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Multidegrees of Tame Automorphisms in
Dimension Three

by

Xiaosong Sun and Yan Chen

Abstract

We discuss when a sequence of positive integers can be the multidegree of some tame
automorphism in dimension three, and we also relate these investigations to the problem
of whether there exists a tame automorphism admitting a reduction of type II or type III.

2010 Mathematics Subject Classification: Primary 14R10.
Keywords: polynomial maps, tame automorphisms, multidegrees.

§1. Introduction

Throughout this paper, k is a field of characteristic zero and N is the set of
non-negative integers. A map F = (F1, . . . , Fn) : kn → kn of the form α 7→
(F1(α), . . . , Fn(α)) is called a polynomial map if Fi ∈ k[X1, . . . , Xn], 1 ≤ i ≤ n.
A polynomial map is called an automorphism if it has an inverse which is also a
polynomial map.

An automorphism of the form (X1, . . . , Xi−1, cXi + a,Xi+1, . . . , Xn) is called
elementary if 0 6= c ∈ k and a is a polynomial not containing Xi. A finite compo-
sition of elementary automorphisms is called tame. The famous Tame Generators
Problem asks if every polynomial automorphism is tame. It has an affirmative an-
swer in dimension 2 (known as the Jung–van der Kulk theorem, see [J, Kul] or [E,
Section 5.1]) and has a negative answer in dimension 3 (Shestakov and Umirbaev
[SU1, SU2]). It remains open for any dimension n ≥ 4.

Define by tdegF :=
∑n

i=1 degFi the total degree of a polynomial map F .
An automorphism F is said to admit an elementary reduction if there exists an
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elementary automorphism E such that tdeg(E◦F ) < tdegF , where ◦ denotes com-
position. In dimension 3, four types of non-elementary reductions, labeled I–IV,
were defined by Shestakov and Umirbaev ([SU2, Definition 1–4]), who showed that
every tame automorphism F : k3 → k3 with tdegF > 3 admits an elementary re-
duction or a reduction of one of the types I–IV ([SU2, Theorem 2]). They observed
that an automorphism given by Nagata [N] admits none of these reductions, and
thus is not tame.

There exists a tame automorphism admitting a reduction of type I (see [SU2,
Example 1], and [EMW] for more examples). But recently, Kuroda [Kur2, Theorem
7.1] showed that there does NOT exist a tame automorphism admitting a reduction
of type IV. However it is still open whether there exists a tame automorphism
admitting a reduction of type II or III.

Karaś [K2] proposed the following problem: define by mdegF := (degF1, . . . ,

degFn) the multidegree of a polynomial map F and by mdeg(T (kn)) the set of
multidegrees of tame automorphisms from kn to kn. Which sequences (d1, . . . , dn)
belong to mdeg(T (kn))?

It is well known that (d1, d2) ∈ mdeg(T (k2)) if and only if d1 | d2 or d2 | d1 (see
for example [E, Section 5.1]). In dimension 3, some partial results were obtained
by Karaś in [K1, K2] as follows.

Theorem 1.1 (Karaś). (i) ([K2, Theorem 1.1]) Let 3 ≤ d2 ≤ d3 be integers.
Then (3, d2, d3) ∈ mdeg(T (k3)) if and only if 3 | d2 or d3 ∈ 3N + d2N.

(ii) ([K1, Theorem 1]) Let 3 ≤ p1 ≤ d2 ≤ d3 be integers. If p1 and d2 are prime
numbers, then (p1, d2, d3) ∈ mdeg(T (k3)) if and only if d3 ∈ p1N + d2N.

These investigations led to the following conjecture.

Conjecture 1.2 ([K2, Conjecture 4.1]). Let 3 ≤ p1 ≤ d2 ≤ d3 be integers with
p1 a prime number. Then (p1, d2, d3) ∈ mdeg(T (k3)) if and only if p1 | d2 or d3 ∈
p1N + d2N.

