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Minimal Model Theory for Log Surfaces

by

Osamu Fujino

Abstract

We discuss the log minimal model theory for log surfaces. We show that the log minimal
model program, the finite generation of log canonical rings, and the log abundance the-
orem for log surfaces hold true under assumptions weaker than the usual framework of
the log minimal model theory.
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§1. Introduction

We discuss the log minimal model theory for log surfaces. This paper completes

Fujita’s results on the semi-ampleness of semi-positive parts of Zariski decompo-

sitions of log canonical divisors and the finite generation of log canonical rings

for smooth projective log surfaces in [Ft] and the log minimal model program for

projective log canonical surfaces discussed by Kollár and Kovács in [KK]. We show
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that the log minimal model program for surfaces works and the log abundance the-

orem and the finite generation of log canonical rings for surfaces hold true under

assumptions weaker than the usual framework of the log minimal model theory

(cf. Theorems 3.3, 4.5, and 6.1).

The log minimal model program works for Q-factorial log surfaces and log

canonical surfaces by our new cone and contraction theorem for log varieties

(cf. [F3, Theorem 1.1]), which is the culmination of the works of several authors.

By our log minimal model program for log surfaces, Fujita’s results in [Ft] are

clarified and generalized. In [Ft], Fujita treated a pair (X,∆) where X is a smooth

projective surface and ∆ is a boundary Q-divisor on X without any assumptions

on singularities of the pair (X,∆). We note that our log minimal model program

discussed in this paper works for such pairs (cf. Theorem 3.3). It is not necessary

to assume that (X,∆) is log canonical.

Roughly speaking, we will prove the following theorem in this paper. Case

(A) in Theorem 1.1 is new.

Theorem 1.1 (cf. Theorems 3.3 and 8.1). Let X be a normal projective surface

defined over C and let ∆ be an effective R-divisor on X such that every coefficient

of ∆ is less than or equal to one. Assume that one of the following conditions

holds:

(A) X is Q-factorial, or

(B) (X,∆) is log canonical.

Then we can run the log minimal model program with respect to KX+∆ and obtain

a sequence of extremal contractions

(X,∆) = (X0,∆0)
ϕ0−→ (X1,∆1)

ϕ1−→ · · · ϕk−1−−−→ (Xk,∆k) = (X∗,∆∗)

such that

(1) (Minimal model) if KX+∆ is pseudo-effective, then KX∗+∆∗ is semi-ample,

and

(2) (Mori fiber space) if KX +∆ is not pseudo-effective, then there is a morphism

g : X∗ → C such that −(KX∗ + ∆∗) is g-ample, dimC < 2, and the relative

Picard number ρ(X∗/C) is 1.

We note that, in Case (A), we do not assume that (X,∆) is log canonical. We

also note that Xi is Q-factorial for every i in Case (A) and that (Xi,∆i) is log

canonical for every i in Case (B). Moreover, in both cases, Xi has only rational

singularities for every i if so does X (cf. Proposition 3.7).
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As a special case of Theorem 1.1, we obtain a generalization of Fujita’s result

in [Ft], where X is assumed to be smooth.

Corollary 1.2 (cf. [Ft]). Let X be a normal projective surface defined over C and

let ∆ be an effective Q-divisor on X such that every coefficient of ∆ is less than or

equal to one. Assume that X is Q-factorial and KX + ∆ is pseudo-effective. Then

the semi-positive part of the Zariski decomposition of KX + ∆ is semi-ample. In

particular, if KX + ∆ is nef, then it is semi-ample.

The following result is a corollary of Theorem 1.1. This is because X is Q-

factorial if X has only rational singularities.

Corollary 1.3 (cf. Corollary 4.6). Let X be a projective surface with only rational

singularities. Then the canonical ring

R(X) =
⊕
m≥0

H0(X,OX(mKX))

is a finitely generated C-algebra.

Furthermore, if KX is big in Corollary 1.3, then we can prove that the canon-

ical model

Y = Proj
⊕
m≥0

H0(X,OX(mKX))

of X has only rational singularities (cf. Theorem 7.3). Therefore, the notion of

rational singularities is appropriate for the minimal model theory for log surfaces.

We note that the general classification theory of algebraic surfaces is due

essentially to the Italian school, and has been worked out in detail by Kodaira,

in Shafarevich’s seminar, and so on. The theory of log surfaces was studied by

Iitaka, Kawamata, Miyanishi, Sakai, Fujita, and many others. See, for example,

[Mi] and [S2]. Our viewpoint is more minimal-model-theoretic than in other works.

We do not use the notion of Zariski decomposition in this paper (see Remark 3.10).

Let us emphasize the major differences between traditional arguments for log

and normal surfaces (cf. [Mi], [S1], and [S2]) and our new framework discussed in

this paper.

1.4 (Intersection pairing in the sense of Mumford). Let X be a normal projective

surface and let C1 and C2 be curves on X. It is well known that we can define the

intersection number C1 ·C2 in the sense of Mumford without assuming that C1 or

C2 is Q-Cartier. However, in this paper, we only consider the intersection number

C1 · C2 under the assumption that C1 or C2 is Q-Cartier. This is a key point of

the minimal model theory for surfaces from the viewpoint of Mori theory.
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1.5 (Contraction theorems by Grauert and Artin). Let X be a normal projective

surface and let C1, . . . , Cn be irreducible curves on X such that the intersection

matrix (Ci · Cj) is negative definite. Then we have a contraction morphism f :

X → Y which contracts
⋃
i Ci to a finite number of normal points. This is a

well known and very powerful contraction theorem which follows from results by

Grauert and Artin (see, for example, [Ba, Theorem 14.20]). In this paper, we do

not use this type of contraction theorem. A disadvantage of the above contraction

theorem is that Y is not always projective. In general, Y is only an algebraic

space. Various experiences show that Y sometimes has pathological properties.

We only consider contraction morphisms associated to negative extremal rays of

the Kleiman–Mori cone NE(X). In this case, Y is necessarily projective, which

is very natural from the viewpoint of the higher dimensional log minimal model

program.

1.6 (Zariski decomposition). Let X be a smooth projective surface and let D be

a pseudo-effective divisor on X. Then we can decompose D as

D = P +N,

where the negative part N is an effective Q-divisor and either N = 0 or the in-

tersection matrix of the irreducible components of N is negative definite, and the

semi-positive part P is nef and the intersection of P with each irreducible compo-

nent of N is zero. This Zariski decomposition played crucial roles in the studies of

log and normal surfaces. In this paper, we do not use Zariski decomposition. In-

stead, we run the log minimal model program because we are mainly interested in

adjoint divisors KX + ∆ and have a powerful framework of the log minimal model

program. In our case, if KX + ∆ is pseudo-effective, then we have a contraction

morphism f : X → X ′ such that

KX + ∆ = f∗(KX′ + ∆′) + E(♠)

where KX′ + ∆′ is nef, and E is effective and f -exceptional. Of course, (♠) is the

Zariski decomposition of KX + ∆. We think that it is more natural and easier to

treat KX′ + ∆′ on X ′ than f∗(KX + ∆) on X.

1.7 (On Kodaira type vanishing theorems). Let X be a smooth projective sur-

face and let D be a simple normal crossing divisor on X. In the traditional argu-

ments, OX(KX +D) was recognized to be Ω2
X(logD). For our vanishing theorems

which play important roles in this paper, we have to recognize OX(KX + D)

as HomOX (OX(−D),OX(KX)) and OX(−D) as the 0-th term of Ω•X(logD) ⊗
OX(−D). For details, see [F3, Section 5], [F4, Chapter 2], and [F6]. The reader



Minimal Model Theory for Log Surfaces 343

can find our philosophy of vanishing theorems for the log minimal model program

in [F3, Section 3].

1.8 (Q-factoriality). In our framework, Q-factoriality will play a crucial role. For

surfaces, Q-factoriality seems to be more useful than we expected. See Lemma 5.2

and Theorem 5.3. The importance of Q-factoriality will be clarified in the minimal

model theory of log surfaces in positive characteristic. For details, see [T1].

Anyway, this paper gives a new framework for the study of log and normal

surfaces.

We summarize the contents of this paper. Section 2 collects some preliminary

results. In Section 3, we discuss the log minimal model program for log surfaces.

It is a direct consequence of the cone and contraction theorem for log varieties

(cf. [F3, Theorem 1.1]). In Section 4, we show the finite generation of log canonical

rings for log surfaces. More precisely, we prove a special case of the log abundance

theorem for log surfaces. In Section 5, we treat the non-vanishing theorem for log

surfaces. It is an important step of the log abundance theorem for log surfaces.

In Section 6, we prove the log abundance theorem for log surfaces. It is a gener-

alization of Fujita’s main result in [Ft]. Section 7 is a supplementary section. We

prove the finite generation of log canonical rings and the log abundance theorem

for log surfaces in the relative setting. In Section 8, we generalize the relative log

abundance theorem of Section 7 to R-divisors. Consequently, Theorem 1.1 also

holds in the relative setting. In Section 9 (Appendix), we prove the base point

free theorem for log surfaces in full generality (cf. Theorem 9.1), though it is not

necessary for the log minimal model theory for log surfaces discussed in this paper.

It generalizes Fukuda’s base point free theorem for log canonical surfaces (cf. [Fk,

Main Theorem]). Our proof is different from Fukuda’s and depends on the theory

of quasi-log varieties (cf. [A], [F4], and [F7]).

