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A Numerical Characterization of Polarized
Manifolds (X,L) with KX = −(n− i)L by the ith
Sectional Geometric Genus and the ith ∆-genus

by

Yoshiaki Fukuma

Abstract

Let (X,L) be a polarized manifold of dimension n. By using the ith sectional geo-
metric genus and the ith ∆-genus, we will give a numerical characterization of (X,L)
with KX = −(n − i)L for the following cases: (i) i = 2, (ii) i = 3 and n ≥ 5,
(iii) max{2, dim Bs|L|+ 2} ≤ i ≤ n− 1.
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§1. Introduction

Let X be a projective variety with dimX = n defined over the field of complex
numbers, and let L be an ample line bundle on X. Then (X,L) is called a polarized
variety. If X is smooth, then we say that (X,L) is a polarized manifold. The
main purpose of this paper is to give a numerical characterization of (X,L) with
KX = −(n− i)L. The following is well-known:

Proposition 1.1. Let (X,L) be a polarized manifold of dimension n ≥ 2.

(1) KX = −(n+1)L (resp. KX = −nL) if and only if 2g(X,L)−2 = −2Ln (resp.
2g(X,L)− 2 = −Ln).

(2) ([6, (1.9) Theorem]) KX = −(n − 1)L (then (X,L) is called a Del Pezzo
manifold) if and only if 2g(X,L)− 2 = 0 and ∆(X,L) = 1.
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Here g(X,L) (resp. ∆(X,L)) denotes the sectional genus (resp. the ∆-genus)
of (X,L).

As the next step, we want to give a numerical characterization of polarized
manifolds with KX = −(n−i)L for i ≥ 2 by using some invariants of (X,L). In [14]
and [16], we define the ith sectional geometric genus gi(X,L) and the ith ∆-genus
∆i(X,L) of (X,L) for every integer i with 0 ≤ i ≤ n. The ith sectional geometric
genus (resp. the ith ∆-genus) is a generalization of the sectional genus (resp. ∆-
genus), namely, g1(X,L) = g(X,L) (resp. ∆1(X,L) = ∆(X,L)). By looking at
Proposition 1.1 above, the author thought that maybe one could give a numerical
characterization of polarized manifolds (X,L) with KX = −(n− i)L by using the
ith sectional geometric genus and the ith ∆-genus.

In this paper, as the main results, we prove the following:

Theorem 1.1 (see Theorems 4.2.1, 4.3.1 and 4.4.1 below). Let (X,L) be a polar-
ized manifold of dimension n ≥ 3. Assume that one of the following cases holds:

(a) i = 2.

(b) i = 3 and n ≥ 5.

(c) max{2,dim Bs|L|+ 2} ≤ i ≤ n− 1.

Then the following are equivalent to one another:

C(i, 1): KX + (n− i)L = OX .

C(i, 2): ∆i(X,L) = 1 and 2g1(X,L)− 2 = (i− 1)Ln.

C(i, 3): ∆i(X,L) > 0 and 2g1(X,L)− 2 = (i− 1)Ln.

C(i, 4): gi(X,L) = 1 and 2g1(X,L)− 2 = (i− 1)Ln.

C(i, 5): gi(X,L) > 0 and 2g1(X,L)− 2 = (i− 1)Ln.

Notation and conventions

We say that X is a variety if X is an integral separated scheme of finite type.
In particular X is irreducible and reduced if X is a variety. Varieties are always
assumed to be defined over the field of complex numbers. In this article, we shall
study mainly smooth projective varieties. The words “line bundles” and “Cartier
divisors” are used interchangeably. The tensor products of line bundles are denoted
additively.

• O(D): invertible sheaf associated with a Cartier divisor D on X.

• OX : the structure sheaf of X.

• χ(F): the Euler–Poincaré characteristic of a coherent sheaf F .
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• hi(F) := dimHi(X,F) for a coherent sheaf F on X.

• hi(D) := hi(O(D)) for a Cartier divisor D.

• q(X) (= h1(OX)): the irregularity of X.

• hi(X,C) := dimHi(X,C).

• bi(X) := hi(X,C).

• KX : the canonical divisor of X.

• Pn: the projective space of dimension n.

• Qn: a quadric hypersurface in Pn+1.

• ∼ (or =): linear equivalence.

• det(E) :=
∧r E , where E is a vector bundle of rank r on X.

• PX(E): the projective space bundle associated with a vector bundle E on X.

• H(E): the tautological line bundle on PX(E).

• F∨ := HomOX
(F ,OX).

• ci(E): the i-th Chern class of a vector bundle E .

• ci(X) := ci(TX), where TX is the tangent bundle of a smooth projective vari-
ety X.

For a real number m and a non-negative integer n, let

[m]n :=

{
m(m+ 1) · · · (m+ n− 1) if n ≥ 1,
1 if n = 0,

[m]n :=

{
m(m− 1) · · · (m− n+ 1) if n ≥ 1,
1 if n = 0.

Then for n fixed, [m]n and [m]n are polynomials in m of degree n.
For any non-negative integer n,

n! :=

{
[n]n if n ≥ 1,
1 if n = 0.

Assume that m and n are integers with n ≥ 0. Then we put(
m

n

)
:=

[m]n
n!

.

We note that
(
m
n

)
= 0 if 0 ≤ m < n, and

(
m
0

)
= 1.

§2. Preliminaries

Here we list up some facts which will be used later.
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Definition 2.1. (1) Let X (resp. Y ) be an n-dimensional projective manifold,
and let L (resp. A) be an ample line bundle on X (resp. Y ). Then (X,L)
is called a simple blowing up of (Y,A) if there exists a birational morphism
π : X → Y such that π is a blowing up at a point of Y and L = π∗(A) − E,
where E is the exceptional divisor.

(2) Let X (resp. M) be an n-dimensional projective manifold, and let L (resp. A)
be an ample line bundle onX (resp.M). Then we say that (M,A) is a reduction
of (X,L) if (X,L) is obtained by a composite of simple blowing ups of (M,A),
and (M,A) is not obtained by a simple blowing up of any polarized manifold.
The morphism µ : X →M is called the reduction map.

Definition 2.2. Let (X,L) be a polarized manifold of dimension n. We say that
(X,L) is a scroll (resp. quadric fibration, Del Pezzo fibration) over a normal projec-
tive variety Y with dimY = m if there exists a surjective morphism with connected
fibers f : X → Y such that KX +(n−m+1)L = f∗A (resp. KX +(n−m)L = f∗A,
KX + (n−m− 1)L = f∗A) for some ample line bundle A on Y .

Remark 2.1. If (X,L) is a scroll over a smooth curve C (resp. a smooth pro-
jective surface S) with dimX = n ≥ 3, then by [5, (3.2.1) Theorem] and [4,
Proposition 3.2.1 and Theorem 14.1.1] there exists an ample vector bundle E of
rank n (resp. n − 1) on C (resp. S) such that (X,L) ∼= (PC(E), H(E)) (resp.
(PS(E), H(E))).

Theorem 2.1. Let (X,L) be a polarized manifold with dimX = n ≥ 3. Then
(X,L) is one of the following types.

(1) (Pn,OPn(1)).

(2) (Qn,OQn(1)).

(3) A scroll over a smooth projective curve.

(4) KX ∼ −(n− 1)L, that is, (X,L) is a Del Pezzo manifold.

(5) A quadric fibration over a smooth curve.

(6) A scroll over a smooth projective surface.

(7) Let (M,A) be a reduction of (X,L).

