
Publ. RIMS Kyoto Univ. 48 (2012), 45–63
DOI 10.2977/PRIMS/60

Super Duality and Homology of Unitarizable
Modules of Lie Algebras
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Abstract

The u-homology formulas for unitarizable modules at negative levels over classical Lie
algebras of infinite rank of types gl(n), sp(2n) and so(2n) are obtained. As a consequence,
we recover Enright’s formulas for three Hermitian symmetric pairs of classical types,
(SU(p, q), SU(p)× SU(q)), (Sp(2n), U(n)) and (SO∗(2n), U(n)).
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§1. Introduction

In analogy to Kostant’s u-cohomology formulas [Ko], Enright establishes similar
formulas [E] for unitarizable highest weight modules of Hermitian symmetric pairs
in terms of certain complicated subsets of the Weyl groups. The argument there is
intricate and involves several equivalences of categories and non-trivial combina-
torics of the Weyl groups. Kostant’s formula can be rephrased by saying that the
Kazhdan–Lusztig polynomials associated to finite-dimensional modules are mono-
mials. The same statement is true by Enright’s formulas for unitarizable highest
weight modules. Except for the resemblance of the formulas, there was no obvious
connection between Enright’s and Kostant’s formulas.
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However, the modules appearing in the Howe duality at negative levels [W,
H1, H2] over classical Lie algebras of infinite rank are unitarizable modules (cf.
[EHW], see also Proposition 2.6 and Remark 2.7 below) and the character formulas
for these modules can be obtained by applying the involution of the ring of sym-
metric functions with infinite variables, which sends the elementary symmetric
functions to the complete symmetric functions, to the characters for the corre-
sponding integrable modules over the respective Lie algebras (cf. [CK, CKW]).
Remarkably, the u-homology groups of these modules are also dictated by those of
the corresponding integrable modules [CK, CKW]. The correspondence between
u-homology groups of integrable modules at positive levels and u-homology groups
of unitarizable modules (at negative levels) over the respective Lie algebras can
be elucidated in terms of the so called super duality [CWZ, CW], established in
[BrS, CL, CLW]. Before [CLW] there was no explanation of the similarity of these
two different u-homology groups. Super duality gives a first conceptual explanation
of this similarity [CLW, Theorem 4.13].

To the best of our knowledge, there has been no proof of Enright’s formulas
different from the original one. In this paper, we give a proof of Enright’s homology
formulas for unitarizable modules by using Kostant’s formulas and super duality.
The u-homology formulas (see Theorem 4.4 below) for unitarizable modules over
classical Lie algebras of infinite rank of types gl(n), sp(2n) and so(2n) are ob-
tained by combinatorial methods. The proof involves relating the combinatorial
data of Kostant’s formulas for integrable modules over corresponding Lie algebras,
that are determined by the super duality, to the data of the Lie algebras under
consideration. By applying the truncation functors (cf. [CLW, Section 3.4]) to the
u-homology formulas (see also Section 2.4 below), we recover Enright’s formulas
for three Hermitian symmetric pairs of classical types, (SU(p, q), SU(p)×SU(q)),
(Sp(2n), U(n)) and (SO∗(2n), U(n)). However, for so(2n), our method can only
partially recover Enright’s formula for some unitarizable highest weight cases.

The paper is organized as follows. In Section 2, we review and set up notation
for the classical Lie algebras of finite and infinite rank. We describe the unitarizable
highest weight modules considered in this paper. Combinatorial descriptions of
Weyl groups are also given in that section. In Section 3, we compare the actions
of certain subsets of Weyl groups on certain numerical data associated with the
highest weights. In Section 4, homology formulas for unitarizable modules over Lie
algebras of infinite rank are proved. In Section 5, Enright’s homology formulas are
proved.

We shall use the following notation throughout this article. The symbols Z,
N, and Z+ stand for the sets of all integers, of positive integers and of non-negative
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integers, respectively. We set Z∗ := Z \ {0}. For a partition λ, we denote by λ′ the
transpose partition of λ. Finally all vector spaces, algebras, tensor products etc.
are over the field C of complex numbers.

§2. Preliminaries

§2.1. Classical Lie algebras of infinite rank

In this subsection we review and fix notation for Lie algebras of interest in this
paper. For details we refer to [K, W, CK, CLW].

2.1.1. The Lie algebra a∞. Let C∞ be the vector space over C with an ordered
basis {ei | i ∈ Z} so that an element in End(C∞) may be identified with a matrix
(aij) (i, j ∈ Z). Let Eij be the matrix with 1 in the i-th row and j-th column
and zeros elsewhere. Let å∞ denote the subalgebra of the Lie algebra End(C∞)
spanned by Eij with i, j ∈ Z. Denote by a∞ := å∞ ⊕CK the central extension of
å∞ by the one-dimensional center CK given by the 2-cocycle

(2.1) τ(A,B) := Tr([J,A]B),

where J =
∑
i≤0Eii and Tr(C) is the trace of the matrix C. Observe that the

cocycle τ is a coboundary. Indeed, there is an embedding ι̊a from å∞ to a∞ defined
by sending A ∈ å∞ to A+Tr(JA)K (cf. [CLW, Section 2.5]). It is clear that ι̊a(̊a∞)
is an ideal of a∞ and a∞ is a direct sum of the ideals ι̊a(̊a∞) and CK. Note that
ι̊a(Eii) = Eii +K (resp. Eii) for i ≤ 0 (resp. i ≥ 1).

The Cartan subalgebra
∑
i∈Z CEii ⊕ CK is denoted by ha. By assigning de-

gree 0 to the Cartan subalgebra and setting degEij = j − i, a∞ is equipped with
a Z-gradation a∞ =

⊕
k∈Z(a∞)k. This leads to the following triangular decompo-

sition:
a∞ = (a∞)+ ⊕ (a∞)0 ⊕ (a∞)−,

where (a∞)± =
⊕

k∈±N(a∞)k and (a∞)0 = ha.
The sets of simple coroots, simple roots and positive roots of a∞ are respec-

tively

Π∨a = {β∨i := Eii − Ei+1,i+1 + δi0K | i ∈ Z },
Πa = {βi := εi − εi+1 | i ∈ Z },
∆+

a = {εi − εj | i < j, i, j ∈ Z},

where εi ∈ h∗a is determined by 〈εi, Ejj〉 = δij and 〈εi,K〉 = 0. We also let ϑa ∈ h∗a
be defined by 〈ϑa,K〉 = 1 and 〈ϑa, Ejj〉 = 0 for all j ∈ Z. Let ρa ∈ h∗a be
determined by 〈ρa, Ejj〉 = −j for all j ∈ Z, and 〈ρa,K〉 = 0, so that we have
〈ρa, α

∨
i 〉 = 1 for all i ∈ Z.
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2.1.2. The Lie algebras c∞ and d∞. For g = c, d, let g̊∞ be the subalgebra
of å∞ preserving the following bilinear form on C∞:

(ei|ej) =

{
(−1)iδi,1−j if g = c,

δi,1−j if g = d,
i, j ∈ Z.

