.1 is a generator of Wf over OX,O.

Proof. Denote by ω the cohomology class (3.1). For each class ω′ in Lemma 3.1,
one can find a function h(x, y, z) ∈ OX,O such that ω′ = h(x, y, z)ω.

The notions of algebraic local cohomology classes and the use of Grothendieck
local residues provide an answer to the membership problem for the Jacobi ideal
I ⊂ OX,O (see [9]). As an application, we have the next result.
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Lemma 3.2. The monomials

(3.2) 1, xj (1 ≤ j ≤ p− 2), yk (1 ≤ k ≤ q − 1), z` (1 ≤ ` ≤ r), and zy

constitute a basis of the quotient space OX,O/I.

Proof. Let g and g′ be two holomorphic functions defined in a neighborhood of O.
Then the Grothendieck local duality implies that the difference g − g′ is in the
Jacobi ideal I if and only if

resO(gψdx ∧ dy ∧ dz) = resO(g′ψdx ∧ dy ∧ dz)

for every algebraic local cohomology classes ψ given in Lemma 3.1, where resO(∗)
denotes the Grothendieck local residue at O. It follows that any element in the
Milnor algebra OX,O/I can be uniquely represented as a linear combination of the
monomials (3.2). This completes the proof.

The next result gives a characterization of annihilators in L
(1)
DX

(ω).

Proposition 3.1 ([5, 8, 9]). Let A be a linear partial differential operator of order
1 with coefficients in B. The following conditions are equivalent:

(1) There exists h ∈ OX,O such that A+ h ∈ L(1)
DX

(ω).

(2) Ag ∈ I for any g ∈ I.

Proposition 3.1 provides an effective method [9] for constructing first order
annihilators in L

(1)
DX

(ω). We fix a term ordering ∂
∂x �

∂
∂y �

∂
∂z .

Lemma 3.3. Let f = xp+yq+zr+axyz, a 6= 0, and let ω be the generator (3.1).
Then L(1)

DX
(ω) is spanned by the following p+q+r first-order differential operators:

• x2 ∂

∂x
− (p− 1)q

a
yq−1 ∂

∂z
− (p− 1)x (p ≥ 4),

• xj ∂
∂x
− (p+ 1− j)xj−1, j = 3, . . . , p− 2 (p ≥ 4),

• yq−1 ∂

∂x
− a

q(r − 1)
z2 ∂

∂z
+
a

q
z,

• p ≥ 4: yz
∂

∂x
+ 2

p

a
xp−2,

p = 3: yz
∂

∂x
+

6q
a2
yq−1 ∂

∂z
+

6
a
x,

• zr−1 ∂

∂x
+
a

r
yz

∂

∂z
,

• zr ∂
∂x

+
a

r
yz,
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• y2 ∂

∂y
+ (q − 1)yz

∂

∂z
− (q − 1)y,

• yk ∂
∂y
− (q + 1− k)yk−1, k = 3, . . . , q − 1 (q ≥ 4),

• yz ∂
∂y

+
1

r − 1
z2 ∂

∂z
− z,

• zr−1 ∂

∂y
− q

r
yq−1 ∂

∂z
,

• zr ∂
∂y
− q

r
yq−1,

• z` ∂
∂z
− (r + 1− `)z`−1, ` = 3, . . . , r.

Proof. It is easy to see by direct computations that these operators annihilate ω.
Let M be the set of monomials (3.2). Let Mx, My, Mz be the sets of residual
monomials in M\{1} of the coefficients of the leading terms of the above operators:

Mx = {x, yk (1 ≤ k ≤ q − 1), z` (1 ≤ ` ≤ r)},
My = {y, xj (1 ≤ j ≤ p− 2), z` (1 ≤ ` ≤ r)},
Mz = {z, z2, xj (1 ≤ j ≤ p− 2), yk (1 ≤ k ≤ q − 1), yz}.

