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Homotopical Presentations and Calculations of
Algebraic K0-Groups for Rings of

Continuous Functions

by

Hiroshi Kihara and Nobuyuki Oda

Abstract

Let K0(CF(X)) = K0 ◦CF(X) be the K0-group of the ring CF(X) of F-valued continuous
functions on a topological space X, where F is the field of real or complex numbers or the
quaternion algebra. It is known that the functor K0 ◦CF is representable on the category
of compact Hausdorff spaces. It is a homotopy functor which is not representable on the
category of topological spaces. With the use of the notion of a compactly-bounded ho-
motopy set, which is a variant of a homotopy set, the functor K0 ◦CF has a homotopical
presentation by means of the product of the ring of integers Z and the infinite Grass-
mannian G∞(F). This presentation makes it possible to calculate the groups K0(CF(X))
explicitly for some infinite-dimensional complexes X by using the results of H. Miller on
Sullivan’s conjecture.
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§1. Introduction and main results

Let F be R, C or H, the field of real or complex numbers or the quaternion algebra,
respectively. For a topological space X let CF(X) denote the ring of F-valued
continuous functions on X. In this paper we study a homotopical presentation of
K0(CF(X)) = K0 ◦ CF(X), the algebraic K0-group of CF(X), for any topological
space X and calculate the group K0(CF(X)) explicitly for a certain class of infinite-
dimensional complexes X, making use of Miller’s result on Sullivan conjecture [13].
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For compact Hausdorff spaces X, the Serre–Swan theorem (see Theorem A
in Section 2) enables us to identify the group K0(CF(X)) with the topological
K-group KF(X), which is represented by the product of the ring of integers Z
and the infinite Grassmannian G∞(F) (cf. Section 2.1). Thus we need a general-
ization of the Serre–Swan theorem to study the group KF(X) for any topological
space.

The Serre–Swan theorem was generalized to paracompact Hausdorff spaces X
by Goodearl [5, Theorem 1.1] and to any topological spaces X by Vaserstein [16,
Theorems 1 and 2]. We begin by adopting the following definition which seems
simpler than that of [16].

Definition 1.1. A vector bundle ξ over a topological space X is of finite type
if it is realized as a subbundle of the product bundle εN of sufficiently large
rank N .

The notion of vector bundle of finite type is necessary to generalize the Serre–
Swan theorem, since a vector bundle over a noncompact space X does not always
correspond to a finitely generated projective CF(X)-module as we see by Propo-
sition 1.2(ii) below. Making use of our definition above, the results of Vaserstein
are stated as follows:

Proposition 1.2. Let X, X ′, Y be any topological spaces.

(i) (Homotopy invariance) Let ξ be a vector bundle of finite type over Y . Then
the pull-back bundle f ]ξ is of finite type over X for any map f : X → Y . If
f, g : X → Y are homotopic maps, then the pull-back bundles f ]ξ and g]ξ are
isomorphic.

(ii) (Equivalence) The category of vector bundles of finite type over X is equiv-
alent to the category of finitely generated projective modules over CF(X) via
the global section functor.

(iii) (Functoriality) Let f : X → X ′ be a continuous map. Then under the equiva-
lence of (ii), the pull-back of vector bundles by f corresponds to the extension
of scalars ⊗CF(X′)CF(X) by the induced ring homomorphism f ] : CF(X ′) →
CF(X).

Assertion (i) of Proposition 1.2 shows the homotopy invariance of vector
bundles of finite type with respect to pull-backs; (ii) is a generalization of the
Serre–Swan theorem by Vaserstein [16, Theorem 1]; (iii) shows that the general-
ization of the Serre–Swan theorem is functorial with respect to spaces X. It follows
that the group K0(CF(X)) is determined by the category of vector bundles of finite
type over X and it is a homotopy invariant of X.
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In order to investigate K0(CF(X)) for general spaces X, in particular for
infinite-dimensional complexes X, a homotopical presentation of K0 ◦ CF on the
category of topological spaces is crucial. However, the functor K0 ◦ CF is not
representable (cf. Definition 3.1) on the category of topological spaces, as can
be seen from Examples 3.2 and 3.3 in Section 3; and these examples lead us to
introduce the notion of compactly-bounded homotopy sets:

Definition 1.3. LetX and Y be topological spaces. A continuous map f : X → Y

is called a compactly-bounded map or a CB-map if the image of f is contained in
a compact subset of Y . Compactly-bounded maps f, g : X → Y are said to be
CB-homotopic if there exists a compactly-bounded homotopy H : X × I → Y

between f and g. Since this relation, denoted by 'CB , is an equivalence relation;
the compactly-bounded homotopy set [X,Y ]CB is defined by

[X,Y ]CB = {compactly-bounded maps from X to Y }/'CB .