Let g∞ = g̊∞ ⊕ CK be the central extension of g̊∞ determined by the restriction
of the two-cocycle (2.1). Then g∞ has a natural Z-gradation and a triangular
decomposition induced from a∞ with (g∞)n = g∞ ∩ (a∞)n for n ∈ Z. Similar to
the a∞ case, the cocycle is a coboundary. Indeed, there are embeddings ι̊g from g̊∞
to g∞ defined by sending A ∈ g̊∞ to A+ Tr(JA)K [CLW, Section 2.5]. It is clear
that ι̊g(̊g∞) is an ideal of g∞ and g∞ is a direct sum of the ideals ι̊g(̊g∞) and CK.
Note that ι̊g(Ẽi) = Ẽi −K for i ∈ N where

Ẽi = Eii − E1−i,1−i.

Note that (g∞)0 =
∑
i∈N CẼi⊕CK are Cartan subalgebras, which will be denoted

by hg. We let εi ∈ h∗g be defined by 〈εi, Ẽj〉 = δij for i, j ∈ N and 〈εi,K〉 = 0. Then
the sets of positive roots of c∞ and d∞ are respectively

∆+
c = {±εi − εj , −2εi (i, j ∈ N, i < j)},

∆+
d = {±εi − εj (i, j ∈ N, i < j)}.

Set

α∨0 =

{
−Ẽ1 +K for c∞,

−Ẽ1 − Ẽ2 + 2K for d∞,
α0 =

{
−2ε1 for c∞,

−ε1 − ε2 for d∞.

The sets of simple coroots and simple roots of g∞ are respectively

Π∨g = {α∨0 , α∨i = Ẽi − Ẽi+1 (i ∈ N) },
Πg = {α0, αi = εi − εi+1 (i ∈ N) }.

Let ϑg ∈ h∗g be defined by 〈ϑg, Ẽi〉 = 0 for i ∈ N and 〈ϑg,K〉 = r with r = 1
(resp. 1

2 ) for g = c (resp. d). We also let ρg ∈ h∗g be determined by

〈ρg, Ẽj〉 =

{
−j for g = c,

−j + 1 for g = d,
j ∈ N, and 〈ρg,K〉 = 0.

We have 〈ρg, α
∨
i 〉 = 1 for i ∈ N and g = c, d.

2.1.3. Levi subalgebras. For g = a, c, d, let ∆g := ∆+
g ∪∆−g , where ∆−g = −∆+

g .
Then ∆g is the set of roots of g∞. Let ∆±g,c := ∆±g ∩ (

∑
j 6=0 Zαj) and ∆±g,n :=
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∆±g \∆±g,c. Denote by gα the root space corresponding to α ∈ ∆g. Set

(2.2) u±g :=
∑

α∈∆±
g,n

gα, lg :=
∑

α∈∆±
g,c

gα ⊕ hg.

Then we have g∞ = u+
g ⊕lg⊕u−g . The Lie algebras lg and g∞ share the same Cartan

subalgebra hg. Moreover, lg has a triangular decomposition induced from g∞. For
µ ∈ h∗g, we denote respectively by L(g∞, µ) and L(lg, µ) the irreducible highest
weight g∞-module and the lg-module with highest weight µ with respect to the
triangular decompositions.

For a root α ∈ ∆g, g = a, c, d, define the reflection σα by

σα(µ) := µ− 〈µ, α∨〉α, µ ∈ h∗g.

Here and below, α∨ denotes the coroot of the root α. Let Ia = Z and Ig = N
for g = c, d. For j ∈ Ig ∪ {0}, let σj = σαj . Let Wg be the subgroup of Aut(h∗g)
generated by the reflections σj with j ∈ Ig ∪{0}, i.e. Wg is the Weyl group of g∞.
For each w ∈Wg, `g(w) denotes the length of w. We also define

w ◦ µ := w(µ+ ρg)− ρg, µ ∈ h∗g, w ∈Wg.

Consider the subgroup Wg,0 of Wg generated by σj with j 6= 0. Let W 0
g denote

the set of minimal length left coset representatives of Wg/Wg,0 (cf. [V, Liu, Ku]).
We have Wg = W 0

gWg,0. For k ∈ Z+, set

W 0
g,k := {w ∈W 0

g | `g(w) = k}.

Finally, for g = a, c, d, let (·|·) be a bilinear form defined on a subspace of h∗g
satisfying

(εi|εj) = δij , (ϑg|εi) = (εi|ϑg) = (ϑg|ϑg) = 0 for i, j ∈ Ig.

Recall that Ia = Z and Ig = N for g = c, d.

§2.2. Finite-dimensional Lie algebras

For the rest of the paper, let g stand for a, c, d. We shall fix the following notation:

a := a, c := d, d := c.

Remark 2.1. For x = c, d, let gx and gx be the Lie algebras defined in [CLW,
Section 2] with m = 0. Then c∞ = gc, d∞ = gd, c∞ ∼= gc and d∞ ∼= gd. Note that
K maps to −K under the isomorphisms c∞ ∼= gc and d∞ ∼= gd.
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For m,n ∈ N, the subalgebra of å∞ spanned by Eij with 1 −m ≤ i, j ≤ n,
denoted by tm,na, is isomorphic to the general linear algebra gl(m+n). The subal-
gebras (tn,na) ∩ c̊∞ and (tn,na) ∩ d̊∞ are isomorphic to the symplectic Lie algebra
sp(2n) and the orthogonal Lie algebra so(2n), denoted by tnc and tnd respectively.
We shall drop the subscript of t if there is no ambiguity.