(7.1) n = 4, (M,A) = (P4,OP4(2)).

(7.2) n = 3, (M,A) = (Q3,OQ3(2)).

(7.3) n = 3, (M,A) = (P3,OP3(3)).

(7.4) n = 3, M is a P2-bundle over a smooth curve C and for any fiber F ′ of
it, (F ′,A|F ′) ∼= (P2,OP2(2)).

(7.5) KM ∼ −(n− 2)A, that is, (M,A) is a Mukai manifold.
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(7.6) (M,A) is a Del Pezzo fibration over a smooth curve.

(7.7) (M,A) is a quadric fibration over a normal surface.

(7.8) n ≥ 4 and (M,A) is a scroll over a normal projective variety of dimen-
sion 3. In this case, (X,L) ∼= (M,A) by [4, Corollary 7.6.7].

(7.9) KM + (n− 2)A is nef and big.

Proof. See [4, Proposition 7.2.2, and Theorems 7.2.4, 7.3.2, 7.3.4, and 7.5.3]. See
also [9, Chapter II, (11.2), (11.7), and (11.8)].

Remark 2.2. Let (X,L) be a polarized manifold with dimX = n ≥ 3.

(1) κ(KX + (n− 2)L) = −∞ if and only if (X,L) is one of the types from (1) to
(7.4) in Theorem 2.1.

(2) κ(KX + (n− 2)L) = 0 if and only if (X,L) is (7.5) in Theorem 2.1.

(3) κ(KX + (n − 2)L) ≥ 1 if and only if (X,L) is one of the types from (7.6) to
(7.9) in Theorem 2.1.

Remark 2.3. Let (X,L) be a polarized manifold with dimX = n ≥ 3 and let
(M,A) be a reduction of (X,L). Then by [4, Corollary 7.6.7], we see that (X,L) ∼=
(M,A) if (M,A) is a scroll. See also Theorem 2.1, case (7.8).

Definition 2.3 ([4, 7.5.7 Definition-Notation]). Let (X,L) be a polarized mani-
fold of dimension n ≥ 3, and let (M,A) be a reduction of (X,L). Assume that
KM + (n− 2)A is nef and big. Then for large m � 0 the morphism ϕ : M → W

associated to |m(KM +(n−2)A)| has connected fibers and normal image W . Note
that there exists an ample line bundle K on W such that KM +(n−2)A = ϕ∗(K).
Let D := (ϕ∗A)∨∨, where ∨∨ denotes the double dual. Then the pair (W,D)
together with ϕ is called the second reduction of (X,L).

Remark 2.4. (1) If KM + (n−2)A is nef and big but not ample, then ϕ is equal
to the nef value morphism of A.

(2) If KM + (n− 2)A is ample, then ϕ is an isomorphism.

(3) If n ≥ 4, then W has isolated terminal singularities and is 2-factorial. Moreover
if n is even, then X is Gorenstein (see [4, Proposition 7.5.6]).

We note that κ(KX + (n − 1)L) = −∞ (resp. κ(KX + (n − 2)L) = −∞) if
and only if (X,L) is one of the types from (1) to (3) (resp. from (1) to (7.4)) in
Theorem 2.1. Now we consider the case where κ(KX +(n−3)L) = −∞. If (X,L) is
one of the types from (1) to (7.8) in Theorem 2.1, then κ(KX + (n− 3)L) = −∞.
So we assume that KM + (n − 2)A is nef and big. Then there exist a normal
projective variety W with only 2-factorial isolated terminal singularities, a bira-
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tional morphism φ2 : M → W and an ample line bundle K on W such that
KM + (n − 2)A = (φ2)∗(K). Let D := (φ2)∗(A)∨∨. Then D is a 2-Cartier divisor
on W and K = KW + (n− 2)D (see [4, Lemma 7.5.8]). Thus (W,D) is the second
reduction of (X,L) (see Definition 2.3). We note that if KM + (n− 2)A is ample,
then (W,K) ∼= (M,KM + (n− 2)A).

Then the following properties hold:

(1) κ(KX + (n− 3)L) = κ(KW + (n− 3)K) [4, Corollary 7.6.2].

(2) (n − 2)(KW + (n − 3)D) = KW + (n − 3)K and KM + (n − 3)A =
φ∗2(KW +(n−3)D)+∆ for an exceptional Q-effective divisor ∆ of φ2. Therefore

m(n− 2)(KX + (n− 3)L) = m(n− 2)φ∗1(KM + (n− 3)A) + E1

= m(n− 2)φ∗1 ◦ φ∗2(KW + (n− 3)D) + E1 +m(n− 2)∆

= mφ∗1 ◦ φ∗2(KW + (n− 3)K) + E1 +m(n− 2)∆.

(Here φ1 : X →M is a reduction of (X,L) and E1 is a φ1-exceptional effective
divisor.)

(3) h0((n − 2)m(KX + (n − 3)L)) = h0(m(KW + (n − 3)K)) for every integer m
with m ≥ 1.

If τ(K) ≤ n− 3, then by the above we see that κ(KX + (n− 3)L) ≥ 0. (Here
τ(K) denotes the nef value of K.) So we may assume that τ(K) > n− 3.

If n ≥ 5, then (W,K) with τ(K) > n − 3 is one of some special types by [4,
Theorems 7.7.2, 7.7.3 and 7.7.5]. So we can get the following:

Proposition 2.1. Let (X,L) be a polarized manifold of dimension n ≥ 5, (M,A)
a reduction of (X,L), and (W,K) the second reduction of (X,L). Then κ(KX +
(n− 3)L) = −∞ if and only if (X,L) satisfies one of the following:

(1) (X,L) is one of the types (1)–(6), (7.5)–(7.8) in Theorem 2.1.

(2) KM + (n− 2)A is nef and big, and (W,K) is one of the following:

(2.1) (P6,OP6(1)).

(2.2) 1, 2 or 3 in [4, Theorem 7.7.5].

Proof. See [4, Theorems 7.7.2, 7.7.3, 7.7.5 and Proposition 7.7.9].

Furthermore we need the following two lemmas:

Lemma 2.1. Let (X,L) be a polarized manifold of dimension n ≥ 5. If
κ(KX + (n − 3)L) = −∞, then hj(OX) = 0 for any j ≥ 3 unless (X,L) is a
scroll over a normal projective variety of dimension 3, in which case hj(OX) = 0
for all j ≥ 4.
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Proof. By assumption and Proposition 2.1, (X,L) satisfies either (1), (2.1) or (2.2)
in Proposition 2.1. Note that since hj(OX) = hj(OM ) = hj(OW ), we only have
to prove that hj(OW ) = 0. But by Proposition 2.1 this is easy and left to the
reader.

Remark 2.5. By using a result of Fujita [10, (4.∞)], we can see that Lemma 2.1
holds for n = 4.

Lemma 2.2. Let (X,L) be a polarized manifold of dimension n ≥ 3, and let
(M,A) be a reduction of (X,L). Assume that KM + (n− 2)A is nef and big. Let
(W,D) be the second reduction of (X,L) and ϕ : M →W its morphism. (Here we
use the notation of Definition 2.3.) Then hj(A) = hj(D) for every integer j ≥ 3.

Proof. As in Definition 2.3, there exists an ample line bundle K on Y such that
KM +(n−2)A = ϕ∗(K). By [24, Theorem 1-2-5] we have Rjϕ∗(KM +(n−1)A) = 0.
On the other hand Rjϕ∗O(KM + (n− 1)A) = Rjϕ∗(ϕ∗(K)⊗A) = K⊗Rjϕ∗(A).
Therefore Rjϕ∗(A) = 0 and hj(A) = hj(ϕ∗(A)) for every positive integer j.

