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Affine Nil-Hecke Algebras and Braided
Differential Structure on Affine Weyl Groups

by

Anatol N. Kirillov and Toshiaki Maeno

Abstract

We construct a model of the affine nil-Hecke algebra as a subalgebra of the Nichols–
Woronowicz algebra associated to a Yetter–Drinfeld module over the affine Weyl group.
We also discuss the Peterson isomorphism between the homology of the affine Grassman-
nian and the small quantum cohomology ring of the flag variety in terms of the braided
differential calculus.
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Introduction

The cohomology ring of the flag variety is a fundamental object of research in the
study of the Schubert calculus. Fomin and the first author [4] gave a combinatorial
model of the cohomology ring H∗(Fln) of the flag variety of type A as a commuta-
tive subalgebra of a quadratic algebra En. It is remarkable that the algebra En has
a natural quantum deformation Eqn so that Eqn contains the quantum cohomology
ring QH∗(Fln) as a commutative subalgebra.

It has been observed by Milinski and Schneider [12] and by Majid [11] that the
defining relations of the Fomin–Kirillov quadratic algebra En are understandable
from the viewpoint of a certain kind of braided Hopf algebra called the Nichols–
Woronowicz algebra. Bazlov [2] constructed a model of the coinvariant algebra of
the finite Coxeter groups as a commutative subalgebra of the Nichols–Woronowicz
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algebra. At the same time, the nil-Coxeter algebra, which is dual to the coinvariant
algebra, is also realized as a subalgebra of the Nichols–Woronowicz algebra.

The braided analogue of the exterior algebra was introduced by Woronowicz
[15] for the study of differential forms on quantum groups. For a given braided
vector space M over a field K of characteristic zero, the braided analogue B(M)
of the symmetric algebra of M is similarly defined to be the quotient of the free
tensor algebra of M by the kernel of the braided symmetrizer. It is known that
the algebra B(M) is a braided graded Hopf algebra characterized by the following
conditions:

(1) B0(M) = K,

(2) B1(M) = M = {primitive elements in B(M)},
(3) B1(M) generates B(M) as an algebra.

The algebra is related to earlier ideas in [13]. The Hopf algebra generated by
the primitive elements has been studied by Nichols [13] and named the Nichols
algebra by Andruskiewitsch and Schneider [1]. The actual braided Hopf algebra
structure of B(M) has its origins in the work of Majid, notably [9], [10]. The tensor
algebras TM and TM∗ are primitively generated braided Hopf algebras [9] and are
dually paired as braided Hopf algebras by extending the pairing in degree 1. This
pairing is typically degenerate and the quotient by the kernel on each side yields
braided Hopf algebras B(M), B(M∗) which are now nondegenerately paired and
canonically associated to M . Majid used this construction in [10]. In this paper
we will call B(M) the Nichols–Woronowicz algebra following [2].

The aim of this paper is to construct the nil-Hecke algebra as a subalgebra
of an extension of the Nichols–Woronowicz algebra Baff associated to a Yetter–
Drinfeld module over the affine Weyl groups. Our construction is analogous to the
one in [2, Section 6].

It is known that the affine Grassmannian Ĝr := G(C((t)))/G(C[[t]]) of a
semisimple Lie group G is homotopic to the loop group ΩK of the maximal com-
pact subgroup K ⊂ G. The homology H∗(Ĝr) ∼= H∗(ΩK) carries an associative
algebra structure induced by the Pontryagin product. The strucuture of the Pon-
tryagin ring H∗(ΩK) has been determined by Bott [3]. The Schubert calculus for
Kac–Moody flag varieties was studied by Kostant and Kumar [6] by using the nil-
Hecke algebra. Peterson [14] stated that the torus-equivariant homology HT

∗ (Ĝr)
of the affine Grassmannian is isomorphic to the so-called Peterson subalgebra of
the affine nil-Hecke algebra. So our construction gives a model of HT

∗ (Ĝr) as a
commutative subalgebra of the Nichols–Woronowicz algebra Baff(S) (see Theo-
rem 3.4).
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Peterson [14] also pointed out that the Pontryagin ring HT
∗ (Ĝr) is isomorphic

to the small quantum cohomology ring QH∗T (G/B) of the corresponding flag va-
riety G/B as an algebra after a suitable localization. The affine Bruhat operator
acting on HT

∗ (Ĝr) introduced by Lam and Shimozono [7] gives an explicit com-
parison between the multiplicative structure of HT

∗ (Ĝr) and that of QH∗T (G/B).
In this paper, we will realize the affine Bruhat operator as a braided differential
operator (see Section 3 for details) acting on our algebra Baff .