In this paper, we show that Conjecture 1.2 holds if additionally one of the
following conditions is satisfied (i) d2/gcd(d2, d3) 6= 2; (ii) d3/gcd(d2, d3) 6= 3;
(iii) d2 ≥ 2p1 − 5. As corollaries, we show that Conjecture 1.2 holds in the fol-
lowing cases: (1) d2 is odd; (2) p1 = 3 or 5; (3) p1 = 7 and (d2, d3) 6= (8, 12).
Furthermore, we relate the investigations with the problem of whether there ex-
ists a tame automorphism admitting a reduction of type II or III. We show that,
if (7, 8, 12) ∈ mdeg(T (k3)), then there exists a tame automorphism admitting a
reduction of type II, and if (p1, 2p1 − 6, 3p1 − 9) ∈ mdeg(T (k3)), where p1 > 7 is
a prime number, then there exists one admitting a reduction of type III.
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§2. Preliminaries

In this section, we recall some notions and results about the Poisson bracket and
*-reduced pair; for details, see [SU1, SU2].

Let L〈X1, . . . , Xn〉 be the free Lie algebra with free generators X1, . . . , Xn.
Let PL〈X1, . . . , Xn〉 be the free Poisson algebra with free generators X1, . . . , Xn,
which is the k-algebra generated by a linear basis of L〈X1, . . . , Xn〉 and the Poisson
bracket of which is induced by the Lie bracket of L〈X1, . . . , Xn〉. It becomes a
graded algebra if we put degXi = 1,deg [Xi, Xj ] = 2, i 6= j, etc. Imbedding the
polynomial algebra k[X1, . . . , Xn] into PL〈X1, . . . , Xn〉, one can define the Poisson
bracket of two polynomials f, g to be

[f, g] =
∑

1≤i<j≤n

(
∂f

∂Xi

∂g

∂Xj
− ∂f

∂Xj

∂g

∂Xi

)
[Xi, Xj ].

Hence

deg [f, g] = 2 + max
1≤i<j≤n

deg
(
∂f

∂Xi

∂g

∂Xj
− ∂f

∂Xj

∂g

∂Xi

)
.

Note that deg [f, g] ≥ 2 if f, g are algebraically independent.

Definition 2.1 ([SU1, Definition 1]). A pair of polynomials f, g ∈ k[X1, . . . , Xn]
is called ∗-reduced if

(1) f, g are algebraically independent;

(2) f, g are algebraically dependent, where h denotes the highest homogeneous
part of h;

(3) f /∈ k[g] and g /∈ k[f ].

Let f, g be a ∗-reduced pair with deg f ≤ deg g and let p = deg f
gcd(deg f,deg g) .

Then f, g is also called a p-reduced pair.

Theorem 2.2 ([SU1, Theorem 3]). Let f, g be a p-reduced pair and let G(x, y) ∈
k[x, y] with degy G(x, y) = pq + r, 0 ≤ r < p. Then

degG(f, g) ≥ q(pdeg g − deg g − deg f + deg [f, g]) + r deg g.

Remark 2.3. Karaś observed that Theorem 2.2 is also true if the second condition
of Definition 2.1 is not satisfied (see [K2, Proposition 2.4]).

We close this section by recalling several results which will also be used in the
next section.

Lemma 2.4 (Brauer [B]). If a, b are positive integers such that gcd(a, b) = 1,
then l ∈ aN + bN for every integer l ≥ (a− 1)(b− 1).



132 X. Sun and Y. Chen

Lemma 2.5 ([K2, Proposition 2.2]). Let d1 ≤ · · · ≤ dn be positive integers.
If there exists some i such that di ∈ d1N + · · · + di−1N, then (d1, . . . , dn) ∈
mdeg(T (kn)).

§3. Multidegrees of tame automorphisms of k3

We start with a lemma.