This set [X,Y ]CB coincides with the ordinary homotopy set [X,Y ] if X or Y

is compact. If A α−→ X
i−→ Cα

j−→ ΣA Σα−−→ ΣX → · · · is a cofiber sequence, then the
induced sequence of pointed compactly-bounded homotopy sets

· · · → [ΣX,Z]CB∗
(Σα)]−−−−→ [ΣA,Z]CB∗

j]−→ [Cα, Z]CB∗
i]−→ [X,Z]CB∗

α]−→ [A,Z]CB∗

is exact for any based space Z (Proposition 3.10).
Compactly-bounded homotopy sets enable us to present the Grothendieck

group K0(CF(X)) for any topological space X by the following theorem, which
generalizes the representation of the functor K0 ◦ CF on the category of compact
Hausdorff spaces (see Corollary C in Section 2). Let Z be the ring of integers and
G∞(F) the infinite Grassmannian.

Theorem 1.4. The functor K0 ◦ CF can be presented in the form

K0 ◦ CF (X) ∼= [X,Z×G∞(F)]CB

for any space X as a group-valued functor.

Note that topological spaces and compactly-bounded homotopy sets do not
form a category, since 1X is not always a CB-map. So it should be pointed out that
our presentation is not a representation in the terminology of category theory; we
use the term “presentation” and not “representation” in this paper. Nevertheless
Theorem 1.4 shows that the functor K0 ◦ CF depends only on the homotopy type
of Z×G∞(F). Using Theorem 1.4 we calculate the group K0(CF(X)) for a certain
class of infinite-dimensional complexes.
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Theorem 1.5. Assume that X is a connected CW -complex and the pointed map-
ping space map∗(X, Ŷ ) from X to the profinite completion Ŷ of any nilpotent finite
complex Y is weakly contractible. Then there exists a natural group isomorphism

K0(CF(ΣmX)) ∼= Z⊕
⊕
sl>1

Hsl−1(ΣmX; Ẑ/Z) for m > 0,

where Ẑ is the profinite completion of the integers Z, and s = 2 if F = C, while
s = 4 if F = R,H.

The Sullivan conjecture was solved in 1984 by H. Miller [13]. Miller’s result
has been generalized in several directions; assertions (i)–(iii) in Example 1.6 below
are due to Zabrodsky [18, 5.1 Lemma (a)], Friedlander–Mislin [3, (3.1) Theorem]
and McGibbon [12, Theorem 3], respectively. From their results we see that many
spaces X satisfy the condition in Theorem 1.5.

Example 1.6. Let S denote the class of connected CW -complexes X such that
map∗(X, Ŷ ) is weakly contractible for any nilpotent finite complex Y . Then the
following hold:

(i) S contains connected CW -complexes X whose fundamental group is locally
finite and πn(X) = 0 for n sufficiently large.

(ii) S contains classifying spaces BG of all Lie groups G with only a finite number
of path components.

(iii) S contains connected infinite loop spaces whose fundamental group is a torsion
group.

Remark 1.7. The explicit calculation in Theorem 1.5 presents a striking contrast
to the case of finite complexes. In particular we note the following aspects.

(i) K0(CF(A)) can be a very large group, of the cardinality of the real numbers,
since Ẑ/Z is a Q-module of that cardinality. If A is a finite complex, then
K0(CF(A)) is a finitely generated abelian group.

(ii) Any generator ξ (a vector bundle of finite type over X) of K0(CF(X)) for X
satisfying the condition in Theorem 1.5 should be called a phantom bundle,
as its restriction to any finite subcomplex is trivial. This is proved in the last
part of Section 5.

We prove Proposition 1.2 and Theorems 1.4 and 1.5 in Sections 2.2, 4 and 5,
respectively.
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§2. Vector bundles of finite type

§2.1. Vector bundles over compact Hausdorff spaces

For a ring A let K0(A) denote the algebraic K0-group of A, which is defined to be
the Grothendieck group of the abelian semigroup of isomorphism classes of finitely
generated projective (right) A-modules. The following Serre–Swan theorem (see
Swan [15, Theorems 1 and 2] or Berrick [1, p. 18]) enables us to identify K0(CF(X))
with the topological K-group of X for any compact Hausdorff space X.

Theorem A (The Serre–Swan theorem [15]). Let X be a compact Hausdorff space.
Then the category of vector bundles over X is equivalent to the category of finitely
generated projective modules over CF(X) via the global section functor.

We first recall the representation of the topological KF-group on the category
of compact Hausdorff spaces. Let Gn(FN ) denote the finite Grassmannian of n-
dimensional subspaces in FN , endowed with the standard CW -complex structure.
Moreover, the spaces Gn(F) and G∞(F) are defined by

Gn(F) = lim−→
N

Gn(FN ), G∞(F) = lim−→
n

Gn(F),

which also have the standard CW -complex structures. Then the product space Z×
G∞(F) has the standard H-group structure which corresponds to the Whitney sum
operation. Using the H-group structure, one can prove the following representation
theorem, where [X,Y ] denotes the unpointed homotopy set for unpointed spaces
X and Y . The reader is referred to Karoubi [9, 7.14 Theorem in Chapter I; 1.33
Theorem in Chapter II] for compact Hausdorff spaces or Husemoller [6, Section 4
in Chapter 8] for finite CW -complexes.