§1. Affine nil-Hecke algebra

Let G be a simply-connected semisimple complex Lie group and W its Weyl group.
Denote by ∆ the set of roots. We fix the set ∆+ of positive roots by choosing a set
of simple roots α1, . . . , αr. The Weyl group W acts on the weight lattice P and
the coroot lattice Q∨ of G. The affine Weyl group Waff is generated by the affine
reflections sα,k, α ∈ ∆, k ∈ Z, with respect to the affine hyperplanes Hα,k :=
{λ ∈ P ⊗ R | 〈λ, α〉 = k}. The affine Weyl group is the semidirect product of W
and Q∨, i.e., Waff = W n Q∨. The affine Weyl group Waff is generated by the
simple reflections s1 := sα1,0, . . . , sr := sαr,0 and s0 := sθ,1 where θ = −α0 is the
highest root. The affine Weyl group W has the presentation as a Coxeter group
as follows:

Waff = 〈s0, . . . , sr | s2
0 = · · · = s2

r = 1, (sisj)mij = 1〉.

Definition 1.1. The affine nil-Coxeter algebra A0 is the associative Q-algebra
generated by τ0, . . . , τr subject to the relations

τ2
0 = · · · = τ2

r = 0, (τiτj)[mij/2]τ
νij
i = (τjτi)[mij/2]τ

νij
j ,

where νij := mij − 2[mij/2].

For a reduced expression x = si1 · · · sil of an element x ∈ Waff , the element
τx := τi1 · · · τil ∈ A0 is independent of the choice of the reduced expression of x.
It is known that {τx}x∈Waff form a linear basis of A0.

The nil-Coxeter algebra A0 acts on S := SymPQ via

τ0(f) := ∂α0(f) = −(f − sθ,0f)/θ,

τi(f) := ∂αi(f) = (f − sαi,0f)/αi, i = 1, . . . , r,

for f ∈ S.

Definition 1.2 ([6]). The nil-Hecke algebra A is defined to be the cross product
A0 n S, where the cross relation is given by

τif = ∂αi(f) + si(f)τi, f ∈ S, i = 1, . . . , r.
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Here, we summarize some known results on the homology of the affine Grass-
mannian. The affine Grassmannian Ĝr := G(C((t)))/G(C[[t]]) is homotopic to the
loop group ΩK of the maximal compact subgroup K ⊂ G. Let T ⊂ G be the
maximal torus. We consider the T -equivariant homology group HT

∗ (Ĝr) over Q.
An associative algebra structure on HT

∗ (Ĝr) ∼= HT
∗ (ΩK) is induced from the group

multiplication

ΩK × ΩK → ΩK.

It is known that the algebra HT
∗ (Ĝr) is commutative. The algebra HT

∗ (ΩK) is
called the Pontryagin ring.

We regard the T -equivariant homology HT
∗ (Ĝr) as an S-algebra by identifying

S = H∗T (pt). The diagonal embedding

ΩK → ΩK × ΩK

induces a coproduct on HT
∗ (Ĝr). Let J ⊂ A be the left ideal of A generated by the

elements τw, w ∈W \ {id}. The centralizer ZA(S) of S in A is called the Peterson
subalgebra of A.

