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Hutchinson–Weber Involutions Degenerate
Exactly when the Jacobian is Comessatti

by

Hisanori Ohashi

Abstract

We consider the Jacobian Kummer surface X of a genus two curve C. We prove that
the Hutchinson–Weber involution on X degenerates if and only if the Jacobian J(C) is
Comessatti. Also we give several conditions equivalent to this, which include the classical
theorem of Humbert. The key notion is Weber hexads, which are special sets of 2-torsion
points of the Jacobian. We include an explanation of them and discuss the dependence
between the conditions of the main theorem for various Weber hexads. It results in “the
dual six equivalence”. We also give a detailed description of relevant moduli spaces. As
an application, we give a conceptual proof of the computation of the patching subgroup
for generic Hutchinson–Weber involutions.
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§1. Introduction

Let J(C) be the Jacobian of a curve C of genus two and X the minimal desingu-
larization of X = J(C)/ι, ι = − id. Here every variety we consider is over C, and
X = Km(J(C)) is called the Jacobian Kummer surface of C, which is well-known
to be a K3 surface.

In [11] we classified fixed-point-free involutions on X, or equivalently Enriques
surfaces whose covering K3 surface is isomorphic to X, under the condition that
X is Picard-general. They consist of 10 switches, 15 Hutchinson–Göpel involutions
and 6 Hutchinson–Weber involutions. In this paper we focus on the Hutchinson–
Weber (HW) involutions; the point of our discussion here is that we do not assume
any kind of generality on the curve C.
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HW involutions are closely related to the classical notion of Weber hexads,
which are special subsets of 2-torsion points of the Jacobian, and associated Hes-
sian models of X as treated in [6]. We recall these notions in Section 3.1. Besides
the definition itself, the “dual six” equivalence relation plays an important role in
this paper. In Section 3.2, we study the singularities of Hessian models. We prove
that the singularities of a Hessian model consist of 10 or 11 nodes (Corollary 3.9).
In Section 3.3 we show that an 11th node occurs exactly when the associated HW
involution acquires fixed loci (Proposition 3.10), namely when the HW involution
degenerates.

On the other hand, an abelian surface A is called a Comessatti surface if
it has real multiplication in the maximal order OQ(

√
5) of Q(

√
5) [8]. A classical

theorem of Humbert characterizes Comessatti Jacobians in terms of the branch
points p1, . . . , p6 of the bicanonical map C → (a conic) ⊂ P2, see for example [14].

Theorem 1.1 (Humbert). The Jacobian J(C) is Comessatti if and only if for a
suitable labeling of branch points there exists a conic D which is inscribed to the
pentagon p1 · · · p5 and passes through p6.

We will show that these Comessatti Jacobians are closely related to Weber
hexads. Corresponding to the dual six equivalence, there are essentially 6 ways of
different labelings in the Humbert theorem.

The projective dual of the six points p1, . . . , p6 is the six branch lines of the
double plane model of the Jacobian Kummer surface X = Km(J(C)). The dual of
the conic D induces a new genus two curve on J(C) different from the (translations
of) theta divisors. Equivalently, these curves are the pullbacks of the theta divisors
by the automorphism (±1+

√
5)/2 (Ξ in (4) of the main theorem below). We show

in fact that each of these curves passes through six 2-torsion points, which form a
Weber hexad (Proposition 4.2). As is expected, this curve corresponds exactly to
the 11th node of the Hessian model (Theorem 4.5, (1)⇔(4)). Our main theorem
is as follows.

Theorem 1.2 (Theorem 4.5). Let C be a curve of genus two and (X,W ) its Ja-
cobian Kummer surface and a Weber hexad on it. Then the following conditions
are equivalent.

(1) The Hessian model XW acquires the 11th node.

(2) The Hutchinson–Weber involution σW degenerates in the sense that it acquires
fixed loci.

(3) The unique twisted cubic E passing through the nodes {nα}α∈W of X lies on
the Kummer quartic surface X. (Here the strict transform E ⊂ X satisfies the
relations in Proposition 3.7.)
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(4) The Jacobian J(C) is a Comessatti surface and one curve Ξ among (4.2)
passes through the 2-torsion points corresponding to W .

(5) In the double plane model (Proposition 2.2) projected from one node nw0 (w0 ∈
W ), there exists an additional conic E′ ⊂ P2 which passes through the vertices
of the pentagon formed by five images of {nw | w ∈W −{w0}} and tangent to
the remaining branch line. For example, when W = {0, 12, 23, 34, 45, 51} and
w0 = 0 as in Proposition 2.2, then the pentagon is formed by l1, . . . , l5 and the
last line is l6.

The equivalence between (4) and (5) is nothing but the above theorem of Hum-
bert, stated in the dual projective space. But our theorem is a bit extended in the
sense that we refer to the Weber hexads. There are six equivalence classes of Weber
hexads, which we will call the “dual” six (Section 3), and we can show that for
equivalent Weber hexads, the conditions in the theorem are equivalent (Proposition
4.7). Thus our theorem is more quantitative than known results, even considered
as the extension of the theorem of Humbert, and the equivalence with conditions
(1) and (2) is apparently new. This theorem explains the title of the article.

Section 2 reviews facts about Jacobian Kummer surfaces and fixes the nota-
tion. Section 3 explains Weber hexads, Hessian models and the HW involutions.
Proposition 3.7 is the essential ingredient. Section 4 studies the relationship be-
tween Comessatti Jacobian surfaces and Weber hexads. The main theorem 4.5 is
proved there.

In Section 5 we give a detailed description of the moduli space of Jacobian
Kummer surfaces, Jacobian Kummer surfaces equipped with an equivalence class
of Weber hexad and the locus of degenerate Hutchinson–Weber involutions. We
use the theory of period maps for K3 surfaces. We obtain the irreducibility of the
moduli space of Comessatti Jacobian Kummer surfaces (Theorem 5.7).

In the last section, we give an application of this characterization to the com-
putation of patching subgroups (see [11]) of HW involutions. It seems interesting to
the author that we can derive consequences for Picard-general Jacobian Kummer
surfaces by studying degenerations.