For g = a, c, d, the embeddings ι̊g restricted to tg are also denoted by ι̊g. Let
∆+

tg denote the set of positive roots of tg with respect to the triangular decompo-
sition induced from g∞. We also let ∆tg = ∆+

tg ∪ −∆+
tg and ∆+

tg,n = ∆+
g,n ∩∆+

tg.
Set htg = hg ∩ tg, u±tg = u±g ∩ tg and ltg = lg ∩ tg. Note that tg and ltg share the
same Cartan subalgebra htg. Moreover, ltg has a triangular decomposition induced
from tg. For µ ∈ h∗tg, we denote respectively by L(tg, µ) and L(ltg, µ) the irre-
ducible highest weight tg-module and the ltg-module with highest weight µ with
respect to the triangular decompositions. For µ ∈ h∗tg, L(ltg, µ) is extended to an
(ltg + u+

tg)-module by letting u+
tg act trivially. Let ptg = ltg + u+

tg. Define as usual
the parabolic Verma module with highest weight µ by

N(tg, µ) = Indtg
ptg
L(ltg, µ).

The space h∗tg is spanned by εi with 1 ≤ i ≤ n (resp. 1 − m ≤ i ≤ n − 1)
for g = c, d (resp. a) and therefore h∗tg can be regarded as a subspace of h∗g. Note
that h∗tg is an invariant subspace of σi for 1 ≤ i ≤ n (resp. 1−m ≤ i ≤ n− 1) for
g = c or d (resp. a). The restrictions of these σi to h∗tg are also denoted by σi. Let
Wtg be the subgroup of Aut(h∗tg) generated by these σis. Then Wtg is the Weyl
group of tg. For each w ∈ Wtg we let `tg(w) denote the length of w. Consider the
subgroup Wtg,0 of Wtg generated by σj with j 6= 0. Let W 0

tg denote the set of
minimal length representatives of the left coset space Wtg/Wtg,0 (cf. [Liu, Ku]).
For k ∈ Z+, set W 0

tg,k := {w ∈W 0
tg | `tg(w) = k}. We also define

w ◦ µ := w(µ+ ρtg)− ρtg, µ ∈ h∗tg, w ∈Wtg.

Finally, let ρtg denote the half sum of the positive roots. Then ρtg(h) = ρg(h)
(resp. = ρa(h) + 1

2 (n−m+ 1)) for h ∈ htg with g = c, d (resp. g = a).

§2.3. Combinatorial descriptions of Weyl groups

In this section, we present combinatorial descriptions of certain aspects of infinite
Weyl groups Wg (cf. [BB]). Recall that Z∗ := Z \ {0}.

Define φg ∈ h∗g by

φg =


−
∑
i≤0

εi if g = a,

∑
i∈N

εi if g = c, d.



Super Duality and Homology of Modules 51

Every λ ∈ h∗g can be uniquely represented by
∑
i∈Ig

ξiεi + qϑg with ξi, q ∈ C. For
g = c, d and i ∈ N, we define ε−i = −εi. It is easy to see by computing the action
of σi that the action of Wg on h∗g is given by

σ
(∑
i∈Z

ξiεi + qϑa

)
=
∑
i≤0

(ξi + q)εσ̃(i) +
∑
i>0

ξiεσ̃(i) + qφa + qϑa if g = a;

(2.3)

σ
(∑
i∈N

ξiεi + qϑg

)
=
∑
i∈N

(ξi − q〈ϑg,K〉)εσ̃(i) + q〈ϑg,K〉φg + qϑg if g = c, d,

(2.4)

where σ̃ is a permutation of Z (i.e. σ̃ is a bijection on Z satisfying σ̃(j) = j for
|j| � 0) for g = a and σ̃ is a signed permutation of Z∗ (i.e. σ̃ is a bijection on Z∗

satisfying σ̃(j) = j for |j| � 0 and σ̃(−i) = −σ̃(i) for i ∈ Z∗) for g = c, d. Therefore
σ 7→ σ̃ is a representation on Z and Z∗ for g = a and g = c, d, respectively.
Moreover, these are faithful representations. It is clear that the image of Wa in
Aut(Z) is the set of permutations of Z and the image of Wc (resp. Wd) in Aut(Z∗)
is the set of signed (resp. even signed) permutations of Z∗. A signed permutation σ̃
of Z∗ is called even if |{i ∈ N | σ̃(i) < 0}| is an even number. We shall identify Wg

with the image of Wg in Aut(Z) (resp. Aut(Z∗)) in the case g = a (resp. c, d) for
the rest of the paper. Note that for i ∈ Z, σ̃i(i) = i+ 1, σ̃i(i+ 1) = i and σ̃i(j) = j

for all j 6= i, i + 1. Also for g = c, d and i ∈ N, σ̃i(i) = i + 1, σ̃i(i + 1) = i and
σ̃i(j) = j for all j 6= i, i + 1 while σ̃0(1) = −1 (resp. −2), σ̃0(2) = 2 (resp. −1),
and σ̃0(j) = j for all j ≥ 3 for g = c (resp. d). We shall use these representations
in the rest of the paper and we shall simply write σ(j) instead of σ̃(j).

Recall that `g denotes the length function on Wg, and W 0
g the set of minimal

length left coset representatives of Wg/Wg,0. We have

(2.5) W 0
g =

{
{σ ∈Wa | σ(i) < σ(j) for i < j ≤ 0 and 0 < i < j} if g = a,

{σ ∈Wg | σ(i) < σ(j) for 1 ≤ i < j} if g = c, d

(see e.g. [BB, Lemma 2.4.7 and Propositions 8.1.4 and 8.2.4]) and for σ ∈W 0
g ,

`g(σ) =


|{(i, j) ∈ Z× Z | i < j, σ(i) > σ(j)}| if g = a,

|{(i, j) ∈ N× N | i ≤ j, σ(−i) > σ(j)}| if g = c,

|{(i, j) ∈ N× N | i < j, σ(−i) > σ(j)}| if g = d

(2.6)

(see e.g. [BB, Corollaries 1.5.2, 8.1.1 and 8.2.1]).
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Lemma 2.2. For σ ∈ W 0
c with σ(i) < 0 for i ≤ j, and σ(i) > 0 for i > j, define

σ ∈W 0
d by

σ(i) =


σ(i)− 1 if i ≤ j,
1 if i = j + 1and j is even,

−1 if i = j + 1and j is odd,

σ(i− 1) + 1 if i ≥ j + 2.

For each k ≥ 0, the map from W 0
c,k to W 0

d,k sending σ to σ is a bijection.

Proof. By (2.5), it is a bijection from W 0
c to W 0

d . By (2.6), we have `c(σ) = `d(σ)
for σ ∈W 0

c . The lemma follows.