Proposition 1.1 ([14]). Let {ξx | x ∈ Waff} be the Schubert basis of the T -
equivariant homology HT

∗ (Ĝr). The T -equivariant homology HT
∗ (Ĝr) is naturally

identified with the Peterson subalgebra ZA(S) via the S-algebra isomorphism j :
HT
∗ (Ĝr)→ ZA(S) characterized by the following conditions:

(1) j(ξx) = τx mod J for x ∈Waff ,

(2) j(ξ)ξ′ = ξξ′ for ξ, ξ′ ∈ HT
∗ (Ĝr).

§2. Nichols–Woronowicz algebra for affine Weyl groups

We briefly recall the construction of the Nichols–Woronowicz algebra associated to
a braided vector space. Let M be a vector space over a field of characteristic zero
and ψ : M⊗2 →M⊗2 be a fixed linear endomorphism satisfying the braid relations
ψiψi+1ψi = ψi+1ψiψi+1 where ψi : M⊗n → M⊗n is a linear endomorphism ob-
tained by applying ψ to the i-th and (i+1)-st components. Denote by si the simple
transposition (i, i + 1) ∈ Sn. For any reduced expression w = si1 · · · sil ∈ Sn, the
endomorphism Ψw = ψi1 · · ·ψil : M⊗n → M⊗n is well-defined. The Woronowicz
symmetrizer (cf. [15]) is given by σn :=

∑
w∈Sn Ψw. The operator σn is also called

the braided integer in [9].
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Definition 2.1 (cf. [15]). The Nichols–Woronowicz algebra associated to a
braided vector space M is defined by

B(M) :=
⊕
n≥0

M⊗n/Ker(σn),

where σn : M⊗n →M⊗n is the Woronowicz symmetrizer.

Definition 2.2. A vector space M is called a Yetter–Drinfeld module over a
group Γ if the following conditions are satisfied:

(1) M is a Γ-module,

(2) M is Γ-graded, i.e. M =
⊕

g∈ΓMg, where Mg is a linear subspace of M,

(3) for h ∈ Γ and v ∈Mg, h(v) ∈Mhgh−1 .

The Yetter–Drinfeld module M over a group Γ is naturally braided with the
braiding ψ : M⊗2 →M⊗2 defined by ψ(a⊗ b) = g(b)⊗ a for a ∈Mg and b ∈M.

In the following we are interested in the Yetter–Drinfeld module over the affine
Weyl group Waff . Denote by tλ ∈ Waff the translation by λ ∈ Q∨. We define a
Yetter–Drinfeld module Vaff over Waff by

Vaff :=
⊕

α∈∆, k∈Z
Q · [α, k]/([α, k] + [−α,−k]),

where Waff acts on Vaff by

w[α, k] := [w(α), k], w ∈W, tλ[α, k] := [α, k + (α, λ)], λ ∈ Q∨.

The Waff -grading is given by degWaff
([α, k]) := sα,k. Then it is easy to check

the conditions in Definition 2.1. Now we have the Nichols–Woronowicz algebra
Baff := B(Vaff) associated to the Yetter–Drinfeld module Vaff .

Let BW be the Nichols–Woronowicz algebra associated to the Yetter–Drinfeld
module V =

⊕
α∈∆ Q · [α]/([α] + [−α]) as in [2, Section 4].

Lemma 2.3. (1) We have a surjective homomorphism π : Baff → BW given by
π([α, k]) := [α].

(2) The algebra Baff acts on S via [α, k]f = ∂α(f) for all k ∈ Z.

Proof. (1) Denote by ψ and ψ̄ the braidings on Vaff and V respectively. Let π̃ :⊕
n Vaff

⊗n →
⊕

n V
⊗n be the lift of π. Since

ψ([α, k]⊗ [β, l]) = [sα(β), l − 〈α∨, β〉k]⊗ [α, k]

and ψ̄([α] ⊗ [β]) = [sα(β)] ⊗ [α], the map π̃ sends the kernel of the braided sym-
metrizer σn of Vaff

⊗n to that of V ⊗n.
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(2) In [2], it is shown that the algebra BW acts on the coinvariant algebra
SW via [α] 7→ ∂α. Let SW be the W -invariant subalgebra of S. Then we have the
decomposition S = SW ⊗SW . The operator ∂α extends SW -linearly to an operator
on S. Hence BW acts on S. We have seen the existence of the natural projection π
from Baff to B, so π induces the action of Baff on S.