We will work over C, the complex number field, throughout this paper. Our

arguments heavily depend on a Kodaira type vanishing theorem (cf. [F3]). So, we

cannot directly apply them in positive characteristic. We note that [Ft] and [KK]

treat algebraic surfaces defined over an algebraically closed field in any character-

istic. Recently, Hiromu Tanaka has established the minimal model theory of log

surfaces in positive characteristic (see [T1]). See also [FT] and [T2]. Simultaneously,

he slightly simplified and generalized some arguments in this paper (cf. Theorem

5.3 and Remark 6.4). Consequently, all the results in this paper hold over any

algebraically closed field of characteristic zero. We have to be careful when we use

the Lefschetz principle because Q-factoriality is not necessarily preserved by field

extensions (cf. Remark 6.5).
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§2. Preliminaries

Here we collect some basic definitions and results. We will freely use the notation

and terminology of [KM] and [F3] throughout this paper.

2.1 (Q-divisors and R-divisors). Let X be a normal variety. For an R-divisor D =∑r
j=1 djDj on X such that Dj is a prime divisor for every j and Di 6= Dj for

i 6= j, we define the round-down xDy =
∑r
j=1xdjyDj (resp. round-up pDq =∑r

j=1pdjqDj), where for every real number x, xxy (resp. pxq) is the integer defined

by x−1 < xxy ≤ x (resp. pxq = −x−xy). The fractional part {D} of D is D−xDy.
We define

D>a =
∑
dj>a

djDj , D<a =
∑
dj<a

djDj , D=a =
∑
dj=a

djDj = a
∑
dj=a

Dj

for any real number a. We call D a boundary R-divisor if 0 ≤ dj ≤ 1 for every j.

We denote by ∼Q (resp. ∼R) the Q-linear equivalence (resp. R-linear equivalence)

of Q-divisors (resp. R-divisors). Of course, ∼ (resp. ≡) denotes the usual linear

equivalence (resp. numerical equivalence) of divisors.

Let f : X → Y be a morphism and let B be a Cartier divisor on X. We say

that B is linearly f -trivial (denoted by B ∼f 0) if there is a Cartier divisor B′

on Y such that B ∼ f∗B′. Two R-Cartier R-divisors B1 and B2 on X are called

numerically f -equivalent (denoted by B1 ≡f B2) if B1 ·C = B2 ·C for every curve

C such that f(C) is a point.

We say that X is Q-factorial if every prime Weil divisor on X is Q-Cartier.

The following lemma is well known.

Lemma 2.2 (Projectivity). Let X be a normal Q-factorial algebraic surface.

Then X is quasi-projective. In particular, a normal complete Q-factorial algebraic

surface is always projective.

Proof. It is easy to construct a complete normal Q-factorial algebraic surface X

which containsX as a Zariski open subset becauseX has only isolated singularities.

So, from now on, we assume that X is a complete normal Q-factorial algebraic

surface. Let f : Y → X be a projective birational morphism from a smooth

projective surface Y . Let H be an effective general ample Cartier divisor on Y .

We consider the effective Q-Cartier Weil divisor A = f∗H on X. Then A · C =

H · f∗C > 0 for every curve C on X. Therefore, A is ample by Nakai’s criterion.

Thus, X is projective.

By the following example, we see that Q-factoriality of a surface is weaker

than the condition that the surface has only rational singularities.
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Example 2.3. We consider

X = SpecC[X1, X2, X3]/(Xe1
1 +Xe2

2 +Xe3
3 )

where e1, e2, and e3 are positive integers such that 1 < e2 < e2 < e3 and (ei, ej) = 1

for i 6= j. Then X is factorial, that is, every Weil divisor on X is Cartier (see, for

example, [Mo, Theorem 5.1]). If (e1, e2, e3) = (2, 3, 5), then X has a singular point

of E8 type. Therefore, X has a rational Gorenstein singularity. If (e1, e2, e3) 6=
(2, 3, 5), then the singularity of X is not rational. Therefore, there are many normal

(Q-)factorial surfaces whose singularities are not rational.

2.4 (Singularities of pairs). Let X be a normal variety and let ∆ be an effective

R-divisor on X such that KX + ∆ is R-Cartier. Let f : Y → X be a resolution

such that Exc(f)∪ f−1
∗ ∆ has simple normal crossing support, where Exc(f) is the

exceptional locus of f and f−1
∗ ∆ is the strict transform of ∆ on Y . We can write

KY = f∗(KX + ∆) +
∑
i

aiEi.

We say that (X,∆) is log canonical (lc, for short) if ai ≥ −1 for every i. We

say that (X,∆) is Kawamata log terminal (klt , for short) if ai > −1 for every i.

We usually write ai = a(Ei, X,∆) and call it the discrepancy coefficient of Ei
with respect to (X,∆). We denote by Nklt(X,∆) (resp. Nlc(X,∆)) the image of∑
ai≤−1Ei (resp.

∑
ai<−1Ei) and call it the non-klt locus (resp. non-lc locus) of

(X,∆). If there exist a resolution f : Y → X and a divisor E on Y such that

a(E,X,∆) = −1 and f(E) 6⊂ Nlc(X,∆), then f(E) is called a log canonical center

(lc center , for short) with respect to (X,∆). If there exist a resolution f : Y → X

and a divisor E on Y such that a(E,X,∆) ≤ −1, then f(E) is called a non-klt

center with respect to (X,∆).

When X is a surface, the notion of numerically log canonical and numerically

dlt is sometimes useful. See [KM, Notation 4.1] and Proposition 3.5 below.

2.5 (Kodaira dimension and numerical Kodaira dimension). We denote by κ

(resp. ν) the Iitaka–Kodaira dimension (resp. numerical Kodaira dimension).

Let X be a normal projective variety, D a Q-Cartier Q-divisor on X, and n a

positive integer such that nD is Cartier. By definition, κ(X,D) = −∞ if and only

if h0(X,OX(mnD)) = 0 for every m > 0, and κ(X,D) = k > −∞ if and only if

0 < lim sup
m>0

h0(X,OX(mnD))

mk
<∞.

We see that κ(X,D) ∈ {−∞, 0, 1, . . . ,dimX}. If D is nef, then

ν(X,D) = max{e ∈ Z≥0 | De is not numerically zero}.

We say that D is abundant if ν(X,D) = κ(X,D).
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Let Y be a projective irreducible variety and let B be a Q-Cartier Q-divisor

on Y . We say that B is big if ν∗B is big , that is, κ(Z, ν∗B) = dimZ, where

ν : Z → Y is the normalization of Y .

2.6 (Nef dimension). Let L be a nef Q-Cartier Q-divisor on a normal projective

variety X. Then n(X,L) denotes the nef dimension of L. It is well known that

κ(X,L) ≤ ν(X,L) ≤ n(X,L).

For details, see [B8]. We will use the reduction map associated to L in Section 6.

Let us quickly recall the reduction map and the nef dimension in [B8]. By [B8,

Theorem 2.1], for a nef Q-Cartier Q-divisor L on X, we can construct an almost

holomorphic, dominant rational map f : X 99K Y with connected fibers, called a

reduction map associated to L such that

(i) L is numerically trivial on all compact fibers F of f with dimF = dimX −
dimY , and

(ii) for every general point x ∈ X and every irreducible curve C passing through

x with dim f(C) > 0, we have L · C > 0.

The map f is unique up to birational equivalence of Y . We define the nef dimension

of L as follows (cf. [B8, Definition 2.7]):

n(X,L) := dimY.

2.7 (Non-lc ideal sheaves). The ideal sheaf JNLC(X,∆) is the non-lc ideal sheaf

associated to the pair (X,∆). More precisely, let X be a normal variety and let

∆ be an effective R-divisor on X such that KX + ∆ is R-Cartier. Let f : Y → X

be a resolution such that KY + ∆Y = f∗(KX + ∆) and that Supp ∆Y is simple

normal crossing. Then we have

JNLC(X,∆) = f∗OY (−x∆Y y+ ∆=1
Y ) ⊂ OX .

For details, see, for example, [F3, Section 7], [F8], or [FST]. We note that

J (X,∆) = f∗OY (−x∆Y y) ⊂ OX

is the multiplier ideal sheaf associated to the pair (X,∆).

2.8 (A Kodaira type vanishing theorem). Let f : X → Y be a birational mor-

phism from a smooth projective variety X to a normal projective variety Y . Let

∆ be a boundary Q-divisor on X such that Supp ∆ is a simple normal crossing

divisor and let L be a Cartier divisor on X. Assume that

L− (KX + ∆) ∼Q f
∗H,
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where H is a nef and big Q-Cartier Q-divisor on Y such that H|f(C) is big for

every lc center C of the pair (X,∆). Then we obtain

Hi(Y,Rjf∗OX(L)) = 0

for every i > 0 and j ≥ 0. This is a special case of [F4, Theorem 2.47], which is the

culmination of the works of several authors. We recommend [F6] as an introduction

to new vanishing theorems.

2.9. Let Λ be a linear system. Then Bs Λ denotes the base locus of Λ.

§3. Minimal model program for log surfaces

Let us recall the notion of log surfaces.