Let {ξi}i∈N be a sequence of real numbers. Define ξ−i := −ξi for i ∈ N. For
any strictly decreasing sequence {ξi}i∈N of negative real numbers and σ ∈ W 0

g

with g = c, d, it is easy to see that {ξσ(i)}i∈N is strictly decreasing. The following
lemma follows from the definition of σ.

Lemma 2.3. Let {ξi}i∈N be a strictly decreasing sequence of negative real num-
bers. Define ξi+1 = ξi for i ∈ N and ξ1 = 0. Then for all σ ∈W 0

c , we have

{ξσ(i) | i ∈ N} ∪ {0} = {ξσ(i) | i ∈ N},

where σ is defined in Lemma 2.2.

§2.4. Unitarizable highest weight modules

Recall that g stands for a, c, d, and a = a, c = d and d = c. In this subsection we
classify the highest weights of irreducible unitarizable quasi-finite highest weight
g∞-modules with respect to the anti-linear anti-involution ω defined below.

For a partition λ = (λ1, λ2, . . . ), the transpose partition of λ is denoted by
λ′ = (λ′1, λ

′
2, . . . ). For g = c, d, a partition λ and d ∈ C, define

(2.7) Λg(λ, d) :=
∑
i∈N

λ′iεi + dϑg ∈ h∗g, Λ
g
(λ, d) =

∑
i∈N

λiεi −
d〈ϑg,K〉
〈ϑg,K〉

ϑg ∈ h∗g.

Let D(g) denote the set of pairs (λ, d) with d ∈ Z+ satisfying λ′1 ≤ d if g = c,
and λ′1 + λ′2 ≤ d if g = d. For a pair λ = (λ−, λ+) of partitions and d ∈ C, define
Λa(λ, d),Λ

a
(λ, d) ∈ h∗a by

Λa(λ, d) =−
∑
i∈Z+

(λ−)′i+1ε−i +
∑
i∈N

(λ+)′iεi + dϑa,

Λ
a
(λ, d) =−

∑
i∈Z+

λ−i+1ε−i +
∑
i∈N

λ+
i εi − dϑa.

Let D(a) denote the set of pairs (λ, d) satisfying d ∈ Z+ and (λ−)′1 + (λ+)′1 ≤ d.
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Let k be a Lie algebra equipped with an anti-linear anti-involution ω, and
let V be a k-module. A Hermitian form 〈 · | · 〉 on V is said to be contravariant
if 〈av|v′〉 = 〈v|ω(a)v′〉 for all a ∈ k, v, v′ ∈ V . A k-module equipped with a
positive definite contravariant Hermitian form is called unitarizable. Assume that
k =

⊕
j∈Z kj (possibly dim kj = ∞) is a Z-graded Lie algebra and k0 is abelian.

A graded k-module M =
⊕

j∈Z Mj is called quasi-finite if dimMj < ∞ for all
j ∈ Z [KR].

Remark 2.4. Let V be a highest weight g∞-module with highest weight ξ. Using
the arguments as in [LZ, Section 4], we find that V is quasi-finite if and only if
ξ satisfies ξ(Eii) = 0 (resp. ξ(Ẽii) = 0) for |i| � 0 (resp. i � 0) for g = a (resp.
c, d). Therefore every quasi-finite integrable highest weight g∞-module is of the
form L(g∞,Λg(λ, d)) for some (λ, d) ∈ D(g).

Now we consider the anti-linear anti-involution ω on a∞ defined by

ω(Eij) =

{
Eji if i, j ≤ 0 or i, j > 0,

−Eji if i > 0, j ≤ 0 or i ≤ 0, j > 0,
and ω(K) = K.

For g = c, d, the restriction of the anti-linear anti-involution ω on a∞ to g∞ gives
an anti-linear anti-involution on g∞, which will also be denoted by ω.

For d ∈ C and a pair λ = (λ−, λ+) of partitions with λ+
n+1 = λ−m+1 = 0, let

Γta(λ, d) be the element in h∗ta determined by

Γta(λ, d) =
m∑
i=1

(−d− λ−i )ε−i+1 +
n∑
i=1

λ+
i εi.

For d ∈ C and a partition λ satisfying λn+1 = 0, let Γtg(λ, d) be the element in h∗tg
determined by

Γtg(λ, d) =



n∑
i=1

(λi + d/2)εi for g = c,

n∑
i=1

(λi + d)εi for g = d.

Let Dt(g) denote the subset of D(g) consisting of all elements (λ, d) satisfying
λn+1 = 0 for g = c, d (resp. λ+

n+1 = 0 and λ−m+1 = 0 for g = a).
Now we introduce the truncation functors [CLW, Section 3.4]. Let M =⊕

βMβ be a semisimple hg-module such that Mβ is the weight space of M with
weight β. The truncation functor trth is defined by sending M to

⊕
νMν , summed

over
∑n
i=1−m Cεi + Cϑg (resp.

∑n
i=1 Cεi + Cϑg) for g = a (resp. c, d). For (λ, d) ∈
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D(g), L(g∞,Λ
g
(λ, d)) is a tg-module through the embedding ι̊g defined in Sec-

tion 2.2. Then trth(L(g∞,Λ
g
(λ, d))) is an irreducible tg-module and

(2.8) trth(L(g∞,Λ
g
(λ, d))) = L(tg,Γtg(λ, d))

for any partition λ with λn+1 = 0 and g = c, d [CLW, Lemma 3.2]. The same result
is also true for g = a and pair λ = (λ−, λ+) of partitions with λ+

n+1 = λ−m+1 = 0
by using the same arguments as in [CLW]. The anti-linear anti-involution ω on g∞
induces an anti-linear anti-involution on tg, which will also be denoted by ω.

By a cumbersome but straightforward calculation the following theorem is a
reformulation, in terms of partitions, of Theorem 2.4 and some of the results of
Sections 7–9 in [EHW].

Theorem 2.5. For g = a, c, d, let ξ ∈ h∗tg.