Lemma 3.1. Let F =(F1, F2, F3) be an automorphism with mdegF =(d1, d2, d3).
If deg [Fs, Ft] = 2, then ds | dt or dt | ds, where 1 ≤ s < t ≤ 3.

Proof. Let T be a linear automorphism and F ′ = F ◦ T . It is easy to verify that
deg [F ′s, F

′
t ] = deg [Fs, Ft] for any 1 ≤ s < t ≤ 3. Replacing F by some F ◦ T if

necessary, we may assume that F = (X1 +H1, X2 +H2, X3 +H3), where each Hi

contains no linear terms.
Suppose that deg [Fs, Ft] = 2 for some 1 ≤ s < t ≤ 3, say deg [F2, F3] = 2.

Since

deg [F2, F3] = 2 + max
1≤i<j≤3

deg cij , where cij =
∂F2

∂Xi

∂F3

∂Xj
− ∂F3

∂Xi

∂F2

∂Xj
,

we have cij ∈ k, 1 ≤ i < j ≤ 3. It follows that

c12 =
∂H2

∂X1

∂H3

∂X2
− ∂H3

∂X1

(
1+

∂H2

∂X2

)
= 0, c13 =

∂H2

∂X1

(
1+

∂H3

∂X3

)
− ∂H3

∂X1

∂H2

∂X3
= 0.

Notice that ∂H2/∂X1 = 0 if and only if ∂H3/∂X1 = 0. Now suppose that
∂H2/∂X1 6= 0. Then ∂H3/∂X1 6= 0. Let u and v be the lowest homogeneous
parts of ∂H2/∂X1 and ∂H3/∂X1 respectively. If deg u ≤ deg v, then u is the low-
est homogeneous part of c13, which contradicts c13 = 0. Similarly, if deg v ≤ deg u,
then v is the lowest homogeneous part of c12, which contradicts c12 = 0.

Therefore, ∂H2/∂X1 = 0 and ∂H3/∂X1 = 0. It follows that (F2, F3) is an
automorphism in dimension 2, and thus d2 | d3 or d3 | d2.

Lemma 3.2. Let 3 ≤ p1 ≤ d2 ≤ d3 be integers such that p1 is a prime number,
p1 - d2 and d3 /∈ p1N +d2N. If (p1, d2, d3) ∈ mdeg(T (k3)), then there exists a tame
automorphism with multidegree (p1, d2, d3) which admits an elementary reduction.

Proof. If (p1, d2, d3) ∈ mdeg(T (k3)), then there exists a tame automorphism F

with mdegF = (p1, d2, d3). By [SU2, Theorem 2] and [Kur2, Theorem 7.1], F
admits an elementary reduction or a reduction of one of the types I–III.

By [SU2, Definitions 1 and 2], if there exists a tame automorphism admitting
a reduction of type I or II, then there exists a tame automorphism admitting an
elementary reduction with the same multidegree.
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Now suppose that F admits a reduction of type III. Then by [SU2, Defini-
tion 3] (through a permutation of indices), there exists some positive integer m
such that one of the following is satisfied:

m < degF1 = p1 ≤ 3
2m, degF2 = d2 = 2m, degF3 = d3 = 3m;(3.1)

degF1 = p1 = 3
2m, degF2 = d2 = 2m, 5

2m < degF3 = d3 ≤ 3m.(3.2)

In the case (3.2), the condition that p1 is a prime number implies that m = 2,
p1 = 3 and d3 = 6, which contradicts d3 /∈ p1N + d2N. So it suffices to consider
the case (3.1).

Also by [SU2, Definition 3], there exist α, β, γ ∈ k with (α, β, γ) 6= (0, 0, 0)
such that the elements G2 := F2−βF1, G3 := F3−γF1−αF 2

1 satisfy degG2 = 2m,
degG3 = 3m and E ◦ (F1, G2, G3) = (G1, G2, G3), for some elementary automor-
phism E, with degG1 ≤ 3

2m, deg [G1, G2] < 3m + deg [G2, G3] and degG1 <

m+deg [G2, G3]. By [SU2, Corollary 4], tdeg(G1, G2, G3) < tdegF . Since tdegF =
tdeg(F1, G2, G3), it follows that (F1, G2, G3) admits an elementary reduction and
mdeg(F1, G2, G3) = (p1, d2, d3).