Theorem B. The topological KF-group is represented in the form

KF( ) ∼= [ ,Z×G∞(F)]

as a group-valued functor on the category of compact Hausdorff spaces.

Theorems A and B immediately imply the following representation of K0 ◦CF
on the category of compact Hausdorff spaces.

Corollary C. The functor K0 ◦ CF is represented in the form

K0 ◦ CF ( ) ∼= [ ,Z×G∞(F)]

as a group-valued functor on the category of compact Hausdorff spaces.
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§2.2. Vector bundles over arbitrary topological spaces

If X is a compact Hausdorff space, then by the Serre–Swan theorem there exists
an equivalence between the category of vector bundles over X and that of finitely
generated projective CF(X)-modules. To generalize the Serre–Swan theorem to
any topological space X, we have to consider vector bundles of finite type (Def-
inition 1.1), since not all vector bundles over X correspond to finitely generated
projective CF(X)-modules; for example, the canonical vector bundle γn over the
Grassmannian Gn(F) does not correspond to any finitely generated CF(Gn(F))-
module by Lemma 2.1. In this section we establish fundamental properties of vector
bundles of finite type and prove Proposition 1.2. We note that Husemoller called a
vector bundle ξ over a base spaceB of finite type if there exists a finite open covering
U1, . . . , Un of B such that ξ|Ui is trivial for 1 ≤ i ≤ n and considered them over
paracompact base spacesB (cf. [6, 5.7 Definition and 5.8 Proposition in Chapter 3]).

The fiber rank of an F-vector bundle over X defines a locally constant function
rkF : X → Z+, where Z+ is the nonnegative integers. Thus the subspace ofX where
the fiber rank of ξ is a given integer r is open and closed, which allows us to assume
that the fiber rank of ξ is constant in most cases; a vector bundle ξ of constant
rank n is often denoted by ξn.

In Lemma 2.1(vi) below, we consider numerable open coverings; three defini-
tions of such coverings are quoted in the last section and it is shown that they are
equivalent.

Lemma 2.1. For a vector bundle ξn over X, the following are equivalent :

(i) ξn is a vector bundle of finite type.

(ii) There is a bundle epimorphism ϕ̃ : εN → ξn from the product bundle of
sufficiently large rank N.

(iii) ξn has a complementary bundle.

(iv) There is a fiberwise-isomorphic bundle map f̃ : ξn → γnN for sufficiently large
N, where γnN is the canonical vector bundle over the Grassmannian Gn(FN ).

(v) (Vaserstein [16]) There exists a finite partition of unity {u1, . . . , uk} on X

such that the restriction of ξ to the set {x | ui(x) 6= 0} is trivial for each i.

(vi) ξn has a finite trivialization open cover {Ui} which is numerable (in the sense
of Husemoller [6]; cf. Section 6).

Proof. (i)⇒(ii). We regard ξn as a subbundle of εN for some N . We define a
metric on FN by

((ak), (bk)) =
N∑
k=1

ak · bk,
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which determines a fiberwise metric on εN = X × FN . Let ϕ̃ : εN → ξn be the
orthogonal projection onto ξn. Then ϕ̃ is a bundle epimorphism since the Gram–
Schmidt process ensures its continuity.

(ii)⇒(iii). Consider the exact sequence of vector bundles

O → Ker ϕ̃→ εN
eϕ→ ξn → O,

where Ker ϕ̃ is a bundle by [6, 8.2 Theorem in Chapter 3]. The orthogonal com-
plementary bundle of Ker ϕ̃ is isomorphic to ξn in view of the same theorem, that
is, Ker ϕ̃ is a complementary bundle of ξn.

(iii)⇒(iv). If ηN−n is a complementary bundle of ξn, then by definition we
have an isomorphism

ξn ⊕ ηN−n
∼=→ εN = X × FN .

It follows that the fiber of ξn at each point x ∈ X determines an n-dimensional
subspace of FN , or a point of Gn(FN ). Thus a (fiberwise-isomorphic) bundle map
f̃ : ξn → γnN over f : X → Gn(FN ) is defined by [6, 5.2 Theorem in Chapter 3].

(iv)⇒(v). Since Gn(FN ) is a compact Hausdorff space, γnN has a finite trivial-
ization open cover. Then there exists a finite partition of unity {u1, . . . , uk} on X
such that the restriction of ξ to the set {x | ui(x) 6= 0} is trivial for each i by
James [8, Proposition (7.31)]. This means that the covering is numerable in the
sense of [8, Definition (7.25)] (cf. Section 6).