Let us define the extension Baff(S) = Baff n S by the cross relation

[α, k]f = ∂αf + sα,0(f)[α, k], [α, k] ∈ Vaff , f ∈ S.

Proposition 2.1. There exists a homomorphism ϕ : A → Baff(S) given by τ0 7→
[α0,−1], τi 7→ [αi, 0], i = 1, . . . , r, and f 7→ f, f ∈ S.

Proof. It is enough to check the Coxeter relations among ϕ(τ0), . . . , ϕ(τr) in Baff(S)
based on the classification of the affine root systems. This is done by the direct
computation of the symmetrizer for the subsystems of rank 2 in a similar manner
to [2, Section 6].

Example 2.4. We list the Coxeter relations in Baff involving [θ, 1] = −[α0,−1]
for the root systems of rank 2. Let (ε1, . . . , εr) be an orthonormal basis of the
r-dimensional Euclidean space. Put [ij, k] := [εi − εj , k], [ij, k] := [εi + εj , k],
[i, k] := [εi, k] and [α] := [α, 0].

(i) (Type A2 case)

[13, 1][23][13, 1] + [23][13, 1][23] = 0, [13, 1][12][13, 1] + [12][13, 1][12] = 0.

(ii) (Type B2 case)
[12, 1][2][12, 1][2] = [2][12, 1][2][12, 1].

(iii) (Type G2 case) Let α1, α2 be the simple roots for the G2-system. We assume
that α1 is a short root and α2 is a long one. Then we have θ = 3α1 + 2α2,
and

[θ, 1][α2][θ, 1] + [α2][θ, 1][α2] = 0.

§3. Model of nil-Hecke algebra

The connected components of P ⊗ R \
⋃
α∈∆+, k∈Z Hα,k are called alcoves. The

affine Weyl group Waff acts on the set of alcoves simply transitively.

Definition 3.1 ([8]). (1) A sequence (A0, . . . , Al) of alcoves Ai is called an alcove
path if Ai and Ai+1 have a common wall and Ai 6= Ai+1.

(2) An alcove path (A0, . . . , Al) is called reduced if the length l of the path is
minimal among all alcove paths connecting A0 and Al.
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(3) We use the symbol Ai
β,k−→ Ai+1 when Ai and Ai+1 have a common wall of

the form Hβ,k and the direction of the root β is from Ai to Ai+1.

The alcove A◦ defined by the inequalities 〈λ, α0〉 ≥ −1 and 〈λ, αi〉 ≥ 0,
i = 1, . . . , r, is called the fundamental alcove. For a reduced alcove path γ : A0 =
A◦

β1,k1−−−→ · · · βl,kl−−−→ Al, we define an element [γ] ∈ Baff by

[γ] := [−β1,−k1] · · · [−βl,−kl].

When Al = x−1(A◦) for x ∈ Waff , we will also use the symbol [x] instead of [γ],
since [γ] depends only on x thanks to the Yang–Baxter relations listed in Ex-
ample 2.4.

For a braided vector space M, it is known that an element a ∈ M acts on
B(M∗) as a braided differential operator (see [2], [9], [11]). Let us identify M∗ with
M via the Waff -invariant inner product ( , ) given by

([α, k], [β, l]) =

{
1 if α = β and k = l,

0 otherwise,

for α, β ∈ ∆+ and k, l ∈ Z. In our case, the differential operator
←−
D [α,k], [α, k] ∈

Vaff , acting from the right is determined by the following conditions:

(0) (c)
←−
D [α,k] = 0 for c ∈ Q,

(1) ([α, k])
←−
D [β,l] = ([α, k], [β, l]),

(2) (FG)
←−
D [α,k] = F (G

←−
D [α,k]) + (F

←−
D [α,k])sα,k(G),

for α, β ∈ ∆, k, l ∈ Z and F,G ∈ Baff . The operator
←−
D [α,k] extends to one acting

on Baff(S) by the commutation relation f ·
←−
D [α,k] =

←−
D [α,k] · sα,k(f), f ∈ S.

