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Decomposition of Solutions of the Cauchy
Problem of a Quasi-Homogeneous Partial

Differential Equation

by

Kunio Ichinobe and Masatake Miyake

Abstract

We give a decomposition formula for the formal solution of the Cauchy problem for a
quasi-homogeneous partial differential equation with constant coefficients in the two-
dimensional complex plane. The decomposition formula, Theorem 1.1, is given in a form
associated with the factorization of the relevant operator which is similar to the decom-
position of the solution of an ordinary differential equation with constant coefficients.
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§1. Introduction

Let p and q be relatively prime positive integers, and P ≡ P (∂pt , ∂
q
x) be a quasi-

homogeneous partial differential operator with constant coefficients in the two-

dimensional complex plane C2 = Ct × Cx, where ∂t and ∂x denote differentiation

in the usual sense. We assume that the following factorization of P is given:

(1.1) P (∂pt , ∂
q
x) =

µ∏
j=1

Pj(∂
p
t , ∂

q
x)`j , Pj(∂

p
t , ∂

q
x) = ∂pt − αj∂qx,

where {αj} are nonzero complex constants which are mutually different.

We put L :=
∑µ
j=1`j , which represents the total number of factors of P , and

assume that L ≥ 2.
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Let U(t, x) =
∑
k≥0 Uk(x)tk be the formal solution of the following Cauchy

problem:

(1.2)


P (∂pt , ∂

q
x)U(t, x) = 0,

∂kt U(0, x) = 0 (0 ≤ k ≤ pL− 2),

∂pL−1t U(0, x) = ϕ(x),

where the Cauchy data ϕ(x) is holomorphic in a neighbourhood of the origin.

When q > p, the formal solution U(t, x) diverges in general.

The purpose of this paper is to prove a decomposition formula for U(t, x) in

terms of the formal series

(1.3) um(t, x) =
∑
j≥0

αjmϕ
(qj)(x)

tpj+p−1

(pj + p− 1)!
(1 ≤ m ≤ µ),

which is the formal solution of the Cauchy problem for the factor Pm:

(1.4)


Pmu ≡ (∂pt − αm∂qx)u(t, x) = 0,

∂kt u(0, x) = 0 (0 ≤ k ≤ p− 2),

∂p−1t u(0, x) = ϕ(x).

Our main result is as follows.

Main Theorem 1.1. Let U(t, x) be the formal solution of the Cauchy problem

(1.2). Then there are uniquely determined L constants {cmn ; 1 ≤ m ≤ µ, 1 ≤ n

≤ `m}, which satisfy the relation (2.13) below, such that the following decomposi-

tion formula holds:

(1.5) U(t, x) =

µ∑
m=1

`m∑
n=1

cmn∂
(1−pL)+p(n−1)
t

[(1/p)δt]n−1
(n− 1)!

∂
p(1−n)+(p−1)
t um(t, x),

where δt = t∂t denotes the Euler operator and [(1/p)δt]n−1 is given by

(1.6)

[
1

p
δt

]
k

:=


1

p
δt

(
1

p
δt − 1

)
· · ·
(

1

p
δt − k + 1

)
, k ≥ 1,

1, k = 0.

Here ∂kt denotes differentiation or integration if k > 0 or k < 0, respectively, and

∂−1t =
∫ t
0

.

Remark. The formal solutions in the above decomposition formula are divergent

in general when q > p, and therefore the formula is only in the formal sense. But, if

the divergent solution U(t, x) is Borel summable in some direction in the t-plane,
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then each um(t, x) is also Borel summable in the same direction, and the formula

(1.5) holds between the Borel sums associated with the divergent solutions. (The

details on Borel summability of divergent solutions of this kind can be found in

the papers by M. Miyake, K. Ichinobe and others [2]–[7].) Moreover, by the study

of K. Ichinobe [3, 4] on the integral kernel for the Borel sum, the formula (1.5)

does hold between the integral kernels for the Borel sums.