In this paper we restrict ourselves to genus two curves. Extension to reducible
principally polarized abelian surfaces, that is, products of elliptic curves, is entirely
left to further research.

§2. Jacobian Kummer surfaces

Here we recall the construction of Jacobian Kummer surfaces and fix the notation.
We use the same indexing of divisors as in [11].
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Let C be a smooth projective curve of genus 2. Let J(C) = Pic0(C) be
its Jacobian variety. It has the inversion morphism ι : x 7→ −x. We denote by
X = Km(J(C)) the quotient surface J(C)/ι and by X = Km(J(C)) the minimal
resolution,

J(C) ι−→ X
min. res’n←−−−−−− X.

Then X is a K3 surface associated to C and called the Jacobian Kummer surface
of C.

In the following we introduce several divisors on X whose configuration is
called the (16)6-configuration on X. Recall that the morphism associated to the
canonical system |KC | represents C as a double cover of P1 ramified at six Weier-
strass points p1, . . . , p6 ∈ C. Using them, the set of 2-torsion points of the Jacobian
can be written as

J(C)2 = {α ∈ Pic0(C) | 2α ∼ 0} = {0} ∪ {[pi − pj ] | i 6= j}.

2-torsion points naturally correspond to the nodes nα of X and exceptional curves
Nα of X. On the other hand, the set of theta characteristics of C can be written
as

S(C) = {β ∈ Pic1(C) | 2β ∼ KC}
= {[pi] | i = 1, . . . , 6} ∪ {[pi + pj − pk] | i 6= j 6= k 6= i}.

They also correspond to smooth rational curves on X and X called tropes; the
tropes T β ⊂ X and Tβ ⊂ X are the strict transforms of the theta divisor

Θβ = {[p− β] ∈ J(C) | p ∈ C}.

The incidence relation between Nα and Tβ is given by

(Nα, Nα′) = −2δα,α′ , (Tβ , Tβ′) = −2δβ,β′ ,

(Nα, Tβ) = 1 ⇔ α+ β ∈ {[p1], [p2], [p3], [p4], [p5], [p6]},
(Nα, Tβ) = 0 otherwise,

where δ is the Kronecker symbol. We will abbreviateN[pi−pj ] toNij and T[pi+pj−pk]

to Tijk, etc. We record the relation Tijk = Tlmn for any permutation i, . . . , n of
1, . . . , 6.

We will denote by H the divisor class of 2T1 + N0 +
∑6
j=2N1j ; note that

any analogous divisor 2Tβ +
∑

(Tβ ,Nα)=1Nα gives the same divisor class as H.
The following fact is classically known; it is the reason for calling X the Kummer
quartic surface.
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Proposition 2.1 (Kummer quartic model). The linear system |H| induces an
embedding of X into P3 as a quartic surface with sixteen nodes. The trope T β ⊂ X
is a smooth conic on X and the unique hyperplane containing T β cuts X doubly
along T β.

We usually regard X as embedded in P3. Projecting X from one of its nodes,
say n0, we obtain the following model.

Proposition 2.2 (double plane model). The linear system |H − N0| induces a
generically two-to-one morphism of X onto P2. It contracts the exceptional
curves Nα other than N0. If we denote the images of Ti by li for i = 1, . . . , 6,
then X (with n0 blown up) is a double cover of P2 branched along the union

⋃
li

of six lines . The image of N0 is a conic to which all li are tangent.

We introduce two kinds of basic automorphisms.

Proposition 2.3. For each α0 ∈ J(C)2, the translation automorphism in α0 on
J(C) induces on X an automorphism called a translation. It acts on H2(X,Z) by
H 7→ H, Nα 7→ Nα+α0 and x 7→ x for x orthogonal to {H,Nα}.

Similarly for each β0 ∈ S(C) there exists an automorphism of X called a
switch that acts on H2(X,Z) by: H 7→ 3H −

∑
α∈J(C)2

Nα, Nα 7→ Tα+β0 and
x 7→ −x for x orthogonal to {H,Nα}.

These automorphisms exist and have the same action on cohomology for any
Jacobian Kummer surface X. Therefore we may say that translations and switches
do not degenerate under specialization of Jacobian Kummer surfaces.

§3. The Hessian model

Let X be a Jacobian Kummer surface associated to a curve C of genus 2. In this
section we focus on the Hessian model XW of X, treated for example in [6]. After
giving a self-contained proof of Proposition 3.4, we consider singularities of XW .
The point is that we do not assume that C is general, in any sense.

§3.1. Weber hexads

The Hessian model XW is associated to a Weber hexad W , which is a special
subset of J(C)2. We first explain this notion and the equivalence relation among
them, which is essential to this paper.

Since Weber hexads have a rather complicated definition, following the sug-
gestion of the referee, we at first do not use it, but instead we proceed with the
handy definition below. Later in this subsection, we will explain the definition given
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in [6], which we need in the proof of Proposition 4.2, and show the equivalence of
the two definitions in Lemma 3.3.

Definition 3.1. A subset W ⊂ J(C)2 is called a Weber hexad if it has one of the
forms

{0, ij, jk, kl, lm,mi} or {ij, jk, ki, il, jm, kn},

where {i, . . . , n} is some permutation of {1, . . . , 6}, and ij for example means the
divisor class of pi − pj in the notation of the previous section.

We see easily that there are 192 Weber hexads, 72 of which are in the first
form and 120 in the second form.

Weber hexads are essentially ways to express the “dual set” of {1, . . . , 6}.
Recall that the symmetric group S6 has two permutation representations. One is
the natural representation on {1, . . . , 6} and the other is the one twisted by the
outer automorphism.

In [11] we proved that if the curve C is generic, then the 192 Hutchinson–
Weber involutions σW (constructed for each W , see Subsection 3.3) are divided
into exactly six conjugacy classes in Aut(X). Moreover we could see that the
permutation on the labels of Weierstrass points of C and the permutation on
these six conjugacy classes are related by an outer automorphism, hence these six
conjugacy classes can be regarded as the dual set. In Remark (2) after Proposition
7.4 of [11] we have given one possible description of this correspondence. Let us
here give a more visible one.