Theorem 3.3. Let 3 ≤ p1 ≤ d2 ≤ d3 be integers with p1 a prime number. If one of
the following conditions is satisfied: (i) d2/gcd(d2, d3) 6= 2; (ii) d3/gcd(d2, d3) 6= 3;
(iii) d2 ≥ 2p1 − 5, then (p1, d2, d3) ∈ mdeg(T (k3)) if and only if p1|d2 or d3 ∈
p1N + d2N.

Proof. By Lemma 2.5, if p1 | d2 or d3 ∈ p1N+d2N, then (p1, d2, d3) ∈ mdeg(T (k3)).
Now assume that p1 - d2 and d3 /∈ p1N + d2N. By Lemma 3.2, we only need to
show that, if one of the three conditions in the theorem is satisfied, then an auto-
morphism F with mdegF = (p1, d2, d3) does not admit an elementary reduction.

Since p1 - d2 and d3 /∈ p1N + d2N, we have d3 < (p1 − 1)(d2 − 1) due to
Lemma 2.4. Moreover Lemma 3.1 yields deg [Fs, Ft] ≥ 3 for any 1 ≤ s < t ≤ 3.

(1) Suppose that (F1, F2, F3−g(F1, F2)) is an elementary reduction of F , i.e.,
deg(F3−g(F1, F2)) < degF3, where g ∈ k[x, y]. Then deg g(F1, F2) = degF3 = d3.
Notice that p1/gcd(p1, d2) = p1. Let degy g(x, y) = qp1 + r, where 0 ≤ r < p1. The
pair F1, F2 satisfies the first and the third condition of Definition 2.1, since F1, F2

are algebraically independent and p1 - d2. Then by Theorem 2.2 (and noticing
Remark 2.3, similarly hereinafter), we have

d3 = deg g(F1, F2) ≥ q(p1d2 − d2 − p1 + deg [F1, F2]) + rd2

≥ q(p1d2 − d2 − p1 + 3) + rd2 ≥ q(p1 − 1)(d2 − 1) + rd2.

Since d3 < (p1 − 1)(d2 − 1), we have q = 0 and thus degy g(x, y) = r < p1.
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Let g(x, y) =
∑p1−1

i=0 gi(x)yi. Since gcd(p1, d2) = 1, the sets p1N, d2 + p1N, . . . ,
(p1 − 1)d2 + p1N are disjoint. Hence

d3 = deg g(F1, F2) = deg
( p1−1∑

i=0

gi(F1)F i
2

)
= max

0≤i≤p1−1
(degF1 deg gi + i degF2) = max

0≤i≤p1−1
(p1 deg gi + id2),

which contradicts d3 /∈ p1N + d2N.
(2) Suppose that (F1, F2 − g(F1, F3), F3) is an elementary reduction of F ,

where g ∈ k[x, y]. Then deg g(F1, F3) = degF2 = d2. Notice that p1/gcd(p1, d3)
= p1. Let degy g(x, y) = qp1 + r, where 0 ≤ r < p1. By Theorem 2.2,

d2 = deg g(F1, F3) ≥ q(p1d3 − d3 − p1 + deg [F1, F3]) + rd3

≥ q(p1d3 − 2d3) + rd3 ≥ qd3 + rd3,

which implies that q = r = 0. Then degy g(x, y) = 0 and thus d2 = deg g(F1, F3) =
deg g(F1) ∈ p1N, which contradicts p1 - d2.