(v)⇒(vi). By Proposition 6.1.
(vi)⇒(i). For the numerable trivialization cover {U1, . . . , Uk} of ξn, there is

a partition of unity {u1, . . . , uk} such that suppui ⊂ Ui. Fix a local trivialization

ξn|Ui
∼=→ Ui × Fn, υ 7→ (π(υ), τi(υ)),

for each i = 1, . . . , k, where π is the projection of ξn. Then we can define a bundle
map

ξn → εn = X × Fn, υ 7→ (π(υ), ui(π(υ))τi(υ)),

over X for each i = 1, . . . , k. Hence, combining them, we have a monomorphism

ξn → εkn = X × Fn ⊕ · · · ⊕ Fn.

Proof of Proposition 1.2(i). Since the pull-back of a product bundle is also a
product bundle, we obtain the first assertion. Now, ξ is a numerable vector bundle
over Y by Lemma 2.1(vi), and hence homotopy invariant by [6, 9.9 Theorem in
Chapter 4].

As already mentioned, Proposition 1.2(ii) is Theorem 1 of Vaserstein [16]. We
here give another proof:
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Proof of Proposition 1.2(ii). Let A and B denote the category of F-vector bundles
of finite type over X and the category of finitely generated projective CF(X)-
modules respectively. By Lemma 2.1, the global section functor Γ (X, ) : A → B is
well defined. Note that A and B are additive categories and Γ (X, ) is an additive
functor.

Let A′ and B′ be the full subcategories of trivial vector bundles of finite rank
over X and of finitely generated free CF(X)-modules respectively. Then it is easily
seen that Γ (X, ) restricts to an equivalence of A′ and B′.

First, we show that Γ (X, ) : A → B is full and faithful. Note that an additive
functor between additive categories preserves coproducts; and coproducts are also
products in an additive category ([10, Section 2 in Chapter VIII] or [7, Section 3
in Chapter I]). Then we have natural decompositions

Γ (X, ξ1 ⊕ ξ2) ∼= Γ (X, ξ1)⊕ Γ (X, ξ2),

HomA(ξ1 ⊕ ξ2, η1 ⊕ η2) ∼=
⊕
i,j

HomA(ξi, ηj),

HomB(M1 ⊕M2, R1 ⊕R2) ∼=
⊕
i,j

HomB(Mi, Rj).

Let ξ1 and ξ2 be objects of A. Then there exist objects ξ′1 and ξ′2 of A such that
ξi ⊕ ξ′i ∼= εNi for some Ni (i = 1, 2). Since Γ (X, ) : A′ → B′ is an equivalence of
categories,

Γ (X, ) : HomA(εN1 , εN2)→ HomB(CF(X)N1 , CF(X)N2)

is an isomorphism. Then the natural decompositions above imply that the functor

Γ (X, ) : HomA(ξ1, ξ2)→ HomB(Γ (X, ξ1), Γ (X, ξ2))

is an isomorphism.
Next, let M be a finitely generated projective CF(X)-module. Then there

exists M ′ such that M ⊕M ′ ∼= CF(X)N for some N . Consider a morphism P :

CF(X)N
proj.−−−→M

incl.−−−→ CF(X)N which is a projector, i.e. P 2 = P . Since Γ (X, ) :
A′ → B′ is an equivalence of categories, the corresponding projector P̃ : εN → εN

is determined. We consider the decomposition 1εN = P̃ + (1− P̃ ). By elementary
linear algebra, the decomposition

FN = Im P̃x ⊕ Im(1− P̃x)

holds in each fiber of εN . It is not difficult to see that Im P̃ and Im(1 − P̃ ) are
subbundles of εN . Therefore Im P̃ ∈ A and Γ (X, Im P̃ ) ∼= M , which completes the
proof.
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Proof of Proposition 1.2(iii). The assertion is clear for equivalences of the full
subcategory of product bundles X × FN and the full subcategory of free modules
CF(X)N . Since the pull-back f ] and the extension of scalars ⊗CF(X′)CF(X) are
also additive functors, they preserve direct sums. We remark that if F = H, then
for any right CF(X ′)-module M and the left CF(X ′)-module CF(X), we define
M ⊗CF(X′) CF(X), which is a right CF(X)-module.

§3. A variant of homotopy set

By Proposition 1.2 we see that the functor K0 ◦ CF is a homotopy functor on
the category of topological spaces. In this section we give examples which show
that K0 ◦ CF is not representable and study some fundamental properties of the
compactly-bounded homotopy set.

First we make the notion of representability precise. Note that we work in the
unpointed setting.

Definition 3.1. A homotopy (contravariant) functor F on the category of topo-
logical spaces is said to be representable if F is naturally isomorphic to a functor
of the form [ , Z].

The following examples show that the functor K0 ◦ CF is not representable.