(i) L(ta, ξ) is unitarizable with respect to ω if and only if ξ = Γta(λ, d) +
k
∑n
i=−m+1 εi for some pair λ = (λ+, λ−) of partitions with λ−m = λ+

n = 0
and d, k ∈ R satisfying d ≥ min{(λ−)′1 + n− 1, (λ+)′1 +m− 1}, or d ∈ Z and
d ≥ (λ−)′1 + (λ+)′1. Moreover, N(ta,Γta(λ, d) + k

∑n
i=−m+1 εi) is irreducible

for any pair λ = (λ+, λ−) of partitions with λ−m = λ+
n = 0 and d, k ∈ R

satisfying d > min{(λ−)′1 + n− 1, (λ+)′1 +m− 1}.
(ii) L(td, ξ) is unitarizable with respect to ω if and only if ξ = Γtd(λ, d) for some

partition λ with λn = 0 and d ∈ R satisfying d ≥ n − 1 + λ′2, or d ∈ Z and
d ≥ λ′1 + λ′2. Moreover, N(td,Γtd(λ, d)) is irreducible for every partition λ

with λn = 0 and d > n− 1 + λ′2.

(iii) Assume that ξ ∈ h∗tc with ξ(Ẽn−1) = ξ(Ẽn). Then L(tc, ξ) is unitarizable with
respect to ω if and only if ξ = Γtc(λ, d) for some partition λ with λn−1 = λn =
0 and d ∈ R satisfying d ≥ 1

2 (λ′1+n)−1 if n−λ′1 is even; d ≥ 1
2 (λ′1+n−1)−1 if

n−λ′1 is odd, or d ∈ Z and d ≥ λ′1. Moreover, N(tc,Γtc(λ, d)) is irreducible for
every partition λ with λn−1 = λn = 0 and d ∈ R satisfying d > 1

2 (λ′1 + n)− 1
if n− λ′1 is even, and d > 1

2 (λ′1 + n− 1)− 1 if n− λ′1 is odd.

Proposition 2.6. For g = a, c, d, let L(g∞, ξ) be an irreducible quasi-finite high-
est weight g∞-module with highest weight ξ. Then L(g∞, ξ) is unitarizable with
respect to the anti-linear anti-involution ω if and only if ξ = Λ

g
(λ, d) for some

(λ, d) ∈ D(g).

Remark 2.7. The modules described in the proposition are modules appearing
in the Howe dualities at negative levels described in [W] (cf. [LZ, Theorem 5.6,
5.8, 5.9]).
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Proof of Proposition 2.6. If L(g∞, ξ) is unitarizable, then by Remark 2.4, ξ satisfies
ξ(Eii) = 0 (resp. ξ(Ẽii) = 0) for |i| � 0 (resp. i� 0) for g = a (resp. c, d). It is easy
to see that d ∈ R and ξ(Ẽii)− ξ(Ẽi+1,i+1) ∈ Z+ (resp. ξ(Eii)− ξ(Ei+1,i+1) ∈ Z+)
for all i (resp. i 6= 0) for g = c, d (resp. a). This implies ξ = Λ

g
(λ, d) for some

partition λ (resp. pair λ = (λ+, λ−) of partitions) and d ∈ R for g = c, d (resp. a).
Now applying the truncation functor to L(g∞, ξ) with n � d (resp. m,n � d)
for g = c, d (resp. a), trth(L(g∞, ξ)) is a unitarizable tg-module with respect to ω.
By Theorem 2.5 and (2.8), we have d ∈ Z and (λ, d) ∈ Dt(g). Hence ξ = Λ

g
(λ, d)

for some (λ, d) ∈ D(g). Conversely, by Remark 2.7 the irreducible highest weight
g∞-modules L(g∞,Λ

g
(λ, d)) are unitarizable and quasi-finite.

§3. Numerical data of the highest weights

In this section, we shall provide combinatorial descriptions of Λ
g
(λ, d) in terms

of Λg(λ, d).

Definition 3.1. Let {ai}i∈N and {bi}i∈N be two strictly decreasing sequences of
integers (resp. half integers). They are said to form a dual pair if Z (resp. 1/2 + Z)
is the disjoint union of the sequences {ai}i∈N and {−bi}i∈N.

Define the function ρ on N by ρ(i) = −i for all i ∈ N. The following lemma is
well known (see e.g. [M, (1.7)]).

Lemma 3.2. For any partition λ, the sequences

{λi + ρ(i)}i∈N and {λ′i + ρ(i)+}i∈N

form a dual pair.

Recall that φg =
∑
i∈N εi for g = c, d.

Lemma 3.3. For g = c, d and (λ, d) ∈ D(g), let {ζi}i∈N and {ζi}i∈N be two
sequences determined by

Λg(λ, d) + ρg − d〈ϑg,K〉φg =
∑
i∈Ig

ζiεi + dϑg,

Λ
g
(λ, d) + ρg + d〈ϑg,K〉φg =

∑
i∈Ig

ζiεi −
d〈ϑg,K〉
〈ϑg,K〉

ϑg.

Then {ζi}i∈N and {ζi}i∈N form a dual pair. Moreover, ζi < 0 for i ∈ N and g 6= d.
In the case g = d, ζi < 0 for i ≥ 2, and ζ1 < 0 (resp. = 0 and > 0) for λ′1 < d/2
(resp. = d/2 and > d/2).
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Proof. By Lemma 3.2, {ζi}i∈N and {ζi}i∈N form a dual pair. It is clear that ζi < 0
for i ∈ N and g = c. For g = d, we have λ′2 ≤ d/2 and hence ζi < 0 for i ≥ 2. Also,
ζ1 = λ′1 − d/2 < 0 (resp. = 0 and > 0) for λ′1 < d/2 (resp. = d/2 and > d/2).

Lemma 3.4. For g = c, d and (λ, d) ∈ D(g), let {ζi}i∈N and {ζi}i∈N be the se-
quences defined in Lemma 3.3. Define N(λ, d) = {(i, j) ∈ N × N | ζi + ζj = 0,
i, j ∈ N}, J = {j ∈ N | (j, k) /∈ N(λ, d), ∀k ∈ N}, S = {ζi | i ≥ 1} and
S = {ζi | i ∈ J}.

(i) For g = c, we have S = S and ζd+1 = 0.

(ii) For g = d, we have

S = S and ζi 6= 0 6= ζi for all i if d is odd;

S ∪ {0} = S and ζ1 = 0 if d is even and λ′1 = d/2;

S = S and ζi = 0 for some i if d is even and λ′1 6= d/2.