Let us recall the classical description of the dual set, found for example in [1].
An element in S6 of the form (ij) is called a duad; similarly (ij)(kl)(mn) is called
a syntheme; a five-element set is called a total if it consists of five synthemes
that contain all fifteen duads. There are exactly six totals and this is the classical
description of the dual set.

By definition, a Weber hexad is one of the two forms. The pictures below
indicate the correspondence from a Weber hexad to a total.
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The first picture indicates the correspondence

W1 = {0, 12, 23, 34, 45, 51} 7→
{(12)(35)(46), (14)(23)(56), (16)(25)(34), (13)(26)(45), (15)(24)(36)},

where the letter 6 is regarded as distinguished. The second picture indicates the
correspondence

W2 = {12, 23, 31, 14, 26, 35} 7→
{(14)(23)(56), (12)(35)(46), (13)(26)(45), (15)(24)(36), (16)(25)(34)}.

In this example, since we obtain the same total, we see that σW1 and σW2 are
conjugate in Aut(X) when C is generic. In the same way, for arbitrary C, we
define the equivalence relation on Weber hexads by W1 ∼ W2 if and only if they
correspond to the same total. In the following we refer to this as the dual six
equivalence relation. Using the picture, it is easy to find six representatives of
equivalence classes of Weber hexads. For example, the six Weber hexads of the
form

{0, 12, 2i, ij, jk, k1},

where i, j, k runs over permutations of 3, . . . , 5, constitute a set of representatives.
The geometric phenomenon which is the subject of this paper is related to

this intrinsic equivalence relation on Jacobian Kummer surfaces.
Next we recall the definition of Weber hexads in [6] and show the equiva-

lence of the two definitions. Let us define a symplectic form on J(C)2 by (α, α′) =
#(α∩α′) mod 2 ∈ F2, where we identify α with a two-element subset of {1, . . . , 6}.
A 2-dimensional affine subspace of J(C)2 (that is, a translation of a 2-dimensional
linear subspace) is called a Göpel tetrad if it is a translation of a totally isotropic
2-dimensional linear subspace. Other 2-dimensional affine subspaces are called
Rosenhain tetrads; equivalently they are translations of nondegenerate 2-dimen-
sional linear subspaces. We easily see that there are 60 (resp. 80) Göpel (resp.
Rosenhain) tetrads.
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We use the notation A 	 B to denote the set-theoretic symmetric difference
(A ∪B)− (A ∩B). The original definition is as follows.

Definition 3.2. A six-element subset of J(C)2 is called a Weber hexad if it can
be written in the form G 	 R, where G is a Göpel tetrad and R is a Rosenhain
tetrad such that #G ∩R = 1.

To clarify, in the next lemma we will call a set W as in Definition 3.1 a W-set
and use the name Weber hexad for a set as in Definition 3.2. The lemma asserts
in fact they coincide.

Lemma 3.3. Every W-set is a Weber hexad. Conversely any Weber hexad is a
W-set.

Proof. The former part is straightforward. We see that

{0, ij, jk, kl, lm,mi} = {0, ij, jk, ki} 	 {ki, kl, lm,mi}

with {0, ij, jk, ki} a Rosenhain tetrad and {ki, kl, lm,mi} = {0, il, jn, km}+ ki a
Göpel tetrad. Similarly {ij, jk, ki, il, jm, kn} = {0, ij, jk, ki} 	 {0, il, jm, kn}.

We prove the latter part. A permutation of letters 1, . . . , 6 induces an isom-
etry of J(C)2. This correspondence induces an isomorphism S6 ' Sp(4,F2),
hence the affine isometry group of J(C)2 can be written as (Z/2Z)4 · Sp(4,F2) '
J(C)2 · S6 =: K.

First we show that K acts on the set of Weber hexads transitively. Given
W , we translate it appropriately and can assume it is of the form G 	 R where
G ∩R = {0}. Then we easily check that the only possibility is G = {0, ij, kl,mn}
and R = {0, ik, km,mi} for a suitable permutation i, . . . , n of 1, . . . , 6. This shows
the transitivity.

Next we compute the stabilizer subgroup H of W = {ij, kl,mn, ik, km,mi}.
The intersection S6 ∩H consists of six elements τστσ−1 for τ ∈ S({i, k,m}) and
σ = (ij)(kl)(mn). On the other hand, for each α ∈ J(C)2 − W there exists a
unique way of expressing W as G′ 	 R′ with G′ ∩ R′ = {α}. Thus there exist six
choices of ν ∈ S6 such that να ∈ K sends W onto itself. In this way we obtain
6 · 10 = 60 elements in H. Thus there are at most 246!/60 = 192 Weber hexads.

On the other hand we already saw that there are 192 W-sets. Hence the lemma
is proved.

A final remark is on the generating relations of the dual six equivalence. In the
generic case of [11], we saw that conjugacy relations between Hutchinson–Weber
involutions are given by translations and switches (Proposition 2.3). Translations
give the equivalence W ∼ W + α (α ∈ J(C)2). When G ∩ R = {0}, which we
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can always assume after a translation, the equivalence by switches is expressed
as W = G 	 R ∼ G 	 R⊥. Thus the dual six equivalence is generated by these
relations.

§3.2. The Hessian model

The Hessian model XW is constructed for every Weber hexad W . In the following,
we consider the pair (X,W ) consisting of a Jacobian Kummer surface X and
a Weber hexad W . The next proposition is known to experts (see [6] and its
references), but our algebraic proof is more suited for what follows.

Proposition 3.4 (The Hessian model). The linear system |L| := |2H−
∑
α∈W Nα|

maps X birationally to a quartic surface XW whose equations are of the form

s1 + · · ·+ s5 = 0, s1s2s3s4s5(λ1/s1 + · · ·+ λ5/s5) = 0,

where λi are nonzero constants and si are homogeneous coordinates of P4.

Proof. As indicated above, Weber hexads are unique up to the affine symplectic
group. The group (Z/2Z)4 lifts to translation automorphisms of J(C) in the ele-
ments of J(C)2, which commute with the quotient by ι. The group Sp(4,F2) ' S6

acts as permutations of the letters. So it is enough to check the proposition for a
particular Weber hexad. Let us take W = {12, 23, 31, 14, 25, 36}.