Definition 3.1 (Log surfaces). Let X be a normal algebraic surface and let ∆ be

a boundary R-divisor on X such that KX + ∆ is R-Cartier. Then the pair (X,∆)

is called a log surface. We recall that a boundary R-divisor is an effective R-divisor

whose coefficients are less than or equal to one.

We note that we assume nothing on singularities of (X,∆).

From now on, we discuss the log minimal model program for log surfaces. The

following cone and contraction theorem is a special case of [F3, Theorem 1.1]. For

details, see [F3].

Theorem 3.2 (cf. [F3, Theorem 1.1]). Let (X,∆) be a log surface and let π :

X → S be a projective morphism onto an algebraic variety S. Then

NE(X/S) = NE(X/S)KX+∆≥0 +
∑

Rj

with the following properties:

(1) Rj is a (KX + ∆)-negative extremal ray of NE(X/S) for every j.

(2) Let H be a π-ample R-divisor on X. Then there are only finitely many Rj’s

included in (KX + ∆ +H)<0. In particular, the Rj’s are discrete in the half-

space (KX + ∆)<0.

(3) Let R be a (KX + ∆)-negative extremal ray of NE(X/S). Then there exists a

contraction morphism ϕR : X → Y over S with the following properties:

(i) Let C be an integral curve on X such that π(C) is a point. Then ϕR(C)

is a point if and only if [C] ∈ R.

(ii) OY ' (ϕR)∗OX .
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(iii) Let L be a line bundle on X such that L · C = 0 for every curve C with

[C] ∈ R. Then there exists a line bundle LY on Y such that L ' ϕ∗RLY .

A key point is that the non-lc locus of a log surface (X,∆) is zero-dimensional.

So, there are no curves contained in the non-lc locus of (X,∆). In Proposition 3.8

below we will prove that Rj in Theorem 3.2(1) is spanned by a rational curve Cj
with −(KX + ∆) · Cj ≤ 3.

By Theorem 3.2, we can run the log minimal model program for log surfaces

under some mild assumptions.

Theorem 3.3 (Minimal model program for log surfaces). Let (X,∆) be a log

surface and let π : X → S be a projective morphism onto an algebraic variety S.

Assume that one of the following conditions holds:

(A) X is Q-factorial.

(B) (X,∆) is log canonical.

Then, by Theorem 3.2, we can run the log minimal model program over S with

respect to KX + ∆. So, there is a sequence of at most ρ(X/S)− 1 contractions

(X,∆) = (X0,∆0)
ϕ0−→ (X1,∆1)

ϕ1−→ · · · ϕk−1−−−→ (Xk,∆k) = (X∗,∆∗)

over S such that one of the following holds:

(1) (Minimal model) If KX + ∆ is pseudo-effective over S, then KX∗ + ∆∗ is nef

over S. In this case, (X∗,∆∗) is called a minimal model of (X,∆).

(2) (Mori fiber space) If KX + ∆ is not pseudo-effective over S, then there is a

morphism g : X∗ → C over S such that −(KX∗ + ∆∗) is g-ample, dimC < 2,

and ρ(X∗/C) = 1. We sometimes call g : (X∗,∆∗)→ C a Mori fiber space.

We note that Xi is Q-factorial (resp. (Xi,∆i) is lc) for every i in Case (A)

(resp. (B)).

Proof. This is obvious by Theorem 3.2. In Case (A), we can easily check that

Xi is Q-factorial for every i by the usual method (cf. [KM, Proposition 3.36]).

In Case (B), we have to check that (Xi,∆i) is lc for ∆i = ϕi−1∗∆i−1. Since

−(KXi−1 + ∆i−1) is ϕi−1-ample, it is easy to see that (Xi,∆i) is numerically lc

(cf. [KM, Notation 4.1]) by the negativity lemma. By Proposition 3.5 below, the

pair (Xi,∆i) is log canonical. In particular, KXi + ∆i is R-Cartier.

As an application of Case (A) in Theorem 3.3, we obtain the following corol-

lary.
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Corollary 3.4. Let f : Y → X be a projective birational morphism between nor-

mal surfaces. Let ∆Y be an effective R-divisor on Y such that Supp ∆Y ⊂ Exc(f)

and x∆Y y = 0. Assume that Y is Q-factorial and that KY + ∆Y ≡f 0. Then X is

Q-factorial.

Proof. We put E = Exc(f). We run the (KY + ∆Y + εE)-minimal model program

over X where ε is a small positive number such that x∆Y + εEy = 0. By the

negativity lemma, the above minimal model program terminates at X. Therefore,

X is Q-factorial by Theorem 3.3(A).

Let us recall [KM, Proposition 4.11] for the reader’s convenience. The state-

ment (2) in the following proposition is missing in the English edition of [KM].

For definitions, see [KM, Notation 4.1].

Proposition 3.5 (cf. [KM, Proposition 4.11]). (1) Let (X,∆) be a numerically

dlt pair. Then every Weil divisor on X is Q-Cartier, that is, X is Q-factorial.

(2) Let (X,∆) be a numerically lc pair. Then it is lc.

Proof. In both cases, if ∆ 6= 0, then (X, 0) is numerically dlt by [KM, Corollary

4.2] and we can reduce the problem to case (1) with ∆ = 0. Therefore, we may

assume that ∆ = 0. Let f : Y → X be a minimal resolution and let ∆Y be the

f -exceptional Q-divisor on Y such that KY + ∆Y ≡f 0. Then ∆Y ≥ 0 by [KM,

Corollary 4.3].

(1) We can apply Corollary 3.4 since x∆Y y = 0. We note that we only used

Case (A) of Theorem 3.3 for the proof of Corollary 3.4. See also the proof of [KM,

Proposition 4.11].

(2) We may assume that (X, 0) is not numerically dlt, that is, x∆Y y 6= 0. By

[KM, Theorem 4.7], {∆Y } is a simple normal crossing divisor. Since −x∆Y y ≡f
KY + {∆Y }, we have

R1f∗OY (n(KY + ∆Y )− x∆Y y) = 0

by the Kawamata–Viehweg vanishing theorem for n ∈ Z>0 such that n∆Y is a

Weil divisor. Hence, we obtain a surjection

f∗OY (n(KY + ∆Y ))� f∗Ox∆Y y(n(KY + ∆Y )).

Therefore, if we check

n(KY + ∆Y )|x∆Y y ∼ 0,

then we obtain n(KY +∆Y ) ∼f 0 and nKX = f∗(n(KY +∆Y )) is a Cartier divisor.

The above statement can be checked by using [KM, Theorem 4.7] as follows. By

the classification, x∆Y y is a cycle and ∆Y = x∆Y y (cf. [KM, Definition 4.6]),
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or x∆Y y is a simple normal crossing divisor consisting of rational curves and the

dual graph is a tree. In the former case, we have K∆Y
∼ 0. So, n = 1 is sufficient.

In the latter case, since H1(Ox∆Y y) = 0, n(KY + ∆Y )|x∆Y y ∼ 0 if we choose

n > 0 such that n(KY + ∆Y ) is a numerically trivial Cartier divisor (cf. [KM,

Theorem 4.13]).

We give an important remark on rational singularities.

Remark 3.6. Let X be an algebraic surface. If X has only rational singularities,

then it is well known that X is Q-factorial. Therefore, we can apply the log minimal

model program in Theorem 3.3 for pairs of surfaces with only rational singularities

and boundary R-divisors on them. We note that there are many two-dimensional

rational singularities which are not lc.

Now take a rational non-lc surface singularity P ∈ X. Let π : Z → X be the

index one cover of X. In this case, Z is not log canonical or rational.

We note that our log minimal model program works for the class of sur-

faces with only rational singularities by the next proposition. It is similar to [KM,

Proposition 2.71]. It is mysterious that [KM, Proposition 2.71] is also missing in

the English edition of [KM].

Proposition 3.7. Let (X,∆) be a log surface and let f : X → Y be a projective

surjective morphism onto a normal surface Y . Assume that −(KX+∆) is f -ample.

Then Rif∗OX = 0 for every i > 0. Therefore, if X has only rational singularities,

then Y also has only rational singularities.

Proof. We consider the short exact sequence

0→ JNLC(X,∆)→ OX → OX/JNLC(X,∆)→ 0,

where JNLC(X,∆) is the non-lc ideal sheaf associated to the pair (X,∆). By the

vanishing theorem (cf. [F3, Theorem 8.1]), we know Rif∗JNLC(X,∆) = 0 for every

i > 0. Since ∆ is a boundary R-divisor, we have dimC Supp(OX/JNLC(X,∆)) = 0.

So, we obtain Rif∗(OX/JNLC(X,∆)) = 0 for every i > 0. Thus, Rif∗OX = 0 for

all i > 0.

As a corollary, we can prove the following result.

Proposition 3.8 (Extremal rational curves). Let (X,∆) be a log surface and let

π : X → S be a projective surjective morphism onto a variety S. Let R be a

(KX + ∆)-negative extremal ray. Then R is spanned by a rational curve C on X

such that −(KX + ∆) · C ≤ 3. Moreover, if X 6' P2, then we can choose C with

−(KX + ∆) · C ≤ 2.
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Proof. We consider the extremal contraction ϕR : X → Y over S associated to R.