We use the abbreviations
←−
D0 :=

←−
D [α0,−1] and

←−
D i :=

←−
D [αi,0], i = 1, . . . , r. For

x ∈Waff , fix a reduced decomposition x = si1 · · · sil . We define the corresponding
braided differential operator

←−
Dx acting on Baff by the formula
←−
Dx :=

←−
D il · · ·

←−
D i1 ,

which is also independent of the choice of the reduced decomposition of x because
of the braid relations.

Lemma 3.2. For x ∈ Waff , take a reduced alcove path γ from the fundamental
alcove A◦ to x−1(A◦). Then ([γ])

←−
Dx = 1.

Proof. Take a reduced path

γ : A0 = A◦
β1,k1−−−→ A1

β2,k2−−−→ · · · βl,kl−−−→ Al = x−1(A◦).
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Define a sequence σ1, . . . , σl ∈Waff inductively by

σ1 := sβ1,k1 , σj+1 := σjσj−1 · · ·σ1 · sβj+1,kj+1 · σ1 · · ·σj−1σj .

Then it is easy to see that σν · · ·σ1(Aj) 6= A◦, 1 ≤ ν ≤ j − 1, σj · · ·σ1(Aj) = A◦

and the walls σj · · ·σ1(Hβj+1,kj+1) correspond to simple roots. Hence, σ1, . . . , σl
are simple reflections. This sequence gives a reduced expression x = σl · · ·σ1. Put
σi = sαij . Since the direction of βj+1 is chosen to be from Aj to Aj+1, we have

[γ]
←−
Dx = ([β1, k1])

←−
D i1 · (σ1([β2, k2]))

←−
D i2 · · · (σl−1 · · ·σ1([βl, kl]))

←−
D il = 1.

Example 3.3 (A2-case). The standard realization is given by α1 = ε1− ε2, α2 =
ε2 − ε3, α0 = ε3 − ε1. Consider the translation tα1 by the simple root α1. If we
take a reduced path

γ : A0 = A◦
−α2,0−−−−→ A1

α1,1−−−→ A2
−α0,1−−−−→ A3

α1,2−−−→ A4 = tα1(A◦),

then we have [γ] = [23][21,−1][31,−1][21,−2]. On the other hand, the differ-
ential operator corresponding to t−α1 is given by

←−
D2
←−
D0
←−
D2
←−
D1, where

←−
D0 =←−

D [31,−1],
←−
D1 =

←−
D [12],

←−
D2 =

←−
D [23]. It is easy to check by direct computation that

([23][21,−1][31,−1][12, 2])
←−
D2
←−
D0
←−
D2
←−
D1 = 1.

Theorem 3.4. The algebra homomorphism ϕ : A→ Baff(S) is injective.

Proof. The nil-Hecke algebra A is also Waff -graded by assigning the Waff -degree
to each generator by degWaff

(τi) = si. Since the homomorphism ϕ : A → Baff(S)
preserves the Waff -grading, it is enough to check ϕ(τx) 6= 0 for x ∈ Waff in order
to show the injectivity of ϕ. On the other hand, Baff

op acts on Baff itself via the
braided differential operators. Let γ be a reduced alcove path from A◦ to x−1(A◦).
Then ([γ])

←−
Dx = 1 from Lemma 3.2. This shows

←−
Dx 6= 0, so ϕ(τx) 6= 0.

This theorem implies the following (see Proposition 1.1):

Corollary 3.5. The T -equivariant Pontryagin ring HT
∗ (Ĝr) is a subalgebra of

Baff(S).

By taking the non-equivariant limit, we also have:

Corollary 3.6. The Pontryagin ring H∗(Ĝr) is a subalgebra of Baff .