Let us consider the divisors (cf. [6])

S1 = T2 + T3 + T124 + T134 +N0 +N24 +N26 +N34 +N35 +N56,

S2 = T123 + T145 + T134 + T125 +N15 +N26 +N34 +N45 +N46 +N56,

S3 = T1 + T3 + T125 + T146 +N0 +N15 +N16 +N34 +N35 +N46,

S4 = T123 + T124 + T146 + T136 +N16 +N24 +N35 +N45 +N46 +N56,

S5 = T1 + T2 + T136 + T145 +N0 +N15 +N16 +N24 +N26 +N45.

It is easy to see that they belong to |L| and a careful check using them shows that
|L| is base-point-free. Thus the associated map ϕ = ϕL is a morphism. By the
Kawamata–Viehweg vanishing and Riemann–Roch we see that h0(L) = 4. Hence
the sections si ∈ H0(L) corresponding to Si are linearly dependent. On the other
hand, by evaluating at general points ofNα for several α, we can check that any four
among {s1, . . . , s5} are linearly independent. This shows that, up to adjusting the
scalars, we can assume

∑5
i=0 si = 0. By this equation, we regard the morphism ϕ

as a morphism into {
∑5
i=1 si = 0} ' P3 in P4. We denote by XW the image of ϕ.

Let us denote the hyperplane {si = 0} by Hi. Ten divisors Tβ appearing
in
⋃
Si are mapped to lines on XW . They appear with multiplicity two in

⋃
Si,

hence if Tβ ⊂ Si ∩ Sj then we can write ϕ(Tβ) = Hi ∩ Hj =: Lij . Similarly, the
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ten divisors Nα appearing in
⋃
Si are contracted to a point on XW . They appear

exactly three times in
⋃
Si, so we can write ϕ(Nα) = Hi ∩ Hj ∩ Hk =: Pijk if

Nα ⊂ Si ∩ Sj ∩ Sk. In fact these ten Nα are exactly those with α ∈ J(C)2 −W .
Let us look at the hyperplane section H1 ∩XW more closely. It contains four

lines L1j , j = 2, . . . , 5, namely the images of T134, T3, T124 and T2. General points
of these four tropes are separated from each other by the divisors Si. Thus the
hyperplane H1 cuts XW along four distinct lines. This implies that degXW = 4
and ϕ is birational. Let f(s1, s2, s3, s4) be the quartic equation of XW , s5 being
replaced by −(s1 + · · · + s4). The argument above shows that f(0, s2, s3, s4) is a
multiple of s2s3s4(s2+s3+s4). Similar consequences hold for s2 = 0, s3 = 0, s4 = 0.
In summary it follows that f is a linear combination of the terms

s1s2s3s4, s2s3s4(s2 + s3 + s4), s1s3s4(s1 + s3 + s4),

s1s2s4(s1 + s2 + s4), s1s2s3(s1 + s2 + s3).

Using s5, these terms can be written as a linear combination of

s1s2s3s4s5/si, i = 1, . . . , 5.

Thus we derived the equation. We have λi 6= 0 because XW is irreducible.

Below we use the notation ϕ : X → XW of the previous proof.

Corollary 3.5. XW is normal.

Proof. Let ψ : X → Y be the morphism which contracts all the (−2)-curves on X
orthogonal to L. Then Y is a normal surface with at most rational double points,
and the canonical sheaf of Y is trivial. Since the exceptional sets of ψ and ϕ

coincide, ϕ factors as ϕ = νψ. By the adjunction formula KXW is also trivial, so
ν is etale in codimension one, hence XW is regular in codimension one. Since XW

is a complete intersection, by Serre’s criterion we see that XW is normal.

Corollary 3.6. Each Pijk is an ordinary node. (Recall that {Pijk} = {ϕ(Nα) |
α ∈ J(C)2 −W}.)

Proof. This follows from ϕ−1(Pijk) = Si ∩ Sj ∩ Sk = Nα.

Proposition 3.7. Suppose a (−2)-curve E different from {Nα} is contracted
by ϕ. Then E has to satisfy the relations

(E,Nα) = 0, α ∈ J(C)2 −W,
(E,Nα) = 1, α ∈W,
(E,H) = 3.

Moreover, such a E is unique if it exists.
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Proof. By the previous corollary, E and the exceptional Nα do not meet, otherwise
the singularity is not a node. Hence (E,Nα) = 0 for α ∈ J(C)2−W . Let us consider
Nα for α ∈W . By the projection formula (ϕ∗(Nα),OXW (1)) = (Nα, L) = 2, hence
we see that ϕ∗(Nα) is a cycle of degree 2. It is irreducible and reduced by the
Zariski main theorem, so ϕ∗(Nα) = ϕ(Nα) is a smooth conic. Hence ϕ induces the
isomorphism Nα

∼→ ϕ(Nα).
If Nα, α ∈W , intersects the exceptional E with intersection number ≥ 2, then

clearly ϕ(Nα) acquires a singular point, a contradiction. See the picture below. It
follows that (E,Nα) = 0 or 1. On the other hand (E,L) = (E, 2H −

∑
α∈W Nα)

= 0, thus 0 ≤ (E,H) ≤ 3. (E,H) = 0 is prohibited by Proposition 2.1.

E

Nα

r
ϕ(E)

ϕ(Nα)

E

Nα

r
ϕ(E)

ϕ(Nα)

Let us denote by E the corresponding curve on X = J(C)/ι. This is a smooth
rational curve passing through 2(H,E) nodes.

Assume (H,E) = 1. Then the inverse image of E in J(C) is a double cover
branched at two points of E, hence a rational curve. Since an abelian surface does
not contain any rational curve, this is a contradiction.

Assume (H,E) = 2. Then E is an irreducible conic in P3 passing through four
nodes belonging to W . These nodes therefore must be contained in a hyperplane
of P3, which contradicts the lemma below.