Set

P =
(∑
λ∈Ex

αλxλ
) ∂
∂x

+
(∑
λ∈Ey

βλxλ
) ∂
∂y

+
(∑
λ∈Ez

γλxλ
) ∂
∂z

+
∑
λ∈E

cλxλ,

where Ex, Ey, Ez and E are the sets of exponents of monomials in Mx, My, Mz and
M , respectively, αλ, βλ, γλ and cλ are undetermined coefficients, and xλ = xjykz`

for λ = (j, k, `). Assume that ωP = 0. Then
pα100 + c000 = 0,
qβ010 + c000 = 0,
rγ001 + c000 = 0,
α100 + β010 + γ001 + c000 = 0,

and αjk` = 0 for (j, k, `) 6= (1, 0, 0), βjk` = 0 for (j, k, `) 6= (0, 1, 0), γjk` = 0 for
(j, k, `) 6= (0, 0, 1), and cjk` = 0 for (j, k, `) 6= (0, 0, 0).

Thus (α100, β010, γ001, c000) 6= (0, 0, 0, 0) only when 1/p+1/q+1/r = 1, which
contradicts the hyperbolicity.

Notice that for instance the second operator in Lemma 3.3 can be constructed
from the first one by multiplying with xj−2 from the right. Thus, to compute
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Sol (1)f,ω, one does not need to solve the differential equations ζP = 0 for all operators

in L(1)
DX

(ω). Actually, by solving the system ζP = 0 for the third, seventh and first
(p ≥ 4) or fourth (p = 3) operators, we obtain for p, q, r ≥ 3 the following result,
which is the first statement of Theorem 2.1 for the hyperbolic case.

Theorem 3.1. Let f be a hyperbolic singularity and ω be a generator of Wf .
Then Sol (1)f,ω = SpanC{δ, ω}.

Proof. We give the proof for p, q, r ≥ 4. The case p = 3 can be proved in a similar
manner.

Let P1, P3, P7 be the first, third and seventh operators in Lemma 3.3. We
verify that

SpanC{ζ ∈ Wf | ζP1 = ζP3 = ζP7 = 0} = SpanC{δ, ω}.

Since the action of a differential operator P from the right on a differential form
ψdx∧dy∧dz is given by (P ∗ψ)dx∧dy∧dz, we compute P ∗ψ for each ψ in Lemma
3.1 where P ∗ is the formal adjoint operator of P .

For

P1 = x2 ∂

∂x
− (p− 1)q

a
yq−1 ∂

∂z
− (p− 1)x,

we have

P ∗1 =
(
− ∂

∂x

)
x2 − (p− 1)q

a

(
− ∂

∂z

)
yq−1 − (p− 1)x.

P ∗1 ψ for each ψ in Lemma 3.1 is given below:

• P ∗1
[

1
xyz

]
= 0,

• P ∗1
[

1
x2yz

]
= −(p− 1)

[
1
xyz

]
,

• P ∗1
[

1
xjyz

]
=
(
− ∂

∂x

)[
1

xj−2yz

]
− (p − 1)

[
1

xj−2yz

]
= (j − p − 1)

[
1

xj−1yz

]
(3 ≤ j ≤ p− 2),

• P ∗1
[

1
xykz

]
= 0 (2 ≤ k ≤ p− 1),

• P ∗1
[

1
xyz`

]
= 0 (2 ≤ ` ≤ r − 1),

• P ∗1
([

1
xpyz

− p

a

1
xy2z2

])
= (p− 1)

[
1

xp−1yz

]
− (p− 1)

[
1

xp−1yz

]
= −

[
1

xp−1yz

]
,

• P ∗1
([

1
xyqz

− q

a

1
x2yz2

])
= − (p− 1)q

a

[
1

xyz2

]
+

(p− 1)q
a

[
1

xyz2

]
= 0,
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• P ∗1
([

1
xyzr

− r

a

1
x2y2z

])
=
r(p− 1)

a

[
1

xy2z

]
,

• P ∗1
([

1
xyzr+1

+
r

q

1
xyq+1z

+
r

p

1
xp+1yz

− r
a

1
x2y2z2

])
=

(p−1)r
p

[
1

xpyz

]
− (p−1)r

a

[
1

xy2z2

]
− (p−1)r

p

[
1

xpyz

]
+

(p−1)r
a

[
1

xy2z2

]
= 0.