Let f : Z → X be the minimal resolution such that KZ +∆Z = f∗(KX +∆). Note

that ∆Z is effective. First, we assume that Y is a point. Let D be a general curve

on Z. Then D · (KZ + ∆Z) = D · f∗(KX + ∆) < 0. Therefore, κ(Z,KZ) = −∞.

If X ' P2, then the statement is obvious. So, we may assume that X 6' P2. In

this case, there exists a morphism g : Z → B onto a smooth curve B. Let D be a

general fiber of g. Then D ' P1 and −(KZ + ∆Z) ·D = −f∗(KX + ∆) ·D ≤ 2.

Thus, C = f(D) ⊂ X has the desired properties. Next, we assume that Y is a

curve. In this case, we take a general fiber of ϕR ◦ f : Z → X → Y . Then, it gives

a desired curve as in the previous case. Finally, we assume that ϕR : X → Y is

birational. Let E be an irreducible component of the exceptional locus of ϕR. We

consider the short exact sequence

0→ IE → OX → OE → 0,

where IE is the defining ideal sheaf of E on X. By Proposition 3.7, R1ϕR∗OX = 0.

Therefore, R1ϕR∗OE = H1(E,OE) = 0. Thus, E ' P1. Let F be the strict

transform of E on Z. Then the coefficient of F in ∆Z is ≤ 1 and F 2 < 0. Therefore,

−f∗(KX + ∆) · F = −(KZ + ∆Z) · F ≤ 2. This means that −(KX + ∆) · E ≤ 2

and E spans R.

We note the following easy result.

Proposition 3.9 (Uniqueness). Let (X,∆) be a log surface and let π : X → S

be a projective morphism onto a variety S as in Theorem 3.3. Let (X∗,∆∗) and

(X†,∆†) be minimal models of (X,∆) over S. Then (X∗,∆∗) ' (X†,∆†) over S.

Proof. We consider

KX + ∆ = f∗(KX∗ + ∆∗) + E and KX + ∆ = g∗(KX† + ∆†) + F,

where f : X → X∗ and g : X → X†. We note that SuppE = Exc(f) and SuppF =

Exc(g). By the negativity lemma, we obtain E = F . Therefore, (X∗,∆∗) '
(X†,∆†) over S.

We close this section with a remark on the Zariski decomposition.

Remark 3.10. Let (X,∆) be a projective log surface such that KX + ∆ is

Q-Cartier and pseudo-effective. Assume that (X,∆) is log canonical or X is

Q-factorial. Then there exists the unique minimal model (X∗,∆∗) of (X,∆) by

Theorem 3.3 and Proposition 3.9. Let f : X → X∗ be the natural morphism. Then

we can write

KX + ∆ = f∗(KX∗ + ∆∗) + E,
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where E is an effective Q-divisor such that SuppE = Exc(f). It is easy to see

that f∗(KX∗ + ∆∗) (resp. E) is the semi-positive (resp. negative) part of the

Zariski decomposition of KX + ∆. By Theorem 6.1 below, the semi-positive part

f∗(KX∗ + ∆∗) of the Zariski decomposition of KX + ∆ is semi-ample.

§4. Finite generation of log canonical rings

In this section, we prove that the log canonical ring of a Q-factorial projective log

surface is finitely generated.

First, we prove a special case of the log abundance conjecture for log surfaces.

Our proof heavily depends on a Kodaira type vanishing theorem.

Theorem 4.1 (Semi-ampleness). Let (X,∆) be a Q-factorial projective log sur-

face. Assume that KX +∆ is nef and big and that ∆ is a Q-divisor. Then KX +∆

is semi-ample.

Proof. If (X,∆) is klt, then KX + ∆ is semi-ample by the Kawamata–Shokurov

base point free theorem. Therefore, we may assume that (X,∆) is not klt. We

divide the proof into several steps.

Step 0. Let x∆y =
∑
i Ci be the irreducible decomposition. We put

A =
∑

Ci·(KX+∆)=0

Ci and B =
∑

Ci·(KX+∆)>0

Ci.

Then x∆y = A + B. We note that (Ci)
2 < 0 if Ci · (KX + ∆) = 0 by the Hodge

index theorem. We can decompose A into the connected components as follows:

A =
∑
j

Aj .

First, let us recall the following well-known easy result. Strictly speaking,

Step 1 is redundant by more sophisticated arguments in Steps 5 and 6.

Step 1. Let P be an isolated point of Nklt(X,∆). Then P 6∈ Bs |n(KX + ∆)|,
where n is some divisible positive integer.

Proof of Step 1. Let J (X,∆) be the multiplier ideal sheaf associated to (X,∆).

Then we have

Hi(X,OX(n(KX + ∆))⊗ J (X,∆)) = 0

for every i > 0 by the Kawamata–Viehweg–Nadel vanishing theorem (cf. 2.8).

Therefore, the restriction map

H0(X,OX(n(KX + ∆)))→ H0(X,OX(n(KX + ∆))/J (X,∆))
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is surjective. By assumption, the evaluation map

H0(X,OX(n(KX + ∆)))→ OX(n(KX + ∆))⊗ C(P )

at P is surjective. This implies that P 6∈ Bs |n(KX + ∆)|.

Next, we will check that Bs |n(KX + ∆)| contains no non-klt centers for some

divisible positive integer n from Steps 2 to 7 (cf. [F3, Theorem 12.1] and [F5,

Theorem 1.1]).

Step 2. We consider Aj with Nlc(X,∆) ∩ Aj 6= ∅. Let Aj =
∑
iDi be the irre-

ducible decomposition. We can easily check that Di is rational for every i and that

there exists a point P ∈ Nlc(X,∆) such that P ∈ Di for every i by calculating

differents (see, for example, [F3, Section 14]). We can also see that Dk∩Dl = P for

k 6= l and that Di is smooth outside P for every i by adjunction and inversion of

adjunction. If Di∩(∆−Di) 6= ∅, then Di spans a (KX+Di)-negative extremal ray.

So, we can contract Di in order to prove that Bs |n(KX + ∆)| contains no non-klt

centers (see Remark 4.3 below). We note that (KX + ∆) ·Di = 0. Therefore, by

replacing X with its contraction, we may assume that Aj is irreducible. We can

further assume that Aj is isolated in Supp ∆. This is because we can contract Aj
if Aj is not isolated in Supp ∆.

If Aj is P1, then it is easy to see that OAj (n(KX + ∆)) ' OAj because

Aj · (KX + ∆) = 0.

If Aj 6= P1, then we obtain H1(Aj ,OAj ) 6= 0. Therefore, by Serre duality, we

obtain H0(Aj , ωAj ) 6= 0, where ωAj is the dualizing sheaf of Aj . We note that

0→ T → OX(KX +Aj)⊗OAj → ωAj → 0

is exact, where T is the torsion part of OX(KX + Aj) ⊗ OAj (see Lemma 4.4

below). Since Aj is a curve, T is a skyscraper sheaf on Aj . So, H0(Aj , ωAj ) 6= 0

implies

Hom(OAj ,OX(KX +Aj)⊗OAj ) ' H0(Aj ,OX(KX +Aj)⊗OAj ) 6= 0.

More precisely, we can lift every section in H0(Aj , ωAj ) to

H0(Aj ,OX(KX +Aj)⊗OAj )

since H1(Aj , T ) = 0. Therefore, we obtain an inclusion map

OAj → OX(n(KX +Aj))⊗OAj ' OAj (n(KX + ∆))

for some divisible positive integer n. Since Aj · (KX + ∆) = 0, we see that

OAj (n(KX + ∆)) ' OAj .
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The following example may help us understand the case when Aj 6= P1 in

Step 2.

Example 4.2. We consider C := (zy2 = x3) ⊂ P2 =: X. Then (X,C) is not

log canonical at P = (0 : 0 : 1). On the other hand, (KX + C)|C = KC ∼ 0 by

adjunction.

Remark 4.3. Let f : (X,∆) → (X ′,∆′) be a proper birational morphism be-

tween log surfaces such that KX + ∆ = f∗(KX′ + ∆′). Let C be a non-klt center

of the pair (X,∆). Then it is obvious that f(C) is a non-klt center of the pair

(X ′,∆′). Since Bs |n(KX + ∆)| = f−1 Bs |n(KX′ + ∆′)| for every divisible positive

integer n, Bs |n(KX +∆)| contains no non-klt centers of (X,∆) if Bs |n(KX′+∆′)|
contains no non-klt centers of (X ′,∆′).

Step 3. If Nlc(X,∆) ∩ Aj = ∅, then OAj (n(KX + ∆)) ' OAj for some divisible

positive integer n by the abundance theorem for semi log canonical curves (cf. [F1]

and [FG, Theorem 1.3]).

Anyway, we obtain OA(n(KX + ∆)) ' OA for a divisible positive integer n.

Step 4. We have A ∩ Bs |n(KX + ∆)| = ∅.

Proof of Step 4. Let f : Y → X be a resolution such that KY +∆Y = f∗(KX+∆).

We may assume that

(1) f−1(A) has simple normal crossing support, and

(2) Supp f−1
∗ ∆ ∪ Exc(f) is a simple normal crossing divisor on Y .

Let W1 be the union of the irreducible components of ∆=1
Y which are mapped into

A by f . We write ∆=1
Y = W1 +W2. Then

−W1 − x∆>1
Y y+ p−(∆<1

Y )q− (KY + {∆Y }+W2) ∼Q −f∗(KX + ∆).