Assume (H,E) = 3. Then E is a cubic curve passing through the six nodes
of W . By the lemma below, it is exactly the twisted cubic determined by W and the
uniqueness follows from the Steiner construction [7]. Thus the whole proposition
is reduced to the next lemma.

Lemma 3.8. If we identify the Weber hexad W with the corresponding nodes nα
of X, then no four points of W are coplanar. That is, they are in general position
with respect to O(1).
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Proof. We begin by showing that no three nodes of X are collinear. Assume the
contrary. Then since X is a quartic surface, the line l containing them lies on X

and (l,H) = 1 (the intersection numbers are computed on X, so we identify l with
its strict transform on X). By the relation

(3.1) H ∼ 2Tβ +
∑

(Nα,Tβ)=1

Nα

we see that (l, Tβ) = 0. On the other hand, clearly for (at least) three α we
have (l, Nα) = 1. Summing up the relations (3.1) over β ∈ S(C), we obtain
16H ∼ 2

∑
Tβ + 6

∑
Nα. The left-hand side intersects l in 16 elements but the

right-hand side intersects l in at least 6 · 3 = 18 elements, hence we obtain a
contradiction.

Next, because the incidence relation between nodes and tropes is preserved
under the affine symplectic group G, it suffices to prove the lemma in case W =
{12, 23, 31, 14, 25, 36} for example. Choose four points {12, 23, 14, 25}. We see that
the trope T2 passes through the points n12, n23, n25 but not through n14. By Propo-
sition 2.1 a trope is a conic and coincides with the hyperplane section. Thus the
four points are not coplanar. Similarly for any four points from W , we can find a
trope containing three but not all four points. Thus we obtain the lemma.

Corollary 3.9. The singularities of XW consist of 10 or 11 ordinary nodes. If X
is Picard-general, i.e., the Picard number of X is 17, then XW has only 10 nodes.

Proof. The former part follows from the previous proposition. The latter part is
because for Picard-general X, NS(X) is generated over Q by the divisors {H,Nα},
but the existence of E above imposes one more linearly independent element.

§3.3. Hutchinson–Weber involutions

We keep the notation as before. Let us consider the Hessian model XW : {
∑
si =∑

λi/si = 0} defined in P4. We consider the Hutchinson–Weber involution defined
by σW : (s1, . . . , s5) 7→ (λ1/s1, . . . , λ5/s5). It induces a biregular involution on X

(since X is a minimal surface), which we also denote by σW . As is well-known,
an automorphism of a K3 surface degenerates if and only if there is a (−2)-class
in the Néron–Severi group which is perpendicular to the invariant sublattice. The
degeneration of σW can be described precisely as follows.

Proposition 3.10. The following are equivalent:

(1) There exists one more node other than the 10 nodes of Corollary 3.6.

(2) σW is not fixed-point-free.

(3) For some choice of signs, we have ±
√
λ1 ± · · · ±

√
λ5 = 0.



Hutchinson–Weber Involutions 119

Proof. (1)⇔(3): The 11th node p corresponds to the rational curve E of Propo-
sition 3.7. The hyperplane {si = 0} cuts XW along four lines in P2 in general
position. Its singularities are the six nodes appearing in Corollary 3.6. Hence p is
located inside the open set {s1 · · · s5 6= 0}. By the Jacobian criterion of smoothness,
we easily deduce that the 11th node should satisfy the relation

(3.2) rank

(
1 1 1 1 1

λ1/s
2
1 λ2/s

2
2 λ3/s

2
3 λ4/s

2
4 λ5/s

2
5

)
≤ 1.

Thus its existence is equivalent to the condition (3).
(2)⇔(3): First we notice that σW sends the line Lij = {si = sj = 0} to the

point Pklm = {sk = sl = sm = 0}, where {i, . . . ,m} is an arbitrary permutation of
{1, . . . , 5}. Vice versa, Pklm is sent to Lij since σW is an involution. Thus a fixed
point can occur only inside the open set {s1 · · · s5 6= 0}. Here clearly the fixed
point is given by the further condition

λ1

s2
1

=
λ2

s2
2

= · · · = λ5

s2
5

,

which is equivalent to (3.2). Thus it is equivalent to (3).

By the above proof, the fixed point of σW corresponds to the 11th node of XW .
In this case since σW is non-symplectic, it fixes the whole exceptional curve E.

Remark 3.11. The equation

s1 + · · ·+ s5 =
s3

1

λ1
+ · · ·+ s3

5

λ5
= 0,

which defines a cubic surface, is called the Sylvester form of the cubic. It is known
that a generic cubic surface can be written in the Sylvester form in a unique way
up to permutations and homothety, so this equation is well-studied in connection
with the moduli problem for cubic surfaces. Our XW is exactly of the form of
“Hessian surface” of this cubic, hence the name. We note that there are four
parameters for cubic surfaces, while there are only three parameters for Jacobian
Kummer surfaces. Hence general Hessian K3 surfaces cannot be obtained as the
Hessian model of Jacobian Kummer surfaces. In fact Rosenberg [12] characterizes
this locus inside the moduli of Hessians.

It is known that condition (3) in the preceding proposition represents the
locus of singular cubic surfaces (see for example [5]). Genus two curves and singular
cubics constitute the Kummer divisor and the boundary divisor inside the four-
dimensional moduli space of cubic surfaces, respectively. Thus our object, the
degenerations of Hutchinson–Weber involutions, corresponds to the intersection of
these divisors.
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§4. Comessatti abelian surfaces and the main theorem

We begin with a definition.

Definition 4.1. An abelian surface A is called a Comessatti surface if it has real
multiplication in the maximal order OQ(

√
5) of Q(

√
5), i.e., if OQ(

√
5) = Z[(1 +√

5)/2] ⊂ End(A).

Let us suppose that the Jacobian J(C) =: A is at the same time Comessatti.
We take a theta divisor Θβ as in Section 2 and let ϕ 7→ ϕ′ be the Rosati involution
on End(A) associated to OA(Θβ) which is independent of β. We note that by the
positivity of the Rosati involution, it acts on OQ(

√
5) trivially. The endomorphism

ε = (1+
√

5)/2 is in fact an automorphism whose inverse is η = ε−1 = (−1+
√

5)/2.
By [9, Section 21], we get

(4.1) (Θβ , ε
∗Θβ) = trQ(

√
5)/Q(εε′) = 3

and similarly for η. Since Θβ contains six 2-torsion points [β − pi] (i = 1, . . . , 6),
Ξ := ε∗Θβ also contains six 2-torsion points wi = ε−1([β − pi]).