The motivation for the study in this paper comes from the decomposition

formula for solutions of ordinary differential equations with constant coefficients,

which is explained by the following simple equation. Consider the solution u(t) of

(1.7)

(
d

dt
− α

)(
d

dt
− β

)
u(t) = 0, u(0) = 0, u′(0) = 1.

First, consider the case α 6= β. Then the decomposition

id =
1

α− β

{(
d

dt
− β

)
−
(
d

dt
− α

)}
implies

u(t) =
1

α− β
{uα(t)− uβ(t)}

with uα(t) = (d/dt−β)u(t) and uβ(t) = (d/dt−α)u(t). Since (d/dt−α)uα(t) = 0

and (d/dt − β)uβ(t) = 0, we get uα(t) = C1e
αt and uβ(t) = C2e

βt as general

solutions, respectively. Now the initial conditions {u(0) = 0, u′(0) = 1} show that

C1 = C2 = 1, that is, uα(t) = eαt and uβ(t) = eβt, which satisfy uα(0) = 1 and

uβ(0) = 1.

Next, in the case α = β in (1.7), by letting

lim
β→α

uα(t)− uβ(t)

α− β
= teαt,

we get the solution of (1.7).

This observation on decomposition of solutions can be found in S. Mizohata’s

book [8].

Next, we illustrate the idea of decomposition by a simple example. Let α and

β be different non-zero complex numbers, and consider the solution U(t, x) of the

Cauchy problem

(1.8)

{
(∂t − α∂2x)(∂t − β∂2x)U(t, x) = 0,

U(0, x) = 0, ∂tU(0, x) = ϕ(x).

We notice the following decomposition of ∂t:

∂t =
1

α− β
{α(∂t − β∂2x)− β(∂t − α∂2x)}.
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This implies

id =
1

α− β
{α∂−1t (∂t − β∂2x)− β∂−1t (∂t − α∂2x)},

since ∂−1t ◦ ∂t = id for functions with U(0, x) = 0. Then we have the following

decomposition of U(t, x):

(1.9) U(t, x) =
α

α− β
∂−1t uα(t, x) +

β

β − α
∂−1t uβ(t, x),

where uα(t, x) := (∂t − β∂2x)U(t, x) is the formal solution of the Cauchy problem

(∂t − α∂2x)uα(t, x) = 0, uα(0, x) (= ∂tU(0, x)) = ϕ(x),

and similarly for uβ(t, x) := (∂t − α∂2x)U(t, x).

Example 1.2 (cf. Proposition 3.1). 1. The case P =
∏µ
j=1 Pj , that is, L = µ:

(1.10) U(t, x) =

µ∑
m=1

cm∂
p−pµ
t um(t, x), cm =

αµ−1m∏
1≤j≤µ, j 6=m(αm − αj)

.

2. The case P = Pn1 (cf. Lemma 2.1):

(1.11) U(t, x) = ∂1−pt

[(1/p)δt]n−1
(n− 1)!

∂
p(1−n)+(p−1)
t u1(t, x).

3. The case p = 1 (cf. Lemma 2.1): Since [δt]n−1 = tn−1∂n−1t , we have

(1.12) U(t, x) =

µ∑
m=1

`m∑
n=1

cmn∂
n−L
t

tn−1

(n− 1)!
um(t, x).

To end the introduction, we remark that the results of this paper are valid

for formal solutions of operators in Ct × Cdx of the form

(1.13) P (∂t, ∂x) =

µ∏
j=1

(∂pt − αjp(∂x))
`j ,

with mutually different nonzero constants {αj} and p(∂x) =
∑
|α|≤q pα∂

α
x , where

x ∈ Cdx. It is enough to replace ∂qx by p(∂x) in the following proofs.

§2. Proof of Main Theorem

As a first step, we shall prove the decomposition formula in the case where µ = 1.
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Lemma 2.1. Let v[n](t, x) be the formal solution of the Cauchy problem

(2.1)

{
Pn0 v(t, x) ≡ (∂pt − α∂qx)nv(t, x) = 0,

∂kt v(0, x) = 0 (0 ≤ k ≤ pn− 2), ∂pn−1t v(0, x) = ϕ(x).