§4. Affine Bruhat operators

We denote by x→ y the cover relation in the Bruhat ordering ofWaff , i.e. y = xsα,k
for some α ∈ ∆ and k ∈ Z, and l(y) = l(x) + 1.
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We will use some terminology from [7]. Denote by Q̃ the set of antidominant
elements in Q∨. An element x ∈ Waff can be uniquely expressed as a product of
the form x = wtvλ ∈Waff with v, w ∈W, λ ∈ Q̃. We say that x = wtvλ belongs to
the v-chamber. An element λ ∈ Q̃ is called superregular when |〈λ, α〉| > 2(#W )+2
for all α ∈ ∆+. If λ ∈ Q̃ is superregular, then x = wtvλ is also called superregular.
The subset of superregular elements in Waff is denoted by Waff

sreg. We say that a
property holds for sufficiently superregular elements Waff

ssreg ⊂ Waff if there is a
positive constant k ∈ Z such that the property holds for all x ∈Waff

sreg satisfying
the following condition:

y ∈Waff , y < x, and l(x)− l(y) < k ⇒ y ∈Waff
sreg.

The meaning of Waff
ssreg depends on the context (see [7, Section 4] for the details).

For v ∈ W, consider the S-submodule M ssreg
v in Baff generated by the sufficiently

superregular elements [x] where x belongs to the v-chamber.

Lemma 4.1. Let x ∈Waff . For α ∈ ∆ and k ∈ Z>0, we have

[x]
←−
D [α,k] =

{
[xsα,k] if l(x) = l(xsα,k) + 1,
0 otherwise.

Proof. The fundamental alcove A◦ is contained in the region {λ ∈ P ⊗ R | 〈λ, α〉
< k} for α ∈ ∆ and k ∈ Z>0. Choose any reduced path γ : A0

β1,k1−−−→ · · · βl,kl−−−→
Al = x−1(A◦) with ki ≥ 0. If l(x) > l(xsα,k), then (βi, ki) = (α, k) for some i.
Take the largest i and consider the path

γ′ : A0
β1,k1−−−→ · · · βi−1,ki−1−−−−−−→ Ai−1

β′i+1,k
′
i+1−−−−−−→ sα,k(Ai+1)

β′i+2,k
′
i+2−−−−−−→ · · ·

· · · β
′
l,k
′
l−−−→ sα,k(Al) = sα,kx

−1(A◦) = (xsα,k)−1(A◦),

where (β′j , k
′
j) is determined by the condition sα,k(Hβj ,kj ) = Hβ′j ,k

′
j
. If l(x) =

l(xsα,k) + 1, then γ′ is a reduced path. In this case, [x]
←−
D [α,k] = [xsα,k]. If l(x) >

l(xsα,k) + 1, then γ′ is not reduced and [x]
←−
D [α,k] = 0. When l(x) < l(xsα,k), the

element [α, k] does not appear in the monomial [γ], so [x]
←−
D [α,k] = 0.

Proposition 4.1 ([7, Proposition 4.1]). Let λ ∈ Q̃ be superregular. For x = wtvλ
and y = xsvα,−n with v, w ∈ W, we have the cover relation y → x if and only if
one of the following conditions holds:

(1) l(wv) = l(wvsα)− 1 and n = 〈λ, α〉, giving y = wsv(α)tv(λ),

(2) l(wv) = l(wvsα) + 〈α∨, 2ρ〉 − 1 and n = 〈λ, α〉+ 1, giving y = wsv(α)tv(λ+α∨),
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(3) l(v) = l(vsα) + 1 and n = 0, giving y = wsv(α)tvsα(λ),

(4) l(v) = l(vsα)− 〈α∨, 2ρ〉+ 1 and n = −1, giving y = wsv(α)tvsα(λ+α∨).

In [7], the first parts of conditions (1) and (2) are called the near relation
because x and y belong to the same chamber. In this paper we denote the near
relation by y →near x.