(3) Suppose that (F1 − g(F2, F3), F2, F3) is an elementary reduction of F ,
where g ∈ k[x, y]. Then deg g(F2, F3) = degF1 = p1. Let p = d2/gcd(d2, d3) and
let degy g(x, y) = qp+ r, where 0 ≤ r < p. By Theorem 2.2 we obtain

p1 = deg g(F2, F3) ≥ q(pd3 − d3 − d2 + deg [F2, F3]) + rd3.(3.3)

If degy g(x, y) = 0, then p1 = deg g(F2, F3) = deg g(F2) ∈ d2N, a contradiction. So
in what follows we always assume that degy g(x, y) > 0.

We divide the following discussion into several subcases.

(a) p = d2/gcd(d2, d3) 6= 2 or d3/gcd(d2, d3) 6= 3.

If p 6= 2, noticing that p > 1, we have p ≥ 3. Then

pd3 − d3 − d2 + deg [F2, F3] ≥ 2d3 − d2 ≥ d2.

If p = 2, then d3/gcd(d2, d3) 6= 3. Let gcd(d2, d3) = m. Then d2 = 2m, d3 =
lm, where l ≥ 4, and thus d3 − d2 ≥ d2. We have also

pd3 − d3 − d2 + deg [F2, F3] ≥ d3 − d2 ≥ d2.

Then it follows by (3.3) that p1 ≥ qd2 + rd3, which implies that q = r = 0. Hence
degy g(x, y) = 0, a contradiction.

(b) d2 ≥ 2p1 − 5.

By (a) we may assume that p = d2/gcd(d2, d3) = 2 and d3/gcd(d2, d3) = 3,
which implies that d3 − d2 ≥ d2/2. Due to Lemma 3.1, we have deg [F2, F3] ≥ 3.
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Then by (3.3) we obtain

p1 ≥ q(2d3 − d3 − d2 + deg [F2, F3]) + rd3

≥ q(d2/2 + 3
)

+ rd3 ≥ q
(
p1 + 1/2) + rd3.

It follows that q = r = 0, and thus degy g(x, y) = 0, also a contradiction.

It is easy to verify that Karaś’s results (summarized in Theorem 1.1) are direct
corollaries of our Theorem 3.3. And we also have the following corollaries.

Corollary 3.4. Let 3 ≤ p1 ≤ d2 ≤ d3 be integers with p1 is a prime number. If
d2 is odd, then (p1, d2, d3) ∈ mdeg(T (k3)) if and only if p1 | d2 or d3 ∈ p1N + d2N.

Corollary 3.5. Let 5 ≤ d2 ≤ d3 be integers. Then (5, d2, d3) ∈ mdeg(T (k3)) if
and only if 5 | d2 or d3 ∈ 5N + d2N.

Corollary 3.6. (1) Let 7 ≤ d2 ≤ d3 be integers with (d2, d3) 6= (8, 12). Then
(7, d2, d3) ∈ mdeg(T (k3)) if and only if 7 | d2 or d3 ∈ 7N + d2N.

(2) Let 11 ≤ d2 ≤ d3 be integers with (d2, d3) 6= (12, 18), (14, 21), (16, 24). Then
(11, d2, d3) ∈ mdeg(T (k3)) if and only if 11 | d2 or d3 ∈ 11N + d2N.

Proof. By Theorem 3.3, we may assume that d2 < 2d1−5, d2/gcd(d2, d3) = 2 and
d3/gcd(d2, d3) = 3. When d1 = 7, this implies that (d2, d3) = (8, 12), and when
d1 = 11 this implies that (d2, d3) = (12, 18), (14, 21) or (16, 24).

In what follows, we relate the research on Conjecture 1.2 to the problem of
whether exists a tame automorphism admitting a reduction of type II or III. In
fact, we have the following result.

Theorem 3.7. Let p1 ≥ 7 be a prime number and assume that (p1, d2, d3) =
(p1, 2p1 − 6, 3p1 − 9) ∈ mdeg(T (k3)). If p1 = 7, i.e. (p1, d2, d3) = (7, 8, 12), then
there exists a tame automorphism admitting a reduction of type II; if p1 > 7 (in
particular if (p1, d2, d3) = (11, 16, 24)), then there exists a tame automorphism
admitting a reduction of type III.