Example 3.2. Let X be the set N of natural numbers with the discrete topology.
Then K0 ◦ CF(N) = {f ∈ map(N,Z) | f is bounded} by Proposition 1.2(ii), since
the vector bundle over N which corresponds to a finitely generated projective
CF(N)-module has a finite-dimensional vector space of dimension, say, f(n), over
each n ∈ N, and f(n) is bounded by the condition that the vector bundle is of
finite type. On the other hand, if K0 ◦ CF is representable, then

K0(CF(N)) = K0(CF(
∐
n∈N
{n})) =

∏
n∈N

K0(CF({n})) = map(N, Z).

This implies that K0◦CF is not representable on the category of topological spaces.

Example 3.3. Let X be the wedge
∨
n>0 P

n(C) of complex projective spaces. Let
αn ∈ K0(CC(Pn(C))) be the class of the canonical line bundle γ1

n. If K0 ◦ CC is
representable, then there exists a class α ∈ K0(CC(X)) whose restriction to Pn(C)
is αn for any n. Then α ∈ K0(CC(X)) can be expressed in the form α = ξ − η
for some vector bundles ξ and η of finite type by Proposition 1.2(ii) and the
definition of the Grothendieck group. Since η has a complementary vector bundle η′

(Lemma 2.1(iii)), we have
α = ξ + η′ − εm
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for some m. Hence Lemma 2.1(iv) implies (c1(α))N = 0 ∈ H2N (X; Z) for suffi-
ciently large N , where c1 denotes the first Chern class. On the other hand, the
restriction of (c1(α))N to Pn(C) is (c1(αn))N , which is nonzero in H2N (Pn(C); Z)
for n > N . It follows that K0 ◦ CC cannot be expressed in the form of [ , Z] for
any space Z, even on the category of connected CW -complexes.

The same argument applies to K0 ◦ CR using X=
∨
n>0 P

n(R) and the first
Stiefel–Whitney class; and to K0 ◦ CH using X=

∨
n>0 P

n(H) and the first sym-
plectic Pontryagin class.

We now prove some properties of the compactly-bounded homotopy set; some
of them are necessary for the homotopical presentation of K0 ◦ CF.

Let Toph be the homotopy category of Top, the category of small topological
spaces; and Set and Grp the categories of small sets and small groups, respectively
(see MacLane [10, p. 12]).

Lemma 3.4. The CB-homotopy set [ , ]CB defines a functor

Topop ×Top→ Set

which factors through Tophop ×Toph→ Set.

Proof. Note that the image of a compact set under a continuous map is compact.
This implies the assertion.

Lemma 3.5. If Y is an H-group, then

[ , Y ]CB : Topop → Set

has a canonical lifting to the category Grp.

Proof. Since the product of two compact sets is compact, there exists a natural
isomorphism

[X,Y1 × Y2]CB
∼= [X,Y1]CB × [X,Y2]CB .

This natural isomorphism and Lemma 3.4 imply the assertion.

Now, we have to introduce the notion of a pointed compactly-bounded homo-
topy set and establish its fundamental properties in order to calculate K0(CF(X))
in Section 5.

Definition 3.6. Let X and Y be pointed topological spaces. Then the pointed
compactly-bounded homotopy set [X,Y ]CB∗ is defined by

[X,Y ]CB∗ = {pointed compactly-bounded maps from X to Y }/'CB∗
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where 'CB∗ is the equivalence relation defined just as 'CB but using compactly-
bounded homotopies which preserve base-points.

Let Top∗ denote the category of small pointed topological spaces, Toph∗ its
homotopy category, and Set∗ the category of small pointed sets (see MacLane
[10, p. 12]). Then the analogues of Lemmas 3.4 and 3.5 hold. Further we have the
following result.

Lemma 3.7. If X is a co-H-group, then the functor

[X, ]CB∗ : Top∗ → Set∗

has a canonical lifting to the category Grp.

Proof. Since the union of two compact sets is compact, there exists a natural
isomorphism

[X1 ∨X2, Y ]CB∗ ∼= [X1, Y ]CB∗ × [X2, Y ]CB∗ .

This natural isomorphism and the analogue of Lemma 3.4 imply the assertion.

Proposition 3.8. If X is a co-H-group and Y is an H-group, then the group
structures on [X,Y ]CB∗ induced by X and Y coincide.

Proof. This follows by an argument similar to that in Whitehead [17, Theorem
5.21 in Chapter III].

The following proposition describes the relation of [X,Y ]CB∗ to [X,Y ]CB .

Proposition 3.9. Let X be a CW -complex and Y a path connected space.

(i) The set [X,Y ]CB∗ has a natural action of π1(Y ) and the natural map [X,Y ]CB∗
→ [X,Y ]CB induces a bijection

[X,Y ]CB∗/π1(Y )→ [X,Y ]CB .

(ii) If Y is a 1-connected space or an H-space, then [X,Y ]CB∗ → [X,Y ]CB is
bijective.

Proof. (i) This is obtained by an argument similar to that in [17, (1.11) in Chap-
ter III].