Proposition 4.2. The subset W = {w1, . . . , w6} of J(C)2 is a Weber hexad,
whose definition is in Section 3.1.

Proof. Clearly the sum
∑
wi is zero. Hence the partial sums w1 + w2 + w3 and

w4 + w5 + w6 are equal. We denote this element by x. It is easy to see that
x 6∈W . Then I = {x,w1, w2, w3} and J = {x,w4, w5, w6} are affine 2-dimensional
subspaces of J(C)2 which satisfy I 	 J = W . Recall that any 2-dimensional affine
subspace is either a Rosenhain tetrad or a Göpel tetrad. Therefore as to the types
of these subspaces, only three possibilities occur. Up to translation we can assume
x = 0 without loss of generality.

Assume that I, J are both Rosenhain tetrads. We can assume I={0, 12, 23, 31}
as permutations. Since wi are distinct, J is either {0, 14, 45, 51} or {0, 45, 56, 64}
up to permutations which preserve {1, 2, 3}. For each form of J we deduce that
(Ξ,Θ123) ≥ 4 and get a contradiction to (4.1).

Assume that I, J are both Göpel tetrads. We can assume I = {0, 12, 34, 56}
as permutations. Then as in the former case, J can be only {0, 23, 45, 61} up to
permutations preserving I. Again (Ξ,Θ123) ≥ 4 and we get a contradiction.

Thus W = I 	 J with I, J Rosenhain and Göpel. Hence W is a Weber hexad
by Lemma 3.3.
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Obviously this proposition is also true for η. We thus obtain the following set
consisting of genus two curves on J(C):

(4.2) W = {ε∗Θβ | β ∈ S(C)} ∪ {η∗Θβ | β ∈ S(C)}.

Our observations in Lemma 4.4 and Proposition 4.7 below show that, if we look
at the set of Weber hexads passed through by curves in W, then it constitutes
exactly a dual six equivalence class of Weber hexads. In this way Comessatti
Jacobian surfaces and Weber hexads are closely related. The proof of this fact is
completed in Proposition 4.7 after our main theorem 4.5.

To proceed, first we note that under the isomorphism

(4.3) NS(J(C)) ∼→ Endsym(J(C)) = {ϕ ∈ End(J(C)) | ϕ′ = ϕ}

of [3, Chapter 5], we have c1(O(Θβ)) 7→ id and c1(O(ε∗Θβ)) 7→ ε2. By the relation
ε4 − 3ε2 + 1 = 0, we obtain the algebraic equivalence η∗Θβ ≈ 3Θβ − ε∗Θβ .

Recall that ι = − id is the inversion automorphism of J(C).

Lemma 4.3. Let F be a smooth genus two curve on J(C). Then ι∗F = F (as a
set) if and only if F passes through six 2-torsion points.

Proof. First assume ι∗F =F . Then, since J(C)=Pic0(F )=H1(F,OF )/H1(F,Z),
ι|F acts as a hyperelliptic involution and it has six fixed points which are 2-torsion.
Conversely suppose F contains six 2-torsion points. They are fixed by ι. Since ι
acts on H2(J(C),Z) trivially, (F, ι∗F ) = (F 2) = 2 but #F ∩ ι∗F ≥ 6 implies
F = ι∗F .

Lemma 4.4. Curves F ∈ W (for the definition of W see (4.2)) are characterized
by the conditions

ι∗F = F (as sets) and F ≈ ε∗Θ or η∗Θ,

where ≈ is algebraic equivalence. Moreover different F ∈ W pass through distinct
Weber hexads. Hence we obtain 32 Weber hexads from W.

Proof. It is clear that every F ∈ W satisfies the conditions. Conversely let F
satisfy the conditions. By the algebraic equivalence and h0(O(F )) = 1, F is a
translate of some pullback of a theta divisor: F = ε∗Θβ + γ, γ ∈ J(C). For any
x ∈ ε∗Θβ we have −x ∈ ε∗Θβ and the former condition implies −(−x + γ) ∈ F ,
hence x ∈ ε∗Θβ + 2γ. Thus 2γ = 0.

The last assertion follows from Proposition 3.7. In fact, since (ε∗Θβ , η
∗Θβ) =

(ε∗Θβ , 3Θβ − ε∗Θβ) = 7, there are 32 curves in W. Let F ∈ W. Then by the
conditions, it corresponds to the unique twisted cubic curve in Proposition 3.7.
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They are determined by the six nodes of X. Hence F can be recovered from the
Weber hexad.

Now we arrive at the following theorem.

Theorem 4.5. Let C be a curve of genus two and (X,W ) its Jacobian Kummer
surface and a Weber hexad on it. Then the following conditions are equivalent:

(1) The Hessian model XW acquires the 11th node.

(2) The Hutchinson–Weber involution σW degenerates in the sense that it acquires
fixed loci.

(3) The unique twisted cubic E passing through the nodes {nα}α∈W of X lies on
the Kummer quartic surface X. (Here the strict transform E ⊂ X satisfies the
relations in Proposition 3.7.)

(4) The Jacobian J(C) is a Comessatti surface and one curve Ξ among the set W
of (4.2) passes through the 2-torsion points corresponding to W .

(5) In the double plane model (Proposition 2.2) projected from one node nw0

(w0 ∈ W ), there exists an additional conic E′ ⊂ P2 which passes through the
vertices of the pentagon formed by five images of {nw | w ∈W−{w0}} and tan-
gent to the remaining branch line. For example, when W ={0, 12, 23, 34, 45, 51}
and w0 = 0 as in Proposition 2.2, the pentagon is formed by l1, . . . , l5 and the
last line is l6.

Proof. (1)⇔(2) follows from Proposition 3.10. (2)⇔(3) follows from Proposi-
tion 3.7.