Then

v[n](t, x) =
∑
j≥0

αj
(j + 1)n−1

(n− 1)!
ϕ(qj)(x)

tpj+pn−1

(pj + pn− 1)!
(2.2)

= ∂1−pt

[(1/p)δt]n−1
(n− 1)!

∂
p(1−n)+(p−1)
t v[1](t, x),(2.3)

where

(2.4) (j + 1)n−1 =

{
(j + 1)(j + 2) · · · (j + n− 1), n ≥ 2,

1 n = 1,

and v[1](t, x) is the formal solution of (2.1) for n = 1.

In particular, when p = 1 the formula (2.3) reduces to

(2.5) v[n](t, x) =
tn−1

(n− 1)!
v[1](t, x).

Proof. The formula (2.5) is an immediate consequence of (2.3) in view of [δt]n−1 =

tn−1∂n−1t . Hence we shall prove (2.2) and (2.3). We put

P0(∂pt , ∂
q
x)n ≡ (∂pt − α∂qx)n = ∂pnt −

n∑
k=1

ak∂
p(n−k)
t ∂qkx ,

where nCkα
k = (−1)k−1ak (1 ≤ k ≤ n). For the operator Pn0 , the following

polynomial is called the characteristic polynomial:

P0(λ, 1)n ≡ (λ− α)n = λn −
n∑
k=1

akλ
n−k.

By a careful calculation, we see that

v[n](t, x) =

∞∑
j=0

A(j)ϕ(qj)(x)
tpj+pn−1

(pj + pn− 1)!
,

where the coefficients {A(j)}∞j=0 satisfy the recurrence formula

(2.6) A(j + n) =

n∑
k=1

akA(j + n− k), j = −n+ 1,−n+ 2, . . . ,
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with the initial conditions

(2.7) A(0) = 1, A(j) = 0 (j < 0).

The formula (2.2) will be proved once we show

(2.8) A(j) =
(n)j
j!

αj =
(j + 1)n−1

(n− 1)!
αj (j ≥ 0),

where (n)j = n(n+ 1) · · · (n+ j − 1) = Γ(n+ j)/Γ(n).

For the proof, let f(x) be the generating function of the sequence {A(j)}
defined by

f(x) :=

∞∑
j=0

A(j)xj .

From the recurrence formula (2.6), we have

∞∑
j=0

A(j + n)xj+n =

n∑
k=1

{
akx

k
∞∑
j=0

A(j + n− k)xj+n−k
}
.

Hence,

(2.9) f(x)−
n−1∑
j=0

A(j)xj =

n∑
k=1

{
akx

k
(
f(x)−

n−k−1∑
j=0

A(j)xj
)}
,

which implies

(2.10) f(x) =
A(0) +

∑n−1
j=1 x

j{A(j)−
∑j
k=1 akA(j − k)}

1−
∑n
k=1 akx

k
.

By the recurrence formula (2.6) with the initial conditions (2.7) we have

A(j)−
j∑

k=1

akA(j − k) = 0, j = 1, . . . , n− 1.

Thus

f(x) =
1

1−
∑n
k=1 akx

k
=

1

(1− αx)n
.

Taking 0 < ε < |α|−1, we have

A(j) =
1

2πi

∮
|x|=ε

f(x)

xj+1
dx = lim

x→0

1

j!
f (j)(x)(2.11)

=
n(n+ 1) · · · (n+ j − 1)

j!
αj =

(j + 1)n−1
(n− 1)!

αj .

This proves (2.2).
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For the proof of (2.3), we recall that

v[1](t, x) =

∞∑
j=0

αjϕ(qj)(x)
tpj+p−1

(pj + p− 1)!
.

We notice the following relations:

tpj+p−1

(pj + p− 1)!

∂
p(1−n)+(p−1)
t−−−−−−−−−→ tpj+pn−p

(pj + pn− p)!
[(1/p)δt]n−1−−−−−−−−→ (j + 1)n−1

tpj+pn−p

(pj + pn− p)!
∂1−p
t−−−→ (j + 1)n−1

tpj+pn−1

(pj + pn− 1)!
.