It follows from the above computations that the solution space for the operator P1

in Wf is spanned by ω, δ and ψdx ∧ dy ∧ dz where ψ represents the following
algebraic local cohomology classes:

(3.3)
[

1
xykz

]
(2 ≤ k ≤ q−1),

[
1

xyz`

]
(2 ≤ ` ≤ r−1),

[
1

xyqz

]
− q
a

[
1

x2yz2

]
.

Computing P ∗3 ψ for each ψ in (3.3) in the same manner, we find that the
solution space {ζ ∈ Wf | ζP1 = ζP3 = 0} is spanned by ω, δ and ψdx ∧ dy ∧ dz
with ψ being the following algebraic local cohomology classes:

(3.4)
[

1
xykz

]
(2 ≤ k ≤ q − 1),

[
1

xyqz

]
− q

a

[
1

x2yz2

]
.

Finally, computing P ∗7 ψ for each ψ in (3.4), we find that the solution space of
the system of differential equations ζP1 = ζP3 = ζP7 = 0 is spanned by ω and δ.

Since Sol (1)f,ω ⊇ SpanC{δ, ω}, this completes the proof.

Lemma 3.4. Let p, q, r ≥ 3. Then the second-order partial differential operator

(3.5) R = z2 ∂
2

∂z2
− cqx ∂

∂x
− cpy ∂

∂y
− c(pq − p− q)z ∂

∂z
+ cpq

with c = r(r−1)
pqr−pq−qr−pr is in L

(2)
DX

(ω).

Proof. It is easy to see by direct computations that R annihilates ω.

For p, q, r ≥ 3, we have the following theorem.

Theorem 3.2. Let f be a hyperbolic singularity and ω be a generator of Wf .
Then Sol (2)f,ω = SpanC{ω}.

Proof. Since the operator (3.6) gives δR = cpqδ, we have Sol (2)f,ω = SpanC{ω}.

§3.2. The case p = 2

To finish the proof of Theorems 3.1 and 3.2, we now examine the case where one
of the exponents p, q, r is equal to 2. We may assume without loss of generality
that p = 2 and 3 ≤ q ≤ r. We give Wf , ω, Ann(1)

DX
(ω), Ann(2)

DX
(ω) in an explicit

manner for seven cases of q and r.
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3.2.1. The case q ≥ 5. When p = 2 and q ≥ 5, Wf , Ann(1)
DX

(ω) and Ann(1)
DX

(ω)
are given in the following results.

Lemma 3.5. For the function f = x2+yq+zr+axyz with a non-zero parameter a,
and 5 ≤ q ≤ r, the vector spaceWf is spanned by q+r+1 algebraic local cohomology
classes ζ = ψdx∧dy∧dz, where ψ represents the algebraic local cohomology classes
in H3

[O](OX) given below:[
1
xyz

]
,

[
1

xykz

]
(2 ≤ k ≤ q − 1),

[
1

xyz`

]
(2 ≤ ` ≤ r − 1),[

1
x2yz

− 2
a

1
xy2z2

]
,

[
1

xyqz
− q

a

1
x2yz2

+
2q
a2

1
xy2z3

]
,[

1
xyzr

− r

a

1
x2y2z

+
2r2

a2

1
xy3z2

]
and

η =
[

1
xyzr+1

+
r

2
1

x3yz
+
r

q

1
xyq+1z

− r

a

1
x2y2z2

+
2r
a2

1
xy3z3

]
.

The algebraic local cohomology class ηdx∧dy∧dz is a generator of Wf over OX,O.

Lemma 3.6. Let f = x2 + yq + zr + axyz, a 6= 0 (5 ≤ q ≤ r). For a generator

ω =
[

1
xyzr+1

+
r

2
1

x3yz
+
r

q

1
xyq+1z

− r

a

1
x2y2z2

+
2r
a2

1
xy3z3

]
dx ∧ dy ∧ dz

ofWf , L(1)
DX

(ω) is spanned by the following 2+q+r first-order differential operators:

• θ(q,r),1 = yz2 ∂

∂x
+
(
−22q(r − 2)