Since A is a line bundle on M , we see that ϕ∗(A) is a torsion free coherent
sheaf onW . Then there exists an injective homomorphism µ : ϕ∗(A)→ (ϕ∗(A))∨∨.
Hence we get the exact sequence

0→ ϕ∗(A)→ (ϕ∗(A))∨∨ → Cokerµ→ 0.

Note that dim Supp(Cokerµ) ≤ 1 because there exists a closed subset Z on W such
that dimZ ≤ 1 and M\ϕ−1(Z) ∼= W \Z. Therefore hj(Cokerµ) = 0 for every j ≥ 2
by [21, Theorem 2.7 in Chapter III] or [22, Theorem 4.6∗]. Hence hj(ϕ∗(A)) =
hj((ϕ∗(A))∨∨) for j ≥ 3. Since D = (ϕ∗(A))∨∨, we get the assertion.

Definition 2.4. Let X be a smooth projective variety and let F be a vector
bundle on X. Then for every integer j ≥ 0, the j-th Segre class sj(F) of F is
defined by the equation ct(F∨)st(F) = 1, where ct(F∨) is the Chern polynomial
of F∨ and st(F) =

∑
j≥0 sj(F)tj .

Remark 2.6. (1) Let X be a smooth projective variety and let F be a vector
bundle on X. Let s̃j(F) be the Segre class which is defined in [20, Chapter 3].
Then sj(F) = s̃j(F∨).

(2) For every i ≥ 1, si(F) can be written by using the Chern classes cj(F) with
1 ≤ j ≤ i. (For example, s1(F) = c1(F), s2(F) = c1(F)2 − c2(F), and so on.)
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§3. Review on the ith sectional geometric genus and the ith ∆-genus
of polarized varieties

Here we review the ith sectional geometric genus and the ith ∆-genus of polarized
varieties (X,L) for every integer i with 0 ≤ i ≤ dimX. There have been many
investigations of (X,L) via the sectional genus and the ∆-genus. In order to analyze
(X,L) more deeply, the author extended these notions. In [14, Definition 2.1] we
defined an invariant called the ith sectional geometric genus which is intended to
be a generalization of the sectional genus. First we recall its definition.

Notation 3.1. Let (X,L) be a polarized variety of dimension n, and let χ(tL)
be the Euler–Poincaré characteristic of tL. Then χ(tL) is a polynomial in t of
degree n, and we can write it as

χ(tL) =
n∑

j=0

χj(X,L)
(
t+ j − 1

j

)
.

Definition 3.1 ([14, Definition 2.1]). Let (X,L) be a polarized variety of dimen-
sion n. Then for any integer i with 0 ≤ i ≤ n the ith sectional geometric genus
gi(X,L) of (X,L) is defined by

gi(X,L) = (−1)i(χn−i(X,L)− χ(OX)) +
n−i∑
j=0

(−1)n−i−jhn−j(OX).

Remark 3.1. (1) Since χn−i(X,L) ∈ Z, the invariant gi(X,L) is an integer by
definition.

(2) If i = dimX = n, then gn(X,L) = hn(OX) and gn(X,L) is independent of L.

(3) If i = 0, then g0(X,L) = Ln.

(4) If i = 1, then g1(X,L) = g(X,L), where g(X,L) is the sectional genus of
(X,L). If X is smooth, then g1(X,L) = 1 + (1/2)(KX + (n−1)L)Ln−1, where
KX denotes the canonical line bundle on X.

(5) Let (X,L) be a polarized manifold of dimension n and let (M,A) be a reduc-
tion of (X,L). Then gi(X,L) = gi(M,A) for every integer i with 1 ≤ i ≤ n.

The following are main problems about the ith sectional geometric genus.

Problem 3.1. (i) Does the ith sectional geometric genus have properties similar
to those of the sectional genus? In particular:

(i.1) Does gi(X,L) ≥ 0 hold? More strongly, does gi(X,L) ≥ hi(OX) hold?

(i.2) Can we get the ith sectional geometric genus version of the theory of
sectional genus?
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(ii) Are there any relationships between gi(X,L) and gi+1(X,L)?

(iii) Classify (X,L) by the value of the ith sectional geometric genus.

(iv) What is the geometric meaning of the ith sectional geometric genus?

Remark 3.2. (1) First we consider Problem 3.1(i.1). At present we can prove
the non-negativity of gi(X,L) if (a) i = 0, (b) i = 1, (c) i = 2 and n = 3, (d)
i = n. But in general it is unknown whether gi(X,L) is non-negative or not. Next
we consider the stronger inequality. Of course, if it holds, then also gi(X,L) ≥ 0.
If i = 0 or n, then the stronger inequality holds. But it is unknown whether it
holds or not in general. If i = 1, then this is a conjecture proposed by Fujita [9,
(13.7) Remark], and this case has been studied under several assumptions (see, for
example, [11]–[13]). In [15, Corollary 2.8], we showed that the stronger inequality
holds if dim Bs|L|+ 1 ≤ i ≤ n− 1.

(2) As for Problem 3.1(ii), if Bs|L| = ∅, then gi(X,L) = 0 implies gi+1(X,L)
= 0.

(3) Concerning Problem 3.1(iii), if i = 1, then the classification of polarized
manifolds (X,L) with g1(X,L) ≤ 2 was obtained (see [7], [23], [3], and [8]).

If i = 2, then the classification of polarized manifolds (X,L) is obtained in
the following cases (see [14, Corollary 3.5 and Theorem 3.6] and [19]):

(ii.1) Bs|L| = ∅ and g2(X,L) = h2(OX).

(ii.2) L is very ample and g2(X,L) = h2(OX) + 1.

(4) Finally we consider Problem 3.1(iv). First we give the following definition.

Definition 3.2. Let (X,L) be a polarized variety of dimension n. Then a k-ladder
of L is a sequence of irreducible and reduced subvarieties X ⊃ X1 ⊃ · · · ⊃ Xk

such that Xi ∈ |Li−1| for 1 ≤ i ≤ k, where X0 := X, L0 := L and Li := L|Xi
.

Note that dimXj = n−j. Let rp,q : Hp(Xq,Lq)→ Hp(Xq+1,Lq+1) be the natural
map.

Theorem 3.1 ([15, Propositions 2.1 and 2.3, and Theorem 2.4]). Let X be a
projective variety of dimension n ≥ 2 and let L be an ample line bundle on X.
Assume that ht(−sL) = 0 for any integers t and s with 0 ≤ t ≤ n− 1 and 1 ≤ s,
and that |L| has an (n− i)-ladder for an integer i with 1 ≤ i ≤ n. Then:

(1) gi(Xj ,Lj) = gi(Xj+1,Lj+1) for every integer j with 0 ≤ j ≤ n− i− 1. (Here
we use the notation of Definition 3.2.)

(2) gi(X,L) ≥ hi(OX).

In particular, if (X,L) is a polarized manifold with Bs|L| = ∅, then L has
an (n − i)-ladder X ⊃ X1 ⊃ · · · ⊃ Xn−i such that each Xj is smooth, and
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from Theorem 3.1(1) and Remark 3.1(2) we see that gi(X,L) = gi(Xn−i,Ln−i) =
hi(OXn−i

) = h0(ΩXn−i
), that is, the ith sectional geometric genus is the geomet-

ric genus of the i-dimensional projective variety Xn−i. That is why we call this
invariant the ith sectional geometric genus.