By applying these relations to (2.2), we obtain (2.3).

Proof of Main Theorem 1.1. We recall that

(2.12) P =

µ∏
j=1

P
`j
j , Pj = ∂pt − αj∂qx.

First of all, we assume that we can choose L constants {cmn ; 1 ≤ m ≤ µ, 1 ≤ n

≤ `m} so that the following operator equality holds:

(2.13) ∂
p(L−1)
t =

µ∑
m=1

`m∑
n=1

cmn∂
p(n−1)
t

µ∏
j=1, j 6=m

P
`j
j P

`m−n
m .

Indeed, the linear equations for {cmn} are obtained by comparing the coefficients

of ∂
p(L−j)
t ∂qjx on both sides of the above equality. The details will be studied in

the following sections.

Let U(t, x) be the formal solution of the Cauchy problem (1.2). Then

(2.14) ∂
p(L−1)
t U(t, x) =

µ∑
m=1

`m∑
n=1

cmn∂
p(n−1)
t

µ∏
j=1, j 6=m

P
`j
j P

`m−n
m U(t, x).

Now we put

(2.15) U [n]
m (t, x) :=

µ∏
j=1, j 6=m

P
`j
j P

`m−n
m U(t, x).

Then U
[n]
m (t, x) is the formal solution of the Cauchy problem

(2.16)


PnmU

[n]
m (t, x) = 0,

∂kt U
[n]
m (0, x) = 0 (0 ≤ k ≤ pn− 2),

∂pn−1t U
[n]
m (0, x) = ϕ(x).
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Indeed, PnmU
[n]
m = PU and U(t, x) is the formal solution of (1.2). Hence by Lemma

2.1 and since U
[1]
m (t, x) = um(t, x), which is given by (1.3), we have

∂
p(L−1)
t U(t, x) =

µ∑
m=1

`m∑
n=1

cmn∂
p(n−1)
t ∂1−pt

[(1/p)δt]n−1
(n− 1)!

∂
p(1−n)+(p−1)
t um(t, x).

By applying ∂
p(1−L)
t to both sides, we obtain the desired formula (1.5).

Hence, the proof of the main theorem is reduced to proving the formula (2.13).

§3. Proof of (2.13)

We prepare some notation. Let α = (α1, . . . , αµ) ∈ (C \ {0})µ and define

f [α] :=

µ∏
j=1

α
`j
j , f [n]m ≡ f [n]m [α] := f [α]/αnm (1 ≤ m ≤ µ, 1 ≤ n ≤ `m).

Moreover, write ∂α :=
∑µ
j=1 ∂αj and

∆k
α :=

∂kα
k!

=
∑

0≤k1,...,kµ≤k
k1+···+kµ=k

1

k1! · · · kµ!
∂k1α1
· · · ∂kµαµ .

Then we have the following proposition.

Proposition 3.1. The L constants {cmn} in (2.13) are determined as the solution

of the system of linear equations

(3.1) A~c = ~e,

where A is an L× L matrix and ~c, ~e are column L vectors, defined by

(3.2) A =



∆L−1
α f

[1]
1 ∆L−2

α f
[2]
1 · · ·∆L−`1

α f
[`1]
1 · · · ∆L−1

α f
[1]
µ · · ·∆L−`µ

α f
[`µ]
µ

∆L−2
α f

[1]
1 ∆L−3

α f
[2]
1

... · · ·
...

...
...

...
...

...
...

...
... ∆0

αf
[`1]
1 · · ·

... ∆0
αf

[`µ]
µ

...
... . . .

0
...

∆1
αf

[1]
1 ∆0

αf
[2]
1 . . . ... · · ·

... ..
.

∆0
αf

[1]
1 0 · · · 0 ∆0

αf
[1]
µ O


,

and

~c = t(c11, . . . , c1`1 , c21, · · · , c2`2 , · · · , cµ1, . . . , cµ`µ), ~e = t(1, 0, . . . , 0).
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The unique existence of {cmn} is ensured by showing that detA 6= 0, which

will be proved in the next section (cf. Lemma 3.3).