(ii) If Y is 1-connected, the bijectivity is an immediate consequence of (i). The
existence of an H-structure on Y implies that the action of π1(Y ) on [X,Y ]CB∗ is
trivial.

Finally, we show that any cofiber sequence implies exactness of the induced
sequence of CB∗-homotopy sets.
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Proposition 3.10. Let A
α−→ X

i−→ Cα
j−→ ΣA Σα−−→ ΣX → · · · be a cofiber

sequence. Then the induced sequence of pointed compactly-bounded homotopy sets

· · · → [ΣX,Z]CB∗
(Σα)]−−−−→ [ΣA,Z]CB∗

j]−→ [Cα, Z]CB∗
i]−→ [X,Z]CB∗

α]−→ [A,Z]CB∗

is exact for any pointed space Z.

Proof. Let g : X → Z be a CB∗-map such that g ◦ α 'CB∗ 0 : A → Z. Then
there exists a CB∗-homotopy H : A × I → Z such that H(x, 1) = g ◦ α(x) and
H(x, 1) = ∗ for any x ∈ A. Hence we can construct a CB∗-map g : Cα → Z which
satisfies g ◦ i = g.

§4. Proof of Theorem 1.4

The fiber rank defines an epimorphism K0◦CF(X)→ [X,Z]CB . Let K̃0◦CF(X) be
its kernel. Then using the standard splitting, we have the following isomorphism
of abelian groups:

K0 ◦ CF(X) ∼= [X,Z]CB ⊕ K̃0 ◦ CF(X).

Let us interpret the abelian group K̃0◦CF(X) in geometric language. Let Vectft(X)
be the set of isomorphism classes of vector bundles of finite type over X, which is
an abelian semigroup. An equivalence relation ∼s on Vectft(X) is defined by

ξ1 ∼s ξ2 ⇔ ξ1 ⊕ ε1
∼= ξ2 ⊕ ε2 for some untwisted bundles ε1 and ε2.

Here, a vector bundle ε of finite type is said to be untwisted if, for each r ∈ Z+,
ε is trivial on the open set X(r) on which the fiber rank of ε is r ; this equiva-
lence relation is called stable equivalence. Then the set Vectft(X)/∼s of stable
equivalence classes is an abelian group and we have a natural isomorphism

K̃0 ◦ CF(X) ∼= Vectft(X)/∼s.

First we define a map Φ : K̃0 ◦CF(X)→ [X,G∞(F)]CB as follows. For a given
element of K̃0 ◦ CF(X) we can take a representative ξn of constant rank, so we
obtain a map

fξ : X → Gn(FN ) ↪→ G∞(F)

by choosing an embedding ξn ⊂ εN into the product bundle. The same argument
as in topological K-theory shows that another choice of a representative ξn

′
and

of an embedding ξn
′ ⊂ εN ′

determines a map

fξ′ : X → Gn′(FN
′
) ↪→ G∞(F)
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which is homotopic to fξ in a sufficiently large finite Grassmannian Gm(FM ) (see
Husemoller [6, 6.2 Theorem in Chapter 3]). The map fξ is uniquely determined
up to CB -homotopy, since a finite Grassmannian is compact. Thus the map Φ is
well defined.

Secondly we define a map Ψ : [X,G∞(F)]CB → K̃0 ◦ CF(X). For a given
class [f ] ∈ [X,G∞(F)]CB , a representative f factors through a sufficiently large
Grassmannian Gn(FN ). Then the class [f ]γnN ] ∈ K̃0 ◦CF(X) is independent of the
representative f by Proposition 1.2(i). Thus the map Ψ is well defined.

Obviously the two maps Φ and Ψ constructed above are mutually inverse,
which establishes the natural isomorphism K0 ◦ CF(X) ∼= [X,Z × G∞(F)]CB as
abelian groups. This completes the proof of Theorem 1.4.

§5. Proof of Theorem 1.5

The symbol [ , ]∗ stands for the pointed homotopy set.

Lemma 5.1. Let A be a CW -complex. [ΣA,G∞(F)]CB∗ and [ΣA,Gn(F2n)]∗ are
endowed with group structures induced by the H-group structure on G∞(F) and
the co-H-group structure on ΣA, respectively. Then the group [ΣA,G∞(F)]CB∗ is
isomorphic to the group lim−→n

[ΣA,Gn(F2n)]∗.

Proof. By the definition of the pointed compactly-bounded homotopy set and the
filtration G∞(F) =

⋃
n Gn(F2n), the group [ΣA,G∞(F)]CB∗ is naturally identified

with the group lim−→ [ΣA,Gn(F2n)]∗ as sets. We see that this identification is the
one in the category of groups by Proposition 3.8.

Let FY be the homotopy fiber of the profinite completion φY : Y → Ŷ of Y .

Lemma 5.2. Assume that X satisfies the condition in Theorem 1.5.

(i) The bijection [X,Y ]∗ ∼= [X,FY ]∗ holds.