From Theorem 3.1 we see that the ith sectional geometric genus is expected to
have properties similar to those of the geometric genus of i-dimensional projective
varieties. In particular, if i = 2, then g2(X,L) is expected to have properties similar
to those of the geometric genus of projective surfaces and we can propose several
problems which can be considered as generalizations of theorems in the theory of
surfaces. See [18] for further details.

For other results concerning the ith sectional geometric genus, see, for ex-
ample, [14], [15], [17] and [18].

The following result will be used later.

Theorem 3.2. Let X be a projective variety with dimX = n and let L be a nef
and big line bundle on X.

(1) For any integer i with 0 ≤ i ≤ n− 1, we have

gi(X,L) =
n−i−1∑

j=0

(−1)n−j

(
n− i
j

)
χ(−(n− i− j)L) +

n−i∑
k=0

(−1)n−i−khn−k(OX).

(2) Assume that X is smooth. Then for any integer i with 0 ≤ i ≤ n− 1, we have

gi(X,L) =
n−i−1∑

j=0

(−1)j

(
n− i
j

)
h0(KX+(n−i−j)L)+

n−i∑
k=0

(−1)n−i−khn−k(OX).

Proof. (1) By the same argument as in the proof of [14, Theorem 2.2], we obtain

χn−i(X,L) =
n−i∑
j=0

(−1)n−i−j

(
n− i
j

)
χ(−(n− i− j)L)

=
n−i−1∑

j=0

(−1)n−i−j

(
n− i
j

)
χ(−(n− i− j)L) + χ(OX).

Hence by Definition 3.1, we get the assertion.
(2) By using the Serre duality and the Kawamata–Viehweg vanishing theorem,

we get the assertion from (1).

Proposition 3.1. Let (X,L) be a polarized manifold of dimension n ≥ 5. If
κ(KX + (n − 3)L) = −∞, then gj(X,L) = 0 for every j ≥ 3 unless (X,L) is
a scroll over a normal projective variety of dimension 3.
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Proof. Assume that (X,L) is not a scroll over a normal projective variety of dimen-
sion 3. Then by Lemma 2.1 we have hj(OX) = 0 for every j ≥ 3. By assumption,
h0(KX + tL) = 0 for 1 ≤ t ≤ n− 3. Hence by Theorem 3.2(2) we get gj(X,L) = 0
for all j ≥ 3.

Remark 3.3. If (X,L) is a scroll over a normal projective variety of dimension 3,
then by [14, Example 2.10(8)] we have gj(X,L) = 0 for all j ≥ 4 and g3(X,L) =
h3(OX).

Remark 3.4. By Lemma 2.1 and Remark 2.5, we can prove that the conclusion
of Proposition 3.1 holds for n = 4.

As the next step, we want to generalize the notion of the ∆-genus. Several
generalizations can be considered from various points of view. Our point of view
comes from the following result.

Theorem 3.3 (see e.g. [9, §3 in Chapter I]). Let X be a projective variety of di-
mension n ≥ 2 and let L be an ample line bundle on X. We use the notation of
Definition 3.2. If |L| has an (n− 1)-ladder and h0(Ln−1) > 0, then

∆(X,L) =
n−1∑
j=0

dim Coker r0,j .

In particular, ∆(X,L) ≥ ∆(X1,L1) ≥ · · · ≥ ∆(Xn−1,Ln−1) ≥ 0.

We now give the definition of the ith ∆-genus which satisfies a generalization
of Theorem 3.3.

Definition 3.3 ([16, Definition 2.1]). Let (X,L) be a polarized variety of dimen-
sion n. For every integer i with 0 ≤ i ≤ n, the ith ∆-genus ∆i(X,L) of (X,L)
is

∆i(X,L) =


0 if i = 0,
gi−1(X,L)−∆i−1(X,L)

+ (n− i+ 1)hi−1(OX)− hi−1(L) if 1 ≤ i ≤ n.

Remark 3.5. (1) If i = 1, then ∆1(X,L) is equal to the ∆-genus of (X,L).

(2) If i = n, then ∆n(X,L) = hn(OX)− hn(L) (see [16, Proposition 2.4]).

(3) For 1 ≤ i ≤ n, by the definition of the ith ∆-genus, we have the following
equality which will be used later:

∆i−1(X,L) = gi−1(X,L)−∆i(X,L) + (n− i+ 1)hi−1(OX)− hi−1(L).
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(4) Let (X,L) be a polarized manifold of dimension n and let (M,A) be a reduc-
tion of (X,L). Then ∆i(X,L) = ∆i(M,A) for 2 ≤ i ≤ n (see [16, Corollary
2.11]).

Theorem 3.4 (see [16, Theorem 2.8 and Corollary 2.9] and [15, Proposition 2.1]).
Let X be a projective variety of dimension n ≥ 2 and let L be an ample line bundle
on X. We use the notation of Definition 3.2. Assume that ht(−sL) = 0 for any
integers t and s with 0 ≤ t ≤ n − 1 and 1 ≤ s. If |L| has an (n − i)-ladder and
h0(Ln−i) > 0 for an integer i with 1 ≤ i ≤ n, then

∆i(X,L) =
n−i∑
j=0

dim Coker ri−1,j .

In particular, ∆i(X,L) ≥ ∆i(X1,L1) ≥ · · · ≥ ∆i(Xn−i,Ln−i) ≥ 0.

The definition of the ith ∆-genus is so complicated that a lot of things about
it are unknown. The following questions are worth investigating.

Problem 3.2. (i) Does the ith ∆-genus have properties similar to those of the
∆-genus? In particular:

(i.1) Does ∆i(X,L) ≥ 0 hold?

(i.2) Can we get the ith ∆-genus version of the Fujita theory of ∆-genus?

(ii) Are there any relationships between gi(X,L) and ∆i(X,L)?

(iii) Are there any relationships between ∆i(X,L) and ∆i+1(X,L)?

(iv) Classify (X,L) by the value of the ith ∆-genus.

(v) What is the geometric meaning of the ith ∆-genus?

Remark 3.6. If X is smooth and L is ample, then the following facts on Problem
3.2 are known.

(1) First we consider Problem 3.2(i.1). If i = 1, then ∆1(X,L) ≥ 0 (see [9, (4.2)
Theorem]). Moreover if L is base point free, then ∆i(X,L) ≥ 0 for 0 ≤ i ≤ n.
But unfortunately, there exists an example of (X,L) such that ∆i(X,L) < 0
(see [16, Section 4]).

(2) As for Problem 3.2(ii), if i = 1 and L is merely ample, then g1(X,L) = 0 if
and only if ∆1(X,L) = 0 (see [9, (12.1) Theorem]). If i ≥ 2, then under the
assumption that Bs|L| = ∅ we have gi(X,L) = 0 if and only if ∆i(X,L) = 0
(see [16, Theorem 3.13]).

(3) Concerning Problem 3.2(iii), under the assumption that L is base point free,
we for example get the following: If ∆i(X,L) ≤ i−1, then ∆i+1(X,L) = 0 (see
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[16, Proposition 3.9]). In particular, if ∆i(X,L) = 0, then ∆i+1(X,L) = 0.
There may be other similar relationships between ∆i(X,L) and ∆i+1(X,L).

(4) For Problem 3.2(iv), there exist the following classifications of (X,L) by the
value of ∆2(X,L):

(4.1) The classification of polarized manifolds (X,L) such that Bs|L| = ∅ and
∆2(X,L) = 0 (see [16, Theorem 3.13 and Remark 3.13.1]).