Example 3.2. 1. The case P = (∂pt − α∂qx)(∂pt − β∂qx): Then f [α, β] = αβ and

A~c =

(
1 1

β α

)(
c11
c21

)
=

(
1

0

)
,

(
c11
c21

)
=

1

α− β

(
α

−β

)
.

2. The case P = (∂pt − α∂qx)2(∂pt − β∂qx): Then f [α, β] = α2β and

A~c =

 1 1 1

α+ β β 2α

αβ 0 α2


c11c12
c21

 =

1

0

0

,
c11c12
c21

 =
1

(α− β)2

 −αβ
α(α− β)

β2

.
3. The case P = (∂qt − α∂qx)L: Then f [α] = αL and

A~c =



1 1 · · · · · · 1
...

... . . .

(L−1)(L−2)
2! αL−3 (L−2)αL−3 . . .

(L−1)αL−2 αL−2

αL−1 0 O




c11
c12
...

c1L

 =


1

0
...

0

 ,

c1n = 0 (1 ≤ n ≤ L− 1), c1L = 1.

Proof of Proposition 3.1. First, we prove that {cmn} are solutions of the linear

equations (3.1). Since the operators ∂pt and ∂qx commute, by substituting (τ, 1,−αj)
into (∂pt , ∂

q
x, αj) in (2.13), we have

(3.3) τL−1 =

µ∑
m=1

`m∑
n=1

cmnτ
n−1

µ∏
j=1

(τ + αj)
`j/(τ + αm)n.

For any polynomial g[α] = g[α1, . . . , αµ] we have

g[τ + α1, . . . , τ + αµ] =
∑
p≥0

τp∆p
αg[α].

Therefore

(3.4)

µ∏
j=1

(τ + αj)
`j/(τ + αm)n =

L−n∑
p=0

τp∆p
αf

[n]
m [α],
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and by employing inner product, we have

τn−1
L−n∑
p=0

τp∆p
αf

[n]
m [α] = τn−1(τL−n, . . . , τ0)


∆L−n
α f

[n]
m

...

∆0
αf

[n]
m



= (τL−1, . . . , τn−1)


∆L−n
α f

[n]
m

...

∆0
αf

[n]
m

 .

Hence

τL−1 =

µ∑
m=1

(τL−1, . . . , τ0)



∆L−1
α f

[1]
m ∆L−2

α f
[2]
m · · · ∆L−`m

α f
[`m]
m

∆L−1
α f

[1]
m ∆L−2

α f
[2]
m

...
...

... ∆0
αf

[`m]
m

...
... . .

.

∆1
αf

[1]
m ∆0

αf
[2]
m

∆0
αf

[1]
m O



 cm1

...

cm`m



=:

µ∑
m=1

(τL−1, . . . , τ0)Am[L, `m] ~cm[`m].

Hence we can rewrite (3.3) as

τL−1 = (τL−1, . . . , τ0)(A1[L, `1], . . . ,Aµ[L, `µ])

~c1[`1]
...

~cµ[`µ]


= (τL−1, . . . , τ0)A~c,

which implies the system of linear equations (3.1) immediately.

The following lemma proves the unique solvability of (3.1).

Lemma 3.3. For the matrix A in Proposition 3.1, we have

(3.5) detA =


µ∏
j=1

(−αj)`j(`j−1)/2
∏

1≤i<j≤µ

(αi − αj)`i`j , µ 6= 1,

(−α1)`1(`1−1)/2, µ = 1.
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§4. Proof of Lemma 3.3

§4.1. Elementary transformations of the matrix A

We prepare some notation. We put

t((τL−1, . . . , τ0)Am[L, `m]) =


∑L−1
p=0 τ

p∆p
αf

[1]
m

τ
∑L−2
p=0 τ

p∆p
αf

[2]
m

...