Proof. Notice that p1 - d2 and d3 /∈ p1N + d2N. By Lemma 3.2, there exists a
tame automorphism F with mdegF = (p1, d2, d3) which admits an elementary
reduction. By the proof of Theorem 3.3, there exists some g(x, y) ∈ k[x, y] such
that deg(F1 − g(F2, F3)) < degF1, and thus deg g(F2, F3) = degF1 = p1. Let
degy g(x, y) = 2q + r, where 0 ≤ r < 2. By Theorem 2.2,

p1 = deg g(F2, F3) ≥ q(2d3 − d3 − d2 + deg [F2, F3]) + rd3(3.4)

= q(d2/2 + deg [F2, F3]) + rd3,
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which implies that r = 0 and q ≤ 1. If q = 0, then degy g(x, y) = 0, and thus
p1 = deg g(F2) ∈ d2N, a contradiction. Hence q = 1 and then by (3.4) we ob-
tain deg [F2, F3] < p1 < degF2 + degF3. It follows that F2, F3 are algebraically
dependent. In addition, F2, F3 are algebraically independent, and the condition
d2 = 2p1 − 6 and d3 = 3p1 − 9 ensures that F2 /∈ k[F3] and F3 /∈ k[F2]. Therefore,
F2, F3 is a 2-reduced pair.

Now let θ = (f1, f2, f3) = (F1, F1 +F2, F3). Then deg f1 = degF1 = p1, deg f2
= degF2 = 2m and deg f3 = degF3 = 3m, where m = p1 − 3.

(1) Suppose that p1 = 7. Then m = 4 and (p1, d2, d3) = (7, 8, 12). It follows
that 3

2m < deg f1 = p1 ≤ 2m. Notice that f1, f2 are linearly independent. Let
(α, β) = (1, 0) and let g2 := f2 − αf1 = F2, g3 := f3 − βf1 = F3. Then g2, g3 is a
2-reduced pair and deg g2 = 2m, deg g3 = 3m. Moreover, (f1, g2, g3) = (F1, F2, F3)
admits an elementary reduction and (g1, g2, g3) = (f1 − g(g1, g2), g2, g3) = (F1 −
g(F2, F3), F2, F3) is such a reduction.

Notice that p1 = m+ 3. By Lemma 3.1, we have deg [g2, g3] ≥ 3. Then

deg [g1, g2] ≤ deg g1 + deg g2 ≤ deg f1 − 1 + deg g2
= p1 − 1 + 2m = 3m+ 2 < 3m+ deg [g2, g3].

Therefore, by [SU2, Definition 2], θ admits a reduction of type II with the active
element f1.

(2) Suppose that p1 > 7. Since p is a prime number, p1 ≥ 11, and noticing
that p1 = m+ 3, we have m < deg f1 = p1 ≤ 3

2m. Let (α, β, γ) = (0, 1, 0) and let
g2 := f2−βf1 = F2, g3 := f3−γf1−αf2

1 = F3. Then g2, g3 is a 2-reduced pair and
deg g2 = 2m, deg g3 = 3m. And (f1, g2, g3) = (F1, F2, F3) admits an elementary
reduction: (g1, g2, g3) = (F1 − g(F2, F3), F2, F3). As proved in (1), deg [g1, g2] <
3m + deg [g2, g3]. Moreover, deg g1 < deg f1 = p1 = m + 3 ≤ m + deg [g2, g3].
Therefore, by [SU2, Definition 3], θ admits a reduction of type III with the active
element f1.