(4.2) The classification of polarized manifolds (X,L) such that L is very ample
and ∆2(X,L) = 1 (see [16, Theorem 3.17] and [19, Remark 2]).

(5) At present, we do not know much about Problem 3.2(v). It seems to be the
most difficult among the above problems even in the case where L is base
point free or very ample.

In this paper, we consider Problems 3.1(i.2) and 3.2(i.2). In [6, (1.9) Theorem],
Fujita proved that (X,L) is a Del Pezzo manifold (i.e. KX = −(n−1)L) if and only
if g(X,L) = 1 and ∆(X,L) = 1, that is, g1(X,L) = 1 and ∆1(X,L) = 1. In this
paper, we consider an analogous characterization of (X,L) with KX = −(n− i)L
by using gi(X,L) and ∆i(X,L).

§4. Main theorems

§4.1. A conjecture

First we make the following conjecture which is the main theme of this paper.

Conjecture 4.1.1. Let (X,L) be a polarized manifold of dimension n ≥ 3. Then,
for every integer i with 2 ≤ i ≤ n− 1, the following are equivalent to one another:

C(i, 1): KX = −(n− i)L.
C(i, 2): ∆i(X,L) = 1 and 2g1(X,L)− 2 = (i− 1)Ln.
C(i, 3): ∆i(X,L) > 0 and 2g1(X,L)− 2 = (i− 1)Ln.
C(i, 4): gi(X,L) = 1 and 2g1(X,L)− 2 = (i− 1)Ln.
C(i, 5): gi(X,L) > 0 and 2g1(X,L)− 2 = (i− 1)Ln.

Remark 4.1.1. If i = 1, then C(1, 1) and C(1, 2) are equivalent for any ample
line bundle L. Of course C(1, 1) implies C(1, 3) (resp. C(1, 4), C(1, 5)). But C(1, 3)
(resp. C(1, 4), C(1, 5)) does not imply C(1, 1) because (X,L) is possibly a scroll
over an elliptic curve.

Remark 4.1.2. As a generalization of the case where i = 1, it is natural to expect
that C(i, 1) is equivalent to

C(i, 6): ∆i(X,L) = 1 and gi(X,L) = 1.
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We can easily see that C(i, 1) implies C(i, 6). But from Examples 4.1.1 and 4.1.2
below we find that the converse is not true in general.

Example 4.1.1. Let n ≥ 3, and let Y be a smooth projective variety of dimension
m with 1 ≤ m ≤ n − 2. Let H be an ample line bundle on Y such that KY 6=
−(n−m−1)H and h0(KY +(n−m−1)H) = 1. (There exists a polarized manifold
(Y,H) like this. For example, let (Y,H) be a principally polarized abelian variety
with dimY = m = n−2; then H is an ample line bundle on Y such that Hm = m!.
Then KY + (n−m− 1)H = H and h0(KY + (n−m− 1)H) = h0(H) = 1.)

Next we take a Del Pezzo manifold (F,A) of dimension n − m. Note that
KF = −(n−m− 1)A.

We set X := Y × F and L := p∗1(H) + p∗2(A), where pi denotes the ith
projection map. Then KX + (n − m − 1)L = p∗1(KY + (n − m − 1)H). By [16,
Lemma 1.6] we also get hj(OX) = 0 and hj(L) = 0 for all j ≥ m + 1. Hence
∆n(X,L) = 0 by Remark 3.5(2), and by Theorem 3.2(2) we see that gj(X,L) = 0
for every j ≥ m+ 2 and gm+1(X,L) = h0(KX + (n−m− 1)L) = 1. Moreover by
Remark 3.5(3) we deduce that ∆j(X,L) = 0 for every j ≥ m+ 2 and

∆m+1(X,L) = gm+1(X,L)−∆m+2(X,L)+(n−m−1)hm+1(OX)−hm+1(L) = 1.

Therefore gm+1(X,L) = ∆m+1(X,L) = 1. But KX 6= −(n−m− 1)L.

Example 4.1.2. Let k ≥ 2 and set n := 2k + 1 and i := (n − 1)/2. We consider
(M,A) = (Pn,OPn(2)). Then KM = −(k + 1)A = −(n − i)A. Moreover we see
that gi(M,A) = 1 and ∆i(M,A) = 1 (see (I) in the proof of Theorem 4.2.1
below). Let π : X → Pn be the blowing up at a general point on Pn and let
L := π∗(A) − E, where E is the exceptional divisor. Then by [1, Theorem 0.1],
(X,L) is a polarized manifold with KX + (n− i)L = (i− 1)E. On the other hand,
(M,A) is a reduction of (X,L) and 2 ≤ i < n− 1. Hence by Remarks 3.1(5) and
3.5(4) we get gi(X,L) = gi(M,A) = 1 and ∆i(X,L) = ∆i(M,A) = 1.

§4.2. The case where max{2,dim Bs|L|+ 2} ≤ i ≤ n− 1

First we consider the case where max{2,dim Bs|L|+ 2} ≤ i ≤ n− 1.

Theorem 4.2.1. Let (X,L) be a polarized manifold of dimension n ≥ 3, and let
m = dim Bs|L|. (If Bs|L| = ∅, then we set m = −1.) Assume that max{2,m+2} ≤
i ≤ n− 1. Then Conjecture 4.1.1 is true.

Proof. By assumption and [15, Proposition 1.12(2)], the following hold:

(Ai) L has an (n− i)-ladder Xn−i ⊂ · · · ⊂ X1 ⊂ X.

(Bi) h0(Ln−i) > 0.
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(C) hj(L⊗−t) = 0 for any j and t with 0 ≤ j ≤ n− 1 and t > 0.

(Di) Xj is normal for any j with 0 ≤ j ≤ n− i.
(Ei) Xj is Cohen–Macaulay for any j with 0 ≤ j ≤ n− i.

(I) Assume that C(i, 1) holds. Then by Remark 3.1(4) we see that

2g1(X,L)− 2 = (KX + (n− i)L+ (i− 1)L)Ln−1 = (i− 1)Ln.

Note that hj(OX) = 0 and hj(L) = 0 for every j ≥ 2. Furthermore h0(KX +
(n − i)L) = 1 and h0(KX + kL) = 0 for 1 ≤ k ≤ n − i − 1. Hence gi(X,L) = 1
and gk(X,L) = 0 for every k ≥ i + 1 by Theorem 3.2(2) (this means that C(i, 1)
implies C(i, 4)), and by Remark 3.5(2) and (3), we have ∆k(X,L) = 0 for every
k ≥ i+ 1 and

∆i(X,L) = gi(X,L)−∆i+1(X,L) + (n− i)hi(OX)− hi(L) = 1.

Therefore C(i, 1) implies C(i, 2) and C(i, 4) above.
(II) It is trivial that C(i, 2) implies C(i, 3), and C(i, 4) implies C(i, 5).
(III) Assume that C(i, 3) holds. We will prove that then C(i, 5) holds. It

suffices to show that gi(X,L) > 0. Note that gi(X,L) ≥ 0 by [15, Theorem 2.4].
In view of C(i, 3), the following shows that gi(X,L) = 0 is impossible:

Claim 4.2.1. If gi(X,L) = 0, then ∆i(X,L) = 0.