τ `m−1
∑L−`m
p=0 τp∆p

αf
[`m]
m

 =: ~Fm[`m].

With this notation, we have

(τL−1, . . . , τ0)A = (τL−1, . . . , τ0)(A1[L, `1], . . . ,Aµ[L, `µ])

= (t ~F1[`1], . . . , t ~Fµ[`µ]).

Now we define the notation ‖ · ‖ so that the following equality holds:

(4.1) A = ‖t ~F1[`1], . . . , t ~Fµ[`µ]‖ =

t ∥∥∥∥∥∥∥
~F1[`1]

...
~Fµ[`µ]

∥∥∥∥∥∥∥.
The definition should be understood from the following examples.

Example 4.1. 1. A =

(
1 1

β α

)
=

t
∥∥∥∥∥1 · τ + β

1 · τ + α

∥∥∥∥∥.

2. A =

 1 1 1

α+ β β 2α

αβ 0 α2

 =

t ∥∥∥∥∥∥∥
1 · τ2 + (α+ β)τ + αβ

τ(1 · τ + β)

1 · τ2 + 2ατ + α2

∥∥∥∥∥∥∥ =

t ∥∥∥∥∥∥∥
(τ + α)(τ + β)

τ(τ + β)

(τ + α)2

∥∥∥∥∥∥∥.
3. The matrix

A =



1 1 · · · · · · 1
...

... . . .

(L−1)(L−2)
2! αL−3 (L−2)αL−3 . . .

(L−1)αL−2 αL−2

αL−1 0 O


is represented as
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t
∥∥∥∥∥∥∥∥∥∥∥∥

1 · τL−1 + (L− 1)ατL−2 + · · ·+ αL−1

τ(1 · τL−2 + (L− 2)ατL−3 + · · ·+ αL−2)
...

τL−2(1 · τ + α)

τL−1 · 1

∥∥∥∥∥∥∥∥∥∥∥∥
=

t
∥∥∥∥∥∥∥∥∥∥∥∥

(τ + α)L−1

τ(τ + α)L−2

...

τL−2(τ + α)

τL−1

∥∥∥∥∥∥∥∥∥∥∥∥
.

Further, we set

f [τ + α] =

µ∏
j=1

(τ + αj)
`j =:

µ∏
j=1

f̂j(τ), f̂j(τ) := (τ + αj)
`j ,

f̌m(τ) := f [τ + α]/(τ + αm)`m (⇔ f̌m(τ)f̂m(τ) = f [τ + α]).

With this notation, we have

L−n∑
p=0

τp∆p
αf

[n]
m [α] = f [τ + α]/(τ + αm)n = (τ + αm)`m−nf̌m(τ),

and

~Fm[`m] =



(τ + αm)`m−1f̌m(τ)

τ(τ + αm)`m−2f̌m(τ)

τ2(τ + αm)`m−3f̌m(τ)
...

τ `m−2(τ + αm)f̌m(τ)

τ `m−1f̌m(τ)


.

Now, by elementary transformations of matrices, we can prove the following

lemma.

Lemma 4.2.

(4.2) detA = det

t ∥∥∥∥∥∥∥
~F1[`1]

...
~Fµ[`µ]

∥∥∥∥∥∥∥ =

µ∏
j=1

(−αj)
1
2 `j(`j−1) × det

t ∥∥∥∥∥∥∥
F̌1[`1]

...

F̌µ[`µ]

∥∥∥∥∥∥∥ ,
where

(4.3) F̌m[`m] =


τ `m−1 f̌m(τ)

τ `m−2 f̌m(τ)
...

τ f̌m(τ)

f̌m(τ)

 .
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Proof. For each m we make the elementary transformations

~Fm[`m] = {



(τ + αm)`m−1f̌m(τ)

τ(τ + αm)`m−2f̌m(τ)
...

τ `m−3(τ + αm)2f̌m(τ)

τ `m−2(τ + αm)f̌m(τ)

τ `m−1f̌m(τ)


→ {



(τ + αm)`m−1f̌m(τ)

τ(τ + αm)`m−2f̌m(τ)
...