Remark 3.8. If we replace the condition that p1 is a prime number by the con-
dition that p1, d2 are relatively prime, then Conjecture 1.2 is not valid. In fact, we
note that, among other things, Kuroda [Kur1] constructed tame automorphisms
with multidegrees (d1, d2, d3) = (2m, 2pm+p+1, (2p+1)m), where m = pq+p+q

and p, q ∈ N − 0. If we take p = 2, then (d1, d2, d3) = (2m, 4m + 3, 5m), where
m = 3q + 2 and q ∈ N − 0. And in this case, d1, d2 are relatively prime and
d3 /∈ d1N + d2N.

Remark 3.9. The editor points out that our Corollaries 3.5 and 3.6(1) were
independently obtained by Karaś in [K3, Sections 7.2–7.3], and it was shown
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that the existence of a tame automorphism of k3 with multidegree (p1, d2, d3) :=
(p1, 2(p1 − 2), 3(p1 − 2)) for some prime number p1 > 35 (in particular with mul-
tidegree (37, 70, 105)) would imply that the two-dimensional Jacobian conjecture
is not true. However, by our Theorem 3.3, one can see easily that (p1, d2, d3) =
(p1, 2(p1 − 2), 3(p1 − 2)) /∈ mdeg(T (k3)) for any prime number p1 ≥ 3 because
d2 = 2(p1 − 2) ≥ 2p1 − 5, p1 - d2 and d3 /∈ p1N + d2N.
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[K1] M. Karaś, Tame automorphisms of C3 with multidegree of the form (p1, p2, d3), Bull.
Polish Acad. Sci. Math. 59 (2011), 27–32. Zbl 1215.14059 MR 2810969

[K2] , Tame automorphisms of C3 with multidegree of the form (3, d2, d3), J. Pure
Appl. Algebra 214 (2010), 2144–2147. Zbl 1208.14057 MR 2660904

[K3] , Multidegrees of tame automorphisms of Cn, Dissertationes Math. 477 (2011),
55 pp.

[Kul] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. 3 (1953),
33–41. Zbl 0050.26002 MR 0054574

[Kur1] S. Kuroda, Automorphisms of a polynomial ring which admit reductions of type I, Publ.
RIMS Kyoto Univ. 45 (2009), 907–917. Zbl pre05625042 MR 2569570

[Kur2] , Shestakov–Umirbaev reductions and Nagata’s conjecture on a polynomial au-
tomorphism, Tohoku Math. J. 62 (2010), 75–115. Zbl 1210.14072 MR 2654304

[N] M. Nagata, On the automorphism group of k[X, Y ], Lectures in Math 5, Kyoto Univ.,
Kinokuniya, Tokyo, 1972. Zbl 0306.14001 MR 0337962

[SU1] I. P. Shestakov and U. U. Umirbaev, Poisson brackets and two-generated subalgebras
of rings of polynomials, J. Amer. Math. Soc. 17 (2004), 181–196. Zbl 1044.17014
MR 2015333

[SU2] , The tame and the wild automorphisms of polynomial rings in three variables,
J. Amer. Math. Soc. 17 (2004), 197–227. Zbl 1056.14085 MR 2015334

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0061.06801&format=complete
http://www.ams.org/mathscinet-getitem?mr=0006196
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0962.14037&format=complete
http://www.ams.org/mathscinet-getitem?mr=1790619
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0027.08503&format=complete
http://www.ams.org/mathscinet-getitem?mr=0008915
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1215.14059&format=complete
http://www.ams.org/mathscinet-getitem?mr=2810969
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1208.14057&format=complete
http://www.ams.org/mathscinet-getitem?mr=2660904
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0050.26002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0054574
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre05625042&format=complete
http://www.ams.org/mathscinet-getitem?mr=2569570
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1210.14072&format=complete
http://www.ams.org/mathscinet-getitem?mr=2654304
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0306.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0337962
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1044.17014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2015333
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1056.14085&format=complete
http://www.ams.org/mathscinet-getitem?mr=2015334

	Introduction
	Preliminaries
	Multidegrees of tame automorphisms of k3
	References