Proof. Assume that gi(X,L)=0. Then 0=gi(X,L)=gi(Xn−i,Ln−i)=hi(OXn−i)
by Theorem 3.1 and Remark 3.1(2). Therefore hi(OX) = hi(OX1) = · · · =
hi(OXn−i−1) ≤ hi(OXn−i

) = 0 by [15, Proposition 2.1(b)]. Hence Hi−1(Lj) →
Hi−1(Lj+1) is surjective for 0 ≤ j ≤ n−i, so dim Coker ri−1,j = 0 for 0 ≤ j ≤ n−i.
On the other hand by Theorem 3.4, we have

∆i(X,L) =
n−i∑
k=0

dim Coker ri−1,k.

Therefore ∆i(X,L) = 0.

(IV) Assume that C(i, 5) holds. Then

1 +
1
2

(i− 1)Ln = g1(X,L) = 1 +
1
2

(KX + (n− 1)L)Ln−1

= 1 +
1
2

(KXn−i
+ (i− 1)Ln−i)Li−1

n−i

= 1 +
1
2

(i− 1)Ln +
1
2
KXn−i

Li−1
n−i.
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Hence KXn−i
Li−1

n−i = 0. On the other hand, gi(X,L) = hi(OXn−i
) by (Ai) and (C)

(see also [15, Propositions 2.1 and 2.3]). Furthermore by (Di), (Ei) and the Serre
duality, we obtain h0(KXn−i) = hi(OXn−i). Hence 0 < gi(X,L) = hi(OXn−i) =
h0(KXn−i

) and we see that KXn−i
= OXn−i

.
Next we prove the following claim.

Claim 4.2.2. The natural map Pic(Xj) → Pic(Xj+1) is injective for 0 ≤ j ≤
n− i− 1.

Proof. From the exact sequence

0→ Z→ OXj → O∗Xj
→ 0,

we get the commutative diagram

H1(Xj ,Z) //

ϕ1

��

H1(OXj ) //

ϕ2

��

H1(O∗Xj
) //

ϕ3

��

H2(Xj ,Z)

ϕ4

��
H1(Xj+1,Z) // H1(OXj+1) // H1(O∗Xj+1

) // H2(Xj+1,Z)

Because Pic(Xj) ∼= H1(O∗Xj
) and Pic(Xj+1) ∼= H1(O∗Xj+1

) we have to prove
that ϕ3 is injective. It suffices to show the following for 0 ≤ j ≤ n− i− 1:

(a) h1(OXj
(−Xj+1)) = 0.

(b) H1(Xj ,Z) ∼= H1(Xj+1,Z).

(c) The map H2(Xj ,Z)→ H2(Xj+1,Z) is injective.

By (C) we can prove ht(L⊗−s
j ) = 0 for every j, t and s with 0 ≤ j ≤ n− i−1,

0 ≤ t ≤ n− j − 1 and 1 ≤ s. Hence we get (a) since dimXn−i−1 = i+ 1 ≥ 3.
Next we consider (b) and (c). In this case we need to choose an (n− i)-ladder

carefully. Namely, we take general members X1 ∈ |L|, X2 ∈ |L|X1 , . . . , Xn−i ∈
|L|Xn−i−1 . Then X ⊃ X1 ⊃ · · · ⊃ Xn−i is an (n− i)-ladder such that Xj −Xj+1 is
smooth for every j. Hence Xj −Xj+1 is locally a complete intersection. Here we
use [4, Corollary 2.3.3]. Since Xj+1 is an ample line bundle on Xj , we see that if
2 ≤ i = dimXn−i−1 − 1, then Ht(Xj ,Z)→ Ht(Xj+1,Z) is an isomorphism (resp.
injective) for t = 1 (resp. t = 2) and every j with 0 ≤ j ≤ n− i− 1.

Therefore we get the assertion of Claim 4.2.2.

By this claim we have KX +(n− i)L = OX . So we get C(i, 1). This completes
the proof of Theorem 4.2.1.
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§4.3. The case of i = 2

Next we consider the case where i = 2 and L is ample. Then we can prove the
following:

Theorem 4.3.1. Let (X,L) be a polarized manifold of dimension n ≥ 3. Then
Conjecture 4.1.1 is true for i = 2.

Proof. (I) First we assume that C(2, 1) holds. Then by the same argument as in
the proof of Theorem 4.2.1 we see that C(2, 2) and C(2, 4) hold.

(II) It is trivial that C(2, 2) (resp. C(2, 4)) implies C(2, 3) (resp. C(2, 5)).
(III) Assume that C(2, 3) holds. We will prove that C(2, 5) holds. It suffices

to show that g2(X,L) > 0. By the assumption that 2g1(X,L) − 2 = Ln, we get
(KX+(n−2)L)Ln−1 = 0. Hence by [4, Lemma 2.5.9] we have κ(KX +(n−2)L) ≤ 0.

(III.1) If κ(KX + (n − 2)L) = −∞, then (X,L) is one of the types (1) to
(7.4) in Theorem 2.1 by Remark 2.2(1). By [14, Example 2.10] and [16, Example
2.12] we may assume that (X,L) is a scroll over a smooth surface S because we
assume that ∆2(X,L) > 0. In this case, by [5, (3.2.1)] and [9, (11.8.6) in the proof
of (11.8) Theorem], there exists an ample vector bundle E of rank n−1 on X such
that X = PS(E), L = H(E). Let π : X → S be its morphism. Then

(KX + (n− 2)L)Ln−1 = (−H(E) + π∗(KS + c1(E)))H(E)n−1 = KSc1(E) + c2(E).

If h2(OS) = 0, then h2(OX) = h2(OS) = 0 and ∆2(X,L) = (n − 1)h2(OX) −
h2(L) = −h2(L) ≤ 0 and this contradicts the assumption. Hence h2(OS) ≥ 1 and
by the Serre duality we have h0(KS) ≥ 1. Since E is ample, we see thatKSc1(E) ≥ 0
and c2(E) > 0. Therefore (KX + (n − 2)L)Ln−1 > 0 and this contradicts the
assumption. Therefore there does not exist any (X,L) with κ(KX + (n − 2)L)
= −∞, ∆2(X,L) > 0 and 2g1(X,L)− 2 = Ln.

(III.2) Assume that κ(KX + (n − 2)L) = 0. Let (M,A) be a reduction of
(X,L). Then by Theorem 2.1, (M,A) is a Mukai manifold and by [14, Proposition
2.6 and Example 2.10(7)] we see that g2(X,L) = g2(M,A) > 0. Hence by (III.1)
and (III.2) we get C(2, 5).

(IV) Assume that C(2, 5) holds. Then by the same argument as in (III)
above, we find that κ(KX + (n − 2)L) ≤ 0. If κ(KX + (n − 2)L) = −∞, then
(X,L) is a scroll over a smooth surface S since g2(X,L) > 0. On the other hand
h2(OX) > 0 because g2(X,L) = h2(OX). Hence by the same argument as in (III.1)
above, we see that (KX + (n − 2)L)Ln−1 > 0 and this is impossible. Therefore
κ(KX + (n− 2)L) = 0 and KM + (n− 2)A = OX , where (M,A) is a reduction of
(X,L). Now we prove that (X,L) ∼= (M,A). Assume that (X,L) 6∼= (M,A). Then
(KX +(n−2)L)Ln−1 > (KM +(n−2)A)An−1. But since (KX +(n−2)L)Ln−1 = 0
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and (KM + (n− 2)A)An−1 = 0, this is impossible. Hence (X,L) ∼= (M,A) and we
get C(2, 1).

This completes the proof of Theorem 4.3.1.

Corollary 4.3.1. Let (X,L) be a polarized manifold of dimension n ≥ 3. Assume
that dim Bs|L| ≤ 1. Then Conjecture 4.1.1 is true.