τ `m−3(τ + αm)2f̌m(τ)

αmτ
`m−2f̌m(τ)

τ `m−1f̌m(τ)



→ {



(τ + αm)`m−1f̌m(τ)

τ(τ + αm)`m−2f̌m(τ)
...

τ `m−4(τ + αm)3f̌m(τ)

α2
mτ

`m−3f̌m(τ)

αmτ
`m−2f̌m(τ)

τ `m−1f̌m(τ)


→ · · · →



α`m−1m f̌m(τ)

α`m−2m τ f̌m(τ)
...

α3
mτ

`m−4f̌m(τ)

α2
mτ

`m−3f̌m(τ)

αmτ
`m−2f̌m(τ)

τ `m−1f̌m(τ)


.

Since the determinant is invariant under these transformations, we get the formula

(4.2), where we have changed the order of rows.

Thus the proof of Lemma 3.3 is reduced to showing

Lemma 4.3.

(4.4) det Ǎ := det

t ∥∥∥∥∥∥∥
F̌1[`1]

...

F̌µ[`µ]

∥∥∥∥∥∥∥ =
∏

1≤i<j≤µ

(αi − αj)`i`j (6= 0).

§4.2. Notation and lemmas

In this subsection, we prepare additional notation and three lemmas about ma-

trices. Let p(τ) =
∑`
j=0 pjτ

j and k ≥ 1. We define a matrix `+kMk[p(τ)] of size

(`+ k)× k by

(4.5) `+kMk[p(τ)] :=



p` O

p`−1
. . .

... p`

... p`−1

p0
...

. . .
...

O p0


=

t ∥∥∥∥∥∥∥∥∥∥∥

τk−1p(τ)

τk−2p(τ)
...
τp(τ)

p(τ)

∥∥∥∥∥∥∥∥∥∥∥
.
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With this notation, we have

(4.6) Ǎ = (LM`1 [f̌1(τ)], . . . , LM`µ [f̌µ(τ)]),

where f̌m(τ) = f [τ + α]/(τ + αm)`m =
∏µ
j=1, j 6=m(τ + αj)

`j .

In the following, p(τ), q(τ) and r(τ) are polynomials of degree `,m and n, and

their coefficients of τ j are denoted by pj , qj and rj , respectively.

Lemma 4.4. Let P (τ) = p(τ)r(τ) :=
∑`+n
k=0 Pkτ

k. Then

(4.7) (`+n)+1M1[P (τ)] = (`+n)+1M1[p(τ)r(τ)] = n+(`+1)M`+1[r(τ)] `+1M1[p(τ)],

that is,

P`+n...

P0

 =



rn O

rn−1
. . .

... rn

... rn−1

r0
...

. . .
...

O r0



p`...
p0

 .

Proof. This is an immediate consequence of Pk =
∑
i+j=k pirj .

Lemma 4.5. We have

(4.8)
(
(`+n)+mMm[p(τ)r(τ)]

... (m+n)+`M`[q(τ)r(τ)]
)

= n+(`+m)M`+m[r(τ)]
(
`+mMm[p(τ)]

... m+`M`[q(τ)]
)
.

Moreover, N :=
(
`+mMm[p(τ)]

... m+`M`[q(τ)]
)

is a square matrix of size ` + m,

and its determinant is the resultant of the polynomials p(τ) and q(τ). Hence

(4.9) detN = pm` q
`
m

∏
1≤i≤`, 1≤j≤m

(xi − yj),

where {xi} and {yj} are the roots of p(τ) and q(τ), respectively.

Proof. The formula (4.8) follows by applying Lemma 4.4. For the theory of resul-

tants, we refer to [9].

The next lemma follows from Lemma 4.5.
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Lemma 4.6. Let s(τ) =
∑`+m
j=0 sjτ

j. Then

(4.10)
(
(`+m)+nMn[s(τ)]

... (`+n)+mMm[p(τ)r(τ)]
... (m+n)+`M`[q(τ)r(τ)]

)
=
(
(`+m)+nMn[s(τ)]

... n+(`+m)M`+m[r(τ)]
)

×
(
En ⊕ (`+mMm[p(τ)]

... m+`M`[q(τ)])
)
,

where En denotes the unit matrix of size n.