We put

J1 = f∗OY (−W1 − x∆>1
Y y+ p−(∆<1

Y )q) ⊂ OX .
Then we can easily check that

0→ J1 → OX(−A)→ δ → 0

is exact, where δ is a skyscraper sheaf, and

Hi(X,OX(n(KX + ∆))⊗ J1) = 0

for every i > 0 by 2.8, where n is some divisible positive integer. By the above

exact sequence, we obtain

Hi(X,OX(n(KX + ∆))⊗OX(−A)) = 0
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for i > 0. By this vanishing theorem, we see that the restriction map

H0(X,OX(n(KX + ∆)))→ H0(A,OA(n(KX + ∆)))

is surjective. Since OA(n(KX + ∆)) ' OA, we have Bs |n(KX + ∆)| ∩A = ∅.

Step 5. Let P be a zero-dimensional lc center of (X,∆). Then P 6∈Bs |n(KX+∆)|,
where n is some divisible positive integer.

Proof of Step 5. If P ∈ A, then it is obvious by Step 4. So, we may assume that

P ∩ SuppA = ∅. Let f : Y → X be the resolution as in the proof of Step 4. We

can further assume that

(3) f−1(P ) has simple normal crossing support.

Let W3 be the union of the irreducible components of ∆=1
Y which are mapped into

A ∪ P by f . We put ∆=1
Y = W3 +W4. Then

−W3 − x∆>1
Y y+ p−(∆<1

Y )q− (KY + {∆Y }+W4) ∼Q −f∗(KX + ∆).

We put

J2 = f∗OY (−W3 − x∆>1
Y y+ p−(∆<1

Y )q) ⊂ OX .
Then we have

Hi(X,OX(n(KX + ∆))⊗ J2) = 0

for every i > 0 by 2.8, where n is some divisible positive integer. Thus, the restric-

tion map

H0(X,OX(n(KX + ∆)))→ H0(X,OX(n(KX + ∆))⊗OX/J2)

is surjective. Therefore, the evaluation map

H0(X,OX(n(KX + ∆)))→ OX(n(KX + ∆))⊗ C(P )

is surjective since P ∩ SuppA = ∅. So, we have P 6∈ Bs |n(KX + ∆)|.

Step 6. Let P ∈ Nlc(X,∆). Then P 6∈ Bs |n(KX + ∆)|.

Proof of Step 6. If P ∈ A, then this is obvious by Step 4. So, we may assume that

P ∩ SuppA = ∅. By the proof of Step 4, the restriction map

H0(X,OX(n(KX + ∆)))→ H0(X,OX(n(KX + ∆))⊗OX/J1)

is surjective. Since P ∩ SuppA = ∅, we see that the evaluation map

H0(X,OX(n(KX + ∆)))→ OX(n(KX + ∆))⊗ C(P )

is surjective. So, we have P 6∈ Bs |n(KX + ∆)|.
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Step 7. We have Ei 6⊂ Bs |n(KX + ∆)|, where Ei is any irreducible component

of B and n is some divisible positive integer.

Proof of Step 7. We may assume that Ei ∩ A = ∅ by Step 4 and (X,∆) is log

canonical in a neighborhood of Ei by Step 6. We note that OEi(n(KX + ∆)) is

ample. So, OEi(n(KX + ∆)) is generated by global sections. Let f : Y → X be

the resolution as in the proof of Step 4. We can further assume that

(4) f−1(Ei) has simple normal crossing support.

Let W5 be the union of the irreducible components of ∆=1
Y which are mapped into

Aq Ei by f . We put ∆=1
Y = W5 +W6. Then

−W5 − x∆>1
Y y+ p−(∆<1

Y )q− (KY + {∆Y }+W6) ∼Q −f∗(KX + ∆).

We put

J3 = f∗OY (−W5 − x∆>1
Y y+ p−(∆<1

Y )q) ⊂ OX .

Then we have

Hj(X,OX(n(KX + ∆))⊗ J3) = 0

for every j > 0 by 2.8, where n is some divisible positive integer. We note that

there exists a short exact sequence

0→ J3 → OX(−A− Ei)→ δ′ → 0,

where δ′ is a skyscraper sheaf on X. Thus,

Hj(X,OX(n(KX + ∆))⊗OX(−A− Ei)) = 0

for every j > 0, Thus, the restriction map

H0(X,OX(n(KX + ∆)))→ H0(Ei,OEi(n(KX + ∆)))

is surjective since SuppEi ∩ SuppA = ∅.
This implies that Ei 6⊂ Bs |n(KX + ∆)| for every irreducible component Ei

of B.

We have checked that Bs |n(KX + ∆)| contains no non-klt centers of (X,∆).

Finally, we will prove that KX + ∆ is semi-ample.

Step 8. If |n(KX +∆)| is free, then there is nothing to prove. So, we assume that

Bs |n(KX + ∆)| 6= ∅. We take general members Ξ1,Ξ2,Ξ3 ∈ |n(KX + ∆)| and put

Θ = Ξ1 + Ξ2 + Ξ3. Then Θ contains no non-klt centers of (X,∆) and KX + ∆ + Θ
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is not lc at the generic point of any irreducible component of Bs |n(KX + ∆)| (see,

for example, [F3, Lemma 13.2]). We put

c = max{t ∈ R | KX + ∆ + tΘ is lc outside Nlc(X,∆)}.

Then we can easily check that c ∈ Q and 0 < c < 1. In this case,

KX + ∆ + cΘ ∼Q (1 + cn)(KX + ∆)

and there exists an lc center C of (X,∆ + cΘ) contained in Bs |n(KX + ∆)|. We

take positive integers l and m such that

l(KX + ∆ + cΘ) ∼ mn(KX + ∆).

Replace n(KX +∆) with l(KX +∆+cΘ) and apply the previous arguments. Then

we obtain C 6⊂ Bs |kl(KX + ∆ + cΘ)| for some positive integer k. Therefore,

Bs |kmn(KX + ∆)| ( Bs |n(KX + ∆)|.

This is because there is an lc center C of (X,∆+cΘ) such that C ⊂ Bs |n(KX+∆)|,
and l(KX + ∆ + cΘ) ∼ mn(KX + ∆). By noetherian induction, we deduce that

KX + ∆ is semi-ample.

The proof of Theorem 4.1 is finished.

We used the following lemma in the proof of Theorem 4.1.

Lemma 4.4 (Adjunction). Let X be a normal projective surface and let D be a

pure one-dimensional reduced irreducible closed subscheme. Then we have the short

exact sequence

0→ T → ωX(D)⊗OD → ωD → 0,

where T is the torsion part of ωX(D)⊗OD. In particular, T is a skyscraper sheaf

on D.

Proof. We consider the short exact sequence

0→ OX(−D)→ OX → OD → 0.

By tensoring with ωX(D), where ωX(D) = (ωX ⊗OX(D))∗∗, we obtain

ωX(D)⊗OX(−D)→ ωX(D)→ ωX(D)⊗OD → 0.

On the other hand, by taking ExtiOX ( , ωX), we obtain

0→ ωX → ωX(D)→ ωD ' Ext1OX (OD, ωX)→ 0.
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Note that ωX(D) ' HomOX (OX(−D), ωX). The natural homomorphism

α : ωX(D)⊗OX(−D)→ ωX ' (ωX(D)⊗OX(−D))∗∗

induces the commutative diagram

0

��
T

��
ωX(D)⊗OX(−D)

α

��

// ωX(D) // ωX(D)⊗OD

��

// 0

0 // ωX

��

// ωX(D) // ωD //

��

0

T

��

0

0

It is easy to see that α is surjective in codimension one and T is the torsion part

of ωX(D)⊗OD.

The next theorem is a generalization of Fujita’s result in [Ft].

Theorem 4.5 (Finite generation of log canonical rings). Let (X,∆) be a Q-fac-

torial projective log surface such that ∆ is a Q-divisor. Then the log canonical

ring

R(X,∆) =
⊕
m≥0

H0(X,OX(xm(KX + ∆)y))

is a finitely generated C-algebra.

Proof. Without loss of generality, we may assume that κ(X,KX + ∆) ≥ 0. By

Theorem 3.3, we may further assume that KX + ∆ is nef. If KX + ∆ is big,

then KX + ∆ is semi-ample by Theorem 4.1. Therefore, R(X,∆) is finitely gen-

erated. If κ(X,KX + ∆) = 1, then we can easily check that κ(X,KX + ∆) =

ν(X,KX + ∆) = 1 and that KX + ∆ is semi-ample (cf. [Ft, (4.1) Theorem]). So,

R(X,∆) is finitely generated. If κ(X,KX+∆) = 0, then it is obvious that R(X,∆)

is finitely generated.

As a corollary, we obtain the finite generation of canonical rings for projective

surfaces with only rational singularities.
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Corollary 4.6. Let X be a projective surface with only rational singularities.

Then the canonical ring

R(X) =
⊕
m≥0

H0(X,OX(mKX))

is a finitely generated C-algebra.

Remark 4.7. In Theorems 4.1 and 4.5, the assumption that ∆ is a boundary Q-

divisor is crucial. By Zariski’s example, we can easily construct a smooth projective

surface X and an effective Q-divisor ∆ on X such that Supp ∆ is simple normal

crossing, KX + ∆ is nef and big, and

R(X,∆) =
⊕
m≥0

H0(X,OX(xm(KX + ∆)y))

is not a finitely generated C-algebra. Of course, KX + ∆ is not semi-ample. See,

for example, [L, 2.3.A Zariski’s Construction].