Proof. We shall only prove the case g = d. The proofs of the other cases are similar
and easier. For j ≥ 2, we have ζ1 + ζj ≤ λ′1 + λ′2 − d − j + 1 ≤ −1 and hence
ζ1 6= −ζj for j ≥ 2. Since {ζi}i∈N and {ζi}i∈N form a dual pair, ζ1 6= ±ζj for j ≥ 2
and ζi are negative for i ≥ 2, we have ζi ∈ S for i ≥ 2, and ζ1 ∈ S for ζ1 6= 0. This
implies S ⊇ S \ {0}. For x ∈ S, we have −x /∈ S and hence −x ∈ −S. Therefore
S = S \ {0}. By Lemma 3.2, S (resp. S) contains 0 if and only if d is even and
λ′1 = d/2 (resp. λ′1 6= d/2).

Recall that φa = −
∑
i≤0 εi.

Lemma 3.5. For (λ, d) ∈ D(a), let {ζi}i∈Z and {ζi}i∈Z be two sequences deter-
mined by

Λa(λ, d) + ρa − dφa =
∑
i∈Z

(ζi − 1)εi + dϑa,

Λ
a
(λ, d) + ρa + dφa =

∑
i∈Z

ζiεi − dϑa.

Define N(λ, d) = {(i, j) ∈ Ia × Ia | ζi = ζj , i ≤ 0 < j}, J+ = {j ∈ N | (i, j) /∈
N(λ, d),∀i ≤ 0}, J− = {i ∈ Z | (i, j) /∈ N(λ, d),∀j ∈ N}, S+ = {ζi | i ≥ 1},
S− = {ζi | i ≤ 0}, S+ = {ζi | i ∈ J+} and S− = {ζi | i ∈ J−}. Then S+ = −S−
and S− = −S+.

Proof. Let B+ = {ζi | i ∈ N} and B− = {ζi | i ≤ 0}. By Lemma 3.2, we have

(−S+) t B+ = Z and (−S−) t B− = Z.
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For x ∈ S+, we have x /∈ B− by the definition of S+ and hence x ∈ −S−.
Therefore S+ ⊆ −S−. Now assume x ∈ −S−. We have x /∈ B−. Since {ζi}i∈Z is
strictly increasing, we have x /∈ −S+ and hence x ∈ B+. Thus x ∈ B+ \ B− = S+

and therefore −S− ⊆ S+. Similarly, −S+ = S−.

We shall use the notation defined in Lemmas 3.4 and 3.5 in the rest of the
paper. By (2.3) and Lemma 3.5, we have (for (λ, d) ∈ D(a), σ ∈Wa)

σ−1(Λa(λ, d) + ρa) =
∑
i∈Z

(ζi − 1)εσ−1(i) + dφa + dϑa(3.1)

=
∑
i∈Z

ζσ(i)εi −
∑
i∈Z

εi + dφa + dϑa.

By Lemma 3.4 and (2.4), we have (for (λ, d) ∈ D(g), σ ∈Wg and g = c, d)

(3.2) σ−1(Λg(λ, d) + ρg) =
∑
i∈N

ζσ(i)εi + d〈ϑg,K〉φg + dϑg + dϑg.

For η belonging to the subspace of h∗g spanned by the εjs and ϑg, let [η]+

denote the unique ∆+
g,c-dominant element in theWg,0-orbit of η ∈ h∗g. The following

two propositions are important for proving the main theorem in the next section.

Proposition 3.6. Let {ji}i∈N be the strictly increasing sequence with J = {ji |
i ∈ N}. For (λ, d) ∈ D(g) with g = c, d and a partition µ with Λg(µ, d) = σ−1 ◦
Λg(λ, d) for some σ ∈W 0

g,k, we have

Λ
g
(µ, d) + ρg + d〈ϑg,K〉φg

=



[ ∑
i∈N\J

ζiεi +
∑
i∈N

ζjσ(i)
εji −

d〈ϑg,K〉
〈ϑg,K〉

ϑg

]+

if 0 /∈ S,

[ ∑
i∈N\J

ζiεi +
∑
i∈N

ζjσ0(i)
εji −

d〈ϑg,K〉
〈ϑg,K〉

ϑg

]+

if 0 ∈ S.

Here σ0 appears only in the case g = d and it is determined by σ0 = σ (see
Lemmas 2.2 and 2.3).

Proof. In the proof, t means disjoint union. Let {ξi}i∈N and {ξi}i∈N be two se-
quences determined by

Λg(µ, d) + ρg − d〈ϑg,K〉φg =
∑
i∈Ig

ξiεi + dϑg,

Λ
g
(µ, d) + ρg + d〈ϑg,K〉φg =

∑
i∈Ig

ξiεi −
d〈ϑg,K〉
〈ϑg,K〉

ϑg.
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Assume 0 /∈ S. We have {ζji}i∈N = {ζi}i∈N by Lemma 3.4. By Lemma 3.3, Lem-
ma 3.4, and the fact that σ acts on Z∗ as a signed permutation, we have

{−ζσ(i) | i ∈ N} t {ζjσ(i)
| i ∈ N} t {ζi | i ∈ N \ J} = Z (or 1/2 + Z).

Since {ξi}i∈N and {ξi}i∈N form a dual pair, and {ξi | i ∈ N} = {ζσ(i) | i ∈ N} by
(3.2), we have {ξi | i ∈ N} = {ζjσ(i)

| i ∈ N} t {ζi | i ∈ N \ J}. Therefore the
proposition holds for this case since {ξi}i∈N is a decreasing sequence.

The case of 0 ∈ S only occurs when g = d with ζ1 = 0. We have {ζji | i ∈ N}
= {ζi | i ∈ N} \ {0}. Since σ acts on Z∗ as a signed permutation, by Lemma 2.3
we have

{−ζσ(i) | i ∈ N} t {ζjσ0(i)
| i ∈ N} t {ζi | i ∈ N \ J} = Z.

Now the proposition also follows in this case using the arguments above.

Proposition 3.7. Let {ji}i∈Z be the strictly decreasing sequence such that J+ =
{ji | i ≤ 0} and J− = {ji | i ∈ N}, and let J = J− t J+. For (λ, d) ∈ D(a) and a
partition µ with Λa(µ, d) = σ−1 ◦ Λa(λ, d) for some σ ∈W 0

a,k, we have

Λ
a
(µ, d) + ρa + dφa =

[ ∑
i∈Z\J

ζiεi +
∑
i∈Z

ζjσ(i)
εji − dϑa

]+
.

Proof. In the proof, t means disjoint union. Let {ξi}i∈Z and {ξi}i∈Z be two se-
quences determined by

Λa(µ, d) + ρa +
∑
i∈Z

εi − dφa =
∑
i∈Z

ξiεi + dϑa,

Λ
a
(µ, d) + ρa + dφa =

∑
i∈Z

ξiεi − dϑa.