§4.3. Proof of Lemma 4.3

Lemma 4.3 is obtained by (µ− 2)-fold application of Lemma 4.6. Firstly, we recall

(4.11) Ǎ = (LM`1 [f̌1(τ)], . . . , LM`µ [f̌µ(τ)]),

where f̌m(τ) = f [τ + α]/(τ + αm)`m =
∏µ
j=1, j 6=m(τ + αj)

`j .

For brevity, set

L[≤i] :=

i∑
j=1

`j , L[≥i] :=

µ∑
j=i

`j

(
L[≤i] + L[≥i+ 1] = L =

µ∑
j=1

`j

)
,

f≤m(τ) :=

m∏
j=1

(τ + αj)
`j , f≥m(τ) :=

µ∏
j=m

(τ + αj)
`j

(f≤m(τ)f≥m+1(τ) = f [τ + α]).

We denote Ǎ = Aµ.

Since the polynomials f̌µ−1(τ) and f̌µ(τ) have a common factor f≤µ−2(τ) =∏µ−2
j=1 (τ + αj)

`j , the formula (4.10) implies that

Aµ =
(
LM`1 [f̌1(τ)], . . . , LM`µ−2 [f̌µ−2(τ)]

... LM`µ−1 [f̌µ−1(τ)]
... LM`µ [f̌µ(τ)]

)
=
(
LM`1 [f̌1(τ)], . . . , LM`µ−2

[f̌µ−2(τ)]
... LML[≥µ−1][f≤µ−2(τ)]

)
×
(
EL[≤µ−2] ⊕ (L[≥µ−1]M`µ−1

[f̂µ(τ)]
... L[≥µ−1]M`µ [f̂µ−1(τ)])

)
=: Aµ−1 ·

(
EL[≤µ−2] ⊕ Â(µ, µ− 1)

)
.

Here det Â(µ, µ− 1) is the resultant of f̂µ(τ) = (τ + αµ)`µ and f̂µ−1(τ) =

(τ + αµ−1)`µ−1 , and its value is (αµ−1 − αµ)`µ−1`µ .

Secondly, since the polynomials f̌µ−2(τ) and f≤µ−2(τ) have a common factor

f≤µ−3(τ) =
∏µ−3
j=1 (τ + αj)

`j , we have
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Aµ−1

=
(
LM`1 [f̌1(τ)], . . . , LM`µ−3

[f̌µ−3(τ)]
... LM`µ−2

[f̌µ−2(τ)]
... LML[≥µ−1][f≤µ−2(τ)]

)
=
(
LM`1 [f̌1(τ)], . . . , LM`µ−3

[f̌µ−3(τ)]
... LML[≥µ−2][f≤µ−3(τ)]

)
×
(
EL[≤µ−3] ⊕ (L[≥µ−2]M`µ−2 [f≥µ−1(τ)]

... L[≥µ−2]ML[≥µ−1][f̂µ−2(τ)])
)

=: Aµ−2 ·
(
EL[≤µ−3] ⊕ Â(≥µ− 1, µ− 2)

)
.

Here, det Â(≥µ−1, µ− 2) is the resultant of f≥µ−1(τ) = (τ +αµ−1)`µ−1(τ +αµ)`µ

and f̂µ−2(τ) = (τ + αµ−2)`µ−2 , and its value is (αµ−2 − αµ−1)`µ−2`µ−1 ·
(αµ−2 − αµ)`µ−2`µ .

By continuing these arguments, we finally get

(4.12) det Ǎ = detAµ =

µ−1∏
k=1

det Â(≥µ− k + 1, µ− k) =
∏

1≤i<j≤µ

(αi − αj)`i`j ,

where Â(≥µ, µ− 1) = Â(µ, µ− 1) and A2 = Â(≥2, 1).
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