The affine Bruhat operator Bµ : S〈Waff
ssreg〉 → S〈Waff

sreg〉, µ ∈ P, due to
Lam and Shimozono [7, Section 5] is an S-linear map defined by the formula

Bµ(x) = (µ− wvµ)x+
∑
α∈∆+

∑
xsv(α),k→nearx

〈α∨, µ〉xsv(α),k

for x = wtvλ ∈Waff
ssreg. We also introduce the operator βµv , µ ∈ P, acting on each

M ssreg
v by

βµv ([x]) := (µ− wvµ)[x] + [x]
∑

α∈∆+,k>1

〈α∨, µ〉
←−
D [v(α),k],

where x = wtvλ ∈ Waff
ssreg. Denote by Waff

ssreg(v) the subset of Waff consisting
of the superregular elements belonging to the v-chamber. Fix a left S-module
isomorphism

ι : S〈Waff
ssreg(v)〉 →M ssreg

v , x 7→ [x].

Proposition 4.2. For each v ∈ W and a sufficiently superregular element x ∈
Waff

ssreg(v),
βµv ([x]) = ι(Bµ(x)).

Proof. This can be shown by using Lemma 4.1 and Proposition 4.1:

βµv ([x]) = (µ− wvµ)[x] + [x]
∑

α∈∆+, k>1

〈α∨, µ〉
←−
D [v(α),k]

= (µ− wvµ)[x] +
∑
α∈∆+

∑
k>1, l(xsv(α),k)=l(x)−1

〈α∨, µ〉[xsv(α),k]

= (µ− wvµ)[x] +
∑
α∈∆+

∑
xsv(α),k→nearx

〈α∨, µ〉[xsv(α),k] = ι(Bµ(x)).

Remark 4.2. In [5] the authors introduced the quantization operators ηα act-
ing on the model of H∗(G/B) ⊗ C[q1, . . . , qr] realized as a subalgebra of BW ⊗
C[q1, . . . , qr]. For a superregular element λ ∈ Q̃ and w ∈W, consider a homomor-
phism θλw from the λ-small elements (see [7, Section 5]) of H∗(G/B)⊗C[q] to Baff

defined by
θλw(qµσv) := [vw−1tw(λ+µ)],
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where σv is the Schubert class of G/B corresponding to v ∈W and qµ = qµ1
1 · · · qµrr

for µ =
∑r
i=1 µiα

∨
i . The following is an interpretation of the formula of [7, Propo-

sition 5.1] in our setting:

θλw(ηα(σ)) = β$αw (θλw(σ)).

§5. Peterson isomorphism

As seen in the proof of Lemma 3.1, we can read off two kinds of decomposition of
an element x ∈Waff into products of reflections from an alcove path

γ : A0 = A◦
β1,k1−−−→ A1

β2,k2−−−→ · · · βl,kl−−−→ Al = x−1(A◦).

One of them is a reduced decomposition x = σl · · ·σ1, and another is a decompo-
sition x = sβl,kl · · · sβ1,k1 into a product of (not necessarily simple) reflections. Let
M be a left S-submodule of Baff(S) generated by the elements [x], x ∈ Waff . The
correspondence between the above decompositions of x induces an isomorphism of
S-modules:

υ : M → ϕ(A) ∼= A, [x] = [−β1,−k1] · · · [−βl,−kl] 7→ ϕ(τx) = [σl] · · · [σ1].

For a superregular antidominant element λ ∈ Q and µ1, . . . , µk ∈ P, we see that
υ(
∑
w∈W βµkw · · ·βµ1

w [twλ]) belongs to ZA(S) from [7, Theorem 7.2].
The Peterson isomorphism

ψ : HT
∗ (Ĝr)loc := HT

∗ (Ĝr)[ξ−1
tλ
|λ ∈ Q̃]

→ QH∗T (G/B)loc := QH∗(G/B)[q−1
1 , . . . , q−1

r ]

is an S-algebra isomorphism given by

ξwtλξtµ 7→ qλ−µσw, w ∈W, λ, µ ∈ Q̃.

Proposition 5.1. The Peterson isomorphism ψ is characterized by the condition

ψ
(
j−1
(
υ
(∑
w∈W

βµkw · · ·βµ1
w [twλ]

)))
= qληµ1 · · · ηµkσid

for a superregular element λ ∈ Q̃ and µ1, . . . µk ∈ P.