Proof. Since dim Bs|L| ≤ 1, Conjecture 4.1.1 is true for i ≥ 3 by Theorem 4.2.1. On
the other hand, if i = 2, then Conjecture 4.1.1 is also true by Theorem 4.3.1.

§4.4. The case where i = 3 and n ≥ 5

Next we consider the case where i = 3 and n ≥ 5.

Theorem 4.4.1. Let (X,L) be a polarized manifold of dimension n ≥ 5. Then
Conjecture 4.1.1 is true for i = 3.

Proof. (I) By the same argument as in the proof of Theorem 4.2.1, we see that
C(3, 1) implies C(3, 2) and C(3, 4).

(II) It is trivial that C(3, 2) (resp. C(3, 4)) implies C(3, 3) (resp. C(3, 5)).
(III) Assume that C(3, 3) holds. We will prove that C(3, 1) holds. Since

2g1(X,L)− 2 = 2Ln, we have (KX + (n− 3)L)Ln−1 = 0. Hence by an argument
similar to (III) in the proof of Theorem 4.3.1, we see that κ(KX + (n− 3)L) ≤ 0.

(III.1) Assume that κ(KX + (n− 3)L) = 0. Then since κ(KX + (n− 3)L) = 0
and (KX + (n− 3)L)Ln−1 = 0, there exists a positive integer t such that t(KX +
(n− 3)L) = OX . But by [4, Lemma 3.3.2] we have KX + (n− 3)L = OX .

(III.2) Assume that κ(KX + (n− 3)L) = −∞.

Lemma 4.4.1. There does not exist any (X,L) with κ(KX + (n − 3)L) = −∞,
∆3(X,L) > 0 and 2g1(X,L)− 2 = 2Ln.

Proof. If κ(KX + (n− 3)L) = −∞, then (X,L) satisfies either (1), (2.1) or (2.2)
in Proposition 2.1.

(i) If (X,L) satisfies (1) in Proposition 2.1, then by using [16, Example 2.12]
we see that ∆3(X,L) = 0 unless (X,L) is a scroll over a normal projective variety
of dimension 3.

We consider the case where (X,L) is a scroll over a normal projective variety Y
with dimY = m ≥ 2. Then by [5, (3.2.1) Theorem] and [2, Proposition 2.5], we
get the following:

Proposition 4.4.1. Let (X,L) be a scroll over a 3-dimensional normal projective
variety Y . If dimX ≥ 5, then Y is smooth and (X,L) is a classical scroll over Y .
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So we see that (X,L) is a classical scroll, that is, Y is smooth and (X,L) =
(PY (E), H(E)), where E is an ample vector bundle on Y . Then the following general
claim holds.

Claim 4.4.1. Let (X,L) be a polarized manifold of dimension n. Assume that
there exists a smooth projective variety Y of dimension m ≥ 2 and an ample
vector bundle E on Y of rank n−m+ 1 such that X = PY (E) and L = H(E).

(1) If gm(X,L) > 0, then 2g1(X,L)− 2 > (m− 1)Ln.

(2) If ∆m(X,L) > 0, then 2g1(X,L)− 2 > (m− 1)Ln.

Proof. Assume that hm(OY ) ≥ 1. Then κ(Y ) ≥ 0. On the other hand,

2g1(X,L)− 2− (m− 1)Ln = (KX + (n−m)L)Ln−1

= (−H(E) + f∗(KY + det E))H(E)n−1

=−sm(E) + (KY + det E)sm−1(E)

= sm−1(E)s1(E)− sm(E) +KY sm−1(E).

(Here f : X → Y denotes the projection.) Since E is ample, m ≥ 2 and κ(Y ) ≥ 0,
we have sm−1(E)s1(E) − sm(E) > 0 and KY sm−1(E) ≥ 0 by [20, Example 12.1.7
and Lemma 14.5.1]. Therefore 2g1(X,L)− 2 > (m− 1)Ln.

(1) If gm(X,L) > 0, then hm(OY ) > 0 because gm(X,L) = hm(OY ) by [14,
Example 2.10(8)]. Hence by the above argument we get assertion (1).

(2) Assume that ∆m(X,L) > 0. Note that gj(X,L) = 0, hj(OX) = 0 and
hj(L) = 0 for every j ≥ m+ 1 and gm(X,L) = hm(OX) by [14, Example 2.10(8)]
and [16, Lemma 1.6]. Therefore we get ∆j(X,L) = 0 for every j ≥ m + 1, and
by using Remark 3.5(3) we have ∆m(X,L) = (n − m + 1)hm(OX) − hm(L). If
hm(OX) = 0, then ∆m(X,L) = −hm(L) ≤ 0 and this contradicts the assumption.
Therefore hm(OX) > 0. Hence by the above argument we get assertion (2).

Since dimY = 3 and we assume that 2g1(X,L)− 2 = 2Ln, we have ∆3(X,L)
≤ 0 by Claim 4.4.1 if (X,L) is a scroll over a normal projective variety of dimen-
sion 3.

Therefore we have ∆3(X,L) ≤ 0 if (X,L) satisfies (1) in Proposition 2.1.
(ii) Next we assume that (X,L) satisfies (2.1) or (2.2) in Proposition 2.1.

Assume that (W,K) is of type 3 in [4, Theorem 7.7.5]. Then 2g1(X,L) − 2 =
2L5 − 1 6= 2L5. So we may assume that (W,K) is not of this type.

By Proposition 3.1 and the assumption, hj(OX) = hj(OM ) = 0 and gj(X,L)
= gj(M,A) = 0 for every j ≥ 3. By Remark 3.5(2) we have ∆n(X,L) = ∆n(M,A)
= hn(OM )− hn(A) = −hn(A). Moreover by Remark 3.5(3) & (4),

∆j(X,L) = ∆j(M,A) = gj(M,A)−∆j+1(M,A) + (n− j)hj(OM )− hj(A).
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So in order to calculate ∆3(X,L), we have to calculate hj(A) for j ≥ 3. By Lemma
2.2 we see that hj(A) = hj(D) for every j ≥ 3.

(ii.1) If (W,K) ∼= (P6,OP6(1)), then D = OP6(2) and we see that hj(D) = 0
for every j ≥ 2.

(ii.2) Assume that (W,K) is of type 1 in [4, Theorem 7.7.5], that is, (W,K) ∼=
(Q5,OQ5(1)). Then KW is a Cartier divisor and K = KW + 3D. Hence 3D is also
Cartier. On the other hand 2D is Cartier by [4, Lemma 7.5.8]. Hence D = 3D−2D
is also Cartier and D = OQ5(2). Therefore by the Kawamata–Viehweg vanishing
theorem [24, Theorem 1-2-5], we have hj(D) = hj(OQ5(2)) = hj(KW +OQ5(7)) = 0
for every j ≥ 1.

(ii.3) Assume that (W,K) is of type 2 in [4, Theorem 7.7.5]. Let π : W → C be
the P4-bundle over a smooth curve C. Then by [4, Proposition 3.2.1], there exists
an ample vector bundle E on C such that W ∼= PC(E) and H(E) = K. Since W is
smooth in this case, D is a Cartier divisor and D = 2H(E)+π∗(B) for B ∈ Pic(C).

Claim 4.4.2. hj(2H(E) + π∗(B)) = 0 for every j ≥ 2.