(r − 1)a3
yq−2 − 2

(r − 1)a
z2

)
∂

∂z
+

2
a
z,

• θ(∗,r),2 = zr−1 ∂

∂x
− 22

a
zr−2 ∂

∂y
+

1
r
ayz

∂

∂z
,

• θ(∗,r),3 = zr
∂

∂x
− a

r
yz2 ∂

∂z
+
a

r
yz,

• θ(q,r),4 =
(
y2 − 2qr

a2
zr−2

)
∂

∂y
+ (q − 1)yz

∂

∂z
− (q − 1)y,

• θ(q,r),5 = y3 ∂

∂y
− (q − 2)y2 +

2(q − 2)r
a2

zr−2,

• θ(k)(q,∗),6 = yk
∂

∂y
− (q + 1− k)yk−1, k = 4, . . . , q − 2 (q ≥ 6),

• θ(q,r),7 = yz
∂

∂y
+
(
− 2qr

(r − 1)a2
yq−2 +

1
r − 1

z2

)
∂

∂z
− z,
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• θ(q,∗),8 = yz2 ∂

∂y
− 22q

a2
yq−2,

• θ(∗,r),9 = zr−1 ∂

∂y
− 1

2r
a2yz2 ∂

∂z
,

• θ(∗,r),10 = zr
∂

∂y
− 1

2r
a2yz2,

• θ(q,r),11 = z3 ∂

∂z
+

2q(r − 2)
a2

yq−2 − (r − 2)z2,

• θ(`)(∗,r),12 = z`
∂

∂z
− (r + 1− `)z`−1, ` = 4, . . . , r.

The coefficients of the operators in the above lemma are in

B = SpanC{1, y, y2, . . . , yq−2, yz, yz2, z, z2, . . . , zr}.

Note that the solution space Sol (1)f,ω can be determined by solving only two equa-
tions, ζθ(q,r),1 = 0 and ζθ(q,r),4 = 0.

Lemma 3.7. Let f = x2 +yq+zr+axyz, a 6= 0 (q ≥ 5, r ≥ q). The second-order
partial differential operator

(3.6) S =
(
yq−2 − 1

2qa2
z2

)
∂2

∂z2
− ca3

22
yz

∂

∂x
+
ca2

q
y
∂

∂y
+

(q − 2)ca2

2q
z
∂

∂z
− ca2

with c = r(r−1)
qr−2(q+r) is in L

(2)
DX

(ω) .

3.2.2. The case q = 4. Let f = x2 + y4 + zr + axyz with r ≥ 5. A basis of the
vector space Wf is the same as for q ≥ 5. The second-order partial differential
operator (3.6) also belongs to L(2)

DX
(ω) in this case. We now give L(1)

DX
(ω):

Lemma 3.8. Let f = x2 + y4 + zr + axyz, a 6= 0 (r ≥ 5). For the generator

ω =
[

1
xyzr+1

+
r

2
1

x3yz
+
r

4
1

xy5z
− r

a

1
x2y2z2

+
2r
a2

1
xy3z3

]
dx ∧ dy ∧ dz

of Wf , L(1)
DX

(ω) is spanned by the following 6 + r first-order differential operators:

• r ≥ 6: θ(4,r),1 +
253(r − 2)r
(r − 1)a5

z2,

r = 5: θ(4,5),1 −
26325
a7

y2 +
273252

a9
z3 +

23325
a5

z2,

• θ(∗,r),2,

• θ(∗,r),3,
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• θ(4,r),4,

• r ≥ 6: θ(4,r),7 +
243r2

(r − 1)a4
zr−3,

r = 5: θ(4,5),7 −
253 · 52

a6
y2 +

263 · 53

a8
z3 +

223 · 52

a4
z2,

• θ(4,∗),8 +
25r

a4
zr−2,

• θ(∗,r),9,

• θ(∗,r),10,

• θ(4,r),11 −
24(r − 2)r

a4
zr−2,

• θ(`)(∗,r),12, ` = 4, . . . , r.

The coefficients of the operators in the above lemma are in

B = SpanC{1, y, y2, yz, yz2, z, z2, . . . , zr}.

Note that the solution space Sol (1)f,ω can be determined by solving only two equa-
tions, ζθ(q,r),1 = 0 and ζθ(q,r),4 = 0.