§5. Non-vanishing theorem

In this section, we prove the following non-vanishing theorem.

Theorem 5.1 (Non-vanishing theorem). Let (X,∆) be a Q-factorial projective

log surface such that ∆ is a Q-divisor. Assume that KX + ∆ is pseudo-effective.

Then κ(X,KX + ∆) ≥ 0.

Proof. By Theorem 3.3, we may assume that KX + ∆ is nef. Let f : Y → X be

the minimal resolution. We put KY + ∆Y = f∗(KX + ∆). We note that ∆Y is

effective. If κ(Y,KY ) ≥ 0, then it is obvious that

κ(X,KX + ∆) = κ(Y,KY + ∆Y ) ≥ κ(Y,KY ) ≥ 0.

So, from now on, we assume κ(Y,KY ) = −∞. When Y is rational, we can easily

check κ(Y,KY + ∆Y ) ≥ 0 by the Riemann–Roch formula (see, for example, the

proof of [FM, 11.2.1 Lemma]). Therefore, we may assume that Y is an irrational

ruled surface. Let p : Y → C be the Albanese fibration. We can write KY + ∆Y =

KY +∆1+∆2, where ∆1 is an effective Q-divisor on Y such that ∆1 has no vertical

components with respect to p, 0 ≤ ∆1 ≤ ∆Y , (KY + ∆1) · F = 0 for any general

fiber F of p, and ∆2 = ∆Y −∆1 ≥ 0. When we prove κ(Y,KY + ∆Y ) ≥ 0, we can

replace ∆Y with ∆1 because κ(Y,KY + ∆Y ) ≥ κ(Y,KY + ∆1). Therefore, we may

assume that ∆Y = ∆1. By taking blow-ups, we can further assume that Supp ∆Y

is smooth. We note the following easy but important lemma.
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Lemma 5.2. Let B be any smooth irreducible curve on Y such that p(B) = C.

Then B is not f -exceptional.

Proof of Lemma 5.2. Let {Ei}i∈I be the set of all f -exceptional divisors. We

consider the subgroup G of Pic(B) generated by {OB(Ei)}i∈I . Let L = OC(D)

be a sufficiently general member of Pic0(C). We note that the genus g(C) of C is

positive. Then

(p|B)∗L ∈ Pic0(B)⊗Z Q \G⊗Z Q.

Suppose that B is f -exceptional. We consider E = p∗D on Y . Since X is Q-

factorial,

E ∼Q f
∗f∗E +

∑
i∈I

aiEi

with ai ∈ Q for every i. By restricting the above relation to B, we obtain (p|B)∗L ∈
G⊗Z Q. This is a contradiction. Therefore, B is not f -exceptional.

Thus, every irreducible component B of ∆Y is non-f -exceptional. So, its co-

efficient in ∆Y is not greater than one because ∆ is a boundary Q-divisor. By

applying [Ft, (2.2) Theorem], we find that κ(Y,KY + ∆Y ) ≥ 0, finishing the proof

of Theorem 5.1.

In [T1], Hiromu Tanaka generalizes Lemma 5.2 as follows. It is one of the key

observations for the minimal model theory of log surfaces in positive characteristic.

Theorem 5.3. Let k be an algebraically closed field of any characteristic such

that k 6= Fp. Assume that everything is defined over k in this theorem. Let X

be a Q-factorial projective surface and let f : Y → X be a projective birational

morphism from a smooth projective surface Y . Let p : Y → C be a projective

surjective morphism onto a projective smooth curve C with genus g(C) ≥ 1. Then

every f -exceptional curve E on Y is contained in a fiber of p : Y → C.

§6. Abundance theorem for log surfaces

In this section, we prove the log abundance theorem for Q-factorial projective log

surfaces.

Theorem 6.1 (Abundance theorem). Let (X,∆) be a Q-factorial projective log

surface such that ∆ is a Q-divisor. Assume that KX + ∆ is nef. Then KX + ∆ is

semi-ample.

Proof. By Theorem 5.1, we have κ(X,KX + ∆) ≥ 0. If κ(X,KX + ∆) = 2, then

KX+∆ is semi-ample by Theorem 4.1. If κ(X,KX+∆) = 1, then κ(X,KX+∆) =
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ν(X,KX + ∆) = 1 and we can easily check that KX + ∆ is semi-ample (cf. [Ft,

(4.1) Theorem]). Therefore, all we have to do is to prove KX + ∆ ∼Q 0 when

κ(X,KX + ∆) = 0. This is Theorem 6.2 below.

The proof of the following theorem depends on the argument in [Ft, §5. The

case κ = 0] and Sakai’s classification result in [S1].

Theorem 6.2. Let (X,∆) be a Q-factorial projective log surface such that ∆ is a

Q-divisor. Assume that KX+∆ is nef and κ(X,KX+∆) = 0. Then KX+∆ ∼Q 0.

Proof. Let f : V → X be the minimal resolution. We put KV +∆V = f∗(KX+∆).

We note that ∆V is effective. It is sufficient to see that KV + ∆V ∼Q 0. Let

ϕ : V =: V0
ϕ0−→ V1

ϕ1−→ · · · ϕk−1−−−→ Vk =: S

be a sequence of blow-downs such that

(1) ϕi is a blow-down of a (−1)-curve Ci on Vi,

(2) ∆Vi+1 = ϕi∗∆Vi , and

(3) (KVi + ∆Vi) · Ci = 0,

for every i. We may assume that there are no (−1)-curves C on S satisfying

(KS + ∆S) · C = 0. We note that KV + ∆V = ϕ∗(KS + ∆S). It is sufficient to

see that KS + ∆S ∼Q 0. By assumption, there is a member Z of |m(KS + ∆S)|
for some divisible positive integer m. Then, for every positive integer t, tZ is the

unique member of |tm(KS + ∆S)|. We can easily check the following lemma. See,

for example, [Ft, (5.4)].

Lemma 6.3 (cf. [Ft, (5.5) Lemma]). Let Z =
∑
i ξiZi be the prime decomposition

of Z. Then KS · Zi = ∆S · Zi = Z · Zi = 0 for every i.

We will derive a contradiction assuming Z 6= 0, equivalently, ν(S,KS + ∆S)

= 1. We can decompose Z into the connected components as follows:

Z =

r∑
i=1

µiYi,

where µiYi is a connected component of Z such that µi is the greatest common

divisor of the coefficients of prime components of Yi in Z for every i, and µiYi 6=
µjYj for i 6= j. Then we obtain ωYi ' OYi for every i because Yi is indecomposable

of canonical type in the sense of Mumford by Lemma 6.3 (see, for example, [Ft,

(5.6)]).
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Step 1 (cf. [Ft, (5.7)]). We assume that κ(S,KS) ≥ 0. Since 0 ≤ κ(S,KS) ≤
κ(S,KS + ∆S) = 0, we obtain κ(S,KS) = 0. If S is not minimal, then we can find

a (−1)-curve E on S such that E · (KS + ∆S) = 0. Therefore, S is minimal by the

construction of (S,∆S). We show κ(S,KS + ∆S) = κ(S,Z) ≥ 1 in order to get a

contradiction. By taking an étale cover, we may assume that S is an Abelian surface

or a K3 surface. In this case, it is easy to see that κ(S,KS + ∆S) = κ(S,Z) ≥ 1

since Z 6= 0.

From now on, we assume that κ(S,KS) = −∞.

Step 2. We further assume that H1(S,OS) = 0. If n(S,KS+∆S) = 1, then there

exist a surjective morphism g : S → T onto a smooth projective curve T and a nef

Q-divisor A 6≡ 0 on T such that KS +∆S ≡ g∗A (cf. [B8, Proposition 2.11]). Here,

g is the reduction map associated to KS + ∆S . Since H1(S,OS) = 0, we obtain

KS + ∆S ∼Q g
∗A. Therefore, κ(S,KS + ∆S) = 1 because A is an ample Q-divisor

on T . This is a contradiction.

Step 3. Under the assumption that H1(S,OS) = 0, we further assume that

n(S,KS + ∆S) = 2. By [S1, Proposition 4], we know r = 1, that is, Z = µ1Y1.

In this case, S is a degenerate del Pezzo surface, that is, a nine-fold blow-up

of P2, and Z ∈ |−nKS | for some positive integer n (cf. [S1, Proposition 5]). Since

κ(S,−KS) = 0 and m(KS + ∆S) ∼ Z ∼ −nKS , we obtain m∆S = (m + n)D,

where D is the unique member of |−KS |. Thus,

∆S =
m+ n

m
D and Z = nD.

In particular, we obtain ∆S = ∆>1
S . In Step 4 we will see that OD(aD) ' OD for

some positive integer a. This implies that the normal bundle ND = OD(D) is a

torsion line bundle. This is a contradiction by [S1, Proposition 5].

Step 4. We now prove that OD(aD) ' OD for some positive integer a. We put

Dk = D and construct Di inductively. It is easy to see that ϕi : Vi → Vi+1 is the

blow-up at Pi+1 with multPi+1
∆Vi+1

≥ 1 for every i by calculating discrepancy co-

efficients since ∆Vi is effective. If multPi+1 Di+1 = 0, then we put Di = ϕ∗i+1Di+1.