By Lemma 3.5, we have

Z = (−S+) t (S+) t {ζi | i ∈ N \ J+} = (−S+) t (−S−) t {ζi | i ∈ N \ J+}.

Therefore Z = {−ζσ(i) | i ∈ Z}t {ζi | i ∈ N \J+} because σ acts as a permutation
on Z. Since ξi = ζσ(i) for i ∈ Z by (3.1) and ζσ(i) = −ζjσ(i)

for i ∈ Z by Lemma 3.5,
we have

Z = {−ζσ(i) | i ∈ N} t {−ζσ(i) | i ≤ 0} t {ζi | i ∈ N \ J+}
= {−ξi | i ∈ N} t {ζjσ(i)

| i ≤ 0} t {ζi | i ∈ N \ J+}.

Since {ξi}i∈N and {ξi}i∈N form a dual pair, we have {ξi | i ∈ N} = {ζjσ(i)
| i ≤ 0}

t {ζi | i ∈ N \ J+}. Similarly, {ξi | i ≤ 0} = {ζjσ(i)
| i ∈ N} t {ζi | i ∈
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(−Z+)\J−}. Therefore the proposition holds since {ξi}i∈N is a decreasing sequence
and {ξ−i}i∈Z+ is an increasing sequence.

§4. u−g -homology formulas for g∞-modules

In this section we give a combinatorial proof of Enright’s u−g -homology formula
[E] for the unitarizable highest weight g∞-modules with highest weight Λ

g
(λ, d).

For a module V over a Lie algebra G, let Hk(G;V ) denote k-th homology group
of G with coefficients in V . It is well known that the homology groups Hk(u−g ;V ) are
lg-modules. The u−g -homology of unitarizable highest weight modules is described
by the following theorem which was obtained in [CK, Theorem 7.2] for g∞ = a∞
and in [CKW, Theorem 6.5] for g∞ = c∞, d∞. The theorem holds for a more
general situation by using the correspondence of homology groups in the sense of
super duality [CLW, Theorem 4.10] together with Kostant’s formulas for integrable
g∞-modules (cf. [J, Ko, V, CK]).

Theorem 4.1. For (λ, d) ∈ D(g) with g = c, d (resp. g = a), we have, as lg-
modules,

Hk

(
u−g ;L(g∞,Λ

g
(λ, d))

) ∼= ⊕
µ

L(lg ,Λ
g
(µ, d)),

where the sum is over all partitions (resp. pairs of partitions) µ such that Λg(µ, d)
= w−1 ◦ Λg(λ, d) for some w ∈W 0

g,k.

For ξ belonging to the subspace of h∗g spanned by the εjs and ϑg, let Ψ(ξ) =
{α ∈ ∆+

g,n | (ξ + ρg | α) = 0} and define Φ(ξ) to be the subset of ∆+
g,n consisting

of all roots β satisfying the following conditions [E, DES]:

(i) 〈ξ + ρg, β
∨〉 ∈ N;

(ii) (β | α) = 0 for all α ∈ Ψ(ξ);

(iii) β is short if Ψ(ξ) contains a long root.

Let Wg(ξ) be the subgroup of Wg that is generated by the reflections sβ with
β ∈ Φ(ξ). Define ∆g(ξ) to be the subset of ∆g consisting of the roots ϑ ∈ ∆g such
that sϑ lies in Wg(ξ).

For (λ, d) ∈ D(g), let ∆g(λ, d) = ∆g(Λ
g
(λ, d)) and Wg(λ, d) = Wg(Λ

g
(λ, d)).

Then ∆g(λ, d) is an abstract root system and Wg(λ, d) is the Weyl group of
∆g(λ, d) [E, EHW] (see also Lemma 4.2 below). Let ∆+

g (λ, d) = ∆g(λ, d) ∩ ∆+
g

be the set of positive roots of ∆g(λ, d). Set Wg,0(λ, d) = Wg(λ, d) ∩ Wg,0. Let
W 0

g (λ, d) denote the set of minimal length representatives of the left coset space
Wg(λ, d)/Wg,0(λ, d) and let W 0

g,k(λ, d) be the subset of W 0
g (λ, d) consisting of all

elements σ with `(λ,d)(σ) = k, where `(λ,d) is the length function on Wg(λ, d).
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For (λ, d) ∈ D(g), let J0 = J t {j | ζj = 0} for g = c, d and define

Υ(λ, d)

=


{εi − εj ∈ ∆+

g | i ∈ J−, j ∈ J+} for g = a;

{−εi − εj ∈ ∆+
g | i < j, i, j ∈ J0} for g = c;

{−εi − εj ∈ ∆+
g | i < j, i, j ∈ J} if J0 6= J or d/2 /∈ Z, for g = d;

{−εi − εj ,−2εi ∈ ∆+
g | i < j, i, j ∈ J} if J0 = J and d/2 ∈ Z, for g = d.

Lemma 4.2. For (λ, d) ∈ D(g), we have

∆g(λ, d)

=


{εi − εj ∈ ∆g | i 6= j, i, j ∈ J− t J+} for g = a;

{±(±εi − εj) ∈ ∆g | i < j, i, j ∈ J0} for g = c;

{±(±εi − εj) ∈ ∆g | i < j, i, j ∈ J} if J0 6= J or d/2 /∈ Z, for g = d;

{±(±εi − εj),±2εi ∈ ∆g | i < j, i, j ∈ J} if J0 = J and d/2 ∈ Z, for g = d.

Proof. For (λ, d) ∈ D(g), we have Φ(Λ
g
(λ, d)) ⊆ Υ(λ, d) by Lemmas 3.4 and 3.5.

Using the relations of the Weyl groups, it is easy to observe that Υ(λ, d) ⊆ ∆g(λ, d).
Now the lemma follows by using the relations of the Weyl groups again.

Lemma 4.3. For (λ, d) ∈ D(g), there is a bijection from W 0
g,k to W 0

g,k(λ, d).

Proof. By Lemma 4.2, it is clear that W 0
g,k = W 0

g,k(λ, d) for the cases g = a and
g = d with J0 6= J or d/2 /∈ Z. For g = c and g = d with J0 = J and d/2 ∈ Z, the
conclusion follows from Lemmas 4.2 and 2.2.