3.2.3. The case q = 3. Let f = x2 + y3 + zr + axyz with r ≥ 7.

Lemma 3.9. For the function f = x2+y3+zr+axyz with a non-zero parameter a,
r ≥ 7, the vector space Wf is spanned by r + 4 algebraic local cohomology classes
ζ = ψdx ∧ dy ∧ dz, where ψ represents the algebraic local cohomology classes in
H3

[O](OX) given below:[
1
xyz

]
,

[
1

xy2z

]
,

[
1

xyz`

]
(2 ≤ ` ≤ r − 1),[

1
x2yz

− 2
a

1
xy2z2

]
,

[
1

xy3z
− 3
a

1
x2yz2

+
6
a2

1
xy2z3

]
,[

1
xyzr

− r

a

1
x2y2z

+
2r2

a2

1
xy3z2

− 6r
a3

1
x2yz3

+
12r
a4

1
xy2z4

]
and

η =
[

1
xyzr+1

+
r

2
1

x3yz
+
r

3
1

xy4z
− r

a

1
x2y2z2

+
2r
a2

1
xy3z3

− 6r
a3

1
x2yz4

+
12r
a4

1
xy2z5

]
.

The algebraic local cohomology class ηdx∧dy∧dz above is a generator of Wf over
OX,O in each case.
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Lemma 3.10. Let f = x2 + y3 + zr + axyz, a 6= 0. For the generator

ω =
[

1
xyzr+1

+
r

2
1

x3yz
+
r

3
1

xy4z

− r

a

1
x2y2z2

+
2r
a2

1
xy3z3

− 6r
a3

1
x2yz4

+
12r
a4

1
xy2z5

]
dx ∧ dy ∧ dz

of Wf , L(1)
DX

(ω) is spanned by the following 5 + r first-order differential operators:

• r ≥ 10: θr,1 = yz2 ∂

∂x
− 22

3a
yz

∂

∂y
+
(
−22(r − 6)

(r − 1)a3
y − 2 · 5

3(r − 1)a
z2

)
∂

∂z

+
243 · 5r(r − 6)

(r − 1)a7
zr−5 +

2 · 5
3a

z

,

r = 9: θ9,1 −
22355
a9

yz2 +
24385
a13

z7,

r = 8: θ8,1 −
29325
7a9

yz +
214335
7a13

z5,

r = 7: θ7,1 −
210355 · 73

a21
yz2 − 27335 · 72

a15
yz − 243 · 5 · 7

a9
y

+
212365 · 74

a25
z5 +

29345 · 73

a19
z4 +

26325 · 72

a13
z3,

• r ≥ 10: θr,2 = zr−2 ∂

∂x
+
(
−2
a
zr−3 − a3

2 · 32r
yz

)
∂

∂y

+
(

a

3(r − 1)
y − a3

2 · 32r(r − 1)
z2

)
∂

∂z
− 22 · 5r

(r − 1)a3
zr−5 +

a3

2 · 32r
z,

r = 9: θ9,2 +
335
a5

yz2 − 22365
a9

z7,

r = 8: θ8,2 +
263 · 5

7a5
yz − 211325

7a9
z5,

r = 7: θ7,2 +
25327
a7

z5 ∂

∂y
− 233

a3
z3 ∂

∂z
− 283472109

a17
yz2 − 25327 · 109

a11
yz − 22109

a5
y

+
2103573109

a21
z5 +

273372109
a15

z4 +
243 · 7 · 109

a9
z3 +

23 · 3 · 5
a3

z2,

• r ≥ 9: θr,3 = zr−1 ∂

∂x
− 22

a
zr−2 ∂

∂y
+

1
2 · 3r

a3z3 ∂

∂z

+
r − 2
r

ay − 223(r − 2)
a3

zr−4 − r − 2
2 · 3r

a3z2,

r = 8: θ8,3 −
2433

a5
yz2 +

2934

a9
z6,

r = 7: θ7,3 +
26345 · 7
a11

yz2 +
23325
a5

yz − 28355 · 72

a15
z5 − 25335 · 7

a9
z4 ,
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• r ≥ 8: θr,4 = zr
∂