If multPi+1
Di+1 > 0, then we put Di = ϕ∗i+1Di+1 − Ci, where Ci is the excep-

tional curve of ϕi. We note that multP ∆Vi+1
> multP Di+1 for every P ∈ Vi+1

and multP Di+1 ∈ Z. Finally, we obtain D0 on V0 = V . We can see that D0

is effective and SuppD0 ⊂ Supp ∆>1
V by the above construction. We note that

ϕi∗ODi ' ODi+1 for every i. This is because ϕi∗OVi(−Di) ' OVi+1(−Di+1) and
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R1ϕi∗OVi(−Di) = 0 for every i. See the following commutative diagram:

0 // OVi+1(−Di+1)

'
��

// OVi+1

'
��

// ODi+1

��

// 0

0 // ϕi∗OVi(−Di) // ϕi∗OVi // ϕi∗ODi // R1ϕi∗OVi(−Di) = 0

Therefore, we obtain ϕ∗OD0 ' OD. Since SuppD0 ⊂ Supp ∆>1
V , we see that D0 is

f -exceptional. Since KV +∆V = f∗(KX+∆), we obtain OD0
(b(KV +∆V )) ' OD0

for some positive divisible integer b. Thus,

OD(b(KS + ∆S)) ' ϕ∗OD0
(b(KV + ∆V )) ' OD.

In particular, OD(aD) ' OD for some positive integer a because

b(KS + ∆S) ∼ bn

m
D.

Step 5. Finally, we assume that S is an irrational ruled surface. Let α : S → B

be the Albanese fibration. In this case, we can easily check that every irreducible

component of Supp ∆>1
S is vertical with respect to α (cf. Lemma 5.2). Therefore,

[Ft, (5.9)] works without any changes. Thus, we get a contradiction.

The proof of Theorem 6.2 is finished.

Remark 6.4. In [T1], Hiromu Tanaka slightly simplifies the proof of Theorem 6.2.

His proof, which does not use the reduction map (cf. 2.6), works over any alge-

braically closed field k with k 6= Fp.

Remark 6.5. Our proof of Theorem 6.2 works over any algebraically closed field k

of characteristic zero if we use Theorem 5.3 in Step 5. In Steps 1 to 4, we can use

the Lefschetz principle because we do not need the Q-factoriality of X there.

We close this section with the following corollary.

Corollary 6.6 (Abundance theorem for log canonical surfaces). Let (X,∆) be a

complete log canonical surface such that ∆ is a Q-divisor. Assume that KX + ∆

is nef. Then KX + ∆ is semi-ample.

Proof. Let f : V → X be the minimal resolution. We put KV +∆V = f∗(KX+∆).

Since (X,∆) is log canonical, ∆V is a boundary Q-divisor. Since V is smooth, V is

automatically projective. Applying Theorem 6.1 to the pair (V,∆V ), we find that

KV + ∆V is semi-ample. Hence KX + ∆ is semi-ample.
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§7. Relative setting

In this section, we discuss the finite generation of log canonical rings and the log

abundance theorem in the relative setting.

Theorem 7.1 (Relative finite generation). Let (X,∆) be a log surface such that

∆ is a Q-divisor. Let π : X → S be a proper surjective morphism onto a variety S.

Assume that X is Q-factorial or that (X,∆) is log canonical. Then

R(X/S,∆) =
⊕
m≥0

π∗OX(xm(KX + ∆)y)

is a finitely generated OS-algebra.

Proof (cf. Proof of Theorem 1.1 in [F2]). When (X,∆) is log canonical, we re-

place X with its minimal resolution. So, we may always assume that X is Q-

factorial. If κ(Xη,KXη + ∆η) = −∞, where η is the generic point of S, Xη is the

generic fiber of π, and ∆η = ∆|Xη , then the statement is trivial. So, we assume that

κ(Xη,KXη + ∆η) ≥ 0. We further assume that S is affine by shrinking π : X → S.

By compactifying π : X → S, we may assume that S is projective. Since X is

Q-factorial, X is automatically projective (cf. Lemma 2.2). In particular, π is pro-

jective. Let H be a very ample divisor on S and G a general member of |4H|. We

run the log minimal model program for (X,∆ +π∗G). By Proposition 3.8, this log

minimal model program is a log minimal model program over S. This is because

any (KX + ∆ + π∗G)-negative extremal ray of NE(X) is a (KX + ∆)-negative

extremal ray of NE(X/S). By Theorem 3.3, we may assume that KX +∆+π∗G is

nef over S, or equivalently, KX + ∆ +π∗G is nef. By Theorem 6.1, KX + ∆ +π∗G

is semi-ample. In particular, KX + ∆ is π-semi-ample. Thus,

R(X/S,∆) =
⊕
m≥0

π∗OX(xm(KX + ∆)y)

is a finitely generated OS-algebra.

Theorem 7.2 (Relative abundance theorem). Let (X,∆) be a log surface such

that ∆ is a Q-divisor. Let π : X → S be a proper surjective morphism onto a

variety S. Assume that X is Q-factorial or that (X,∆) is log canonical. Further,

assume that KX + ∆ is π-nef. Then KX + ∆ is π-semi-ample.

Proof. As in the proof of Theorem 7.1, we may always assume thatX is Q-factorial.

By Theorem 6.1, we may assume that dimS ≥ 1. By Theorem 7.1,

R(X/S,∆) =
⊕
m≥0

π∗OX(xm(KX + ∆)y)
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is a finitely generated OS-algebra. It is easy to see that KXη + ∆η is nef and

abundant. Therefore,KX+∆ is π-semi-ample (see, for example, [F2, Lemma 3.12]).

We refer the reader to see [F2, 3.1. Appendix] for related topics. Here, we give

an easy application.

Theorem 7.3. Let X be a normal algebraic variety with only rational singularities

and let π : X → S be a projective morphism onto a variety S. Assume that KX is

π-big. Then the relative canonical model

Y = ProjS
⊕
m≥0

π∗OX(mKX)

of X over S has only rational singularities.

Proof. By Theorem 3.3 and Proposition 3.7, we may assume that KX is π-nef and

π-big. By Theorem 7.2, there exists a birational morphism ϕ : X → Y over S

induced by the surjection π∗π∗OX(lKX) → OX(lKX) for some positive divisible

integer l. We note that KX = ϕ∗KY by construction. Let f : V → X be a

resolution such that KV + ∆V = f∗KX and that Supp ∆V is a simple normal

crossing divisor. We consider the short exact sequence

0→ J (X, 0)→ OX → OX/J (X, 0)→ 0.

Note that

−x∆V y− (KV + {∆V }) ∼Q −f∗KX ∼Q −f∗ϕ∗KY

and J (X, 0) = f∗OV (−x∆V y). Thus

Riϕ∗J (X, 0) = 0

for every i > 0 by the relative Kawamata–Viehweg–Nadel vanishing theorem. Since

dimC Supp(OX/J (X, 0)) = 0,

we obtain Riϕ∗OX = 0 for every i > 0. Therefore, Y has only rational singularities

since X has only rational singularities. This is because Rig∗OV ' Riϕ∗OX = 0

for every i > 0, where g = ϕ ◦ f : V → Y .

§8. Abundance theorem for R-divisors

In this section, we generalize the relative log abundance theorem (cf. Theorem 7.2)

for R-divisors.
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Theorem 8.1 (Relative abundance theorem for R-divisors). Let (X,∆) be a log

surface and let π : X → S be a proper surjective morphism onto a variety S.

Assume that X is Q-factorial or that (X,∆) is log canonical. Further, assume

that KX + ∆ is π-nef. Then KX + ∆ is π-semi-ample.

The following proof is essentially due to [Sh, Proof of Theorem 2.7].

Proof. As in the proof of Theorem 7.1, we may always assume that X is Q-

factorial. We put F = Supp ∆ and consider the real vector space V =
⊕

k RFk,

where F =
∑
k Fk is the irreducible decomposition. We put

P = {D ∈ V | (X,D) is a log surface}.

Then it is obvious that

P =
{∑

k

dkFk

∣∣∣ 0 ≤ dk ≤ 1 for every k
}
.

Let {Rλ}λ∈Λ be the set of all the extremal rays of NE(X/S) spanned by curves.

We put

N = {D ∈ P | (KX +D) ·Rλ ≥ 0 for every λ ∈ Λ}.

Then we can prove that N is a rational polytope in P by using Proposition 3.8

(cf. [Sh, 6.2. First Main Theorem]); see, for example, the proof of [Bi, Proposition

3.2]. We note that

N = {D ∈ P | KX +D is nef}.

By the above construction, ∆ ∈ N . Let F be the minimal face of N containing ∆.

Then we can take Q-divisors ∆1, . . . ,∆l on X and positive real numbers r1, . . . , rl
such that ∆i is in the relative interior of F for every i, KX +∆ =

∑
i ri(KX +∆i),

and
∑
i ri = 1. By Theorem 7.2, KX+∆i is π-semi-ample for every i since KX+∆i

is π-nef. Therefore, KX + ∆ is π-semi-ample.

We note the following easy but important remark on Theorem 8.1.