(ii) The suspension space ΣmX (m > 0) satisfies the condition in Theorem 1.5.

Proof. (i) Since map∗(X, Ŷ ) is weakly contractible, the map i] : map∗(X,FY ) →
map∗(X,Y ) induced by the fiber inclusion i : FY → Y is a weak homotopy equiv-
alence. Hence we have the bijection i] : [X,FY ]∗ ∼= [X,Y ]∗.

(ii) If map∗(X, Ŷ ) is weakly contractible, then also Ωm map∗(X, Ŷ ) ∼=
map∗(ΣmX, Ŷ ) is weakly contractible.

If Y is a nilpotent CW -complex of finite type with finite fundamental group,
then the homotopy fiber FY is homotopy equivalent to the product of Eilenberg–
MacLane spaces

∏
i>0K(πi+1(Y )⊗Ẑ/Z, i) by Roitberg–Touhey [14, Theorem 1.1].
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However, the homotopy equivalence is not natural and it is not possible to naturally
identify the homotopy set [A,FY ]∗ with the cohomology group

∏
i>0H

i(A;πi+1(Y )
⊗Ẑ/Z) making use of the homotopy equivalence. Nevertheless, the homotopy group
[ΣA,FY ]∗ can be identified with∏

i>0

Hi(ΣA;πi+1(Y )⊗ Ẑ/Z)

naturally with respect to Y as we see in Proposition 5.4 below.

Lemma 5.3. Let A be a CW -complex and let π1, π2, . . . , and π′1, π
′
2, . . . be Q-

modules. Let ϕ :
∏
iK(πi, i)→

∏
iK(π′i, i) be a pointed map between the products

of Eilenberg–MacLane spaces. Then the induced map

ϕ] : [ΣA,
∏
i

K(πi, i)]∗ → [ΣA,
∏
i

K(π′i, i)]∗

on the pointed homotopy sets is identified with
∏
iH

i(ΣA;πi(ϕ)) under the stan-
dard identifications [ΣA,

∏
iK(πi, i)]∗ with

∏
iH

i(ΣA;πi) and [ΣA,
∏
iK(πi′, i)]∗

with
∏
iH

i(ΣA;πi′).

Proof. We may assume π′i = 0 (i 6= n). For an element (αi) ∈
∏
iH

i(ΣA;πi),
we have to compute its image α′n ∈ Hn(ΣA;π′n) under ϕ], or equivalently, the
image of the fundamental class e′n ∈ Hn(K(π′n, n);π′n) under the homomorphism
induced by the composite

ΣA
f→

∏
i

K(πi, i)
ϕ→ K(π′n, n),

where f is the pointed map corresponding to (αi). There exists a natural isomor-
phism

Hn(
∏
i

K(πi, i);π′n) ∼= Hn(K(πn, n);π′n)⊕ π′n ⊗ [
⊗
i<n

H∗(K(πi, i); Q)]n,

where [ ]n is the component of degree n. Any element of [
⊗

i<nH
∗(K(πi, i); Q)]n

is a linear combination of products of elements of degree < n and the cohomology
product of H∗(ΣA; Q) is trivial. Then any element of the second component of
Hn(

∏
iK(πi, i);π′n) is mapped to 0 by the homomorphism induced by f : ΣA →∏

iK(πi, i). Thus we have

(ϕ ◦ f)]e′n = f ](ϕ]e′n) = f ](the first component of ϕ]e′n),

which implies the assertion.
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Proposition 5.4. Let A be a CW -complex and Y a nilpotent CW -complex of
finite type with finite fundamental group. Then there exists an isomorphism of
groups

[ΣA,FY ]∗ ∼=
∏
i>0

Hi(ΣA;πi+1(Y )⊗ Ẑ/Z)

which is natural with respect to Y .

Proof. Take a homotopy equivalence h from FY to
∏
i>0K(πi+1(Y )⊗Ẑ/Z, i) which

induces the identity on their homotopy groups. Then by Lemma 5.3 the bijection

[ΣA,FY ]∗ ∼=
∏
i>0

Hi(ΣA;πi+1(Y )⊗ Ẑ/Z)

induced by h does not depend on the choice of h, and this bijection is natural
with respect to Y . We see that the co-H-group structure on ΣA and the H-group
structure on

∏
i>0K(πi+1(Y ) ⊗ Ẑ/Z, i) determine the same group structure on

[ΣA,
∏
i>0K(πi+1(Y ) ⊗ Ẑ/Z, i)]∗ (cf. Whitehead [17, Theorem 5.21 in Chapter

III]). This shows that the bijection in question is an isomorphism of groups.

Proof of Theorem 1.5. We calculate K0(CF(ΣmX)) (m > 0) for a CW -complex
X satisfying the condition in Theorem 1.5. The reader is referred to Chapter 8 of
Husemoller [6] for the properties of Gn(FN ) for F = R,C,H.