Using Theorem 4.1, Proposition 3.6, Proposition 3.7, Lemma 4.3 and Lem-
ma 2.3 together with (2.3) and (2.4), we obtain the following theorem.

Theorem 4.4. For (λ, d) ∈ D(g) and k ∈ Z+, we have, as lg-modules,

Hk

(
u−g ;L(g∞,Λ

g
(λ, d))

) ∼= ⊕
w∈W 0

g,k
(λ,d)

L
(
lg , [w−1(Λ

g
(λ, d) + ρg)]+ − ρg

)
.

Remark 4.5. There is a counterpart of Theorem 4.11 of [CLW] for u+-cohomol-
ogy in the sense of [Liu, Section 4]. The analogous statement is also true for g = a.
The formulas for u+-cohomology can be proved by the same argument as in [CLW].
Therefore, there is an analogue of Theorem 4.4 for u+

g -cohomology in the sense of
[Liu]. The formulas for cohomology can be proved by the same argument as above.
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§5. Homology formulas for unitarizable modules over
finite-dimensional Lie algebras

In this section we shall give a new proof of Enright’s homology formulas for uni-
tarizable modules over classical Lie algebras corresponding to the three Hermitian
symmetric pairs of classical types, (SU(p, q), SU(p)×SU(q)), (Sp(n,R), U(n)) and
(SO∗(2n), U(n)).

For ξ belonging to h∗tg, let Ψ(ξ) = {α ∈ ∆+
tg,n | (ξ + ρtg | α) = 0} and define

Φ(ξ) to be the subset of ∆+
tg,n consisting of the roots β satisfying the following

conditions [E, DES]:

(i) 〈ξ + ρtg, β
∨〉 ∈ N;

(ii) (β|α) = 0 for all α ∈ Ψ(ξ);

(iii) β is short if Ψ(ξ) contains a long root.

Let Wtg(ξ) be the subgroup of Wtg that is generated by the reflections sβ with
β ∈ Φ(ξ). Associated to Wtg(ξ), let ∆tg(ξ) denote the subset of ∆tg consisting
of the roots ϑ such that sϑ lies in Wtg(ξ). We also let [ξ]+ be the unique ∆+

tg,c-
dominant element in the Wtg,0-orbit of ξ.

Assume that the irreducible module L(tg, ξ) is unitarizable with highest
weight ξ ∈ h∗tg. Then ∆tg(ξ) is an abstract root system and Wtg(ξ) is the Weyl
group of ∆tg(ξ) by [E, EHW]. Let ∆+

tg(ξ) = ∆tg(ξ) ∩ ∆+
tg be the set of positive

roots of ∆tg(ξ). Set Wtg,0(ξ) = Wtg(ξ)∩Wtg,0. Let W 0
tg(ξ) denote the set of mini-

mal length representatives of the left coset space Wtg(ξ)/Wtg,0(ξ) and let W 0
tg,k(ξ)

be the subset of W 0
tg(ξ) consisting of all elements σ with `ξ(σ) = k, where `ξ is

the length function on Wtg(ξ).

Theorem 5.1. For g = a, c or d, let L(tg, ξ) be a unitarizable tg-module with
highest weight ξ ∈ h∗tg. Assume that ξ satisfies the assumption of case (iii) of
Theorem 2.5 (cf. case (ii) of [EHW, Theorem 9.4]) for tg ∼= so(2n). For k ∈ Z+,
we have, as ltg-modules,

Hk(u−tg;L(tg, ξ)) ∼=
⊕

w∈W 0
tg,k

(ξ)

L(ltg , [w−1(ξ + ρtg)]+ − ρtg).

Proof. Since

Hi

(
u−ta;L

(
ta, µ+ k

n∑
i=−m+1

εi

))
= Hi(u−ta;L(ta, µ))⊗ L

(
lta, k

n∑
i=−m+1

εi

)
for all i ≥ 0, k ∈ C and µ ∈ h∗ta, it is sufficient to consider all ξ with k = 0
appearing in case (i) of Theorem 2.5 when g = a.
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First we assume that ξ = Γtg(λ, d) with d /∈ Z. Then we have ∆tg(ξ) = ∅ and
L(tg, ξ) = N(tg, ξ) by Theorem 2.5. Therefore L(tg, ξ) is a free u−tg-module and
hence Hk

(
u−tg;L(tg, ξ)

)
= L(ltg , ξ) (resp. = 0) for k = 0 (resp. k > 0). Thus the

theorem holds for this case.
Now we assume that ξ = Γtg(λ, d) for some (λ, d) ∈ Dt(g). By a direct cal-

culation, we have ∆tg(ξ) = ∆g(λ, d) ∩ ∆tg. Recall that trth(L(g∞,Λ
g
(λ, d))) =

L(tg,Γtg(λ, d)) for (λ, d) ∈ Dt(g). Since trth(L(g∞,Λ
g
(λ, d))) = L(tg,Γtg(λ, d))

and homology commutes with the truncation functor, we have

Hk(u−tg;L(tg, ξ)) = trth(Hk(u−g ;L(g∞,Λ
g
(λ, d)))).

Note that Hk(u−g ;L(g∞,Λ
g
(λ, d))) with k ≥ 0 decomposes into the direct sum

of irreducible lg-modules of the form L(lg,Λ
g
(µ, d)) for some partition µ (resp.

pair µ = (µ−, µ+) of partitions) if g = c, d (resp. a) and trth(L(lg,Λ
g
(µ, d))) =

L(ltg,Γtg(µ, d)). Therefore, the theorem also holds in this case by Theorem 4.4.

Remark 5.2. By Remark 4.5, Enright’s cohomology formulas for unitarizable
modules over classical Lie algebras with highest weights satisfying the assumption
in the theorem above can be proved in the same manner as above.
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Math. 204, Birkhäuser Boston, Boston, MA, 2002. Zbl 1026.17030 MR 1923198

[LZ] N. Lam and R. B. Zhang, Quasi-finite modules for Lie superalgebras of infinite rank,
Trans. Amer. Math. Soc. 358 (2006), 403–439. Zbl 1105.17013 MR 2171240

[Liu] L. Liu, Kostant’s formula for Kac–Moody Lie algebras, J. Algebra 149 (1992), 155–178.
Zbl 0779.17024 MR 1165205

[M] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr.,
Clarendon Press, Oxford, 1995. Zbl 0824.05059 MR 1354144

[V] D. A. Vogan, Representation of real reductive Lie groups, Progr. Math. 15, Birkhäuser,
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