§6. Quadratic relations

For α ∈ ∆+ and v ∈W, define the operator Dv(α) by

Dv(α) :=
∑
k>1

←−
D [v(α),k].
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Then
βµv ([x]) = (µ− wvµ)[x] + [x]

∑
α∈∆+

〈α∨, µ〉Dv(α).

In the following, we discuss the relations among the operators Dv(α), α ∈ ∆+, for
a root system of type An−1. For simplicity, we consider only the non-equivariant
case with v = id. Take the standard realization of the An−1-system:

∆ = {εi − εj | 1 ≤ i, j ≤ n, i 6= j}.

Put D(ij) := Did(εi − εj) for 1 ≤ i < j ≤ n, and D(ij) := −D(ji) for i > j. In this
situation, we have a formula for the non-equivariant limit β̄εiid of the operator βεiid :

β̄εiid =
∑
j 6=i

D(ij).

Note that this formula is analogous to the definition of the Dunkl elements in [4].
Let Ti, 1 ≤ i ≤ n−1, be linear operators on M ssreg defined by Ti([x]) := [xtαi ],

where x ∈ Waff and αi = εi − εi+1. It is easy to check from Proposition 4.1 that
(Ti[x])D(jk) = Ti([x]D(jk)). Our next goal is to show that the operators D(ij)
satisfy the defining relations of the quantum deformation Eqn of the Fomin–Kirillov
quadratic algebra [4].

Proposition 6.1. (i) For 1 ≤ i < j ≤ n, we have

D(ij)2 =

{
Ti if j = i+ 1,
0 otherwise.

(ii) If {i, j} ∩ {k, l} = ∅, then D(ij)D(kl) = D(kl)D(ij).

(iii) For 1 ≤ i, j ≤ n, i 6= j,

D(ij)D(jk) + D(jk)D(kl) + D(ki)D(ij) = 0.

Proof. First of all, let us check (i). We have

D(ij)2 =
∑
k,l>1

←−
D [ij,k]

←−
D [ij,l].

Let λ ∈ Q̃ be sufficiently superregular. For x = wtλ ∈Waff , assume that

[x]
←−
D [ij,k]

←−
D [ij,l] 6= 0.

Then we have the arrows xsij,k →near x and xsij,ksij,l →near xsij,k in the Bruhat
ordering. From conditions (1) and (2) of Proposition 4.1, one of the following
conditions holds:
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Case 1: k = −〈λ, εi − εj〉 and l(w) = l(wsij)− 1.
Case 2: k = −〈λ, εi − εj〉 − 1 and l(w) = l(wsij) + 〈εi − εj , 2ρ〉 − 1.

In Case 1, since the arrow xsij,ksij,l = wsijtλsij,l →near xsij,k must come from
condition (2) of Proposition 4.1, we have 〈εi−εj , 2ρ〉−1 = 1. This equality implies
that εi − εj is a simple root αi, and we get

[x]D(i i+ 1)2 = [x]
←−
D [αi,−〈λ,αi〉]

←−
D [αi,−〈λ,αi〉−1] = [xtαi ] = Ti[x].

In Case 2, since the arrow xsij,ksij,l = wsijtλ+εi−εjsij,l →near xsij,k comes from
condition (1) of Proposition 4.1, we again obtain 〈εi − εj , 2ρ〉 − 1 = 1 and εi − εj
= αi. Hence we get

[x]D(i i+ 1)2 = [x]
←−
D [αi,−〈λ,αi〉−1]

←−
D [αi,−〈λ,αi〉−2] = [xtαi ] = Ti[x].

If j 6= i+ 1, we have D(ij)2 = 0. Relations (ii) and (iii) follow from the identities
[ij, a][kl, b] = [kl, b][ij, a] for {i, j} ∩ {k, l} = ∅, and

[ij, a][jk, b] + [jk, b][ki,−a− b] + [ki,−a− b][ij, a] = 0

in Baff .

Remark 6.1. The operators Dv(α) induce the quantum Bruhat representation
of Eqn via θλv .
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