∂x
− 1

2 · 3r
a3z4 ∂

∂z
− r − 4

r
ayz +

223(r − 4)
a3

zr−3 +
r − 3
2 · 3r

a3z3,

r = 7: θ7,4 −
2333

a5
yz2 +

25347
a9

z5,

• r ≥ 9: θr,5 =
(
yz2 − 2232r

a4
zr−2

)
∂

∂y
+ 2z3 ∂

∂z

+
223(r − 3)

a2
y − 2432(r − 3)r

a6
zr−4 − 2(r − 2)z2,

r = 8: θ8,5 +
28335
a8

yz2 − 213345
a12

z6,

r = 7: θ7,5 +
2103572

a14
yz2 +

27337
a8

yz − 2123673

a18
z5 − 293472

a12
z4,

• r ≥ 8: θr,6 = zr−1 ∂

∂y
− 1

223r
a4z4 ∂

∂z
− r − 3

2r
a2yz+

2 · 3(r − 3)
a2

zr−3 +
r − 3
223r

a4z3,

r = 7: θ7,6 −
2432

a4
yz2 +

26337
a8

z5,

• θr,7 = zr
∂

∂y
− 1

2r
a2yz2 +

2 · 3
a2

zr−2,

• r ≥ 9: θr,8 =
(
yz − 1

2 · 3
a2z3

)
∂

∂z
− (r − 2)y +

223r(r − 6)
a4

zr−4 +
r − 2
2 · 3

a2z2,

r = 8: θ8,8 −
2732

a6
yz2 +

21233

a10
z6,

r = 7: θ7,8 −
263472

a12
yz2 − 23327

a6
yz +

283573

a16
z5 +

253372

a10
z4,

• r ≥ 8: θr,9 =
(
z2y − 1

2 · 3
a2z4

)
∂

∂z
− (r − 3)yz +

223r(r − 6)
a4

zr−3 +
r − 3
2 · 3

a2z3,

r = 7: θ7,9 −
23327
a6

yz2 +
253372

a10
z5,

• θr,10 = z5 ∂

∂z
+

2 · 3(r − 4)
a2

yz2 − 2332(r − 4)r
a6

zr−2 − (r − 4)z4,

• θ(`)r,11 = z`
∂

∂z
− (r + 1− `)z`−1, ` = 6, . . . , r.

The coefficients of the operators in the above lemma are in

B = SpanC{1, y, yz, yz2, z, z2, . . . , zr}.

Note that in order to check Sol (1)f,ω = SpanC{ω, δ}, it is enough to solve only two
equations, ζθr,1 = 0 and ζθr,5 = 0.
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Lemma 3.11. For q = 3, the following second-order partial differential operator
is in L

(2)
DX

(ω):

• For f = x2 + y3 + zr + axyz with r ≥ 9,

z4 ∂2

∂x∂z
+

23(r + 3)(r − 6)
a5

zr−2 ∂
2

∂y2
− 2(r2 − 2r − 12)

3ra
z3 ∂2

∂y∂z

− 23(r − 3)
ra3

z2 ∂
2

∂z2
− (r − 3)z3 ∂

∂x

+

„
243r(r− 6)(r− 2)

a7
zr−4 +

2(r− 2)(r2 − 2r− 12)

3ra
z2 − 22(r3 − 6r2 − 2r + 24)

ra3
y

«
∂

∂y

+
23(r − 3)(r + 2)

ra3
z
∂

∂z
− 233(r − 3)

a3
.

• For f = x2 + y3 + z8 + axyz,

z4 ∂2

∂x∂z
+

2523
11a5

z6 ∂
2

∂y2
+
(
−2 · 7

11a
z3 − 26

11a3
yz

)
∂2

∂y∂z
− 2 · 3 · 5

11a3
z2 ∂

2

∂z2

+
(
−5z3 +

2 · 3 · 53

11a2
yz

)
∂

∂x
+
(
−223 · 7

11a
z2 − 237 · 19

11a3
y

)
∂y +

243 · 5 · 7
11a3

• For f = x2 + y3 + z7 + axyz,(
yz+

1
2 · 11

a2z3

)
∂2

∂x∂z
+
(
−2732527323

11a15
z6+

263372

a9
z5−223 · 72

11a3
z4− 7

3211
ayz

)
∂2

∂y2

+
(

253·527223
11a11

z4− 2372

3a5
z3− 255·73

11a7
yz+

7
3311

az2+
2 ·7
32a

y

)
∂2

∂y∂z
− 24337

11a7
z2 ∂

2

∂z2

+
(
−22335 ·7

11a4
z3+

25357
11a6

yz− 5
2·11

a2z2+
1
11
y

)
∂

∂x
− 2 ·7

32 ·11
az

∂

∂y
+

253472

11a7
.