Proof. Since Rkπ∗(2H(E) + π∗(B)) = Rkπ∗(2H(E)) ⊗ B = 0 for every positive
integer k, we see that hj(2H(E) + π∗(B)) = hj(π∗(2H(E) + π∗(B))) for every
j ≥ 0. Since dimC = 1, we get hj(π∗(2H(E) + π∗(B))) = 0 for every j ≥ 2. Hence
the assertion follows.

By the above argument we have hj(A) = 0 for every j ≥ 3. Hence by Re-
mark 3.5(4) we see that ∆j(X,L) = ∆j(M,A) = 0 for every j ≥ 3. Therefore
∆3(X,L) = 0 if (X,L) satisfies (2.1) or (2.2) in Proposition 2.1.

From (i) and (ii) above, we see that ∆3(X,L) ≤ 0 if κ(KX + (n− 3)L) = −∞
and 2g1(X,L)− 2 = 2Ln. This yields the assertion of Lemma 4.4.1.

From (III.1) and (III.2) we see that C(3, 3) implies C(3, 1).
(IV) Assume that C(3, 5) holds. We will prove that C(3, 1) holds. First we see

that κ(KX + (n− 3)L) ≤ 0 by the same reasoning of case (III) above.
(IV.1) Assume that κ(KX + (n− 3)L) = 0. Then by the same argument as in

(III.1) above, we get KX + (n− 3)L = OX .
(IV.2) Assume that κ(KX + (n − 3)L) = −∞. By Proposition 3.1 we see

that g3(X,L) = 0 unless (X,L) is a scroll over a normal projective variety of
dimension 3. Next we assume that (X,L) is a scroll over a normal projective variety
Y of dimension 3. Note that Y is smooth and (X,L) is a classical scroll over Y by
Proposition 4.4.1. Then g3(X,L) = h3(OX) (see Remark 3.3). If h3(OX) > 0, then
by Claim 4.4.1 we have 2g1(X,L)− 2 > 2Ln and this contradicts the assumption
C(3, 5). Hence h3(OX) = 0, and so g3(X,L) = 0 also in this case. Therefore
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there does not exist any (X,L) with κ(KX + (n− 3)L) = −∞, g3(X,L) > 0 and
2g1(X,L)− 2 = 2Ln.

By (IV.1) and (IV.2) we get C(3, 1). This completes the proof of Theorem
4.4.1.

By Theorems 4.2.1, 4.3.1 and 4.4.1 we get the following corollary.

Corollary 4.4.1. Let (X,L) be a polarized manifold of dimension n.

(i) Assume that dim Bs|L| ≤ 1. Then Conjecture 4.1.1 is true.

(ii) Assume that dim Bs|L| = 2 and n ≥ 5. Then Conjecture 4.1.1 is true.

Remark 4.4.1. Next we consider the case where n = 4. By the same argument
as in the proof of Theorem 4.4.1, we find that the following implications hold:
C(3.1)⇒ C(3.2), C(3.1)⇒ C(3.4), C(3.2)⇒ C(3.3), and C(3.4)⇒ C(3.5).

Next we consider the implication C(3.3)⇒ C(3.1). By the same argument as
in case (III) of Theorem 4.4.1 we have κ(KX + L) ≤ 0.

If κ(KX +L) = 0, then we can prove that KX +L = OX . So we assume that
κ(KX + L) = −∞. Since n = 4, by using [10, (4.∞)] we see that h4(OX) = 0
and h4(L) = 0 because h4(L) = h0(KX − L) and κ(X) = −∞. By Lemma 2.1,
Proposition 3.1, and Remarks 2.5 and 3.4, we have g3(X,L) = 0 and h3(OX) = 0
unless (X,L) is a scroll over a normal projective variety of dimension 3. Therefore
∆4(X,L) = 0 and ∆3(X,L) = −h3(L) ≤ 0 unless (X,L) is a scroll over a normal
3-fold. But this contradicts the assumption. Therefore if (X,L) is not a scroll over
a normal 3-fold, then C(3.3) implies C(3.1). By the same argument as above, we
see that C(3.5) implies C(3.1) if (X,L) is not a scroll over a normal 3-fold.

If (X,L) is a classical scroll over a smooth 3-fold, then by Claim 4.4.1 we also
find that C(3.3) and C(3, 5) cannot occur.

So in order to prove that Conjecture 4.1.1 for n = 4 and i = 3 is true, it suffices
to consider the case where (X,L) is a scroll over a normal projective variety Y

with dimY = 3, but not a classical scroll over a smooth 3-fold Y .

§4.5. Some remarks

Finally we make some comments about Conjecture 4.1.1.
(a) We can easily see that C(i, 1) implies C(i, 2) and C(i, 4), and C(i, 2)

(resp. C(i, 4)) implies C(i, 3) (resp. C(i, 5)) by the same argument as in the proof
of Theorem 4.2.1.

(b) By looking at the proof of Theorems 4.2.1, 4.3.1 or 4.4.1, we can prove
the following:
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Proposition 4.5.1. If there does not exist any polarized manifold (X,L) with
κ(KX + (n− i)L) = −∞, ∆i(X,L) > 0 (resp. gi(X,L) > 0) and 2g1(X,L)− 2 =
(i− 1)Ln, then C(i, 3) (resp. C(i, 5)) implies C(i, 1).

So it is important to know whether there exists an example of (X,L) with
κ(KX + (n− i)L) = −∞, ∆i(X,L) > 0 (resp. gi(X,L) > 0) and 2g1(X,L)− 2 =
(i− 1)Ln.

(c) We can regard the following result as the case where i = n in Conjecture
4.1.1.

Proposition 4.5.2. Let X be a smooth projective variety of dimension n. Then
the following are equivalent to one another:

(i) KX ∼ OX .

(ii) ∆n(X,L) = 1 and 2g(X,L)− 2 = (n− 1)Ln for any ample line bundle L.

(iii) ∆n(X,L) > 0 and 2g(X,L)− 2 = (n− 1)Ln for any ample line bundle L.

(iv) gn(X,L) = 1 and 2g(X,L)− 2 = (n− 1)Ln for any ample line bundle L.

(v) gn(X,L) > 0 and 2g(X,L)− 2 = (n− 1)Ln for any ample line bundle L.

Proof. (i)⇒(ii): By Remark 3.5(2) we have ∆n(X,L) = hn(OX) − hn(L). By
assumption we get hn(OX) = h0(KX) = 1. Next we calculate hn(L). Since
hn(L) = h0(KX − L) = h0(−L), we see that hn(L) = 0 because L is ample.
Therefore ∆n(X,L) = 1. Of course 2g(X,L)− 2 = (n− 1)Ln since KX ∼ OX .

(ii)⇒(iii): This is trivial.
(iii)⇒(i): Since 0 < ∆n(X,L) = hn(OX) − hn(L), we have hn(OX) ≥ 1. By

the Serre duality we see that h0(KX) ≥ 1. On the other hand, since 2g(X,L)−2 =
(n− 1)Ln, we have KXLn−1 = 0. Therefore KX ∼ OX .

(i)⇒(iv): Since KX ∼ OX , we see that 2g(X,L)−2 = (KX +(n−1)L)Ln−1 =
(n− 1)Ln and h0(KX) = 1. By the Serre duality we have hn(OX) = h0(KX) = 1.
Hence gn(X,L) = hn(OX) = 1 by Remark 3.1(2).

(vi)⇒(v): This is trivial.
(v)⇒(i): By assumption, we have hn(OX) = gn(X,L) > 0. We also note that

KXLn−1 = 0 by the assumption that 2g(X,L)− 2 = (n− 1)Ln. Hence KX ∼ OX

because h0(KX) = hn(OX) > 0.
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