(3)⇒(4): The inverse image Ξ⊂J(C) of E is a genus two curve with (Ξ,Θ)=3
since E is a cubic curve. Then the endomorphism ϕ corresponding to the divisor Ξ
in the isomorphism (4.3) (which holds in general) satisfies the relation ϕ2−3ϕ+ 1
= 0, hence J(C) is Comessatti. By construction Ξ corresponds to some element
in W, by Lemma 4.4. (4)⇒(3) is already mentioned in the proof of Lemma 4.4.

(3)⇔(5): These correspond to each other as E′ is the image of E under the
projection X → P2.

Remark 4.6. The proof of Humbert’s theorem in [14] covers (3)⇔(4)⇔(5) except
that it does not mention Weber hexads.

Proposition 4.7. If W and W ′ are dual six equivalent, then the conditions of the
previous theorem for W and W ′ are equivalent.

Proof. Condition (3) is the easiest translated into this proposition. By using Propo-
sition 2.3, we can easily see that the images σα0(E), σβ0(E) (by translations and
switches) satisfy the conditions in Proposition 3.7 for other equivalent W ’s.
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§5. Periods

General HW involutions σW are fixed-point-free, hence they determine Enriques
surfaces. The moduli space of Enriques surfaces obtained in this way is isomorphic
to an open set of the moduli space of pairs (X,W ) where X is a Jacobian Kummer
surface and W is a Weber hexad, considered modulo dual six equivalence. By what
we have studied, we can describe the boundary divisor consisting of Kummer
surfaces of Comessatti Jacobians explicitly.

First we recall the periods of Jacobian Kummer surfaces. We fix a lattice
T = U(2) ⊕ U(2) ⊕ 〈−4〉, which is isomorphic to the transcendental lattice of
Picard-general Jacobian Kummer surfaces. Recall that T has a unique embedding
into a K3 lattice LK3. We formally take a Z-generator {Nα, Tβ} of the orthogonal
complement NS of T analogous to that in Section 2. Let Φ =

∑
(Nα+Tβ)/4 ∈ LK3.

Under this notation, we have the following criterion.

Proposition 5.1 ([10, Theorem 6.3]). Let X be a K3 surface. Then X is iso-
morphic to a Jacobian Kummer surface if and only if there exists a marking
H2(X,Z) ∼→ LK3 inducing an embedding TX ⊂ T such that under this marking,
there exists no (−2)-element E in NS(X) which is orthogonal to Φ.

Let us compute the obstruction E. We put E = ENS + ET according to
the decomposition LK3,Q = NSQ ⊕ TQ (notice that NS is formally a sublattice
of NS(X), not equal to NS(X) here). After some computation, we obtain ENS =
±H/4± (

∑
α∈RNα)/2, where R is a Rosenhain tetrad. Correspondingly we have

(E2
T ) = −1/4. Conversely, for any ET ∈ T ∗ with (E2

T ) = −1/4, it is easy to
see that there exists an element ENS ∈ NS∗ such that ENS + ET ∈ LK3 and
((ENS +ET )2) = −2. (In fact any (1/4)-element in the discriminant group NS∗/NS
corresponds to a patching element of a switch of an even theta characteristic [11,
Section 5].) Let

E = {e ∈ T ∗ | (e2) = −1/4}
and He ⊂ TC be the hyperplane orthogonal to e ∈ E . Since T has a unique primitive
embedding into LK3, we obtain

Proposition 5.2. The moduli space JKS of Jacobian Kummer surfaces is iso-
morphic to (

D(T )−
⋃
e∈E

He

)
/O(T ),

where D(T ) = {[ω] ∈ P(TC) | (ω2) = 0, (ω, ω) > 0} is the period domain.

We remark that we can show O(T ) acts on E transitively, hence the removed
divisor is irreducible in the moduli space. The proof is the same as that of Lemma
5.5 below.
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Next we consider the Weber hexads. For the time being, suppose that NS, T
are identified with the Néron–Severi NS(X) and the transcendental lattice TX of a
Picard-general surface X. Recall that the discriminant group T ∗X/TX has exactly
six cyclic subgroups CW of order 4, whose generators have the norm (3/4) mod
2Z. These subgroups are exactly those arising as the patching subgroups of HW
involutions [11, Section 7]. In other words they are one-to-one to the dual six. The
correspondence is given by

(5.1) (the class of) W ↔ CW =
〈

3
4
H − 1

2

(∑
α∈W

Nα

)〉
⊂ NS(X)∗/NS(X),

via the sign-reversing isometry NS(X)∗/NS(X) ' T ∗X/TX .
We return to the general situation. Let us fix one subgroup C0 ⊂ T ∗/T as

above once and for all.

Definition 5.3. For a pair (X,W ) of a Jacobian Kummer surface and an equiv-
alence class of Weber hexads, a marking φ : H2(X,Z) ∼→ LK3 is an isometry sat-
isfying the following conditions:

• (Lattice polarization) φ−1(NS) coincides with the sublattice of NS(X) gener-
ated by the (16)6 configuration. We denote this sublattice by NS(X)′.

• The subgroup CW ⊂ NS(X)′∗/NS(X)′ defined by (5.1) corresponds to φ−1C0

via NS(X)′∗/NS(X)′ ' φ−1(T ∗/T ).

Let Γ be the subgroup of O(T ) whose induced action on T ∗/T stabilizes C0.
Clearly Γ acts on the set of markings of a pair (X,W ) and the moduli space of
(X,W ) is given by restricting the arithmetic group to Γ.

Proposition 5.4. The moduli space JKSW of Jacobian Kummer surfaces
equipped with a Weber hexad, considered modulo the dual six equivalence, is iso-
morphic to the period domain D(T )−

⋃
e∈E He divided by the arithmetic subgroup Γ.

By [11, Lemma 3.3] the natural projection JKSW → JKS is 6 : 1 and
corresponds to the forgetful map (X,W ) 7→ X.