Theorems 3.1 and 3.2 can be proved for p = 2 by using the results presented
in this subsection. This completes the proof of the main theorem for the hyperbolic
case.

§4. Exceptional families

There are 14 exceptional families of unimodal singularities, E12, E13, E14, Z11,
Z12, Z13, W12, W13, Q10, Q11, Q12, S11, S12, and U12. Theorem 2.2 is proved
for these exceptional families by performing case-by-case computations. The proof
involves the following five steps.

Step 1. Compute the basis of the vector space Wf and find a generator ω of Wf .

Step 2. Compute a monomial basis of OX,O/I.
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Step 3. Compute generators of Ann(1)
DX,O

(ω) by constructing a basis of L(1)
DX

(ω).

Step 4. Compute Sol (1)f,ω by solving the system of partial differential equations

ζP = 0, ∀P ∈ L(1)
DX

(ω), for ζ ∈ Wf .

Step 5. Compute generators of Ann(2)
DX,O

(ω).

Since the defining function of the normal form of an exceptional family of
the unimodal singularity in question contains a parameter, we have extended the
previously developed algorithm [10] to handle such parametric cases. Step 1 is
executed by the resulting algorithm implemented in the computer algebra system
Risa/Asir. Steps 3 and 5 are performed by another algorithm described in [9].

By executing Steps 1 to 4 for each exceptional family of unimodal singularities,
we obtain the following.

Theorem 4.1 (cf. [5]). Let f be an exceptional family of unimodal singularities.
Then Sol (1)f,ω = SpanC{δ, ω}.

By executing Step 5 for each case, we have the following result.

Lemma 4.1. Let f define an exceptional family of unimodal hypersurface isolated
singularities at the origin. Let ω be a generator ofWf . Then there exists in L(2)

DX
(ω)

a second-order partial differential operator S such that

S(0) 6∈ m,

where S(0) is the zeroth-order part of the differential operator S, and m is the
maximal ideal in OX,O.

Since δS 6= 0 provided that S(0) 6∈ m for the delta function δ, we have the
following.

Theorem 4.2. Let f be an exceptional family of non-quasihomogeneous unimodal
isolated singularities and ω be a generator of Wf . Then Sol (2)f,ω is the one-dimen-
sional vector space spanned by ω.

Instead of providing proofs by presenting the full set of data for each ex-
ceptional family of unimodal singularities, we restrict ourselves to confirming the
results for the Z13 singularity.

Example 1 (Z13 singularity). Set f = x3y + y6 + axy5 with a non-zero param-
eter a. Then f defines the Z13 singularity at the origin. Wf is spanned by the
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cohomology classes ζ = ψdx∧ dy, where ψ represents the algebraic local cohomol-
ogy classes in H2

[O](OX) given below:[
1
xy

]
,

[
1
xy2

]
,

[
1
x2y

]
,

[
1
xy3

]
,

[
1

x2y2

]
,

[
1
x3y

]
,

[
1
xy4

]
,

[
1

x2y3

]
,[

1
xy5

]
,

[
1

x2y4

]
,

[
1
xy6
− 1

3
a

1
x3y2

− 6
1
x4y

]
,

[
1

x2y5
− 5a

1
x4y

]
[

1
x2y6

− 6
1
x5y
− 7

9
a

1
xy7
− 1

3
a

1
x4y2

+
7
27
a2 1
x3y3

]
.