First suppose that F = C. We have

K0(CC(ΣmX))∼= [ΣmX,Z×G∞(C)]CB ∼= Z⊕ [ΣmX,G∞(C)]CB
∼= Z⊕ [ΣmX,G∞(C)]CB∗

by Theorem 1.4 and Proposition 3.9(ii). Further we have

K0(CC(ΣmX))∼= Z⊕ lim−→
n

[ΣmX,Gn(C2n)]∗ ∼= Z⊕ lim−→
n

[ΣmX,FGn(C2n)]∗

∼= Z⊕ lim−→
n

∏
i>0

Hi(ΣmX;πi+1(Gn(C2n))⊗ Ẑ/Z)

by Lemmas 5.1 and 5.2, and Proposition 5.4. Since Gn(C2n) has nontrivial rational
homotopy groups in only finitely many dimensions and lim−→n

and
⊕

i>0 commute,
we have

K0(CC(ΣmX))∼= Z⊕ lim−→
n

⊕
i>0

Hi(ΣmX;πi+1(Gn(C2n))⊗ Ẑ/Z)

∼= Z⊕
⊕
i>0

Hi(ΣmX;πi+1(G∞(C))⊗ Ẑ/Z).

By Bott periodicity (cf. [6, 5.2 Corollary in Chapter 8]), we have

K0(CC(ΣmX)) ∼= Z⊕
⊕
i>0

H2l−1(ΣmX; Ẑ/Z).
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An argument similar to the above proof applies to the case F = H, where Gn(H2n)
is a 1-connected CW -complex of finite type for any n ∈ N.

Let us now proceed to the case F = R. We use the filtration G∞(R) =⋃
n oddGn(R2n). Then the same argument works since Gn(R2n) (n odd) is a nilpo-

tent (in fact simple) CW -complex of finite type with finite fundamental group
(see Glover and Homer [4, Proposition 2.2]). This completes the proof of Theorem
1.5.

Proof of Remark 1.7(ii). Any vector bundle ξ of finite type over X has a classifying
map with image contained in some finite Grassmannian Gn(FN ). By Lemma 5.2(i),
we have [X,Gn(FN )]∗ ∼= [X,FGn(FN )]∗, which implies that every map from X to
Gn(FN ) is a phantom map (see McGibbon [11, Theorem 5.1]).

§6. Definitions of numerable coverings

Some different definitions of numerable coverings are known in the literature. In
this section, to clarify the statements in Lemma 2.1, especially (vi), we quote three
definitions of the numerable covering and prove that they are equivalent for open
coverings.

• (Dold [2, 2.1 Definition]) A (not necessarily open) covering {Vλ}λ∈Λ of B is
called numerable if it admits a refinement by a locally finite partition of unity,
i.e. if there exists a locally finite partition of unity {πγ : B → [0, 1]}γ∈Γ (a
numeration of {Vλ}) such that every set π−1

γ (0, 1] is contained in some Vλ.

• (Husemoller [6, 9.1 Definition in Chapter 4]) An open covering {Ui}i∈S of topo-
logical space B is numerable provided there exists a (locally finite) partition of

unity {ui}i∈S such that u−1
i (0, 1] ⊂ Ui for each i ∈ S.

• James [8, Definition (7.25)]) Let {Xj}j∈J be a covering of the space X. A nu-
meration of {Xj} is a locally finite partition of unity {πj} such that π−1

j (0, 1] ⊂
Xj for each index j. If there exists a numeration, the covering is said to be nu-
merable. A covering which is the family of cozero sets of a locally finite partition
of unity is said to be numerically defined.

Proposition 6.1. Let J be any index set. Let {Uj}j∈J be an open covering of a
space X. Then the following statements are equivalent.

(i) {Uj}j∈J is numerable in the sense of Dold [2].

(ii) {Uj}j∈J is numerable in the sense of James [8].

(iii) {Uj}j∈J is numerable in the sense of Husemoller [6].
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Proof. (i)⇒(ii). We may assume that J is a well-ordered set. Let {πγ : B →
[0, 1]}γ∈Γ be a locally finite partition of unity such that each set π−1

γ (0, 1] is con-
tained in some Uj . We define a function

F : {πγ}γ∈Γ → J

by F (πγ) = min{j | π−1
γ (0, 1] is contained in Uj}. Let Γj = {πγ | F (πγ) = j}. It

follows that
Γi ∩ Γj = ∅ (i 6= j) and Γ =

n⋃
j=1

Γj .

We define uj =
∑
πγ∈Γj

πγ if Γj 6= ∅ and uj = 0 if Γj = ∅. Then we get a locally
finite partition of unity {uj}j∈J such that each set u−1

j (0, 1] is contained in Uj .
(ii)⇒(iii). By Proposition (7.24) of James [8] (see a remark after Definition

(7.25) of James [8]).
(iii)⇒(i). This is a consequence of the definitions.
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