Let us compute the locus of degenerate HW involutions. The HW involu-
tion σW degenerates if and only if there exists a curve E ∈ H2(X,Z) as in Propo-
sition 3.7. From the relations there, the element E = Eφ−1(NS) +Eφ−1(T ) satisfies
Eφ−1(NS) = (3/4)H − (

∑
α∈W Nα)/2, where Nα is the (16)6-configuration on X.

Hence e = φ(Eφ−1(T )) satisfies the conditions

(5.2) e ∈ T ∗, (e2) = −5/4, e generates C0 in T ∗/T .

Conversely, if such an element e exists and is orthogonal to the period under a
marking (as a pair (X,W )), then by [11, Section 7] we obtain a (−2)-element
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E ∈ NS(X) satisfying the numerical conditions in Proposition 3.7. By Riemann–
Roch, the nef and big property of L and the Cauchy–Schwarz inequality, E is a
sum of (−2)-curves and then Proposition 3.7 shows that E is a class of irreducible
(−2)-curve. Thus the above condition is also sufficient for the degeneration.

Let
E ′ = {e ∈ T ∗ | (e2) = −5/4}.

Lemma 5.5. O(T ) acts on E ′ transitively.

Proof. Instead of e ∈ T ∗ we consider the element f = 4e ∈ T which is primitive,
(f2) = −20 and (f, T ) = 4Z. Clearly the transitivity for e follows from that for f .

The bilinear form of the lattice T is always even, hence the problem reduces
to that in the lattice T (1/2) = U2 ⊕ 〈−2〉. Because it contains two hyperbolic
planes, [13, Proposition 3.7.3] concludes the proof.

Corollary 5.6. Γ acts transitively on the set

E ′0 = {e ∈ T ∗ | (e2) = −5/4, and e generates C0 in T ∗/T}.

Proof. This follows from the lemma by definition.

Hence we obtain

Theorem 5.7. The moduli space CJKS = {(X,W )} of Comessatti Jacobian
Kummer surfaces which satisfy the conditions of Theorem 4.5 is isomorphic to
the quotient (

⋃
e∈E′0

He − (
⋃
e∈E He) ∩ (

⋃
e∈E′0

He))/Γ, which is in fact irreducible
by the previous corollary.

The moduli space of Enriques surfaces obtained by HW involutions is given
by (

D(T )−
⋃
e∈E

He −
⋃
e∈E′0

He

)
/Γ.

§6. An application to the patching subgroups

This section aims at giving a better way of understanding [11, Proposition 7.3] and
reproving it. We hope there are other cases to which our ideas will be applicable.

We fix a Weber hexad W once and for all. First we recall the situation of [11,
Section 7]. Let X1 be a Picard-general Jacobian Kummer surface and σW,1 be the
HW involution. The problem is to determine the patching subgroup ΓσW,1 which
was defined in [11, Definition 2.2]. To this end, we can use the degeneration of HW
involutions we have studied in this paper.

We consider a one-dimensional smooth family of Jacobian Kummer surfaces
f : X → ∆ (in what follows the letters X and XW , Nα, σW , etc. represent
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families of surfaces, divisors, automorphisms, etc.) and its associated Hessian
model XW → ∆ with fibers

XW,t :
∑

si =
∑

λi(t)/si = 0, t ∈ ∆,

where ∆ is a small disk. We can assume that the Hessian model XW,1 of X1 appears
as some fiber (over t = 1, say) and the central fiber XW,0 has eleventh node p while
the other fibers have exactly ten nodes. The HW involution σW = {σW,t}t∈∆

acts on XW birationally and fiberwise. Blowing up the ten (families of) nodes
corresponding to Nα (α ∈ J(C)2 −W ), we obtain the family X̃W → ∆ whose
fibers are smooth for t ∈ ∆ − {0} and X̃W,0 has one node p. This is the same
situation as in [4, Section 7],

X
π→ X̃W → ∆ (π small).

On X̃W , σW acts biregularly and fiberwise. Denote by Γ ⊂ X×∆X the graph
of σW ; since π is an isomorphism over ∆∗ = ∆−{0}, Γ is just the closure of Γ|∆∗ .
Let Γt ⊂ Xt ×Xt be the fiber of Γ → ∆. We can think of Γ0 = limt→0 Γt as the
limit in the Barlet space of X ×∆ X as in [2, VIII, Lemma 10.3], [4, Theorem 2].
Hence the induced map on cohomology

[Γ0]∗ : H2(X0,Z)→ H2(X0,Z)

is the same as that of [Γ1]∗ : H2(X1,Z) → H2(X1,Z) under the obvious trivial-
ization of the local system R2f∗ZX .

Clearly Γt is the graph of the HW involution σW,t for t nonzero. But the point
is that Γ0 does not give the graph of the HW involution σW,0, because σW,0 has
fixed points and therefore its action on cohomology cannot be the same as for
other σW,t. By [2, VIII, Proposition 10.5], Γ0 is of the form Λ0 +E×E, where Λ0

is the graph of σW,0 and E ⊂ X0 is the fixed curve of σW,0, that is, the exceptional
curve for π. Therefore the induced map is of the form

[Γ0]∗ = [Λ0 + E × E]∗ : x 7→ σ∗W,0(x) + (x,E)E.

Since E is the fixed curve of σW,0, it follows that [Γ0]∗ = σ∗W,0 ◦ rE = rE ◦ σ∗W,0
where rE is the reflection in E.

Let us return to the computation of the patching subgroup ΓσW,1 . We have
seen that the action of σW,1 on cohomology is the same as

σ∗W,1 = [Γ1]∗ = [Γ0]∗ = σ∗W,0 ◦ rE ,

where σW,0 is the degenerate HW involution. In particular σ∗W,1(E) = −E (this is
not a contradiction since the cycle E is not an algebraic cycle at t = 1). Let us



Hutchinson–Weber Involutions 127

write E as ENS +ET according to the orthgonal decomposition over the rationals
H2(X1,Q) = NS(X1)Q ⊕ TX1,Q. Using the relations in Proposition 3.7, it is easy
to see that ENS = (3/4)H1 − (

∑
α∈W Nα,1)/2. By the definition of the patching

subgroup, ENS is the patching element. Since we know that ΓσW,1 is of order 4, it
is generated by the class of ENS.
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