Remark 8.2 (Stability of Iitaka fibrations). In the proof of Theorem 8.1, we note

the following property. If C is a curve on X such that π(C) is a point and

(KX + ∆i0) · C = 0 for some i0, then (KX + ∆i) · C = 0 for every i. Indeed, if

(KX +∆i) ·C > 0 for some i 6= i0, we can find ∆′ ∈ F such that (KX +∆′) ·C < 0,

which is a contradiction. Therefore, there exist a contraction morphism f : X → Y

over S and g-ample Q-Cartier Q-divisors A1, . . . , Al on Y , where g : Y → S, such

that KX + ∆i ∼Q f
∗Ai for every i. In particular, we obtain

KX + ∆ ∼R f
∗
(∑

i

riAi

)
.



Minimal Model Theory for Log Surfaces 367

Note that
∑
i riAi is g-ample. Roughly speaking, the Iitaka fibration of KX + ∆

is the same as that of KX + ∆i for every i.

Anyway, we obtain the relative log minimal model program for log surfaces

(cf. Theorem 3.3) and the relative log abundance theorem for log surfaces (cf. The-

orem 8.1) in full generality. Therefore, we can freely use the log minimal model

theory for log surfaces in the relative setting.

We close this section with an easy application of Theorem 8.1.

Theorem 8.3 (Base point free theorem via abundance). Let (X,∆) be a log sur-

face and let π : X → S be a proper surjective morphism onto an affine variety S.

Assume that X is Q-factorial or that (X,∆) is log canonical. Let D be a π-nef R-

Cartier R-divisor on X. If D−(KX+∆) is π-semi-ample, then D is π-semi-ample.

Proof. If (X,∆) is log canonical, then we replace X with its minimal resolution. So

we may always assume that X is Q-factorial. Since D−(KX +∆) is π-semi-ample,

we can write

D − (KX + ∆) ∼R ∆′ ≥ 0

such that ∆ + ∆′ is a boundary R-divisor on X. Therefore, D ∼R KX + ∆ + ∆′.

By Theorem 8.1, D is π-semi-ample.

§9. Appendix: Base point free theorem for log surfaces

In this appendix, we prove the base point free theorem for log surfaces in full

generality. It generalizes Fukuda’s base point free theorem for log canonical surfaces

(cf. [Fk, Main Theorem]). Our proof is different from Fukuda’s and depends on

the theory of quasi-log varieties. We note that this result is not necessary for the

minimal model theory for log surfaces discussed in this paper. We also note that

a more general result was stated in [A, Theorem 7.2] without any proofs (cf. [F4,

Theorem 4.1]).

Theorem 9.1 (Base point free theorem for log surfaces). Let (X,∆) be a log sur-

face and let π : X → S be a proper surjective morphism onto a variety S. Let L be

a π-nef Cartier divisor on X. Assume that aL− (KX + ∆) is π-nef and π-big and

that (aL−(KX+∆))|C is π-big for every lc center C of the pair (X,∆), where a is

some positive number. Then there exists a positive integer m0 such that OX(mL)

is π-generated for every m ≥ m0.

Remark 9.2. In Theorem 9.1, the condition that (aL− (KX + ∆))|C is π-big for

every lc center C of the pair (X,∆) is equivalent to: (aL− (KX + ∆)) ·C > 0 for

every irreducible component C of x∆y such that π(C) is a point.
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Proof of Theorem 9.1. Without loss of generality, we may assume that S is affine

since the problem is local. We divide the proof into several steps.

Step 1 (Quasi-log structures). Since (X,∆) is a log surface, the pair [X,ω], where

ω = KX + ∆, has a natural quasi-log structure. It induces a quasi-log structure

[V, ω′] on V = Nklt(X,∆) with ω′ = ω|V . More precisely, let f : Y → X be a

resolution such that KY +∆Y = f∗(KX+∆) and that Supp ∆Y is a simple normal

crossing divisor on Y . By the relative Kawamata–Viehweg vanishing theorem, we

obtain the short exact sequence

0→ f∗OY (−x∆Y y)→ f∗OY (p(−∆<1
Y )q− x∆>1

Y y)

→ f∗O∆=1
Y

(p(−∆<1
Y )q− x∆>1

Y y)→ 0.

Note that

−x∆Y y = p(−∆<1
Y )q− x∆>1

Y y−∆=1
Y .

Moreover the scheme structure of V is defined by the multiplier ideal sheaf J (X,∆)

= f∗OY (−x∆Y y) of the pair (X,∆) and X−∞ (resp. V−∞) is defined by the ideal

sheaf f∗OY (p(−∆<1
Y )q− x∆>1

Y y) =: IX−∞ (resp. f∗O∆=1
Y

(p(−∆<1
Y )q− x∆>1

Y y) =:

IV−∞). By construction, X−∞ ' V−∞ and X−∞ = Nlc(X,∆). We note the fol-

lowing commutative diagram:

0 // J (X,∆) // IX−∞ //

��

IV−∞ //

��

0

0 // J (X,∆) // OX // OV // 0

For details, see [A, Section 4], [F4, Section 3.2], and [F7].

Step 2 (Freeness on Nklt(X,∆)). By assumption, aL|V − ω′ is π-ample and

OV−∞(mL) is π|V−∞ -generated for every m ≥ 0. We note that dimV ≤ 1 and

dimV−∞ ≤ 0. Therefore, by [F4, Theorem 3.66], OV (mL) is π-generated for every

m� 0.

Step 3 (Lifting of sections). We consider the short exact sequence

0→ J (X,∆)→ OX → OV → 0,

where J (X,∆) is the multiplier ideal sheaf of (X,∆). Then the restriction map

H0(X,OX(mL))→ H0(V,OV (mL))

is surjective for every m ≥ a since

H1(X,J (X,∆)⊗OX(mL)) = 0
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for m ≥ a by the relative Kawamata–Viehweg–Nadel vanishing theorem. Thus,

there exists a positive integer m1 such that Bs |mL| ∩ Nklt(X,∆) = ∅ for every

m ≥ m1.

So, all we have to do is to prove that |mL| is free for every m� 0 under the

assumption that Bs |nL| ∩Nklt(X,∆) = ∅ for every n ≥ m1.

Step 4 (Kawamata’s X-method). Let f : Y → X be a resolution with a simple

normal crossing divisor F =
∑
j Fj on Y . We may assume the following conditions:

(a) KY = f∗(KX + ∆) +
∑
j ajFj for some aj ∈ R.

(b) f∗|plL| = |M | +
∑
j rjFj , where |M | is free, p is a prime number such that

pl ≥ m1, and
∑
j rjFj is the fixed part of f∗|plL| for some rj ∈ Z with rj ≥ 0.

(c) f∗(aL− (KX + ∆))−
∑
j δjFj is π-ample for some δj ∈ R with 0 < δj � 1.

We set

c = min

{
aj + 1− δj

rj

}
where the minimum is taken over all j such that rj 6= 0. Then c > 0. Here, we use

the fact that aj > −1 if rj > 0. This is because Bs |plL| ∩ Nklt(X,∆) = ∅. By a

suitable choice of the δj , we may assume that the minimum is attained at exactly

one value j = j0. We put

A =
∑
j

(−crj + aj − δj)Fj .

We consider

N := pl
′
f∗L−KY +

∑
j

(−crj + aj − δj)Fj

= (pl
′
− cpl − a)f∗L (π-nef if pl

′
≥ cpl + a)

+ c
(
plf∗L−

∑
j

rjFj

)
(π-free)

+ f∗(aL− (KX + ∆))−
∑
j

δjFj (π-ample)

for some positive integer l′ > l. Then N is π-ample if pl
′ ≥ cpl + a. By the relative

Kawamata–Viehweg vanishing theorem, we have

Hi(Y,OY (KY + pNq)) = 0

for every i > 0. We can write pAq = B − F − D, where B is an effective f -

exceptional Cartier divisor, F = Fj0 , D is an effective Cartier divisor such that
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SuppD ⊂ Supp
∑
aj≤−1 Fj , and SuppB, SuppF , and SuppD have no common

irreducible components with each other since Bs |plL| ∩ Nklt(X,∆) = ∅. We note

that KY + pNq = pl
′
f∗L+ pAq. Then the restriction map

H0(Y,OY (pl
′
f∗L+B))→ H0(F,OF (pl

′
f∗L+B))⊕H0(D,OD(pl

′
f∗L+B))

is surjective. Here, we used the fact that SuppF ∩ SuppD = ∅. Thus

H0(X,OX(pl
′
L)) ' H0(Y,OY (pl

′
f∗L+B))→ H0(F,OF (pl

′
f∗L+B))

is surjective. We note that H0(F,OF (pl
′
f∗L+B)) 6= 0 for every l′ � 0 since F is

a smooth curve and

N |F = (pl
′
f∗L−KY +B − F −D − {−A})|F

= (pl
′
f∗L+B)|F − (KF + {−A}|F )

is π-ample (cf. Shokurov’s non-vanishing theorem). Therefore, Bs |pl′L| ( Bs |plL|
for some l′ � 0 since f(F ) ⊂ Bs |plL|. By noetherian induction, Bs |pkL| = ∅ for

some positive integer k.

Let q be a prime number with q 6= p. Then we can find k′ > 0 such that

Bs |qk′L| = ∅ by the same argument as in Step 4. So, we can find a positive integer

m0 such that Bs |mL| = ∅ for every m ≥ m0.
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