The algebraic local cohomology class

ω =
[

1
x2y6

− 6
1
x5y
− 7

9
a

1
xy7
− 1

3
a

1
x4y2

+
7
27
a2 1
x3y3

]
dx ∧ dy

is a generator of Wf over OX,O.
The monomials

(4.1) 1, y, x, y2, xy, x2, y3, xy2, y4, xy3, y5, xy4, y6

constitute a basis of the quotient space OX,O/I.
Let B be the vector space spanned by monomials (4.1). Taking coefficients

from B, the algorithm described in [9] outputs the following 16 operators as a
basis of the space L(1)

DX
(ω):

• xy ∂
∂x

+
(
− 72

22 · 33 · 5
axy +

23
22 · 3 · 5

y2

)
∂

∂y

− 22 · 75

313 · 5
a7xy4− 22 · 74

311 · 5
a6y5 +

22 · 73

38 · 5
a4xy2 +

22 · 72

36 · 5
a3y3− 7

2 · 33 · 5
ax− 2 · 19

3 · 5
y,

• ax2 ∂

∂x
+
(

37
22 · 3 · 5

axy +
3

22 · 5
y2

)
∂

∂y

− 74 · 11
311 · 5

a7xy4 − 73 · 11
39 · 5

a6y5 +
72 · 11
36 · 5

a4xy2 +
7 · 11
34 · 5

a3y3 − 89
2 · 3 · 5

ax− 3
5
y,

• xy2 ∂

∂x
+

73

37
a4xy3 +

23 · 7
35

a3y4 +
7
34
a2x2 − 7

32
axy − y2,

• a2y4 ∂

∂x
+
(

1
22
axy +

32

22
y2

)
∂

∂y

− 2 · 74

310
a7xy4 − 2 · 73

38
a6y5 +

2 · 72

35
a4xy2 +

2 · 7
33

a3y3 +
1
2
ax− 32y,

• xy3 ∂

∂x
+

73

37
a4xy4 +

72

35
a3y5 − 7

32
axy2 − y3,

• y5 ∂

∂x
+

1
3
x2 +

72

34
a2xy3 +

23

32
ay4,
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• xy4 ∂

∂x
− 7

32
axy3 − y4,

• y6 ∂

∂x
+

72

34
a2xy4 +

7
32
ay5,

•
(
a2x2 − 3

22
axy − 33

22
y2

)
∂

∂y

− 22 · 73

39
a7xy4 − 22 · 72

37
a6y5 +

22 · 7
34

a4xy2 +
13
32
a3y3 − 3

2
ax+ 33y,

• y3 ∂

∂y
− 73

37
a4xy3 − 7

33
a3y4 − 2 · 7

34
a2x2 +

7
32
axy − 3y2,

• xy2 ∂

∂y
+

72

34
a3xy3 +

23
33
a2y4 +

2
32
ax2 − 4xy,

• y4 ∂

∂y
− 73

37
a4xy4 +

7
32
axy2x− 72

35
a3y5 − 2y3,

• xy3 ∂

∂y
+

72

34
a3xy4 − 3xy2 +

7
32
a2y5,

• y5 ∂

∂y
+

7
32
axy3 − y4,

• xy4 ∂

∂y
− 2xy3,

• y6 ∂

∂y
+

7
32
axy4.

By solving the system of partial differential equations

ζP = 0, ∀P ∈ L(1)
DX

(ω)

for ζ ∈ Wf , we have

Sol (1)f,ω = SpanC{ω, δ}.

Actually, it is enough to consider the first and the nineth operators to determine
the algebraic local cohomology solution space.

As for the second-order annihilators, the algorithm outputs five operators.
Among them, we find the operator

S = y2 ∂
2

∂y2
+
(

3 · 5
2
x+

7 · 13
2 · 33

a2y3

)
∂

∂x
+
(

7
2 · 32

ax+
1
2
y

)
∂

∂y

− 5 · 75

312
a7xy3 − 5 · 74

310
a6y4 +

5 · 73

37
a4xy +

5 · 72

35
a3y2 − 2 · 3 · 5.
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Since the zeroth-order part

S(0) = −5 · 75

312
a7xy3 +

5 · 73

37
a4xy − 5 · 74

310
a6y4 +

5 · 72

35
a3y2 − 2 · 3 · 5

of S is not contained in the maximal ideal m, we have

Sol (2)f,ω = SpanC{ω}.
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